

REMEDIAL INVESTIGATION REPORT

FINAL

Benning Road Facility 3400 Benning Road, NE Washington, DC 20019

REMEDIAL INVESTIGATION REPORT

FINAL

Benning Road Facility 3400 Benning Road, N.E. Washington, DC 20019

PREPARED FOR:

Pepco and Pepco Energy Services 701 9th Street, NW Washington, DC 20068

PREPARED BY:

AECOM 8000 Virginia Manor Road, Suite 110 Beltsville, MD 20705

February 2020

AECOM Project Team

Pre	pared	d By:

Sharon Drummond, P.G.

Project Geologist

Robert Konnedy Prepared By:

Prepared By: Robert Kennedy Project Chemist

Prepared By:

Maryann Welsch

Ecological Risk Assessment Lead and Background

Data Evaluation Lead

Prepared By: Kelly Vosnakis

Human Health Risk Assessment Lead

Kally a. S. Vosnakis

Reviewed By: Betsy Ruffle

Human Health Risk Assessment Lead

Reviewed By:

Ravi Damera, P.E., BCEE Senior Project Manager

Reviewed By: John Bleiler

Senior Technical Reviewer

Executive Summary

The Potomac Electric Power Company and Pepco Energy Services, Inc. (collectively "Pepco") entered into a consent decree with the District of Columbia that was approved by the U.S. District Court for the District of Columbia on December 1, 2011. This consent decree required Pepco to perform a Remedial Investigation/Feasibility Study (RI/FS) at Pepco's Benning Road facility (the Site), located at 3400 Benning Road NE, Washington, DC, and a segment of the Anacostia River (the River) adjacent to the Site, under the oversight of the District Department of Energy and Environment (DOEE) (formerly the District Department of the Environment [DDOE]).

The Study Area for the RI/FS consists of a "Landside Investigation Area" focused on the Site itself, and a "Waterside Investigation Area" focused on the shoreline and sediments in the segment of the Anacostia River adjacent to and immediately downstream of the Site. In addition, background and forensic samples were collected outside of the Waterside Investigation Area (WIA), both upstream and downstream of the WIA. The areas encompassed by the investigation are shown on Figure ES-1.

The purpose of the Benning Road facility RI/FS is to: (a) characterize environmental conditions within the Study Area, (b) investigate whether and to what extent past or current conditions at the Site have caused or contributed to contamination of the River, (c) assess current and potential risk to human health and the environment posed by conditions within the Study Area, and (d) develop and evaluate potential remedial actions, as may be warranted. This RI Report addresses the first three objectives. The FS Report will address the development and evaluation of potential remedial actions. In addition, a detailed forensics analysis and source identification assessment will be included as an appendix to the FS Report.

The objective of the RI is to gather sufficient data regarding the Study Area conditions to inform management decisions regarding potential risks to human health and the environment. Multi-media RI studies conducted by Pepco to support this objective provide a robust understanding of chemical, biological, and physical conditions within the Study Area, and help place these findings into the larger context of the ongoing DOEE Anacostia River Sediment Project (ARSP).

Riverdale Waterside Investigation Area Pepco Outfall 013 and two other non-Pepco Outfalls Hyattsville DC DPW Solid Waste Transfer Facility Upstream Sampling Extent Newton's Benning Rd. Landside River Terrace Community Investigation Pepco Outfall 101 and City Storm Drains Chev E Capitol St NE **Downstream Sampling** D St SE Extent 2,000 4,000 Feet Mar

Figure ES-1: Landside and Waterside Investigation Areas

Site Setting

The 77-acre Site is entirely fenced, and access is controlled at all times. The former Benning Road Power Plant was located in the western portion of the Site until it was permanently shut down in 2012. Demolition and removal of the power plant building and related infrastructure was completed in 2015. Most of the Site is currently occupied by the Benning Service Center, which involves activities related to construction, operation, and maintenance of Pepco's electric power transmission and distribution system serving the Washington, DC area. Three substations serving Pepco's transmission and distribution system are also located on this Site. The Site is separated from the Anacostia River by a thin strip of land that is part of Anacostia Park. The River is an urban tidal estuarine river corridor with multiple historical and current sources of contamination, both up- and downstream of the Site.

RI Sampling and Analysis

Both the Landside and Waterside Investigation Areas were well characterized during this RI, which included the collection and analysis of nearly 2,000 field samples (see Table ES-1). Pepco also completed a background sampling program to establish Site-specific background conditions for soil, groundwater, Anacostia River surface water, and Anacostia River sediment, and a forensic evaluation to evaluate constituents of potential concern (COPCs) within the context of the broader urban river corridor. Relevant data collected by DOEE as part of the ARSP RI sampling effort were also evaluated in the Baseline Human Health Risk Assessment (BHHRA) and Baseline Ecological Risk Assessment (BERA), as well as the background evaluation.

Table ES-1: RI Sampling Summary

Matrix	Number of Samples
Landside Investigation Area Soils	1,060
Cooling Tower Basins Soils	207
Sediment	449
Surface Water	20
Toxicity Testing	21
Macroinvertebrate Community	21
Sediment Pore Water	21

Landside Investigation Summary

To help guide the Landside Investigation Area activities, the RI identified a total of 20 Target Areas (TA) and seven historical Operational Areas (which in most cases overlap with the Target Areas) on the Landside portion of the Site, based on Phase I RI data, historical investigations and remediation, underground storage

tank (UST) closures, and former and current operations. An iterative surficial and sub-surficial sampling approach was used to delineate analytes horizontally and vertically within the Target and Operational Areas relative to risk-based screening levels. Pepco worked closely with DOEE to complete delineation of COPCs in all Target Areas.

Non-aqueous phase liquids were not observed in soils or groundwater. Certain metals, polychlorinated biphenyls (PCB) Aroclors, polycyclic aromatic hydrocarbons (PAHs), dioxins, and petroleum hydrocarbons were detected in Site soils in several of the Target Areas in excess of screening levels. With the exception of vanadium, metals in soils were generally consistent with background conditions. The Landside investigation of PCB Aroclors indicated that the highest levels in Site soils were detected in Target Area 12 at concentrations exceeding the Toxic Substance and Control Act (TSCA) threshold limit for disposal of 50 milligrams per kilogram (mg/kg). Perchloroethelyne (PCE) and methyl-tertiary-butyl-ether (MTBE) were the only two COPCs detected in groundwater in excess of the screening levels. Table ES-2 summarizes the Landside Investigation Area impacts and potential source areas.

Table ES-2: Landside Investigation Area Impacts and Potential Source Areas

Target Area	Constituents of Potential Concern	Potential Sources of Impacts
TA1 Former Sludge Dewatering Area	Vanadium, PCBs, PAHs, and dioxins largely surficial and shallow subsurficial. Vanadium impacts extend outside of TA1 over a larger Former Coal Pile Area footprint to 3 feet below grade.	Sludge from clarifiers, sludge from the former cooling tower basins, river water and sediment processed in the clarifiers prior to use in the cooling tower, and former coal pile; dioxins potentially from the DC Department of Public Works (DPW) incinerator adjacent to the Site
TA4 Salvage Yard and Former Timber Pile Storage Area	PCBs, PAHs, and total petroleum hydrocarbons (TPH) largely to 5 feet below grade, some extend to 10–15 feet.	Historical activities and fill material
TA5 Former Cooling Tower Basins (East end of Cooling Tower #16)	PCBs and TPH to 6 feet below grade	PCB-containing caulk and potential historical dielectric fluid spill
TA10 Red Tag Storage Area	PCBs and dioxins in surface soils and shallow subsurface	PCBs from historical on-Site activities and dioxins potentially from the DC DPW incinerator adjacent to the Site. Low levels of PCDF from dielectric fluids containing PCBs cannot be ruled out.
TA11 Building 68	PCBs to 4 feet below grade	Historical activities in TA10 and TA 11
TA12 Building #57/Transformer Shop	PCBs and PAHs to 5 feet below grade	Historical operations involving electrical equipment, historical railroad operations, and/or coal tar paving sealants/fill soils
TA17 Storm Drain System	PCBs, PAHs, and metals	Historical industrial runoff

Target Area	Constituents of Potential Concern	Potential Sources of Impacts
TA18 Kenilworth Fueling Island	MTBE in groundwater	Residual from former cleanup and potential off- Site sources
TA19 PCE in Groundwater	PCE and its daughter products	The specific source (or sources) of PCE detected in on-Site groundwater cannot be conclusively determined from the existing data, and further investigation will be conducted as warranted during post-RI investigation activities.
TA20 PAHs in Soil/Former Rail Yard and Laydown Area	PAHs largely to 5 feet below grade, some locations extend to 11 feet.	Former Rail Yard operations, coal tar paving sealants, and/or fill soils

Landside Conceptual Site Model

Throughout the course of the RI, several detailed Conceptual Site Models (CSMs) have been developed to promote an understanding of key chemical, physical, and biological processes within the Study Area. Figure ES-2 presents the key exposure pathways to human receptors within the Landside Investigation Area as well as the connections between COPCs in stormwater, soils and groundwater, and the potential pathways to surface water.

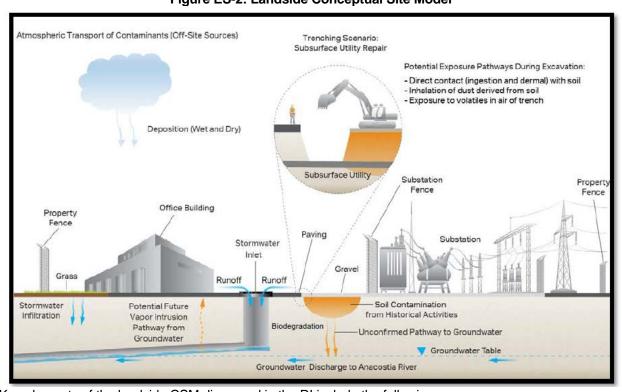


Figure ES-2: Landside Conceptual Site Model

Key elements of the landside CSM discussed in the RI include the following:

- The majority of the Site is paved or covered by impermeable surfaces and stormwater is captured in storm drains minimizing infiltration of water through soils that may be impacted; however, the storm drains discharge to the Anacostia River and therefore represent a pathway for historical movement of contaminants from the Site to the river.
- Groundwater is not used for drinking water, and direct contact with soil is unlikely based on the limited Site access, tight security, and presence of pavement or gravel across the majority of the Site.
- The existing operational and institutional controls that are in place at the Site provide effective
 exposure prevention measures. However, if any of these conditions were to change in the future,
 on-Site workers may potentially contact surface soil, and construction workers may contact
 subsurface soil via incidental ingestion, dermal contact, and inhalation of volatiles or dust derived
 from soil.
- A vapor intrusion pathway evaluation indicated no current exposure; however, vapor controls may
 be necessary for future buildings constructed over areas where contamination is present in the
 subsurface.
- Groundwater beneath the Site discharges to the Anacostia River. Given the chemical properties of
 the COPCs and the low concentrations observed in groundwater at the Site, there is no indication
 that COPCs have migrated, or are likely to migrate in the future, through groundwater to sediment
 pore water or surface water in the Anacostia River.

Waterside Investigation Summary

The Waterside Investigation Area focused on sediment and surface water in the portion of the River adjacent to the Site, as well as upstream sediment background locations in the Anacostia River. The major Waterside Investigation findings are as follows:

- Concentrations of COPCs in surface water in the Waterside Investigation Area are low, generally below screening values, and generally consistent with Site-specific background conditions in the Anacostia River.
- Concentrations of several metals, pesticides, PAHs, and PCBs exceed ecological screening levels
 in sediment in the Waterside Investigation Area. The highest concentrations of these constituents
 are generally located in the approximately 4.2-acre Cove, into which Outfall 013 from the Site and
 three other pipes not associated with the Site discharge.

- Concentrations of most COPCs in surface sediment in the Waterside Investigation Area are
 consistent with Site-specific background conditions, but surficial sediment PCB concentrations,
 particularly in the above-described Cove, exceed the Site-specific background concentrations.
- Multiple lines of evidence (including cesium cores, contaminant profiles, and grain size characterization) indicate that much of the Waterside Investigation Area, including the Cove, is net depositional.

Waterside Conceptual Site Model

Figure ES-3 highlights many of the key Waterside Investigation Area connections between COPCs in soils, surface water, groundwater, and sediment, as well as key ecological and human receptors. The CSM takes into account both current and future uses, including angling and recreational uses, which may increase in the future due to River improvements. These connections are evaluated in the BHHRA and BERA in Appendices AA and BB, respectively.

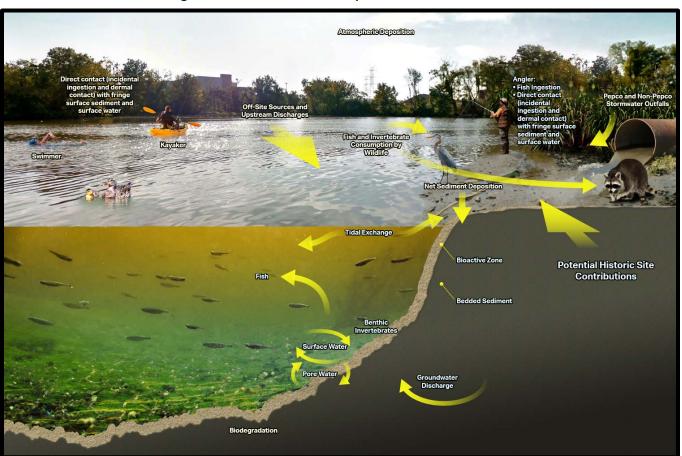


Figure ES-3: Waterside Conceptual Site Model

Key elements of the waterside CSM discussed in the RI include the following:

- The Anacostia River is an urban waterway with a highly developed upland infrastructure. Any
 evaluation of the Site must consider the broader context of this urban water body. There are
 numerous off-Site and upstream sources and potential sources of COPCs. Multiple outfalls (other
 than Pepco's) discharge into the Waterside Investigation Area and upstream reaches of the River.
- Pathways by which Site-related contaminants may have historically migrated from the Landside Investigation Area to the River are limited. The RI documents that neither current nor historical groundwater discharge from the Site is a significant contributor to surface water or sediment impacts in the Anacostia River. Although historical discharges from the Site likely have contributed to sediment conditions in the Cove, the RI documents that stormwater discharges from the Site are not currently a source of COPCs to the River. Prior to the construction of the storm drain system in the 1950s, Site stormwater flowed to the on-Site portion of Piney Run, which historically discharged to the Cove. Portions of the storm drain system are below the groundwater table. Investigation of the condition of the storm drains did not reveal evidence of any significant groundwater infiltration.
- The Waterside Investigation Area includes tidal flats that are regularly inundated and exposed with the ebb and flow of tide, as well as channelized areas that are perennially under water.
- Much of the Waterside Investigation Area, including the 4.2-acre Cove, is net depositional.
- Data collected during this RI demonstrate that the Site-specific bioactive zone (BAZ) in the Anacostia River sediments ranges from 0.15 to 6.1 inches and averaged 4 inches below the sediment surface.
- The presence of bioaccumulative and biomagnifying COPCs in surficial sediment and associated media within the Waterside Investigation Area indicates that there is a potential linkage between contaminants in these media and fish tissue. However, uncertainties exist regarding the relationship between sediment COPCs in the Waterside Investigation Area and fish tissue in the Anacostia River.
- Movement of COPCs into surface water and sediment occurs through resuspension of particulate matter, pore water/surface water exchange, and tidal exchange.
- Ecological receptors in the Waterside Investigation Area include benthic infauna, aquatic invertebrates, fish, and wildlife.
- Human use of the Anacostia River includes angling and other recreational activities; the CSM takes
 into account both current uses as well as future uses, which may increase in the future due to River
 improvements.

Baseline Human Health Risk Assessment

The BHHRA evaluated soil and groundwater data from the Landside Investigation Area, and surface sediment and surface water from the Waterside Investigation Area. In addition, per the request of DOEE, the Waterside Investigation Area BHHRA considered fish tissue data collected by USFWS (Pinkney, 2017) from the Upper Anacostia River (an approximately 4-mile reach of the river that includes the Waterside Investigation Area). Because the exact collection points are not specified in the Pinkney study, the samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several-mile-long river reach that was sampled (or possibly the larger home range for some of the fish species sampled) and may not reflect the specific conditions within the Waterside Investigation Area. The same qualification applies for the fish samples collected within the Lower Anacostia and the Potomac River. Accordingly, although the tissue data for the Upper Anacostia reach were used for this BHHRA per the direction of DOEE, there are uncertainties regarding the relationship between the fish tissue and sediment concentrations.

To help place the Study Area risk evaluation into a regional context, the following regional reaches were also evaluated for potential exposures via fish consumption: (1) Lower Anacostia River (downstream of the CSX bridge) (2) Upper Potomac River (upstream of the 14th Street bridge), and (3) Lower Potomac River (downstream of the 14th Street bridge). The BHHRA also evaluated fish tissue collected from the upstream non-tidal Anacostia River (north of the Maryland state line) as an area which DOEE has determined represents background for fish tissue.

Both reasonable maximum exposure (RME) and central tendency exposure (CTE) scenarios were evaluated so that a range of potential exposures and risks could be considered. The RME provides an estimate of the upper range of exposure in a population, whereas the CTE uses average exposure parameters to calculate an average exposure to an individual. Both scenarios are based on conservative exposure assumptions and toxicological inputs such that the results likely overestimate the actual risk.

Landside Investigation Area BHHRA Findings

Four potential receptors were evaluated in the Landside Investigation Area:

- Current/future construction workers
- Future outdoor industrial workers
- Future indoor industrial workers
- Hypothetical future recreational visitors

Potential exposures to on-Site surface and subsurface soils are currently incomplete due to perimeter fencing, 24-hour site security, and the presence of pavement or gravel across the vast majority of the Site. The current lack of access to soil is expected to continue into the foreseeable future. However, the potential for future direct contact exposures to surface and subsurface soil was evaluated, including a hypothetical recreational scenario for the western portion of the Site next to Anacostia Avenue. This area was previously the location of the former power plant demolished between 2012 and 2015. This area of the Site remains under controlled access and Pepco has no plans to convert this area to public recreational use.

Nonetheless, because this portion of the Site is the closest to the Anacostia River and the existing NPS park land located across Anacostia Avenue, DOEE directed that the BHHRA evaluate a hypothetical future exposure scenario in which this area becomes public park land or green space. It was also assumed that a construction worker and a hypothetical future indoor worker may be exposed via inhalation of vapors from groundwater. Based on the evaluation of potential migration of constituents from groundwater to surface water, discharge of Site groundwater is not adversely impacting the Anacostia River. Figure ES-4 presents the potential carcinogenic risks for landside receptors, and Figure ES-5 presents the noncarcinogenic hazard index (HI).

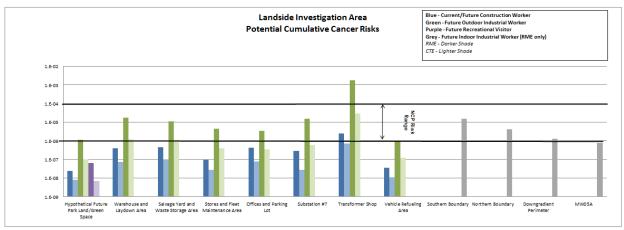


Figure ES-4: Landside Potential Cancer Risks

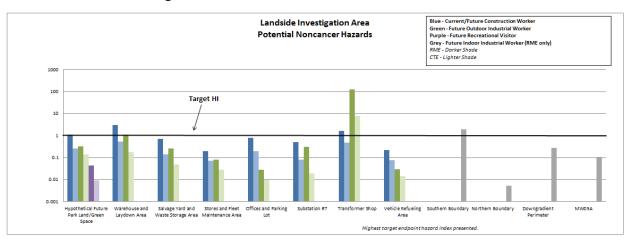


Figure ES-5: Landside Potential Noncancer Hazards

As indicated by the figures above, the majority of total potential carcinogenic risk and noncarcinogenic hazards for landside receptor scenarios are within or below the USEPA target cancer risk range of 10⁻⁶ to 10⁻⁴ and below a noncarcinogenic target endpoint HI of 1. Table ES-3 presents the identified constituents of concern (COCs) with potential cancer risks greater than 10⁻⁶ or a target endpoint HI of 1 for the Landside Investigation Area; the noncancer hazard value representing the highest target endpoint HI is presented.

Table ES-3: Potential COCs for the Landside Investigation Area

		Landside Investigation Area				
Potential COC	Cancer Risk/HI	Warehouse and Laydown Area	Salvage Yard and Storage Area	Substation #7	Transformer Shop	
2,3,7,8-TCDD-TEQ	Risk	-	4E-06 ^a			
Vanadium	H	3 ^b				
	Risk	5E-06 ^a	2E-06 ^a	4E-6 ^a	2E-03 ^a	
Total PCBs	Н	-1			124 ^a 1.6 ^b	

Notes:

Blue highlighting indicates that cancer risk exceeds 10^{-6} but is less than or equal to 10^{-4} .

Yellow highlighting indicates that cancer risk exceeds 10-4 or the target endpoint HI exceeds 1.

Waterside Investigation Area BHHRA Findings

The following potential receptors were evaluated for the Waterside Investigation Area:

Current and future swimmers and waders

⁻⁻ Indicates that cancer risk is less than 10⁻⁶ or noncancer HI is less than 1.

^a Future outdoor industrial worker surface soil (0-1 foot bgs).

^b Current/future construction worker soil (0-16 feet bgs).

- Current and future shoreline workers
- Current and future anglers

Figure ES-6 presents the potential carcinogenic risks for waterside receptors, and Figure ES-7 presents the noncarcinogenic HI. In addition to the Upper Anacostia which encompasses the Waterside Investigation Area, potential cancer risks and noncancer hazards are also presented for several regional reaches to provide additional context for potential risks in the Waterside Investigation Area. The BHHRA evaluated risks for the recreational angler since angling has not been observed within the Waterside Investigation Area and the Site represents a small portion of river shoreline relative to the length of the Anacostia River (less than 6 percent). The high end consuming angler (i.e., subsistence angler) scenario is considered in the uncertainty evaluation provided in the BHHRA Report (Appendix AA).

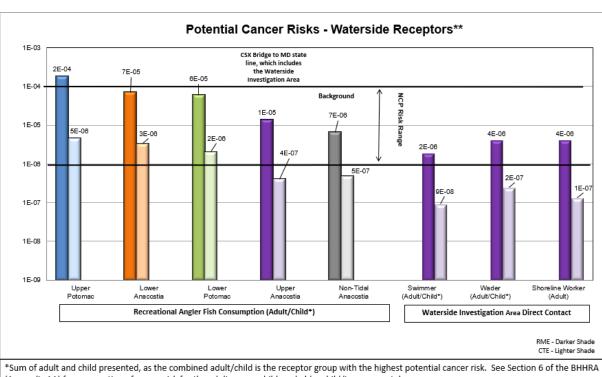


Figure ES-6: Waterside Receptors – Potential Cancer Risks

⁽Appendix AA) for presenation of cancer risk for the adult, young child, and older child/teen separately.

^{**}Cancer risks are for the recreational angler scenario (adult/child); results for the high end consuming angler (i.e. subsistence angler) scenario are provided in the BHHRA Report (Appendix AA).

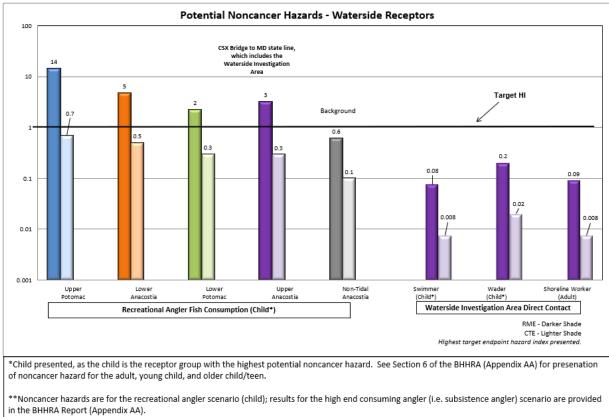


Figure ES-7: Waterside Receptors – Potential Noncancer Hazards

As indicated by the figures above, potential cancer risks are within the USEPA's target risk range of 10⁻⁶ to 10⁻⁴ with the exception of the RME scenario for the Upper Potomac River. The noncancer HI exceeds 1 in under the RME scenario in all areas except the Upper Non-Tidal Anacostia. As shown in Table ES-4, all of the chemicals identified as potential COCs in the Upper Anacostia area for recreational fish consumption are also identified in other regional reaches, and in many cases, at higher cancer risk and noncancer hazard levels.

Table ES-4: Current/Future Recreational Angler Fish Consumption RME Scenario

	0	Fish C	onsumption from F	Recreational Angler Regional and Backgro Scenario	
Chemical	Cancer Risk/HI		Background Reach		
		Lower Anacostia	Lower Potomac	Upper Potomac	Upstream Non- Tidal Anacostia
Arsenic	Risk	2E-06	3E-05	3E-06	
Tatal DODa	Risk	5E-05	2E-05	1E-04	3E-06
Total PCBs	HI	5	2	14	
DOD TEO	Risk	7E-05	3E-05	2E-04	4E-06
PCB-TEQ	HI	3		9	
4,4-DDE	Risk			4E-06	
Dieldrin	Risk	1E-05	5E-06	2E-05	
Heptachlor epoxide	Risk	2E-06			

Notes:

Blue highlighting indicates that cumulative cancer risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Overall, the BHHRA for recreational receptors shows that PCBs in fish tissue is the dominant COPC and medium driving exposure risk; other COPCs including pesticides contribute negligibly to cumulative risk. Fish consumption cancer risks and noncancer hazards estimated using data collected by DOEE throughout the Anacostia and Potomac Rivers exceed 10⁻⁶ and an HI of 1; these findings suggest multiple sources of PCBs and other urban contaminants, including upstream of the extent of tidal influence of the Waterside Investigation Area. Because of the significant regional and background cancer risks and noncancer hazards compared to Site cancer risks and noncancer hazards, regional and background conditions need to be carefully considered in risk management decision-making for the Site.

⁻⁻ Indicates that cancer risk is less than or equal to 10⁻⁶ or noncancer HI is less than or equal to 1. Cancer risk is presented for the sum of the adult and the young child, and the noncancer HI is presented for the young child. The older child/teen risk and HI values are lower.

Yellow highlighting indicates that cumulative cancer risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

^a Current/future recreational angler.

Table ES-5: Summary of Potential COCs Identified in BHHRA

	Landside			Water	rside
Potential COC	Surface Soil Direct Contact	Subsurface Soil Direct Contact	Groundwater Vapor Intrusion	Fish Tissue Consumption	Sediment Direct Contact
TCDD-TEQ	COC (a)	Risk<10 ⁻⁶ HI <1	(i)	NA	COC (g)
Total PCBs	COC (a,b,j)	COC (c)	(i)	COC (f)	Risk<10 ⁻⁶ HI <1
PCB-TEQ	(h)	<sl< td=""><td>(i)</td><td>COC (f)</td><td>(h)</td></sl<>	(i)	COC (f)	(h)
Dieldrin	<sl< td=""><td><sl< td=""><td>(i)</td><td>COC (f)</td><td><sl< td=""></sl<></td></sl<></td></sl<>	<sl< td=""><td>(i)</td><td>COC (f)</td><td><sl< td=""></sl<></td></sl<>	(i)	COC (f)	<sl< td=""></sl<>
Vanadium	HI<1	COC (b)	(i)	<sl< td=""><td>HI<1</td></sl<>	HI<1
Chloroform	ND	ND	COC (d)	NA	<sl< td=""></sl<>
Tetrachloroethylene	<sl< td=""><td><sl< td=""><td>COC (e)</td><td>NA</td><td><sl< td=""></sl<></td></sl<></td></sl<>	<sl< td=""><td>COC (e)</td><td>NA</td><td><sl< td=""></sl<></td></sl<>	COC (e)	NA	<sl< td=""></sl<>
Trichloroethylene	ND	ND	COC (e)	NA	<sl< td=""></sl<>
Vinyl Chloride	ND	ND	COC (e)	NA	<sl< td=""></sl<>

Notes:

- < SL maximum detected concentration below applicable screening level.
- COC Constituent of Concern; cancer risk is greater than 10⁻⁶ and/or noncancer hazard index is greater than 1.
- NA Not Analyzed.
- ND Not Detected.
- (a) Salvage Yard and Storage Area.
- (b) Warehouse and Laydown Area.
- (c) Transformer Shop.
- (d) Northern property boundary.
- (e) Southern property boundary.
- (f) Upper Anacostia River.
- (g) Waterside Investigation Area.
- (h) PCB-TEQ is evaluated only for fish tissue.
- (i) The potential exposure pathway for groundwater is vapor intrusion. Non-volatile constituents were therefore not evaluated.
- (j) Substation #7.

The COCs listed above for fish tissue are based on measured fish tissue concentrations; no modeling from sediment to fish tissue was conducted for the BHHRA. The presence of bioaccumulative and biomagnifying COPCs in surficial sediment, surficial sediment pore water, and surface water within the Waterside Investigation Area indicates that there is a potential linkage between contaminants in these media and fish tissue. However, this linkage is uncertain due to the lack of information demonstrating sediment to fish tissue relationships in the River generally, and the small role that sediment and surface water in the Waterside Investigation Area likely play in COPC budgets and fish home ranges in the Anacostia River.

As with all risk assessments, assumptions have been made about variables and processes that are not fully known, such as human behavior, chemical toxicity, or environmental concentrations. While the use of assumptions leads to uncertainty, it is important to note that the assumptions and approaches used in this BHHRA are conservative, such that risks are much more likely to be overestimated than underestimated.

Baseline Ecological Risk Assessment

The Waterside Investigation Area BERA integrates a variety of lines of evidence (LOE) to assess potential ecological risks. A weight of evidence (WOE) approach was used to synthesize conclusions regarding overall potential risk(s) to ecological receptors by considering the results of all components of the assessment methodology (i.e., the results of physical, biological, toxicological, and field measurement endpoints). The WOE components were designed to provide relative measures of potential risks for different ecological receptors and exposure pathways.

Benthic Community Risk Characterization

Evaluation of potential risks to the benthic community considered multiple LOEs, as summarized below.

- Sediment Benchmark Screening. Concentrations of several constituents (e.g., total PCBs, metals, and pesticides) in surficial sediment exceed literature-derived screening values in both the Waterside Investigation Area and the background area. PCBs were present at slightly higher concentrations in the Cove than elsewhere in the Waterside Investigation Area. However, the ranges of concentrations for most COPCs are similar to the ranges detected in background samples.
- Bioavailability. With the possible exception of PAHs at one sampling station, the BERA data suggest that divalent metals (cadmium, copper, lead, nickel, and zinc) and PAHs are not bioavailable in surficial sediment and therefore are not stressors of concern.
- Pore Water. Evaluation of surficial sediment pore water using state-of-the-art technologies
 indicates that constituents are not present at concentrations that pose an ecological concern and
 that concentrations of pore water constituents in the Waterside Investigation Area and the
 background area are similar to one another.
- Toxicity Testing. Two species (midge and amphipod) were tested to evaluate both lethal and sublethal impacts associated with sediment exposure. In general, amphipod and midge survival responses were similar among the five upstream background samples and the 15 Waterside Investigation Area samples. However, several stations, including stations within the Cove, had reduced growth responses relative to the background condition.
- Benthic Community Survey. The macroinvertebrate community survey provides a field-based
 metric of community health. This analysis demonstrated no impacts associated with exposure to
 COPCs in the Waterside Investigation Area. In fact, the majority of benthic samples collected from
 the Waterside Investigation Area was more diverse and had higher bioassessment scores than
 those collected from the background area.

Although the results of this analysis indicate a low to indeterminate potential risk to benthic invertebrates, particularly in the Cove, the results of the WOE evaluation suggest that any incremental risks potentially contributed by the Site are largely indistinguishable from the anthropogenic, urban background conditions that characterize the Anacostia River. In several of the comparisons considered in the WOE evaluation (e.g., macroinvertebrate community study), the potential for ecological risks in the upstream background area is actually slightly higher than the potential for ecological risks in the Waterside Investigation Area.

Fish Risk Characterization

The potential risks to fish were evaluated by comparing fish tissue concentrations to critical body residues deemed to be protective of fish. This analysis indicates little to no potential risk to fish from exposure to COPCs.

Wildlife Risk Characterization

Potential for risks to wildlife were evaluated through modeled dietary exposures, which indicated that hazard quotients (HQs) for the belted kingfisher, great blue heron, and raccoon were well below or equal to 1 for even the most conservative exposure scenarios. Based on these results, no risks to birds and mammals are expected through food chain exposure to COPCs in the Waterside Investigation Area.

BERA Summary

The BERA reached the following conclusions (see Table ES-6).

- While there is a low to indeterminate risk to macroinvertebrates from exposure to COPCs, for the most part the data collected in support of this RI indicate that key COPCs are not bioavailable to macroinvertebrates. Further, the results of the WOE assessment for the benthic community also suggests that any incremental risks contributed by the Site are largely indistinguishable from the anthropogenic, urban background conditions that characterize the Anacostia River as a whole.
- No potential for risk was identified for fish. These results are consistent with the fish risk evaluation in the ARSP RI (Tetra Tech, 2018)
- No potential for risk was identified for wildlife. These results are consistent with the wildlife risk evaluation in the ARSP RI (Tetra Tech, 2018).

Table ES-6: Weight of Evidence BERA Summary: Waterside Investigation Area

Benthic Macroinvertebrat	e Community		Fis	sh	
Evaluation of Surface Sediment COPC Concentrations relative to Screening Values	Low Potential for Risk		Surface Water Screening Evaluation	No Potential for Risk	
Divalent Metal Bioavailability in BAZ	No Potential for Risk		Ground Water	No Potential for Risk	
PAH Bioavailability in BAZ	PAH Bioavailability in BAZ No Potential for Risk		Critical Body Residues	No Potential for Risk	
	No Potential for Risk Indeterminate / Low Potential for Risk		Wildlife Receptors Food Chain Analysis		
Pore Water			Raccoon	No Potential for Risk	
Midge and Amphipod Toxicity Testing			Kingfisher	No Potential for Risk	
Benthic Community No Potential for Risk			Great Blue Heron	No Potential for Risk	

RI Conclusions and Path Forward

A thorough characterization of the Study Area was completed through the various RI activities. The majority of total potential carcinogenic risk and noncarcinogenic hazards for the landside receptor scenarios are within or below the USEPA target risk (10⁻⁶ to 10⁻⁴) and below the noncarcinogenic target endpoint HI of 1, with the exception of Target Area #1 and the surrounding area, the Former Coal Pile Area footprint, the Former Salvage Yard (Target Area #4), Substation #7, and the transformer shop area (Target Area #12). Additionally, a data gap remains regarding the specific source (or sources) of PCE detected in on-Site groundwater, which cannot be conclusively determined from the existing data; further investigation will be conducted as warranted during post-RI investigation activities. A vapor intrusion pathway evaluation indicated no current exposure; however, vapor controls may be necessary for future buildings constructed in the vicinity of the PCE detections in groundwater. Within the Waterside Investigation Area, concentrations of several COPCs are elevated in the River Cove into which Outfall 013 and three other non-Pepco outfalls discharge. The BERA identified that low to indeterminate risk to benthic macroinvertebrate community was observed within the Cove, where COPC concentrations are higher than the background. The BHHRA identified PCBs in fish tissue to be the dominant COPC and medium driving the exposure risk. The contribution of other COPCs (pesticides and arsenic) to cumulative risk is negligible. Uncertainty exists regarding the relationship between concentrations of PCBs detected in fish tissue samples and PCBs detected in sediments within the Waterside Investigation Area.

Based on the findings of the RI Report, Pepco will conduct a Feasibility Study to evaluate potential remedial actions for both the Landside and Waterside Investigation Areas. As part of the Feasibility Study process, Pepco identified the need for bench-scale Treatability Studies (TS) to support the evaluation of potential remedial alternatives to address sediments in the Waterside Investigation Area. These studies may include sediment dewatering studies, sediment treatability studies focused on analysis of sequestration agents (the use of amendments to reduce bioavailability of contaminants by sorption or biodegradation of contaminants) and other active and inert capping materials, and geotechnical evaluations to better understand sediment stability.

Contents

Ex	ecutive	Summa	ry	1
1	Introd	uction		1-1
	1.1	Report I	Purpose and Scope	1-3
	1.2	•	ckground and Setting	
	1.3		scription and History	
	1.4	Stormwa	ater Management	1-6
	1.5	Concep	tual Site Model	1-7
		1.5.1	Major Constituents of Concern (COCs) and potential sources	1-8
		1.5.2	Exposure pathways	1-8
	1.6	Previous	s Investigations and On-Site Removal Actions	
		1.6.1	Pepco Studies and Removal Actions	1-9
		1.6.2	EPA 1997 Study	1-9
		1.6.3	EPA 2009 Study	1-10
	1.7	Potentia	al Sources of Contamination in the Immediate Vicinity of the Site	1-10
		1.7.1	Kenilworth Park Landfill	1-11
		1.7.2	Langston Golf Course	1-13
		1.7.3	Former District of Columbia Trash Incinerator Facility	1-14
		1.7.4	NPS Kenilworth Maintenance Yard	1-14
	1.8	Regiona	al Assessment of Anacostia River and Suspected Area-Wide Sources	of
		Impact.		1-15
		1.8.1	Historical Perspective	
		1.8.2	Anacostia River Sediment Project	
		1.8.3	Combined Sewer Overflows	
	1.9	Report (Organization	1-20
2	Study	Area In	vestigation	2-1
	2.1	Phase I	Landside Investigation	2-4
		2.1.1	Phase I Landside Mobilization 1, Task 1: Utility Clearance	2-4
		2.1.2	Phase I Landside Mobilization 1, Task 2: Surface Soil Sampling	2-4
		2.1.3	Phase I Landside Mobilization 1, Task 3: Storm Drain Sampling	2-5
		2.1.4	Phase I Landside Mobilization 1, Task 4: Electrical Resistivity Imagin	ıg 2-6
		2.1.5	Phase I Landside Mobilization 1, Task 5: Geotechnical Soil Borings	2-7
		2.1.6	Phase I Landside Mobilization 2, Task 1: DPT Subsurface Investigat	
		2.1.7	Phase I Landside Mobilization 3, Task 1: PCE Source Investigation	
		2.1.8	Phase I Landside Mobilization 3, Task 2: Monitoring Well Installation	2-10
		2.1.9	Phase I Landside Mobilization 3, Task 3: Monitoring Well Sampling a	
			Gauging	
		2.1.10	Phase I Landside Mobilization 3, Task 4: Tidal Influence Monitoring	2-12
		2.1.11	Phase I Landside Mobilization 3, Task 5: Aquifer Testing	2-13

	2.1.12		2 42
2.2	Dhasal	Sampling	
2.2		Waterside Investigation	
	2.2.1	Phase I Waterside Mobilization 1, Task 1: Bathymetric and Utility Surve	∌ys . ∠-
	2.2.2	Phase I Waterside Mobilization 2, Task 1: Surface Water Sampling	2-15
	2.2.3	Phase I Waterside Mobilization 2, Task 2: Surface Sediment Sampling	2-15
	2.2.4	Phase I Waterside Mobilization 2, Task 3: Subsurface Sediment/Vibrac	ore
		Boring	2-16
2.3	Phase I	I Landside Investigation	2-17
	2.3.1	Phase II Landside Mobilization 1, Task 1: On-Site Monitoring Well	
		Redevelopment and Resampling	
	2.3.2	Phase II Landside Mobilization 1, Task 2: On-Site Nature and Extent S Delineation	
	2.3.3	Phase II Landside Mobilization 1, Task 3: On-Site Soil Forensics Samp 20	ling 2-
	2.3.4	Phase II Landside Mobilization 1, Task 4: On-Site DPT Groundwater Investigation	2-20
	2.3.5	Phase II Landside Mobilization 2, Task 1: Background Soil Sampling	2-21
	2.3.6	Phase II Landside Mobilization 2, Task 2: Background DPT Groundwat Sampling	
	2.3.7	Phase II Landside Mobilization 3, Task 1: Anacostia Park Surface Soil Sampling	
	2.3.8	Phase II Landside Mobilization 3, Task 2: Anacostia Park Property Disc Subsurface Soil and Groundwater Sampling	
	2.3.9	Phase II Landside Mobilization 3, Task 3: Anacostia Park Property Geotechnical Boring	2-24
2.4	Phase I	I Waterside Investigation	
	2.4.1	Phase II Waterside Mobilization 1, Task 1: Sediment Profile Imaging at Waterside Investigation Area Locations	
	2.4.2	Phase II Waterside Mobilization 2, Task 1: Waterside Investigation Are	
		Surface Sediment Sampling	
	2.4.3	Phase II Waterside Mobilization 2, Task 2: Background and Forensics	
		Surface and Subsurface Sediment Sampling	
	2.4.4	Phase II Waterside Mobilization 3, Task 3: High Resolution Coring	2-29
	2.4.5	Phase II Waterside Mobilization 3, Task 4: City Storm Drain Sediment	2 20
2.5	Investig	Sampling	
	_	ation-Derived Waste Management	
2.6 2.7	_	cal Investigationons from the Work Plan	
2.7	Deviatio	ons from the work Plan	2-32
-		racteristics of the Study Area	
3.1		Site Improvements	
3.2		ology	
3.3	Surface	Water Hydrology	3-4

3

	3.4	Geology	/	3-6
		3.4.1	Regional Geology	3-6
		3.4.2	Site-Specific Geology	3-6
	3.5	Hydroge	eology	3-8
		3.5.1	Regional Hydrogeology	3-8
		3.5.2	Site-Specific Hydrogeology	3-9
	3.6	Land Us	se and Demography	3-10
	3.7	Ecology	·	3-11
4	Natur	e and Ex	tent of Contamination	4-1
	4.1	Data Va	lidation Summary and Quality Assurance Assessment	4-4
		4.1.1	Data Validation Summary	4-4
		4.1.2	Quality Assurance Assessment	4-5
	4.2	Soil San	npling Results	4-6
		4.2.1	Overview of Site Investigation and Target Area Assessment	4-6
		4.2.2	Comparison to Site-Specific Background Analysis	4-9
		4.2.3	Surface Soils Characterization Results	4-9
		4.2.4	Subsurface Soils Characterization Results	4-23
		4.2.5	Soils Summary	4-36
	4.3	Ground	water	4-37
		4.3.1	Overview of Site Investigations and Target Area Assessment	4-37
		4.3.2	Comparison to Site-specific Background Analysis	4-39
		4.3.3	Upper Water-Bearing Zone	4-39
		4.3.4	Lower Water-Bearing Zone	4-45
		4.3.5	Groundwater Summary	4-51
	4.4	Storm D	Prain Sampling Results	4-53
		4.4.1	Inorganics	4-54
		4.4.2	VOCs	4-54
		4.4.3	PAHs	4-54
		4.4.4	GRO/DRO/ORO	4-55
		4.4.5	Pesticides	4-55
		4.4.6	PCBs	4-55
	4.5	Anacost	tia Park	4-56
		4.5.1	Subsurface Soil	4-57
		4.5.2	Groundwater	4-57
		4.5.3	Anacostia Park Summary	4-58
	4.6	Anacost	tia River Surface Water	4-59
		4.6.1	Inorganics	4-59
		4.6.2	Organics	
		4.6.3	Background Comparison – Data Collected by Others	
	4.7	Anacost	tia River Sediments	
		4.7.1	Sediment Sampling Scope	4-62
	4.8	Potentia	I Sources of Detected Constituents	

		4.8.1	Background Sources	4-73
		4.8.2	Target Area 1 – Former Sludge Dewatering Area	4-74
		4.8.3	Target Area 4 – 2003 Salvage Yard Investigation and Former Timber Storage Area	
		4.8.4	Target Area 5 – Former Cooling Towers	
		4.8.5	Target Area 10 - Red Tag Storage Area and Target Area 11 - Buildir	ng #68
		400	Toward Area 40 Divilation #57	
		4.8.6	Target Area 17 Storm Drains	
		4.8.7	Target Area 17 – Storm Drains	
		4.8.8	Target Area 18 - Kenilworth Fueling Island (MTBE in Groundwater)	
		4.8.9 4.8.10	Target Area 19 and DP09 Investigation Area – PCE in Groundwater Target Area 20 – PAHs in Soil (Former Railroad Yard)	
5	Conta	aminant	Fate and Transport	5-1
	5.1		d Transport Processes	
		5.1.1	Chemical Processes	
		5.1.2	Physical Processes	
		5.1.3	Biological Processes	
	5.2		uents of Potential Concern	
		5.2.1	Inorganic Constituents	
		5.2.2	PAHs and SVOCs	
		5.2.3	PCBs	
		5.2.4	Dioxins	
		5.2.5	Pesticides	
		5.2.6	VOCs and TPH	
	5.3	Site-spe	ecific Migration Pathways and Revised CSM	
		5.3.1	Potential On-Site Contamination Source Areas and Migration Pathwa	
		5.3.2	Potential Off-Site Sources of Contamination	-
		5.3.3	Contaminant Migration	
		5.3.4	CSM Summary	
6	Basel	ine Risk	Assessments	6-1
	6.1	Baseline	e Human Health Risk Assessment	6-1
		6.1.1	BHHRA Methodologies	6-2
		6.1.2	Landside Scenario Risk Characterization	
		6.1.3	Waterside Scenarios Risk Characterization	
		6.1.4	Background and Regional Reach Scenarios Risk Characterization	6-10
		6.1.5	Potential COCs	6-12
	6.2	Baseline	e Ecological Risk Assessment Summary	6-13
		6.2.1	BERA Approach	6-15
		6.2.2	BERA Risk Characterization	6-19
		6.2.3	BERA Uncertainty Evaluation	6-24
		624	RERA Conclusions	6-27

7	Sumr	nary and	d Conclusions	7-1
	7.1	Geolog	gy and Hydrogeology	7-2
	7.2	Nature	7-3	
		7.2.1	Landside Investigation Area	7-3
		7.2.2	Anacostia Park	
		7.2.3	Waterside Investigation Area	7-6
	7.3	Evalua	tion of Contaminant Fate and Transport	7-7
	7.4			7-8
		7.4.1	Landside Investigation Area	7-8
		7.4.2	Waterside Investigation Area	7-10
		7.4.3	BHHRA Conclusions	
	7.5	Baselin	7-14	
		7.5.1	Benthic Invertebrate Risk Characterization	7-14
		7.5.2	Fish Risk Characterization	
		7.5.3	Wildlife Risk Characterization	7-16
		7.5.4	BERA Summary	7-16
	7.6	Conclu	isions	
	7.7	Further	r Actions	7-18
8	Refer	ences		8-1

List of Tables

Table 1-1	Key RI/FS Project Milestones
Table 1-2	Historical Removal Actions and Investigations
Table 1-3	Target Areas and Operational Units
Table 2-1	Permits Obtained for RI/FS Field Activities
Table 2-2	Landside and Waterside Data Collection Program
Table 2-3	Monitoring Well Details
Table 3-1	Summary of Historical Development
Table 3-2	Geotechnical Results Summary
Table 3-3	Monitoring Well Vertical Hydraulic Gradients
Table 3-4	Aguifer Testing Hydraulic Conductivities
Table 4-1	Inorganic Concentrations in Surface Soils
Table 4-2	VOCs, SVOCs, and TPH Fractions Concentrations in Surface Soils
Table 4-3	PCBs and Pesticides Concentrations in Surface Soils
Table 4-4	Dioxins and Furans Concentrations in Surface Soils
Table 4-5	Soil XRF Results
Table 4-6	Inorganic Concentrations in Subsurface Soils
Table 4-7	VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils
Table 4-8	PCBs and Pesticides Concentrations in Subsurface Soils
Table 4-9	Dioxins and Furans Concentrations in Subsurface Soils
Table 4-10	Inorganic Concentrations in UWZ Direct Push Groundwater Samples
Table 4-11	VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater
	Samples
Table 4-12	PCBs and Pesticides Concentrations in UWZ Direct Push Groundwater Samples
Table 4-13	Dioxins and Furans Concentrations in UWZ Direct Push Groundwater Samples
Table 4-14	Inorganic Concentrations in LWZ Direct Push Groundwater Samples
Table 4-15	VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater
	Samples
Table 4-16	PCBs Concentrations in LWZ Direct Push Groundwater Samples
Table 4-17	Inorganic Concentrations in UWZ Groundwater Monitoring Wells
Table 4-18	VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Groundwater Monitoring Wells
Table 4-19	PCBs and Pesticides Concentrations in UWZ Groundwater Monitoring Wells
Table 4-20	Dioxins and Furans Concentrations in UWZ Groundwater Monitoring Wells
Table 4-21	Inorganic Concentrations in LWZ Groundwater Monitoring Wells
Table 4-22	VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Groundwater Monitoring Wells
Table 4-23	PCBs and Pesticides Concentrations in LWZ Groundwater Monitoring Wells
Table 4-24	Dioxins and Furans Concentrations in LWZ Groundwater Monitoring Wells
Table 4-25	Storm Drain Surface Water Results
Table 4-26	Storm Drain Residue Results
Table 4-27	Anacostia Park Incremental Sampling Methodology Results
Table 4-28	Anacostia Park Surface and Subsurface Soil Discrete Sample Results
Table 4-29	Anacostia Park Direct Push Groundwater Results
Table 4-30	Waterside Investigation Area Surface Water Results
Table 4-31	Inorganic Concentrations in Waterside Investigation Area Surface Sediment
Table 4-32	VOCs, PAHs, SVOCs, and TPH Fractions Concentrations in Waterside Investigation Area
T-1-1- 4-00	Surface Sediment
Table 4-33	PCBs and Pesticides Concentrations in Waterside Investigation Area Surface Sediment
Table 4-34	Dioxins and Furans Concentrations in Waterside Investigation Area Surface Sediment
Table 4-35	Inorganic Concentrations in Waterside Investigation Area Subsurface Sediment

List of Tables (continued)

Table 4-36	VOCs, PAHs, SVOCs, and TPH Fractions Concentrations in Waterside Investigation Area Anacostia River Subsurface Sediment
Table 4-37	PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Table 4-38	Pore Water Analysis in Waterside Investigation Area Sediment Results
Table 4-39	Off-Site City Storm Drain Sediment Results
Table 4-40	Soil and Sediment Project Screening Levels for Human Health
Table 4-41	Groundwater Project Screening Levels for Human Health
Table 4-42	Surface Water Project Screening Levels for Human Health
Table 4-43	Surface Water Project Screening Levels for Ecological Receptors
Table 4-44	Sediment Project Screening Levels for Ecological Receptors
Table 4-45	Hexavalent Chromium Evaluation
Table 4-46	Ratios of Total PCBs as Congeners/PCBs as Aroclors
Table 4-47	Target Area Investigation Results
Table 4-48	Upgradient and Cross-Gradient Gasoline LUST Cases
Table 5-1	Summary of Constituents of Potential Concern Properties
Table 5-2	Radiochemistry Results
Table 5-3	Mass Loading Calculations – Groundwater to Surface Water
Table 5-4	Estimated Surface Water Concentrations from Groundwater Discharge

List of Figures

Figure 1-1	Site Location Map
Figure 1-2	Site Plan and Investigation Areas
Figure 1-3	Site Vicinity Map
Figure 1-4	Current and Historical Site Buildings
Figure 1-5	Current and Former Operational Areas
Figure 1-6	Target Investigation Areas
Figure 1-7	Pervious vs. Impervious Site Surface Cover
Figure 1-8A	Outfall 013 and Adjacent Outfalls
-	·
Figure 1-8B	Outfall 101 and Adjacent Outfalls
Figure 2-1	Landside Sample Locations
Figure 2-2	Anacostia Park ISM Sample Locations
Figure 2-3	Anacostia Park Discrete Sample Locations
Figure 2-4	Background Landside Sample Locations
Figure 2-5A	Waterside Sample Locations
Figure 2-5B	Waterside Phase I Sample Locations
Figure 2-5C	Waterside Phase II Sample Locations
Figure 2-6	Background Waterside Sample Locations
Figure 2-7	Storm Drain Sample Locations
Figure 2-8	Monitoring Well Construction Schematic (Typical)
Figure 3-1	Anacostia River Bathymetry
Figure 3-2	Anacostia River Side Scan Sonar
Figure 3-3	Regional Geologic Profile
-	
Figure 3-4	Silt-Clay Layer Isopach Map
Figure 3-5	Geologic Cross Section Transect Location Map
Figure 3-6	Geologic Cross Section A-A'
Figure 3-7	Geologic Cross Section B-B'
Figure 3-8	Geologic Cross Section C-C'
Figure 3-9	Regional Groundwater Flow
Figure 3-10	Upper Water-Bearing Zone Groundwater Contour Map
Figure 3-11	Lower Water-Bearing Zone Groundwater Contour Map
Figure 4-1A	Inorganic COI Concentrations in Surface Soils
Figure 4-1B	Inorganic COI Concentrations in Subsurface Soils
Figure 4-2	Ten Highest On-Site Total Chromium Detections
Figure 4-3	Vanadium Soil Concentrations in Target Areas 1, 3, 5, 10 and 11
Figure 4-4	Total PAH Concentrations in Surface Soils
Figure 4-5	PAH Soil Concentrations in Target Areas 1, 3, 5, 10 and 11
Figure 4-6A	PAH Soil Concentrations in Target Area 4 (Former Salvage Yard) and Former Timber Pole
rigaro rort	Storage Areas
Figure 4-6B	Transect Graphs for PAH Soil Concentrations in Target Area 4 (Former Salvage Yard) and
rigule 4-0D	Former Timber Pole Storage Areas
Figure 4.7A	
Figure 4-7A	PAH Soil Concentrations in Target Area 12 (Building #57)
•	Transect Graphs for PAH Soil Concentrations in Target Area 12 (Building #57)
Figure 4-8	PAH and DRO Soil Concentrations in Target Area 13 (Former AST Area)
Figure 4-9A	PAH Soil Concentrations in Target Area 20 (Former Rail Yard)
Figure 4-9B	Transect Graphs for PAH Soil Concentrations in Target Area 20 (Former Rail Yard)
	TPH and DRO Soil Concentrations in Target Area 5 (Former Cooling Towers)
	Transect Graphs for DRO Soil Concentrations in Target Area 5 (Former Cooling Towers
Figure 4-11	DRO Soil Concentrations in Target Area 4 (Former Salvage Yard) and Former Timber Pole
	Storage Areas

List of Figures (continued)

- Figure 4-12A Total PCB Concentrations in Surface Soils
- Figure 4-12B Aroclor Type Abundance in Near-Site Surface Soil and Surficial Sediments
- Figure 4-12C Relative Aroclor Abundance by Depth in Near-Site Sediment Cores
- Figure 4-13A PCB Soil Concentrations in Target Areas 1, 3, 5, 10, and 11
- Figure 4-13B Transect Graphs for PCB Soil Concentrations in Target Areas 3, 5, 10, and 11
- Figure 4-14A PCB Soil Concentrations in Target Area 4 (Former Salvage Yard) and Former Timber Pole Storage Areas
- Figure 4-14B Transect Graphs for PCB Soil Concentrations in Target Area 4 (Former Salvage Yard) and Former Timber Pole Storage Areas
- Figure 4-15A PCB Soil Concentrations in Target Area 12 (Building 57)
- Figure 4-15B Transect Graphs for PCB Soil Concentrations in Target Area 12 (Building 57)
- Figure 4-16 TCDD TEQ Concentrations in Surface Soils
- Figure 4-17 TCDD-TEQ Soil Concentrations in Target Areas 1, 3, 5, 10 and 11
- Figure 4-18 Inorganic and Organic COI Concentrations in UWZ Monitoring Wells
- Figure 4-19 MTBE Groundwater Concentrations in UWZ
- Figure 4-20 Inorganic and Organic COI Concentrations in LWZ Monitoring Wells
- Figure 4-21 PCE Groundwater Concentrations in UWZ and LWZ
- Figure 4-22 MTBE Groundwater Concentrations in LWZ
- Figure 4-23 Inorganic COI Concentrations in Storm Drain Water and Residue
- Figure 4-24 Organic COI Concentrations in Storm Drain Water and Residue
- Figure 4-25 Total PAH Concentrations in Surficial and Sub-Surficial Sediment
- Figure 4-26 Profiles of Sediment Core Data By River Mile and Depth Total PAHs (sum 16)
- Figure 4-27 Total PAH Concentrations in Surficial Sediment
- Figure 4-28 Total PCB Concentrations in Surficial Sediment and Sub-Surficial Sediment
- Figure 4-29 Total PCB Concentrations in the Anacostia River Surficial Sediment
- Figure 4-30 Profiles of Sediment Core Data By River Mile and Depth PCB, Total Aroclors (AECOM Calc)
- Figure 4-31 Total PCB Concentrations in Surficial Sediment and Sub-Surficial Sediment Normalized to TOC
- Figure 4-32 TCDD TEQ Concentrations in Surficial Sediment
- Figure 4-33 Selected COPC Vertical Delineation in Waterside Investigation Area
- Figure 4-34 Total PCBs and Cesium 137 Core SED7E
- Figure 4-35 Upgradient and Cross-Gradient Gasoline LUST Cases
- Figure 5-1 Cesium 137 Results
- Figure 5-2 Waterside Investigation Area Conceptual Model
- Figure 5-3 Landside Investigation Area Conceptual Model
- Figure 5-4 Conceptual Site Model On-Site Sources
- Figure 5-5 Conceptual Site Model Off-Site Sources

Appendices

Appendix A	Site Drainage Map
Appendix B	Existing Anacostia River Chemical Data based on NOAA Database
Appendix C	Anacostia CSO Outfalls and Drainage Areas
Appendix D	Field Task Photolog
Appendix E	Aestus ERI Survey Technical Memorandum
Appendix F	Geologic Logs
Appendix G	Project Operating Procedure 406: Groundwater Sampling via Temporary Wells
Appendix H	Sediment Sampling Turbidity Monitoring Data
Appendix I	Well Redevelopment Field Forms
Appendix J	Investigation Derived Waste (IDW) Manifests
Appendix K	Ecological Site Assessment Checklist
Appendix L	Benning Road EDR Package (excerpted)
Appendix M	3-Year and 30-Year Wind Roses for Reagan Airport
Appendix N	Anacostia River Watershed Maps
Appendix O	USGS Lithologic Core and Regional Profile
Appendix P	Geotechnical Analysis Reports
Appendix Q	RI/FS Tidal Study Results
Appendix R	RI/FS Aquifer Testing Results
Appendix S	Data Validation Reports and Qualified Results
Appendix T	Summary of Quality Assurance Assessment
Appendix U	Laboratory Analytical Reports
Appendix V	XRF Correlation Plots
Appendix W	Background Data Evaluation
Appendix X	Cooling Tower Basins Remedial Action: Sampling Results and Excavation Area
Appendix Y	Historical AST Area Sampling Results
Appendix Z	Observations from CCTV Inspection
Appendix AA	Baseline Human Health Risk Assessment
Appendix BB	Baseline Ecological Risk Assessment

List of Acronyms

µg/kg Micrograms per Kilogram µg/L Micrograms per Liter

ANS Academy of Natural Sciences
ARSP Anacostia River Sediment Project

ASI Aqua Survey, Inc.

ASTM American Society for Testing and Materials

AST Aboveground Storage Tank

AVS Acid Volatile Sulfide

AWTA Anacostia Watershed Toxics Alliance
BaP-TE Benzo(a)pyrene Toxicity Equivalent

BAZ Bioactive Zone

BERA Baseline Ecological Risk Assessment

bgs Below Ground Surface

BHHRA Baseline Human Health Risk Assessment

BMP Best Management Practice

BTEX Benzene, Toluene, Ethylbenzene, and Xylenes

BTV Background Threshold Value

CBR Critical Body Residue
CCTV Closed-Circuit Television

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CLP Contract Laboratory Program

cm Centimeters

cm/yr Centimeter per Year
COC Constituent of Concern
COI Constituent of Interest

COPC Constituent of Potential Concern

CSM Conceptual Site Model
CSO Combined Sewer Overflow

CT Cooling Tower

CTE Central Tendency Exposure

CVAAS Cold Vapor Atomic Absorption Spectroscopy
CVOC Chlorinated Volatile Organic Compound

DAF Dilution Attenuation Factor

DC District of Columbia
DCE Dichloroethene
DCM Dichloromethane

DCMR District of Columbia Municipal Regulations
DCRA Department of Consumer and Regulatory Affairs
DC Water District of Columbia Water and Sewer Authority

DDD Dichlorodiphenyldichloroethane
DDE Dichlorodiphenyldichloroethylene
DDOE District Department of the Environment

List of Acronyms (continued)

DDT Dichlorodiphenyltrichloroethane
DNAPL Dense Non-Aqueous Phase Liquid

DOC Dissolved Organic Carbon

DOEE Department of Energy and Environment

DO Dissolved Oxygen
DPT Direct Push Technology
DRO Diesel Range Organics

DU Decision Unit

EDR Environmental Data Resources, Inc.
EPA Environmental Protection Agency
EPC Epithelioma Papulosum Cyprinid
ERA Ecological Risk Assessment
ERI Electrical Resistivity Imaging
ESV Ecological Screening Value

FS Feasibility Study

ft Feet gal gallon

GBA Gahagan and Bryant Associates, Inc.

GES Groundwater and Environmental Services, Inc.

GIS Geographic Information System
GPS Global Positioning System
GRO Gasoline Range Organics

GSA General Services Administration

GSI GSI Mid-Atlantic, Inc.

HHRA Human Health Risk Assessment

HQ Hazard Quotient

IDW Investigation Derived Waste

ISM Incremental Sampling Methodology

km kilometer

KMY Kenilworth Maintenance Yard

KPN Kenilworth Park North
KPS Kenilworth Park South
LCS Laboratory Control Sample

LNAPL Light Non-Aqueous Phase Liquid

LOAEL Lowest Observed Adverse Effects Level

LOE Line of Evidence

LOEC Lowest Observed Effects Concentration

LWZ Lower Water-Bearing Zone

m/sec meter per second MG million gallons

mg/kg milligrams per kilogram mg/L milligrams per liter

List of Acronyms (continued)

MLLW Mean Lower Low Water

MS Matrix Spike

MS4 Municipal Separate Storm Sewer System

MSD Matrix Spike Duplicate
MTBE Methyl Tertiary-butyl Ether

MWCOG Metropolitan Washington Council of Governments

NAD83 North American Datum of 1983 NAPL Non-Aqueous Phase Liquid

NAVD88 North American Vertical Datum of 1988

ND Non-detect

NOAA National Oceanic and Atmospheric Administration

NOAEL No Observed Adverse Effects Level
NOEC No Observed Effect Concentration

NPS National Park Service

NPDES National Pollutant Discharge Elimination System

NTU Nephelometric Turbidity Units

ORO Oil Range Organics

OSWER Office of Solid Waste and Emergency Response

OU Operable Unit

PA Preliminary Assessment

PAH Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl

PCDD Polychlorinated Dibenzo Dioxin PCDF Polychlorinated Dibenzofuran

PCE Tetrachloroethylene

PEC Probable Effect Concentration
Pepco Potomac Electric Power Company

PES Pepco Energy Services
pg/g picograms per gram
PID Photoionization Detector
POC Particulate Organic Carbon
POP Project Operating Procedure

ppb Parts per Billion ppm Parts per Million

PSL Project Screening Level
PVC Polyvinyl Chloride

PVC Polyvinyl Chloride

QAPP Quality Assurance Projection

QAPP Quality Assurance Project Plan
QA/QC Quality Assurance / Quality Control

RAP Removal Action Plan

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation

RI/FS Remedial Investigation/Feasibility Study

List of Acronyms (continued)

RME Reasonable Maximum Exposure

ROW Right-of-Way

RPD Relative Percent Difference SAP Sampling and Analysis Plan

SDR Storm Drain Residue SDW Storm Drain Water

SEFC Southeast Federal Center

SEM Simultaneously Extracted Metals

SHC Saturated Hydrocarbon

SI Site Inspection

SIP Self-Implementing Remediation Plan

SPI Sediment Profile Imaging
SQG Sediment Quality Guidelines
SVOC Semivolatile Organic Compound

TA Target Area
TCA Trichloroethane

TCDD 2,3,7,8-Tetrachlorodibenzo-p-dioxin

TCE Trichloroethylene

TCLP Toxicity Characteristic Leaching Procedure

TDD Total Daily Dose
TEQ Toxicity Equivalent
TOC Total Organic Carbon

TPH Total Petroleum Hydrocarbon
TRV Toxicity Reference Values
TSCA Toxic Substances Control Act

TS Treatability Study

TSS Total Suspended Solids

TU Toxic Unit

USACE United States Army Corps of Engineers

USCS Unified Soil Classification System

USEPA United States Environmental Protection Agency

USGS United States Geological Survey
UST Underground Storage Tank
UWZ Upper Water-Bearing Zone

VC Vinyl Chloride

VOC Volatile Organic Compound WGL Washington Gas Light

WIA Waterside Investigation Area

WMATA Washington Metropolitan Area Transit Authority

WNY Washington Navy Yard WOE Weight of Evidence XRF X-Ray Fluorescence

1 Introduction

AECOM has prepared this Remedial Investigation (RI) Report on behalf of Potomac Electric Power Company and Pepco Energy Services (PES), Inc. (collectively "Pepco") to describe the implementation and technical findings of the Remedial Investigation/Feasibility Study (RI/FS) field activities conducted at Pepco's Benning Road facility (the Site), located at 3400 Benning Road NE, Washington, DC, and a segment of the Anacostia River (the River) adjacent to the Site. The general site location is shown on **Figure 1-1**. Together, the Site and the adjacent segment of the River comprise the "Study Area" for the RI. Pepco is performing the RI/FS pursuant to the requirements of a consent decree with the District of Columbia (DC) that was approved by the U.S. District Court for the District of Columbia on December 1, 2011. The RI/FS is being overseen by the District Department of Energy and the Environment, DOEE (formerly the District Department of Environment, or DDOE).

The purpose of the RI/FS is to (a) characterize environmental conditions within the Study Area, (b) investigate whether and to what extent past or current activities or conditions at the Site have caused or contributed to contamination within the Study Area, (c) assess current and potential risk to human health and the environment posed by conditions within the Study Area, and (d) develop and evaluate potential remedial actions, as may be warranted. This RI Report addresses the first three objectives. The FS Report will address the development and evaluation of potential remedial actions. In addition, a detailed forensics analysis and source identification assessment will be included as an appendix to the FS Report.

The RI/FS Study Area investigation consists of a "Landside" component focused on the Site itself, and a "Waterside" component focused on the shoreline and sediments in the segment of the River adjacent to and immediately downstream of the Site. The Landside and Waterside Investigation Areas are depicted on **Figure 1-2**. The RI/FS field activities were performed in two phases; the Phase I field activities were conducted between January 25, 2013 and December 31, 2014, and the Phase II field activities were conducted between December 1, 2017 and July 9, 2018. A schedule showing the dates of key RI/FS project milestones is provided as **Table 1-1**.

The RI/FS was performed in accordance with the United States Environmental Protection Agency's (USEPA's) *Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA*,

Office of Solid Waste and Emergency Response (OSWER) Directive 9355.3-01, dated October 1988, and other applicable USEPA and DOEE guidance documents and approved work plans.

Pepco submitted the Draft RI/FS Work Plan to DOEE in July 2012 and made subsequent revisions to address comments from DOEE and the public. DOEE provided final approval for the Work Plan in December 2012. During 2014, two addenda to the RI/FS Work Plan were prepared to describe supplemental Phase I RI field investigation activities. Addenda #1 and #2 were approved by DOEE in March and July 2014, respectively. Addendum #1 outlined a targeted sampling event to delineate a tetrachloroethylene (PCE) plume in groundwater along the Site's southern boundary, and specified details of the proposed monitoring well locations, construction, and sampling (AECOM, 2014a). Addendum #2 described a sampling program for soils beneath and around the cooling tower concrete basins in the northwestern portion of the Site to define the extent of polychlorinated biphenyls (PCBs) in soils, and to develop a subsequent soil removal action plan (RAP) (AECOM, 2014b). The Cooling Tower Basin Soil RAP was approved by DOEE in July 2015 (AECOM, 2015). The 2012 approved work plan and the two addenda formed the basis for the Phase I RI.

A Draft RI Report describing the Phase I field investigation and its findings was finalized on February 26, 2016 (AECOM, 2016a). The Draft RI Report was made available for public comment from March 1, 2016 through April 18, 2016. A response to public comments was prepared and released to the public in August 2016. The Draft RI Report identified several data gaps with respect to the Phase I Site characterization, background data evaluation, and human health and ecological risk assessments (ERAs). Per DOEE's RI Path Forward letter of January 14, 2016, Pepco prepared three technical memoranda to further define data needs and prepare for additional Site characterization. Technical Memorandum #1 – Conceptual Site Model (CSM) (AECOM, 2016b) provided a detailed description of the operational Site historical operations, with a focus on the use, storage, disposal, release, and cleanup of various chemicals and waste materials, and identified data gaps and uncertainties in the Site characterization conducted to date as part of the RI/FS. Technical Memorandum #2 - Refined Background Evaluation Work Plan (AECOM, 2016c) described the rationale and procedures for revising the background data evaluation originally presented in the Draft RI Report. Technical Memorandum #3 – Baseline Human Health and Ecological Risk Assessment Work Plan (AECOM, 2016d) described the rationale and procedures for revising the preliminary baseline human health risk assessment (BHHRA) and preliminary baseline ecological risk assessment (BERA) originally presented in the Draft RI Report. The three technical memos were approved by DOEE in October 2016.

Work Plan Addendum #3 (AECOM, 2016e) was developed in conjunction with the three technical memos to detail the Phase II field investigation to address the remaining data gaps and uncertainties identified. Work Plan Addendum #3, which was approved by DOEE in October 2016, formed the basis for the Phase II RI.

A Draft Final RI Report was finalized in September 2019. The Draft Final RI Report was made available for public comment from October 4, 2019 through December 6, 2019. This Final RI Report incorporates the public comments received during the comment period.

1.1 Report Purpose and Scope

The purpose of this RI Report is to describe the RI field data collection program; present the findings regarding the nature and extent of contamination, contaminant fate, and routes of transport; and current and future risks to human health and the environment from exposure to contamination detected in the Study Area. This report encompasses all environmental investigation activities conducted within the Study Area (Landside and Waterside) as described in the approved RI/FS Work Plan and Addenda #1, 2, and 3 (AECOM, 2012b; AECOM, 2014a; AECOM, 2014b; AECOM, 2016e).

1.2 Site Background and Setting

The 77-acre Site is bordered by a District of Columbia Solid Waste Transfer Station to the north, Kenilworth Maintenance Yard (KMY) (which is owned by the National Park Service [NPS]) to the northwest, a narrow area of land and shoreline (which is part of Anacostia Park) to the west between the Site and the River, Benning Road to the south, and residential areas to the east and south (across Benning Road). The Site is one of 14 properties along the tidal Anacostia River currently identified by DOEE as potential environmental cleanup sites (PECSs) (Figure 1-3). Most of the Site is occupied by the Benning Service Center, which involves activities related to construction, operation, and maintenance of Pepco's electric power transmission and distribution system serving the Washington, DC area. Three substations serving Pepco's transmission and distribution system are located on this Site. The Site was also the location of the former Benning Road Power Plant, which was permanently shut down on June 1, 2012. Demolition and removal of the power plant building and related infrastructure commenced in 2014, and all demolition and Site restoration activities were completed in May 2015.

There have been five documented instances between 1985 and 2003 in which materials containing PCBs were released at the Site. In each case, Pepco promptly cleaned up the releases in accordance with applicable legal requirements. A summary of documented historical environmental investigations and response actions that Pepco and the USEPA conducted on the Site is presented in **Table 1-2**. Notwithstanding these previous cleanup actions, it is suspected that these releases, and

possibly other historical operations or activities at the Site, may have contributed to contamination in the Site media. In particular, a Site Inspection (SI) conducted for the USEPA in 2008 linked PCBs and inorganic constituents detected in Anacostia River sediments to potential historical discharges from the Site. The report documenting the results of the SI is referred to herein as the USEPA 2009 SI Report. The USEPA 2009 SI Report also stated that the Site was properly managed and that any spills or leaks of hazardous substances were quickly addressed and, if necessary, properly remediated. A thorough review of the Site history, chemical uses, and historical operations was conducted, and the findings were summarized in the Conceptual Site Model Technical Memorandum (AECOM, 2016b). Additional sampling was undertaken during the Phase II RI field activities to investigate potential impacts from historical operations on Site.

1.3 Site Description and History

The geographic coordinates for the approximate center of the Site are 38.898° north latitude and 76.959° west longitude; a Site Plan is provided as **Figure 1-2**. Operations at the Benning Road Power Plant ceased on June 1, 2012, as announced by PES, which owned and operated the power plant from 2000 to 2015 when the plant was completely demolished. The power plant was located on the westernmost portion of the Site and occupied approximately 20% of the facility's 77 acres. The current and historical buildings and Site areas are shown on **Figure 1-4**, and current and historical Site operations areas are shown on **Figure 1-5**. A brief description of historical activities is provided below. Readers are referred to the CSM Technical Memorandum (AECOM, 2016b) for further details.

The power plant was built in 1906, and provided Pepco's first system-wide electricity supply to the District of Columbia and nearby Maryland suburbs. Over the years, the power plant operated and subsequently retired several different generating units, reflecting advances in technology and operating on different types of fuel. Four oil-fired boilers and two steam turbine units operated at the power plant in the recent past. The steam turbines, installed in 1968 and 1972, together provided 550 megawatts of electricity, enough to meet the needs of around 180,000 homes during periods of peak electricity demand. Designed to operate a limited number of days each year, these units operated an average of 10 to 15 days annually. The power plant buildings and structures were demolished and removed in late 2014 and early 2015 under the oversight of DOEE and in accordance with permits issued by the D.C. Department of Consumer and Regulatory Affairs (DCRA). Backfilling and Site restoration activities were completed in May 2015.

Structures associated with the power plant included the generating station, two cooling towers, four fuel oil aboveground storage tanks (ASTs), and storage buildings. The closing of the power plant eliminated the need for the ASTs and cooling towers. Therefore, the four ASTs (with capacities of 50,000,

618,000, 1,847,000, and 1,984,000 gallons) were demolished in early 2013, and the superstructures of the two cooling towers were demolished in early 2014. The removal of the cooling tower basins and adjacent PCB-impacted soils was completed in May 2017.

The Service Center occupies the largest part of the property and accommodates approximately 700 Pepco employees. Service Center employees are engaged in maintenance and construction of Pepco's electric transmission and distribution system; system engineering; vehicle fleet maintenance and refueling; and central warehousing for all the materials, supplies, and equipment needed to operate the Pepco electrical distribution system.

The Site is completely surrounded by a fence with two guarded entrances. The main guard station at 3400 Benning Road is staffed 24 hours a day, 7 days a week. The second entrance is also guarded during all times when it is open. Three active substations are located on the Site, two in the eastern portion (Substation #41 and Substation #7) and one in the western portion (Substation #45). To the south of Substation #7 is a large asphalt-covered Pepco employee parking lot. To the south of this area are railroad tracks and Buildings #56, #57, and a transformer staging area. The staging area is used for processing used electrical equipment and associated materials brought to the Site for reconditioning, recycling, and/or disposal. The center of the Site is occupied by buildings used for office space, fleet services maintenance, and storage of hazardous and non-hazardous waste and materials. Areas located outside of the buildings are used for storage of new equipment. A covered storage area constructed in 2016 is used for temporary storage of used electrical equipment prior to disposal.

There is one active underground storage tank (UST) at the Site and all other tanks are ASTs. The UST is a 15,000-gallon double-walled steel and fiberglass tank installed in 1988 to hold non-PCB transformer oil and is located within the paved yard surrounded by Buildings #54, #56 and #57. The UST utilizes a Veeder-Root® leak detection monitoring system that tests the tank and associated underground piping for leaks using interstitial monitoring and automatic gauging of the tank. The system is inspected and calibrated on an annual basis by a manufacturer-authorized representative. No leaks have been detected to date. The UST is registered with DOEE and is operated in full compliance with the District's UST regulations. Two new ASTs, each 12,000 gallons in capacity, were installed at the new Fueling Island which was constructed in 2018. These ASTs replaced the former 20,000-gallon gasoline UST, installed in 1975, and 20,000-gallon diesel fuel UST, installed in 1991. These USTs and the associated dispensers and fuel lines were removed on May 14, 2018. Groundwater and Environmental Services, Inc. (GES) provided UST removal oversight and tank pit confirmation sampling; minimal hydrocarbon impact in the soil was identified, and both USTs were in

good condition and did not show any signs of holes, perforations, or evidence of leaking (GES, 2018). Pepco received a letter of permanent tank closure from the DOEE UST Branch on June 18, 2018.

A total of six UST removals/closures in place occurred at the facility between 1989 and 1997 in accordance with the District's UST regulations and under DOEE oversight. The tanks ranged in size from 250 gallons to 15,000 gallons. Two fuel oil USTs (250 and 550 gal) and one UST containing used oil (2,000 gal) were removed in the area of the former ASTs (Target Area [TA] 13). Two diesel-containing USTs (4,000 and 10,000 gal) were removed from the area of the Benning Fuel Island (Target Area 2). A single UST containing fuel oil (15,000 gal) was removed from the area to the east of power plant units 13 and 14. Sampling was conducted following the tank removals, and UST closure reports were submitted to DOEE in each case. These former UST locations are associated with Target Areas 2, 3 and 13 which are identified on **Figure 1-6**. Additional information regarding the UST closures, including petroleum impacts observed and remedial measures taken, is provided in **Table 1-3**. Historically a 20,000-gallon cathodically protected, epoxy-coated steel UST, installed in 1979, was used to store gasoline and was removed in August 2012. The DOEE UST Branch inspected the tank site after the removals took place. The soil and groundwater samples, which were collected following DOEE's inspection, did not show any detectable levels of constituents of concern. Accordingly, DOEE issued a letter of permanent tank closure for this case.

The majority of the Site is covered by impervious material such as concrete or asphalt, as shown on Figure 1-7. Active storage areas not covered by impervious material are covered in gravel. One of the gravel-covered areas is located in the western portion of the Site, directly south of the location of the former cooling towers. This area was used at one time for the storage of coal when the power plant used coal to generate electricity. Later, this area was used to dewater sludge periodically removed from the basins located beneath the cooling tower superstructures. The area is no longer used for either purpose and is now covered by gravel. Railroad tracks enter the Site from the east and run to the west. The tracks were formerly used to transport coal to the power plant and are no longer active.

1.4 Stormwater Management

Stormwater collected in storm drain inlets at the facility is discharged to the River via Outfall 013 and Outfall 101 (**Figure 1-2**) under the facility's National Pollutant Discharge Elimination System (NPDES) permit (DC0000094). The majority of the stormwater runoff from the facility is conveyed through a 48-inch concrete pipe, which widens to 54 inches before discharging to the River via Outfall 013. In addition, Outfall 013 was also permitted to receive cooling tower blowdown and basin wash water when the cooling towers were in operation. However, these towers were decommissioned and the

superstructures of these towers were demolished in 2014 following the permanent shutdown of the Benning Road Power Plant in June 2012.

The Site employs various Best Management Practices (BMPs) to control sediments and contaminants in stormwater discharged from the Site, including the use of filters, filter media, screens, and absorbent booms at all storm drain inlets. In 2017, Pepco installed stormwater treatment systems at four "hotspots" using combinations of Contech® DownSpout StormFilter™, Jellyfish® Filter, and StormFilter® stormwater treatment units. The treatment measures were designed to reduce metals and total suspended solids (TSS) in stormwater that discharges to Outfall 013 through a combination of physical filtration and adsorption via zeolite and granular activated carbon filter media.

Outfall 101 receives stormwater runoff from inlets in the southwest corner of the property. A detailed facility drainage area map is included in **Appendix A**. Outfall 101 also received stormwater collected in secondary containment basins for transformers associated with the power plant. The transformers and their containment structures were demolished and removed as part of the power plant demolition in 2015, eliminating the secondary containment discharges to Outfall 101.

There are three additional non-Pepco outfalls that discharge into the cove of the Anacostia River where the Outfall 013 discharge pipe is located (the Cove). These outfalls appear to drain properties adjacent to the Benning Road Site (e.g., the DC Department of Public Works Solid Waste [DPW] Transfer Station and the NPS Kenilworth Maintenance Yard [discussed further in Section 1.7 below]), or adjacent roadways. Very little sampling data or other technical information, either current or historical, is available for the discharges from these other outfalls. There is also a municipal storm sewer outfall located adjacent to and approximately 20 feet downstream of Outfall 101. Photographs showing Outfalls 013 and 101 and adjacent outfalls are provided as **Figures 1-8A** and **1-8B**. There are 13 Prince George's County municipal storm sewer outfalls upstream of the Waterside Investigation Area and the Dueling Creek confluence.

1.5 Conceptual Site Model

The CSM is designed to integrate in a functional description (1) the major constituents of concern, based on previous Site investigations and the history of Site operations; (2) the potential on-Site and off-Site sources of these constituents; and (3) the possible exposure pathways of these constituents to potential human health and ecological receptors. The CSM addresses possible connections between the landside on-Site constituents of concern (COC) sources and the waterside sediment contamination in the segments of the Anacostia River adjacent to, immediately downstream, and upstream of the Site. A complete revision of the detailed CSM was provided in 2016 (AECOM, 2016b). A brief summary of

the major elements of that report, and how they are integrated into this RI report and its appendices, is provided below.

1.5.1 Major Constituents of Concern (COCs) and potential sources

The primary COCs for the Site, based on its industrial history and the previous environmental investigations are polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and metals.

PCBs occurred on-Site primarily as contaminants in mineral oils used in transformers and other electrical equipment (predominantly in the form of Aroclors 1260, 1254, and 1242). PCBs were also present in caulk used for the foundation of the cooling towers (typically in the form of Aroclor 1254). Offsite potential sources of PCBs include upstream tributaries such as Lower Beaverdam Creek, the Kenilworth Landfills, the former District of Columbia Trash Incinerator, and other upstream storm water discharge points.

PAHs occurred on-Site as wood treatments for stored utility poles, in railroad ties, and as minor components of fuel oils and coal stored and burned on-Site for the generating station. Off-site sources of PAHs include vehicle combustion, pavement sealer runoff, soot from fires on the Kenilworth Landfills, runoff from the Langston Golf Course, the Hickey Run tributary, and other upstream storm water discharge points.

Metals detected on-Site such as vanadium have been attributed to both coal storage and sludge handling areas. Off-site sources of metals include the Kenilworth Landfills, the Langston Golf Course, and other upstream storm water discharge points.

The connection of COCs to historical on-Site operations is discussed further in Sections 1.2 and 1.3 above, as well as Sections 1.6. Off-site sources are further discussed in Sections 1.7 and 1.8 below and in the CSM Technical Memorandum #1 (AECOM, 2016b). A more detailed analysis of on-Site and off-Site sources of COCs will be provided in the Forensics Analysis and Source Evaluation being prepared as part of the Feasibility Study.

1.5.2 Exposure pathways

Landside on-site exposure pathways to COCs have been greatly reduced by effective clean-up of known spills and releases. Some areas of buried COCs may pose a limited risk to future workers during excavation, but the risk of on-Site exposure is minimal. Most of the Site surface is paved and/or

otherwise stabilized. Potential releases from Site soils to the river or other groundwater receptors via groundwater transport, and overland runoff to surface water have also been determined to be negligible.

Historical releases of COCs to the Anacostia River may have occurred via storm drain discharges before recent controls were installed, based on analysis of storm drain and near-Site sediments. These releases may have affected sediments within the Waterside Investigation area and provided potential exposure pathways to fish and other ecological receptors in the river. This potential pathway is discussed in the CSM Tech Memo referenced above, Section 5 below, and in more detail with the associated risk evaluations, which are discussed in Section 6.

1.6 Previous Investigations and On-Site Removal Actions

1.6.1 Pepco Studies and Removal Actions

A summary of documented historical environmental investigations and response actions that Pepco and the USEPA conducted on the Site is presented in **Table 1-2**. These activities include five investigation and cleanup efforts in response to PCB material releases, multiple petroleum UST removals and closures, due diligence studies (Phase I Environmental Site Assessments) and various other soil removal actions conducted by Pepco since 1985. All of these activities and studies were conducted on the Landside portion of the Study Area. In addition, Pepco also conducted three geotechnical studies (CTI, 2009; Geomatrix, 1988; and Hillis-Carnes, 2010) in different areas of the Site as part of its electric system infrastructure improvement projects. These geotechnical studies provide useful information on Site geology and hydrogeology.

In 1996, Pepco performed dredging at the power plant cooling water intake located north of the Benning Road Bridge in the Anacostia River. The dredged spoils were used to construct a wetland in the vicinity of the water intake. Dredging and wetland construction activities extended from the Benning Road Bridge for approximately 900 feet north (Pepco, 1996; Pepco, 1997). Post-dredging wetland sediment samples were collected by Pepco in 1996, as summarized in **Table 1-2**.

1.6.2 EPA 1997 Study

USEPA conducted a multi-media inspection at the Site in 1997 in connection with the renewal of Pepco's NPDES permit (USEPA, 1997). The inspection also included compliance determinations under the Resource Conservation and Recovery Act (RCRA) and the Toxic Substances Control Act (TSCA). The results of this 1997 multi-media inspection are referred to herein as "USEPA, 1997." No compliance issues were noted under RCRA. One spill involving PCB oil was noted inside Building

#57; however, the release was fully contained in a secondary containment vault, and no release into the environment occurred. The cause of the spill was corrected through implementing appropriate management/operating procedures. USEPA also collected two liquid samples and six residue samples from the storm drain system. A liquid sample collected at manhole 33, the last manhole access on Pepco's property prior to discharge at Outfall 013, failed the acute toxicity test due to the presence of chlorine-treated city drinking water. A leaking relief valve in the fire pump house had resulted in the discharge of city drinking water to the storm drain system. The residue samples collected from the storm drain system indicated PCB and metal concentrations that exceeded USEPA Sediment Quality Guidelines (SQGs).

1.6.3 EPA 2009 Study

Tetra Tech, Inc. conducted an SI at Pepco's Benning Road Site for the USEPA under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) program in 2008 and issued a report in 2009 (USEPA, 2009). Thirteen soil samples were collected from the former sludge dewatering area (located south of the power plant cooling towers) and 16 sediment samples and five surface water samples were collected from the Anacostia River. Several metals, polycyclic aromatic hydrocarbons (PAHs), and PCBs were detected at elevated concentrations in the former sludge dewatering area and the Anacostia River sediments. The report noted that the former sludge dewatering area was not contained which could result in impacts to stormwater runoff that ultimately discharges to the Cove. However, following the USEPA inspection this area was covered with packed stone and gravel which has controlled exposure to underlying soils. Cadmium, chromium, copper, lead, mercury, nickel, zinc and PCBs were present in the storm water residue samples. With the exception of copper, no other compounds were detected in the surface water samples. The USEPA 2009 SI Report found that the current management and handling of waste streams, including PCB-containing equipment and material, is well organized and supervised, and that the stormwater discharge from the Site is not currently contaminated with PCBs. However, USEPA concluded that the sampling results nonetheless indicated that "historical releases of these hazardous substances from the site contributed to contamination documented in Anacostia River sediments in the vicinity of the site."

1.7 Potential Sources of Contamination in the Immediate Vicinity of the Site

Potential sources of contamination to the Anacostia River in the immediate vicinity of the Site include the Kenilworth Park Landfill, the Langston Golf Course, the former District of Columbia trash incinerator facility, and the NPS Kenilworth Maintenance Yard. The following sections describe these sites.

1.7.1 Kenilworth Park Landfill

Kenilworth Park Landfill is one of several properties along the Anacostia River that are suspected sources of contamination in river sediments. The landfill is separated into two areas: the Kenilworth Park North (KPN) landfill and Kenilworth Park South (KPS) landfill separated by Watts Branch, a tributary to the Anacostia River (**Figure 1-3**). The southern portion of the KPS landfill is located immediately adjacent to the Waterside Investigation Area. The KPS and KPN landfills are now part of the 700-acre Kenilworth Park and Aquatic Gardens, which is part of the Anacostia Park managed by NPS.

Kenilworth Park Landfill operated as a waste disposal facility from 1942 until closure in 1970, at which time the landfill was covered with low-permeability soil that reportedly included wastewater treatment plant sludge (NPS, 2019a). Municipal waste was burned at the site until 1968, followed by a two-year period of landfilling without open burning. Waste materials disposed of at the landfill included municipal solid waste, incinerator ash and ash from on-site open burning (NPS, 2019a). From 1997 to 1998, additional fill consisting of mostly excavation materials and construction debris was deposited in KPS (ATSDR, 2006). However, certain objectional materials within the construction debris, which were not permitted and presented physical hazards, have since been removed from the site (ATSDR, 2006; NPS, 2019a).

During its operation between the 1950s and 60s, the waste disposal areas extended into the Anacostia River, which included filling the former recreational lakes dredged by the U.S. Army Corp of Engineers likely without barriers or controls to prevent migration of contaminants from the wastes into the water and adjacent sediment (AWTA, 2009). This filling activity eliminated the area of the lake situated to the east of the original landfill footprint, creating the Cove where Outfall 013 and several other outfalls are currently located.

Ecology and Environment, Inc. completed separate remedial investigations at KPN and KPS in 2007 and 2008, respectively, for NPS (NPS, 2007; NPS, 2008). The site was divided into two Operable Units (OUs) for the purposes of investigation and remedial action: OU1 comprises surface soils and subsurface soils including waste material disposed of in the landfill; OU2 is the shallow groundwater underlying OU1.

In 2012, a Feasibility Study was prepared for OU1 for all of Kenilworth Park (KPN and KPS) by The Johnson Company, Inc. (NPS, 2012). Contaminants of concern (COCs) for OU1 soils identified in the FS included lead, PCBs, and PAHs. Methane was identified as a COC in landfill gas.

In February 2013, NPS proposed a remedial plan for OU1 that included placing an engineered cap and implementing institutional controls as the preferred remedial response for surface soils and subsurface soils (including waste material disposed of in the landfill) (NPS, 2013). However, this plan would result in the removal of relatively mature vegetation that provides soil stability and high-quality wildlife habitat (NPS, 2019a). As a result, NPS has reconsidered the future use assumption of the 2013 proposed plan in favor of leaving the land in its current state.

During 2019, NPS completed a Remedial Investigation Addendum to fill data gaps, identify potential exposure risks, and provide the basis for evaluating remedial alternatives. The addendum included a supplemental groundwater study, porewater study, seep characterization, and surficial soil investigation at KPS. An additional groundwater study was completed during 2019 following the supplemental groundwater study (November 2016) and porewater study (August 2018) to fill remaining data gaps. Certain volatile organic compounds (VOCs), PCBs, PAHs, and dioxins and furans were observed in groundwater at the site (OU2), but generally had low frequency of detections. However, several dissolved metals including aluminum, arsenic, barium, copper, iron, and manganese were detected in site groundwater samples at concentrations exceeding Ecological Screening Values (ESVs). NPS completed a porewater study to assess if metals are migrating through groundwater and creating an ecological exposure risk in sediment and surface water. The results indicate that manganese and iron are above ecological risk thresholds, however, iron is the only metal linked to site groundwater that may present a risk to ecological receptors.

As part of the remedial investigation addendum, NPS conducted a surficial soil investigation at KPS to assess whether contaminant concentrations in surficial soil pose a potentially unacceptable risk to visitors or site workers (Appendix E to the Remedial Investigation Addendum; NPS, 2019a). Samples were collected using incremental sampling methodology (ISM) and were analyzed for metals, PCBs, and SVOCs. Elevated concentrations of a number of contaminants, including PCBs, were detected in surface soils around the site. The updated human health risk assessment indicates that exposure to COPCs in surface soils at KPS has the potential to result in cumulative risk exceeding NPS default points of departure (noncancer HI of 1 or cancer risk of 1E-06) for both recreational users and outdoor workers (Woodard and Curran, 2019). The majority of cumulative risk is attributed to PCBs (Aroclors 1254 and 1260), benzo(a)pyrene (BaP), arsenic and, to a lesser extent, cobalt. PCB Aroclors were detected in the majority of the 44 ISM sampling units, with concentrations as high as 1,400 parts per billion (ppb) detected in surficial soil in close proximity to the Anacostia River near the confluence of Watts Branch. BaP was detected in all of the ISM sampling units with mean concentrations ranging from 91 ppb to 3,433 ppb.

The 2012 Kenilworth Park Landfill FS points to the variability in sediment data around the site and concludes that there is no significant ongoing contribution of contaminants from the site to the sediments in the Anacostia River, Watts Branch, or Kenilworth Marsh, particularly for PAHs and PCBs (NPS, 2012). However, none of the studies of the Kenilworth Park Landfill site has evaluated the potential contribution of contaminants to the River sediments from historical placement of waste into the river or the adjacent recreational lakes, or from migration from wastes via surface runoff or groundwater migration during the period of active landfilling activities at the site. Although the maximum PBC Aroclor concentration presented in the FS was 1,334 ppb, detected near the southern shoreline of the Cove, notable PCB Aroclor concentrations as high as 750 ppb, 482 ppb, and 510 ppb in sediments were observed in an unnamed tributary of Watts Branch, the Watts Branch, and Kenilworth Marsh, respectively, which surround the landfills and for which there is no other apparent source. These concentrations are consistent with PCBs detected in the KPS surficial soil samples collected adjacent to Watts Branch and the unnamed tributary of Watts Branch, indicating that site conditions may have contributed to sediment impacts. The recently completed tributary sampling investigation (NPS, 2019b) indicates a possible point source of PCBs in Watts Branch upstream of the Kenilworth Park Landfill, where a surface sediment sample exhibited a concentration of 1,021 ppb of total PCB congeners. However, the elevated concentrations of PCBs in the unnamed tributary to Watts Branch, which originates near the southeast corner of KPS, cannot be attributed to a point source upstream on Watts Branch.

1.7.2 Langston Golf Course

Ecology and Environment, Inc. also performed a Preliminary Assessment/Site Inspection (PA/SI) of Langston Golf Course for NPS in 2001. Langston Golf Course is located along the west bank of the River across from the Site. It is one of a number of sites along the Anacostia River that were used by the District as open burning/open dumps for municipal waste disposal from approximately 1910 to 1970 (NPS, 2001). An open dump with open burning existed on the west bank of the River until the early 1950s. The former District landfill was placed directly into Kingman Lake without any barrier, and landfill wastes mixed with soil extended into the water. The PA/SI report identified the presence of chemicals (PAHs, antimony, arsenic, iron, and lead) exceeding action levels in the fill material under the site. Lead showed elevated levels and was identified as the greatest concern among the identified chemicals. The PA/SI report concluded that there are no current exposure pathways by which the landfill wastes buried under the golf course can affect the public. The study also concluded that groundwater impacts on adjoining surface water are extremely slight. The study recommended that the site be maintained in its current use as a golf course and be reevaluated if site use changes (NPS, 2001).

1.7.3 Former District of Columbia Trash Incinerator Facility

Another potential source of contamination in the immediate vicinity of the Site is a former trash incinerator facility located to the north of the Site within the DC DPW Solid Waste Transfer Station property. The incinerator, formerly known as Solid Waste Reduction Center No. 1, reportedly operated from 1972 to 1994. According to an Environmental Impact Statement published by the General Services Administration (GSA) in 1978, the facility incinerated 900 to 1,000 tons of waste per day and operated 24 hours per day 5 days a week (GSA, 1978). Ash from the incinerator was disposed of at the Lorton landfill (GSA, 1975). No documentation of any environmental studies or sampling at the former incinerator site was available.

Following closure of incinerator operations in 1994, the facility was converted to the Benning Road DC DPW Solid Waste Transfer Station. The transfer station has two stormwater outfalls, designated Outfall 001 and Outfall 002, which are regulated in accordance with EPA Multi-Sector General Permit (MSGP) for Stormwater Discharges Associated with Industrial Activity and Municipal Separate Storm Sewer System (MS4) NPDES Permit No. DC0000221. Although the outfalls are located between the transfer station and the Anacostia Riverwalk Trail, the stormwater likely ultimately discharges to the Cove. The discharges are regulated under Sector K (hazardous waste treatment, storage, or disposal facilities) and Sector N (scrap recycling and waste recycling facilities) under the MSGP. This includes analysis for metals and TSS; however, organics are not analyzed. Elevated concentrations of metals and TSS have been observed at Outfall 002.

1.7.4 NPS Kenilworth Maintenance Yard

NPS Kenilworth Maintenance Yard is located to the northwest of the Site on the eastern shore of the Anacostia River. Various materials are stored in the open and exposed to stormwater. A vehicle refueling island is visible at the Kenilworth Maintenance Yard. The site is also on a 2014 DOEE list of known facilities with active USTs in the District. No information regarding any environmental studies or sampling at this site was available with the exception of a dye study completed by NPS during March 2019 to determine if the storm drain on the KMY site discharges to any of the outfalls located in the Cove. According to NPS, the results of the dye test indicate that the storm drain discharges to a grassy depression adjacent to the Anacostia Riverwalk Trail, and not directly to an outfall in the Cove.

1.8 Regional Assessment of Anacostia River and Suspected Area-Wide Sources of Impact

1.8.1 Historical Perspective

This section provides an overview of sediment quality data from the Anacostia River from a regional perspective and considers data available from the general vicinity of the Benning Road Site. For decades, there has been a broad recognition that the water quality and sediment quality in the Anacostia River is degraded due to a variety of factors, including shoreline habitat degradation, point sources, non-point sources, combined sewer overflows (CSOs), input from tributaries, atmospheric deposition, stormwater runoff, and refuse disposal practices (AWTA, 2002). The problems in the River are exacerbated by the tidal nature of the lower Anacostia River; much of the flow in this portion of the river is tidal. Freshwater flows into the tidal waters are relatively small (Velinsky et al., 2011), and the slow-moving water tends to allow contaminants that might otherwise be flushed from the system to settle into the sediment column.

Several sediment quality studies have been completed within the Anacostia River. Fritz and Weiss (2009) summarized six possible sources of sediment contamination in the river as listed below, while acknowledging that additional contaminants may exist in sediment or on land abutting the River.

Source	Ownership/Comments	Contaminants linked to sediments		
Washington Navy Yard (WNY)	Department of Defense, National Priority List site.	PCBs and others		
Southeast Federal Center (SEFC)	Partly GSA/partly private developer.	PAHs, metals, PCBs, and others		
Poplar Point	NPS	PCBs and PAHs		
Washington Gas Light (WGL)	WGL and NPS	PAHs and metals		
Kenilworth Landfill (former DC	NPS	Fill materials had PCBs, PAHs,		
dump)	141 0	and metals		
Pepco Benning Road	Pepco	PCBs and PAHs		

Source: Fritz and Weiss, 2009

Studies on each of these specific sites, as well as broader literature relative to Anacostia River ecology, were reviewed to assist in understanding prevailing background sediment and water quality conditions and to provide context for development of the work to be performed as part of the Benning Road RI/FS. Available reports and sampling data reviewed included:

 Sediment concentrations and toxicity information from 35 databases that were compiled by the National Oceanic and Atmospheric Administration (NOAA)
 (http://mapping.orr.noaa.gov/website/portal/AnacostiaRiver);

- A 2001 report from the Academy of Natural Sciences (ANS) entitled "Sediment Transport: Additional Chemical Analysis Study Phase II";
- A 2002 document from the Anacostia Watershed Toxics Alliance (AWTA) entitled "Charting a Course Toward Restoration: A Toxic Chemical Management Strategy for the Anacostia River";
- A peer-reviewed paper by Velinsky et al. (2011) entitled "Historical Contamination of the Anacostia River, Washington, DC";
- A 2009 document from the AWTA entitled "White Paper on PCB and PAH Contaminated Sediment in the Anacostia River";
- The USEPA 2009 SI Report for the Pepco Benning Road Site, Washington DC; and
- Results from the Environmental Security Technology Certification Program (ESTCP),
 Demonstration Program—The Determination of Sediment PAH Bioavailability using Direct Pore
 Water Analysis by Solid Phase Micro-extraction (http://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Risk-Assessment/ER-200709/ER-200709).

The findings of these studies consistently showed the presence of PCBs, PAHs, organochlorine pesticides, metals, and to a lesser degree VOCs in sediment samples collected from up and down the entire Anacostia River (Velinsky et al. 2011). Velinsky et al. (2011) reported that the concentrations of many contaminants in Anacostia River surficial sediment have decreased during the past few decades due to a combination of factors, including improved environmental practices, restrictions on the manufacture and use of PCBs, and the encapsulation of historically impacted sediment by the more recent deposition of cleaner sediment. For instance, based on the results of six cores collected from the lower Anacostia River, total PCB concentrations in surficial sediment fell from as high as 3,000 micrograms per kilogram (µg/kg) in the late 1950s to between 100 and 200 µg/kg in 2011.

The USEPA 2009 SI Report is the most comprehensive historical investigation of surficial sediments in the vicinity of the Site. According to this report:

- Analytical results obtained during the SI sampling event indicate that the constituents of potential concern (COPCs) associated with Anacostia River sediments are PAHs, PCBs, and inorganic compounds (metals);
- PAHs are ubiquitous in Anacostia River sediments in the vicinity of the Site (Appendix B Figure 2). The report also notes potential PAH sources located upstream of the Site, including numerous combined sewer outfalls;
- PCBs, specifically Aroclor 1254 and Aroclor 1260, were detected in sediment samples above the screening concentrations established by the USEPA Biological Technical Assistance Group

and NOAA for aquatic life. Several metals were also reported above these screening concentrations;

- No VOCs, semivolatile organic compounds (SVOCs), pesticides, or PCBs were reported above detection limits in the surface water samples collected during the SI. Of the inorganic constituents, only copper was detected at a concentration slightly above the corresponding USEPA Region III fresh water quality criterion; and
- USEPA concluded that historical releases from the Site contributed to the contamination in the Anacostia River sediments in the vicinity of the Site based on residue samples USEPA collected from the Benning stormwater system during its 1997 multi-media inspection.

The AWTA (2002) report regarding the Anacostia River indicates that concentrations of PAHs and PCBs in sediments exceeded conservative screening-level ecological benchmarks throughout the entire River, with areas of relatively greater contamination primarily oriented to depositional areas of the lower half of the River (below Kingman Lake), plus some additional isolated locales of the River where sediment is being deposited. The AWTA (2002) report identified the following six areas of interest recommended for further investigation, including the vicinity of the Benning Road Site:

- Area 1: Near O Street/SEFC/WNY (PCBs, PAHs, and metals);
- Area 2: Upstream from CSX lift bridge (PCBs and PAHs);
- Area 3: Between the 11th Street and CSX bridges (PAHs);
- Area 4: Off Poplar Point (PAHs and some PCBs);
- Area 5: Upstream from the Pepco Benning Road facility (PCBs); and
- Area 6: the area in between the "hot-spots" identified in Areas 1 through 5 above, and within the
 depositional zone of the lower river extending roughly between the South Capitol and 12th
 Street bridges.

The AWTA (2002) report identified approximately 60 acres of PAH- or PCB-contaminated "hot spots" recommended for capping (hot spots were identified as areas with concentrations exceeding the mean plus two standard deviations: 879 μ g/kg for PCBs and 35,440 μ g/kg for PAHs). One relatively small hot spot was identified in the vicinity of Outfall 013.

A review of NOAA's 35 databases (accessed through NOAA's Query Manager Program) indicates that several hundred Anacostia River surficial sediment samples have been collected from the mouth of the Anacostia River to points upstream of the Benning Road Site. Relative concentrations of total PCBs and total PAHs in surficial sediment samples within 4 miles of the Site are illustrated on GIS

plots provided in **Figures 1** and **2** of **Appendix B**. The tabular summary below presents summary statistics for these compounds in Anacostia River sediment.

	PCBs				PAHs			
Study Area	Number	Concentration (µg/kg)			Number of	Concentration (µg/kg)		
	of Samples	Minimum	Mean	Maximum	Samples	Minimum	Mean	Maximum
Benning Road Study Area (a)	16	40	Not available	2,510	16	2,020	Not available	14,920
Anacostia White Paper (ANS 2000 data only) (b)	124	2	181	1,643	125	495	11,742	56,330
Anacostia White Paper (All studies) ^(b)	295	Not detected	579	12,000	314	100	16,619	211,300

⁽a) Source: USEPA, 2009. Sum of Aroclors and total PAHs.

The data presented above suggests that USEPA 2009 SI Report data must be considered within the overall construct of the urbanized Anacostia River corridor. USEPA's 1997 Multi-media Inspection Report notes that PCB concentrations in storm sewer residue at the Site were above the SQG, but less than concentrations found in similar samples collected at WNY and SEFC. With regard to PAHs, the USEPA 2009 SI Report indicates that contaminated sediments are located upstream and downstream of the Site, that "PAHs are essentially ubiquitous in sediments of the Anacostia River in the vicinity of the site," and that "...sources of PAHs are located upstream of the Benning Road facility. These potential sources included numerous combined sewer stormwater outfalls located upstream of the site." Studies have found evidence for the atmospheric deposition of PCBs, PAHs, and other compounds (Leister and Baker, 1994; Van Ry et al., 2002). The DC Department of Health estimated that the Total Available Atmospheric Load of PCBs to the Anacostia Watershed is 11.64 pounds per year, representing much of the source of the CSO and Stormwater Loads to the Anacostia River (DC Department of Health, 2003).

1.8.2 Anacostia River Sediment Project

DOEE is conducting a River-wide RI/FS (a.k.a., the Anacostia River Sediment Project [ARSP]) within the tidal portion of the Anacostia River, which includes the Benning RI/FS Waterside Investigation Area. The study area for the DOEE RI is an approximately 9-mile-long segment of the River from the confluence of the Northwest and Northeast Branches at Bladensburg, MD, to the confluence with the Potomac River in Washington, DC. DOEE published a draft Remedial Investigation Report on March 30, 2018 (DOEE, 2018). The River-wide RI Report presents the nature and extent of contaminated environmental media (surface water, surface sediment, subsurface sediment, groundwater seepage,

⁽b) Source: Anacostia Sediment Capping White Paper, undated. This paper evaluates total PCBs and total PAHs from (1) an Academy of Natural Sciences (ANS) Study (ANS, 2000), which was "relatively comprehensive", and (2) 12 specific studies (plus the ANS study) conducted between 1990 and 2003 on the River using a variety of sampling methods and protocols.

and biota) and provides a characterization of the general site conditions to support completion of a River-wide FS to evaluate potential remedial options. The ARSP expanded the six potential source properties identified by the AWTA (2002) study to 14 PECSs (including the Benning Road Site) that abut the tidal Anacostia River. These PECSs were identified based on currently available information, and additional sites may be added in the future. Although 14 PECSs were identified by DOEE, higher resolution Site-specific data from only three PECSs (Washington Navy Yard, CSX, and the Pepco Benning Road Site) were included in the RI in addition to DOEE's River-wide dataset. Several supporting studies related to outfall sampling, tributary sampling, pore water sampling, and forensics were not yet completed and thus not included in the ARSP RI Report. Instead, these studies were deferred to a pending FS phase.

One of the more substantial sources of contaminants to the River has been the CSO system that

1.8.3 Combined Sewer Overflows

serves approximately one-third of the District of Columbia (AWTA, 2002; http://www.dcwasa.com/wastewater collection/css/default.cfm). A figure depicting the CSO outfalls and drainage areas in the vicinity of the Study Area is provided in **Appendix C**. The District's CSOs are antiquated systems (many of which date back to the 1880's) that until recently allowed urban runoff and raw sewage to bypass treatment systems during rain events. During dry periods, sanitary wastes collected in the CSO system were conveyed to and treated at the Blue Plains Advanced Wastewater Treatment Plant; however, when the capacity of the CSO system was exceeded during significant rainfall events, a mixture of stormwater and sanitary wastes was directly discharged into the District's water bodies, including the Anacostia River. This practice continued for many decades. To address this problem, the District of Columbia Water and Sewer Authority (DC Water) constructed a large tunnel system to capture and store stormwater for treatment. The first phase of this tunnel system was put into operation on March 23, 2018 (DC Water, 2018). According to DC Water, this portion of the system will provide control for all of the CSO outfalls along the Anacostia River and is expected to eliminate approximately 80% of CSO releases and improve water quality. The system captures flows that previously would have discharged to the river and directs them to the Blue Plains Advanced Wastewater Treatment Plant through a series of underground storage and conveyance

According to AWTA (2002), an average of 82 releases of combined stormwater and sanitary wastes occurred every year due to this outdated system from 53 permitted CSO outfalls in the District operated by DC Water. At the time of the AWTA report publication, these releases were reported to allow a discharge volume of approximately 2.14 billion gallons of contaminated waste-water from 11

tunnels.

major CSOs to enter the river system on an annual basis. DC Water recently developed a model that predicted that more than 93% of CSO flow volume was contributed by two CSO systems, one at Main and O Street (CSO 010, the O Street Pumping Station) approximately 3.4 miles downstream from the Site, and the other at the Northeast Boundary (CSO 019), approximately 1.2 miles downstream from the Site.

More recent data from the DC Water website highlights the CSO impact on the Anacostia River (http://www.dcwater.com/wastewater_collection/css/CSO%20Predictions.pdf). During October to December 2014, approximately 68.2 million gallons (MG) of CSO overflow were released into the River. Approximately 81.5% (55.6 MG) was attributable to CSO 019 (the Northeast Boundary CSO), while an additional 6.5% (4.44 MG) were attributable to CSO 010 (the O Street Pumping Station).

AECOM incorporated the findings from the various studies discussed above, and response actions conducted by Pepco, into the RI/FS Work Plan and CSM for the Study Area.

1.9 Report Organization

This report is organized into the following eight sections:

- Section 1 Introduction
- Section 2 Study Area Investigation
- Section 3 Physical Characteristics of the Study Area
- Section 4 Nature and Extent of Contamination
- Section 5 Contaminant Fate and Transport
- Section 6 Baseline Risk Assessments
- Section 7 Summary and Conclusions
- Section 8 References

Figures, tables, and appendices are provided as stand-alone sections following Section 8.

2 Study Area Investigation

This section presents a summary of the RI field activities conducted within the Study Area. It describes the means and methods of sample collection, and quantities and locations of samples collected in various environmental media. Sections 3 and 4 of this report discuss the results of these field activities. The RI/FS field activities were conducted in two primary phases; Phase I activities were conducted between January 25, 2013 and December 31, 2014, and Phase II activities were conducted between December 1, 2016 and July 9, 2018. All RI/FS field activities were conducted in accordance with the RI/FS Work Plan, Sampling and Analysis Plan (SAP), and Health and Safety Plan, approved by DOEE in December 2012. Representatives of the DOEE Toxic Substances Division conducted several inspections during the course of the Landside and Waterside Investigations. A photolog of field tasks completed during the Landside and Waterside investigations is provided in **Appendix D**.

Additional investigation activities not specified in the RI/FS Work Plan were presented in Addenda #1, #2, and #3 to the Work Plan, and were approved by DOEE in March 2014, July 2014, and October 2016, respectively. Addendum #1 revised the Phase I Mobilization 3 activities to include the delineation of a PCE plume in groundwater near direct push technology (DPT) boring DP09, and specified details of the proposed monitoring well locations, construction, and sampling. Addendum #2 outlined a soil sampling program for PCBs beneath and adjacent to the cooling tower basins. Addendum #3 was developed to address remaining data gaps and uncertainties identified in the Draft RI Report (AECOM, 2016e).

The field investigation activities were designed to characterize conditions in soil, groundwater, surface water, and sediment; further refine the CSM; and collect data to support a baseline risk assessment. Field activities were divided into Landside and Waterside components during each of the two RI/FS investigation phases. The Landside Investigation focused principally on the Site, but also included off-Site background locations and areas of the adjacent Anacostia Park between the Site and the River. Because the areas sampled within the park property are close to, but not within the footprint of the NPS Kenilworth Maintenance Yard, the sample locations are designated by the pre-fix "KMY." The Landside Investigation locations are displayed on Figure 2-1. The Anacostia Park locations are displayed on Figure 2-2 and Figure 2-3, and Landside background locations are displayed on Figure 2-4. The Waterside Investigation evaluated a near-Site portion of the Anacostia River (Waterside Investigation Area), background River locations, and downstream forensics locations. The Waterside

Investigation Area sample locations are displayed on **Figure 2-5A** and the Waterside background locations are displayed on **Figure 2-6**. Information on the selection and justification of Landside and Waterside background locations is provided in Section 4.0 and in the background data evaluation conducted for the Study Area (**Appendix W**).

The Phase I Landside investigation was divided into three mobilizations, which were subdivided as follows:

Phase I Landside Mobilization 1

- Task 1: Utility Clearance
- Task 2: Surface Soil Sampling
- Task 3: Storm Drain Sampling
- Task 4: Electrical Resistivity Imaging (ERI)
- Task 5: Geotechnical Soil Borings

Phase I Landside Mobilization 2

Task 1: DPT Subsurface Soil Sampling

Phase I Landside Mobilization 3

- Task 1: PCE Source Investigation
- Task 2: Monitoring Well Installation
- Task 3: Monitoring Well Gauging and Sampling
- Task 4: Tidal Influence Monitoring
- Task 5: Aquifer Testing
- Task 6: Cooling Tower Basins Soil Sampling

The Phase I Waterside investigation was divided into two mobilizations, which were subdivided as follows:

Phase I Waterside Mobilization 1

Task 1: Bathymetric and Utility Surveys

Phase I Waterside Mobilization 2

- Task 1: Surface Water Sampling
- Task 2: Surface Sediment Sampling
- Task 3: Subsurface Sediment Sampling

The Phase II Landside investigation was divided into three mobilizations, which were subdivided as follows:

Phase II Landside Mobilization 1 - Additional Site Characterization

- Task 1: On-site Monitoring Well Redevelopment and Resampling
- Task 2: On-site Nature and Extent Soil Delineation
- Task 3: On-site Soil Forensics Sampling
- Task 4: On-site DPT Groundwater Investigation

Phase II Landside Mobilization 2 - Site-specific Background Sampling

- Task 1: Background Soil Sampling
- Task 2: Background DPT Groundwater Sampling

Phase II Landside Mobilization 3 – Anacostia Park Investigation

- Task 1: ISM Surface Soil Sampling
- Task 2: Discrete Subsurface Soil and Groundwater Sampling
- Task 3: Geotechnical Boring
- Task 4: Arsenic and Chromium Sampling

The Phase II Waterside investigation was divided into two mobilizations, which were subdivided as follows:

Phase II Waterside Mobilization 1 - Sediment Profile Imaging

Task 1: Sediment Profile Imaging (SPI) at Waterside Investigation Area Locations

Phase II Waterside Mobilization 2 - Sediment Sampling

- Task 1: Waterside Investigation Area Surface Sediment Sampling
- Task 2: Background and Forensics Surface and Subsurface Sediment Sampling
- Task 3: High Resolution Coring
- Task 4: City Storm Drain Sediment Sampling

Several permits from regulatory and other government agencies were obtained prior to each phase of RI/FS field activities. These permits are summarized in **Table 2-1**. The sample quantities and analytical methods for the Landside and Waterside data collection programs are provided in **Table 2-2**. Details of specific field activities are described below.

2.1 Phase I Landside Investigation

2.1.1 Phase I Landside Mobilization 1, Task 1: Utility Clearance

Numerous overhead and underground utilities are present at the Site, including those associated with three active electrical substations, the former power plant, high-voltage transmission and distribution lines, and the elevated and underground DC Metro rail lines along the Site's southern boundary. Known or suspected utilities at the Site included electric, water supply, storm sewer, sanitary sewer, gas, and telecommunication lines, and Anacostia River water intake/discharge tunnels associated with the former power plant.

A multi-step utility clearance process was conducted for each proposed boring location and included the following:

- 1. Obtain and review available utility drawings from Pepco and others;
- 2. Obtain clearance from Pepco by having a Pepco underground technician locate and mark utilities in the vicinity of each proposed boring;
- 3. Retain a private utility locator to locate and mark all active or abandoned subsurface utilities in the vicinity of each boring;
- 4. Notify Miss Utility for the identification of all public utilities servicing the Site; and
- 5. Hand-clear each boring location by use of hand auger and vacuum excavation/air knife to a depth of 5 feet (ft) below grade.

AECOM retained private utility designation contractors Accumark, Inc. of Ashland, VA, and Enviroscan, Inc. of Lancaster, PA, to identify underground utility lines in the vicinity of proposed drilling locations. The utility investigations included the use of ground penetrating radar and electromagnetic surveys of all boring locations using detection equipment to identify and mark induced or naturally-occurring electromagnetic fields present on conductive utilities.

2.1.2 Phase I Landside Mobilization 1, Task 2: Surface Soil Sampling

Surface soil samples were collected at 25 locations (SUS01 through SUS25) distributed across the Site. All samples except one were collected between February 4 and February 7, 2013; the surface soil sample at location SUS22 could not be collected until June 13, 2013, due to access issues. The locations of the surface soil samples are shown on **Figure 2-1**, and analytical methods are presented in **Table 2-2**. The samples were collected from within the top 12 inches of the subsurface after coring

through existing pavement or ground cover. Surface soil is defined as the top 12 inches of soil below ground level. In locations where man-made ground covering was present (i.e. asphalt, concrete, base coarse), surface soil samples were collected from the base of the covering to 12 inches below ground surface. Each sample was field screened with a photoionization detector (PID) and X-ray fluorescence (XRF) instrument. The results of the surface soil sampling guided the planning of the DPT subsurface investigation.

This task was performed in accordance with the relevant Project Operating Procedures (POPs) provided in Appendix A of the SAP, including those for hand auguring, soil sampling, use of the XRF instrument, decontamination of field equipment, and the packing and shipping of the environmental samples.

AECOM retained surveying contractor Gahagan & Bryant Associates, Inc. (GBA) of Wilmington, DE, to provide land surveying services for the RI/FS project. Location coordinates were referenced to the Maryland State Plane North American Datum of 1983 (NAD83) coordinate system, and elevations were recorded relative to the North American Vertical Datum of 1988 (NAVD88). Surveyed coordinates for the 25 surface soil sample locations are provided in **Table 2-2**.

2.1.3 Phase I Landside Mobilization 1, Task 3: Storm Drain Sampling

Eight storm drain water (SDW) and four storm drain residue (SDR) samples were collected on October 7 and 8, 2013, to evaluate potential impacts from Site stormwater that drains to the River at Outfalls 013 and 101. The locations of the storm drain samples are shown on **Figure 2-7**, and analytical methods and coordinates for the samples are presented in **Table 2-2**. Location coordinates for the sampled storm drains, accurate to within 3 ft, were collected by AECOM using a hand-held TrimbleTM global positioning system (GPS) unit. Six of the sampling locations were single storm drain inlets on the main underground drainage system that traverses the Site from southeast to northwest and discharges to the River at Outfall 013, including five of the six locations (labeled PEPR 1 through 5) sampled during the 1997 USEPA Multi-media Inspection. Three of the locations co-located with the EPA sampling event (PEPR1, PEPR2, and PEPR3) could not be sampled for residue due to lack of sufficient sediment in the drains. Alternative storm drains were not identified to be sampled because none were near the proposed locations, and would not coincide with the 1997 USEPA Multi-Media Inspection sampling locations.

The other two sampling locations were storm drains to the west of the former power plant building that drain to Outfall 101. One sample (SDW101) collected by Pepco's stormwater management contractor, AMEC, according to a sampling protocol approved by USEPA for NPDES quarterly sampling, was a

weighted composite of water from four of the eight storm drains in this area (manholes 87, 88, 90, and 91). The remaining four other storm drains on the west side of the plant were physically covered during the sampling event and excluded from the composite sample because their catchment areas were within those of the other storm drains sampled. The weightings for sample SDW101, based on the stormwater volumes flowing through each location, were as follows:

Sample Location	Catchment Area (ft²)	Fraction of Sample Volume	Representative Sample Volume (mL)
MH-91	6,204	7.74%	1,393
MH-90	3,853	4.81%	865
MH-88	26,149	32.61%	5,870
MH-87	43,975	54.84%	9,872

The other stormwater sample collected from west of the plant (SDWMH02) was a grab sample from manhole 88. A storm drain residue sample (SDR101) was also collected from this same location.

2.1.4 Phase I Landside Mobilization 1, Task 4: Electrical Resistivity Imaging

AECOM retained Aestus, LLC (Aestus) of Loveland, CO to perform ERI surveys at the Site between February 11 and February 16, 2013. ERI techniques involve the measurement of electrical conductivity/resistivity of the ground and are commonly used in environmental site characterization as screening tools. ERI data can be used to identify subsurface anomalies that represent changes in lithology, buried objects, and Light Non-Aqueous Phase Liquid (LNAPL) or Dense Non-Aqueous Phase Liquid (DNAPL) plumes.

Aestus performed 10 ERI surveys (WAS-1 through WAS-10) at the Site using its proprietary GeoTrax SurveyTM technology. The locations of the 10 transects, which are shown on **Figure 2-2**, were selected to image the former sludge dewatering area and other Target Areas. For each of the geophysical surveys, a series of electrodes spaced 5 to 10 ft apart were hammered into the ground to a depth of 6 to 15 inches below ground surface (bgs), and direct current was induced in the subsurface material along the length of the transect. The current measured by the electrical transducers was used to produce images of the conductivity/resistivity of the subsurface material. Survey line lengths ranged from 361 to 541 ft long, producing images showing differences in conductivity/resistivity of the lithology along the survey transects from 72 to 108 ft deep. A technical memorandum for the ERI surveys prepared by Aestus is provided in **Appendix E**.

This technology identifies NAPL zones based on its higher resistivity characteristics. As with any technology, Aestus GeoTrax Survey™ has some limitations. Based on vendor's literature, compared to most geophysical techniques, GeoTrax Survey™ is typically not affected negatively by the presence of: above ground metallic objects such as vehicles, fences, power lines, scrap metal piles, etc.; below ground metallic objects that are discretely located and not extensive in nature; traffic/vibrations; or varying geology. However, extensive grounding grids such as those found at electrical substations and transect lines run adjacent to and along underground metallic pipelines could cause interferences. This limitation is overcome by properly offsetting transects from the underground objects to avoid the interferences. Another type of limitation is associated with the holes created in the trapezoidal image by insufficient overlap of transect lines when surveying particularly long transects lines. Such holes in the image could lead to an incomplete interpretation of the area surveyed. Proper overlaps were used during GeoTrax Survey™ at the Site to avoid this limitation. Finally, this method is not a stand-alone site characterization tool and, as done on the Site, is typically used as a screening tool in conjunction with verification borings to collect and analyze soil and groundwater samples.

2.1.5 Phase I Landside Mobilization 1, Task 5: Geotechnical Soil Borings

A geotechnical investigation was conducted at the Site between March 14 and March 27, 2013, to aid in the verification of existing lithologic data and the design of monitoring wells. Five soil borings (SB1 through SB5) were installed at the locations shown on **Figure 2-1**. Coordinates for the borings are provided in **Table 2-2**. Based on review of the RI/FS Work Plan, DOEE proposed to install a sixth soil boring (SB6) on NPS property to the west of the Site, but after a prolonged and unsuccessful effort on the part of AECOM and Pepco to obtain the requisite permit from NPS, DOEE agreed to forgo this boring in December 2014. In February 2015, after the conclusion of RI/FS field activities, NPS granted Pepco the Special Use Permit for the installation of boring SB6 on NPS property. Given that SB6 was proposed as a geotechnical boring only and no chemical data were to be collected, Pepco proposed to defer the completion of SB6 to after submission of the Draft RI Report, at which point DOEE would determine whether the boring was still required (see Section 2.3.9).

AECOM retained drilling contractor Eichelbergers, Inc. of Mechanicsburg, PA to advance the five geotechnical borings at least 10 ft into the Arundel Clay confining layer that underlies the Site using a Hollow Stem Auger drill rig. Total boring depths ranged from 60 to 99 feet below ground surface (ft bgs). Split-spoon samples were obtained using the Standard Penetration Test in accordance with the American Society for Testing and Materials (ASTM) Standard D1586. Split spoon samples were collected continuously from the surface to the water table and then every 5 ft thereafter to the boring terminal depth. Soils were logged in accordance with the Unified Soil Classification System (USCS),

and the number of blow counts (hammer strikes) required to advance the sampler 24 inches was recorded. Geologic logs for the geotechnical borings are provided in **Appendix F**. Soil cores were field screened for VOCs using a PID. The relevant POPs in Appendix A of the SAP dictated the procedures used for soil sampling, headspace analysis of VOCs in unsaturated soil samples, sample packaging and shipping, field equipment decontamination, and investigation derived waste (IDW) management.

Shelby tube or disturbed samples (from drill cuttings) were collected from each boring in accordance with ASTM Standard D1587 and analyzed for ASTM Permeability, grain size, and Atterberg limits. A total of 33 geotechnical samples were collected and submitted to Craig Testing Laboratories of Maryland, Inc., of Beltsville, MD, and GeoTesting Express, Inc., of Acton, MA for analysis. All boring locations were abandoned with grout using a tremie pipe and restored to match the existing surface cover.

2.1.6 Phase I Landside Mobilization 2, Task 1: DPT Subsurface Investigation

Following the initial field data collection activities of Phase I, DPT borings were installed across the Site between March 29 and June 13, 2013, to evaluate the Target Areas, anomalies identified during the ERI surveys, and other areas of the Site. The purpose of the DPT subsurface investigation was to investigate potential sources of contamination, log lithologic data, and collect soil and groundwater samples to characterize the Site.

AECOM retained Green Services, Inc. of Bel Air, MD to install the soil borings using a Geoprobe® DPT drill rig. Forty-seven DPT borings (DP01 through DP47) were installed across the Site and advanced up to 62.5 ft below grade. The DPT borings were typically advanced to approximately 5 ft below the water table or refusal, whichever came first, except in locations where deeper borings were installed to investigate anomalies identified during the ERI surveys. The locations of the DPT borings are shown on **Figure 2-1**, and their surveyed coordinates are provided in **Table 2-2**.

A total of 142 soil samples and 48 groundwater samples were collected during the DPT investigation. Geologic logs for the DPT borings are provided in **Appendix F**, and sample analytical methods are presented in **Table 2-2**. Soil samples were collected from three depths in each boring, which were screened using a PID and an XRF field instrument. The sample intervals were generally at the 5, 10, and 15 ft bgs horizons, except where ERI anomalies were targeted for sampling. Groundwater samples were collected from within the top 5 ft of the water table using a DPT screen point sampler or temporary monitoring well. Groundwater samples were collected over 5-foot intervals via temporary wells, except for DP34, DP35, and DP45, which were sampled by screen point sampler over shorter intervals to target anomalies identified during the ERI investigation. The procedures used for collecting

groundwater samples from the boreholes are presented in Project Operating Procedure 406: Groundwater Sampling via Temporary Wells (**Appendix G**).

Groundwater and soil samples were packaged on ice and shipped under chain-of-custody to TestAmerica Laboratories, Inc. of Pittsburgh, PA for chemical analysis. The relevant POPs in Appendix A of the SAP dictated the procedures used for soil sampling, use of the XRF instrument, headspace analysis of VOCs in unsaturated soil samples, sample packaging and shipping, sealed-screen groundwater profiling, field equipment decontamination, and IDW management. Upon completion, the boring locations were abandoned with grout using a tremie pipe and restored to match the existing surface cover.

2.1.7 Phase I Landside Mobilization 3, Task 1: PCE Source Investigation

During the Phase I Mobilization 2 investigation, PCE was detected in groundwater at a concentration of 160 ppb in the 25 to 30 ft bgs interval of DPT boring DP09, near the southern property boundary. In Addendum #1 to the RI/FS Work Plan, a groundwater investigation was proposed to further delineate the PCE plume, help identify a possible PCE source, and determine the appropriate location for a groundwater monitoring well.

Twenty-three PCE Source Area Investigation borings were installed between April 14 and April 18, 2014. The boring location IDs and geographical coordinates are provided in **Table 2-2** and the locations are displayed on **Figure 2-1**. AECOM obtained coordinates using a hand-held Trimble™ GPS unit. An iterative DPT sampling approach was implemented in which eight initial groundwater samples were collected from grid points surrounding DP09 and analyzed for PCE and its degradation products using an on-Site mobile lab. Subsequent sample locations were then selected depending on the previous sample results until the outermost ring of borings around DP09 exhibited PCE concentrations down to a level of 30 to 50 ppb.

AECOM retained GSI Mid-Atlantic, Inc. of Bel Air, MD (GSI, formerly Green Services, Inc.) to provide drilling (DPT) and groundwater sample collection (screen point sampler) services. New Age/Landmark, Inc. of Benton Harbor, MI was retained to provide mobile lab analysis services. Geologic logs (provided in **Appendix F**) were prepared for five of the boring locations to characterize the subsurface and confirm the presence of an upper silt-clay semi-confining layer that underlies the Site and separates the upper water-bearing zone (UWZ) from the lower water-bearing zone (LWZ). A total of 23 grab groundwater samples were collected using a screen-point sampler and inertial pump from 5-foot intervals between 20 and 35 ft bgs within the UWZ. Three deeper groundwater samples were collected from between 45 and 55 ft bgs to characterize the LWZ at those locations.

During this task, the relevant POPs from Appendix A of the SAP were followed for sealed-screen groundwater profiling, sample packaging and shipping, field equipment decontamination, and IDW management.

2.1.8 Phase I Landside Mobilization 3, Task 2: Monitoring Well Installation

Based on the results of the Phase I Landside Mobilization 2 investigation and the PCE delineation near DP09, 30 2-inch diameter polyvinyl chloride (PVC) monitoring wells were installed as nested well pairs at 15 locations across the Site. Two monitoring wells were installed at each location: a shallow well in UWZ and a deep well in LWZ. The locations of the monitoring wells are shown on **Figure 2-1**, and surveyed coordinates for the wells are provided in **Table 2-3**. The wells are identified with their location (MW-1 through MW-15) and a letter (A for shallow, B for deep).

One nested well pair (MW-6) was installed by Cascade Drilling, L.P. of Marietta, OH on May 2, 2014. It was then determined that due to presence of numerous utilities, a multi-step utility clearance program was needed to clear utilities prior to drilling other wells. Therefore, the remaining 14 well pairs were installed between September 22 and October 17, 2014, by Summit Drilling Co., Inc. of Bridgewater, NJ, once AECOM had completed the multi-step utility clearance work. The wells were installed by the Sonic drilling method to a maximum depth of 66 ft bgs. Sonic drilling uses a combination of drill bit rotation, high-frequency vibration, and downward force to penetrate even very dense material using minimal drilling fluids. During well installation, 4-inch soil cores were logged continuously and screened with a PID to determine the placement of the well screens. Screened intervals ranged from 10 to 25 ft in length in the upper and lower water-bearing zones. Monitoring well details, including screened intervals and surveyed location coordinates and elevations, are provided in **Table 2-3**.

The monitoring wells were installed as nested wells, with two well risers in a single borehole at each location. First, a 6-inch Sonic casing on 10 ft intervals was advanced to the boring terminal depth, providing continuous 4-inch soil cores. The lithology was logged to determine the proper screen intervals for the wells; geologic logs are provided in **Appendix F**. After the placement of the upper and lower screened intervals was determined, an 8-inch Sonic isolation casing was advanced, overriding the 6-inch casing, to the total depth of the shallow well. Then the 2-inch deeper well was constructed through the 6-inch well casing, introducing sand pack in the 4-inch annulus around the well to 2 ft above the screened interval. The 6-inch temporary casing was retracted following deeper well construction to the bottom of the UWZ. Above the sand pack and at the level of the silt-clay semi-confining layer, a seal of hydrated bentonite chips was set to prevent intermixing between the upper and lower water-bearing zones.

Following the hydration and curing of the bentonite seal, the 6-inch casing was removed from the location entirely, leaving the 8-inch casing in place for the installation of the shallow well. The shallow well was installed with a clean sand pack in the 6-inch annulus to 2 feet above the screened interval, above which was placed a 2-foot seal of hydrated bentonite chips. The wells were finished with a bentonite-cement mixture to grade and a flush mount locking well cap and cover. A generalized construction schematic for the wells is provided as **Figure 2-8**.

Following installation, the wells were developed using a surge block and submersible pump. Well development was conducted until at least five well volumes were removed from each well in accordance with the Work Plan. The final turbidities of many of the wells remained high even after extensive pumping. Approximately 100 gallons (gal) of purge water were withdrawn from each shallow well and 150 gal from each deep well.

During this task, the relevant POPs from Appendix A of the SAP were followed for monitoring well construction and installation, monitoring well development, field equipment decontamination, and IDW management.

2.1.9 Phase I Landside Mobilization 3, Task 3: Monitoring Well Sampling and Gauging

During November and December 2014, 30 groundwater samples (one per well) were collected by use of HydraSleeve™ passive grab samplers from the center of the well screens. Analytical methods for the samples are presented in **Table 2-2**. HydraSleeves are single-use (disposable) sampling devices designed to collect groundwater samples directly from a desired screened interval of a well without purging the well prior to sample collection. Physically, the HydraSleeve consists of a section of lay-flat polyethylene tubing, sealed at the bottom end, and with a check valve at the top end. After positioning the HydraSleeve at the bottom of the desired sampling interval, the sampler is activated by pulling it upward at a rate of approximately 1 ft per second. When the sampler is full, the check valve closes, excluding any more water from entering. The HydraSleeve sampler is manufactured by GeoInsight of Las Cruces, NM. Additional details regarding the HydraSleeve sampler are provided in Addendum #1 (AECOM, 2014a).

The model of HydraSleeve used for the RI/FS groundwater sampling was 8 ft long and collected 4 liters of volume. Following a period of at least 7 days of well stabilization following well installation, the HydraSleeves were deployed to the middle of the screened intervals. The HydraSleeves were allowed to compress and the wells were allowed to equilibrate for at least 24 hours before retrieval and sampling. During HydraSleeve retrieval, a portion of each groundwater sample was set aside to

measure water quality parameters. Groundwater samples were packaged on ice and shipped under chain-of-custody to TestAmerica Laboratories of Pittsburgh, PA.

Two Site-wide water level measurement events were conducted to characterize local groundwater flow conditions. AECOM retained GBA to install a tide board on the Anacostia River at the Benning Road Bridge referenced to the Mean Lower Low Water (MLLW) vertical datum. Tide board observations were made at the beginning and end of each water level gauging round.

During this task, the relevant POPs from Appendix A of the SAP were followed for groundwater level measurement in a monitoring well and field equipment decontamination, and POP-407 from Addendum #1 outlined the procedures used for groundwater sampling with a HydraSleeve (AECOM, 2014a).

2.1.10 Phase I Landside Mobilization 3, Task 4: Tidal Influence Monitoring

A tidal influence study was conducted at the Site over a period of 48 hours from November 10 to November 12, 2014, to help evaluate the tidal effect of the Anacostia River on the Site water table. Water level data from the shallow and deep wells at six locations on-Site (MW-1, MW-3, MW-6, MW-8, MW-11, and MW-13) were monitored at 5-minute increments during the study. These wells were selected to evaluate the tidal effects on wells in the western portion of the Site (near the River) and also to determine how far east (away from the River) the tidal influence reaches. Twelve pressure transducers (Schlumberger Micro-Divers) were deployed in the selected wells, and an additional transducer was secured at the surface to record barometric pressure over the study period. The data were downloaded and processed, and the necessary barometric pressure corrections were made using Win-Situ® software.

The study involved the deployment of pressure transducers in the selected wells, which recorded groundwater levels in 5-minute increments. The continuous water level data were used to determine the tidal effect of the adjacent River on the Site water table.

AECOM visually monitored the Benning Road Bridge tide board over an 8-hour period on November 11, 2014, and the gauge height was recorded at 15-minute increments. These stream stage data were used to establish a relationship between the tide board and a US Geological Survey (USGS) hydrometric gauging station (gauge number 01651750) located approximately 1.2 miles upstream from the Site. Over the 8-hour period, the stream stage at the tide board and that at the USGS gauging station differed by an average of 0.17 ft (±0.03 ft, one standard deviation). This elevation relationship was used to compare the stream stage of the River and the monitoring well water levels over the course

of the 48-hour study period, and to help determine the effect of the River's tidal fluctuations on the Site water table.

2.1.11 Phase I Landside Mobilization 3, Task 5: Aquifer Testing

Aquifer testing was conducted in 16 wells at eight locations (MW-1, MW-3, MW-6, MW-9, MW-10, MW-11, MW-13, and MW-15) to characterize the hydraulic properties of the shallow and deep aquifers. These wells were selected to get a good geographical distribution of data across the Site. The testing was completed by slug testing techniques, consisting of three rising-head and three falling-head tests in each well, to determine the hydraulic conductivity (K) of the unconsolidated material in the vicinity of each well. The water level data were recorded at 0.5-second intervals using a LevelTROLL 700 data logger. The tests proceeded until the water levels recovered to within 10% of the static pretest levels. Slug testing data were interpreted using the Bouwer and Rice (1976) solution for confined and unconfined aquifers on AQTESOLVTM Version 4.5 aquifer test analysis software. The AQTESOLV software uses the recorded water level data and well details (such as borehole and riser diameters, screen length, and aquifer thickness) as inputs to calculate hydraulic conductivity for the geologic formation in the vicinity of the well.

2.1.12 Phase I Landside Mobilization 3, Task 6: Cooling Tower Basins Soil Sampling

Historic sampling of soils around the two cooling tower concrete basins in the northwest corner of the Site was conducted in 1995, 2012, and 2013. In Addendum #2 to the RI/FS Work Plan, a soil sampling program was proposed to delineate PCB contamination in soils beneath and adjacent to the basins based on the results of the previous sampling events, which indicated the presence of PCBs in surface soils adjacent to the basins. The two concrete basins (units 15 and 16) were each approximately 307 ft by 57 ft, and were constructed in 1969 or 1970, when PCBs were widely added to sealants, caulks and many industrial products. Caulking material in the basin expansion joints is believed to be the source of the PCBs detected in the adjacent soils.

The most recent rounds of soil sampling at the cooling tower concrete basins were conducted from August 14 to September 5, 2014, February 5, 2015, and March 11 to 12, 2015, to fill analytical data gaps and further delineate PCB contamination in basin soils. The sampling events targeted the vertical and horizontal expansion joints of each concrete basin. During the 2014–2015 sampling events, a total of 207 soil samples were collected from areas adjacent to and beneath the basins and analyzed for PCBs. The results of these sampling events guided the development of a draft Soil Removal Action Plan.

Pepco submitted an initial draft of the Soil RAP to DOEE on December 1, 2014, and received comments back on December 22, 2014. Pepco addressed the DOEE comments, which included collecting additional analytical data to bound previously detected PCB contamination at the basins, and the final revised Soil RAP was submitted to DOEE on July 29, 2015 (AECOM, 2015).

AECOM retained GSI to provide direct push drilling services, and E2CR, Inc. of Baltimore, MD to provide vacuum excavation services to support the sampling events.

2.2 Phase I Waterside Investigation

2.2.1 Phase I Waterside Mobilization 1, Task 1: Bathymetric and Utility Surveys

Prior to initiation of the Waterside investigation sampling, AECOM retained GBA to conduct bathymetric and side scan sonar surveys in the Waterside Investigation Area and prepare a contour map of the river bottom in this area. Bathymetric data indicates river bottom elevation at selected points, while side scan sonar data produces a continuous image of the river bottom to reveal large pieces of debris, potential utilities, or other anomalies. The side scan sonar imagery was limited by its resolution (approximately 1 foot) and by the shadowing effects cast by river bottom objects. The surveys were conducted from February 11 to 13, 2013, in accordance with the hydrographic surveying procedures provided in U.S. Army Corps of Engineers (USACE) Survey Manual EM 1110-2-1003 (USACE, 2013). A single GBA-owned vessel was mobilized for the surveys, launched from Bladensburg Marina in Bladensburg, MD. GBA used an Odom Echotrac CV100 fathometer to collect water depth data along parallel survey lines. The survey lines were run at 50-foot intervals within the survey area, and four additional survey lines were run perpendicular to these lines, along the axis of river flow. Geographic positions for each surveyed point were logged using a Trimble™ GPS. Time was recorded continuously so that a tidal correction could be made during post-processing. GBA established tide gauges at Outfall 013 and on a bridge pier of the Benning Road Bridge, surveyed to MLLW.

As a result of utility clearance activities, including a historical records search and visual inspection of the river bank on both sides of the River, two electric cable crossings within the investigation area were identified within the Waterside Investigation Area. These cable crossings were located and surveyed by GBA during the side scan sonar survey, and each was given a 100 ft buffer zone within which no drilling was conducted.

2.2.2 Phase I Waterside Mobilization 2, Task 1: Surface Water Sampling

AECOM retained Aqua Survey, Inc. (ASI) of Flemington, NJ, to provide vessels and vessel-based sampling services in support of the Waterside sampling program. Two ASI-owned vessels were launched from Bladensburg Marina for the work: a sampling vessel and a support vessel. Prior to Waterside Investigation activities, notices to the public and other boaters regarding the nature and dates of the planned environmental study in the River were posted at the Bladensburg Marina and in public spaces along the River. Surface water samples were collected at 20 locations (10 Waterside Investigation Area locations and 10 background locations) between September 23 and October 3, 2013. The sample locations for the Waterside Investigation Area are shown on Figure 2-5A and Figure 2-5B, and background sampling locations are shown on Figure 2-6. Geographic coordinates for the sample locations were collected by GPS at the time of sampling, and are provided in Table 2-2.

The surface water samples were collected from approximately 1 foot above the sediment-water interface using a peristaltic pump and tubing secured to a pole marked with 1-foot intervals. Two measurements of water quality parameters were taken at each sampling location using a YSI 6920 Sonde: one near the water surface, and a second from within 1 foot of the sediment surface. The water quality parameters measured in the field included temperature, dissolved oxygen (DO), pH, turbidity, and conductivity.

During this task, the relevant POPs from Appendix A of the SAP were followed for surface water sample collection, sample packaging and shipping, and IDW management.

2.2.3 Phase I Waterside Mobilization 2, Task 2: Surface Sediment Sampling

Surface sediment sampling was conducted at 56 locations (46 Waterside Investigation Area locations and 10 background locations) between November 5, 2013, and January 31, 2014. These locations are shown on **Figure 2-5A** and **Figure 2-6**. Geographic coordinates for the sample locations were collected by GPS at the time of sampling, and are provided in **Table 2-2**. ASI provided vessel-based support services. AECOM retained Normandeau Associates, Inc. (Normandeau) of Bedford, NH to provide additional sampling support services for mudflat sampling using a portable Vibracore.

Surface sediment grab samples were collected from a depth of 0 to 6 inches below sediment surface using a Petite Ponar grab sampler. Surface samples were inspected and logged for physical characteristics, including sediment color, particle size, odor, presence of fill material or other man-made materials, presence of sheens or non-aqueous phase liquid (NAPL), presence of aquatic biota, and other notable features. Samples were also screened for organic vapors using a PID.

To facilitate the processing of sediment samples on land, a staging area was constructed next to the River immediately south of Benning Road on Kingman Island (National Park Service property). Permits obtained by AECOM for this and other activities related to the Waterside investigation are summarized in **Table 2-1**.

Turbidity monitoring was carried out in accordance with DOEE Water Quality Certification #DC-13-001 and the turbidity monitoring procedures agreed upon by DOEE and Pepco. There were no exceedances of the established background turbidity at any location during the sampling activities. The turbidity monitoring data are presented in **Appendix H**.

Sediment samples for VOCs, Simultaneously Extracted Metals (SEM), and acid volatile sulfide (AVS) were collected prior to sample homogenization. The remaining samples were homogenized in a mixing bowl and placed in the appropriate sample containers. Details of the Waterside Investigation data collection program are provided in **Table 2-2**.

During this task, the relevant POPs from Appendix A of the SAP were followed for sediment sampling, headspace analysis of VOCs in unsaturated soil samples, sample packaging and shipping, and IDW management.

2.2.4 Phase I Waterside Mobilization 2, Task 3: Subsurface Sediment/Vibracore Boring

A total of 208 subsurface sediment samples were collected at 56 locations (46 Site-adjacent locations and 10 background locations) between November 5, 2013, and January 31, 2014, concurrently and collocated with surface sediment sampling. The locations of the subsurface sediment samples for Waterside Investigation Area and background locations are shown on **Figure 2-5A** and **Figure 2-6**, respectively. Geographic coordinates for the sample locations were collected by GPS at the time of sampling, and are provided in **Table 2-2**.

ASI provided vessel-based sampling services and Normandeau supported the mudflat sediment sampling adjacent to the River. The subsurface sediment cores were collected by advancing a Vibracore sampler to a maximum depth of 10 ft below sediment surface, or to refusal, whichever was encountered first.

As with the surface sediment sampling, a program of turbidity monitoring was implemented in accordance with DOEE Water Quality Certification #DC-13-001 and the turbidity monitoring procedures agreed upon by DOEE and Pepco. There were no exceedances of the established background

turbidity at any location during the sampling activities. The turbidity monitoring data are presented in **Appendix H**.

To meet the objectives for this task, the sampling was performed as follows:

- The core sampler, equipped with a plastic liner, was driven and extracted at each of the designated sample locations;
- The core liner was extracted from the core barrel and split open;
- If the core recovery was less than 8 ft long, the location was re-cored up to three times, at which point the longest of the three cores was sampled;
- The sediment sample was screened with a PID and logged for physical characteristics as with the surface sediment samples; and
- Samples from up to four horizons within each core were collected (1 to 3 ft, 3 to 5 ft, 5 to 7 ft, and 7 to 9 ft).

A total of 208 discrete interval subsurface sediment samples were collected for laboratory analysis from the 46 sampling locations in the Waterside Investigation Area and the 10 background locations.

Analytical methods for the samples are presented in **Table 2-2**.

During this task, the relevant POPs from Appendix A of the SAP were followed for sediment sampling, headspace analysis of VOCs in unsaturated soil samples, sample packaging and shipping, and IDW management.

2.3 Phase II Landside Investigation

2.3.1 Phase II Landside Mobilization 1, Task 1: On-Site Monitoring Well Redevelopment and Resampling

During 2016, the 30 monitoring wells installed during the Phase I RI/FS field investigation were inspected for damage. The PVC risers in wells MW-08A and MW-08B were broken near the ground surface during the power plant demolition in 2015. AECOM mobilized to the Site on December 1, 2016, to repair these two wells. The repair procedure entailed digging out the concrete well pad, cutting the two risers below the breaks, coupling new PVC pipe to the existing risers to bring them back to grade, sealing the couplings with cement, and pouring a new concrete pad.

A number of the elevated hydrophobic contaminant concentrations detected during the initial sampling of the 30 on-Site monitoring wells in 2014 were attributed to elevated turbidity in the groundwater samples. The elevated turbidity was suspected to be due in part to incomplete well development at the

time of monitoring well installation. Removal of the majority of fines from the formation in the vicinity of the well screen during development is critical for obtaining non-turbid groundwater samples and ensuring the long-term capacity of the well to yield groundwater samples representative of the local hydrogeologic conditions.

AECOM completed redevelopment of all 30 on-Site monitoring wells from December 6 to 12, 2016. The wells were manually surged with a surge block along the interval of the well screen, and then pumped using a Whale pump until turbidity levels were reduced to acceptable levels. The final turbidity in all monitoring wells was <10 nephelometric turbidity units (NTU) with the exception of MW-10A, which could only be reduced to <20 NTU. Well development field forms are provided in **Appendix I**.

Following well redevelopment activities, 28 of the 30 on-Site monitoring wells were sampled on December 20 to 22, 2016, to confirm the detections observed during the 2014 sampling event. The wells were sampled by low-flow methods using a peristaltic or Grundfos pump; VOCs were collected by bailer. A summary of the monitoring well groundwater sampling program is provided in **Table 2-2**.

In accordance with Work Plan Addendum #3, groundwater samples were collected from the five monitoring wells that exhibited PCE detections above 2 micrograms per liter (µg/L) (MW-01A, MW-01B, MW-05A, MW-05B, and MW-09A). The samples were collected on April 25, 2017 and submitted for Compound-Specific Isotope Analysis as a fingerprinting technique to determine if the PCE detected at different wells shared the same source.

2.3.2 Phase II Landside Mobilization 1, Task 2: On-Site Nature and Extent Soil Delineation

During Phase I sampling activities, several contaminants including PCBs, PAHs, metals, and dioxins and furans were detected in Site surface and/or subsurface soils above project screening levels (PSLs). As a result, delineation sampling was required to horizontally and vertically delineate surface soil contamination at 10 locations: SUSDP05, SUSDP06, SUSDP08, SUSDP10, SUSDP12, SUSDP18, SUSDP19, SUDP20, SUSDP21 and DP44. The sample analysis program for each location is provided in **Table 2-2**. The conceptual approach for horizontal delineation was to conduct step-out sampling around each of the 10 locations. The step-out sampling continued until the extent of impacted soil was delineated to 1.5 times the PSL.

The surface soil samples were collected from the top 12 inches of soil below ground level. In locations where man-made ground covering was present (i.e. asphalt, concrete, base coarse), surface soil samples were collected from the base of the covering to 12 inches below ground surface. In the event

that the man-made ground covering extended 12 inches or greater below ground level, no surface soil sample was collected.

AECOM retained GSI to provide DPT drilling services, and E2CR to provide vacuum excavation services to support the surface and shallow subsurface delineation sampling. Primary sample collection was conducted from January 24 to 30, 2017, with the exception of the DP06 area which required a Washington Metropolitan Area Transit Authority (WMATA) permit. The DP06 area was sampled on March 20, 2017. Secondary sampling was conducted on March 23 and 24, 2017, and from July 31 to August 30, 2017. Six additional rounds of sampling were conducted between January 23 and July 2, 2018, primarily to delineate the extent of PCB, PAH, or total petroleum hydrocarbon – diesel range organics (TPH-DRO) contamination detected in four distinct areas of the Site: the east end of Former Cooling Tower #16 basin, the former salvage yard, the DP19 area parking lot, and adjacent to Building #57.

Target Area 1 Metals Sampling

The area surrounding Target Area 1 in the northwest portion of the Site contains the footprint of the former sludge dewatering area and the former coal pile area. Due to the Site history and high concentrations of metals detected in this area during Phase I sampling, a more extensive sampling plan was implemented in which a 300 x 500 ft grid was placed over the area. The grid was sampled for metals using 100 ft spacing, with additional sample points added in the area surrounding SUS08 where historical sludge dewatering primarily occurred. Surface and subsurface surface soil samples were collected for metals analysis from a total of 28 locations on the Target Area 1 grid over multiple rounds of sampling conducted on January 24, 2017, July 31 to August 4, 2017, and January 30, 2018. The results indicated elevated total chromium (Cr) concentrations in Target Area 1. In order to determine the appropriate screening level, the 10 sample locations that exhibited the highest Cr concentrations were resampled on June 29, 2018 and analyzed for both total and hexavalent (VI) Cr.

Former Timber Pole Storage Area and Former Transformer Shop Sampling

A historical records review during development of the Conceptual Site Model Technical Memorandum revealed the historical presence of a timber pole storage area and transformer shops in central areas of the Site where no Phase I soil samples were collected. The absence of samples in these areas was identified as a data gap in the Phase I Site characterization. Three surface soil samples were initially collected in the former timber pole storage area (SUSDP48, SUSDP49, and SUSDP 50), and two surface soil samples were initially collected from the former transformer shop area (SUSDP51 and

SUSDP 52) on January 26, 2017. Additional step-out delineation samples were collected in the former timber pole storage area from August 8 to 16, 2017, and on January 30, 2018.

DP19-Area Surface and Subsurface Sampling

As described in the CSM Technical Memorandum, the southeast portion of the Site in the vicinity of DP19 was a railyard from 1937 to at least 1963. This area was converted to a laydown area, and later converted to a parking lot between 1981 and 1988. During Phase I sampling, location DP19 exhibited high levels of PAHs in surface and subsurface soil samples at depths of up to 10 ft bgs. The area around DP19 was gridded and successively sampled in expanding rings to delineate PAH contamination in surface and subsurface soils. Subsurface sampling to the south of DP19 was restricted due to the presence of WMATA aerial and subterranean structures along the southern Site boundary. DP19-area delineation sampling was conducted from January 27 to March 23, 2017, August 16 to 24, 2017, and January 26 to April 5, 2018.

The soil sample analysis program and sample locations are provided in **Table 2-2**. The Phase I and II on-Site soil sample locations are shown on **Figure 2-1**.

2.3.3 Phase II Landside Mobilization 1, Task 3: On-Site Soil Forensics Sampling

To obtain information about the nature and possible source(s) of soil contamination detected during Phase I sampling, 22 locations were selected for forensic sampling. The forensic sampling entailed the collection of discrete and composite soil samples between 0 and 16 ft bgs. DPT drilling for the forensic sampling was conducted by GSI from January 24 to March 20, 2017.

The soil sample analysis program and sample locations are provided in **Table 2-2**. The Phase II soil forensics sample locations are shown on **Figure 2-1**.

2.3.4 Phase II Landside Mobilization 1, Task 4: On-Site DPT Groundwater Investigation

Two areas of on-Site groundwater contamination identified during Phase I sampling were selected for additional delineation: PCE contamination in the southwest corner of the Site (Target Area 19), and MTBE contamination in the east-central portion of the Site. AECOM retained GSI to conduct the TA19 and MTBE delineation drilling and groundwater sample collection from February 2 to March 20, 2017. Temporary wells were installed using DPT at 11 locations on a 200 x 400 ft grid in the vicinity of TA19. Groundwater samples were collected via inertial pump from the upper and lower water-bearing zones at each sample location for a total of 22 samples. Several of the proposed sample points on the TA19

sampling grid were relocated and two sample points were eliminated due to the high density of underground utilities in this area. The sample locations are summarized in **Table 2-2** and shown on **Figure 2-1**.

In the east-central portion of the Site, MTBE was detected in groundwater during Phase I sampling above the PSL at locations DP32, DP33, and DP45, and in monitoring well MW-13B. To define the limits of the plume, MTBE sampling of the upper and lower aquifers via DPT drilling and temporary well sampling methods was conducted at 11 locations (DP52 and DP54 to DP63). Elevated levels of MTBE in groundwater detected in the lower aquifer at location DP60 on the northern property boundary prompted the installation and sampling of three more temporary wells off-Site to the north (DPOS-01, DPOS-02 and DPOS-03) which are shown on **Figure 2-1**. Although these were off-Site borings, their purpose was to complete delineation of on-Site groundwater contamination, and therefore they are grouped as part of the on-Site DPT groundwater investigation. AECOM retained GSI to conduct the DPOS location drilling and groundwater sample collection from August 21 to 24, 2017.

The on-Site DPT groundwater sample analysis program and sample coordinates are provided in **Table 2-2**.

2.3.5 Phase II Landside Mobilization 2, Task 1: Background Soil Sampling

To support the refined background evaluation for soil, surface (0 to 1 ft bgs) and subsurface (3 to 4 ft bgs) Site-specific background soil samples were collected from 20 locations in the vicinity of the Site. These locations were selected away from known or suspected sources of contamination, and were considered to be representative of urban background conditions within northeast Washington, DC. A subset of background samples was selected for forensics analyses to determine the contributions of particular source types to urban background contamination.

AECOM retained E2CR to perform the background soil sampling, which was conducted from February 27 to April 5, 2017. Background soil sample locations are shown on **Figure 2-4**. The background sample analysis program and sample coordinates are provided in **Table 2-2**.

2.3.6 Phase II Landside Mobilization 2, Task 2: Background DPT Groundwater Sampling

To support the refined background groundwater evaluation, groundwater samples were collected via DPT drilling and temporary well sampling methods at 10 background locations in the vicinity of the Site. Similar to the background soil sample locations, the background groundwater sample locations were selected away from known or suspected sources of contamination, and were considered to be

representative of urban background conditions within northeast Washington, DC. Attempts to collect groundwater samples at six additional locations were not successful due to shallow refusal and/or a non-producing (clay) formation. Attempts were made to collect groundwater samples from both the upper and lower aquifers at each location, however, lower aquifer samples were only collected at four of the 10 sampled locations due to refusal. The results of samples collected in the upper aquifer at 10 locations were used to characterize the groundwater in the UWZ, and results of samples collected in the lower aquifer at four locations were used to characterize groundwater in the LWZ.

AECOM retained GSI to perform DPT drilling for the background groundwater sampling. Initial background groundwater sampling was conducted from March 2 to April 20, 2017 and additional locations were sampled from August 22 to 29, 2017. Background groundwater sample locations are shown on **Figure 2-4**. The background sample analysis program and sample coordinates are provided in **Table 2-2**.

2.3.7 Phase II Landside Mobilization 3, Task 1: Anacostia Park Surface Soil Sampling

Records provided by NPS indicate that Pepco had proposed to stage dredge spoils on a portion of the Anacostia Park property during an intake dredging project in 1967. It is not known if the dredge spoil staging activity actually took place. Pepco was required by DOEE to conduct a field investigation in the suspected dredge spoils area within the NPS property. The proposed staging area is located to the west of the Site and adjacent to the Anacostia River as shown on **Figure 2-2**. To investigate the presence and extent of impacts to surface soils in this area of the park property, AECOM characterized the Site using Incremental Sampling Methodology (ISM), a probabilistic sampling method used to determine the overall risk potential in an area. ISM is designed to provide an unbiased and statistically valid estimate of the mean concentration of contamination within each sample area, or decision unit (DU), at a site.

ISM surface soil samples were collected from three DUs at the park property: two DUs along the riverbank and one farther inland, as depicted on **Figure 2-2**. Each of the ISM samples comprised 30 subsamples, or increments, collected using a random sampling pattern within each DU. The increments were collected as 1-foot long cylindrical core (the top 1 foot below grade) by either manual slide hammer or Geoprobe drill rig operated by drilling subcontractor GSI. The ISM samples were collected by compositing 30 grams of soil from each of the 30 increments. The samples were collected by applying six Terra Core® samplers evenly spaced along the 1-foot increment (each Terra Core withdraws approximately 5 grams of soil). The mass of each ISM sample was therefore approximately

900 grams. The collected increments were placed in a plastic bag and kneaded by hand to homogenize in the field.

In accordance with ISM procedures, two additional (replicate) ISM samples were collected from one of the DUs (DU03) to estimate the total sampling error. The replicates were collected in the same manner as described above; however, the samples were collected from different sets of 30 increment locations within the DU, so that a total of 90 locations in DU03 were sampled. In addition to the field replicates, the laboratory was instructed to collect three laboratory replicates from one of the field replicates so that the laboratory error could be quantified. In accordance with the sample preparation methods required for ISM, upon receipt at the laboratory the ISM samples were air dried, disaggregated, and sieved to 2 mm using a #10 mesh screen to eliminate coarser materials not considered part of the soil fraction. Subsamples for extraction were collected by the two-dimensional slab cake method, as described in EPA/600/R-03/027 (USEPA, 2003).

The ISM sample results indicated levels of the metals, arsenic (As), and total chromium (Cr) above their PSLs. These concentrations may be consistent with background levels; however, the samples are unsuitable for statistical comparison to discrete background levels due to the compositional nature of the ISM samples. Therefore, AECOM remobilized to the Anacostia Park property to collect discrete surface soil samples for As and Cr. Surface samples were collected from five locations in each DU totaling 15 sample locations (KM01 through KM15); however, only 12 of the samples were analyzed. Per DOEE comment, three of the 15 samples (KM01, KM06 and KM11) were archived pending the results of the outlier analysis to ensure that a sufficient dataset was available for the statistical comparison to the discrete background dataset.

ISM sampling at the Anacostia Park property was conducted on April 12 and 13, 2017 and the discrete surface soil sampling for As and Cr was conducted on May 5, 2018. The samples were analyzed for both total and hexavalent (VI) Cr to help determine the appropriate Cr screening level. The sample locations are displayed on **Figure 2-2**. The sample analysis program and sample coordinates are provided in **Table 2-2**. The geographic coordinates for the individual increments that comprised the ISM samples were not collected because incremental location data is irrelevant to the evaluation of ISM analytical results.

2.3.8 Phase II Landside Mobilization 3, Task 2: Anacostia Park Property Discrete Subsurface Soil and Groundwater Sampling

Groundwater discharges from the Site to the Anacostia River. In this process, any contaminants present in the groundwater discharging from the Site would migrate through the Anacostia Park

property located between the Site and the River. Although contamination from suspected dredge spoils staged by Pepco at the Anacostia Park property, if present, was expected to be limited to surface soils, Pepco conducted a limited characterization of subsurface soils and groundwater at the park site to determine if groundwater discharges from the Pepco property are impacting the Anacostia Park property. Three borings (KMY-DU01, KMY-DU02 and KMY-DU03), one in each DU, were advanced by DPT to 20 ft bgs, and soils were logged and field screened for VOCs. Discrete (1-ft interval) soil samples were collected from three depth horizons: 5, 10, and 15 ft bgs. Additionally, groundwater samples were collected from temporary wells installed at each of the three boring locations.

The Anacostia Park discrete subsurface soil and groundwater sampling was conducted April 20 to 21, 2017. Sample locations are shown on **Figure 2-2**. The sample analysis program and sample coordinates are provided in **Table 2-2**.

2.3.9 Phase II Landside Mobilization 3, Task 3: Anacostia Park Property Geotechnical Boring

A single geotechnical boring (SB-6) was initially planned to be installed at the Anacostia Park property during Phase I RI/FS field activities at the request of DOEE to obtain additional geologic data for this area. This boring was not installed during Phase I because the requisite permit from NPS was not issued until after the Phase I field investigation had been completed. E2CR was retained to install SB-6 on April 10, 2017, to a depth of 65 ft, approximately 10 ft into the Arundel Clay. Ten split spoon samples were collected from the boring for physical parameters (grain size, Atterberg limits), and two Shelby tube (undisturbed) samples were collected for permeability analysis. The SB-6 location is shown on **Figure 2-1**. The sample analysis program and sample coordinates are provided in **Table 2-2**.

2.4 Phase II Waterside Investigation

2.4.1 Phase II Waterside Mobilization 1, Task 1: Sediment Profile Imaging at Waterside Investigation Area Locations

An SPI reconnaissance survey was proposed to provide additional information for the Waterside Investigation Area surface sediment sampling in support of the BERA. SPI is a valuable tool to help define the depth of the bioactive zone (BAZ), assess benthic faunal composition, and better understand the physical characteristics of the sediment. During the SPI survey, sampling locations were accessed by boat and the SPI camera was lowered to the river bottom and allowed to penetrate the sediment surface prior to photographing the cross-sectional profile of the top 15 to 30 centimeters (cm) of sediment. The sediment profile photographs were analyzed for physical, chemical, and biological

features, and scored for apparent redox potential discontinuity, grain size, and evidence of benthic fauna such as the presence of burrows, feeding tubes, or methane bubbles.

The SPI contractor for this work was R.J. Diaz and Daughters of Ware Neck, VA. Vessels, field personnel, and other maritime support services were provided by Normandeau Associates, Inc. of Stowe, PA. The SPI survey was conducted May 17, 2017, at 15 Waterside Investigation Area locations and five background locations. The 15 Waterside Investigation Area locations were all located in the vicinity of the Waterside Investigation Area Cove (the Cove), where the preliminary BERA found potential risks to ecological receptors, and were co-located with 15 stations previously sampled during the Phase I Waterside investigation (**Figure 2-5A** and **Figure 2-5C**). The five in-River background sediment sampling locations selected for the SPI survey (SEDBACK16 through SEDBACK20) were located upstream from the Site (**Figure 2-6**).

Upon completion of the SPI survey, R.J. Diaz and Daughters produced a brief technical memorandum summarizing the data and providing a BAZ depth, which would determine the sampling depth for the Phase II surface sediment samples. During the Phase I Waterside Investigation, a conservative BAZ was estimated to be 15 cm (approximately 6 inches) in depth. After reviewing the results, the SPI contractor recommended a BAZ of 10 cm (approximately 4 inches). The SPI technical memorandum was shared and discussed with DOEE. DOEE agreed with the recommended 4-inch BAZ in the vicinity of the Site.

2.4.2 Phase II Waterside Mobilization 2, Task 1: Waterside Investigation Area Surface Sediment Sampling

To support the refined BERA and forensic evaluations, surface sediment samples were collected at 15 Waterside Investigation Area locations in the vicinity of the Cove where Outfall 013 and three non-Pepco outfalls discharge. The preliminary BERA found the greatest potential risks to ecological receptors in the vicinity of the Cove. These locations were co-located with 15 stations sampled during the Phase I Waterside Investigation (**Figure 2-5A** and **Figure 2-5C**). The sample depth for the surface sediment samples was between 0 and 10 cm (0 to approximately 4 inches), coincident with the agreed-upon BAZ. All 15 surface sediment samples were collected for chemical and physical (grain size) parameters, pore water analysis, benthic macroinvertebrate analysis, and laboratory toxicity testing to support the refined BERA. These analyses were conducted using samples collected simultaneously at the 15 locations to provide temporally and spatially synoptic data for ecological risk analysis. Additionally, a subset of the Phase I surface sediment sample locations within the Waterside Investigation Area were selected for forensic analyses.

AECOM contracted Normandeau Associates, Inc. of Stowe, PA to support the sediment sampling activities. Waterside Investigation Area surface sediment sampling was conducted from June 7 to 9, 2017. Surficial sediment samples were collected using a Petite Ponar grab sampler in accordance with the USEPA's (2001) *Method for Collection, Storage, and Manipulation of Sediments for Chemical and Toxicological Analysis: Technical Manual.* Upon retrieving and opening the sampler, the sediment was screened with a PID and immediately sampled for VOCs (if required). The surficial 4 cm (approximately1.5 inches) of sediment was then collected for AVS and SEM prior to homogenization of the remaining sample. The shallow depth for SEM and AVS sampling was selected because the AVS concentration increases dramatically below the top few inches, and therefore sampling at greater depths may fail to indicate the potential bioavailability of divalent metals in the top few centimeters (Van den Berg et al., 1998). This sampling depth was independent of the BAZ.

Following VOC and AVS/SEM sampling, the top 10 cm (BAZ interval) of sediment was scooped out of the Ponar into a disposable pan using a disposable plastic scoop. Oversized material such as twigs, shells, leaves, and stones were removed by hand. The sediment was then logged, homogenized, and placed in appropriate containers for the bulk chemistry analyses listed in the sampling analysis program provided in **Table 2-2**. Bulk sediment chemistry samples were shipped to TestAmerica, SGS, and Alpha Analytical for analysis.

2.4.2.1 Pore Water Sampling and Analysis

Pore water was sampled at the 15 Waterside Investigation Area sample stations to support the ecological and human health risk assessments. Sediment for pore water analysis was collected from the agreed-upon BAZ interval (surficial 10 cm) using the same grab sampling techniques described above for bulk sediment chemistry. Multiple deployments of the Ponar dredge were required to obtain sufficient volume to support all tests. Sediment for pore water testing was containerized in 1-gallon buckets and shipped to Test America and EERC, and analyzed according to the sample analysis program provided in **Table 2-2**.

After receipt at the laboratories, the following methods were used for pore water analysis:

Centrifugation/Filtration: Pore water for metals, dissolved organic carbon (DOC), particulate organic carbon (POC), hardness, and ammonia were obtained via centrifugation of sediment. The POC sample was collected from the post-centrifugation supernatant. The remaining supernatant was filtered via a 0.45 micron filter, and the filtrate was then analyzed using the methodologies outlined in Table 2-2.

- Solid Phase Microextraction: Pore water samples for PAHs were collected and analyzed ex situ in accordance with ASTM Method 7263, a method that involves centrifugation, flocculation, and solid phase microextraction of the pore water.
- Sorbent Sampling: The dissolved PCB concentration in pore water was determined by ex situ sorbent sampling methods using SiREMTM SP3 samplers. EPA method 1668 was used to measure PCBs sorbed to polyethylene sorbents after tumbling and equilibration of a sediment/water/sorbent mixture. Literature values for PCB congener sorbent partition coefficients were used to calculate pore water concentrations from the sorbent concentrations (Lohmann, 2012; Smedes et al 2009).

2.4.2.2 Benthic Macroinvertebrate Sampling and Analysis

A benthic macroinvertebrate community analysis was performed to evaluate the *in situ* response of the benthic community to potential stressors in the Waterside Investigation Area, in support of the BERA. Sediment for benthic macroinvertebrate analysis was collected from the agreed-upon BAZ interval (surficial 10 cm) using the same grab sampling techniques described above for bulk sediment chemistry. Samples were containerized and preserved on the sampling vessel, then shipped to Normandeau Associates, Inc. of Stowe, PA for analysis. Each sample was accompanied by a completed Physical Habitat Assessment form and Human Access Survey form, and documentation of water quality parameters from the overlying surface water, including DO, temperature, pH, and specific conductance.

The laboratory analyses were conducted according to two agency protocols that are applicable to the project: the Maryland Biological Stream Survey Sampling Manual (MDNR, 2014) and the Rapid Bioassessment Protocol for Use in Wadeable Streams and Rivers (Barbour et al., 1999). The samples were sieved through a 0.500-micron mesh sieve and sorted to randomly remove a targeted final count of 80 to 120 specimens.

Four replicate samples were collected at each of the 15 Waterside Investigation Area sample stations. Taxonomic analyses were conducted on three of the four replicates per location. Several measures were taken to ensure quality control of the samples. To comply with the Maryland Department of Natural Resources protocol requirements for quality control, the fourth replicate was analyzed from three locations to compare the density of organisms to the range of densities measured in the first three replicates.

2.4.2.3 Laboratory Toxicity Sampling and Analysis

Laboratory toxicity tests were conducted to evaluate whether direct exposures to sediments have the potential to cause toxicity in ecological receptors. Sediment for lab toxicity testing was collected from the agreed-upon BAZ interval (surficial 10 cm) using the same grab sampling techniques described above for bulk sediment chemistry. The sample was transferred to a clean, laboratory-supplied 1-gallon container. Multiple grabs were required to fill the sample container from each of the 15 Waterside Investigation Area sample stations. Samples were then shipped under chain-of-custody to Aquatec Environmental, Inc. of Williston, VT.

The midge (*Chironomus tentans*) and amphipod (*Hyalella azteca*) were selected as the invertebrate species for a 10-day sediment toxicity testing program. Toxicity testing was conducted in accordance with the USEPA (2000) *Method for Collection, Storage, and Manipulation of Sediments for Chemical and Toxicological Analysis: Technical Manual* (Test Method 100.1: Hyalella azteca 10-d Survival and Growth Test for Sediments, and Test Method 100.2: Chironomus tentans 10-d Survival and Growth Test for Sediments).

2.4.3 Phase II Waterside Mobilization 2, Task 2: Background and Forensics Surface and Subsurface Sediment Sampling

Surface and subsurface sampling was conducted at six upstream background sediment sampling locations and 15 forensics locations located adjacent to and downstream of the Site between June 12 and June 27, 2017, using maritime subcontractor Normandeau Associates, Inc. The sampling locations are depicted on **Figure 2-5A** and **Figure 2-6**. The objective of background sediment sampling was to expand the background dataset collected during Phase I and to determine the nature and extent of contamination in sediment at upstream locations not historically impacted by Pepco operations. The forensic sediment sampling was conducted to obtain additional information on the types and possible sources of contamination in sediments adjacent to and downstream of the Site. Pore water, benthic macroinvertebrate, and laboratory toxicity sampling of surface sediment (BAZ interval) was also conducted at five of the six upstream background locations (SEDBACK16 through SEDBACK20) using the methodology described above to support the refined BERA. Prior to sampling, the five upstream background locations were surveyed using SPI, as described in **Section 2.4.1**.

Subsurface sediment samples were collected by driving 4-inch Vibracore samplers to 10 ft below the mudline for core sample collection. Subsurface samples at the six upstream background locations were intended to be collected on 2 ft intervals of 1 to 3, 3 to 5, 5 to 7 and 7 to 9 ft below the mudline.

However, due to multiple refusals, upstream background samples could not be collected from the 5-7 and 7-9 ft depth intervals. Background subsurface samples were analyzed according to the sample analysis program provided in **Table 2-2**.

The 15 forensics sediment sampling locations were sampled on 1-ft intervals between 0 and 10 ft below the mudline. Intervals beginning with even numbers (0, 2, 4, 6, and 8) were analyzed immediately for PAHs, PCBs, and saturated hydrocarbon (SHC). All intervals were archived for possible future analysis.

2.4.4 Phase II Waterside Mobilization 3, Task 3: High Resolution Coring

High-resolution cores were collected from three locations within the Waterside Investigation Area on June 20 through 22, 2017, by subcontractor Normandeau Associates, Inc. High-resolution refers to sediment core sampling on a finer scale, i.e., intervals that are 10 cm (approximately 4 inches) in length. The high-resolution cores facilitate the use of geochronological dating methods, which can be used to evaluate sedimentation and burial processes within a stream channel, and can provide information about the deposition of contamination over time. As shown in the sample analysis program provided in **Table 2-2**, high-resolution core samples were submitted for radioisotope analyses (Be-7, Cs-137, and Pb-210) for radiometric dating, and chemical analysis for PCBs, PAHs, TPH-DRO/oil range organics (OROs) and metals. A subset of high resolution core samples was analyzed for forensic parameters (APAH, SHC, GBM, and/or PCBs).

The three high-resolution coring locations (SED1.5C, SED5B, and SED7F) are shown on **Figure 2-5A** and **Figure 2-5C**. Two of these locations (SED5B and SED7F) were previously sampled during Phase I. Sample station SED7F is located in the Cove, and station SED5B is located within the Waterside Investigation Area between the Cove and the Benning Road Bridge; these locations were selected to provide mid-channel stratigraphic data of contaminant deposition quantities and rates over time. Station SED1.5C was located south of the Benning Road Bridge and adjacent to Pepco Outfall 101; this location was selected to provide information regarding the potential contribution of contamination from the outfall to the River.

Chronology and deposition rates of Anacostia River bedded sediments were estimated by measuring changes in the levels of atmospherically deposited radioactive isotopes in the high-resolution cores over time. The following radioactive isotopes were evaluated to aid in the geochronological sediment dating:

- Beryllium-7 is used as a short-term tracer of sediment deposition. This naturally occurring
 radioisotope from cosmogenic sources in the atmosphere has a very short half-life and its
 activity is highest at the sediment surface and decreases rapidly with movement toward the
 bottom of the core. The beryllium-7 activity can be used to determine whether the surficial
 sediment layer is depositional as opposed to erosional.
- Cesium-137 profiles (depth, area, and shape of cesium peak) provide a means of
 determining the age of a sediment layer. The cesium-137 profiles are compared to the time
 of known cesium-137 releases and peak activity (between 1959 and 1964 due to aboveground nuclear weapons testing) to provide discrete time markers with depth. These results
 can help determine if sediment deposition has been continuous and relatively undisturbed.
- Lead-210 profiles provide a means of estimating burial rates based on the decay rate of lead-210 with depth (linear regression). Lead-210, a naturally-occurring radioisotope, has a relatively constant input to the environment from the decay of atmospheric radon-222 and constant decay rate, which are used in combination to calculate sedimentation rates.
 Radium-226 was also measured to provide additional data to refine the lead-210 curve.

2.4.5 Phase II Waterside Mobilization 3, Task 4: City Storm Drain Sediment Sampling

To evaluate potential contributions to River contamination from urban stormwater discharges, two storm drain sediment samples were collected from city storm drains that discharge at outfalls F-477-827 and F-025-074, which correspond with samples SDRF477827 and SDRF025074, respectively. The storm sewer pipes were accessed at manholes upgradient from the outfalls; the manhole sampling locations are shown on **Figure 2-6**. These samples were collected using a disposable sample scoop at the end of an extendable pole to reach and scoop out the accumulated storm drain sediment within the manhole. The samples were analyzed according to the sample analysis program provided in **Table 2-2**.

2.5 Investigation-Derived Waste Management

IDW generated during the Phase I and II investigations included the following:

- Disposable material such as Geoprobe/Vibracore liners, personal protective equipment, plastic sheeting, etc.
- Drill cuttings
- Excess soil/sediment leftover from sampling activities
- Well development water
- Purge water

Decontamination water

All IDW was containerized and staged on the Benning Road Facility site and sampled for RCRA waste characteristics and PCBs. These wastes were managed by Pepco as dictated by the waste characterization results and disposed of at approved off-Site disposal facilities. Disposal quantities and destinations for IDW created during the RI/FS investigation are as follows:

Phase I:

- 15,333 pounds of solid waste were disposed of at Veolia ES Technical Solutions, LLC, 4301
 Infirmary Road, West Carrollton, OH 45449.
- 29,280 pounds of solid waste were disposed of at Old Dominion Landfill, 2001 Charles City Road, Henrico, VA 23231.
- 7,515 gallons of liquid waste were disposed of at CIPF Industrial/Domestic Wastewater Facility,
 16232 Elliot Parkway, Williamsport, MD 21795.

Phase II:

- 22,744 pounds of solid waste were disposed of at Veolia ES Technical Solutions, LLC, 4301
 Infirmary Road, West Carrollton, OH 45449.
- 4,640 pounds of solid waste were disposed of at King George Landfill, 10376 Bullock Drive, King George, VA 22485.
- 2,495 gallons of liquid waste were disposed of at CIPF Industrial/Domestic Wastewater Facility,
 16232 Elliot Parkway, Williamsport, MD 21795.

Copies of the waste manifests for transportation and disposal of the RI/FS IDW are provided in **Appendix J**.

2.6 Ecological Investigation

On December 17, 2014, an AECOM ecologist and scientist visited the RI/FS Study Area to conduct an ecological site assessment using the USEPA's Ecological Assessment Checklist (USEPA, 1997b) as specified by USEPA Region 3 ecological risk assessment guidance (http://www.epa.gov/reg3hwmd/risk/eco/faqs/slera.htm). The completed checklist is provided in **Appendix K**. The ecological risk assessment was based on the December 17, 2014, site visit and on incidental observations of wildlife in the Study Area by AECOM during RI field activities. The

assessment focused on evaluating the aquatic habitat within the Waterside Investigation Area.

2.7 Deviations from the Work Plan

This section describes the deviations from the approved RI/FS Work Plan during the implementation of the Phase I and II RI/FS field activities. Deviations in sample numbers are noted in **Table 2-2**, and other deviations are noted below. In a majority of cases, the deviations resulted in Pepco performing more work than the work plan required.

Phase I Landside Investigation

- Eight ERI survey transects were proposed in the work plan; 10 were conducted. The proposed ERI survey transect through Target Areas 1 and 10 was divided into two surveys because a transformer storage area obstructed the path between the two Target Areas. Additionally, two proposed transects, one that pass through Target Areas 4 and 13, and one that would pass through Target Area 7, were too long to be imaged and therefore were divided into two transects each to obtain the required data. These field changes resulted in a total of 10 transects.
- During the installation of geotechnical soil borings during Landside Phase I, Task 5, several
 Shelby tube samples of the Arundel clay could not be collected as proposed. Multiple attempts
 were made at collecting these samples, but were hampered by Shelby tube samplers getting
 damaged and/or stuck in Arundel clay due to the stiffness of the clay.
- During Phase I, 40 DPT borings were proposed; however, 47 were installed. The additional seven borings were advanced to investigate subsurface anomalies identified during the ERI surveys, primarily in Target Areas 1 and 13.
- A dynamic approach with a mobile lab was proposed for soil samples collected during the Phase I Landside Mobilization 2 investigation; however, all samples were sent to a fixed lab. A mobile lab was not used due to the following reasons:
 - O Given the long history of the facility and presence of numerous utilities, a multi-step utility clearance program was needed to clear utilities prior to drilling. The multi-step process involved calling One-Call Utility Service, having a private utility locator mark/clear utilities around a proposed boring, and having Pepco's utility/facility coordinators verify that there are no other undocumented utilities in the boring vicinity. Due to safety concerns, this multi-step process required a significant lead time and precluded the use of a more dynamic approach.

- There was no indication of significant source areas during Phase I sampling and ERI verification borings. Pepco was prepared to perform additional sampling depending on the results from Phase I Landside Mobilization 2 sampling, as necessary.
- The DCRA drilling permit limited the number and locations of soil borings. Additional borings would have required permit revisions. This process would take several weeks and would not be conducive to the planned dynamic approach.
- There are limited options for mobile labs to produce quality data, and they have limited availability. Working out the field logistics within the confines of the consent decree required work plan and permit approvals, which would have prolonged the field activities schedule significantly. A decision was made, therefore, to send all samples targeted to be analyzed using a mobile lab to a fixed lab to obtain higher quality data.
- Pepco employed a mobile lab in conjunction with DPT sampling for the PCE investigation. The
 PCE investigation required real-time tracking of the PCE source, and using mobile labs for field
 analysis of volatiles such as PCE is more common.

Phase I Waterside Investigation

- Two sediment samples, WSED1 and WSED2, were proposed to be collected within the
 constructed wetland area to the west of the Site. However, due to accessibility restrictions
 posed by the presence of sheet piling around the constructed wetland, these two samples were
 collected in the River channel just outside the wetland area (Figure 2-5A and Figure 2-5B).
- Several sediment samples were offset from their proposed locations because of utilities, sand bars, poor core recoveries, or other restrictive conditions in the River.

Phase II Landside Investigation

- During on-Site surface soil delineation sampling, several primary samples needed to be moved or eliminated due to access restrictions or utility hazards. Samples were eliminated from the following delineation areas:
 - SUS06: One sample on the south side and three samples on the north side of the primary ring were not collected due to the presence of subsurface utilities and WMATA structures to the south, and an electrical substation to the north.
 - SUS19: One sample on the south side of the primary ring and all samples on the south side of the secondary ring could not be collected due to the presence of WMATA structures.

- SUS21: One sample at the southwest corner of the primary ring was not collected due to the presence of Building #57.
- Temporary well groundwater samples collected in the MW-1 and MW-2 area were not sampled for PAHs as proposed. DOEE agreed that this analyte was not required because naphthalene detected above its screening level at MW-2 during Phase I activities was attributed to turbidity, and resampling results from MW-2 during Phase II sampling no longer indicated any PAH impacts to groundwater that would necessitate further investigation.
- During on-Site soil forensics sampling, samples below 2 ft bgs that were proposed to be
 collected as both discrete (1 ft interval) and composite (greater than 1 ft interval) samples,
 were collected as composite samples only. The discrete samples were proposed to be held
 at the lab for possible analysis. However, after discussion with DOEE, it was agreed that the
 uncollected discrete samples at these intervals were not required.
- Off-Site fixed monitoring wells that had been identified and proposed to be sampled for background groundwater were ultimately not sampled for one of these reasons: the wells were near known contaminant sources, access was restricted, or no well construction information could be found regarding them. Background groundwater sampling was instead conducted solely by DPT temporary well sampling.

Phase II Waterside Investigation

- Several sediment samples were offset from their proposed locations because of utilities, sand bars, poor core recoveries, or other restrictive conditions in the River.
- Upstream background sediment samples could not be collected from the 5 to 7 and 7 to 9 ft depth intervals due to multiple refusals.
- City storm drain sediment samples were proposed at manholes F-294-739 and F-656-309; however, there was no sediment observed during the sampling event. Five additional manholes were evaluated for sediment, and of these, only two contained sufficient sediment volume for sample collection (F-025-074 and F-477-827).

3 Physical Characteristics of the Study Area

This section summarizes the physical characteristics of the Study Area as determined from the RI/FS field activities described in Section 2, and a review of recent and historic literature. An understanding of the Site's physical characteristics is essential to explain potential contaminant transport pathways and receptor populations, and to inform subsequent screening and development of the alternatives in the FS. Chemical characteristics describing the nature and extent of contamination within the Study Area is the subject of Section 4.

3.1 Recent Site Improvements

This section provides a summary of recent Site improvements; a full account of historical improvements is provided in the CSM Technical Memorandum (AECOM, 2016b). The 77-acre Site is principally used as the Benning Service Center, which supports the operations and maintenance activities for Pepco's electric power transmission and distribution system in the Washington, DC area. A Site Plan is provided as **Figure 1-2**. Site improvements consist of paved roadways, parking lots and materials storage areas; three electrical substations; high-tension electrical transmission and distribution wires; and several warehouses, small buildings, and trailers in use by Pepco and Pepco subcontractor personnel. The Site topography slopes generally toward the west, and reaches a topographic high point in the south-central area of the Site along Benning Road. Surface elevations range from about 11 ft NAVD88 near the River along the western Site perimeter to about 36 ft NAVD88 on the east side of the Site, and the topographic high is along the southern Site boundary. The Site is approximately 70% impervious surface; a surface cover map of the Site is provided as **Figure 1-7**.

The former power plant building in the western portion of the Site was demolished in late 2014 and early 2015. The concrete foundation was left in place and the area was backfilled to grade with certified clean fill. Site restoration activities were completed in May 2015. The cooling tower superstructures in the northwestern portion of the Site were demolished in early 2014. During 2017, the cooling tower concrete basins and PCB-impacted soils in the vicinity of the former cooling towers were removed in accordance with the Self Implementing Remediation Plan (SIP) (AECOM, 2014) and the Cooling Tower Basins Soil Removal Action Plan (AECOM, 2015). The SIP for the removal of the cooling tower basins was prepared in accordance with the TSCA Regulations at 40 CFR 761.61(a), and approved by USEPA on May 2, 2014. The RAP for the excavation of PCB-impacted soils adjacent to and beneath the cooling tower basins was approved by DOEE on July 29, 2015. Site

restoration activities were conducted during March through May 2017 and included the installation of two stormwater bioretention ponds in the footprint of the former cooling tower basins. The cooling tower removal activities are summarized in the Cooling Tower Basins Remedial Action Completion Report (AECOM, 2017), submitted to DOEE on September 11, 2017.

Four ASTs associated with the former power plant were located at the Site (ASTs #1, #2, #3, and #4 with capacities of 61,800, 1,847,000, 1,984,000, and 50,000 gallons, respectively). Three of these ASTs (#1, #2, and #3) were in the central-western portion of the Site (Target Area 13) and one (#4) was near the northwest corner of the site (Target Area 3). All four ASTs were demolished and removed in early 2013. Benning Service Center uses several other ASTs to store oil. All of these ASTs are either double-walled or located in secondary containment. Additional details are provided in the latest version of the facility Spill Prevention, Control and Countermeasures Plan.

A new fueling island was constructed in 2017. Two ASTs, each with a capacity of 12,000 gallon, one storing diesel and one storing gasoline, were installed for fueling Pepco vehicles. In addition, two stormwater bioretention ponds were constructed to treat the stormwater runoff from the fueling island before it is discharged to the main storm drain pipe.

The three active electrical substations (#7, #41, and #45) are each surrounded by a chain-link fence. Substation #7 is located along Foote Street at the Site's northeastern perimeter and is approximately 4.5 acres in area. Substation #41 is located along Anacostia Avenue in the northern portion of the Site, to the east of the former cooling towers, and is approximately 3 acres in area. Substation # 45 is located west of and adjacent to the Site main entrance on Benning Road and is approximately 1 acre in area. There is no PCB equipment currently in use at these substations.

Building #56 in the southeast corner of the Site is used to service and repair transformer equipment. As a result of Pepco's longstanding program to remove PCB equipment in the course of system repairs and upgrades, there are no known PCB transformers in Pepco's electrical distribution system.

If any transformers without a manufacturer-certified non-PCB label are brought to the Site for service, they are assumed to contain PCBs until tested. Therefore, untested transformers are staged at the Transformer Shop holding area, located outside of Building #56, which consists of an approximately 42 ft by 22 ft concrete pad surrounded by a 1-foot high concrete berm. All materials delivered to this area are tested for PCB content. Recovered oil containing 50 parts per million (ppm) PCBs or greater is drummed and moved to a TSCA-approved storage facility in Building #69 (PCB building) for storage pending off-Site disposal at a Pepco-audited and approved disposal facility. Recovered oil containing < 49 ppm PCB is pumped to two 10,000-gallon holding tanks, designated for accumulating oil

containing < 49 ppm PCBs in Building #57. These tanks are installed in concrete vaults, which act as secondary containment. This waste oil is removed as needed by tanker truck to an approved off-Site disposal facility. The concrete vault containing the waste oil tanks and the tanker truck loading area are both marked with PCB M_L labels.

A Transformer Storage Shed (Building #67) was constructed in 2016 for temporary storage of transformers that have been removed from service and brought to the Site for processing and disposal.

As shown in the storm sewer drainage map provided in **Appendix A**, there are two storm drain systems at the Site. The majority of the Site is drained by the main storm drain system that traverses the Site from southeast to northwest and discharges to the River at Outfall 013. The west side of the former Power Plant building is drained by a smaller storm drain system that discharges to the River at Outfall 101.

An Environmental Data Resources, Inc. (EDR) data package for the Study Area was obtained as part of a records search for the RI/FS. A relevant portion of the EDR package, including historical aerial photographs, is included in **Appendix L**, and a summary of the historical development of the Site based on the aerial photographs and historic literature is provided in **Table 3-1**. The aerial photographs show the development of the Site and the surrounding area between 1937 and 2011. Geomorphological changes to the Anacostia River over time can be observed in the historical aerial photographs. In 1940, dredging and filling activities were conducted north of the Site in Kenilworth Marsh, ostensibly to create a recreational lake (NPS, 1995). Throughout the 1950s and 60s, a significant portion of this was filled in with materials including refuse from open burning, incinerator ash, and raw municipal waste, as part of the operation of the Kenilworth Park Landfill.

3.2 Meteorology

Washington, DC is in the humid subtropical climate zone. Meteorological data were obtained from the NOAA National Climatic Data Center website for Ronald Reagan Washington National Airport, located approximately 5 miles southwest of the Site. The historical data (1871 to present) indicate that the Washington, DC metro area receives an average of about 40 inches of precipitation annually, and daily mean temperatures range from about 36°F in January to 80°F in July, with a mean annual temperature of 58°F.

Three years of hourly meteorology data (2012 through 2015) were analyzed for Ronald Reagan Washington National Airport's meteorology observation tower. Over the 3 years, the prevailing wind observed was from the south. Wind from due south and south-southwest accounted for 24% (13%)

being due south) of all wind occurrences for the area. The second most prevalent wind came from the north-northwest, accounting for 10% of the observations. The average wind speed was approximately 4 meters per second (m/sec) with 46% of the wind speed observations being between 1 and 4 m/sec. Lastly, 11% of the hourly observations were calm. Three-year and 30-year wind roses for the airport are provided in **Appendix M**.

3.3 Surface Water Hydrology

The Anacostia River watershed encompasses an area of approximately 456 square kilometers (km²) (176 square miles [mi²]) within the District of Columbia and Maryland, and lies within two physiographic provinces, the Piedmont Plateau and the Coastal Plain. Watershed maps are provided in **Appendix N**. The Anacostia River begins in Bladensburg, MD, at the confluence of its two major tributaries, the Northwest Branch and the Northeast Branch, and flows a distance of approximately 8.4 miles before it discharges into the Potomac River in Washington, DC (Sullivan and Brown, 1988). Because of its location in the Washington metropolitan area, the majority of the watershed is highly urbanized. An analysis of geographic information system (GIS) layers prepared by the Metropolitan Washington Council of Governments (MWCOG) indicates that land use in the watershed is approximately 43% residential, 11% industrial/commercial, and 27% forest or wetlands, with 22.5% of the area of the watershed covered by impervious surfaces (MWCOG, 2007).

Sedimentation has been a problem in the tidal Anacostia River since colonial times (Scatena, 1987). Estimated average annual sediment discharge into the tidal embayment of the River was 134,420 tons for 1963 and 137,600 tons for 1981. Because of the low flow velocities in the tidal portion of the River, the majority of sediment entering the tidal embayment is thought to settle and remain in the tidal River, rather than being discharged to the Potomac. Based on a variety of methods, including analyses of historical bathymetry records, dredging records, and pollen profiles of sediment bed core samples, Scatena (1987) estimated sedimentation rates in the range of 1.2 to 9.1 centimeters per year (cm/yr) (0.5 to 3.6 inches per year [in/yr]). More recently, radiometric dating using Cesium-137 on cores collected near the Washington Navy Yard and the Southeast Federal Center sites indicated a sedimentation rate of approximately 4.0 to 6.5 cm/yr, or 1.6 to 2.6 in/yr (Velinsky et al, 2011). These sedimentation rates were measured 2 to 3 miles downstream of the Site, therefore, the lower range of the sedimentation rates is more appropriate for the Study Area.

The Anacostia River is subject to tidal influence. River surface elevations in the Study Area generally range from approximately -1.7 ft to 3.3 ft MLLW. The average variation in the River's stage over a tidal cycle is approximately 1 meter (3.3 ft). The width of the River varies from approximately 60 m (197 ft) in some upstream reaches to approximately 500 m (1640 ft) near the

confluence with the Potomac, and average depths across a transect vary from about 1.6 m (5.2 ft) near Bladensburg to about 6.2 m (20.3 ft) just downstream of the South Capitol Street Bridge. During base flow conditions, measured flow velocities during the tidal cycle have been in the range of 0 to 0.3 meters per second (m/sec) (0 to 1 feet per second [ft/sec]) (Katz et al., 2001).

Based on a review of NOAA's Office of Coast Survey Navigation Chart #12289 dated October 2010, the navigable Anacostia channel ends before the Pennsylvania Avenue Bridge, which is approximately 1.6 miles downstream of the Site. According to information provided by the USACE per telephone conversation on March 9, 2012, the most recent navigational dredging was performed prior to 2002, and included dredging up to Bolling Air Force Base. Pepco conducted cooling water intake dredging adjacent to the Site in 1995 and 1996, and the Maryland National Capital Parks and Planning Commission is known to dredge the River in the Bladensburg area (Pepco, 1995b).

At mid-tide conditions, the navigational channel in the Study Area ranges in depth from approximately 5 to 17 ft. The deepest part of the channel is generally the outside of each bend, where flow velocity and erosional forces are greater. A sand bar is in evidence directly south of the Benning Road Bridge, likely due to greater sediment deposition in this area caused by the interruption in flow downstream of the bridge pier. A bathymetric map of the Waterside Investigation Area based on a hydrographic survey performed by GBA is provided as **Figure 3-1**. Side scan sonar imagery for the Waterside Investigation Area is provided as **Figure 3-2**. The side scan sonar imagery shows several objects on the river bottom, including trees and tree stumps, wire fencing, shoreline sea walls, and the two previously identified cable crossings. The east shoreline seawall and the cable crossings are displayed on **Figure 2-5A**. Mud flats are exposed at low tide along the eastern bank of the River on either side of the Benning Road Bridge and in the area of the Cove into which Outfall 013 and three adjacent non-Pepco outfalls discharge. Two constructed wetlands surrounded by sheet piling exist along the eastern bank of the River in the Waterside Investigation Area: one directly west of the Site, and another approximately 325 ft south of the Benning Road Bridge.

Geologic logs for the River coring locations collected during the RI activities revealed the presence of primarily silt deposits in the sediment column from 0 to 10 feet below top of sediment. In many cases the silt deposits were underlain by sandy sediments between 5 and 10 feet below top of sediment. Trace organic material was ubiquitous within the surficial 2 feet, including leaves, twigs, and macroinvertebrates.

3.4 Geology

3.4.1 Regional Geology

The facility is located within the Coastal Plain Physiographic Province, which is characterized by eastward thickening sequences of unconsolidated deposits. The western limit of the Coastal Plain Province is referred to as the Fall Line, where the metamorphic and igneous bedrock of the Piedmont Physiographic Province dips to the southeast beneath the younger sediments of the Coastal Plain (Johnston, 1964). The Fall Line is located approximately 5 miles west of the Site.

The Coastal Plain consists of an eastward-thickening wedge of unconsolidated sedimentary deposits ranging in geologic age from Cretaceous to Recent. These unconsolidated sediments consist of gravels, sands, silts, and clays that have been deposited upon the consolidated crystalline bedrock which slopes towards the southeast (**Figure 3-3**). Many different depositional environments existed during the formation of the Coastal Plain sediments. Glacially influenced periods of erosion and deposition, fluvial (river) processes, and structural deformations of the sedimentary deposits have all played a part in the evolution of the Coastal Plain. As a result of these processes, the presence, thickness, and lateral continuity of these sedimentary deposits in the Coastal Plain are highly variable.

3.4.2 Site-Specific Geology

The soils underlying the Site consist primarily of (from shallowest to deepest) artificial fill material, the Patapsco Formation, the Arundel Clay unit, and the Patuxent Formation. The Patuxent Formation overlies the crystalline bedrock. The RI/FS subsurface investigation principally targeted the artificial fill material and the Patapsco Formation at the Site, while confirming the depth of the Arundel Clay at several locations.

The artificial fill material at the Site primarily consists of infrastructure (utilities and structures), historical fill material used to level the Site, and relatively impermeable pavement (asphalt and concrete). Fill material thickness averages about 5 to 8 ft across much of the Site. Areas with thicker layers of fill material include the former sludge dewatering area and areas where subterranean tunnels and storm drains exist.

Fill material in the former sludge dewatering area to the south of the cooling towers is approximately 14 ft thick, fill material surrounding the intake and discharge tunnels to the west of the former power plant are approximately 20 ft deep, and fill associated with the underground Metro line underlying the

southeast portion of the Site along Benning Road is approximately 25 to 30 ft deep. The main 54-inch storm drain that traverses the Site from southeast to northwest reaches up to 20 ft bgs where it exits to the north of the Site at Outfall 013.

The Patapsco Formation in the area of the Site consists of a highly variegated mixture of brown and gray clays, silts, and graded sands, with lenticular beds of coarse sands and minor gravels. The subsurface investigation identified a silt-clay semi-confining layer underlying much of the Site and dividing the Patapsco Formation aquifer into an upper water-bearing zone and lower water-bearing zone. The top of the silt-clay layer was encountered between 25 and 40 ft bgs, and the layer averaged about 6 ft in thickness. An isopach map showing the approximate thickness of the silt-clay layer within the Patapsco Formation at the Site is presented in **Figure 3-4**.

Underlying the Patapsco Formation is the Arundel Clay, a distinct regional confining layer consisting of very stiff, fat, mottled maroon and dark gray clay. The Arundel Clay underlies the Site at a depth of between 45 and 85 ft bgs, and generally dips toward the west. The thickness of the Arundel Clay varies, but has been observed to be as much as 100 feet thick (USGS, 2002).

Beneath the Arundel Clay are the unconsolidated gravels, sands, and clays of the Patuxent Formation. The top of the Patuxent Formation has been reported to be located at approximately 125 to 180 feet below ground surface in nearby environmental assessments (NPS, 2008). The crystalline bedrock underneath the Patuxent Formation is located at approximately 400 feet beneath the Site.

Geologic data from RI/FS and historical borings were used to create generalized geologic cross sections for the Site at the transects shown on **Figure 3-5**. Cross section A-A' (**Figure 3-6**) runs in the north-south direction along the western Site perimeter, and shows a surficial fill layer, the silt-clay semi-confining layer that divides the UWZ and LWZ, and a deeper silt-clay deposit that overlies the Arundel Clay. This cross section also includes a USGS lithologic boring (DCHP01) that was completed in 2002 on the mud flat to the northwest of Outfall 013 (USGS, 2002). The geologic log for this boring, as well as a regional geologic profile produced by the USGS, is provided in **Appendix O**.

Cross section B-B' (**Figure 3-7**) runs in the north-south direction through the middle of the Site, and was created from lithologic data collected during the RI/FS, as well as one historical geotechnical boring (GEO-B-7) that was installed by Geomatrix, Inc. in 1988. Similar to cross section A-A', cross section B-B' shows a surficial fill layer, the silt-clay semi-confining layer, and a deeper silt-clay

deposit that overlies the Arundel Clay, as well as several silt or clay lenses within the Patapsco Formation. The water table generally follows the surface topography.

Cross section C-C' (**Figure 3-8**) traverses the length of the Site from east to west, and includes RI/FS borings as well as historical geotechnical borings installed by Geomatrix, Inc. in 1988 (GEO-B-3 and GEO-B-36) and CTI Consultants, Inc. in 2009 (CTI-B-5 and CTI-B-3). The cross section shows a surficial fill layer, the silt-clay semi-confining layer, a deeper silt-clay deposit that overlies the Arundel Clay, and several silt or clay lenses. It should be noted that the three cross sections are generalized and do not show the numerous small (<1 foot thick) lenses of silt and clay that were encountered within the UWZ and LWZ of the Patapsco Formation. The water table generally follows the surface topography.

Geologic logs for the borings and monitoring wells installed during the Landside and Waterside Investigations are provided in **Appendix F**. Landside boring locations are shown on **Figures 2-1**, **2-2**, and **2-3**, and Waterside coring locations are shown on **Figures 2-4** and **2-5**. Laboratory reports for the geotechnical analyses are provided in **Appendix P**, and a summary of the geotechnical results is provided in **Table 3-2**.

3.5 Hydrogeology

3.5.1 Regional Hydrogeology

Based on the literature reviews and information from adjacent sites, aquifers underneath the Site consist of saturated sand layers within the Patapsco and Patuxent Formations and include (from shallowest to deepest) the Upper Patapsco Aquifer, the Lower Patapsco Aquifer, the Upper Patuxent Aquifer, and the Lower Patuxent Aquifer. The Lower Patapsco and Upper Patuxent Aquifers are separated by the thick Arundel Clay unit. The Arundel Clay has very low conductivity and acts as a regional aquitard between the Patapsco and Patuxent Formations. A geotechnical analysis of Arundel Clay samples collected during the RI/FS indicated that the Clay's hydraulic conductivity is on the order of 10-9 ft/sec. The Patuxent Aquifer, located beneath the Arundel Clay, flows under confined conditions towards the east (DC Water Resources Research Center, 1993). In the vicinity of the Site, the regional groundwater flow direction in the shallow aquifer is generally toward the northwest as shown on **Figure 3-9**.

3.5.2 Site-Specific Hydrogeology

The water table aquifer (UWZ) generally ranges from 9 to 16 ft bgs, but reaches as deep as 26 ft bgs in the vicinity of the topographic high in the south-central portion of the Site. The piezometric surface of the LWZ aquifer at the Site generally averages 0 to 2 ft deeper than the UWZ water table. The vertical hydraulic gradients at the 15 nested well locations during mid-tide conditions are provided in **Table 3-3**. All locations exhibit a downward vertical hydraulic gradient except for MW-2, MW-6, and MW-7, which show slight upward vertical gradients.

Groundwater contour maps were prepared for average (mid-tide) groundwater levels in the UWZ and LWZ (Figure 3-10 and Figure 3-11, respectively). Mid-tide groundwater levels were computed from gauging measurements collected during mid-tide conditions in the Anacostia River. Based on the results of the tidal study, there is little variation in water levels (1 to 3 inches) across much of the Site (excluding the southwest corner near the dredged inlet [MW-01]) between low and high tides. The direction of groundwater flow in both aquifers is generally toward the River to the west. In both aquifers, groundwater flow in the northern and eastern portions of the Site is toward the northwest, while groundwater flow in the western and southern portions of the Site is toward the west or southwest. In both the UWZ and LWZ, horizontal hydraulic gradients become shallower nearer the River. During high tide conditions, hydraulic gradients in the southwestern portion of the Site may flatten completely or temporarily change directionality. Horizontal hydraulic gradients ranged from approximately 0.0007 to 0.01 in the UWZ, and approximately 0.002 to 0.02 in the LWZ.

A 48-hour tidal study conducted in six well pairs showed evidence of tidal influence across the Site in both the upper and lower aquifers. The greatest influence by far was observed at MW-1 in the southwest corner of the Site, where groundwater levels in both the UWZ and LWZ varied by approximately 3 ft over a tidal cycle. MW-1 is directly adjacent to the area of the River that was dredged by Pepco in 1996 to provide cooling water to the Power Plant via intake/discharge tunnels. Groundwater levels across the rest of the Site in both the UWZ and LWZ fluctuated by only 1 to 3 inches over a tidal cycle, and exhibited less variation with increasing distance from the River. The results of the tidal influence study indicate a hydraulic connection between the River and the UWZ and LWZ aquifers at the Site, but with the exception of the southwest corner of the Site the degree of tidal influence by the River on the Site water table is minimal. The results of the tidal study are provided in **Appendix Q**.

The results of the aquifer testing conducted in eight well pairs distributed evenly across the Site indicate that hydraulic conductivities in the UWZ and LWZ range from approximately 10-6 to 10-5

m/sec, which is consistent with unconsolidated deposits of silty sands or fine sands (Freeze and Cherry, 1979; Fetter, 1988). The results of the aquifer testing are presented in **Table 3-4**, and summary reports for the aquifer tests generated by AQTESOLVTM are provided in **Appendix R**.

3.6 Land Use and Demography

The Site is located in Ward 7 in the District of Columbia, within the 20019 zip code. Ward 7 sits on the most eastern part of the city and is typified by single-family homes and parks. It is home to a number of Civil War fort sites that have since been turned into parkland, including Fort Mahan Park, Fort Davis Park, Fort Chaplin Park, and Fort Dupont Park. Ward 7 is also home to green spaces such as Kenilworth Aquatic Gardens, Watts Branch Park, Anacostia River Park and Kingman Island. Ward 7 also has an extensive waterfront along the Anacostia River with riverfront neighborhoods. River Terrace, Mayfair, and Eastland Gardens abut the east side of the River, while Kingman Park sits to the west.

This area is primarily urban with the Anacostia River bordering the area to the west. The Anacostia Freeway is the main north-south highway and East Capitol Street NE is the main east-west highway. Transportation in the vicinity of the Site takes the form of light rail or motorized vehicles. The WMATA operates the light rail system in Washington, DC (i.e. Metrorail). The Minnesota Avenue Metrorail station is located immediately to the east of the Site. Approximately 19% of the population in the 20019 zip code use Metrorail to commute to and from work, with an average of 3,274 people using the Minnesota Avenue station per day. A large percentage of the local residents use automobiles, either singly or in carpools, to commute to and from work.

Minnesota Avenue is zoned as commercial in the vicinity of the Site. In addition, a commercial light manufacturing corridor exists along the Kenilworth Avenue/Metrorail tracks. Property along Benning Road is zoned sporadically as commercial. All other surrounding areas are largely residential. The majority of the housing units are either single-family detached or single-family attached units, most of which were built between 1940 and 1969. There are three high schools, 21 public primary/middle schools, and five private primary/middle schools within the boundaries of zip code 20019. Four of the schools are located within a 0.25-mile radius of the boundary of the Site: Thomas Elementary School, Cesar Chavez Middle and High School, Benning Elementary School, and River Terrace Elementary School (Google Earth).

According to a USEPA 2009 Site Inspection Report, there are no drinking water intakes located within 15 miles of the Site. Based on a review of the EDR Report dated January 2015, no water supply wells are located within 0.5-mile of the Site. The DC Water provides drinking water to the

surrounding area by drawing raw water from intakes located at Great Falls and Little Falls on the Potomac River, upstream from the confluence of the Potomac River with the Anacostia River (http://www.dcwater.com/about/facilities.cfm).

3.7 Ecology

The ecological findings are based on a December 17, 2014 site visit, incidental wildlife observations by RI field staff, and an Ecological Assessment Checklist (provided in **Appendix K**). Two patches of emergent wetland vegetation (approximately 2,000 and 10,000 square feet in area) are visible along the eastern shoreline of the Anacostia River at the southern end of the Waterside Investigation Area. Signage along the shoreline near these patches indicates that they are part of the Anacostia River Fringe Wetlands Restoration. The dominant vegetation of these patches is *Phragmites australis* and *Typha* sp. Both wetlands have sheet pile bulkhead surrounding the areas with some openings for surface water movement between the wetlands and the River. Evidence of flooding (e.g., watermarks on wetland vegetation and trees) is visible along the shoreline.

Most of the eastern shoreline is stabilized with either sheet pile or rock wall. Riparian vegetation is dense in some areas and sparse in other areas and consists of large trees and shrubs. Tree species include maple, oak, and sycamore. The bank slope ranges from gradual to shallow to the River edge. The western shoreline is uniformly stabilized with a continuous rock wall with dense tree cover throughout.

There is a cove of the River (the "Cove") approximately 4.2-acres in area, to the northwest of the Benning Road Facility, directly north of the NPS Kenilworth Maintenance Yard and west of the DPW Solid Waste Transfer Station. Several outfalls discharge into the Cove, including Outfall 013. Mudflats are exposed in this area during low tide, and the shoreline of the Cove is gradual in slope with little bank stabilization.

Several bird species were observed on the water and on mudflats in the River on December 17, 2014, including mallards (*Anas platyrhynchos*), gulls (*Laridae* family), Canada geese (*Branta canadensis*), and belted kingfisher (*Megaceryle alcyon*). In addition, wildlife observations were made during sediment sampling activities in November 2014. The following bird species were observed in the vicinity of the Waterside Investigation Area:

- Canada geese
- Mallards
- Gulls

- Blue heron (Ardea herodias)
- Cormorants (Phalacrocorax auritus)
- Bald eagle (Haliaeetus leucocephalus) (upstream near National Arboretum)
- Bufflehead ducks (Bucephala albeola)
- Egret (Ardea sp.)
- Deer (Cervidae family)

The following aquatic organisms were noted in the Ponar grabs:

- Freshwater bivalves
- Freshwater eel (elver)

4 Nature and Extent of Contamination

The objective of this section is to describe the nature, and lateral and vertical extent, of contamination detected in the Landside and Waterside portions of the Study Area. All activities described in the approved RI/FS Work Plan and Addenda #1, #2 and #3 to the Work Plan were conducted during the RI field investigation, except where noted in Section 2.7. As detailed in Section 2, the RI/FS field activities were conducted in two primary phases; Phase I activities were conducted between January 25, 2013 and December 31, 2014, and Phase II activities were conducted between December 1, 2016 and July 9, 2018.

For purposes of focusing the discussion of the field sampling data, this section describes the Constituents of Interest (COIs) in each of the following environmental media: Site soil, Site groundwater, Site storm drains (stormwater and storm drain residue), Anacostia River surface water, and Anacostia River sediments. For each medium, the COIs are defined as those constituents detected at concentrations exceeding their respective PSLs. COIs were selected based on previous investigations which identified PCBs, PAHs, and metals as primary COIs. Samples were also screened for VOCs, SVOCs, organochlorine pesticides, and dioxins to provide comprehensive support for the risk assessments. U.S. Environmental Protection Agency (EPA) SW846 methods, created by EPA for complying with RCRA regulations, were selected for analyses in the nature and extent characterization to provide data of known quality and comparability with previous and ongoing investigations, including DOEE's ARSP Phase I and Phase II investigations. The COIs were further evaluated in the BHHRA and the BERA to determine which COIs should be identified as COPCs. The environmental transport and fate of the COPCs is described in Section 5 and the results of the BHHRA and BERA are presented in Section 6.

Data collected during the field investigation program (such as field data, laboratory data, and geospatial data) were uploaded to and stored in the project database. Laboratory deliverables were received in an AECOM-specified electronic format and were uploaded into a Site-specific EQuIS database. Since the data is used as the basis for decision-making, the laboratory analysis of samples must meet specific Quality Assurance / Quality Control (QA/QC) requirements laid out in the Quality Assurance Project Plan (QAPP). All laboratory data were first subjected to data validation to determine its usability in decision-making. Validated data were then tabulated to perform data analysis and evaluation.

This section begins with a discussion on data validation and assessment of quality assurance requirements.

Data Validation Reports and Validation Qualified Results (with validation qualifiers) are provided in **Appendix S**. A summary of Quality Assurance Assessment is provided in **Appendix T**. Full laboratory raw

data packages are provided in **Appendix U**. As the Data Validation Reports, validation qualified results tables, and raw data reports are voluminous, they are provided in electronic form under **Appendix S** and **Appendix U**.

Following the discussion on validation, an evaluation of the sampling results is presented by environmental medium. Data summary tables for various environmental media along with calculated statistics for use in discussions in this section are provided as **Table 4-1** through **Table 4-39**. Field XRF data correlation plots are provided in **Appendix V**.

PSLs were established in the SAP using very conservative, non-Site-specific exposure assumptions. The purpose of these PSLs was to select appropriate analytical methods. As such, some PSLs were revised during the risk assessment process to ensure that the screening levels used to evaluate the RI field sampling results were the most current available and reflected Site-specific considerations where appropriate. The screening levels used in the evaluation of nature and extent are the same screening levels that were used in the human health and ecological risk assessments. In addition, groundwater quality standards from the District of Columbia Municipal Regulations (DCMR) Chapter 21, Section 1155.3 and DC UST cleanup standards for petroleum impacted soils were used as screening levels where appropriate.

Table 4-40 through Table 4-44 present the updated PSLs and their sources, and are described briefly below.

Soil human health PSLs are USEPA regional screening levels (RSLs) for industrial soil **(Table 4-40).** Groundwater PSLs for human health are the lower of the DC drinking water quality standards (Rule 21-1155) and USEPA maximum contaminant levels; USEPA RSLs for tap water were selected where regulatory values were not available (see **Table 4-41**). These screening levels are used for comparison and discussion purposes only, as groundwater at the Site is not used for drinking water or other purposes.

As discussed in Section 3, Site groundwater discharges to the Anacostia River. As such, the risk assessments have evaluated groundwater discharges to surface water as identified in the groundwater samples collected from the four near-shore monitoring well pairs located adjacent to the western downgradient boundary of the Site (MW-1A/B, MW-2A/B, MW-3A/B, and MW-4A/B), as well as MW-8 A/B and MW-11A/B, which are located along the northwestern and northern downgradient Site boundary. The groundwater discharge to surface water pathway was evaluated based on dilution attenuation factors (DAFs) and surface water criteria. Surface water PSLs for human health are the lower of the DC surface water quality criteria (Rule 21-1104) and the USEPA National Recommended Water Quality Criteria for human health (consumption of organisms) (https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table); USEPA RSLs for tap water were selected where regulatory values were not available (see **Table 4-42**). Surface water PSLs for ecological receptors were selected based on a

hierarchy of chronic exposure water quality standards and benchmarks from DOEE, USEPA, and literature values (see **Table 4-43**). The screening for the groundwater-to-surface water pathway for near shore wells is included in Section 5. Screening levels and their sources are provided in **Table 4-1** through **Table 4-39**.

Surface sediment human health PSLs are USEPA RSLs for residential soil (**Table 4-40**). Ecological sediment PSLs are low-effect ecological screening values based on a hierarchy of freshwater values from NOAA and USEPA sources (**Table 4-44**).

Background and reference area information is integral to evaluating potential risks posed by environmental conditions at a site. USEPA defines background as: "Substances or locations that are not influenced by the releases from the Site and are usually described as naturally occurring or anthropogenic." The Anacostia River has been impacted by a variety of historical and ongoing background sources of chemical, physical, and biological stressors from point and non-point sources, including NPDES discharges, surface runoff, combined sewer and storm sewer outfalls, refuse disposal practices, tributary inputs, and atmospheric deposition (SRC and NOAA, 2000). Due to the widespread presence of a variety of chemical contaminants in the Anacostia River watershed, the Site investigation results need to be evaluated in the context of regional background conditions.

A background data evaluation conducted for the Study Area is provided as **Appendix W**. The objective of the background evaluation is to develop statistically defensible estimates of COPCs present in the regional environment that have not been influenced by Site-related activities. The initial selection of the Site-specific background sampling locations for soil, sediment, and groundwater was addressed in Technical Memorandum #2, which was approved by DOEE on October 14, 2016 (AECOM, 2016c). Background threshold levels for COPCs were calculated and compared to Study Area concentrations to understand the magnitude and spatial patterns of Study Area COPCs. In addition, Study Area and background population comparisons were conducted to identify COPCs for which Study Area concentrations are generally consistent with background concentrations. The background evaluations are based on soil, sediment, groundwater and pore water samples collected by Pepco as part of the RI field investigations. These Site-specific background datasets were supplemented with sediment sampling data collected by DOEE for the ARSP, which are reported in the ARSP RI Report (Tetra Tech, 2018). Further discussion of the samples used in the background evaluations is provided in **Appendix W**. This background data evaluation is referenced in the "Nature and Extent" discussions as appropriate.

The results of a detailed forensic analysis and source evaluation will be presented as an appendix to the FS report. This appendix will evaluate contaminant sources based on sampling results forensic analysis, knowledge of Site operations, and historical documentation.

4.1 Data Validation Summary and Quality Assurance Assessment

4.1.1 Data Validation Summary

Data validation was performed on all Phase I and Phase II laboratory reports to assess data quality per Section 8.2.3 of the QAPP (AECOM, 2012c) and as amended in Work Plan Addendum #3 (AECOM, 2016e). Each laboratory report was reviewed to determine whether the documentation and quality control results compiled with criteria specified in QAPP Table 1 and Work Plan Addendum #3, the relevant EPA, Standard Methods, ASTM reference methods, and the guidance provided in EPA's National Functional Guidelines for Inorganic and Organic Data Review (USEPA, 2010 and USEPA, 2008, respectively, for Phase I; and USEPA 2017 for Phase II). Modifications were made to accommodate non-Contract Laboratory Program methodologies. Reviewed data elements are defined in the individual data validation reports for each laboratory report or group of laboratory reports and may include:

- Data completeness (chain-of-custody/sample integrity)
- Holding times and sample preservation
- Initial calibration/continuing calibration verification
- Laboratory blanks/equipment blanks
- Surrogate spike recoveries
- Matrix spike (MS) and/or matrix spike duplicate (MSD) results
- Laboratory control sample (LCS)/LCS duplicate results
- Field duplicates
- Sample results/reporting issues

Other method specific QC elements, such as mass spectrometer tuning, internal standard performance, interference check sample results, and labeled standard recovery, were also reviewed as needed. Data validation qualifiers were applied to results where a QC nonconformance required qualification per EPA guidance. Qualified results and the specific reasons for data qualification are listed in each individual Data Validation Report. Data Validation Reports are provided in **Appendix S**. Only 520 results out of 207,453 evaluated (0.25% of the total) were rejected and are not usable for project decisions. These rejected result values were removed from the database to prevent use during project decision making. Summaries of the method conformance, QC sample frequency, and data qualifications (including details concerning the rejected results) for each major test group or analytical fraction, per Section 8.3.2 of the QAPP, are provided as tables in **Appendix S** and text in **Appendix T**.

4.1.2 Quality Assurance Assessment

The project data quality objectives for measurement data were based on the assessment of precision, accuracy, completeness, sensitivity, comparability, and representativeness.

Precision is a measure of the degree to which two or more measurements are in agreement. Field precision was assessed through the collection and measurement of field duplicates at a rate of one duplicate per 20 analytical samples, per matrix, per sampling technique. Precision was measured by calculating relative percent difference (RPD) for duplicate samples, either as MS/MSDs or as laboratory duplicates. The objective for field precision RPDs was <30% RPD for aqueous samples and <50% RPD for solid samples, where results were reported at greater than five times the reporting limit.

Accuracy is the degree of agreement between the observed value and an accepted reference or true value. Accuracy in the field was assessed using negative controls such as trip blanks and equipment blanks and by adhering to all sample handling, preservation, and holding time requirements. The objective for trip blanks and equipment blanks was that no target compounds should be present above the reporting limit. Laboratory accuracy was assessed through the analysis of laboratory method blanks as negative controls, and spiked samples such as MS/MSDs, LCSs, and surrogate compounds, as positive controls. The objective for method blanks was no detected target compounds above the reporting limits or Estimated Minimum Level for all isotope dilution analytes.

Precision and accuracy goals as defined in Table 1 of the QAPP were met for almost all samples. Criteria exceedances that resulted in data qualification are summarized in **Appendix S** by method. A very limited number of accuracy criteria exceedances resulted in rejection of results. Overall method precision and accuracy were excellent. Only 0.25% of the results were rejected based on quality control problems discovered during data validation.

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount that was expected to be obtained under normal conditions, defined as the conditions expected if the sampling plan were implemented as planned.

Project completeness objectives are defined in Section 3.2.3 of the QAPP. The field completeness objective of >90% and the laboratory completeness objective of >95% for valid measurements were both met. More than 99.5% of the laboratory results were deemed valid and usable for project decisions.

Sensitivity of analytical data was demonstrated by laboratory reporting and detection limits. Nominal reporting and detection limits, presented in Tables 2 and 3 of the QAPP and in Tables 5.2 and 5.3 of Work

Plan Addendum #3, were selected based on consideration of the applicable risk based project screening levels where available and the actual ability of the laboratory to attain reporting limits at these screening levels. Not all PSLs were obtainable using the conventional USEPA methods, but to maximize the usability of the data, any analytes detected below the reporting limit and above the method detection limit were reported and qualified as estimated by the laboratories.

Sensitivity goals were met for all target analytes where analytes were not detected and dilutions were not required due to high concentrations of detected analytes or matrix interferences. Occasionally nominal reporting limits for water samples were slightly elevated due to limited sample volume. Some sediment sample reporting limits were elevated by dry weight correction due to high moisture content.

Comparability expresses the confidence with which one data set can be compared to another. Representativeness expresses the degree to which data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition within a defined spatial and/or temporal boundary.

Comparability and representativeness as defined in Section 3.2.5 and 3.2.6 of the QAPP were achieved by use of approved EPA methods and proper sampling per AECOM approved SOPs. The same laboratories were used for Phase I and Phase II for each test, except where new methods were added as specified in RI/FS Work Plan Addendum #3. Overall project data quality objectives were met and all results reported in data tables are suitable for project decision making.

4.2 Soil Sampling Results

4.2.1 Overview of Site Investigation and Target Area Assessment

As discussed in Section 2, the surface and subsurface soil sampling events were conducted in two phases. Phase I data was collected to identify potential contamination throughout the Site and identified areas needing further delineation. Phase II activities involved significant sample collection for further assessment and delineation of these areas. Addendum #3 of the RI/FS Work Plan describes in detail the additional Site characterization needs (AECOM, 2016e) and groups the Phase II investigation into Target Areas as summarized below. Horizontal and vertical extents of delineation were based on detections no greater than 1.5 times the PSL. The locations of the Target Areas are presented in **Figure 1-6**.

Target Area	Phase I Sample Locations*	Primary Analytes of Interest
1	SUS08	Vanadium, PCBs, dioxins, PAHs
4	SUS12	PCBs, PAHs
5	SUS05, SUS11, SB-3	PCBs, TPH
7	SUS20	PCBs
9	SUS18	PCBs, dioxins
10	SUS10	PCBs, dioxins
11	DP44	PCBs
12	SUS21	PCBs
14	SUS06	PCBs
20	SUS/DP19	PAHs
Former Timber Pole Storage Area	Building 75 Area	Full suite of analytes
Former Transformer Shops	Former Buildings 38 and 39	Full suite of analytes

^{*}Basis for Phase II identification

Brief operational histories of each Target Area are provided below and a more extensive Site history is provided in the CSM Technical Memorandum, Appendix C (AECOM, 2016b).

- Target Area 1, Former Sludge Dewatering Area: Clarifier sludge was dewatered here from the mid-1970s to the late 2000s. The former sludge dewatering area appears to have been put in place following the removal of coal piles (late 1970s) to handle the sludge from the clarifiers associated with the cooling towers. The sludge dewatering area remained in place, adjacent and north of Building #65, gradually shrinking in size until 2010, when it is no longer visible in aerial photographs and appears to be replaced with a gravel-surfaced parking area.
- Target Area 4, Salvage Yard: A soil investigation and removal was completed in this area in 2003.
- Target Area 5, Former Cooling Towers Cleanup Area (1995 and 2017): The towers were constructed between 1968 and 1970, and the joints for the concrete cooling towers were sealed with caulk containing PCBs which resulted in PCB impacts in the surrounding soils. As discussed in Section 3.1, PCB-impacted soils adjacent to and beneath the cooling tower basins were excavated in 2017. The cooling tower removal activities are summarized in the Cooling Tower Basins Remedial Action Completion Report (AECOM, 2017), submitted to DOEE on September 11, 2017. Excavation depths ranged from 0.5 ft to 6 ft in the vicinity of Cooling Towers 15 and 16 as shown in Appendix X. Final disposal quantities indicate that 9,923 tons of soil and 6,666 tons of concrete debris were removed from the Site. Sample results collected during the cooling tower remedial action activities are summarized in Appendix X. Additional sample collection outside of the excavation areas performed during the Phase II field sampling is discussed herein. The additional samples collected in the SUS05 area were also used to further assess Target Area 3 (Former 15,000 gal UST and 50,000 gal AST, which stored No. 2 fuel oil).

- Target Area 7, 1988 Parking Lot Cleanup Area: PCB-contaminated soil was detected and removed in an area previously used to store PCB capacitor banks.
- Target Area 9, Green Tag Storage Area: Building #66 was used for temporary storage of empty transformer casing, which were marked to indicate they contained <50 ppm PCBs.
- Target Area 10, Red Tag Storage Area: This area was used for temporary storage of empty transformer casings, which were marked to indicate they contained 50 to 499 ppm PCBs.
- Target Area 11, PCB Building #68: Building was used for temporary storage of PCB wastes and other hazardous wastes in drums.
- Target Area 12, Building #57: Building houses two 10,000 gal holding tanks for accumulated waste mineral oil containing <50 ppm PCBs.
- Target Area 14, Former Railroad Switchyard: Area used as a switchyard from the early 1900s to circa 2000, then used for storage, and has been the site of Substation #45 since 2011.
- Target Area 20, PAHs in Soil. This area was previously used as a railyard from 1937 to at least 1963. This area was then converted to a laydown area for what appears to be electrical equipment from 1963 to approximately 1981 at which time the entire area appears to be vacant. Between 1981 and 1988, the DP19 vicinity was converted to a parking area which is its current use.
- Former Timber Pole Storage Area: A review of historical aerial photos revealed the former storage
 of timber poles in the central portion of the Site. The absence of samples in these areas was
 identified as a data gap in the Phase I Site characterization.
- Former Transformer Shop Area: A review of historical aerial photos revealed the former transformer shops, Buildings #38 and #39. The absence of samples in these areas was identified as a data gap in the Phase I Site characterization.

As part of the Site-wide characterization during the Phase II event, samples were also collected at selected locations not specifically stated above. This includes additional samples collected at Target Area 13 which was the location of former ASTs. Phase I and Phase II data is discussed together in the following sections by medium and specific Target Areas within each medium. Section 4.2.3 presents the surface soil characterization results and Section 4.2.4 presents the subsurface soil characterization results. Soil analytical results are summarized in **Table 4-1** through **Table 4-9**, and the results are presented in **Figure 4-1** through **Figure 4-17**.

4.2.2 Comparison to Site-Specific Background Analysis

Appendix W presents the results of the Site-specific background analysis, which was performed to identify the detected COPCs at the Site that are consistent with the Site-specific background conditions of the Study Area. The Site-specific background evaluation developed Site-specific background threshold values (BTVs) for the soil COIs using the Site-specific background datasets excluding the outliers. In addition, a two-sample hypothesis (or population) test was also conducted for each COI for which sufficient data were available. The population test selected for each COI was determined by the distributions of the Site and background data sets. The BTVs were used to identify Site sample locations at which concentrations of COIs exceed background whereas the population tests were used to identify COIs for which the range and central tendency of Site concentrations are similar to or less than background. Sections 4.2.3 and 4.2.4 below provide a comparison to the BTVs in the summaries for inorganics, TPH fractions, PAHs, PCBs, and dioxin/furan compound groups for surface and subsurface soil. The results of population tests are also discussed in the following sections.

4.2.3 Surface Soils Characterization Results

This section summarizes the surface soil results from the Phase I and Phase II investigation. Section 2.1.2 describes the Phase I surface soil sampling events. Section 2.3.2 describes the Phase II surface soil sampling events. The locations of the surface soil samples are shown on **Figure 2-1**, and analytical methods are presented in **Table 2-2**. The following subsections discuss results by analyte group.

4.2.3.1 Inorganic Results in Surface Soils

Phase I XRF Screening

A portable XRF instrument was used to screen surface and subsurface soils for metals per the project SAP and following the guidance provided in EPA Method 6200. The surface and subsurface soils were also analyzed by definitive methods (inductively coupled plasma mass spectrometry and cold vapor atomic absorption spectroscopy) at the TestAmerica Pittsburgh laboratory for the full suite of project metal analytes. The comparability of the field XRF and fixed lab metals data for surface and subsurface soils were evaluated by least squares linear regression analysis using log transformed results per EPA Method 6200. The regressions for copper, lead, vanadium, and zinc had correlation coefficient values >0.7 and were therefore acceptable for screening level data per EPA 6200 Section 9.7. Correlation plots for these metals are provided in **Appendix V**. The correlations for arsenic, antimony, barium, cadmium, chromium, cobalt, iron, mercury, nickel, and selenium did not meet the minimum correlation coefficient requirement; however, the XRF results generally over-predicted the fixed lab definitive method results and were sufficiently sensitive in most cases to provide information about any locations where metals could potentially exceed

the project PSLs. XRF results for antimony, barium, cadmium, copper, iron, manganese, nickel, selenium, and silver indicated no exceedances of the PSL values. No XRF data was collected for aluminum, beryllium, magnesium, thallium, or sodium due to inherent limitations of the XRF technique for light metals and instrument calibration. No metals hotspots were detected using XRF, but selected samples from locations DPS11, DPS13, DPS39, DPS42, DPS43, DPS44, and DPS47 were submitted for definitive metals analysis based on the XRF screen results indicating possible exceedance of the PSLs for lead and vanadium. An additional set of 64 subsurface soil samples screened was also analyzed by definitive lab methods for metals in soil to reduce reliance on the XRF data, exceeding the 20% frequency for confirmatory samples planned in Table 4 in the SAP. Results for XRF screening analyses are provided in Table 4-5; however, the nature and extent evaluation of surface soils is based on the results of the laboratory testing, which is discussed below.

Laboratory Results

As shown in **Table 4-1**, metals were detected in most of the surface soil samples analyzed for inorganic compounds. Arsenic, cobalt, lead, manganese, nickel, and vanadium concentrations exceeded their respective PSLs.

The distribution of inorganic COIs in surface soils is depicted in **Figure 4-1A**. As presented on **Figure 4-1A**, arsenic PSL exceedances were widespread in surface soil. Vanadium exceedances were more focused in the Target Area 1 area. Cobalt exceeded its PSL at six locations. Lead and nickel each exceeded their PSL at two locations. Manganese exceeded its PSL in only one sample. The maximum, mean, and median surface soil detection concentrations for inorganic PSL exceedances are provided below along with the number of samples with detections and the total number of samples analyzed.

Surface Soil Summary for Inorganics (mg/kg)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site ≥ to Site-specific background?
Arsenic	3	190	15	7.2	70	70	17	No
Cobalt	35	240	19	6.7	70	70	19.7	No
Lead	800	2,000	130	54	70	70	544	No
Manganese	2,600	6,600	380	170	70	70	1104	No
Nickel	2,200	8,000	340	25	70	70	53.6	No
Vanadium	580	42,000	1,500	57	77	77	37.8	Yes

As noted above, based on the two-sample hypothesis tests presented in the background evaluation (**Appendix W**), concentrations of inorganics in Site surface soil are consistent with Site-specific background surface soil with the exception of vanadium.

Although chromium was detected in all 81 surface soil samples analyzed for chromium, the concentrations were significantly below the total chromium PSL of 180,000 milligrams per kilogram (mg/kg). The PSL of 180,000 mg/kg is based on the likely presence of trivalent chromium. To verify the assumption and confirm that the more toxic hexavalent chromium is not present above its PSL of 6.3 mg/kg, soil samples were collected from the 10 on-Site locations that had previously exhibited the highest concentrations of total chromium which are presented on Figure 4-2. These samples were analyzed for both total chromium and hexavalent chromium. As shown in Table 4-1, hexavalent chromium concentrations ranged from nondetect to 0.6 mg/kg. A similar analysis was also performed for the samples collected on the Anacostia Park property; hexavalent chromium concentrations ranged from non-detect to 0.98 mg/kg and total chromium concentrations ranged from 26 mg/kg to 51 mg/kg in the 12 samples collected. The percent of hexavalent chromium was calculated in several ways, both including and excluding non-detected results, and based on the combined Pepco Site and Anacostia Park datasets. As shown in **Table 4-45**, the calculated averages of hexavalent chromium to total chromium range from less than 1% to about 1.5%. Therefore, it is assumed that hexavalent chromium is present at 1.5% of total chromium in soil for the evaluation of samples for which speciation is not available. Given the lack of history of chromium use at the Site, and the low detections in soil, it is unlikely that hexavalent chromium is present in other media at the Study Area. Therefore, total chromium was evaluated as trivalent chromium with a PSL of 180,000 mg/kg.

Vanadium PSL exceedances were limited to Target Area 1 (former sludge dewatering area and the larger former coal pile area). Outside of Target Area 1, vanadium detections ranged from 3.4 mg/kg to 140 mg/kg with an average of 33 mg/kg. The finding of an elevated concentration of vanadium is consistent with the findings reported in the USEPA 2009 SI Report for this area. Further discussion of the vanadium exceedances in surface soils is provided below and the vertical extent of vanadium in subsurface soils is discussed in Section 4.2.4.1.

<u>Target Area 1, Former sludge dewatering area; Target Area 3, Former 15,000 Gal UST and 50,000 Gal AST; Target Area 5, Former Cooling Towers; Target Area 10, Red Tag Storage Area; and Target Area 11, PCB Building #68</u>

Vanadium soil concentrations are presented on **Figure 4-3** and **Table 4-1**. Vanadium exceeded its PSL at 14 locations, all of which are located within Target Area 1. The maximum detection was 42,000 mg/kg at TA1E1. However, 11 of the 14 exceedances were 3,800 mg/kg or less. The exceedances are horizontally and vertically bounded at this location. Vanadium concentrations exceeded PSLs in surface soils in Target

Area 1 over an area measuring approximately 68,400 SF or 1.57 acres. Vanadium did not exceed its PSL at Target Areas 3, 5, 10, or 11.

4.2.3.2 VOC Results in Surface Soils

As shown in **Table 4-2**, low concentrations of VOCs associated with fuels and solvents were detected at isolated locations but were all significantly below their PSLs. Acetone, a common laboratory contaminant, was the most frequently detected VOC with 7 detections out of 32 samples, but the maximum concentration was only 35 μ g/kg compared to its PSL of 6.7E+07 μ g/kg. Likewise, ethylbenzene, toluene, and xylenes compounds were detected three times or less, but at very low concentrations. However, MTBE was not detected in any surface soil samples. PCE; 1,1,2,-trichloroethane (1,1,2-TCA); 1,2-dichloroethane; 1,2,3-trichlorobenzene, and 4-methyl-2-pentanone were each detected once at very low concentrations. PCE was detected once at SUSDP21 at a concentration of only 0.75 μ g/kg compared to its PSL of 39,000 μ g/kg. Sample location SUSDP21 is located adjacent to the northwest side of Building #57 in Target Area 12 (**Figure 2-1**),

Two solvents containing chlorinated compounds were historically used at the Site (SS-25 and XL-99). The SS-25 product is a solvent degreaser containing percloroethylene (PCE), methylene chloride (DCM) and mineral spirits. The XL-99 cleaning compound solvent contained 1,1,1-Trichloroethane (1,1,1-TCA), 1,4-dioxane and dichlorodifluoromethane. Available records do not indicate that bulk trichlorobenzenes were stored or handled at the Benning facility.

4.2.3.3 SVOCs and PAH Results in Surface Soils

Priority pollutant PAHs were the most commonly detected SVOCs in the surface soils and the only SVOCs that exceeded PSLs. The most common SVOC analytes detected besides PAHs were 2-methylnaphthalene, acetophenone, benzaldehyde, bis-(2-ethylhexyl)phthalate, and carbazole. As part of the Target Area delineations performed during Phase II, a large number of samples were collected for PAH compounds. In total, 121 samples, including duplicates, were analyzed for PAHs. The full suite of SVOCs was only analyzed during the Phase I sampling because of the low concentrations and infrequent detections of the non-PAH SVOCs during Phase I. In total, 11 samples, including one duplicate, were analyzed for SVOCs.

As shown in **Table 4-2**, PAHs as represented by benzo(a)pyrene toxicity equivalent (BaP-TE) were detected in most of the surface soil samples analyzed for PAHs. Two of the individual PAH compounds exceeded their PSLs in surface soil; benzo(a)pyrene and dibenzo(a,h)anthracene. The PSL, maximum, mean, and median surface soil detection concentrations for these analytes are provided below along with the number of samples with detections and the total number of samples analyzed. Although all three

analytes were detected at levels exceeding their PSL, their mean and median detection concentrations were below their PSLs. Also presented below are total high-molecular-weight PAHs, total low-molecular-weight PAHs, and total PAHs (sum 16) for information purposes only. These compounds do not have PSLs.

Surface Soil Summary for PAHs (µg/kg)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site ≥ to Site-specific background?
Benzo(a)pyrene	2,100	11,000	720	320	102	121	1,190	No
Dibenzo(a,h)- anthracene	2,100	2,200	170	81	90	121	79	Yes
BaP-TE	2,100	16,600	1,080	486	104	121	3,390	No
Total high- molecular-weight PAHs		120,000	7,400	2900	106	121	-	
Total low- molecular-weight PAHs		41,000	1,500	490	103	121		
Total PAHs (sum 16)		160,000	8,900	3,400	106	121	-	

⁻⁻ Indicates not applicable

Based on the two-sample hypothesis tests presented in the background evaluation (**Appendix W**), concentrations of benzo(a)pyrene and BaP-TE in Site surface soil are consistent with Site-specific background. However, dibenzo(a,h)-anthracene exhibited a slight exceedance.

To provide an overview of the Site-wide PSL exceedances of PAH in surface soil, **Figure 4-4** presents total PAH concentrations in surface soil samples across the Site. To further illustrate where the PSL exceedances were concentrated, the following descriptions are provided for the Target Areas where delineation of the surface soil for PAHs was conducted during the RI.

<u>Target Area 1 – Former Sludge Dewatering Area, Target Area 3 – Former 15,000 Gal UST and 50,000 Gal AST, Target Area 5 – Former Cooling Towers, Target Area 10 – Red Tag Storage Area, and Target Area 11 – PCB Building #68</u>

PAH soil concentrations are presented on **Figure 4-5** and **Table 4-2**. PAHs as represented by BaP-TE did not exceed their PSL at Target Areas 1, 3, 5, 10, or 11.

Target Area 4 – 2003 Salvage Yard Investigation and Former Timber Pole Storage Area

PAH soil concentrations are presented on **Figure 4-6A** and **Table 4-2**. PAHs as represented by BaP-TE exceeded their PSL at six locations in Target Area 4. The maximum BaP-TE surface soil detection was 6,600 μg/kg at SUSDP43-4NW. The horizontal and vertical extent of PAHs is bounded at this location. PAH concentrations exceeded PSLs in surface soils in Target Area 4 over an area measuring approximately 36,000 SF or 0.83 acres. PAHs as represented by BaP-TE did not exceed their PSL at the Former Timber Pole Storage Area.

Target Area 12 - Building #57

PAH soil concentrations are presented on **Figure 4-7A** and **Table 4-2**. PAHs as represented by BaP-TE exceed their PSL at two locations in Target Area 12, SUSDP21 and SUSDP21-3M. Both detections were 2,590 µg/kg. The horizontal and vertical extent of PSL exceedances is bounded at these locations except along the Site southern boundary where the Anacostia Freeway prevented collection of additional samples. PAH concentrations exceeded PSLs in surface soils in Target Area 12 over an area measuring approximately 9,000 SF or 0.20 acres. Building #57, located within Target Area 12, houses two 10,000 gal holding tanks for temporary storage of waste oil containing <49 ppm PCBs. These tanks are installed in concrete vaults, which act as secondary containment. Historically, Building #57 was used to service and repair PCB-containing transformers.

Target Area 13 - Former AST Area

PAH soil concentrations are presented on **Figure 4-8** and **Table 4-2**. PAHs as represented by BaP-TE slightly exceeded its PSL at one location at Target Area 13 (SUSDP37) with a concentration of 2,180 µg/kg. This detection is vertically and horizontally bounded at this location. In addition, although BaP-TE exceeded its PSL, all individual PAHs were below their respective PSLs.

Target Area 20 – PAHs in Soil

This area was previously used as a railyard and laydown area before being converted into a parking lot in the mid-1980s. PAH soil concentrations are presented on **Figure 4-9A** and **Table 4-2**. PAHs as represented by BaP-TE exceeded its PSL at six locations in Target Area 20; however, all individual PAH detections were below their respective PSLs. The maximum PAH concentrations were reported in this Target Area. Although not all surface soil locations in this Target Area exceeded PSLs, PAH concentrations exceeded PSLs on combined surface and subsurface soil basis over an area measuring approximately 130,000 SF or 3.0 acres.

4.2.3.4 TPH Fraction Results in Surface Soils

As shown in **Table 4-2**, TPH and/or TPH fractions were detected in most of the surface soil samples analyzed for these compounds. Although the PSL for DRO was exceeded in surface soils, the mean and median concentrations were below the PSL. Gasoline Range Organics (GRO) and ORO were detected, but were below their PSLs. TPH itself does not have a PSL; however, the maximum, mean, and median surface soil detection concentrations are provided below along with the number of samples with detections and the total number of samples analyzed.

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site ≥ to Site-specific background?
TPH (C9-C44)		13,400	1,310	510	30	30		
DRO (C10-C20)	440	3,400	410	73	20	39	19.7	Yes
ORO (C20-C36)	350,000	3,500	530	270	38	39	372	Yes
GRO (C6-C10)	42	0.35	0.3	0.3	2	32		

⁻⁻ Indicates not applicable

The two-sample hypothesis tests presented in the background evaluation (**Appendix W**) indicate that concentrations of DRO (C10-C20) and ORO (C20-C36) in Site surface soil are present at levels greater than the Site-specific background samples.

To further illustrate where the PSL exceedances were concentrated, the following descriptions are provided for the Target Areas where delineation of the surface soil for TPH and TPH fractions was conducted during the RI.

<u>Target Area 5 – Former Cooling Towers</u>

DRO soil concentrations are presented on **Figure 4-10A** and **Table 4-2**. Samples for DRO did not exceed its PSL at Target Area 5. The maximum TPH surface soil detection was 4,480 mg/kg at SUSDP11-1H; TPH does not have a PSL. Although not all surface soil locations in this Target Area exceeded PSLs, TPH and PCB concentrations exceeded PSLs on combined surface and subsurface soil basis over an area measuring approximately 13,700 SF or 0.3 acres. This area is located in the eastern portion of the former CT 16.

Target Area 4 – 2003 Salvage Yard Investigation and Former Timber Pole Storage Area

DRO soil concentrations are presented on **Figure 4-11** and **Table 4-2**. DRO exceeded its PSL at two locations in Target Area 4, approximately 60 feet apart. The maximum DRO surface soil detection was 3,400 mg/kg at SUSDP50-2A. The horizontal extent of PSL exceedances are bounded at this location. Samples for DRO did not exceed its PSL at the Former Timber Pole Storage Area.

Target Area 13 - Former AST Area

DRO soil concentrations are presented on **Figure 4-8** and **Table 4-2**. Data were collected from 14 additional borings around the tank farm (Target Area 13) as part of the AST decommissioning program. Soil samples from two depths (0 to 1 ft and 3 to 4 ft) were analyzed for TPH, and a subset of soil samples were analyzed for metals, PAHs, and PCBs. These results were provided to DOEE. The results indicated low levels of surficial TPH and PAH impacts (with the exception of one location adjacent to DP39), limited to the former AST dikes and the associated piping, which represent potential residuals from former cleanups. Soil sampling results from the AST decommissioning program are provided in **Appendix Y**.

DRO exceeded its PSL at one location at Target Area 13, AST3A, which was collected during a sample event in 2012 and had a concentration of 9,510 µg/kg. DRO was not detected above its PSL in any of the other samples collected in 2012, including a subsurface sample at location AST3A and surrounding samples.

During the RI, samples were collected at Target Area 3 in 2013 and 2017 and no DRO exceedances were identified.

4.2.3.5 PCB Results in Surface Soils

As shown in **Table 4-3**, PCBs were detected at 196 of the 208 locations sampled. Total PCB concentrations exceeding the PSL were detected at 51 locations with the maximum concentration (8,800,000¹ µg/kg) occurring at SUSDP21-3G at Target Area 12. Concentrations of PCBs exceeded the TSCA threshold limit for disposal at three locations, all within Target Area 12. Five PCB Aroclors (A-1242, A-1248, A-1254, A-1260, and A-1268) were detected in surface soil samples. The evaluation of the nature and extent of PCBs in surface soils is limited to PCB Aroclor concentration data. The use of EPA Method 8082 as the primary method for defining the magnitude and extent of PCBs in the Study Area followed the

¹ Surface soil sample SUSDP21-3G with an elevated concentration of Aroclor-1248 (2,500,000 μg/kg initial analysis and 8,800,000 μg/kg in re-analysis). The higher concentration is presented herein.

DOEE approved work plans. Quantifying PCBs using EPA Method 8082 is required under TSCA regulations for PCB waste characterization and disposal (40 CFR Part 761.274). EPA 8082 is part of SW-846 and was developed by EPA to support RCRA investigations. Under this method, the primary method for quantifying total PCBs relies on Aroclors, rather than constituent congeners (individual PCB isomers within the Aroclor mixtures). Analysis of PCBs as congeners using EPA Method 1668C was performed on a subset of samples for forensic and risk assessment purposes. This alternate method provides improved accuracy and sensitivity where the Aroclor pattern match is poor or PCB concentrations are very low. however it is not generally used for RCRA site investigations. The PCB congener pattern analysis is generally consistent with the relative abundance patterns reported by Aroclor data from EPA Method 8082 analysis supporting that the use of EPA Method 8082 for the nature and extent investigation is appropriate. EPA Method 1668C also uses isotope dilution technique to quantify the PCB congeners and this recovery correction may produce a total PCB result as the sum of congeners (tPCBc) which is greater than the sum of Aroclors from EPA Method 8082 (tPCBa). The tPCBc/tPCBa ratios vary widely from sample to sample but the median ratio value for the 29 soils analyzed by both methods was 1.48. A comparison of tPCBc and tPCBa results for soil samples is provided in Table 4-46. Intrinsic differences between these methods, their comparability for Aroclor identification, and a detailed statistical comparison of the results of soil analysis in split samples will be further discussed in more detail in the upcoming Forensics Analysis and Source Evaluation Report.

The PSL, maximum, mean, and median surface soil detection concentrations for the detected PCB Aroclors and total PCBs are provided below along with the number of samples with detections and the total number of samples analyzed. The following Aroclors were not detected in the surface soil samples: Aroclor 1016, Aroclor 1221, Aroclor 1232, and Aroclor 1262. **Figure 4-12B** presents Aroclor type abundance in surface soils, near site surficial sediments, and storm drain outfalls.

Surface Soil Summary for PCBs (µg/kg)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site ≥ to Site-specific background?
Aroclor 1242	1	37,000	3,700	310	14	208	-	-
Aroclor 1248		8,800,000a	230,000	270	49	208		
Aroclor 1254		7,600	560	180	88	208		
Aroclor 1260		130,000ª	1,600	110	193	208		
Aroclor- 1268		1,400	110	37	35	208		
PCB, Total Aroclors	970	8,800,000 ^a	60,000	280	196	208	15.1	Yes

Analy exceed its PS	ling	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site ≥ to Site-specific background?
(AECC	_								

^a PCB concentrations ≥50,000 μg/kg in soil must be disposed of as TSCA remediation waste at an approved facility in accordance with 40 CFR 761.

As noted above, the Site-specific background analysis identified a BTV of 15.1 µg/kg for total PCB Aroclors, which is well below the PSL. A two-sample hypothesis test could not be conducted for total PCB Aroclors due to the low frequency of detection in Site-specific background soil samples (**Appendix W**). Graphical evaluations (boxplots) of total PCB Aroclors illustrate that Site levels are higher than Site-specific background. To provide an overview of the site wide PSL exceedances of total PCBs in surface soil, **Figure 4-12A** presents total PCB concentrations in surface soil samples across the site. To further illustrate where the PSL exceedances were concentrated, the following descriptions are provided for the Target Areas where delineation of the surface soil for PCBs was conducted during the RI.

<u>Target Area 1 – Former Sludge dewatering area, Target Area 3 – Former 15,000 gal UST and 50,000 gal AST, Target Area 5 – Former Cooling Towers, Target Area 10 – Red Tag Storage Area, and Target Area 11 – PCB Building #68</u>

PCB soil concentrations are presented on **Figure 4-13A** and **Table 4-3**. Total PCBs exceeded the PSL at four locations within Target Area 1. The maximum PCB surface soil detection was 3,900 μg/kg at SUS08-1H. The horizontal and vertical extent of PSL exceedances are bounded at this location. PCB concentrations exceeded PSLs within Target Area 1 surface soils over an area measuring approximately 8.100 SF or 0.19 acres.

As discussed in Section 3.1 and Section 4.2.1, PCB-impacted soils adjacent to and beneath the Target Area 5 cooling tower basins were excavated in 2017; the soil sampling data used to delineate the excavation footprint and depth was presented in the Cooling Tower Basins Remedial Action Completion Report (AECOM, 2017). Figures displaying the results and extent of excavation are included in **Appendix X**. Additional sample collection outside of the excavation areas performed during the Phase II Site characterization is discussed herein.

Total PCBs exceeded the PSL at one location at Former Cooling Tower #15 within Target Area 5. SUSDP05 had a PCB concentration of 5,700 µg/kg and is bounded by non-exceedance samples.

Total PCBs exceeded the PSL at nine locations at Former Cooling Tower #16 within Target Area 5. The maximum PCB surface soil detection was 7,600 µg/kg at SUSDPCT16-3R. The exceedances are not bounded along the northern Site boundary, but the characterization identified decreasing concentrations toward the property boundary and the surface topography slopes back into the Site at this location.

⁻⁻ Indicates not applicable

Therefore, in consultation with DOEE, it was determined that further characterization is not necessary. The exceedances are bounded in the remaining directions; note that sample location SUSDPCT16-3Q along the southern edge of Target Area 5 has an average concentration below 1,450 μ g/kg , which is less than 1.5 times the PSL.

Aroclor-1254 is the primary Aroclor in Former Cooling Tower #15 building materials and soils. A higher proportion of Aroclor-1260 is present in soils surrounding Former Cooling Tower #16, especially at the eastern end of the basin. PCB concentrations exceeded PSLs on a combined surface and subsurface soil basis over an area measuring approximately 13,700 SF or 0.3 acres.

Total PCBs exceeded the PSL at seven locations within Target Areas 10 and 11. The maximum PCB surface soil detection was 3,900 µg/kg at SUSDP10-3F. The horizontal extent of PSL exceedances is bounded by non-exceedance samples. PCB concentrations exceeded PSLs in Target Area 10 and 11 surface soils over an area measuring approximately 12,700 SF or 0.29 acres.

Target Area 4 – 2003 Salvage Yard Investigation and Former Timber Pole Storage Area

PCB soil concentrations are presented on **Figure 4-14A** and **Table 4-3**. Total PCBs exceeded the PSL at three locations within Target Area 4. The maximum PCB surface soil detection was 3,500 μg/kg at SUSDP49. The horizontal extent of PSL exceedances are bounded at this location.

Total PCBs exceeded the PSL at four locations at the Former Timber Pole Storage Area. The maximum PCB surface soil detection was $4,800 \,\mu\text{g/kg}$ at SUSDP15-1G. The horizontal extent of PSL exceedances is bounded by non-exceedance samples.

Target Area 7 – 1988 Parking Lot Cleanup Area

Target Area 7 was further sampled during the Phase II event due to a total PCB detection of 5,100 μ g/kg at SUSDP20 during the Phase I event. Ten surface soil samples were collected in 2017 with all of the samples exhibiting concentrations below the PSL (**Figure 4-12A**). Therefore, the only exceedance in this area is limited to SUSDP20, which was detected during the Phase I sampling.

Target Area 9 - Green Tag Storage Area

Target Area 9 was further sampled during the Phase II event due to a total PCB detection of 1,400 µg/kg at SUSDP18 during the Phase I event (**Figure 4-12A**). Ten surface soil samples were collected in 2017, with all of the samples exhibiting concentrations below the PSL. Therefore, the only exceedance in this area is limited to SUSDP18, which was detected during the Phase I sampling.

Target Area 12 – Building #57

Building #57, located within Target Area 12, houses two 10,000 gal holding tanks for temporary storage of used mineral oil containing <49 ppm PCBs. These tanks are installed in concrete vaults, which act as secondary containment. PCB soil concentrations for Target Area 12 are presented on Figure 4-15A and Table 4-3. Total PCBs exceeded the PSL at 15 locations within Target Area 12, three of which exceeded the TSCA threshold limit for disposal requiring special handling and disposal in accordance with 40 CFR 761. The maximum PCB surface soil detection was 8,800,000 µg/kg at SUSDP21-3G. The horizontal extent of PSL exceedances is bounded except along the Site southern boundary where the Anacostia Freeway prevents collection of additional samples. AECOM evaluated the feasibility of installing an offsite soil boring adjacent to and southeast of the Site to delineate in the southeast direction of Target Area 12 for elevated levels of PCBs that were detected in shallow subsurface soils immediately adjacent to Building #57. The evaluation identified that the area to the southeast of the Site is a highly urbanized portion of Washington, DC, containing a high density of underground and overhead utilities and critical transportation infrastructure. The configuration of these utilities and infrastructure pose safety hazards and access restrictions that would preclude the mobilization of a drill rig to within several hundred feet of the Site to the southeast. The utilities include subsurface and overhead electric lines, storm sewers, sanitary sewers, water supply lines, communication lines, and gas lines.

A 10-foot-high retaining wall separates Kenilworth Avenue and the Site to the southeast of Building #57. The roads and railways that exist beyond the property boundary to the southeast are: Kenilworth Avenue NE, Route 295 southbound lanes, Route 295 north onramp, Route 295 northbound lanes, and right-of-ways (ROWs) for Conrail and CSX ground-level railways, as well as a ROW for the elevated WMATA Orange Line. Additionally, there is an underground easement for the WMATA Blue Line (inbound and outbound box tunnels) parallel to and northeast of Benning Road. The density and sensitivity of these utilities and infrastructure pose safety hazards and access restrictions that would prohibit the installation of a soil boring within several hundred feet to the southeast of the Site.

AECOM also reexamined the historical footprint of the Benning Road Site and whether operations at the Site ever extended to the southeast of Kenilworth Avenue, which runs immediately adjacent to the Site's southeast property boundary. Historical aerial photos, topographic maps and other documents provided in the CSM Technical Memorandum record the expansion of the Benning Road Site, beginning with the purchase of the first parcel of land for the construction of a generating station adjacent to the Anacostia River in 1906. The southeast portion of the present Site, including the area abutting Kenilworth Avenue, was acquired by Pepco between 1937 and 1943. Additionally, the railroad tracks to the southeast of the Site, formerly owned by Philadelphia, Baltimore and Washington Railroad, have been in place since before

1906. Taken together, the historical evidence clearly indicates that Pepco operations at the Site never extended farther southeast than the present southeast property line at any time.

After a review of the available information, AECOM has determined that (1) installation of a soil boring immediately to the southeast of the Benning Road Site is infeasible due to the high density of utilities and transportation infrastructure in this area, (2) soil samples collected at the nearest potential sample location identified above would be too far from the Site (approximately 500 feet) to provide useful data for the purposes of delineation, and (3) available information indicates that at no time in the history of the Benning Road Site did Pepco operations extend southeast of Kenilworth Avenue. Therefore, the presence of PCB-impacted soils southeast of Kenilworth Avenue as a result of historical Pepco activities is extremely unlikely. As such, the installation of a soil boring to the southeast of the Site is unnecessary and impracticable.

At this Target Area, PCB concentrations exceeded PSLs on a combined surface and subsurface soil basis over an area measuring approximately 9,000 SF or 0.2 acres.

Target Area 14 – Former Railroad Switchyard

Target Area 14 was further sampled during the Phase II event due to a total PCB detection of 1,900 μg/kg at SUSDP06 during the Phase I event. Five surface soil samples were collected in 2017, with all of the samples exhibiting concentrations below the PSL. Therefore, the only exceedance in this area is limited to SUSDP20, which was detected during the Phase I sampling.

4.2.3.6 Pesticide Results in Surface Soils

Low parts per billion level concentrations of pesticides were detected in surface soils. Pesticides detected more commonly included: dichlorodiphenyltrichloroethane (DDT) metabolites (4,4'-dichlorodiphenyldichloroethane [4,4'-DDD], 4,4'-dichlorodiphenyldichloroethylene [4,4'-DDE], and 4,4'-dichlorodiphenyltrichloroethane [4,4'-DDT]), cis-chlordane, dieldrin, endosulfan sulfate, heptachlor epoxide, and methoxychlor. All pesticide concentrations were significantly below PSLs, as shown in **Table 4-3**.

4.2.3.7 Dioxin and Furan Compound Results in Surface Soils

All of the dioxin and furan compounds were detected at parts per trillion concentration levels in the surface soil samples analyzed. TCDD TEQs ranged from 0.101 to 484 picograms per gram (pg/g).

As shown in **Table 4-4**, dioxin and furan compounds were detected in most of the surface soil samples analyzed for these compounds. The maximum, mean, and median surface soil detection concentrations for TCDD TEQ and 2,3,7,8-tetrachlorodibenzo-p-dioxin are provided below along with the number of samples with detections and the total number of samples analyzed.

Surface Soil Summary for Dioxins and Furans (pg/g)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site > to Site-specific background?
2,3,7,8- Tetrachlorodi- benzo-p-dioxin	22	25.5	1.7	0.793	35	69	1.002	Yes
TCDD TEQ HH	22	484	28.8	7.45	69	69	20.6	Yes

Based on the two-sample hypothesis tests presented in the background evaluation (**Appendix W**), concentrations of 2,3,7,8-Tetrachlorodi-benzo-p-dioxin and TCDD TEQ HH in Site surface soil are present at levels greater than those in the Site-specific background dataset.

To provide an overview of the Site-wide PSL exceedances of TCDD TEQ in surface soil, **Figure 4-16** presents TCDD TEQ concentrations in surface soil samples across the Site. As shown on this figures, TCDD TEQ exceedances were concentrated within Target Areas 1, 5, and 10. The TCDD TEQ delineation is discussed in more detail below for these Target Areas.

<u>Target Area 1 – Former sludge dewatering area, Target Area 5 – Former Cooling Towers, Target Area 10 -</u> Red Tag Storage Area, and Target Area 11 - PCB Building #68

TCDD TEQ soil concentrations are presented on **Figure 4-17** and **Table 4-4**. TCDD TEQ exceeds its PSL in Target Area 1 at five locations. The maximum detection was 50.1 pg/g at SUS08-1A. The exceedances are horizontally and vertically bounded in this area. TCDD TEQ exceeded PSLs in surface soils at Target Area 1 over an area measuring approximately 8,100 SF or 0.19 acres.

TCDD TEQ exceeded its PSL in Target Area 10 at 12 locations. The maximum detection was 484 pg/g at SUS10-2B. The exceedances are horizontally bounded. TCDD TEQ exceeded PSLs in surface soils at Target Area 10 over an area measuring approximately 8,050 SF or 0.18 acres.

TCDD TEQ exceeded its PSL in Target Area 5 at one location, with a detection of 58.7 pg/g at SUSDP11. However, the concentration at this location from 4.5 to 5.5 ft bgs was only 0.601 pg/g. Also, this soil was excavated and removed during the cooling tower soil excavation.

TCDD TEQ did not exceed its PSL at Target Area 11 (Building #68).

<u>Target Area 9 – Green Tag Storage Area</u>

Target Area 9 was further sampled during the Phase II event due to a TCDD TEQ detection of 22.3 pg/g at SUSDP18 during the Phase I event. Eight surface soil samples were collected in 2017. The highest TCDD TEQ concentration was 19.7 pg/g at SUS18-1D, with all of the samples exhibiting concentrations below the PSL. Therefore, the only exceedance in this area is limited to SUSDP18, which was detected during the Phase I sampling.

4.2.4 Subsurface Soils Characterization Results

This section summarizes the subsurface soil results from the Phase I and Phase II investigation. Section 2.1.6, describes the Phase I subsurface soil sampling events. Section 2.3.2 describes the Phase II subsurface soil sampling events. The locations of the surface soil samples are shown on **Figure 2-1**, and analytical methods are presented in **Table 2-2**.

A subsection is provided below for each group of compounds, each summarizing the results for that compound followed by specific discussions for the Targets Areas where PSL exceedances were concentrated.

There are several instances where contaminants in the surface soils (0-1 ft.) were non-detect, but were found at levels exceeding PSLs in the immediate subsurface. A series of subsurface profiles were prepared to illustrate the vertical distribution of contaminants (**Figure 4-6B**, **Figure 4-7B**, **Figure 4-9B**, **Figure 4-10B**, **Figure 4-14B** and **Figure 4-15B**).

4.2.4.1 Inorganic Results in Subsurface Soils

Phase I XRF Screening

A portable XRF instrument was used to screen surface and subsurface soils for metals per the project SAP and following the guidance provided in EPA Method 6200 as discussed in Section 4.2.3.1. Results for XRF screening analyses are provided in **Table 4-5**; however, the nature and extent evaluation of subsurface soils is based on the results of the laboratory testing, which is discussed below.

Laboratory Results

As shown in **Table 4-6**, metals were detected in most of the subsurface soil samples analyzed for inorganic compounds. Arsenic, cobalt, lead, manganese, thallium, and vanadium concentrations exceeded their respective PSLs.

The distribution of inorganic COIs in subsurface soils is shown in **Figure 4-1B**. As presented on **Figure 4-1B**, arsenic exceeded its PSL in 23 subsurface samples. Vanadium exceeded its PSL in three subsurface samples. Cobalt, lead, manganese, and thallium each exceeded their PSLs in only one sample.

The maximum, mean and median surface soil detection concentrations for inorganic PSL exceedances are provided below along with the number of samples with detections and the total number of samples analyzed. As shown below, the mean and median detection concentrations are significantly smaller than the maximum concentrations.

Subsurface Soil Summary for Inorganics (mg/kg)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	BTV	Is Site ≥ to Site-specific background?
Arsenic	3	71	4.3	2.3	75	75	17	No
Cobalt	35	120	7.5	4.4	75	75	19.7	No
Lead	800	5,400	110	7.3	75	75	170	No
Manganese	2,600	3,400	180	100	75	75	740	No
Thallium	1.2	1.6	0.13	0.098	61	75	0.184	No
Vanadium	580	1,400	88	22	75	75	37.8	Yes

Based on the two-sample hypothesis tests presented in the background evaluation (**Appendix W**), concentrations of inorganics in Site subsurface soil were consistent with Site-specific background dataset with the exception of vanadium.

Although chromium was detected in all 75 subsurface soil samples analyzed for chromium, the concentrations were significantly below the PSL for total chromium of 180,000 mg/kg. Section 4.2.3 provides further discussion of the basis for this PSL for both surface and subsurface soils.

Vanadium PSL exceedances were limited to Target Area 1 (former sludge dewatering area). The finding of an elevated concentration of vanadium is consistent with the findings reported in the USEPA 2009 SI Report for this area. The vanadium delineation is discussed in more detail below for Target Area 1 and the adjacent Target Areas.

<u>Target Area 1 – Former Sludge dewatering area, Target Area 5 – Former Cooling Towers, Target Area 10 – Red Tag Storage Area, and Target Area 11 – Building #68</u>

Vanadium soil concentrations are presented on **Figure 4-3**, and provided in **Table 4-6**. Vanadium exceeded its PSL at Target Area 1 at two locations. Location TA1G9 had a concentration of 1,400 mg/kg from 1 to 2 ft bgs, but the sample from 2 to 3 ft bgs was only 540 mg/kg. Location TA1E0 had a concentration of 630 mg/kg from 2 to 3 ft bgs but the sample from 3 to 4 ft bgs was only 420 mg/kg. Subsurface vanadium exceedances were limited to Target Area 1 and the surrounding former coal pile area footprint. These concentrations are vertically bounded at a maximum depth of 3 ft below grade. The two localized exceedances are bounded within the footprint of the surface soil PSL exceedances. The footprint of surface soil exceedances for vanadium is approximately 68,400 SF or 1.57 acres.

Vanadium did not exceed its PSL at Target Areas 5, 10, or 11.

4.2.4.2 VOC Results in Subsurface Soils

A total of 67 samples were collected at various depths from 41 locations across the Study Area and analyzed for VOCs. As shown in **Table 4-7**, VOC detections in subsurface soils were very limited and were detected significantly below their PSLs.

Acetone, a common laboratory contaminant, was the most frequently detected VOC, with 15 detections out of 67 samples but with a maximum concentration of only 58 µg/kg compared to its PSL of 6.7E+07 µg/kg. The majority of the detections occurred at two locations, DP-12 and DP-39 and included fuel related compounds.

PCE was detected once at SUSDP39, located within Target Area 13 in the vicinity of former AST #3, with a concentration of only 4.2 μ g/kg compared to its PSL of 39,000 μ g/kg. MTBE was detected once at DP32, located adjacent to Building #42 in the vicinity of Target Areas 6 and 18, with a concentration of only 100 μ g/kg compared to its PSL of 210,000 μ g/kg.

ERI activities coupled with the data collected from subsurface DPT borings to confirm composition of geophysical anomalies observed during the ERI indicated that there were no likely free product (LNAPL or DNAPL) pools at the locations investigated. PID screening conducted on Site and visual observations made as part of lithologic logging did not identify any LNAPL/DNAPL zones on Site. A technical memorandum summarizing ERI survey results is provided in **Appendix E**, and PID readings collected during soil borings are provided on the boring logs located in **Appendix F**.

The PID readings collected from all subsurface DPT borings ranged from 0.0 ppm to 1,124 ppm; the maximum reading was detected in SUSDPGD21-P1 (1 to 2 ft bgs), located in Target Area 12 and adjacent to the northeast corner of Building #57. The median PID reading was 0.0 ppm, the average was 4.6 ppm and the standard deviation was 42.8 ppm.

4.2.4.3 SVOCs and PAH Results in Subsurface Soils

Priority pollutant PAHs are the most commonly detected SVOCs in the surface soils and the only SVOC PSL exceedances. The most common SVOC analytes detected besides PAHs were benzaldehyde, bis-(2-Ethylhexyl) phthalate, butylbenzylphthalate, and diethylphthalate. As part of the Target Area delineations performed in Phase II, a large number of samples were collected for PAH compounds. In total, 448 samples, including duplicates, were analyzed for PAHs. The full suite of SVOCs was only analyzed during the Phase I sampling because of the low concentrations and infrequent detections of the non-PAH SVOCs during Phase I. In total, 28 samples, including one duplicate, were analyzed for SVOCs.

As shown in **Table 4-7**, PAHs as represented by BaP-TE were detected in most of the subsurface soil samples analyzed for PAHs. Seven of the individual PAH compounds exceeded their PSLs in subsurface soil as listed below. The PSL maximum, mean, and median surface soil detection concentrations for these eight analytes are provided below along with the number of samples with detections and the total number of samples analyzed. As shown below, only benzo(a)pyrene and BaP-TE had mean detection concentrations above their PSLs. Also presented below are total high-molecular-weight PAHs, total low-molecular-weight PAHs, and total PAHs (sum 16). These compounds do not have PSLs.

Subsurface Soil Summary for PAHs (µg/kg)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site ≥ to Site-specific background?
Benzo(a)- anthracene	21,000	720,000	8,300	760	370	448	77	Yes
Benzo(a)pyrene	2,100	640,000	7,400	790	357	448	72	
Benzo(b)- fluoranthene	21,000	510,000	7,900	1,000	362	448	100	
Benzo(k)- fluoranthene	210,000	570,000	4,400	380	350	448		
Dibenzo(a,h)- anthracene	2,100	100,000	1,500	210	310	448	79	Yes
Indeno(1,2,3- cd)pyrene	21,000	380,000	4,900	630	357	448	52	

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site > to Site-specific background?
Naphthalene	17,000	130,000	1,300	87	273	448	30	Yes
BaP-TE	2,100	898,000	10,400	1,130	373	448	120	Yes
Total high- molecular-weight PAHs		6,500,000	75,000	6,900	384	448		
Total low- molecular-weight PAHs		2,700,000	26,000	1,200	375	448		
Total PAHs (sum 16)		9,000,000	100,000	8,000	384	448		

⁻⁻ Indicates not applicable

Based on the two-sample hypothesis tests presented in the background evaluation (**Appendix W**), concentrations of benzo(a)-anthracene, dibenzo(a,h)-anthracene, naphthalene, and BaP-TE in Site subsurface soil were present at levels greater than those in Site-specific background dataset. To further illustrate where the PSL exceedances were concentrated, the following descriptions are provided for the Target Areas where delineation of the subsurface soil for PAHs was conducted during the RI.

<u>Target Area 1 – Former sludge dewatering area, Target Area 5 – Former Cooling Towers, Target Area 10 – Red Tag Storage Area, and Target Area 11 – PCB Building #68</u>

PAH soil concentrations are presented on **Figure 4-5** and **Table 4-7**. Just west of Target Area 1, PAHs as represented by BaP-TE exceeded its PSL at SUSDP04 from 2.5 to 3.5 ft bgs, but not in deeper soil at this location. This location and four surrounding locations were sampled in 2017 and no BaP-TE exceedances were found suggesting that the 2013 detection was very limited in extent. Also at Target Area 1, the BaP-TE PSL was exceeded from the 5 to 10 ft bgs interval at SUSDP08. However, this exceedance is vertically (above and beneath) and horizontally bounded within the footprint of surface soil PSL exceedances for PCBs and dioxins measuring approximately 8,100 SF or 0.19 acres.

PAHs as represented by BaP-TE exceeded its PSL at two locations just south of the Target Area 5 Former Cooling Tower #15 excavation area. Both exceedances were from 1 to 2 ft bgs and vertically and horizontally bounded by non-exceedances. BaP-TE concentrations exceeded PSLs in subsurface soils at Target Area 5 over an area measuring approximately 3,200 SF or 0.07 acres.

PAHs as represented by BaP-TE did not exceed the PSL at Target Areas 10 or 11.

In summary, three locations with PAH exceedances were identified in the shallow subsurface in Target Areas 1 and 5 but all three locations are vertically and horizontally bounded as shown in **Figure 4-5**.

Target Area 4 – 2003 Salvage Yard Investigation and Former Timber Pole Storage Area

PAH soil concentrations are presented on **Figure 4-6A** and **Table 4-7**. PAHs as represented by BaP-TE exceeded the PSL at eight locations in Target Area 4. The maximum BaP-TE detection was 614,000 μg/kg from 1 to 2 ft bgs at SUSDP43-3P; however the concentrations at this location from 0 to 1 ft bgs and 2 to 3 ft bgs were only 199 μg/kg and 3,240 μg/kg, respectively. The horizontal and vertical extent of PSL exceedances are bounded at this location. The multi-depth sampling at each location identified exceedance depths ranging from surface soil to the 10 to 15 ft bgs interval. However, most exceedances were from surface soil to 5 ft bgs. **Figure 4-6B**, Transect A presents vertical concentration profiles of locations along the transect from A (SUSDP43-5NW) to A' (SUSDP12-1C) which follows the locations of subsurface exceedance of the PSL for BaP-TE along the railroad tracks. Locations with results exceeding 6260 μg/kg BaP-TE are all confined within 5 ft bgs. Gray bars indicate the locations overlain by impermeable surfaces such as concrete or asphalt. BaP-TE concentrations exceeded PSLs on a combined surface and subsurface soil basis over an area measuring approximately 36,000 SF or 0.80 acres.

PAHs as represented by BaP-TE exceeded its PSL at one location at the Former Timber Pole Storage Area; SUSDP15 from 5 to 10 ft bgs. This detection is vertically and horizontally bounded.

Target Area 12- Building #57

PAH soil concentrations are presented on Figure 4-7A and Table 4-7. PAHs as represented by BaP-TE exceed the PSL at 16 locations in Target Area 12. Most of the exceedances are grouped in the alleyway between Building #57 and the southwestern property boundary. The maximum BaP-TE detection was 28,200 µg/kg from 1 to 2 ft bgs at SUSDPG21-M1. The horizontal and vertical extent of PSL exceedances is bounded except along the Site boundary where the Anacostia Freeway prevents collection of additional samples (see Section 4.2.3.5 for further discussion). The multi-depth sampling at each location identified impacts from surface soil to 5 ft bgs. Figure 4-7B, Transect A presents vertical concentration profiles of locations along the transect from A (SUSDPGD21-G1) to A' (SUSDP21-3G) in the alleyway between Building #57 and the southeastern property boundary. Locations with results exceeding 6260 µg/kg BaP-TE are all confined within 4 ft bgs. Figure 4-7B, Transect B presents vertical concentration profiles of locations along the adjacent transect from B (SUSDPGD21-I2) to B' (SUSDP21-R2). Locations with results exceeding 6260 µg/kg BaP-TE are all confined within 4 ft bgs in the center of the transect. Figure 4-7B, Transect C presents vertical concentration profiles of locations along the transect from C (SUSDP21-6W) to C' (SUSDP21-1C) in the parking lot west of Building #57 to the west side of the building. Locations exceeding the PSL but below 6260 µg/kg BaP-TE are confined to depths 4 ft bgs. Gray bars extending from 0 depth in these figures indicate the locations overlain by impermeable surfaces such as concrete or asphalt, which significantly reduces the risk of PAH transport by rainwater infiltration. BaP-TE

concentrations exceeded PSLs on a combined surface and subsurface soil basis over an area measuring approximately 9,000 SF or 0.20 acres.

Target Area 13 - Former AST Area

PAH soil concentrations are presented on **Figure 4-8** and **Table 4-7**. PAHs as represented by BaP-TE did not exceed the PSL in Target Area 13.

Target Area 20 - PAHs in Soil

This area was previously used as a railyard and laydown area before being converted into a parking lot in the mid-1980s. PAH soil concentrations are presented on **Figure 4-9A** and **Table 4-7**. PAHs as represented by BaP-TE exceeded the PSL at 27 locations in Target Area 20 and from multiple depth intervals at most of these locations. **Figure 4-9A** also shows locations where the BAP-TE exceeded its PSL but all individual PAHs are below their respective PSL. The maximum BaP-TE detection was 898,000 µg/kg from 2 to 3 ft bgs at SUSDP-196W; this is also the maximum BaP-TE detection in all Phase I and Phase II soil samples. The horizontal extent of PSL exceedances are bounded to the east, west, and north. The WMATA underground tunnels prevent further sampling to the south.

Samples collected from 11 to 12 ft bgs and 14 to 16 ft bgs were significantly below the PSL suggesting that the PAH contamination is vertically bounded above 11 ft bgs. However, the majority of the borings in this area bound the PAH impacts at 5 ft. below grade. **Figure 4-9B**, Transect A presents vertical concentration profiles of locations along the transect from A (SUSDP19-7W) to A' (SUSDP21-5W) in the parking lot from south of Building #59 to the south of Building #56. Locations with results exceeding 6260 µg/kg BaP-TE are confined between SUSDP19-6W and SUSDP19-2D within 6 ft bgs, with the exception of SUSDP19 where results exceeding 14200 occur down to 10 ft bgs, but are bounded below and at adjacent locations below 10 ft bgs. **Figure 4-9B**, Transect B presents vertical concentration profiles of locations along the transect from B (SUSDP19-7N) to B'(SUSDP19-1F). Locations with results exceeding 6260 µg/kg BaP-TE are less than 6 ft bgs, with the exception of location SUSDP19-4N where BaP-TE at concentrations greater than 26,940 down to 8 ft. bgs. **Figure 4-9B**, Transect C presents vertical concentration profiles of locations along the transect from C (SUSDP19-1D) to C'(SUSDP19-7NW). Locations with results exceeding 14200 µg/kg BaP-TE are extend to 10 ft bgs at the SE end of this transect.

BaP-TE concentrations exceeded PSLs in subsurface soils at Target Area 20 over an area measuring approximately 130,000 SF or 3.0 acres.

4.2.4.4 TPH Fraction Results in Subsurface Soils

As shown in **Table 4-7**, TPH and/or TPH fractions were detected in most of the subsurface soil samples analyzed for these compounds. DRO sample analysis exceeded its PSL but ORO and GRO analysis did not. TPH does not have a PSL.

The maximum, mean and median surface soil detection concentrations for TPH and TPH fractions are provided below along with the number of samples with detections and the total number of samples analyzed. As shown below, the mean and median detection concentrations were significantly smaller than the maximum concentrations. The mean detection concentration for DRO was above its PSL, but as shown below, DRO was detected in 54 of 173 samples analyzed for DRO.

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site ≥ to Site-specific background?
TPH (C9-C44)		61,000	3,370	364	118	121	1	
DRO (C10-C20) ¹	440	11,000	1,100	140	54	173	19.7	Yes
ORO (C20-C36)	350,000	17,000	1,400	170	98	173	372	Yes
GRO (C6-C10)	42	38	12	0.64	7	140	-	-

⁻⁻ Indicates not applicable

As noted above, based on the two-sample hypothesis tests presented in the background evaluation (**Appendix W**), concentrations of DRO (C10-C20) and ORO (C20-C36) in Site subsurface soil were present at levels greater than those in Site-specific background subsurface soil.

To further illustrate where the PSL exceedances were concentrated, the following descriptions are provided for the Target Areas where delineation of the subsurface soil for TPH and TPH fractions was conducted during the RI.

<u>Target Area 5 – Former Cooling Tower Area</u>

DRO soil concentrations are presented on **Figure 4-10A** and **Table 4-7**. DRO exceeded its PSL at seven locations in Target Area 5. The maximum DRO surface soil detection was 18,600 mg/kg at SUSDPCT16-2M from 1 to 2 ft bgs. The multi-depth sampling at each location identified exceedance depths ranging from 1 to 6 ft bgs. The exceedances are not bounded along the northern site boundary but the characterization identified decreasing concentrations toward the property boundary, and the surface topography slopes back into the Site at this location. Therefore, it was determined that further characterization is not necessary.

Figure 4-10B, Transect A presents vertical concentration profiles of locations along the transect from A (SUSDPCT16-4W) to A' (SUSDPCT16-1G) along the south side of Former Cooling Tower #16. Locations with results exceeding 3900 mg/kg DRO are confined to less than 4 ft bgs within the approximately 13,700 SF or 0.30 acre footprint where PCBs also exceeded PSLs..

Target Area 4 - 2003 Salvage Yard Investigation and Former Timber Pole Storage Area

DRO soil concentrations are presented on **Figure 4-11** and **Table 4-7**. DRO exceeded its PSL at three locations in Target Area 4, approximately 80 feet apart. The maximum DRO detection was 8,000 mg/kg at SUSDP50 from 1 to 2 ft bgs; however the concentration at this location from 2 to 3 ft bgs was only 98 mg/kg. The horizontal and vertical extent of PSL exceedances are bounded at this location. Samples for DRO did not exceed its PSL at the Former Timber Pole Storage Area.

Target Area 13 – Former AST Area

DRO soil concentrations are presented on **Figure 4-8** and **Table 4-7**. Subsurface soil samples for DRO did not exceed its PSL at Target Area 13.

4.2.4.5 PCB Results in Subsurface Soils

As shown in **Table 4-8**, PCBs were detected at 291 of the 425 locations sampled. Total PCB concentrations exceeding its PSL were detected at 51 locations with the maximum concentration (450,000 µg/kg) occurring at SUSDPGD21-G1 at Target Area 12 (Building #57). Six PCB Aroclors (A-1016, A-1242, A-1248, A-1254, A-1260, and A-1268) were detected in subsurface soil samples. The evaluation of PCBs in subsurface soils is limited to PCB Aroclor concentration data.

The PSL, maximum, mean, and median surface soil detection concentrations for the detected PCB Aroclors and total PCBs are provided below along with the number of samples with detections and the total number of samples analyzed. The following Aroclors were not detected in the subsurface soil samples: Aroclor-1221, Aroclor-1232, and Aroclor-1262.

Subsurface Soil Summary for PCBs (µg/kg)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site ≥ to Back- ground?
Aroclor-1016		54	34	34	2	425		
Aroclor-1242		10,000	780	130	21	425		
Aroclor-1248		6,900	400	110	85	425		
Aroclor-1254		4,800	210	81	95	425		
Aroclor-1260		450,000 ^a	4,400	150	277	425		
Aroclor-1268		300	35	19	44	425		
PCB, Total Aroclors	970	450,000ª	4,400	230	291	425	15.1	Yes

^a PCB concentrations >50,000 μg/kg in soil must be disposed of as TSCA remediation waste at an approved facility in accordance with 40 CFR 761.

The Site-specific background analysis identified a BTV of 15.1 ppb for total PCB Aroclors, which is well below the PSL. A two-sample hypothesis test could not be conducted for total PCB Aroclors due to the low frequency of detection in Site-specific background soil samples (**Appendix W**). Graphical evaluations (boxplots) of total PCB Aroclors illustrate that Site levels are higher than Site-specific background. To further illustrate where the PSL exceedances were concentrated, the following descriptions are provided for the Target Areas where delineation of the subsurface soil for PCBs was conducted during the RI.

<u>Target Area 1 – Former sludge dewatering area, Target Area 5 – Former Cooling Towers, Target Area 10 - Red Tag Storage Area, and Target Area 11 – PCB Building #68</u>

PCB soil concentrations are presented on **Figure 4-13A** and **Table 4-8**. PCBs were not detected in subsurface soils above PSLs within Target Areas 1 and 10. Total PCBs exceeded the PSL at four locations in an area located to the west of Target Area 1 around SUSDP04. The maximum PCB subsurface soil detection was 6,900 μ g/kg at SUSDP04-1E from 2 to 3 ft bgs. The multi-depth sampling bounded the vertical extent of PSL exceedances at 5 ft bgs. **Figure 4-13B**, Transect A presents vertical concentration profiles of locations west of Building #65 along the transect from A (SUSDP04-2I) to A' (SUSDP04-1A) and indicates results exceeding the PSL and less than 7700 μ g/kg are confined to depths between 2 and 5 ft bgs. The gray bar from 0 ft bgs indicates the depth of impermeable pavement.

During 2017, PCB-impacted soils adjacent to and beneath the former cooling tower basins in Target Area 5 were excavated to up to 6 ft bgs. Excavation depths in the vicinity of Former Cooling Tower #15 concrete basin ranged from 1 to 3 ft bgs within the remediation area surrounding the former structure, and 0.5 to 3 ft

⁻⁻ Indicates not applicable

beneath the base of the Cooling Tower #15 concrete basin floor. Excavation depths in the vicinity of Former Cooling Tower #16 ranged from 1 to 6 ft bgs within the remediation area surrounding the former structure, and 0.5 to 4 ft beneath the base of the Cooling Tower #16 concrete basin floor. The soil sampling data used to delineate the excavation footprint and depth are presented in the Cooling Tower Basins Remedial Action Completion Report (AECOM, 2017). These results are not repeated in this report; however, additional sample collection outside of the excavation areas performed during the Phase II characterization is discussed herein.

Total PCBs exceed the PSL at 11 locations at Former Cooling Tower #16 in Target Area 5. The maximum PCB subsurface soil detection was 14,000 μg/kg at SUSDP11-1A from 4 to 5 ft bgs. The multi-depth sampling bounded the vertical extent of PSL exceedances at 6 ft bgs. **Figure 4-13B**, Transect C presents vertical concentration profiles of locations south of Cooling Tower #16 from C (SUSDPCT16-3Q) to C' (SUSDPCT16-2E) and indicates results exceeding the PSL but less than 8600 μg/kg are confined to depths less than 3 ft bgs. **Figure 4-13B**, Transect D presents vertical concentration profiles of locations north of Cooling Tower #16 from D (SUSDP11-2N) to D' (SUSDP11-2D) indicates results between the PSL and 14,000 μg/kg are confined to depths less than 6 ft. bgs. PCB concentrations exceeded PSLs in this area in subsurface soils over an area measuring approximately 13,700 SF or 0.30 acres. The gray bar from 0 ft bgs indicates the depth of impermeable pavement The exceedances are bounded in all directions except along the northern Site boundary. The characterization identified decreasing concentrations toward the property boundary and the surface topography slopes back into the Site at this location. Therefore, Pepco in consultation with DOEE determined that further characterization is not necessary.

Total PCBs exceeded the PSL at three locations at Target Area 11. The maximum PCB subsurface soil detection was 14,000 μg/kg at SUSDP44-1H. The multi-depth sampling bounded the vertical extent of PSL exceedance in Target Area 11 at 4 ft bgs. **Figure 4-13B**, Transect B presents vertical concentration profiles of locations with the highest subsurface concentrations in Target Areas 10 and 11 along the transect from B (SUSDP10-4NW) to B' (SUSDP44-2N). Locations with results exceeding the PSL but less than 14,000 μg/kg are confined to depths below the pavement and 4 ft bgs.

Target Area 4 – 2003 Salvage Yard Investigation and Former Timber Pole Storage Area

PCB subsurface soil concentrations are presented on **Figure 4-14A** and **Table 4-8**. Total PCBs exceeded the PSL at seven locations within Target Area 4. The maximum PCB subsurface soil detection was 1,800 µg/kg at SUSDP43 from 1 to 2 ft bgs. The horizontal and vertical extent of PSL exceedances is bounded in this area. The multi-depth sampling at each location bounded the vertical extent at 3 ft bgs. **Figure 4-14B**, Transect A presents vertical concentration profiles of locations with the highest subsurface concentrations in

the Former Salvage Yard area, from A (SUSDP43) to A' (SUSDP49-1C) where results above the PSL but less than 2500 μ g/kg are confined to depths less than 5 ft bgs.

Total PCBs exceeded the PSL at five locations at the Former Timber Pole Storage Area. The maximum PCB surface soil detection was 3,500 µg/kg at SUSDP49-1C from 1 to 2 ft bgs. The horizontal and vertical extent is bounded at this location. Although a PSL exceedance was noted at 9.5 to 10.5 ft at SUSDP15, PCB impacts in the Former Pole Storage Area are more prevalent to a depth of 2 to 3 ft bgs. **Figure 4-14B**, Transect B presents vertical concentration profiles of locations with the highest subsurface concentrations in the Former Timber Pole Storage Area.

Target Area 7 – 1988 Parking Lot Cleanup Area

The subsurface samples collected at SUSDP20 during the Phase I event detected total PCBs at only 7.4 µg/kg. Additional subsurface sampling at this location in 2017 did not detect Total PCBs.

Target Area 9 - Green Tag Storage Area

The subsurface samples collected at SUSDP18 during the Phase I event detected total PCBs at only 4.6 μ g/kg. Additional subsurface sampling at this location in 2017 detected total PCBs at 150 μ g/kg from 1 to 2 ft bgs but only 1 μ g/kg at 2 to 5 ft bgs.

Target Area 12 – Building #57

PCB soil concentrations are presented on **Figure 4-15A** and **Table 4-8**. Total PCBs exceeded the PSL at 22 locations in Target Area 12. Most of the exceedances were grouped in the alleyway behind Building #57. The maximum PCB subsurface soil detection was 450,000 μg/kg at SUSDPGD21-G1 from 1 to 2 ft bgs. **Figure 4-15B**, Transect A closer to Building #57 presents vertical concentration profiles of locations from A (SUSDPGD21-G2) to A' (SUSDPGD21-S2) where results exceeding the PSL up to 42,000 μg/kg occur confined to a depth of 3 ft bgs. The multi-depth sampling bounded the vertical extent of PSL exceedances to 5 ft bgs. **Figure 4-15B**, Transect B presents vertical concentration profiles of locations with the highest subsurface concentrations from B (SUSDPGD21-C3) to B' (SUSDPGD21-S1), including 4 subsurface samples at two locations exceeding the TSCA limit of 50 mg/kg. The horizontal extent was bounded in all directions except along the southern boundary where the Anacostia Freeway prevents collection of additional samples (see Section 4.2.3.5 for further discussion). PCB concentrations exceeded PSLs in subsurface soil over an area measuring approximately 9,000 SF or 0.20 acres.

<u>Target Area 14 – Former Railroad Switchyard</u>

The subsurface samples collected at SUSDP06 during the Phase I event detected total PCBs at 1,900 µg/kg. Additional subsurface sampling at this location in 2017 did not exhibit any further exceedances around SUSDP06.

4.2.4.6 Pesticide Results in Subsurface Soils

Low parts per billion level concentrations of pesticides were detected in subsurface soils. Pesticides detected more commonly included: DDT metabolites (4,4'-DDD, 4,4'-DDE, and 4,4'-DDT), endosulfan sulfate, endrin, endrin aldehyde, lindane, and trans-chlordane. All detected pesticide concentrations were significantly below PSLs, as shown in **Table 4-8**.

4.2.4.7 Dioxin and Furan Compound Results in Subsurface Soils

Dioxin and furan compounds were detected in most of the subsurface soil samples analyzed for these compounds (**Table 4-9**). All of the dioxin and furan compounds were detected at parts per trillion concentration levels in the subsurface soil samples analyzed. TCDD TEQs ranged from 0.0367 to 23.5 pg/g. TCDD TEQ was slightly exceeded at only one sample location SUSDP10-3G at 1 to 2 ft bgs. The maximum, mean and median surface soil detection concentrations for TCDD TEQ are provided below along with the number of samples with detections and the total number of samples analyzed.

Subsurface Soil Summary for Dioxins and Furans (pg/g)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site ≥ to Site-specific background?
TCDD TEQ HH	22	23.5	3.97	1.25	21	21	42.5	No

Based on the two-sample hypothesis tests presented in the background evaluation (**Appendix W**), concentrations of TCDD TEQ in Site subsurface soil were consistent with those in the Site-specific background dataset. TCDD TEQ exceedances were concentrated within Target Areas 1, 5, and 10. The TCDD TEQ delineation is discussed in more detail below for these Target Areas.

<u>Target Area 1 – Former sludge dewatering area, Target Area 5 – Former Cooling Towers, Target Area 10 – Red Tag Storage Area, and Target Area 11 – PCB Building #68</u>

TCDD TEQ soil concentrations are presented on **Figure 4-17** and **Table 4-9**. TCDD TEQ does not exceed its PSL in Target Areas 1, 5, and 11 in the subsurface samples. TCDD TEQ exceeded its PSL in Target

Area 10 at one location, with a detection of 23.5 pg/g at SUSDP10-3G. However, the concentration at this location from 2 to 3 ft bgs was below PSL, at 5.42 pg/g.

Target Area 9 - Green Tag Storage Area

The Target Area 9 subsurface was sampled during the Phase I event at SUSDP18. TCDD TEQ was detected well below its PSL at 0.0367 pg/g, from 2.5 to 3.5 ft bgs.

4.2.5 Soils Summary

Extensive surface and subsurface characterization was performed for a wide range of analytes during the Phase I and Phase II investigations. An iterative sampling approach used to delineate the areas where analytes were detected above their screening levels in order to horizontally and vertically bound these exceedances.

Presented below is a summary of the PSL exceedances in surface soil, subsurface soil, and groundwater. Groundwater results are discussed later in this document in Section 4.3. As noted previously, the constituents exceeding their PSLs are referred to as COIs. Analytes that are greater than Site-specific background, or for which no Site-specific background calculation could be developed, are in bold (i.e., X). The soil characterization results for the Target Areas are also presented in **Table 4-47**.

Soil and Groundwater COIs

Analyte exceeding its PSL	s PSL Surface Soil Subsurface Soil UWZ		UWZ	LWZ
		Inorganics		
Aluminum			x (total only)	
Arsenic	X	X	x (total only)	
Cadmium			x (total only)	X (dissolved only) ¹
Cobalt	X	X	Χ	Х
Iron, total			x (total only)	X
Lead	X	X		
Manganese	X	X	Χ	X
Nickel	X		x (total only)	x (dissolved only)
Thallium		X		
Vanadium	X	X	x (total only)	X (total only) 1
		VOCs		
Tertiary Butyl Alcohol (TBA)			X (DPT only) 1	X ¹
Methyl tert-Butyl Ether (MTBE)			X (DPT only) 1	X ¹
Tetrachloroethylene (PCE)			X ¹	X ¹
Trichloroethene (TCE)			X ¹	X ¹
Vinyl Chloride (VC)			X ¹	
		SVOCs/PAHs		
1,1'-Biphenyl			X ¹	
Benzo(a)-anthracene		X		
Benzo(a)pyrene	X	X ¹		
Benzo(b)-fluoranthene		X ¹		

Analyte exceeding its PSL	Surface Soil	Subsurface Soil	UWZ	LWZ
Benzo(k)-fluoranthene		X ¹		
Dibenzo(a,h)-anthracene	Х	Х		
Indeno(1,2,3-cd)pyrene		X ¹		
Naphthalene		Х	X ¹	X ¹
BaP-TE	Х	Х		
		TPH Fractions		
DRO (C10-C20)	Х	Х	X (DPT only) 1	X (DPT only) 1
GRO (C6-C10)			, , ,	X (DPT only) 1
,	PCBs, P	esticides, Dioxins/Fun	ans	,
PCBs	X ²	X ²		
Dieldrin				X ¹
2,3,7,8-Tetrachlorodi-benzo-p- dioxin	х			
TCDD TEQ HH	Х	Х		

¹ No Site-specific background calculation could be developed

Metals were frequently detected in surface and subsurface soils above screening levels but only vanadium exceeded Site-specific background levels. VOCs were not detected in soils above screening levels. Two individual PAH compounds and BaP-TE exceeded screening levels in surface soil. Seven individual PAH compounds and BaP-TE exceeded screening levels in subsurface soil. DRO was detected above its screening level and Site-specific background levels in surface and subsurface soil. Pesticides were not detected in surface and subsurface soils above screening levels. Dioxins were detected above the screening levels and Site-specific background levels in surface soil. Dioxins were detected above screening levels, but below Site-specific background levels in subsurface soils. Total PCBs were detected above its screening level and BTV (see table footnote 2 above) in surface and subsurface soil. The highest total PCB concentrations were detected in Target Area 12, adjacent to Building #57. Concentrations of PCBs exceeded the TSCA threshold limit for disposal of 50 mg/kg in three locations within Target Area 12.

4.3 Groundwater

4.3.1 Overview of Site Investigations and Target Area Assessment

As discussed in Section 2, the groundwater sampling events were conducted in both Phase I and Phase II. The Phase I groundwater sampling was conducted in two phases, DPT groundwater sampling followed by monitoring well installation and sampling. The screening level DPT groundwater results were used to identify monitoring well locations as described in RI/FS Work Plan Addendum #1. Based on the DPT groundwater results, a total of 15 pairs of groundwater monitoring wells were installed to verify the screening-level data collected during the DPT investigation. Groundwater monitoring well sampling was

No two-sample hypothesis test Site-specific background comparison calculation could be developed but the mean for the total PCBs exceeded its BTV.

conducted in November 2014 following well installation and development. Due to the highly variegated nature of the Patapsco Formation at the Site and the observed presence of lenticular beds of fines within coarse-grained deposits, it was necessary for the well screens to intersect one or more layers of silt or clay in nearly every well. As a result of the fine-grained materials within the screened intervals, the five-well-volume minimum pumped during well development was likely not to have removed all entrained fine particulates from the vicinity of the screen. This was a possible contributing factor to the high turbidities observed in the Phase I monitoring well groundwater samples, and consequently the wells were redeveloped prior to performing additional well sampling during the Phase II.

The Phase II events primarily involved the additional groundwater monitoring well sampling event in December 2016 and additional direct push groundwater sampling in 2017 for further assessment and delineation of naphthalene, PCE, and MTBE identified in the Phase I event. Addendum #3 to the RI/FS Work Plan describes in detail the additional Site characterization needs (AECOM, 2016) and groups the Phase II investigation into Target Areas as summarized below. **Figure 1-6** presents the locations of the Target Areas.

Target Area	Phase I Sample Locations*	Primary Analysts of Interest
18	MW-13B; SB-32	MTBE
19	MW-01A, B; MW-02A, B	Naphthalene and PCE

^{*} Basis for Phase II identification

Brief operational histories of each Target Area are provided below and a more extensive Site history is provided in the CSM Technical Memorandum, Appendix C (AECOM, 2016b).

- Target Area 18 Kenilworth Fueling Island: In 1995 a failed fuel line associated with a 20,000-gallon gasoline UST resulted in a release of product. The line was isolated and capped upon discovery, and remedial activities were conducted from 1995 to August 1997 under the oversight of the District Department of the Environment (DDOE) (now DOEE). A case closure was issued by DDOE in September 1997. The UST was removed from the ground in 2012. A UST case closure was issued by DDOE on November 1, 2012.
- Target Area 19 PCE and Naphthalene in Groundwater: adjacent to southern portion of former power plant where chlorinated solvents were suspected to have been stored and used. Although the former Steuart Petroleum fuel oil supply line historically ran through Target Area 19 and naphthalene is a constituent in fuel oil, there are no known releases from this line on the Pepco property. Naphthalene was detected in MW01-A and MW-02-A at low concentrations during the

2014 sampling event, however, these results were not confirmed by the 2016 sampling following well redevelopment to reduce turbidity. In addition to the two Target Areas noted above, PCE was detected in groundwater surrounding location DP09 and a delineation of the PCE in groundwater was performed during the Phase I sampling as discussed in Section 2.1.7. This area is located in the south-central portion of the Site bordering the southern property boundary and was used as a laydown area from the 1950s through the 1980s. However, no information has been uncovered to date indicating the use or storage of chlorinated solvents in this area.

Section 4.3.3 presents the UWZ characterization results and Section 4.3.4 presents the LWZ characterization results. Groundwater analytical results are summarized in Table 4-10 through Table 4-24 and presented on Figure 4-18 through Figure 4-22.

4.3.2 Comparison to Site-specific Background Analysis

Appendix W presents the results of the Site-specific background analysis for COIs. Site-specific background threshold values were developed for the groundwater COPCs using the Site-specific background datasets excluding the outliers. Sections 4.3.3 and 4.3.4 below provide a comparison to the BTVs in the summaries for the compound groups for the UWZ. Due to the small sample size of the lower aquifer zone Site-specific background dataset, BTVs were not calculated for the LWZ but were calculated for the combined UWZ and LWZ.

A two-sample hypothesis (or population) test was also conducted for each COI for which sufficient data were available. The test selected for each COI was determined by the distributions of the Site and background data sets. The test was conducted to statistically compare the Site and background data sets. The results of population tests are discussed in the following sections.

4.3.3 Upper Water-Bearing Zone

This section summarizes the UWZ results from the Phase I and Phase II investigations. Section 2 discusses the details of sampling locations and methodology. The locations of the groundwater samples are shown on **Figure 2-1**, and analytical methods are presented in **Table 2-2**. The following paragraphs discuss the results by analyte group.

4.3.3.1 Inorganics in the UWZ

As presented in **Table 4-10**, a number of inorganics exceeded PSLs in UWZ direct push groundwater samples for dissolved and total metals. However, fewer inorganic constituents exceeded PSLs in samples collected from the monitoring wells and the monitoring well concentrations were also much lower than direct

push samples for most of the exceedances. This indicates the effect of turbidity caused by suspended soil particles in the direct push samples.

As shown in **Table 4-17** and the summary presented below, there are fewer dissolved metals as determined by the analysis of filtered samples that exceeded their PSLs than for total metals (unfiltered samples).

The maximum mean and median groundwater detection concentrations for inorganic PSL exceedances (filtered and unfiltered) are provided below along with the number of samples with detections and the total number of samples analyzed.

UWZ Monitoring Well Summary for Inorganics (μg/L)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site > Site- specific background?
Cobalt, dissolved	0.6	30	8.2	5.3	11	16	176	No
Manganese, dissolved	43	5,000	1,500	700	16	16	18,000	No
Aluminum, total	2,000	11,000	1,200	470	16	16	55,000	No
Arsenic, total	10	14	5.9	6	16	16	31	No
Cadmium, total	5	6.1	6.1	6.1	1	16	5.6	No
Cobalt, total	0.6	87	12	1.6	16	16	200	No
Iron, total	1,400	44,000	15,000	8,700	16	16	200,000	No
Manganese, total	43	5,700	1,700	990	16	16	14,000	No
Nickel, total	39	49	6.4	2.3	15	16	190	No
Vanadium, total	8.6	83	18	6.6	12	16	320	No

Based on the two-sample hypothesis tests presented in the background evaluation (**Appendix W**), concentrations of inorganics in UWZ groundwater were consistent with the background dataset and are likely naturally occurring. The distribution of inorganic COIs in the UWZ monitoring wells is shown in **Figure 4-18**.

Although the mean and median values of dissolved cobalt and manganese exceeded the PSLs, the detections observed are well below the respective BTVs indicating that the on-Site concentrations are likely naturally-occurring. Cobalt, which is present in high strength steels, alloys, and some paint pigments, was detected in 11 of 16 samples and manganese was detected in all 16 samples. Although manganese is a constituent found in coal and may be associated with historical coal handling, Site concentrations are well below the Site-specific background concentrations. Manganese is a natural element and higher

concentrations often result from changes in redox conditions in the subsurface. The dissolved cobalt concentrations on Site range from 0.2 to 30 μ g/L, with the maximum concentration occurring at well, MW-4A.

4.3.3.2 **VOCs in UWZ**

Concentrations of VOCs associated with fuels (Benzene, toluene, ethylbenzene, and xylenes [BTEX], and methyl tertiary-butyl ether [MTBE]); chlorinated solvents (PCE and its daughter products trichloroethylene [TCE], cis-1,2-dichloroethene [cis-1,2-DCE] and vinyl chloride[VC]); common laboratory artifacts such as acetone, methylene chloride and carbon disulfide; and trihalomethanes (bromodichloromethane, dibromochloromethane, and chloroform) were detected. All compounds with the exception of PCE, TCE, MTBE, VC, and tertiary butyl alcohol (TBA) were below PSLs in all samples. These results are generally consistent between the direct push and monitoring well groundwater sampling results. The UWZ groundwater monitoring well PSL exceedances are presented in **Figure 4-18** and **Table 4-18**.

MTBE

Sampling was conducted in Target Area 18 to assess the MTBE related to the former Kenilworth Fueling Island. The direct push groundwater sample events in 2014 and 2016 were performed to delineate the MTBE occurrence. As presented in **Table 4-11** and summarized below, MTBE was detected in 45 of 75 direct push UWZ samples (with PSL exceedance at three locations), and TBA was detected once out of 29 samples (DP58), but above its PSL (**Figure 4-19**). As presented in **Table 4-18**, MTBE was detected in 11 of 25 UWZ monitoring well samples, but not above its PSL.

UWZ Direct Push	Summary for	MTRF and	TRA (ug/L)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed
Tert-Butyl alcohol	14	110	110	110	1	29
Methyl tert-butyl ether	14	48	5.6	1.2	45	75

A discussion on potential sources of MTBE in Site groundwater is presented in Section 4.8.

PCE and Daughter Products

Investigation in Target Area 19 involved testing for PCE in groundwater in the southwest corner of the Site. In addition, PCE was detected in groundwater surrounding location DP09, and a delineation of the PCE and its daughter products in groundwater was performed during Phase I. Results from the direct push

groundwater sampling events in 2014 and 2016 are presented in **Table 4-11** and summarized below. PCE and TCE were detected in 41 and 22 direct push UWZ samples, respectively.

UWZ Direct Push Summary for PCE and TCE (μg/L)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed
Tetrachloroethylene	5	470	70	2.1	41	96
Trichloroethene	5	26	9.8	6.4	22	96

As summarized below, PCE and its daughter products TCE and VC exceeded their respective PSLs in shallow monitoring well samples.

UWZ Monitoring Well Summary for VOCs (μg/L)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed
Tetrachloroethylene	5	320	31	2	16	25
Trichloroethene	5	41	7.7	1.2	8	25
Vinyl Chloride	2	5.3	5.3	5.3	1	25

PCE exceeded its PSL in MW01-A, MW-05A, and MW-09A. TCE and VC exceeded their PSL in MW09-A. Cis-DCE was also detected in the UWZ but at concentrations below its PSL. When subsurface conditions are favorable, biodegradation takes place sequentially from PCE to TCE to cis-DCE to VC. The three degradation products TCE, cis-DCE, and VC are referred to as PCE daughter products. The maximum monitoring well concentrations of PCE, TCE, cis-DCE, and VC (9.2 μg/L) occurred at MW-09A.

The maximum concentrations of PCE, TCE, and cis-1,2-DCE detected in groundwater during the Phase I PCE direct push sample event to further characterize the PCE concentrations were 470 µg/L, 26 µg/L, and 23 µg/L, respectively, all in sample DPWB730-35N, which is located adjacent to the southern property boundary. This portion of the Site was historically used as an equipment laydown area. The results from both direct push samples and monitoring well samples are presented on **Figure 4-21**. The highest PCE concentrations were detected along the southern property boundary in the south central portion of the Site. Levels of PCE, TCE, and cis-1,2-DCE in groundwater diminish rapidly with increasing distance north of Benning Road. Section 4.8 presents a discussion of the potential sources of the PCE in groundwater.

4.3.3.3 SVOCs and PAHs in the UWZ

PAHs were detected in 22 of the 45 UWZ direct push groundwater samples analyzed (see **Table 4-11**). Total PAH concentrations in groundwater ranged from 0.043 to 30 μ g/L, with the maximum concentration detected at DP-37 within the former bulk fuel storage ASTs (Target Area 13). The mean of total PAH concentrations detected was 3.6 μ g/L. This average concentration was exceeded at four locations: DP-28, DP-30, DP-37, and DP-39. Three of these locations (DP-28, DP-37 and DP-39) are located in and around TA#13. These concentrations may be associated with residual contamination in the soil; however, the detection of low concentrations of some high-molecular-weight PAHs during DPT sampling could be a result of the drag-down of contaminated fine soil particles from zones above the sampling interval. Irrespective of the care taken to install temporary sample points, DPT sampling methods sometimes introduce a positive bias in groundwater samples due to drag-down. Therefore, permanent monitoring wells were installed to verify the detection of various PAHs in groundwater.

During UWZ monitoring well sampling, total PAHs were detected in five of the 19 samples with a maximum concentration of 16 μ g/L in MW02A (see **Table 4-18**). The detections were in MW-01A, MW-02A, MW-07A, MW-08A, and MW-12A). All of these wells, with the exception of MW-12A, are located in the western portion of the Site. As shown in **Figure 4-18** and **Table 4-18** and per the summary presented below, two individual PAHs exceeded the PSL, 1,1'-Biphenyl and naphthalene.

UWZ Monitoring Well Summary for SVOCs (μg/L	UWZ Monitorin
---	---------------

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed
1,1'-Biphenyl	0.083	0.27	0.27	0.27	1	16
Naphthalene	0.17	13	3.3	0.12	4	19

Both 1,1'-Biphenyl and naphthalene exceed their PSLs in MW02-A and naphthalene also exceeded its PSL in MW01-A. However, resampling in 2016 indicated that naphthalene was not detected in either well. Activities in Target Area 19 included investigation of both PCE and naphthalene in groundwater. However, based on the 2016 monitoring event, naphthalene sampling was eliminated per discussions with DOEE.

4.3.3.4 TPH Fractions in the UWZ

With the exception of MW-02A, TPH analysis was performed primarily on direct push samples. In the direct push UWZ groundwater, GRO was not detected. DRO was detected in six of the 45 samples at 320 to 540 μ g/L, with the maximum detected at DP46, which is located adjacent to the southwest corner of Building

#57 (see Table 4-11). All six detections exceed the DRO PSL of 100 μ g/L. ORO was detected in 11 of the 45 samples at 230 to 1,900 μ g/L, with the maximum detected at DP43 in Target Area 4. None of the samples exceeded the ORO PSL of 6,000 μ g/L.

DRO was not detected in direct push groundwater samples from DP28 in Target Area 13 (Former AST Area) and DP31 south of Target Area 2 (former Benning Fueling Island); ORO was detected, but well below its PSL. Neither DRO nor ORO was detected in sample SUSDP05 immediately downgradient of Target Area 3 (former 15,000 gal UST and 50,000 gal AST [No. 2 Fuel Oil]), sample SUSDP05, located in Target Area 5 (former cooling towers). In the eastern area of Target Area 5, DRO was detected in sample SUSDP11 at 320 µg/L J (estimated). In Target Area 4, DRO was detected in sample SUSDP43 at 490 µg/L; however the soil at this location was subsequently excavated as part of the cooling tower soil remediation. The remaining four DRO exceedances were detected at DP46, SUSDP14, SUSDP15, and SUSDUP19. Location DP46, adjacent to Building #57 in Target Area 12 and SUSDP19 in Target area 20, are located in the southeast corner of the Site and are hydraulically upgradient of the majority of the Site. Locations SUSDP14, adjacent to Building #59 (offices) and SUSDP15, between Buildings #75 and 88 (shops/stores) are outside of the Target Areas, but are located downgradient of DP46 and SUSDP19.

The petroleum constituent's benzene, toluene, and xylene were detected in UWZ direct push groundwater samples but well below PSLs. Toluene was the most frequently detected, but with a maximum level of 2.1 μ g/L (SUSDP06) compared for a PSL of 1,000 μ g/L.

For the monitoring wells, TPH was analyzed only in the sample collected at MW02A in 2016, (see **Table 4-18**). The MW02A sample did not detect TPH and this well is downgradient of Target Area 2 and Target Area 13. Twenty-five samples were collected to test for petroleum constituents BTEX and MTBE in the UWZ monitoring wells in 2014 and 2016, and none of these compounds exceeded their PSLs. MW-04A and MW-08A are downgradient of Target Area 3. Ethylbenzene and xylene were not detected, while benzene in MW-9A and toluene in MW3A and MW9A were only detected under 1 μ g/L, well below their PSLs.

4.3.3.5 PCBs in the UWZ

None of the UWZ groundwater sample results for PCBs (limited to PCB Aroclors) exceeded the total PCB PSL of $0.5~\mu g/L$. During the direct push sampling in the UWZ, PCBs were detected at three of the 45 samples analyzed with a maximum detection of $0.15~\mu g/L$ at SUSDP05 (see Table 4-12). All three detections (DP05, DP37 and DP38) were located in the western portion of the Site.

Samples collected from the UWZ monitoring wells indicated PCB presence in MW-07A (in Target Area 1). Aroclor 1242 was detected in MW-07A at 0.034 μ g/L, which is below its screening level (**see Table 4-19**).

4.3.3.6 Pesticides in the UWZ

None of the UWZ groundwater sample results for pesticides exceeded their respective PSLs. During direct push groundwater investigation, several pesticides (DDT metabolites, cis and trans chlordane, dieldrin and heptachlor epoxide) were detected primarily in the mid to eastern portion of the Site (DP09, DP10, DP11, DP17 and DP24) (see Table 4-12). UWZ monitoring well sampling did not confirm many of these detections. There were two detections of 4,4'-DDT, one detection of beta-BHC, and three detections of delta-BHC but all were below their respective PSLs (Table 4-19).

4.3.3.7 Dioxin and Furan Compounds in the UWZ

As presented in **Table 4-13**, dioxins and furan compounds were detected in all 11 of the samples collected from the direct push samples in the UWZ at TCDD TEQs ranging from 0.000762 to 0.643 pg/L, with the maximum TEQ reported at location DP08 (TA 1).

During the UWZ monitoring well sampling, 13 of the 16 samples collected exhibited TCDD TEQs ranging from 0.00128 to 14.1 pg/L, with the maximum TEQ reported at MW-12A (see **Table 4-20**). The detected concentrations appear to be randomly distributed throughout the Site, with no definitive pattern. The groundwater samples from monitoring wells were also visually turbid raising the possibility that some of the measured concentrations may have been artificially inflated by turbidity. Although these parts-per-quadrillion levels do not appear to be Site-related, the wells were re-sampled in 2016 for dioxin concentrations. The 2016 results were consistently lower than the 2014 results in the same wells. None of groundwater sample results for dioxins and furan compounds exceeded the total TEQ of 30 pg/L.

4.3.4 Lower Water-Bearing Zone

This section summarizes the LWZ results from the Phase I and Phase II investigation. The locations of the groundwater samples are shown on **Figure 2-1**, and analytical methods are presented in **Table 2-2**. The following subsections discuss the results by analyte group.

4.3.4.1 Inorganics in the LWZ

As presented in **Table 4-14**, a number of inorganics exceeded PSLs in LWZ direct push groundwater samples for dissolved and total metals. However, fewer inorganic constituents exceeded PSLs in samples collected from the monitoring wells and the monitoring well concentrations were also much lower than direct

push samples for most of the exceedances. This indicates the potential effect of turbidity caused by suspended soil particles in the direct push samples.

As shown in **Table 4-21** and the summary presented below, vanadium did not exceed its PSL in the filtered samples (dissolved fraction) but it did exceed its PSL in the unfiltered samples (total fraction). As tabulated below, dissolved cadmium, cobalt, iron, manganese, and nickel in monitoring well samples exceeded the screening levels in in the LWZ.

LWZ Monitoring Well Summary for Inorganics (µg/L)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	вту	Is Site ≥ to Site-specific background?
Cadmium, dissolved	5	6.5	3.3	3.3	2	16		
Cobalt, dissolved	0.6	80	9.4	1.4	14	16	176	No
Iron, dissolved	1,400	38,000	9,600	2,300	9	16	85,000	No
Manganese, dissolved	43	3,400	1100	800	16	16	18,000	No
Nickel, dissolved	39	44	5	0.97	15	16	47	No (Site=BK)
Cobalt, total	0.6	26	5.1	2.7	16	16	200	No (Site=BK)
Iron, total	1,400	61,000	29,000	30,000	16	16	200,000	No
Manganese, total	43	3,700	1,100	750	16	16	14,000	No
Vanadium, total	8.6	23	10	9.2	15	16		

⁻⁻ Indicates not applicable

Based on the two-sample hypothesis tests presented in the background evaluation (**Appendix W**), concentrations of inorganics in Site LWZ groundwater are consistent with Site-specific background groundwater. However, dissolved cadmium and total vanadium do not have a Site-specific background comparison. Also, cadmium was only detected twice in 16 samples, and only one detection was slightly above its PSL. The distribution of inorganic COIs in the LWZ monitoring wells is shown in **Figure 4-20**.

Cadmium was detected in two LWZ wells with the maximum concentration and screening level exceedance in MW-15B, an upgradient Site well. Cobalt, iron and manganese were more widely detected. Iron and manganese are natural elements and higher concentrations often result from changes in redox conditions in the subsurface. Cobalt is present in high strength steels, alloys, and some paint pigments. The dissolved

cobalt concentrations in the LWZ on Site range from 0.2 to 80 μ g/L, with the maximum concentration occurring at the upgradient well, MW-15B..

4.3.4.2 VOCs in the LWZ

Concentrations of VOCs associated with fuels (BTEX compounds, and MTBE); chlorinated solvents (PCE and its daughter products TCE, cis-1,2-dichloroethene, and VC); common laboratory artifacts such as acetone, methylene chloride, and carbon disulfide; and trihalomethanes (bromodichloromethane, dibromochloromethane, and chloroform) were detected. All compounds with the exception of PCE, TCE, MTBE, VC, and TBA were below PSLs in all samples. These results are generally consistent between the direct push and monitoring well groundwater sampling results. The LWZ groundwater monitoring well PSL exceedances are presented in **Figure 4-20** and **Table 4-22**. As presented below, PCE and its daughter products TCE and VC exceeded their respective PSLs.

LWZ Monitoring	well Summary for	VOCs (μg/L)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed
Tert-Butyl alcohol	14	62	34	34	2	8
Methyl tert-butyl ether	14	190	23	3.4	15	24
Tetrachloroethylene	5	110	30	1.2	7	24
Trichloroethene	5	48	18	13	4	24

MTBE

MTBE in Target Area 18 was assessed for potential relation to the former Kenilworth Fueling Island. The direct push groundwater sample events in 2014 and 2016 were performed to delineate the horizontal extent of MTBE. As presented in **Table 4-15** and summarized below, MTBE was detected in 28 of 43 direct push LWZ samples. As presented in **Table 4-22** and **Figure 4-20**, MTBE was detected in 15 of 24 LWZ monitoring well samples and exceeded its PSL in MW13B. TBA was detected above its PSL in MW-09B and above its PSL in a direct push LWZ groundwater sample at DP58.

LWZ Direct Push Summary for MTBE and TBA (µg/L)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed
Tert-Butyl alcohol	14	62	24	5.6	3	26
Methyl tert-butyl ether	14	1100	110	1.5	28	43

The LWZ groundwater direct push PSL exceedances are presented in **Figure 4-22.** The PSL for MTBE was exceeded in seven of the LWZ samples (MW-13B and six direct push samples). The maximum MTBE concentration of 1,100 μ g/L was detected in 2017 at an upgradient, off-Site location (DPOS-03) located to the northeast of the Site. Section 4.8 presents a discussion of the potential sources of the MTBE in groundwater.

PCE and Daughter Products

Trichloroethene

Activities in Target Area 19 included investigation of PCE in groundwater in the southwest corner of the Site. In addition, PCE was detected in groundwater surrounding location DP09 and a delineation of the PCE and its daughter products in groundwater was performed during Phase I.

Results from the direct push groundwater sampling events in 2014 and 2016 are presented in **Table 4-15** and summarized below. PCE and TCE were detected in 11 and 10 direct push LWZ samples, respectively.

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed
Tetrachloroethylene	5	68	16	7.1	11	46

17

12

10

46

51

5

LWZ Direct Push Summary for PCE and TCE (µg/L)

As presented in **Figure 4-20** and **Table 4-22**, PCE and TCE were each detected above their PSLs in LWZ monitoring well samples. PCE and TCE had seven and four detections out of 24 monitoring well samples, respectively. PCE exceeded its PSL in MW01-B and MW-05-B. TCE exceeded its PSL in MW01-B. VC and cis-DCE were also detected in the LWZ but at concentrations below their PSLs. As presented on **Figure 4-20** and **Figure 4-21**, the maximum PCE detections in the LWZ monitoring wells was in MW-01B which is within Target Area 19.

LWZ Monitoring Well Summary for PCE and TCE (µg/L)

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed
Tetrachloroethylene	5	110	30	1.2	7	24
Trichloroethene	5	48	18	13	4	24

Within the south-central area of the Site, the groundwater samples from the LWZ exhibited little or no PCE contamination. Groundwater sample DPWB545-50N exhibited the highest concentration of PCE in the LWZ

 $(8.1 \ \mu g/L)$ and was the only LWZ sample containing detectable levels of a PCE degradation product (3.1 $\mu g/L$ TCE). These data suggest that the formation in this area is in fact divided into an UWZ and LWZ by an intermediate semi-confining silt-clay layer, and the impacts to the LWZ on Site are significantly lower than impacts to the UWZ. Section 4.8 presents a discussion of the potential sources of the PCE in groundwater.

4.3.4.3 SVOCs and PAHs in the LWZ

PAHs were detected in 16 of the 17 LWZ direct push groundwater samples analyzed (see **Table 4-15**). Total PAH concentrations in groundwater ranged from 0.036 to 2.8 μ g/L, with the maximum concentration detected at DP27 in Target Area 13. The mean value of total PAH concentrations was 0.77 μ g/L. Although PAHs detected in the LWZ may result from on-Site sources, the detection of low concentrations of some high molecular PAHs during DPT sampling could be a result of the drag-down of contaminated fine soil particles from zones above the sampling interval. Irrespective of the care taken to install temporary sample points, DPT sampling methods sometimes introduce a positive bias in groundwater samples due to drag-down.

During LWZ monitoring well sampling in 2014, Total PAHs were detected in 3 of the 18 samples with a maximum concentration of 2.7 μ g/L in MW02B (see **Table 4-22**). The detections were in MW-01B, MW-02B, and MW-12B. Wells MW-01 and MW-02 are located along the western portion of the property and are downgradient of the former power plant building. As shown in **Figure 4-20** and **Table 4-22** and the summary presented below, the only individual PAH that exceeded its PSL was naphthalene. Naphthalene was not detected in either MW-01B or MW-02B when these wells were re-sampled in 2016. Based on these results, further naphthalene sampling was eliminated in Target Area 19, per discussions with DOEE.

LWZ Monitoring Well Summary	y for	SVOC	Cs (µg/	L)	
-----------------------------	-------	------	---------	----	--

Analyte exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed
Naphthalene	0.17	2.6	1.4	1.4	2	18

4.3.4.4 TPH Fractions in LWZ

In the direct push sampling, GRO was detected only at DP32 (one detection out of 17 samples) at a concentration of 880 μ g/L compared to a PSL of 3.3 μ g/L (**see Table 4-15**). This is consistent with the detection of MTBE at this location as MTBE is a gasoline additive. DRO was detected in two of the 17 samples at 260 and 380 μ g/L, with the maximum detected at DP46. Both detections exceeded the DRO PSL of 100 μ g/L. ORO was detected in four of the 17 samples at 350 to 580 μ g/L, with the maximum detected at SUSDP09, all below the ORO PSL of 6,000 μ g/L. Neither DRO nor ORO were detected in

direct push groundwater samples from DP29 in Target Area 13 (Bulk Storage ASTs and Loading Rack) and DP31 south of Target Area 2 (Former Benning Fueling Island). Petroleum constituents, BTEX compounds, were detected in LWZ direct push groundwater samples but not above 1 µg/L (well below PSLs).

TPH was not analyzed in the LWZ wells. However, 24 samples for the petroleum constituents BTEX and MTBE were collected in the LWZ monitoring wells in 2014 and 2016 and only MTBE exceeded its PSL. Ethylbenzene was not detected, while benzene in MW-8B and xylene in MW9B were only detected under 1 μ g/L. Toluene was detected seven times but with a maximum detection of 12 μ g/L versus a PSL of 1,000 μ g/L.

4.3.4.5 PCBs in the LWZ

None of the LWZ groundwater sample results for PCBs (limited to PCB Aroclors) exceeded the total PCB PSL of $0.5~\mu g/L$. During the direct push sampling, PCBs were detected at five of the 16 sample locations with a maximum detection of only $0.039~\mu g/L$ (SUSDP41) as shown in **Table 4-16**. These locations include SUSDP07, SUSDP08, DP27, and SUSDP41 in Target Area 1, and SUSDP03 adjacent to the southeast corner of the former power plant building. Samples collected from the LWZ monitoring wells indicated PCB presence in MW-08B (near Target Area 5). Aroclor combination of 1254 and 1260 was detected in MW-08B at a total concentration of $0.11~\mu g/L$ (see Table 4-23).

4.3.4.6 Pesticides in the LWZ

During direct push groundwater investigation, pesticides were only sampled in the UWZ. As presented in **Figure 4-20** and **Table 4-23**, during 2016 monitoring well sampling, the only PSL exceedance was for dieldrin, which was detected at one location, MW-08B, at a concentration of $0.0022~\mu g/L$, which is slightly above its PSL of $0.0018~\mu g/L$. There were also five detections of trans-chlordane, four detections of heptachlor epoxide, three detections of 4,4'-DDT, two detections of endrin, and one detection each of beta-BHC, delta-BHC, and endosulfan sulfate, but all below their respective PSLs.

There are no known sources of organochlorine pesticides on the Landside portion of the Site. The pesticides DDT, DDE, DDD, and gamma-chlordane (or trans-chlordane) were widely used historically in urban areas for mosquito and termite control. They are persistent in soils and commonly detected in urban soils and sediments many decades after application.

4.3.4.7 Dioxin and Furan Compounds in the LWZ

None of groundwater sample results for dioxins and furan compounds exceeded the total TEQ PSL of 30 pg/L. During direct push groundwater investigation, dioxins and furan compounds were only sampled in the

UWZ. During the 2014 monitoring well sampling, eight of the 12 samples collected exhibited TCDD TEQs ranging from 0.0017 to 3.34 pg/L. The maximum TEQ was reported at MW-12B and was an order of magnitude below the PSL (see **Table 4-24**). MW-12 is located in the vicinity of the Target Area 12 transformer shops (Building #57); however, dioxins are not associated with storage or servicing of transformers. The detected concentrations appear to be randomly distributed throughout the Site, with no definitive pattern. The groundwater samples from monitoring wells were also visually turbid raising the possibility that some of the measured concentrations may have been artificially inflated by turbidity. Although these parts-per-quadrillion levels do not appear to be Site-related, the wells were re-sampled in 2016 for dioxin concentrations following well redevelopment activities. The 2016 results were significantly lower than the 2014 results in the same wells.

4.3.5 Groundwater Summary

Extensive groundwater direct push investigation and monitoring well sampling was performed for the Site UWZ and LWZ during the Phase I and Phase II investigations. Section 4.3.5 presents a summary of the PSL exceedances in the UWZ and the LWZ. **Table 4-47** summaries the groundwater characterization results for the Target Areas.

Upper Water-Bearing Zone

For the UWZ, several metals exceed their screening levels but were below Site-specific background levels. MTBE was detected in 45 of 75 direct push UWZ samples but the PSL for MTBE was only exceeded in three of these. MTBE was detected in 11 of 25 UWZ monitoring well samples but not above its PSL.

PCE, TCE, and VC were detected above their PSLs in 16, eight, and one samples, respectively, out of 25 samples. PCE exceeded its PSL in MW01-A, MW-05-A, and MW09-A. TCE and VC exceeded their PSL in MW09-A. Cis-DCE was also detected in the UWZ but at concentrations below its PSL. The maximum concentrations of PCE, TCE, and cis-1,2-DCE detected in groundwater during the Phase I PCE direct push sample event were 470 μ g/L, 26 μ g/L, and 23 μ g/L, respectively, all in sample DPWB730-35N. The highest PCE concentrations were detected along the southern property boundary in the south-central portion of the Site, which was historically used as a former laydown area. However, there are no records indicating the use or storage of chlorinated solvents in this area. Levels of PCE, TCE, and cis-1,2-DCE in groundwater diminish rapidly with increasing distance north of Benning Road.

With the exception of one TPH samples collected at MW02A in 2016, only direct push groundwater samples were analyzed for TPH and TPH fractions. TPH was not detected in the MW02A sample. In the direct push

UWZ groundwater, DRO was detected in six of the 45 samples, and all six detections exceeded the DRO PSL.

Both 1,1'-biphenyl and naphthalene exceeded their PSLs in MW02-A and naphthalene also exceeded its PSL in MW01-A. However, naphthalene was re-sampled in both wells in 2016 and was not detected in either well.

None of groundwater sample results for PCBs, pesticides, or dioxins/furans exceeded their screening levels.

Lower Water-Bearing Zone

For the LWZ, several metals exceeded their screening levels but were below Site-specific background levels with the exception of dissolved cadmium and total vanadium which do not have Site-specific background comparisons. Also, cadmium was only detected twice in 16 samples, with only one detection slightly above its PSL.

MTBE was detected in 28 of 43 direct push LWZ samples but the PSL for MTBE was only exceeded in six of the LWZ direct push samples. MTBE was detected in 15 of 24 LWZ monitoring well samples and exceeded its PSL in MW13B. The maximum MTBE concentration of 1,100 µg/L was detected in 2017 at an upgradient, off-Site location northeast of the Site. TBA was detected above its PSL in MW-09B and above its PSL in a direct push LWZ groundwater sample at DP58.

For LWZ monitoring wells, PCE and TCE were detected in seven and four samples, respectively, out of 24 samples. PCE exceeded its PSL in MW-01B (Target Area 19) and MW-05B. TCE exceeded its PSL in MW01-B. VC and cis-DCE were also detected in the LWZ but at concentrations below their PSLs. Within the south-central area of the Site, the groundwater samples from the LWZ exhibited little or no PCE contamination.

Only direct push groundwater samples were analyzed for TPH and TPH fractions in the LWZ; GRO was detected at DP32 above its screening level. DRO was detected in two samples, and both samples exceeded the DRO screening level. ORO was detected below its screening level.

None of the SVOCs exceeded screening levels except for naphthalene in MW01-B and MW02-B in 2014. However, naphthalene was re-sampled in both wells in 2016 and was not detected in either well.

None of groundwater sample results for PCBs exceeded the total PCB PSL of $0.5~\mu g/L$. The only pesticide PSL exceedance in the LWZ was for dieldrin which was detected at one location, MW-08B, during the 2016

sampling event at a concentration of 0.0022 μ g/L, which is slightly above its PSL of 0.0018 μ g/L. None of groundwater sample results for dioxins and furan compounds exceeded their screening levels.

4.4 Storm Drain Sampling Results

Sampling of stormwater and residue from Site storm drains was conducted on October 7 and 8, 2013. The locations of the storm drain water and residue samples are shown on **Figure 4-23** and **Figure 4-24**, and analytical methods are presented in **Table 2-2**. Analytical results and statistics for the storm drain water and residue samples are provided in **Table 4-25** and **Table 4-26**, respectively. Eight normal stormwater samples and one duplicate stormwater sample (at location SDPEPR1, which drains to Outfall 013) were collected. Sample SDW101N was a weighted composite of water from four storm sewer manholes on the west side of the former power plant building that drain to Outfall 101. Four normal storm drain residue (sediment) samples and one duplicate residue sample (at location SDPEPR5, which drains to Outfall 013) were collected.

Stormwater samples were analyzed for total and dissolved metals, VOCs, PAHs, TPH (GRO, DRO, and ORO), pesticides, and PCB Aroclors. Storm drain residue samples were analyzed for metals, VOCs, PAHs, TPH (GRO, DRO, and ORO), pesticides, and PCB Aroclors. Concentrations of inorganic and organic constituents of interest in the storm drain samples are shown on **Figure 4-23** and **Figure 4-24**, respectively. No screening levels were defined for storm drain water and storm drain residue because there is little or no direct contact between these media and human or ecological receptors. Any associated risks to human or ecological receptors are addressed as part of the overall risk assessments for the Waterside Investigation Area.

Pepco conducted a closed-circuit television (CCTV) inspection of the storm drains in 2015 and identified several areas with accumulated sediments. Pepco had not previously inspected the storm drains or removed accumulated sediments. As a result, the storm drain sediments sampled for the RI may have accumulated over a period of many years. Pepco subsequently completed a clean out of the entire storm drainage system, and removed all accumulated sediments (approximately 47 cubic yards) for off-Site disposal. Pepco conducted another round of CCTV inspections in 2018, at which time 9.5 tons of sediment and debris were removed from the storm drain system. During June 2019, a third sediment removal was conducted removing an additional 4.72 tons of sediment and debris. Therefore, the storm drain samples collected during the RI are not representative of current conditions within the storm drain system.

Observations during the CCTV inspections are included in **Appendix Z** and are discussed further in Section 5.3.1. Following each of the sediment removal events, a composite sample was collected for waste characterization and disposal purposes. The PCB Aroclor results are summarized in the table below. The results show decreasing concentrations for PCB Aroclors between the initial sediment removal event in

2015 and the most recent event in 2019. No PCB Aroclors were detected during the June 2019 waste characterization sampling at a detection limit of 0.066 mg/kg.

Analytical Results of Storm Drain Sediment Waste Characterization

Analyte	July 2015	September 2018	June 2019	
PCB Aroclors (mg	J/kg)			
PCB-1016	0.153	<0.064	<0.066	
PCB-1221	<0.025	<0.064	<0.066	
PCB-1232	<0.025	<0.064	<0.066	
PCB-1242	<0.025	<0.064	<0.066	
PCB-1248	<0.025	<0.064	<0.066	
PCB-1254	<0.025	0.19	<0.066	
PCB-1260	0.483	0.17	<0.066	
Total PCBs	0.636	0.360	ND	

4.4.1 Inorganics

The analytical data indicate levels of metals in Site stormwater and storm drain residue consistent with storm drain sampling conducted during an EPA Multi-Media Inspection (USEPA, 1997). Consistent with the 1997 EPA sampling event (USEPA, 1997c), the metals exhibiting the highest concentrations in storm drain residue were lead (3200 mg/kg in sample SDR101N) and zinc (3200 mg/kg in SDRPEPR4N, which drains to Outfall 013). The distribution of selected metals in storm drain samples is shown on **Figure 4-23**.

4.4.2 VOCs

Very low levels of VOCs were detected in storm drain residue samples from all four sampling locations and in one stormwater sample. All VOC detections were at levels near the typical laboratory detection limits, all were qualified as estimated values, and none were above 2 ppb in residue or surface water.

4.4.3 PAHs

PAHs were detected in all storm drain surface water and residue samples. The mean concentration of total PAHs (sum of 16 EPA priority PAHs) in stormwater samples was 2.4 µg/L. The mean concentration of total PAHs in residue was 24 mg/kg, and the maximum detection of total PAHs in residue was 40 mg/kg in sample SDR101N (draining to Outfall 101) to the west of the former power plant building. The PAH with the highest mean detection among storm drain residue samples was fluoranthene. The distribution of total PAHs in storm drain samples is shown on **Figure 4-24**.

4.4.4 GRO/DRO/ORO

At least one class of TPH (GRO, DRO, or ORO) was detected in every storm drain water and residue sample except for water sample SDWMH02N (draining to Outfall 101). The maximum concentrations of DRO and ORO detected in storm drain residue were 3,300 mg/kg and 5,800 mg/kg, respectively, both in sample SDRPEPR4N (draining to Outfall 013) in the southeast corner of the Site. Sample SDR101N (draining to Outfall 101) contained the highest detected concentration of GRO (1.6 mg/kg). The maximum concentrations of DRO and ORO detected in stormwater were 1.2 milligrams per liter (mg/L) and 3.3 mg/L, respectively, both in sample SDWPEPR4N (draining to Outfall 013). There were no detections of GRO in any storm drain surface water samples.

4.4.5 Pesticides

At least one pesticide was detected at low levels in every storm drain water and residue sample except for water sample SDWMH02N (draining to Outfall 101), and most storm drain samples contained three or more pesticides. The pesticide exhibiting the highest concentration in stormwater was 4,4'-DDT (0.02 μ g/L in sample SDWPEPR3N, which drains to Outfall 013). The pesticide exhibiting the highest concentration by far in storm drain residue was methoxychlor (11 mg/kg in sample SDRPEPR5, which drains to Outfall 013). The data validation effort qualified this result with a "JX" qualifier, meaning the analyte was not confirmed and the result is a probable false positive. Excluding this detection, levels of pesticides in storm drain residue ranged from <5 μ g/kg to 120 μ g/kg. The presence of low levels of pesticides in stormwater runoff is typical of urban environments where pesticides have historically been used. As discussed in Section 2.4 of the CSM Technical Memorandum (AECOM, 2016b), Pepco records do not indicate the use or storage of organochlorine pesticides at the Site. The distribution of selected pesticides in storm drain samples is depicted on **Figure 4-24**.

4.4.6 PCBs

PCBs were detected in every storm drain residue sample and one storm drain water sample. The highest concentration of PCBs in storm drain residue was 960 µg/kg in sample SDR013N (draining to Outfall 013) collected from the sampling manhole located upstream of the discharge point at Outfall 013. The PCBs at this location consist of Aroclor 1260 and Aroclor 1248. This pattern of Aroclors matches the Cove sediments, but does not match the pattern of Aroclors in residues from the other storm drain sampling locations (which are comprised of Aroclor 1260 and 1254). It is possible that some on-Site manhole samples may have been affected by backflow from the River during high tides. Supporting forensic characterizations and uncertainty regarding this assessment will be discussed in the upcoming Forensics

Analysis and Source Evaluation Report. Aroclor 1248 was not detected at the Outfall 013 manhole sampling location during the USEPA 1997 Multi-Media Inspection Report (USEPA, 1997c).

The one PCB detection in storm drain surface water was $0.45 \mu g/L$ in sample SDWPEPR3 (draining to Outfall 013). The distribution of total PCBs (sum of Aroclors) in storm drain samples is depicted on **Figure 4-23**.

In general, the PCB levels in the storm drain residue samples were significantly lower than levels detected during previous investigations. Additionally, due to the 2015 storm drain clean out, contaminants detected in storm drain residues during the RI are not representative of current Site conditions.

4.5 Anacostia Park

Historical records indicate that Pepco had proposed to stage dredge spoils on a portion of the Anacostia Park property during an intake dredging project in 1967. The area is located adjacent to the NPS KMY property, located to the west of the Site and adjacent to the Anacostia River. Although it is not known if the dredge spoil staging activity actually took place, Pepco conducted soil and groundwater characterization to investigate any potential impacts in this portion of Anacostia Park.

The sampling included surface soil sampling using ISM, discrete surface and subsurface soil sampling, and groundwater sampling. The sample locations are displayed on **Figure 2-2** and **Figure 2-3**. The ISM surface soil samples were collected from three DUs (DU01, DU02, and DU3) which included two duplicate samples and two replicate samples from DU03 to estimate the total sampling error. The results indicated that with the exception of arsenic, the surface sample results (ISM and discrete) were below screening levels. As presented in **Table 4-27**, arsenic was detected in all eight ISM composite surface soil samples with a maximum detection of 7 mg/kg at KMY-DU01. Low levels of PCBs, pesticides, PAHs, TPH fractions, and dioxins/furans were detected and were significantly below their PSLs.

The ISM samples are unsuitable for statistical comparison to discrete Site-specific background levels due to the compositional nature of the ISM samples. Therefore, discrete samples were collected for the analysis of arsenic to determine if the detections were consistent with background levels. Additionally, the samples were analyzed for both total and hexavalent chromium to help determine the appropriate chromium screening level. The sampling results indicated that hexavalent chromium levels are negligible and that all of the chromium can be treated as trivalent with a PSL of 180,000 mg/kg. Therefore, chromium has been screened out as a COI. As indicated below and in **Table 4-28**, arsenic was detected in all 13 discrete surface soil samples with a maximum detection of 15 mg/kg at KMY02.

Surface Soil Summary for Inorganics (mg/kg)

Analyte exceeding its PSL	PSL	Maximum Detection	Number of Detections	Total Samples Analyzed	Detections Exceeding PSL	вту	Detections Exceeding BTV
Arsenic	3	15	13	13	12	17	none

As discussed in Section 4.2.2, a Site-specific background analysis was performed for soil. As presented above, the arsenic detections were below the arsenic BTV of 17 mg/kg.

4.5.1 Subsurface Soil

A total of nine discrete subsurface soil samples were collected at three locations (KMY-DU01, KMY-DU02, and KMY-DU03). With the exception of arsenic and BaP-TE, the subsurface sample results were below screening levels. Arsenic was detected in all nine discrete subsurface soil samples with a maximum detection of 4.8 mg/kg at KMY-DU01. The arsenic detections were all below the arsenic BTV of 17 mg/kg. BaP-TE was detected in all nine discrete subsurface soil samples with a maximum detection of 2.37 mg/kg at KMY-DU03. This maximum detection was the only PSL exceedance. However, none of the individual PAHs exceeded their PSLs in any of the discrete soil samples (see table below).

PCBs were detected in two of the nine samples, but significantly below the total PCBs PSL. TPH fractions were detected but below their PSLs.

Subsurface Soil Summary (mg/kg)

Analyte exceeding its PSL	PSL	Maximum Detection	Number of Detections	Total Samples Analyzed	Detections Exceeding PSL	BTV	Detections Exceeding BTV
Arsenic	3	4.8	9	9	4	17	none
BaP-TE	2.1	2.37	9	9	1	0.12	1

4.5.2 Groundwater

Groundwater samples were collected from three borings (KMY-DU01, KMY-DU02, and KMY-DU03) in the Anacostia Park investigation area during April 2017. Groundwater samples were collected from the water table aquifer in each of the three borings. The analytical results are presented in **Table 4-29**. Detected concentrations were generally below screening levels, with the exception of lead and TPH fractions (DRO and ORO). With the exception of lead, which slightly exceeded its BTV in one sample (72 μ g/L versus the BTV of 70 μ g/L), all dissolved and total metal concentrations were below their BTVs. The other two total

lead detections were 12 μ g/L and non-detect. Also, lead was not detected in any of the three filtered samples.

PCBs were not detected in any of the three groundwater samples. PAHs and dioxins were detected at very low levels, significantly below their PSLs. One pesticide, 4,4'-DDT, was detected in one sample but significantly below its PSL. Groundwater results for Anacostia Park are summarized below.

Groundwater Sample Summary (µg/L)

Analyte Exceeding its PSL	PSL	Maximum Detection	Mean	Median	Number of Detections	Total Samples Analyzed	BTV
Cobalt, dissolved	0.6	16	9.5	12	3	3	176
Manganese, dissolved	43	3,400	2,400	2,900	3	3	18,000
Aluminum, total	2000	33,000	13,000	7,100	3	3	55,000
Arsenic, total	10	16	11	8.8	3	3	31
Cobalt, total	0.6	52	29	35	3	3	200
Iron, total	1,400	150,000	73,000	45,000	3	3	200,000
Lead, total	15	72	42	42	2	3	70
Manganese, total	43	4,800	3,300	3,800	3	3	14,000
Nickel, total	39	61	26	14	3	3	190
Vanadium, total	8.6	80	37	29	3	3	320
Diesel Range Organics (C10-C20)	100	270	270	270	1	3	
Oil Range Organics (C20-C36)	6000	850	710	710	2	3	

⁻⁻ Indicates not applicable

4.5.3 Anacostia Park Summary

With the exception of arsenic, the surface sample results (composite and discrete) were below screening levels. A Site-specific background analysis performed for soils found that the arsenic detections were below the arsenic BTV of 17 mg/kg.

BaP-TE exceeded its screening levels at one location. However, none of the individual PAHs exceeded their PSLs in any of the discrete soil samples.

Detected concentrations in the groundwater samples were generally below screening levels, with the exception of one sample for TPH DRO. Based on these results, the Anacostia Park property does not

appear to have been impacted by the placement of dredge spoils or by groundwater discharges from the Site.

4.6 Anacostia River Surface Water

Surface water samples were collected at 20 locations (10 Waterside Investigation and 10 background) between September 23 and October 3, 2013. Each surface water sample was analyzed for metals, PCB Aroclors and PAHs constituents. A subset of surface water samples was analyzed for VOC, SVOC, pesticides, and dioxin/furan constituents. Details of the Waterside Investigation surface water data collection program are provided in **Table 2-2**.

Because no potential for risk was determined for surface water exposure in the Preliminary BERA, and Site and Site-specific background surface water concentrations were found to be consistent in the Preliminary Background Evaluation, surface water data and related exposure pathways were not identified as a data gap. Therefore, additional surface water samples were not collected in the Study Area or at Site-specific background locations in 2017.

The sample locations for the Waterside Investigation Area are shown on **Figure 2-5A**, and background sampling locations are shown on **Figure 2-6**. Surface water samples were not collected in the Cove due to shallow/minimal water levels which prevented the collection of samples in accordance with the procedures described in the SAP. Analytical results for Waterside Investigation Area surface water samples are summarized in **Table 4-30**. The background surface water results and the background evaluation are provided in **Appendix W**. The following paragraphs further discuss the results.

4.6.1 Inorganics

Dissolved and total arsenic, dissolved and total cobalt, and total manganese exceeded human health screening levels in a number of Waterside Investigation Area samples. The maximum concentrations for each of these metals were: dissolved arsenic (0.67 μ g/L at SUW6B), total arsenic (1.2 μ g/L at SUW4B), dissolved cobalt (0.71 μ g/L at SUW3C), total cobalt (1.1 μ g/L at three locations), and total manganese (170 μ g/L at SUW10B). In addition, dissolved barium and total iron exceeded ecological screening levels in each of the Waterside Investigation Area samples. The maximum concentrations for each of these metals were: dissolved barium (36 μ g/L at SUW1B) and total iron (1,400 μ g/L at SUW3C).

Based on the population test and boxplot comparisons presented in **Appendix W**, Study Area concentrations of dissolved barium were found to be consistent with background. For dissolved and total arsenic, total cobalt, total iron, and total manganese; the maximum, mean, and medium concentrations were

similar for the Waterside Investigation Area and background samples, which also exceeded screening levels.

Dissolved cobalt exceeded its screening level at one Waterside Investigation Area location (SUW3C) at 0.71 μ g/L versus a human health screening level of 0.6 μ g/L. Due to this one sample, the mean concentration for dissolved cobalt in Waterside Investigation Area samples is higher than the Site-specific background mean. However, as noted above, the mean concentrations for total cobalt were similar for Waterside Investigation Area and Site-specific background samples.

4.6.2 Organics

Two individual PAHs (anthracene and pyrene) and total PAHs (high-molecular weight, low-molecular weight, sum 16) exceeded ecological screening values in the Waterside Investigation Area samples. Anthracene was detected and exceeded its screening level of 0.012 μg/L in only one Waterside Investigation Area sample, SUW4B at 0.018 μg/L which was qualified as estimated because it was below the reporting limit. Pyrene was detected in four of 11 Waterside Investigation samples with a maximum concentration of 0.038 μg/L at SUW1B versus a screening level of 0.025 μg/L. As discussed in **Appendix W**, the boxplot comparisons for anthracene and pyrene illustrate that the Interquartile Ranges of these COIs in Study Area surface water are comparable to Site-specific background. The mean concentration of pyrene in Study Area surface water is below its Site-specific BTV (a BTV was not calculated for anthracene). For the total PAHs (high-molecular weight, low-molecular weight, sum 16), the maximum, mean, and medium concentrations were similar for the Waterside Investigation Area and background samples, which also exceeded screening levels.

One pesticide (4,4'-DDT), exceeded human health (0.00022 μ g/L) and ecological (0.001 μ g/L) screening values in the Waterside Investigation Area samples, with a maximum concentration of 0.0016 μ g/L at SUW1B. As discussed in **Appendix W**, the boxplot comparison for Study Area surface water concentrations of 4,4'-DDT were found to be similar to background (e.g., the mean concentration of 4,4'-DDT in Study Area surface water is slightly less than its Site-specific BTV).

Dioxin TEQ (maximum of 0.612 pg/L at SUW3C) and 2,3,7,8-Tetrachlorodibenzo-p-dioxin (one detection of 0.148 pg/L at SUW3C) exceeded the human health screening level of 0.051 pg/L in the Waterside Investigation Area samples. Dioxin TEQ exceeded its screening value in all Waterside Investigation Area and background samples tested. The average concentration of dioxin TEQ in Waterside Investigation Area samples (0.383 pg/L) was slightly elevated compared to background samples (0.271 pg/L). The single

background detection of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (0.221 pg/L) was larger than the Waterside Investigation Area detection shown above.

Dieldrin and bis (2-ethylhexyl) phthalate exceeded the screening levels only in background samples. Dieldrin was not detected in the Waterside Investigation Area samples and bis-phthalate was detected in three of the six samples tested, but did not exceed screening values. Total PCB Aroclors were not detected in any surface water sample (**Table 4-30**).

4.6.3 Background Comparison – Data Collected by Others

The Anacostia River is a multiply stressed ecosystem, with a variety of chemical non-point sources and, historically, discharge from the Combined Sewer System. As a result of these pollution sources, there are some exceedances of water quality standards in the larger Anacostia River. As part of the ARSP, DOEE collected 14 surface water samples in 2014 and analyzed them for 105 constituents plus bacteriological constituents *Escherichia coli* (E. coli) and fecal coliforms. Ecological and human health benchmark levels were screened against the constituents to assess the general quality of surface water; total PCB congeners, dioxin-like PCB congener TEQ, dioxin TEQ, total arsenic, dissolved barium, total manganese, and dissolved manganese exceeded either a human health or ecological criterion. Additional surface water sampling was conducted in 2016 during one wet and one dry event; these samples identified active TSS sources from Lower Beaverdam Creek in Reach 67 upstream of the Site and determined that distributions of total PCB congeners and total lead concentrations in surface water were driven by TSS. Total PCB congeners and total PAHs were also found to be elevated in Kingman Lake.

4.7 Anacostia River Sediments

Surface and subsurface sediment samples were collected within the Waterside Investigation Area and in upstream background areas. In addition, DOEE has collected surface and subsurface sediment samples in the larger Anacostia River as part of the RI/FS for the ARSP.

The Anacostia River has been impacted by a variety of historical and ongoing sources of chemical, physical, and biological stressors from point and non-point sources, including NPDES discharges, surface runoff, combined sewer and storm sewer outfalls, refuse disposal practices, tributary inputs, and atmospheric deposition (SRC and NOAA, 2000). The multitude of sources has resulted in diffuse distributions of many contaminants in sediments throughout the River, including PAHs, metals, PCB Aroclors, and pesticides, with some localized hot spots (Wade et al., 1994; Velinsky et al., 1996; Velinsky et al., 2011). Despite the multiple ongoing and uncontrolled sources in the watershed, there is strong evidence of natural recovery processes in the Anacostia River (Tetra Tech, 2018). Concentrations of PCB Aroclors, PAHs, and lead declined substantially in surface sediment between 2000 and 2014/2015. Chlordane concentrations, in

contrast have not appeared to decline, due to uncontrolled sources in the upper watershed. In addition, radiochemistry cores have found sedimentation rates greater than 1 cm/yr, which is generally considered the minimum sedimentation rate to support natural recovery, in most reaches of the Anacostia River.

The results of the larger ARSP investigation indicate that the Anacostia River has multiple stressors and likely a relatively high contribution from background sources (Tetra Tech, 2018). This is a critical context for the evaluation of sediment sampling data within the Waterside Investigation Area.

4.7.1 Sediment Sampling Scope

During the Phase I Waterside investigation, surface and subsurface sediment samples were collected at 56 locations (46 within the Waterside Investigation Area, and 10 at Site-specific background locations) between November 5, 2013, and January 31, 2014. A total of 56 surface sediment samples and 208 subsurface sediment samples were collected. Surface sediment samples (collected from 0 to 6 inches below sediment surface) and subsurface sediment samples (collected from 1 to 9 feet below sediment surface) were submitted for laboratory analysis of VOCs, SVOCs, metals, pesticides, PCBs, and dioxin/furan constituents. Each surface sediment sample was analyzed for metals, PCBs and PAHs. Each subsurface sediment sample was analyzed for PCB and PAH constituents. A subset of the surface and subsurface samples was analyzed for metals, VOC, SVOC, pesticide, and dioxin/furan constituents. Not all samples were analyzed for all analytes. **Table 2-2** summarizes the data collection program.

The Phase II Waterside investigation included surface sediment samples collected at 15 locations within the Waterside Investigation Area. These were co-located with 15 stations sampled during the Phase I Waterside Investigation (**Figure 2-5A**) in the vicinity of the Cove where the preliminary BERA found the greatest potential risks to ecological receptors. The sample depth for the surface sediment samples was 0 to 10 cm (approximately 4 inches), coincident with the BAZ determined through the SPI survey (Section 2.4.1). Surface sediment samples were collected for chemical and physical (grain size) parameters, pore water analysis, benthic macroinvertebrate analysis, and laboratory toxicity testing to support the refined BERA. Surface and subsurface sediment samples were collected at six background sampling locations upstream of the Waterside Investigation Area to expand the background dataset collected during Phase I and to determine the nature and extent of contamination in sediment at upstream locations not historically impacted by Pepco operations.

Surface and subsurface sediment samples were collected at 15 locations for forensic analyses to help identify the source or sources of previously detected contamination. The forensics samples were collected from nine locations in the Waterside Investigation Area and six downstream locations (**Figure 2-5A** and **Figure 2-6**). In addition, three high resolution cores were collected for radiometry and chemistry.

4.7.2 Horizontal Delineation

Analytical results for surface sediment samples are summarized in **Tables 4-31 through 4-34**. Analytical results for subsurface sediment samples are summarized in **Tables 4-35 through 4-37**. Waterside Investigation Area and Site-specific background surface sediment samples were screened against HHRA screening levels based on USEPA Regional Screening Level for Residential Soil (2018) and Ecological Risk Assessment (ERA) screening values based on a hierarchy of freshwater sediment values (see **Tables 4-31 through 4-34**).

The sampling results were compared to background threshold values to aid in identifying sampling locations with COPC concentrations above screening levels that are also different from the regional condition. An evaluation of surficial sediment data relative to background conditions is presented in **Appendix W**. This background evaluation included evaluation of the Waterside Investigation Area surficial sediment data to identify the constituents that are consistent with the Site-specific background conditions based on the USEPA guidance (2002a,b). According to USEPA (2002a), background conditions are defined as: "Substances or locations that are not influenced by the releases from a site and are usually described as naturally occurring or anthropogenic: (1) Naturally occurring substances are present in the environment in forms that have not been influenced by human activity; (2) Anthropogenic substances are natural and human-made substances present in the environment as a result of human activities (not specifically related to the CERCLA site in question)." Because remediation is not warranted to address constituents which are determined to be consistent with background conditions (USEPA, 2002b), the results of this evaluation will be used to determine those COPCs that are not solely Site-related.

The background data collected during Phase I and II were supplemented with data collected by DOEE for the ARSP, which are reported in the ARSP RI Report (TetraTech, 2018). Twenty-four samples were collected upstream of SEDBACK20 in 2014 and 2016 from a depth of 0 to 6 inches below sediment surface. The surficial sediment samples collected by DOEE/Tetra Tech that were selected to represent background sediment conditions include the following:

- Seventeen surficial sediment samples (including one field duplicate) collected by Tetra Tech in 2014/2015 to support the ARSP Phase I RI; and
- Seven surficial sediment samples collected by DOEE/Tetra Tech in 2016 to support the ARSP Phase II RI/FS.

The background sediment samples included in this evaluation from both Pepco and DOEE are presented in **Appendix W**. The initial selection of the upstream Site-specific background locations is addressed in Technical Memorandum #2 which was approved by DOEE on October 14, 2016. The Site-specific surface

sediment background dataset was recently revised to exclude Pepco and DOEE samples collected in ARSP Reach 7 where coarse-grained sandy sediment dominates the river substrate. The revised background sediment dataset includes 7 samples collected by Pepco in 2013 and 2017 at seven upstream background locations (SEDBACK4, SEDBACK5, SEDBACK6, SEDBACK17, SEDBACK18, SEDBACK19, and SEDBACK20) and the twenty-four samples collected by DOEE described above. The 31 Pepco and DOEE samples described above are in ARSP Reach 67 where finer-grained silt and clay sediments are dominant, which is more consistent with the predominantly fine-grained surface sediment in the Waterside Investigation Area. This revised dataset was presented to DOEE in a May 29, 2019 memorandum (Attachment H of **Appendix W**).

As part of the background evaluation, Pepco performed a further analysis of potential tidal influence to confirm that all sediment sampling locations included in the Site-specific background dataset were upstream of any potential influence from the Site. Pepco's analysis (described in **Section 5.1.2.1**) confirmed that the Pepco background location SEDBACK20 and background locations upstream of SEDBACK20 will not be influenced by any Site-related contaminants as a result of tidal exchanges. No sampling locations downstream of SEDBACK 20 were included in the dataset for the purpose of calculating Site-specific background values.

The following sections detail the results in the context of PSLs, which are the low effect ecological screening values, human health screening criteria, and the BTV described in **Appendix W**. It must be noted that the human health screening level used here is the residential soil screening level; this value assumes a level of exposure that is not realistic for sediment. As a result, these values are more useful for delineation purposes and do not correspond to actual risks. The actual risk associated with human health is described in detail in the BHHRA.

Inorganics

During the sediment sampling activities, 153 samples from the Waterside Investigation Area and 19 background sediment samples were collected from a variety of sampling horizons and submitted for analysis of metals (inorganics). The concentration ranges of inorganics are summarized in **Tables 4-31** (surface) and **4-35** (subsurface). The location of maximum detections for inorganic analytes tended to be on transects 6 and 7, in surface and subsurface sediment samples from the Cove where Outfall 013 and three other non-Site-related outfalls are located. Of the 22 inorganic analytes, the maximum concentration of nine of them occurred in sample SED6.5E, located on the south shore of the Cove. Isolated concentration of COI metals in subsurface sediments were identified downstream of Outfall 013 and north of the Benning Road Bridge.

Evaluation of surface (<0.5 feet in depth) samples in Waterside Investigation Area sediment identified nine analytes (aluminum, antimony, arsenic, cobalt, iron, lead, manganese, nickel, thallium, and vanadium) that exceeded their respective direct contact human health screening levels (**Table 4-31**). Of these, only eight inorganics exceeded both the human health screening level and the sediment BTV (**Table 4-31**). Site concentrations of two inorganics (aluminum and manganese) were found to be consistent with Site-specific background sediment concentrations based on the two-sample hypothesis tests presented in **Appendix W**.

Waterside Investigation Area sediment samples identified 13 analytes (antimony, arsenic, barium, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, silver, and zinc) that exceeded the ecological screening level (**Table 4-31**). Of these, five (antimony, arsenic, barium, manganese, and nickel) exceeded both the ecological screening value and the BTV (**Table 4-31**).

VOCs

A total of 37 Waterside Investigation Area and 16 background sediment samples were collected and submitted for analysis of VOC constituents. VOC detections in surface (**Table 4-32**) and subsurface (**Table 4-36**) sediments were very limited, and were generally detected at locations in the channel versus in the Cove. No analytes were reported in excess of the HHRA screening criteria or ESVs. This finding is generally consistent with the ARSP RI, which found that VOC levels in the Anacostia River are generally similar to background (Tetra Tech, 2018).

SVOCs/PAHs

During the sediment sampling activities, 380 Waterside Investigation Area and 41 background surface and sub-surface sediment samples were collected and submitted for analysis of SVOC/PAH constituents. Total PAH concentrations for Waterside Investigation Area samples ranged from 0.84 to 24,000 µg/kg. Priority pollutant PAHs were the most commonly detected SVOCs in the sediments. Maximum PAH concentrations were generally detected at location 1.5C or SED7E in the center of the Cove (**Tables 4-32 and 4-36**).

SVOC/PAH constituents in sediment were reported at concentrations greater than the HHRA and ERA screening levels both Waterside Investigation Area and background samples (**Tables 4-32 and 4-36**). The majority of SVOCs were below ecological and human health screening levels. In Waterside Investigation Area surface and subsurface sediment samples, concentrations of five SVOCs [benzo(a)anthacene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno (1,2,3-cd) pyrene] exceeded HHRA screening levels (**Tables 4-32 and 4-36**). However, only dibenzo(a,h)anthracene exceeded both the direct contact human health criteria and the surface sediment BTV (**Table 4-32**). In surface sediment, 2,3,5-

Trimethylnaphthalene and 2,6-Dimethylnaphthalene exceeded the BTV, but no ESVs were developed for these compounds.

Most PAHs exceeded their individual ESVs in the Waterside Investigation Area (**Tables 4-32 and 4-36**). The maximum total PAH concentration (24,000 μg/kg) was reported at SED-1.5C in the Waterside Investigation Area (see **Figure 2-5A**). However, only dibenzo(a,h)anthracene, was detected at concentrations greater than both the ecological screening level and the sediment BTV (**Table 4-32**).

Site surface sediment concentrations of total HMW PAHs, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were found to be consistent with Site-specific background sediment concentrations of these PAHs based on the two-sample hypothesis tests presented in **Appendix W**. **Figure 4-27** shows the distribution of total PAHs in surface sediment from the Northwest and Northeast Branches of the Anacostia to the confluence with the Potomac River.

Within the Waterside Investigation Area, the highest subsurface total PAH concentrations as indicated in **Figure 4-25** occur in the Cove or the near Site side of the channel from SED 10C down to SED1.5C.

Figure 4-26 provides a more complete view of total PAHs in the subsurface and surface sediments along the River from the confluence of the Northeast and Northwest branches on the left, down to the tributary Fort Dupont Creek on the right. All cores from both the Pepco and DOEE datasets are included to provide added information density. Red core segments indicate PAH concentrations in the upper 10% of the concentration range (8.75-210 mg/kg). Core segments in this elevated range are widely distributed throughout the River, and not concentrated near the Pepco Waterside Investigation Area.

Upstream surface and subsurface sediments indicate both recent and historical deposition of PAHs exceeding 8.75 mg/kg near the Bladensburg Marina (locations R7-19, R7-17, R7-13, R7-12), the former Colmar Manor Landfill (locations R7-11, R7-35, R7-09, and SEDBACK4), Dueling Creek (locations R7-05 and R7-26), the NY Ave-Amtrak Bridge (location R7-02), Lower Beaverdam Creek (locations R6-27, R6-15, and SEDBACK5), Hickey Run (location R6-26 at all depths measured), Kenilworth Park Landfill North (location R6-25), Watts Branch (location R6-24), and Kenilworth Park Landfill South (location SED10C, R6-23, and SED8B).

Within the Cove only locations SED7E and SED7G exceeded 8.75 mg/kg. Other elevated PAH locations within the Waterside Investigation Area include SED6A at 3-5' depth, SED4B at the 1-3' depth, and R6-01 at 1-1.5' depth. Several locations near the Benning Road and WMATA railroad bridges, Pepco 101 outfall,

and City storm drain F-294-730 also have elevated concentrations, including locations R6-18, SED2B, R5-06, SED1.5B, SED1.5C, R5-04, and R5-03.

Downstream areas appear to include fewer core segments of elevated PAHs, however locations R4-36, SEDREF7, R4-14, and R4-35 near the outfall for storm drain F-656-309 at depths 2-6' are an exception. Areas adjacent to CSX and Fort Dupont Creek (locations R4-32, R4-31, R4-28, R4-25, R4-24,, and R4-16) also have elevated PAH concentrations at depth (1'-6')

PCBs

During the sediment sampling activities, 395 Waterside Investigation Area and 41 Site-specific background sediment samples were collected and submitted for analysis for PCBs Aroclors (**Figure 4-28**). During Phase II, total PCB Aroclor concentrations ranged from 0.98 to 6300 μ g/kg. The maximum total PCB Aroclor concentration of 6,300 μ g/kg was detected north of the Benning Road Bridge in wetland sample location WSED2 at 7 to 9 ft deep. Aroclors 1260 and 1248 were detected most frequently, in 315 and 211 of 395 samples, respectively. Aroclors 1254 and 1268 were detected less frequently, in 98 and 29 samples respectively (**Tables 4-33 and 4-37**).

In surface sediment (**Figure 4-28**), total PCB Aroclors were detected in excess of direct contact human health screening criteria (**Table 4-33**); no human health screening criteria have been developed for individual Aroclors. Total PCB Aroclors exceeded both the HHRA screening value and the BTV at most locations in the Cove (Sed6.5E, Sed7.5E, Sed 7D, Sed 7E and Sed 7F) and several locations in channel (e.g., Sed6C, 7B, and 8C), which are located at the interface between the channel and the Cove (**Figure 4-28**). Aroclors 1248, 1254, 1260 and 1268 were detected in Waterside Investigation Area samples at concentrations greater than the ERA screening levels (**Table 4-33**). Total PCB Aroclors exceeded both the ERA screening value and the sediment BTV at most locations in the Waterside Investigation Area. **Figure 4-29** shows the distribution of total PCB Aroclors in surface sediment from the Northwest and Northeast branches to the confluence with the Potomac River.

Total PCB congeners were detected at concentrations in excess of the HHRA screening levels and the ESVs in all samples analyzed for this constituent in the Study Area. However, total PCB congener concentrations only exceeded the BTV at locations in the Cove (SED6.5E, SED7.5E, SED7E, and SED7F) (Table 4-33). As explained in Section 4.2.3.5, PCB congeners were quantified using EPA Method 1668C. This method uses isotope dilution and the recovery correction may produce a total PCB result as the sum of congeners (tPCBc) which is greater than the sum of Aroclors from EPA Method 8082 (tPCBa). The tPCBc/tPCBa ratios vary widely from sample to sample, primarily due to sediment inhomogeneity, but the median tPCBc/tPCBa ratio value for the 57 sediments analyzed by both methods was 1.77. A comparison

of tPCBc and tPCBa results for sediments, including some DOEE results, is provided in **Table 4-46**. A detailed statistical comparison of the results from sediment analysis by both methods will be further provided in the Forensics Analysis and Source Evaluation Report.

Figure 4-28 indicates the highest subsurface concentrations of PCBs are detected only in the Cove and the near site channel locations between SED4C and SED1C.

Figure 4-30 provides a more comprehensive view of total PCBs as Aroclors in the subsurface sediments along the River from above the confluence of the Northeast and Northwest branches, down to the tributary Fort Dupont Creek on the right. All cores from both the Pepco and DOEE datasets are included to provide added information density. Red and yellow core segments indicate PCB concentrations in the upper quartile of the concentration range (290-6300 μg/kg). As in the surficial sediments, the highest concentrations are within or near the Cove. Additional elevated concentrations occur downstream at depth (>1-9') between locations SED4C and SED1C within the Waterside Investigation Area.

Figure 4-12B presents a more detailed map of Aroclor type abundance in surface soils, near site surficial sediments, and storm drain outfalls. **Figure 4-12C** provides bar graphs indicating Aroclor type abundance by depth in sediment cores from the Waterside Investigation Area.

Upstream buried sediments in the PCB upper quartile range and at depth (>1'-8') are also clearly indicated in **Figure 4-30**. These indicate historical deposition of PCBs near the Bladensburg Marina (location R7-17), the former Colmar Manor Landfill (locations R7-11, R7-31, R7-08, and R7-30), Dueling Creek (location R7-29), Lower Beaverdam Creek (locations R6-15 and SEDBACK5), Kenilworth Park Landfill North (R6-44, R6-43, and R6-39), as well as the Watts Branch and Kenilworth Park Landfill South (locations R6-41, R6-37, R6-35, and r6-34).

Downstream buried sediments south of the Benning Road bridge in the PCB upper quartile range and at depth (>1'-7') indicate historical deposition of PCBs near outfall F-090-064, Piney Run, and NPDES outfall 008 (locations R5-02, SEDREF03, SEDREF04), as well as the Fort Chaplin Tributary (locations SEDREF06, R4-15, R4-37, SEDREF08, and R4-36), and between outfall F-656-309, areas adjacent to CSX, and Fort Dupont Creek (locations R4-35, R4-14, R4-33, R4-32, R4-31, R4-28, R4-25, R4-24, R4-16, and R4-11).

Additional information comparing PCB Aroclor patterns in these deeper sediments with those in the surface sediments and landside soils will be provided in the upcoming Forensics Analysis and Source Evaluation Report.

Total PCB concentrations were normalized to total organic carbon (TOC) to understand how the physical nature of sediment in the Waterside Investigation Area affects the distribution of PCBs (**Figure 4-31**). This evaluation showed that the highest concentrations tend to be restricted to locations in the Cove. Normalized concentrations in samples from the 1 to 3 ft depth horizon show slightly higher concentrations in some channel locations than the surface samples (**Figure 4-31**), indicating that higher concentrations are likely being buried by lower concentration sediment in most of the Waterside Investigation Area.

PCBs are detected at high frequencies in all reaches of the Anacostia River (Tetra Tech, 2018) and have been detected at high concentrations (>900 µg/kg) in tributary sediments (Tetra Tech, 2017).

Pesticides

During the sediment sampling activities, 35 Waterside Investigation Area and 10 background sediment samples were collected and submitted for analysis of pesticide constituents. The pesticides 4,4'-DDD; 4,4'-DDE, chlordane and heptachlor epoxide were detected in nearly all samples. The maximum pesticide detections tended to occur on transects 4 and 7 (see **Table 4-33** for surface results and **Table 4-37** for subsurface results).

No pesticides were detected in excess of human health direct contact screening levels. Twelve pesticides (4,4'-DDD, 4,4'-DDE, 4,4'-DDT, Aldrin, cis-chlordane, dieldrin, endosulfan sulfate, endrin, endrin ketone, heptachlor epoxide, methoxychlor, and trans-chlordane) exceeded the ecological screening levels; however, only 4,4'-DDT exceeded both the ecological screening level and the sediment BTV (**Table 4-33**).

Site surface sediment concentrations of chlordane were found to be consistent with Site-specific background sediment concentrations of chlordane based on the two-sample hypothesis tests presented in **Appendix W**.

The Anacostia River RI found that four pesticides (chlordane, 4,4'-DDE, 4,4'-DDD, and dieldrin) were detected at high frequencies and at levels exceeding background in Reaches 123 and 456, Kingman Lake, and Washington Channel. Other frequently detected pesticides including delta-BHC, endosulfan II, endrin aldehyde, gamma-BHC, and heptachlor were either generally similar to background or below ecological screening levels.

Dioxins/Furans

During the sediment sampling activities, 35 Waterside Investigation Area and 10 Site-specific background sediment samples were collected and submitted for dioxin/furan analysis (**Table 4-34**). Maximum concentrations of each (of 17) dioxin/furan constituent were detected at location SED7F (**Figure 4-32**),

located in the Cove (**Figure 2-5A**). The TCDD TEQ for human health concentrations ranged from 0.323 to 707 pg/g.

Dioxin/furans in sediment were reported at concentrations greater than the HHRA screening levels (**Table 4-34**). Of the 17 reported dioxin/furan constituents, 13 exceeded the sediment BTV at most locations in the Waterside Investigation Area. The TCDD TEQ for human health (4.8 pg/g) was exceeded in 14 samples.

Site surface sediment concentrations of octachlorodibenzo-p-dioxin (OCDD) were found to be consistent with Site-specific background sediment concentrations based on the two-sample hypothesis tests presented in **Appendix W**.

4.7.3 Vertical Delineation

The two deepest cores, which were also those with the greatest vertical resolution, were collected at location SED1.5C adjacent to Outfall 101 and SED7E located in the Cove. The analytical results for these samples were evaluated and select COPCs plotted to illustrate general trends (**Figure 4-33**). Three inorganic COPCs (lead, mercury, and silver), total PAHs (16 PAH basis) and total PCBs were evaluated. Complete results are presented in **Tables 4-35** through **4-37**.

Each COPC was delineated at depth to a level below the PEC and BTV. The inorganic COPCs lead, mercury and silver, were generally similar between the cores collected in the channel and Cove; silver, which is used to trace wastewater inputs in many systems (e.g., Martin et al., 1988) was slightly elevated in core SED7E, suggesting that the Cove may receive wastewater. Total PAHs displayed a maximum concentration at the 6' depth at SED1.5C and about 7' depth at SED7E. Additional vertical delineation of total PAHs in this and other core locations is provided in **Figure 4-30** and discussed in Section 4.7.2 above. No BTV was developed for total PAHs, but the total PAH concentrations were below the BTV developed for high molecular weight PAHs (**Appendix W**). For each COPC, the highest concentrations were detected at depth. Total PCBs were higher in the core collected in the Cove in the top approximately 3 ft of the core; however the maximum PCB concentration at SED1.5C was below 4' depth. Additional vertical delineation of total PCBs in this and other core locations is provided in **Figure-4-30** and discussed in Section 4.7.2 above.

A comparison of total PCB concentrations over the depth of the core with ¹³⁷Cs in sediment indicates that the maximum concentration of total PCBs is coincident with the peak ¹³⁷Cs activity in sediment, at approximately 2 feet bgs (**Figure 4-33**). The peak ¹³⁷Cs core is generally assumed to have occurred in 1963, at the peak of atmospheric nuclear weapons testing. The radiochemistry cores are discussed in more detail in **Section 5.1**.

4.7.4 Pore Water

Pore water samples were collected at the 15 locations in the vicinity of the cove and five upstream background locations; these samples were collected synoptically with surficial sediment from these locations. Pore water samples were analyzed for metals, PAHs, PCBs, DOC, and hardness. The pore water samples are presented in detail in **Table 4-38**.

Three dissolved metals (barium, iron, and manganese), one total phase metal (iron), and one SVOC (pyrene) were identified as COIs (**Table 4-38**). A sample-by-sample screen of the pore water COPCs in the 15 pore water samples in the Waterside Investigation Area and five background samples (which are colocated with the sediment chemistry, bioassay and macroinvertebrate community survey samples) is provided in Attachment I (Table 2) of the BERA (**Appendix BB**). Most Waterside Investigation Area and background pore water concentrations exceeded the chronic surface water ESVs for the metals, but the ranges of concentrations of these metals in pore water samples from the Waterside Investigation Area were less than the ranges of concentrations measured in background location pore water samples. Pyrene was also detected in all Waterside Investigation Area and background pore water samples and at levels higher than the chronic ESV at six out of 15 Waterside Investigation Area locations and one background location.

4.7.5 City Storm Drain Sampling

To evaluate potential contributions to River contamination from urban stormwater discharges, two storm drain sediment samples were collected from city storm drains that discharge at outfalls F-477-827 and F-025-074. The manhole sampling locations are shown on **Figure 2-6**.

Inorganic analytes, pesticides, PCBs, PAHs, and dioxin/furan compounds were detected in off-Site storm sewer sediment. For all detected compounds, concentrations were higher in sample F-025-074 than F-477-827 (**Table 4-39**).

Eleven inorganic analytes were detected in the off-Site storm drain (aluminum, antimony, arsenic, barium, beryllium, cobalt, manganese, nickel, selenium, thallium, and vanadium), but only antimony was detected in sample F-025-074 at concentrations (0.94 mg/kg and 2.2 mg/kg) greater than the BTV (0.75 mg/kg).

No other analytes were detected at concentrations greater than the sediment BTV. Two pesticides (4,4'-DDT and delta-BHC) were detected, and Aroclor 1254 and Aroclor 1260 were detected at 0.77 to 33 μ g/kg, compared with the BTV of 186 μ g/kg. In addition, 2-methylnapthalene was detected; but no BTV was calculated for this compound. Fourteen PAHs were detected, with the concentrations of low-molecular

weight and high molecular weight evenly represented. Twelve dioxin/furan compounds were detected, but at concentrations ranging from 3.7 to 114 times lower than the sediment BTV.

4.7.6 Sediment Analysis Summary

In general, surface sediments within the Waterside Investigation Area were similar in terms of COPC concentrations to the rest of the larger Anacostia River, although certain COPCs exceeded both ecological or human health screening criteria and Site-specific sediment BTVs. Vertical delineation reveals that concentrations of inorganics, SVOCs, and PCBs declined to below BTVs and screening values at depth. Maxima for many of the COPCs occurred below the sediment surface.

Most exceedances of both screening levels and sediment BTVs were found in the Cove or in samples immediately adjacent to the Cove suggesting that the Waterside Investigation Area sediment impacts are largely restricted to the Cove. As an example of the spatially restricted nature of BTV exceedances for PCBs, the concentrations in the Cove (transects 6, 7, and 8) were compared to those in the channel area of the Waterside Investigation Area (**Figure 2-5A**). The results of the comparison revealed that concentrations in the Cove (n = 36, median = 295 μ g/kg) were higher than in the channel area (n = 47, median = 110 μ g/kg) (Tarone-Ware test², p<0.001). It should be noted that only the Cove had a median concentration higher than the Site-specific sediment BTV (**Appendix W**).

4.8 Potential Sources of Detected Constituents

Table 4-47 summarizes the investigation results by Target Area. As discussed in the preceding sections, various metals, PAHs, TPH, pesticides, PCBs, and dioxins were detected across the Site. The background and off-Site sources are discussed in **Section 4.8.1** followed by discussion of the following potential on-Site contamination source areas, as identified from the field sampling:

- Target Area 1 Former Sludge Dewatering Area and Surrounding Coal Pile Area
- Target Area 4 Salvage Yard
- Target Area 5 Former Cooling Towers
- Target Area 10 Red Tag Storage Area
- Target Area 11 Building #68

² The non-parametric Tarone-Ware (Tarone and Ware, 1977) test was used to test for significant differences between populations where non-detects were present and at least one of the COPC sample groups being tested was nonparametric.

- Target Area 12 Building #57 (Transformer Shop)
- Target Area 17 Storm Drain System (Historical process water discharges and historical and current diffuse leaks/drips and industrial runoff)
- Target Area 18 Kenilworth Fueling Island (MTBE in groundwater)
- Target Area 19 PCE in Groundwater (potential off-Site sources)
- Target Area 20 PAHs in Soil (former Rail Yard and Laydown Area)
- Former Timber Pole Storage Area

4.8.1 Background Sources

Multiple lines of available information indicate that there are numerous regional background sources of PCBs, metals, PAHs, pesticides, and dioxins/furans. **Appendix W** presents the results of the background analysis which was performed to identify how the constituents in the Study Area compare to the constituents in the background conditions/locations.

There are several background sources of contamination impacting the Study Area, including regional transportation and fossil fuel burning, historic open burning of trash, urban stormwater runoff, and pesticide residues from regional pest control practices. Vehicle exhaust (incomplete combustion products) in particular is a known source of PAHs in surface soils in cities, including Washington, DC (Takada et al., 1990; Hwang and Foster, 2006). Studies have found evidence for the atmospheric deposition of PCBs, PAHs, and other compounds (Leister and Baker, 1994; Van Ry et al., 2002). Background levels of dioxins are known to be present at significant concentrations in urban and industrial areas (Lester, 1998; Urban et al., 2014). In addition, historical open burning of trash and municipal incinerators in the vicinity of the Site could be a potential source of dioxins as well. Historical and current potential off-Site sources that likely have contributed, and may still be contributing to contamination at the Site and in the Anacostia River include the following:

- Regional transportation and fossil fuel burning;
- Historical open burning at Langston Golf Course and Kenilworth Landfill;
- Historical landfills at Langston Golf Course, Colmar Manor, and Kenilworth Landfill;
- Former trash incinerator facility upwind of the Site to the north;
- KMY and Trash Transfer Station outfalls discharge to the Cove;
- Upstream point and non-point sources in the Anacostia Watershed from the northeast and northwest branches of the Anacostia, and other tributaries such as Lower Beaverdam Creek, Hickey Run, and Watts Branch, where DOEE's data collection is in progress;
- Historical industrial discharges;

- Off-Site sources of PCE including dry cleaners; and
- Urban runoff/CSOs.

4.8.2 Target Area 1 – Former Sludge Dewatering Area

This area is within the footprint of former coal yard to the south of the former cooling towers. This area was used for handling sludge from the clarifiers. The clarifiers treated river water for use in the cooling towers as make up water. As discussed in the CSM Technical Memorandum (AECOM, 2016b), the generating station used coal from its inception in 1906 to its transition to burning fuel oil in 1976. Infiltration of rainwater through the coal pile may have contributed to metals into the soils beneath it. Coal storage can be seen in the 1937 aerial north and northwest of the plant building in two equally sized piles covering approximately 4.5 acres. The footprint of the former coal storage area decreases as the plant building expands to the north and decreases further when cooling tower construction appears to begin in the late 1960s. The shrinking of the coal pile area is related to the retirement of older generation units and replacement of coal with oil.

The sludge dewatering area appears to have been put in place following the removal of coal piles to handle the sludge from the clarifiers associated with the cooling towers. The sludge dewatering area remained in place, adjacent and north of Building #65, gradually shrinking in size until 2010, when it is no longer visible in aerial photographs and appears to have been replaced with a gravel-surfaced parking area. Per the 2011 Conestoga-Rovers Decommissioning Plan, aluminum sulfate and sodium hydroxide were used for water treatment in the clarifier houses associated with the cooling towers. Sludge from the clarifiers was initially placed in the drying ponds and was allowed to dry through evaporation. Upon drying, sludge was removed for off-Site disposal. Eventually, clarifier sludge was dewatered in a filter house for off-Site disposal. This change eliminated the need for the drying area over the years.

During the 2008/2009 USEPA Site Inspection metals, primarily vanadium, PAHs and PCBs were detected in this area, and sampling during the RI delineated these contaminants. The metals in soil and groundwater appear to be related to the former coal piles. Potential contributions to the PAHs, PCBs, and dioxins in soil include both the former coal piles, the river sediment sludge, cooling tower materials, and potential off-Site sources. This area is along the northern perimeter of the Site close to the former trash incinerator facility (now DC DPW Solid Waste Transfer Facility). The TCDD TEQ exceedances in surface soil may be due to this off-Site source. Fill material in the former sludge dewatering area is approximately 14 feet thick and PAHs present in the fill material cannot be ruled out.

4.8.3 Target Area 4 – 2003 Salvage Yard Investigation and Former Timber Pole Storage Area

The Salvage Yard Investigation Area is adjacent to the west side of Buildings # 75 and #88 in what was once a timber pole storage area. These areas overlap and, therefore, are discussed together. In November 2003, a soil investigation was completed in the salvage yard area formerly used for storing used electrical equipment. Approximately 296 cubic ft of PCB contaminated material (>1 ppm) was excavated and removed from this area for off-Site disposal. TPH-DRO was detected, but was below DC Department of Health requirements upon final excavation.

A review of historical aerial photos (see Appendix A of the CSM Technical Memorandum) revealed the former storage of timber poles between approximately 1950 and 1970 in the area of Building # 75 and the salvage yard. It is presumed that the timber poles were chemically treated with a preservative, but it is not known where the treatment occurred, and further information regarding the timber poles is not available. The forensics data in this area suggest the use of creosote or coal tar treatment of the poles. Building #75 is used for fleet maintenance. Substances used in Historical fleet maintenance activities (used oil, motor oil etc.) may have contributed to site contamination.

Metals, TPH, PAHs, and PCBs were detected in this area and are expected to be largely due to the historic site activities discussed above but off-Site/background sources including fill materials may have also contributed to the soil contamination.

4.8.4 Target Area 5 – Former Cooling Towers

In April 1995, PCB containing caulk and joint filler located inside cooling tower structures were found to be impacting the cooling tower concrete basins, sludge and water inside the basins, and soil adjacent to the basins' wall expansion joints. At the time of the basins' construction, PCBs were widely added to sealants, caulks and other industrial products, and caulking in the expansion joints of the basins contained PCBs. Approximately 185 cubic ft of PCB-impacted soil (>1 to 3 ppm) was excavated. Old joint filler and caulk were removed and the expansion joints and basin were double washed and rinsed. The basin was encapsulated with concrete sealant after all rinse water was removed.

In 2004, during a regular inspection of the basin interiors, it was found that the floor and wall coating in basin 15 was not intact in several places. A sludge sample collected from the basin bottom was analyzed and found to contain 4.5 ppm PCBs. The basin concrete surfaces were scarified, double washed/double rinsed, and two coats of fresh encapsulant were applied.

According to the cleanup report submitted to EPA, Pepco sampled, excavated, and replaced soil adjacent to the wall expansion joints around both cooling tower basins. Surface soil samples were also collected at distances of 1 to 2 ft from the basin walls at a depth of 0.5 to 1 inch below grade. PCBs in these non-excavated surface soils ranged from <1 ppm to 3 ppm.

Multiple soil sampling events have been conducted at Former Cooling Towers #15 and #16 since 1995 to determine the potential impacts of PCBs from caulking material in the concrete basin expansion joints on the surrounding soils. The observed contamination around the basin perimeters was limited primarily to the surficial 3 feet, with localized areas of deeper contamination, especially around the eastern portion of basin 16, where PCBs were observed at levels >1 ppm as deep as 5 ft bgs. Beneath the basin slabs, impacted soils were limited to a small area beneath basin 15, and a broader area below the eastern end of basin 16.

The superstructures of the power plant cooling towers were demolished in early 2014. As discussed in Section 3.1, PCB-impacted soils adjacent to and beneath the cooling tower basins were excavated in 2017. A total of 9,923 tons of PCB contaminated soil and 6,666 tons of concrete debris was excavated and disposed at an approved disposal facility in Virginia. Two stormwater bioretention ponds were then installed in the locations of the former cooling towers basins. The cooling tower removal activities are summarized in the Cooling Tower Basins Remedial Action Completion Report (AECOM, 2017), submitted to DOEE on September 11, 2017. This report presents the soil sampling data used to delineate the excavation footprint and depth and these data are not repeated in this report. However, additional sampling was required as part of the confirmatory sampling program outside the previously excavated areas. This additional sampling was performed during the Phase II RI activities and identified additional areas with PCB and TPH impacts at the east end of the Former Cooling Tower #16 footprint. It is suspected that the contamination is related to cooling tower materials and/or a potential historical dielectric fluid spill in this area.

4.8.5 Target Area 10 – Red Tag Storage Area and Target Area 11 – Building #68

The Red Tag Storage Area is adjacent to the south side of Building # 68 (PCB Storage Building), and so these two areas are discussed together. The Red Tag Storage Area has concrete pavement and is used for storage of empty transformer casings, which had historically been identified with red tags as PCB contaminated (50 to 499 mg/kg). The casings are stored in this area until they are shipped off site for recycling. During a compliance inspection, the USEPA inspector noted no indications of spills or leaks in the area around the casings (USEPA, 1997c).

Building #68 (PCB Storage Building) is used to store PCBs and hazardous waste in drums. The floor is concrete with a continuous concrete curb 1 foot high providing containment for 22,443 gallons. There were

no leaks observed by the USEPA inspector on or around the containers. No leaks or staining was observed by the USEPA inspector in Building #68 on or around the containers (USEPA, 1997c).

The PCBs in soil are likely related to the PCB contamination from historical activities at the Site. This area is along the northern perimeter of the Site, close to and downwind of the former trash incinerator facility. The TCDD TEQ exceedances in surface soil may be related to this off-Site source.

4.8.6 Target Area 12 - Building #57

Building #56 in the southeast corner of the Site, located adjacent to Building #57, is used for the service and repair of transformers and other electrical equipment. As a result of Pepco's PCB management program which was begun in the early 1980s in response to EPA TSCA rules, removal of PCB equipment has occurred in the course of system repairs and upgrades, and currently there are no known PCB transformers (i.e., PCB concentration in transformer oil equal to or greater than 500 ppm) in Pepco's electrical distribution system (USEPA, 1997c). However, pole-mounted transformers within Pepco's distribution system that have not been tested are assumed to contain between 50 and 499 ppm PCBs until they are removed from service and tested.

All untested transformers taken out of service and brought to the Site are staged at the Transformer Shop bermed area, and, a covered structure located outside of Building #56, with an approximately 42 ft by 22 ft concrete pad surrounded by a one-foot concrete berm. All materials delivered to this area are tested for PCB content. Recovered oil containing 50 ppm PCBs or greater is drummed and moved to the TSCA approved storage facility in Building 68 in the western portion of the Site for storage pending off-Site disposal.

Inside of Building #57, recovered oil containing ≤49 ppm PCBs is pumped to one of two 10,000 gallon holding tanks designated for accumulating oil containing ≤49 ppm PCBs. These tanks are installed in concrete vaults, which act as secondary containment. This waste oil is removed as needed by tanker truck to an approved off-Site disposal facility. The concrete vault containing the waste oil tanks and the tanker truck loading area are both marked with PCB M_L labels. Recovered oil containing >49 ppm PCBs is drummed and stored in Building #68 for offsite disposal.

During the 1997 EPA inspection, oil stains were observed on the outside of tank 1 and on the concrete floor in the vault area. A concrete sump located in the back corner of the vault area was also observed to be full of oil. The loading area is located on the ground level of the building just above the storage tank area. The loading area slopes downward from the front and drains back into the tanks via a drain. No cracks were observed in the concrete loading ramp (USEPA, 1997c). The release was fully contained in a secondary

containment vault and no release into the environment occurred. The cause of the spill was corrected through implementing appropriate management/operating procedures.

In 2010 Pepco conducted a Phase I Environmental Site Assessment for an 18.5-acre area in the eastern and southern portions of the Site in connection with the planned expansion of Substation #7 and #45 (Greenhorne and O'Mara, 2010). The assessment noted possible environmental concerns associated with Buildings #54, 56, and 57, which historically serviced and repaired PCB-containing transformers. Building #57 was identified in the RI/FS as Target Area 12. The PCBs and PAHs found in soil are likely related to the PCB contamination from historical activities at the Site, historical rail road operations that pre-date Pepco's ownership, coal tar paving sealants, and/or fill materials.

4.8.7 Target Area 17 – Storm Drains

Section 1.4 describes the stormwater management system at the Site. The majority of the stormwater runoff from the facility is conveyed through a 48-inch diameter concrete pipe that becomes a 54-inch diameter pipe prior to discharging to the River via Outfall 013. In addition, Outfall 013 was also permitted to receive cooling tower blowdown and cooling tower basin wash water when the cooling towers were in operation. However, these towers were decommissioned, and the superstructures of these towers were demolished in 2014 following the permanent shutdown of the Benning Road Power Plant in June 2012.

The main 48/54-inch storm drain appears on facility maps as far back as the 1950s. Therefore, the storm drain system at the Site appears to be over 60 years old. The 1937 aerial appears to show a surface drainage feature (resembling an open ditch) extending from the southeast corner of the Site, through the central portion, then north/northwest toward a narrow inlet discharging to the Anacostia River. This drainage feature is most likely Piney Run, which is present in topographic maps through 1956. The current storm drain system discharging to Outfall 013 appears to approximately follow this drainage feature. The surface drainage feature is visible in the 1949 aerial photograph, but not the 1952 aerial photograph. Records indicate the portion of Piney Run on the Benning Road property was replaced by the underground storm drain system in the early 1950s. The on-Site storm drain system appears to have been initially connected to the city storm sewer along Kenilworth Avenue in the vicinity of Building #57, and was plugged to eliminate discharge from Kenilworth Avenue circa 1987.

The analysis of storm drain residue samples at some sampling locations suggests that historical storm drain discharges may have contributed to PCB impacts in or near the Cove. The storm drain sediment sampled during the RI, which accumulated over a period of many years, has since been removed. The Site currently employs various BMPs to control sediments and contaminants in stormwater discharged from the Site, including the use of filters, screens and absorbent booms at all storm drain inlets. Although sub-ppb levels

of PCBs were detected in one stormwater sample collected at an upstream location within the Site drainage system, PCBs have not been detected in the stormwater discharges at Outfall 013 during the regular monitoring conducted in accordance with the facility's NPDES permit.

In 2017, Pepco installed stormwater treatment systems at four "hotspots" within the main underground drainage system that discharges to Outfall 013 using combinations of Contech® DownSpout StormFilter™, Jellyfish® Filter, and StormFilter® stormwater treatment units. The treatment measures were designed to remove metals and TSS constituents from stormwater through a combination of physical filtration and adsorption via zeolite and granular activated carbon filter media. Outfall 013, which discharges to the Cove, is sampled quarterly for total metals (cadmium, copper, iron, lead, nickel, and zinc), TSS, oil and grease, and PCB Aroclors in accordance with the NPDES permit. There have been exceedances of the limits for TSS and certain metals (none of which has been identified as a COPC), however the permit sampling results have been consistently non-detect for PCB Aroclors at a reporting limit of 0.469 or 0.95 µg/l for each Aroclor. Although the ecological screening criteria for PCBs is 0.014 µg/l, the reporting limits comply with the NPDES permit requirement of 1 µg/l. Recent discharge monitoring indicates that the stormwater discharges are largely in compliance with the discharge standards since the implementation of enhanced BMPs and stormwater treatment systems. The table below summarizes the analytical results of the recent quarterly stormwater sampling at Outfall 013.

Analytical Results of Recent Quarterly Stormwater Sampling for Outfall 013 (mg/L)

		charge Limits tfall 013	2018	2018	2018	2019
TSS	Daily Maximum (mg/l)	Monthly Average (mg/l)	April	September	December	March
Cadmium	0.00495	0.00208	ND	-	ND	ND
Copper	0.01344	0.00524	0.0068	0.0044	0.0026	0.0053
Iron	1.0	0.69	0.6	0.26	0.13	0.32
Lead	0.06458	0.05660	0.0126	-	0.0011	0.0032
Nickel	0.117	0.073	0.0026	-	0.0024	0.0023
Zinc	0.11718	0.07311	0.0745	0.0329	0.0183	0.0271
TSS	100	30	61	38	2.4	30

Concentrations greater than the permit limits are bolded.

The results reflect grab samples collected once per quarter from the discharge resulting from a qualifying storm event, defined as greater than 0.1 inches in magnitude that occurs at least 72 hours from the previously measurable storm event.

Outfall 101 receives stormwater runoff from inlets in the southwest corner of the property. A detailed facility drainage area map is included in **Appendix A**. Outfall 101 also received stormwater collected in secondary containment basins for transformers associated with the power plant. The transformers and their

containment areas were demolished and removed as part of the power plant demolition in 2015, eliminating the secondary containment discharges to Outfall 101. The table below summarizes the analytical results of the recent quarterly stormwater sampling at Outfall 101. There is no effluent limitation for discharge at Outfall 101.

Analytical Results of Recent Quarterly Stormwater Sampling for Outfall 101 (mg/L)

Metals and	NPDES Discharge Limits for Outfall 013		2018	2018	2018	2019
TSS	Daily Maximum (mg/l)	Monthly Average (mg/l)	April	September	December	March
Cadmium	Monitor only		0.000732	0.000375	0.000269	0.000723
Copper	Monitor only		0.116	0.0515	0.0317	0.079
Iron	Monitor only		7	0.88	2.2	4.2
Lead	Monitor only		0.117	0.0415	0.038	0.0798
Nickel	Monitor only		0.118	0.0231	0.027	0.0778
Zinc	Monitor only		0.293	0.123	0.0995	0.188
TSS	Monitor only		250	100	50	160

The results reflect grab samples collected once per quarter from the discharge resulting from a qualifying storm event, defined as greater than 0.1 inches in magnitude that occurs at least 72 hours from the previously measurable storm event.

There are three additional non-Pepco outfalls located adjacent to Outfall 013 that discharge into the Cove. One of these outfalls is believed to convey stormwater from the District of Columbia's Solid Waste Transfer Station. The two other non-Pepco outfalls, including a small PVC pipe outfall, are of unknown origin. Little sampling data or other technical information, either current or historic, are available for the discharges from these other outfalls. There is also a city storm sewer outfall located adjacent to and approximately 20 feet downstream of Outfall 101. Potential contributions from these non-Pepco outfalls and contributions from upstream sources are critical to understanding the sources of sediment impacts in the Waterside Investigation Area.

4.8.8 Target Area 18 - Kenilworth Fueling Island (MTBE in Groundwater)

Samples were collected in Target Area 18 to assess the MTBE potentially related to the former Kenilworth Fueling Island as well as potential upgradient off-Site sources. A 20,000 gal gasoline UST was found leaking in 1995 at the Kenilworth Fueling Island. Pepco completed remediation and received a case closure in 1997. The UST was removed in 2012.

MTBE had been used in U.S. gasoline at low levels since 1979 to replace lead as an octane enhancer. Between 1992 and 2005, MTBE had been used at higher concentrations in some gasoline to fulfill the

oxygenate requirements set by Congress in the 1990 Clean Air Act Amendments. MTBE was a constituent in gasoline dispensed at the former Kenilworth Fueling Island which was near DP54 and DP 47 in the southeast area of the Site (**Figure 4-19**). Although this former dispenser is considered a potential source, off-Site borings completed to the northeast of the Site indicate a potential off-Site contribution of MTBE as well.

Accordingly, Pepco conducted an evaluation of other nearby potential sources of MTBE. This assessment identified several gasoline stations hydraulically upgradient of the detected MTBE locations that may also be a source of the MTBE contamination. **Figures 3-10 and 3-11** show the direction of groundwater flow for the on-Site UWZ and LWZ, respectively. **Figure 4-35** shows the regional groundwater flow and the locations of the hydraulically upgradient gasoline stations with leaking UST (LUST) cases. **Table 4-48** presents a list of LUST cases at locations hydraulically upgradient of the Benning Road facility.

4.8.9 Target Area 19 and DP09 Investigation Area – PCE in Groundwater

Samples were collected in Target Area 19 to assess the PCE in groundwater adjacent to the southern portion of former power plant where chlorinated solvents were suspected to have been stored and used. Inperson interviews revealed the use of degreasers SS25 and XL99, which are chlorinated solvents, in area 34 in the southern portion of the power plant building and Building #65. Their use was discontinued in the 1980s and the Site switched to non-chlorinated solvents. No other areas of the Site are known to be locations where chlorinated solvents were used.

PCE was also detected in groundwater surrounding location DP09 and a delineation of the PCE in groundwater was performed during both Phase I and Phase II. Pepco conducted a thorough review of Phase I and Phase II characterization data, and historical background information available on chlorinated solvent use at the Site and employed forensic tools to identify the source of PCE in the DP09 and MW-01 areas of the Site. As noted in Section 4, the PCE concentrations at the site are highest at the southern boundary along Benning Road and decline sharply toward the interior of the site. Coupled with a lack of specific evidence for any on-Site release of PCE, these data may indicate an off-Site source of the PCE. However, the specific source (or sources) of PCE detected in on-Site groundwater cannot be conclusively determined from the existing data, and further investigation will be conducted during post-RI investigation activities as needed.

Although groundwater data generated on-site for the purposes of the RI indicate a westerly flow direction along the south property boundary, the overall groundwater flow direction in both the UWZ and LWZ may be toward the northwest which is consistent with the regional groundwater flow direction. Further investigations will be conducted during the post-RI activities to better define the site-specific direction of groundwater flow

in the PCE contaminated areas. Some underground utilities at the Site extend to depths that intercept groundwater. The extensive utility conduits along and under Benning Road therefore may provide preferential pathways connecting possible off-Site sources south of the road and the Pepco property north of the road. **Figure 4-21** displays the subsurface utilities and both the DP09 and MW-01 area PCE results. Further investigation will be required to determine if the utility conduits could have channeled significant groundwater flow onto the Pepco property from south of Benning Road.

Several underground structures located on and adjacent to the Site may provide vertical preferential pathways resulting in impacts to the LWZ as observed in the TA19 area. These structures include deep foundations associated with the former power plant buildings in the western portion of the Site and support structures for the WMATA aerial Metro, which extends along the southern border of the Site. Furthermore, the hydraulic data collected from the Site indicates a downward vertical gradient in most on-Site wells including MW05, MW09, and MW12, which are located along the southern border of the Site. The downward vertical gradient in the vicinity of MW09 indicates that there is the potential for plume movement in a direction other than that of groundwater flow. One possible interpretation of the chlorinated volatile organic compound (CVOC) contamination in the upper and lower aquifer is that at least two separate contamination events from an off-Site source (or sources) to the south of Benning Road occurred. The older event, which may have occurred in the deeper aquifer could have produced a disconnected plume now shifted downgradient in the TA19 area. The greater abundance of TCE is most likely due to more advanced degradation of PCE at some points in the deep TA19 area, not a separate TCE source, however alternative interpretations of the data are possible. The exact source of the PCE and TCE on-Site is unknown and additional investigation will be required to better define the most likely source (or sources).

The CSM and available information from Pepco indicate that only a single product used on site contained PCE (SS-25), and no products used contained TCE. There is no evidence that Pepco used chlorinated solvent vapor degreases or stored chlorinated solvents in sumps or large tanks on site. Chlorinated solvents were only used in small quantities for parts cleaning. The earliest date of use for SS-25 is unknown but use of this product was discontinued in the 1980s. The SS-25 product also contained 15 to 20% methylene chloride (also called dichloromethane or DCM) and 40 to 50% mineral spirits. Mineral spirits if present would be reported as TPH-GRO and would be observable in the total ion chromatograms of the SVOC/PAH analyses. In addition:

- Only one TPH-GRO detection was reported on-Site; both PCE and DCM were non-detect (ND) in this sample.
- Although not all of the samples were analyzed for TPH-GRO, the full scan gas chromatography mass spectrometry total ion current chromatograms acquired in samples from TA19 and other

areas of the PCE plume were reviewed for possible presence of mineral spirit hydrocarbons and none were observed.

- There were only 12 detections of DCM on-Site, all of which were estimated (J flagged) and between 0.2 and 0.5 μg/L, suggesting laboratory contamination is the most likely source. In nine of these 12 samples PCE was ND.
- In the three cases where PCE and DCM were both detected, the concentrations of both PCE and DCM were estimated values and below 1 μg/L.
- DCM detections are not associated with any concentrations of PCE > 1μg/L in any permanent or temporary monitor wells.
- In 95% of the samples with PCE detections, DCM was ND.

Considering the chemical composition of SS-25, the analyses of groundwater samples from this area suggest that SS-25 was not the source of the PCE, however preferential degradation of the DCM and mineral spirits may have occurred over time since release, leaving only the PCE, so an on-Site source cannot be ruled out based on this information alone. Sequential degradation of PCE into TCE, DCE, and VC is the most likely explanation of all the CVOCs observed on-Site. The specific source (or sources) of PCE detected in on-Site groundwater cannot be conclusively determined from the existing data, and further investigation will be conducted during post-RI investigation activities.

4.8.10 Target Area 20 – PAHs in Soil (Former Railroad Yard)

This area was previously used as a railyard from 1937 to at least 1963. This area was then converted to a laydown area for what appears to be electrical equipment from 1963 to approximately 1981 at which time the entire area appears to be vacant. Between 1981 and 1988, the DP19 vicinity was converted to a parking area which is its current use. Multiple spurs in the southeast portion of the Site indicate a railroad yard for parking coal cars.

The PAHs in soil in this area appear to be primarily related to the former use for parking rail coal cars. Other potential sources could include contribution from coal tar based pavement sealant, fill materials, and off-Site contributions.

5 Contaminant Fate and Transport

This fate and transport analysis evaluates physical, biological and chemical processes that have the potential to affect COPCs as they move through different environmental media. Understanding the fate and transport of Study Area constituents is important to the evaluation of their potential impacts to receptors. Transport is the simple movement of the constituents, for example, with the flow of groundwater or surface water. Fate is a summary of all the physical and chemical processes that act on the constituents during transport. The distribution of constituents at any given site is influenced by a combination of their physical and chemical properties, source nature, and hydrogeologic and hydrologic setting.

Section 5.1 discusses typical fate and transport processes. Properties of various constituents identified within the Study Area are discussed in **Section 5.2**. A revised Conceptual Site Model and Site-specific migration pathways are discussed in **Section 5.3**. COPC mass flux calculations are presented in **Section 5.4**.

5.1 Fate and Transport Processes

5.1.1 Chemical Processes

The chemical transport process is dependent on whether a chemical is present as a particulate, in the dissolved phase, or in the food chain. In the particulate phase, the chemical is fixed onto soil, or sediment particles and therefore may be relatively immobile, particularly in the groundwater system, or may be subject to mobilization by the flow of water (e.g., in the riverine portion of the Study Area). In the dissolved phase, chemicals may move in groundwater or in surface water in the downgradient or downstream direction, although tidal forces in the Anacostia River also have the potential to introduce limited upstream transport. In the food chain, the mobility of certain compounds may be a function of the bioaccumulation potential, Site-specific factors that influence bioavailability, as well as the local ecology and habitats.

Some chemical-specific measures, which are generally interrelated, that affect constituent mobility include the following:

• The organic carbon partitioning coefficient (K_{oc}) and octanol-water partitioning coefficient (K_{ow}) are used to predict the degree of chemical sorption to soils, sediments, and particulate matter.

- Factors such as the fraction organic carbon (foc) and presence of sulfidic materials (e.g., acid volatile sulfides) have the potential to influence the Site-specific bioavailability of hydrophobic organic constituents and certain divalent metals.
- Henry's Law constant describes the interaction between water and air and how readily a compound may volatilize from the dissolved phase.
- Water solubility and vapor pressure are factors that describe how a chemical maybe transitioned from the liquid, solid, and vapor phases, respectively.
- The biodegradation rate describes the rate that a chemical may break down; this value is Sitespecific, but in the absence of site data, literature values can be used.
- Bioaccumulation and biomagnification potential for hydrophobic organic constituents is often
 estimated by the K_{ow} and can be used to focus an evaluation on chemicals that may be
 incorporated into the tissues of benthic or aquatic organisms.
- Certain inorganic constituents also have the potential to bioaccumulate and biomagnify in aquatic systems and often are characterized by a complex geochemistry involving organic and inorganic fractions.

Literature values have been compiled for the COPCs in the Study Area (**Table 5-1**). Of particular note are the K_{oc} values for the SVOCs (PAHs, PCBs, polychlorinated dibenzo dioxins [PCDDs] and polychlorinated dibenzofurans [PCDFs], and organochlorine pesticides). Most of the COPCs have relatively high K_{oc} values (10^5 to 10^6). These high K_{oc} values are indicative of the tendency for these COPCs to strongly sorb onto soils and sediments and remain with negligible leaching back to water. The sorption is also a function of the organic carbon present in the existing soils and sediments. The higher the organic content the greater capacity for the soils to sorb chemicals. The other important factor for semivolatile COPCs is half-life values, which range from weeks to months; benzene, in comparison has a half-life that ranges from hours to days. The long half-lives for the COPCs suggest persistence in the environment. The tendency to sorb and the environmental persistence are characteristic of PAH's, PCB's, PCDDs/PCDFs, and organochlorine pesticides.

5.1.2 Physical Processes

5.1.2.1 Sediment

The fate and transport of sediment in fluvial environments is a critical process, as suspended sediment affects food web dynamics, habitat quality and contaminant partitioning. The fate and transport of sediment in the Anacostia River has been described generally by DOEE in the draft remedial investigation report (Tetra Tech, 2018). Currently, a quantitative understanding of sediment transport dynamics in the River

remains a significant area of uncertainty, as sediment transport modeling has been conducted but the final modeling reports have not been made available for technical review by stakeholders such as Pepco. The following are general descriptions of sediment fate and transport in the Anacostia River; as fate and transport models are developed, these conclusions may require updating.

Sediment in the River may be mobilized if shear stresses are sufficiently high to overcome friction and the force of gravity, which can occur as water velocities and current are increased by storm events, or through tidal action, boat propeller wash, or high winds. Chemicals with high partition coefficients (e.g., hydrophobic organic constituents) will tend to remain sorbed to sediment as it moves during these events, while chemicals with low partition coefficients may dissolve and enter the surface water. Metals that are sorbed to fractions can also be mobilized during high sheer stress events. River velocity and particle characteristics are the two main factors that influence the movement of sediment and sorbed chemical constituents. Sediments and other organic material (upon which chemicals are sorbed) are transported as they are suspended. Finer-grained materials are more readily entrained by river flow than coarser-grained materials and may be transported longer distances downstream as suspended river load. However, low energy environments, which can form in wider areas of the River, downstream of obstructions (e.g., bridges), or behind bends, tend to trap fine-grained sediment.

The ARSP RI report describes a general conceptual model of sediment transport. In this model, the tidal Anacostia River is coarse-grained but characterized by depositional zones in the area of reduced gradient below the confluence of the Northeast and Northwest Branches. Below this zone, transport dominates, with no net sediment deposition that extends approximately from Bladensburg Marina to the CSX Bridge; this reach has been referred as a 'sediment conveyer belt.' Following this reach, there is a 'transitional' reach between the CSX Railroad Bridge and the Pennsylvania Avenue Bridge. Downstream of the Pennsylvania Avenue Bridge is considered depositional (AWTA 2009). Although the Anacostia River is tidally influenced, sediment transport models completed by others indicate riverine transport in the vicinity of the Site is typically in the downstream direction (GeoSea, 2000).

However, radiochemistry coring conducted by several parties in the Anacostia River indicates that this model is either not accurate, or while it may describe riverine behavior on a watershed scale, it does not account for smaller scale hydrogeomorphic conditions that contrast with or even contradict the broader riverwide conceptual model. Several cores collected by DOEE as part of the ARSP RI (Tetra Tech, 2018) indicate that there are high rates of sedimentation in the vicinity of the Waterside Investigation Area, with well-defined ¹³⁷Cs peaks and corresponding sedimentation rates that range from 1 to 3 cm/yr. In addition, a radiochemistry cores collected by Pepco at sampling location SED7E (**Section 2.4.4**) in the Cove indicate that rates are approximately 1 cm/yr (**Figure 5-1**), and the grain size analysis in the Cove indicates that the

area is largely depositional; percent fines (the sum of silt and clay fraction) in bulk sediment in the Cove range up to 82%. Some locations in the Waterside Investigation Area channel near the Cove range up to 96% fines. However, no cesium peak was detected in cores collected in the channel adjacent to the Cove, despite sampling at depths up to 7 feet (**Table 5-2**). Likewise, Tetra Tech collected a 9-foot core upstream of the Waterside Investigation Area in the channel near the Bladensburg Marina with no ¹³⁷Cs peak observed (Tetra Tech, 2018), which suggests that either cores were not sufficiently deep to capture the peak or that the history of dredging (or other sediment turbations) has erased the peak in some areas. Downstream of the CSX Bridge, Velinsky (2011) measured sedimentation rates up to 3 cm/yr.

The primary sources of sediment in the Anacostia River include tributaries, storm drains, municipal separate storm sewer system (MS4) outfalls, other NPDES stormwater outfalls, CSOs, direct surface runoff, instream sources, and facility discharges (DOEE, 2002). The ARSP RI reported that for 2014, the Northeast and Northwest Branches provided approximately 75% of the total sediment load (2.8 x 10⁷ kg) to the tidal Anacostia River; the northeast branch accounted for approximately 46% of the total and the northwest branch 28%. The sediment loads originating from urban land (residential, commercial, and industrial) were larger than loads from agricultural land, forest, or construction sites. Most stormwater runoff from urban lands in the Anacostia Watershed enters the municipal separate storm sewer systems in the three jurisdictions in the Anacostia watershed. According to the RI, areas of the watershed captured by MS4 outfalls produced 3,502,063 kg, or 5.73% of the sediment load, and the CSS areas produced 1,785,387 kg, or 2.92% of the sediment load.

Pepco reviewed a report on Sediment Trend Analysis® (STA) for the Anacostia River (Hill and McLaren, 2000) prepared by GeoSea to evaluate general direction of sediment movement within the Waterside Investigation Area under normal conditions. Pepco also estimated an approximate distance for upstream transport of fine-grained sediment particles (which typically carry contaminants) from the Waterside Investigation Area under worst case tidal and storm surge conditions. GeoSea used sediment characteristics and STA methodology to determine sediment transport under normal conditions. Results of the analysis indicate that the Anacostia reach between Lower Beaverdam Creek to East Capitol Street Bridge (which includes the Waterside Investigation Area) is a "Total Depositional" area where existing sediments were regularly covered by new sediments from up-River areas. In addition, there is erosion of sediments from the confluence of Watts Branch to the River Cove within the Waterside Investigation Area, where Pepco's outfall 013 and two other non-Pepco outfalls discharge (0.3 mile long) with a downstream transport direction. Examination of the newer grain size data collected during 2014 and 2017 and its distribution suggests that the net sediment transport direction would be southerly, consistent with the earlier determination by the GeoSea STA.

Tidal currents during a 100-yr storm event and during storm surges will be stronger, but the net direction of flow will be downstream due to high volume of river discharge from upstream areas. The semi-diurnal tidal flux will be less dominant during extreme river flow events. An incoming tide during a low river flow event, on the other hand, would present the worst case condition for the mobilization and upstream transport of fine-grained sediments. Under these conditions, it is estimated that fines (silt and clay) from the Cove could potentially be carried upstream with the tide and then settle out from the water column during slack tide. The most upstream location where these fines would be carried by the tide is estimated to be approximately 4,600 feet from the Cove, at which point these would be carried back downstream for the next 6 hours during the ebb tide.

Estimates of sediment and COPC loading from tributaries to the tidal Anacostia remain unquantified in the ARSP RI, but several other studies have been conducted to estimate COPC contributions from tributaries. Of the tributaries, Lower Beaverdam Creek is the third largest source of water, accounting for 17% of the flow to the Anacostia River; for comparison, the northwest and northeast branches account for 45 and 32% respectively (Warner et al., 1997). The ARSP RI summarizes the results of several studies investigating COPC contributions from tributaries, and found that they are significant sources of organic pollutants, including PAHs, PCBs and chlorinated pesticides, and that Lower Beaverdam Creek is likely a larger source of PCBs than the northwest and northeast branches despite the lower flow (Hwang and Foster, 2008). Moreover, recent studies conducted by Lombard et al. (2018)³ and presented to the Leadership Council for a Cleaner Anacostia River evaluated PCB contributions in the River from three sources (bed sediments, tributaries and outfalls, and air-water exchange). These studies, which employed state-of-the-art monitoring approaches to quantify load, indicated that high concentrations of pollutants, including PCBs, are entering the River from several tributaries, including Lower Beaverdam Creek.

As result of the data gaps identified in the ARSP RI regarding tributary loadings, the USGS, in cooperation with DOEE, initiated a study to determine the current-day (2017) loadings of sediment and sediment-bound COCs from nine tributaries to the Anacostia River (USGS, 2019). The largest of these tributaries include the northwest and northeast branches, Lower Beaverdam Creek, Watts Branch and Hickey Run. The study measured concentrations of contaminants in both surface sediment and suspended sediment which included PCBs, PAHs, organochloride pesticides and trace metals. Total sediment loading from the tributaries to the Anacostia River during 2017 was 3.10E7 kilograms, with 50% from the northwest branch,

³ Ongoing Inputs of Persistent Organic Pollutants to the Anacostia River, 2018. Natalie Lombard, Mandar Bokare, Varapapa Thodpanich, Sam Magee, Upal Ghosh. Anacostia River Leadership Council for a Cleaner Anacostia River, September 13, 2018

33% from the northeast branch, 14% from Lower Beaverdam Creek and less than 2% each from Watts Branch and Hickey Run. The contribution from the four smaller tributaries was minimal at approximately 1% of the total sediment. However, the loadings for Lower Beaverdam Creek are considered an underestimate resulting from gaps in turbidity and discharge data. Based on concentration data, Lower Beaverdam Creek was the largest source of PCBs at 75% of the total loading to the Anacostia River, whereas Northwest Branch was the largest source of PAHs accounting for 59% of the total loading. Overall, the results of the study indicate that substantial loadings of PCBs, PAHs, and chlordane continue to enter Anacostia River from the larger tributaries, however, additional sampling is needed to refine the concentrations and loadings of pesticides and metals. Surface Water

Desorption from surface water entrained sediments is one way chemicals are transported to surface water. This mechanism is characterized by partitioning coefficients and water solubility. Inorganic constituents in the Anacostia River surface water may occur in a variety of different forms, both as total recoverable and dissolved phase, although the dissolved phase typically represents the bioavailable fraction of this class of compounds. The water solubilities of high molecular weight PAHs, PCBs, dioxins, and organochlorine pesticides are very low and their affinity to attach to organic matter (higher partitioning coefficients) is high. As a result these compounds are not found in surface waters in soluble form, except at very low concentrations. Vapor pressure and Henry's Law Constant help describe how a chemical may partition between the water and the atmosphere. These processes are important for VOCs. Groundwater discharge to surface water may also be a pathway from source areas to surface water, although this is not considered significant at this Site.

Once dissolved in the surface water, the transport properties of chemicals will be a function of the movement of the surface water, primarily surface water velocity, and flux. For instance, transport along concentration gradients may result in dispersion and dilution. Dilution can be estimated by comparing initial to final concentrations. In low velocity systems (i.e., marshes, wetlands) diffusion could be an important transport mechanism. Dissolved phase organic and inorganic constituents may become affixed to sediment and other particulate phases, as well as to organic ligands and other binding phases in the water column.

5.1.2.2 Soils

Surface water runoff, erosion, and dust are mechanisms for transport of impacted soil to wetland sediments and surface water. Man-made infrastructure (drains, sewers, culverts, outfalls) may also provide a mechanism for eroded impacted soil to migrate.

Chemicals that sorb strongly to soils (PAHs, pesticides, and PCBs, for instance) are likely to migrate with soil particles (i.e., via erosion). Some chemicals (PCBs for instance) also do not degrade readily and may

persist on soil particles. Other chemicals with lower sorption potential may leave the soil and migrate in dissolved phase in surface water or groundwater.

Constituent migration from soil to groundwater may occur when there is a source of soil impacts and recharge (rainfall) to prompt the migration. The majority of the Site is covered with impervious surfaces and a significant volume of rainfall is captured by the stormwater collection system resulting in minimal rainfall recharge at this Site. Therefore, the soil-to-groundwater pathway is insignificant for much of the Site.

5.1.2.3 Groundwater

Groundwater may become impacted due to direct discharge to groundwater, leaching from soil to the groundwater, or migration within the groundwater system. As constituents in groundwater move through the groundwater system, a number of different processes act on them. These processes as a group are often referred to as attenuation processes, because they result in decreased concentrations of constituents over time and distance from a particular source area. These processes include groundwater velocity (advection), dispersion, retardation (adjusted velocity based on sorption/desorption, K_{oc}) and degradation (half-life). Groundwater velocity is a function of changes in groundwater elevation over distance, porosity, and hydraulic conductivity. Hydrodynamic dispersion is the process whereby groundwater containing dissolved constituents must move around individual sand grains or other heterogeneities (variations) in the aquifer during groundwater flow. Together, advection, dispersion, retardation, and degradation attenuate constituent concentrations in groundwater with distance from a source area. Facilitated transport may also move hydrophobic organic constituents through groundwater. Potential facilitated transport mechanisms include cosolvent facilitated transport and colloidal transport. Cosolvent facilitated transport can occur when dissolved constituents, or natural organic matter in groundwater, increase the effective solubility and reduce soil sorption of hydrophobic organic constituents. Colloidal transport can occur when colloidal size particles (generally < 10 microns) act as sorbents for hydrophobic organic constituents and assist the movement through groundwater in spite of the low solubility of the constituents in pure water.

5.1.3 Biological Processes

Bioaccumulation, biodegradation, and bioturbation are factors that affect chemicals in the environment (persistence) relative to the nearby organisms and are relevant in the Waterside Investigation Area. At the lower end of the food chain, benthic insect larvae ingest bulk sediment and strip detritus from the surface of the particles, and may be exposed to sediment interstitial pore water. Bioaccumulation occurs when the uptake rate exceeded the organisms' ability to remove the chemical through metabolic functions including dilution and excretion resulting in storage of a chemical in the organisms' tissues. Biomagnification occurs at the higher end of the food chain, when persistent and bioaccumulative chemicals are passed from one

organism to another through feeding processes. The source of chemicals to the organism may be sediment-sorbed or dissolved phase, as well as through food chain uptake pathways (e.g., ingestion of contaminated prey items). Biodegradation of COPCs in sediment can be microbially modulated, and can include anaerobic and/or aerobic degradation of constituents, including reductive dechlorination of hydrophobic organic constituents such as PCBs.

Bioturbation is the reworking of soils and sediments by animals or plants. In many quiescent systems, bioturbation is one of the primary factors affecting sediment stability (USEPA, 2005a). Many bottom feeding organisms physically move sediment during feeding, locomotion, nesting, and shelter building; however, with regard to sediment stability analysis, the most significant concern is "mixing zone" movement of sediment in the top 5 to 10 cm. The depth of sediment that is susceptible to mixing by various organisms varies with sediment grain size, density, chemistry, and habitat. The SPI survey (Section 2.4.1) in the Waterside Investigation Area documented that the BAZ was limited to the top 4 inches (10 cm). Site-specific and historical macroinvertebrate community surveys of the Anacostia River (McGee *et al.*, 2009) found that the benthic invertebrate community in the Anacostia River is consistent with many other urban rivers and is generally underdeveloped and relatively inactive. Therefore, it is unlikely that bioturbation will play a major role in modifying sediment stability in the Anacostia River at or near the Site.

In the lower Anacostia River, the primary COPC of interest relative to fish tissue residue is PCBs, which are bioaccumulative, have the potential to biomagnify, and will biodegrade to a certain extent in the environment. Partitioned chemicals may enter the food web from uptake of sediment solids, food chain exposure pathways, or porewater/surface water interactions. **Figure 5-2** shows a conceptual exposure pathway for Waterside COPCs.

5.2 Constituents of Potential Concern

The following chemicals have been identified as COPCs within the Study Area as a result of the RI sampling and data evaluations performed.

- Inorganics: Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper,
 Cobalt, Copper, Cyanide, Iron, Lead, Manganese, Mercury, Methyl mercury, Nickel, Selenium,
 Silver, Thallium, Vanadium, Zinc
- PCBs: Total PCBs
- Dioxins/Furans: PCDDs, PCDFs, TCDD
- Pesticides: 4-4'-DDT, 4-4'-DDE, 4-4'DDD, Aldrin, alpha-Chlordane, beta-BHC, cis-Chlordane, cis-Nonachlor, Dieldrin, Endosulfan Sulfate, Endrin, Endrin ketone, gamma-Chlordane, Heptachlor

Epoxide, Hexachlorobenzene, Methoxychlor, Mirex, Oxychlordane, trans-Chlordane, trans-Nonachlor

- VOCs: Acetone, Bromodichloromethane, tert-Butyl alcohol, Chloroform, MTBE, PCE, TCE, VC
- SVOCs: 4-Methylphenol, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene,
 Benzo(b)fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-cd)pyrene, Acetophenone,
 Banzaldehyde, Benzoic acid, Banzo(k)fluoranthene, bis-(2-Ethylhexyl)phthalate,
 Butylbenzylphthalate, Caprolactam, Carbazole, Chrysene, Di-n-octylphthalate, Pyrene,
 Naphthalene, 2,3,5-Trimethylnaphthalene, 2,6-Dimethylnaphthalene, Total High-molecular-weight
 PAHs, Total Low-molecular-weight PAHs, Total PAHs
- TPH: DRO (C10-C20)

These constituents were found in some or all of the following media: surface soil, subsurface soil, storm drain residue, surficial river sediment, and surface water. The COPCs were identified during the human health and ecological risk assessments; justification for the COPC selection is provided in the BHHRA and BERA included as **Appendix AA** and **Appendix BB**, respectively.

5.2.1 Inorganic Constituents

Adsorption is a key factor influencing the fate and transport of metals in the environment. The degree to which a metal will adsorb depends on the presence of competing ions, metal speciation, and water chemistry, such as pH and redox, as well as DOC. Metals are found naturally in the earth's crust in various forms and they do not readily degrade in the environment. Metals that form stable oxyanions, such as arsenate and chromate, and do not form insoluble salts, are generally more mobile in groundwater.

A review of the K_d (partitioning coefficients) in **Table 5-1** provides an indication of the relative mobility of metals in ground and surface waters. For instance, vanadium has a high partitioning coefficient suggesting that it is hydrophobic, preferring to be sorbed, while chromium has a low partitioning coefficient suggesting that it prefers to be in solution. Both vanadium and chromium exhibit multiple oxidation states and speciation of these metals strongly affects their mobility in water. Certain divalent inorganic compounds (e.g., cadmium, copper, lead, nickel, zinc) have the potential to bind irreversibly to sulfidic phases in the sediment. Different forms of native and anthropogenically introduced organic carbon are also effective binding phases for many metals in riverine sediments such as the Anacostia.

Metals do not partition as strongly to organic material as hydrophobic organic compounds. However, the covariance of many inorganic compounds to sediment grain size has been well documented and is generally accepted by the scientific community (Klamer et al., 1990, SSC, 2003, Dashalakis and O'Connor,

1995). Coarse-grained sediments tend to have lower metals concentrations due to relatively low surface area available for metals sorption. Conversely, many compounds will tend to sorb to fine-grained sediment particles (Power and Chapman, 1992; USEPA, 2002). Additionally, when weathering breaks down minerals into clay particles, this fine fraction tends to have higher concentrations of naturally occurring metals than the coarser grained fractions (i.e. sand).

5.2.2 PAHs and SVOCs

PAHs are ubiquitous in the environment, coming from both natural and anthropogenic sources; the types and sources of PAHs at the Site are discussed in greater detail in Section 4. PAHs can be categorized into two classes: low molecular weight PAHs and high molecular weight PAHs. PAHs often occur together in the environment and many have similar toxicological effects, and environmental fate. PAHs in general do not easily dissolve in water and exhibit solubilities that are inversely proportional to molecular weight. They are semivolatile and hydrophobic, and therefore can be present in air as vapors or adhere to surfaces of small solid particles. From surface water, some PAHs can evaporate into the atmosphere, but most stick to solid particles and settle to the bottoms of rivers or lakes. PAHs in urban river systems are often irreversibly bound (and thus not bioavailable) to organic carbon and black carbon (soot) in the sediment. In soils, the compounds are most likely to adhere tightly to particles, as indicated by the high K₀₀ values in **Table 5-1**.

Certain PAHs in soils can also migrate to groundwater. Two and three ring PAHs (such as naphthalene, phenanthrene, and acenapthene) are the most soluble in water and likely to desorb from soil. PAHs can breakdown to less short-lived products by reacting with sunlight and other chemicals in the air, generally over a period of weeks to months. Breakdown in soil and water generally takes weeks to months. PAHs have been detected in groundwater either as a result of migration directly from contaminated surface waters or through the soil. They have been shown to be transported laterally within contaminated aquifers.

PAHs have limited bioaccumulation potential but can be found in plants, aquatic organisms, and animals from intake of contaminated water, soil, and food. In general, bioconcentration is greater for the higher molecular weight compounds than for the lower molecular weight compounds. However, extensive metabolism of the compounds by the high-trophic-level consumers (including humans) has been demonstrated, indicating food chain biomagnification of the compounds does not appear to be significant.

5.2.3 PCBs

PCBs are anthropogenic chemicals and have no known natural sources. Most PCBs in North America were produced as commercial mixtures called Aroclors and were often used in the past as dielectric fluids in transformers and capacitors. The industry term for these PCB dielectric fluids was askarels, which consisted

of either pure Aroclors or mixtures of Aroclors and trichlorobenzene. Production of PCBs started in 1929 and was banned by EPA in 1979. A total of 209 individual PCB isomers, called congeners, are possible although Aroclor mixtures typically contain fewer than 160 congeners. PCBs exhibit low water solubility, are moderately volatile, strongly adsorb to organics, and preferentially partition to soil and sediment. Solubility and volatility of congeners are both inversely related to molecular weight. The major fate process for PCBs in water is adsorption to sediment or other organic matter. Consequently, PCB concentrations in sediment and suspended matter are generally higher than in the associated water column (ATSDR, 2000). The more highly chlorinated Aroclors sorb more strongly than the less chlorinated Aroclors, reflecting their differences in water solubilities and octanol-water partition coefficients. Adsorption and subsequent sedimentation may immobilize PCBs for relatively long periods of time in aquatic systems. However, limited re-dissolution into the water column may occur. PCBs contained in layers nearest the sediment surface may be slowly released over a long period of time. PCBs present in the lower layers of sedimentary deposits may be effectively sequestered from environmental distribution and slowly degraded by anaerobic microbial dechlorination under anoxic conditions (ATSDR, 2000). Reductive dechlorination can alter the relative abundance of PCB congeners but does not always significantly reduce the total mass of PCBs in sediment.

The estimated Henry's law constants for individual Aroclors indicate that volatilization may be a significant environmental transport process for PCBs dissolved in natural water. However, adsorption to sediment significantly decreases the volatilization rate of highly chlorinated Aroclors from the aquatic phase. The redissolution rate of PCBs from sediment to water is greater in the summer than in the winter because of more rapid volatilization from water at higher temperatures. The work of Lombard et al. (2018) suggests that net volatilization of PCBs from water to the air may be occurring in portions of the Anacostia River.

The ability of PCBs to bioaccumulate has been related to corresponding octanol-water partition coefficients (Kow). Compounds with high Kow values more readily bind to sediments (particularly sediments with elevated organic carbon) and are more readily bioaccumulated by organisms. Experimentally determined bioconcentration factors may depend on the water depth in which aquatic animals typically feed. PCBs also bio-magnify within the food chain. If consumed, PCBs are stored in fat and biomagnify up the food chain. Developing an understanding of PCB food chain dynamics and relationships between sediment associated PCBs, freely dissolved and particulate associated PCBs in the water column, and fish tissue PCB residues requires complex multi-compartment analysis. Uncertainties exist regarding the relationship between sediment COPCs in the Waterside Investigation Area and fish tissue in the Anacostia River. The work of Lombard et al. (2018) suggests that Anacostia River sediment may be a contributing source of freely dissolved PCBs in the water column in areas of elevated PCB concentrations, but that sediments contribute less load to the surface water than upstream sources, including Lower Beaverdam Creek.

Known potential sources of Aroclor product PCBs at the Pepco Benning site were dielectric fluids in electrical equipment and caulking plasticizer in the concrete cooling tower basins. Following the late 1970's directives from EPA, Pepco implemented a waste tracking system to determine if electrical equipment dielectric fluids contained PCBs. Pepco Holding Technical Procedure EN-PP-000012 (Pepco,2016) describes in detail how all untested or unlabeled equipment is taken to the Benning facility and promptly tested for PCBs on removal from service.

Using the TSCA categories, PCB Equipment (> 500 ppm PCBs) is either disposed by shipment to an approved facility or retro-filled with clean mineral oil (historically) or Envirotemp FR3 fluid in transformers (a refined soybean oil currently used as the primary dielectric fluid). Reuse of retrofilled transformers requires that they must be verified to contain < 49 ppm of PCBs (Non-PCB classification). Recovered oil containing 50 ppm PCBs or greater is drummed and moved to a Toxic Substances Control Act (TSCA) approved storage facility in Building 68 in the western portion of the Site for storage pending off-Site disposal at an audited and approved disposal facility. Recovered oil containing ≤49 ppm PCBs is pumped to one of two 10,000 gallon holding tanks designated for accumulating used Non-PCB class oil in Building #57 and near Building #29. These tanks are installed in concrete vaults, which act as secondary containment. This waste oil is removed as needed by tanker truck to an approved off-Site disposal facility.

Pepco's records since 1990 indicate < 0.7% of electric equipment contained dielectric fluids with PCB concentrations >500,000 ppm and thus were known or suspected to be askarels, usually in sealed devices such as capacitors. Most of these sealed devices were assumed to contain askarels and disposed accordingly per TSCA requirements, without being tested for PCBs. About 1.5% contained PCBs > 500 ppm, 9.2% contained PCBs >50 ppm, and 27% contained PCBs > 5 ppm. The remainder analyzed were non-detect for PCBs. Additional information about the history of PCBs and the Benning facility will be provided in the Forensics Analysis and Source Evaluation Report.

5.2.4 Dioxins

Polychlorinated dibenzo dioxins and polychlorinated dibenzofurans are a group of chemicals, commonly referred to as "dioxins", with both natural and anthropogenic sources. Many industrial combustion processes can produce trace levels of dioxins when chlorine is present, but dioxins were never intentionally produced for industrial uses like PCBs. Normal transformer operating conditions do not generate PCDD/PCDFs in mineral oil based or PCB containing dielectric fluids (EPRI, 1983; EPA,1987; Rouse,1988). Combustion in the presence of oxygen, in situations such transformer fires, is required to generate PCDDs from the trichlorobenzenes of askarels or the creation of new PCDFs from the oxidation of PCBs. Available records indicate that only one incident involving a transformer fire has occurred at the Site which was

caused by lightning striking a transformer on the roof of the former generation plant power house building. The mere presence of transformers and other electrical equipment, with or without PCB containing dielelctric fluids, does not pose a risk of significant PCDD/PCDF release at the site.

Polychlorinated dibenzo dioxins and polychlorinated dibenzofurans are extremely hydrophobic, almost insoluble in water, persistent in the environment, and they sorb strongly to soils and sediments. The isomer 2,3,7,8-TCDD is the most toxic dioxin and therefore the most frequently referenced in the literature. According to some studies, the ultimate sink of airborne particulate 2,3,7,8-TCDD is likely to be the sediments of surface waters (Choudry and Hutzinger, 1982; Czuczwa and Hites, 1986). Bacterial degradation of dioxins is possible, but it is very slow and limited by the populations of organisms in native material. However, both volatilization and photolysis will slowly remove 2,3,7,8-TCDD from surface soils, surface water and groundwater.

5.2.5 Pesticides

The pesticides identified as COPCs are hydrophobic anthropogenic chemicals that were widely used for insect control and are commonly found in urban soils and sediments. They tend to bioconcentrate and biomagnify in the food chain. Biotransformation proceeds at an exceptionally slow rate due to the complex aromatic ring structures and the extent of chlorination. The pesticide 4,4'-DDT undergoes slow but extensive biotransformation in mammals and DDE is the major metabolite (in aerobic conditions), with 4,4'-DDD as another metabolite (under aerobic conditions) (Callahan et al, 1979; Lichtenstein and Schultz, 1959; Menzie, 1980). Organochlorine insecticides are not soluble in water. They have a rather high degree of lipid solubility as characterized by large fat-water partition coefficients which enables them to concentrate in tissue. Pesticides generally have low water solubility, and therefore are primarily in aquatic systems. Photo-oxidation of 4,4' DDT is known to occur on soil surfaces; however, it's not known to hydrolyze (Lichtenstein and Schultz, 1959).

Studies have found that plants, fish, mammals, and birds as well as phytoplankton and zooplankton in aquatic environments bioaccumulate DDT. In sediments, DDE is the major metabolite formed (Montgomery, 1996). Both DDD and DDE are stable and biologically active but DDE is non-insecticidal (Montgomery, 1996). DDT has a low solubility and preferentially binds to sediments. If consumed, DDT and metabolites are stored in fat and biomagnify up the food chain.

The fate and transport characteristics of trans-chlordane are similar to other organochlorine pesticides.

Organochlorines tend to bioconcentrate and biomagnify in the food chain. Biotransformation proceeds at an exceptionally slow rate due to the complex aromatic ring structures and the extent of chlorination. Trans-

chlordane is one isomer in a complex mixture called technical chlordane that was most commonly used as a termiticide in urban areas. Trans-chlordane is semivolatile in air and insoluble in water.

5.2.6 VOCs and TPH

VOCs and TPH were identified as COPCs. The VOCs included both halogenated and non-halogenated VOCs. TPH is a term used to describe a group of hundreds of chemical compounds that originate from crude oil. It's often not feasible or affordable to identify chemical composition of these mixtures. The nature of these COPCs in on-Site media is residual and/or dissolved phase, and there is no bulk or free product.

In the subsurface environment, VOCs and TPH are relatively mobile for organic compounds, and they are subject to processes that naturally reduce their concentrations. Groundwater is the primary pathway that has the potential to transport these compounds; however, VOCs present in soil and groundwater can also volatilize under certain circumstances and migrate through the unsaturated zone to the surface. VOCs and TPH are subjected to various attenuation processes during groundwater transport that tend to reduce their concentrations both over time and with greater distances traveled. Dispersion during transport resulting from mixing with infiltrating rainwater and non-impacted groundwater, acts to reduce concentrations as groundwater flows farther from the source area.

Sorption and desorption describes a compounds affinity for partitioning between water and organic carbon in the soil. This is quantified by an organic carbon-water partition coefficient and characterizes compound mobility. Organic compounds may be adsorbed onto organic material within the aquifer material which reduces mobility and causes chemicals to travel slower relative to the groundwater flow. TPH typically has a greater tendency to adsorb than most VOCs. Non-halogenated organics generally have low affinity for organic matter.

VOCs and TPH are also subject to biodegradation/biotransformation. Once in the subsurface, chlorinated VOCs may undergo reductive dehalogenation under anaerobic conditions. This is unlikely to take place under aerobic conditions. PCE present in the Site groundwater may be progressively broken down to TCE, VC, and ultimately carbon dioxide. However, reduction of PCE/TCE due to reductive dehalogenation does not ensure a reduction in toxicity. Many of the daughter products of the dehalogenation process, such as VC, are as toxic as or more toxic than the parent compounds.

MTBE has been used in the U.S. since 1979 as a fuel oxygenate in gasoline, and was a constituent in gasoline dispensed at the former Kenilworth Fueling Island (Target Area 18). Although this former dispenser is considered a potential source, off-Site borings completed to the northeast of the Site indicate a potential off-Site contribution as well. Once MTBE and other gasoline components are dissolved into the

groundwater, the fate is controlled by a number of competing processes. As a dissolved constituent, the maximum rate of transport is that of the groundwater; however, the tendency for gasoline components to adsorb to soil particles competes with the rate of transport. Through groundwater flow, these constituents are attenuated by dispersion and dilution. MTBE can be biodegraded aerobically or anaerobically, but only by relatively few microorganisms and under specific conditions. These organisms may be present at most sites, but may not be present in sufficient numbers or at sufficient growth rates to support active degradation. Other factors for degradation are oxygen content, pH, moisture content, macronutrients (i.e., nitrogen, potassium, iron, etc.) and temperature. Biological de-methylation of MTBE under aerobic conditions may produce Tertiary butyl alcohol (TBA) as an intermediate product; however, TBA is often used itself as a fuel oxygenate. Complete aerobic biodegradation of MTBE and TBA results in the production of carbon dioxide (CO₂), which is stable, inert and non-toxic.

5.3 Site-specific Migration Pathways and Revised CSM

The purpose of the CSM is to illustrate sources of contamination, impacted media, and routes of migration for the COPCs identified in various environmental media on the Landside and Waterside portions of the Site. This CSM is a revision of the CSM presented in the CSM Technical Memorandum (AECOM, 2016b) based on the Phase II RI activities. General pictorial representations of the Waterside and Landside CSMs are presented as **Figure 5-2** and **Figure 5-3**, respectively, and are described further in the following paragraphs. The CSM discussion in this section is limited to known or potential sources, migration pathways, and potentially impacted media. Potential release mechanisms, exposure pathways, and CSMs related to human and ecological receptors are discussed in the BHHRA (**Appendix AA**) and BERA (**Appendix BB**).

5.3.1 Potential On-Site Contamination Source Areas and Migration Pathways

Based on review of previous studies and the findings of the RI field activities, the following potential on-Site source areas of contamination were identified:

- Target Area 1 Former Sludge Dewatering Area and Surrounding Coal Pile Area
- Target Area 4 Salvage Yard
- Target Area 5 Former Cooling Towers
- Target Area 10 Red Tag Storage Area
- Target Area 11 PCB Building #68
- Target Area 12 Building #57 (Transformer Shop)
- Target Area 17 Storm Drain System (historical process water discharges and historical and current diffuse leaks/drips and Site runoff)

- Target Area 18 Kenilworth Fueling Island (MTBE in groundwater)
- Target Area 19 PCE in Groundwater (uncertainty regarding potential on- and off-Site sources)
- Target Area 20 PAHs in Soil (former Rail Yard and Laydown Area)
- DP09 Investigation Area PCE in Groundwater
- Former Timber Pole Storage Area

A detailed description of these areas is provided in Section 4.8. Historical power plant operations other than those identified above were thoroughly evaluated in the CSM Technical Memorandum (AECOM, 2016b) and were eliminated as potential sources. The on-Site areas and associated transport pathways were evaluated as part of the RI. However, a data gap still exists regarding the specific source (or sources) of PCE detected in on-Site groundwater which cannot be conclusively determined from the existing data. Further investigation will be conducted during post-RI investigation activities as needed. The CSM graphic provided in the CSM technical memorandum (AECOM, 2016b) has been updated to reflect the current Site conditions. The CSM, which shows the potential on-Site source areas and transport mechanisms is provided as **Figure 5-4**. The revisions to the CSM are based on the following evaluation:

Site Soil to Groundwater Pathway

The PSL exceedances observed in on-Site soil and groundwater were evaluated to determine if a pathway between the media types exists. The primary COIs in groundwater are MTBE and PCE and its daughter products (TCE and VC). Although historically, an on-Site pathway from soils to groundwater may have existed, none of these compounds exceed its screening levels in soil indicating that the current on-Site pathway is incomplete. DRO exceedances were isolated. Metals were frequently detected in groundwater; however, they were not detected greater than background levels with the exception of arsenic and total vanadium for which background in the LWZ could not be calculated. Dissolved vanadium did not exceed its PSL in groundwater and there were only isolated detections of dissolved arsenic, slightly above its PSL, and no exceedances in the downgradient wells. In addition, none of the SVOCs exceeded the PSLs except for naphthalene in MW01-B and MW02-B in 2014. However, naphthalene was re-sampled in both wells in 2016 and was not detected in either well. The only pesticide PSL exceedance in groundwater was for dieldrin which was detected at one location in the LWZ, MW-08B, and only slightly exceeded the PSL. None of groundwater sample results for PCBs or dioxins and furan compounds exceeded their respective PSLs; groundwater constituent occurrences are isolated and are not indicative of an existing pathway between soil and groundwater. PCB and dioxin detections in soil were generally limited to either surface or shallow subsurface (6 ft. or less). These compounds are hydrophobic in nature and have very low solubility; therefore, leaching from soil to groundwater is considered an insignificant pathway. This is supported by Site groundwater sampling which showed no concentrations of PCBs or dioxins above PSLs. Further, the

majority of the Site is paved or covered by impermeable surfaces and stormwater is effectively captured minimizing infiltration of water through soils that may be impacted.

Site Groundwater to Storm Drains Pathway

Certain portions of the Pepco storm drain system are located below the groundwater table. Pepco performed CCTV camera inspections of the Site storm drains in 2015 and 2016; observations included minor infiltration, pipe deficiencies, root intrusions, and accumulation of sediment/debris. In response to these findings, Pepco completed cleaning of the main storm drain pipe, which resulted in removal of approximately 47 cubic yards of accumulated sediment, and thereafter completed patching/repairs of several identified defects in the storm drain system. Following the repairs, Pepco conducted another round of CCTV inspections in 2018, at which time 9.5 tons of sediment and debris were removed from the storm drain system. The 2018 inspection found that the majority of storm drain lines inspected are in relatively good condition. However, many lines exhibited potential evidence of infiltration in the form of encrustation on the pipe walls, structural defects, and deposits/debris during the CCTV inspection. Although these portions of the storm drain did not appear to be functioning as a sealed system, there were no observations of active groundwater inflow or weeping to the storm drain system. The observations from the 2018 CCTV inspection and storm drain profiles are provided in **Appendix Z**. Pepco contracted Flippo Construction to perform the storm drain repair/replacement work on these areas, which was initiated in December 2018 and is currently on-going.

As shown on the profiles, the storm drain system is above the groundwater table until the pipe drop at MH-37/I 37. Although portions of the storm drain system are below the groundwater table, only minor infiltration in the form of encrustation has been observed during the CCTV inspections. Several of the encrustations (M51C, I73, I06) were observed in sections located above the groundwater table. Apparent encrustations may be due to efflorescence of salts passing through the concrete and accumulating by evaporation rather than the direct movement of water into the pipe. Furthermore, the CCTV inspections did not indicate active groundwater dripping into the storm drains, or the presence of concrete stalactites that would indicate continuous dripping of groundwater into the pipes. Based on these observations, the groundwater-to-storm drains pathway is deemed insignificant.

Site Storm Drain to Surface Water Pathway

The storm drain system at the Site discharges to the River via two outfalls, Outfall 013 and Outfall 101, and therefore represents a potential pathway for the movement of contaminants from the Site to surface water. The majority of the Site is drained by the main storm sewer system that traverses the Site from southeast to northwest and discharges to the Cove at Outfall 013. The area to the west of the former Power Plant

building is drained by a smaller storm sewer system that discharges to the River at Outfall 101. The stormwater discharges from these outfalls is authorized by the facility's NPDES permit (DC0000094). The majority of the Site surface is paved or otherwise stabilized which serves to isolate stormwater from contaminated soil at the Site. The Site has employed various best management practices (e.g., pollution prevention and inlet controls) to control sediments and contaminants in stormwater since the early 1990s. Most recently, Pepco has added treatment systems to the storm drain that discharges to Outfall 013. The treatment measures, which were installed in 2017 and 2018, utilize a combination of biofilters, physical media filtration and adsorption to remove metals and suspended solids. Recent quarterly NPDES sampling indicates that the stormwater discharges are largely in compliance with the discharge standards since the implementation of enhanced best management practices and stormwater treatment systems. Although there have been occasional exceedances for copper, zinc and total suspended solids, none of these constituents has been identified as a COPC. Furthermore, results have been consistently non-detect for PCB Aroclors at a reporting limit of either 0.469 or 0.95 µg/l for each Aroclor. Although the ecological screening criteria for PCBs is 0.014 µg/l, the reporting limits comply with the NPDES permit requirement of 1 µg/l. Based on the storm drain residue samples, it is possible that Site storm drains may have provided a pathway for COPCs to surface water, however, this is not currently considered a significant contaminant migration pathway.

Groundwater to Surface Water Pathway

Mass loading calculations were completed to estimate the mass of contaminants entering the sediment/surface water system via groundwater discharge to the Anacostia River. The mass loading computations were performed using the sampling data from the six near-shore monitoring well pairs (MW-1A/B, MW-2A/B, MW-3A/B, MW-4A/B, MW-8A/B, and MW-11A/B). The calculations are summarized in Table 5-3. For calculation purposes, the values used were set to equal the detection limit or the estimated (J-qualified) value, as needed. These wells were selected because they are understood to represent groundwater quality discharging to sediments and ultimately to surface water. Groundwater flux was computed using Darcy's Law: Q = KIA, where "Q" is discharge (ft³/sec), "K" is hydraulic conductivity (ft/sec), "I" is hydraulic gradient (unitless), and "A" is the area through which the groundwater flows (ft²). For waterfront wells in which aquifer testing was conducted during the RI (MW-01, MW-03, and MW-11), the average calculated K value was used for the wells' hydraulic conductivity. For wells in which aguifer testing was not conducted, the geometric mean of hydraulic conductivities from the three nearest aquifer-tested wells was used. A local hydraulic gradient was calculated for each well using the slope of the plane formed by the low-tide groundwater level in the well and the groundwater levels in two up-gradient wells (three-point problem approach using EPA's online tool). A unique cross-sectional area was computed for each well based on water-bearing zone thickness at the well (upper or lower) and a length of boundary segment

through which groundwater flows to the River. The groundwater flux calculations are provided in the BHHRA (**Appendix BB**).

The groundwater flux calculations were used to estimate the annual mass loading of contaminants from the groundwater at the Site to surface water in the River. As seen in **Table 5-3**, the mass loading of organic COPCs from groundwater to sediments and surface water is negligible. It should be noted that where the chemical was not detected the detection limits were used to calculate the mass flux; therefore the estimates are considered conservative (i.e., overestimates).

The groundwater flux calculations were also used to determine the DAF for the near-shore monitoring wells. Dilution occurs during groundwater discharge to surface water as a result of the mixing with the stream flow. The DAFs were calculated to estimate the contaminant concentrations in the surface water from groundwater discharging to the River. They were calculated by dividing the groundwater discharges for each waterfront well by the 7-day, 10-year low streamflow (7Q10) of the River adjacent to the Site (13.9 ft³/sec), as estimated using the USGS Maryland StreamStats application, an online GIS tool for estimating streamflows at ungauged locations (USGS, 2018). The 7Q10 is the lowest 7-day average streamflow that occurs on average once every 10 years.

The DAF calculated for each well was multiplied by the groundwater COPC analytical results to estimate surface water concentrations. The estimated concentrations were compared to the HHRA and ERA surface water screening levels as shown in **Table 5-4**. All estimated surface water concentrations were below the applicable screening levels indicating the discharge of groundwater to the River does not pose significant risk for ecological or human health.

As shown through calculations, the mass loading of inorganic and organic constituents to the River are negligible and would not result in the exceedance of surface water quality standards. Based on the volume of groundwater discharges and mass flux calculations, the groundwater to surface water pathway is deemed insignificant.

Groundwater to Sediment Pore Water Pathway

As indicated above, the groundwater to surface water pathway is deemed insignificant based on the estimated concentrations of constituents which are lower than the applicable screening levels. The groundwater to sediment pore water pathway was not modeled as described above for surface water, but was evaluated based on the pore water analytical data collected in 2017. This approach was conservative because this assumes no dilution from groundwater to pore water, and no contributions to pore water from sediment or surface water. As described in Section 4.7.4, sediment pore water samples were collected at

15 Site and 5 upstream background locations. The analytical results of COPCs detected in Site and background pore water samples were screened in the BERA (Appendix BB) against chronic freshwater screening levels (Table 5-4). Total PCB congeners were detected below the screening level in all Site samples. Most Site and background pore water concentrations exceed the chronic surface water screening levels for three metals (barium, iron, and manganese), but the ranges of these metals in Site pore water samples are lower than the range of concentrations in background pore water. One SVOC (pyrene) was detected above the screening level in Site and background samples, but based on an evaluation of bioavailable fraction of PAHs in pore water these compounds are not expected to be bioavailable at all Site and background locations with the exception of one Site location (SED7B). The results of the pore water pathway presented in the BERA concluded no risks to benthic invertebrates via this pathway. Based on the foregoing, the groundwater to pore water pathway is deemed insignificant.

Surface Water and Sediment to Fish Tissue Pathway

The presence of bioaccumulative and biomagnifying COPCs in surficial sediment, surficial sediment pore water, and surface water within the Waterside Investigation Area indicates that there is a potential linkage between contaminants in these media and fish tissue. However, this linkage is uncertain due to the lack of information demonstrating sediment to fish tissue relationships in the River generally, and the small role that sediment and surface water in the Waterside Investigation Area likely play in COPC budgets and fish home ranges in the Anacostia River.

As demonstrated by several investigating parties (e.g., Hwang and Foster, 2006; Ghosh et al., 2019), including DOEE (Tetra Tech, 2018), the largest sources of bioaccumulative and biomagnifying COPCs (e.g., pesticides and PCBs) are tributaries to the Anacostia River. The ARSP RI report documented that for 2014, approximately 7.2 kg of PCBs entered the tidal Anacostia River system via upland non-tidal sources for the year. Resuspension of bed sediments was estimated to contribute an additional 4.4 kg per year. Ghosh et al. (2019) also investigated the movement of contaminants between sediment and freely dissolved phase and bioaccumulation in biota and preliminary findings suggest concentrations in the freely dissolved phase are reflective of those in mussel tissue. The contribution from sediments within the 4.2-acre Cove is unknown, but likely minimal given the depositional environment that characterizes this area.

Forage fish such as minnow or darter species have smaller ranges of movement and as such, may have longer residence time in the Waterside Investigation Area, and in particular, the Cove, and thus greater exposure to COPCs in these areas. However, uncertainties exist regarding the relationship between exposure to COPCs in sediment and fish tissue concentrations. Adult bass (*Micropterus* spp.) common sport fish in the Anacostia and other tidal rivers in the region, have ranges on the order of 2 km (Love,

2009). Brown bullhead, the adults of which reside in the Anacostia River system throughout the year have even larger home ranges that can range from about 2 to 4 km (Sakaris et al., 2005). These fish are exposed to sediment throughout their home ranges, and the small size of the Cove limits its importance as an exposure area for fish. The role that large home ranges, among other factors, play is acknowledged by the USEPA as an uncertainty in establishing fish-sediment linkages (Burkhard, 2009). Forage fish such as minnow or darter species have smaller ranges of movement and as such, may have longer residence time in the Waterside Investigation Area. However, there is no data confirming that this increased residence time is directly correlated with increased bioaccumulation of COPCs in forage fish tissue.

The ARSP Phase II RI BERA, concluded that COPCs were bioaccumulating in fish from sediment on the basis of detection of chemicals in fish tissue at concentrations above those detected in sediment samples (Tetra Tech, 2018). However, there is insufficient data to establish the extent of direct biological linkage (i.e., relationships between fish accumulating chemicals from sediment ingestion or exposure) and no mathematical model of a significant relationship between fish tissue and sediment (i.e., significant correlations between fish tissue and sediment chemistry) have been demonstrated. Therefore, while it is assumed that fish may accumulate constituents through direct contact with sediment or dietary uptake of the sediment, the significance of sediment as a source relative to other sources (e.g., surface water, prey tissue) is uncertain. Further, the shape of the relationship has been assumed to be linear, based on a ratio of calculated values (i.e., 95 UCL) of fish tissue to sediment concentrations. In reality, the relationship between exposure and accumulation is often complex, and complicated by mechanisms such as excretion and metabolism. The shape, or curve, of a relationship is often limited by rate or concentration, meaning that organisms may accumulate faster at lower concentrations or slower at higher concentrations than a simple linear assumption would indicate (Judd et al., 2013).

Given the small size of the Waterside Investigation Area, and in particular the Cove relative to the Anacostia River, the link between Waterside Investigation Area surficial sediment, pore water, and surface water and Anacostia River fish is uncertain. DOEE is funding an on-going study that includes forage fish data collected from the Cove. Once available, this data will be evaluated for consideration in the refinement of risk assessment-based objectives in the FS, as appropriate.

5.3.2 Potential Off-Site Sources of Contamination

Historical and current potential off-Site sources that likely have contributed, and may still be contributing to contamination at the Site and in the Anacostia River include the following:

Regional transportation and fossil fuel burning;

- Historical open burning at Langston Golf Course and Kenilworth Landfill;
- Historical landfills at Langston Golf Course, Colmar Manor, and Kenilworth Landfill;
- Former trash incinerator upwind of the Site to the north;
- KMY and Trash Transfer Station outfalls to the Cove;
- Upstream non-point sources in the Anacostia Watershed from the northeast and northwest branches of the Anacostia, and other tributaries such as Lower Beaverdam Creek, Hickey Run, and Watts Branch, where DOEE's data collection is in progress;
- Historical off-Site discharges to the Cove area (then still part of an oxbow) via Piney Run prior to storm drain construction in the early 1950s;
- Off-Site sources of PCE including dry cleaners; and
- Urban runoff/CSOs.

The contaminants contributed to the environment by these potential off-Site sources likely includes PCBs, PAHs, pesticides, dioxins/furans, metals, and VOCs including MTBE and chlorinated solvents. A CSM graphic for off-Site sources is provided as **Figure 5-5**. A detailed background sampling study was conducted as part of the RI to generate data to evaluate potential off-Site sources of contamination. The background evaluation is provided in **Appendix W**. The potential historical sources of contamination in the immediate vicinity of the Site are described in **Section 1.7**.

5.3.3 Contaminant Migration

Contaminant transport can occur via a number of mechanisms, some are responsible for the introduction of constituents into the River (e.g., runoff, bank erosion, point source discharges, and groundwater transport) and others that move constituents once in the River (e.g., bed erosion, surface water transport, bioturbation, and food chain accumulation).

Once introduced to the River, the fate and transport of contaminants is likely to be dominated, at least initially, by potential scour and downstream movement of sediment-associated constituents. Migration from the sediment pack directly into water in a soluble form is another migration pathway, although somewhat limited by the constituent's relatively low solubility and the isolation of the higher constituent concentrations deeper in the sediment pack. Just downstream of the confluence of the Northeast and Northwest Branches (near the Bladensburg Marina), is a zone of accretion where the coarser grain size fractions of sediment are deposited in the low-energy environment (AWTA, 2002). The finer fractions (clay and silt) remain suspended and continue downstream. Within the Waterside Investigation Area, particularly in the Cove, the stability of the sediment pack and minimal downstream impacts indicate that hydrodynamic processes that

cause significant mass movement of sediment are unlikely. Other fate processes (e.g., biodegradation, bioturbation) are not likely to be significant for constituents detected in sub-surficial sediments.

Organic COPCs such as PCBs, PAHs, pesticides, and dioxins/furans exhibit strong affinities for organic material in sediments. Therefore, the suspension of these sediments largely controls the transport and distribution of these constituents within the River. The Waterside Investigation Area, and in particular the Cove, appear to be strongly depositional with a high proportion of TOC in sediment. Although the Pepco and non-Pepco outfalls have likely contributed to sediment deposited in the Cove, the deposition of the River 's sediment load once it enters the low energy Cove is likely the dominant contributor. The presence of a well-defined 137Cs peak at 2 feet bgs in the core collected at location SED7E in the Cove indicates a stable and depositional environment, with average deposition rates of approximately 1 cm/yr over a 53 year period. Sediment rates can vary through time and more recent deposition rates may be lower. Sediment data collected in the Waterside Investigation Area indicate that TOC varies from <1 to 6% in both the channel and Cove; however, in the interior of the Cove, there are individual samples that have TOC content as high as 24% TOC, which is unusually high (Table 4-31). Grain size also indicates deposition throughout the Waterside Investigation Area, to greater than 80% fine-grained sediment (sum of silt and clay fractions). As a result, the impacts from constituents that may have been contributed to the River from historical Site discharges would be expected to be localized in the vicinity of the Cove, and this appears to be supported by the sediment sampling data. In particular, locations where PCBs and metals exceeded both screening levels and background levels were mostly located in the Cove.

5.3.4 CSM Summary

Background and regional sources may be continuing sources of COPCs to River sediments. The Site may have historically contributed to sediment contamination in the Cove; however, at present, the Site does not appear to be a significant source of contaminants to the River based on the following:

- The primary Site-related sources on the Landside Investigation Area were identified to be the residuals from former petroleum and PCB cleanup (including excavation of the former cooling towers), minor spills/drips, past and present general industrial activities, and use of historical fill materials. Historical impacts to soils such as PCBs in Target Area 12 and metals in the sludge dewatering area are identified as a primary Site-related sources; however, the pathway to groundwater is deemed to be insignificant. Remedial activities and best management practices have largely mitigated on-Site sources and the current Landside impacts are under control.
- The current Site use as a service center is not expected to result in significant additional environmental impacts.

- Currently, most of the Site surface is paved and/or otherwise stabilized. Although historically
 erosion and migration of eroded soils may have occurred, this is not identified as a significant
 transport mechanism under existing conditions.
- The Site currently employs various BMPs to control sediments and contaminants in stormwater discharged from the Site, including the use of regularly inspected and maintained filters, screens and absorbent booms at all storm drain inlets. Additionally, Pepco installed stormwater treatment systems in 2017 to reduce pollutant loads from stormwater runoff discharged from Outfall 013. The treatment measures are designed to remove metals and TSS constituents from stormwater through a combination of physical filtration and adsorption via zeolite and granular activated carbon filter media. Three biofilters have also been installed on Site.
- Low levels of localized groundwater impacts were observed at the Site from a combination of the Site-related sources described in the first bullet and several potential off-Site sources. Many potential dioxin sources exist in the vicinity of the Site including the heavy traffic corridor, a former incinerator, historical coal-burning on-Site, and historical open burning at KPN; potential groundwater metal transport from KPN Site. Additionally, PCE in Site groundwater may originate from an off-Site source; however, the specific source (or sources) of PCE detected in on-Site groundwater cannot be determined from the existing data, and further investigation will be conducted during post-RI activities as appropriate.

Groundwater from beneath the Site discharges to the Anacostia River. Mass flux calculations were performed to estimate the volume of COPCs that are discharged to the River (discussed in **Section 5.3**). Based on the low levels of COPC concentrations observed and the limited volume of COPCs discharged to the River, neither current nor historical groundwater discharges from the Site to sediment pore water or surface water are a significant contributor to the impacts in the Anacostia River.

6 Baseline Risk Assessments

The BHHRA and BERA are presented in **Appendix AA** and **Appendix BB**, respectively, and summarized in this section.

6.1 Baseline Human Health Risk Assessment

The BHHRA was performed in accordance with the DOEE approved Risk Assessment Work Plan and Addendum (AECOM, 2012b, 2016d) and evaluated potential human health effects using the following four step USEPA (1989a) paradigm:

- Data Evaluation and Hazard Identification
- Toxicity (Dose-Response) Assessment
- Exposure Assessment
- Risk Characterization

The BHHRA evaluated soil and groundwater data from the Landside Investigation Area, and fringe surface sediment and surface water from the Waterside Investigation Area. In addition, per the request of DOEE, the Waterside Investigation Area BHHRA considered fish tissue data collected by USFWS (Pinkney, 2017) from the Upper Anacostia River (an approximately 4 mile reach of the River that includes the Waterside Investigation Area). Because the exact collection points are not specified in the Pinkney study, the samples collected in the Upper Anacostia River are assumed to reflect overall conditions within the several-mile-long river reach that was sampled (or possibly the larger home range for some of the fish species sampled) and may not reflect the specific conditions within the Waterside Investigation Area. The same qualification applies for the fish samples collected within the Lower Anacostia and the Potomac River. Accordingly, although the tissue data for the Upper Anacostia reach were used for this BHHRA per the direction of DOEE, there is insufficient information to make any definitive conclusions about the relationship between this fish tissue data and specific conditions within the Waterside Investigation Area.

Lastly, to help place the Waterside Investigation Area into a regional context, the BHHRA also evaluated potential risks due to fish consumption in other reaches of the Anacostia River (e.g., downstream and upstream of the Waterside Investigation Area) and the Potomac River. The mix of fish species evaluated for the Lower Anacostia and the Potomac River is similar to the mix evaluated for the Waterside Investigation Area (e.g., catfish, carp, eel); the mix of species evaluated in the Upstream Non-Tidal Anacostia consists mostly of largemouth bass, and is different from the mix of species evaluated in the tidal Upper Anacostia.

6.1.1 BHHRA Methodologies

The BHHRA evaluated potential cancer and non-cancer effects in accordance with USEPA guidance. A full suite of analytical results were evaluated for each medium (soil, groundwater, sediment, surface water, and fish tissue) using a conservative screening-level approach to identify the COPCs warranting quantitative evaluation in the BHHRA. The following classes of constituents were evaluated:

- Dioxins/Furans. The group of 17 dioxin and furan congeners was evaluated as 2,3,7,8-TCDD toxicity equivalence (TEQ) using toxicity equivalency factors (USEPA 2010) and the cancer and noncancer toxicity values for 2,3,7,8-TCDD.
- PCBs. For evaluation of PCB cancer risk and noncancer hazard, two separate PCB cancer risks and noncancer hazards were calculated for exposure via fish consumption, one for total PCBs and one for PCB-TEQ. The first approach evaluated total PCBs using the cancer and noncancer toxicity values published by USEPA for total PCBs and Aroclor 1254, respectively. The second approach evaluated the sum of dioxin-like PCBs (PCB-TEQ) using the toxicity values for 2,3,7,8-TCDD. Abiotic media (e.g., soil, sediment, surface water) were evaluated using only the total PCBs approach due to limited congener data. In addition, the potential for enrichment of dioxin-like PCBs is primarily of interest in biotic media.
- PAHs. For evaluation of PAHs, cancer risk was calculated for the seven potentially carcinogenic PAHs using the cancer slope factor for benzo(a)pyrene and USEPA's relative potency factors.
 Noncancer hazards were calculated for individual PAHs with toxicity factors.
- **Metals.** A number of metals (including arsenic, chromium, mercury, nickel, vanadium, and zinc) were identified as COPCs in one or more medium
- Other. Other COPCs evaluated in the BHHRA included VOCs, TPH, and a number of pesticides in fish tissue.

The following four potential receptors and exposure pathways were evaluated for the Landside Investigation Area:

- Current/future construction workers who may be exposed via incidental ingestion of and/or dermal contact with soil (0 to 16 ft bgs) via inhalation of fugitive dust derived from soil, and via inhalation of vapors from groundwater in an excavation trench.
- Future outdoor industrial workers who may be exposed via incidental ingestion of and/or dermal contact with surface soil and via inhalation of fugitive dust derived from surface soil.
- **Future indoor industrial workers** who may be exposed via inhalation of volatile compounds in indoor air of a hypothetical future building resulting from groundwater vapor intrusion.

• Hypothetical future recreational visitors who may be exposed via incidental ingestion of and/or dermal contact with surface soil and via inhalation of fugitive dust derived from surface soil in the western portion of the Site next to Anacostia Avenue. This area was previously the location of the former power plant demolished between 2012 and 2015. This area of the Site remains under controlled access and Pepco has no plans to convert this area to public recreational use. Nonetheless, because this portion of the Site is the closest to the Anacostia River and the existing NPS park land located across Anacostia Avenue, DOEE directed that the BHHRA evaluate a hypothetical future exposure scenario in which this area becomes public park land or green space.

Eight on-Site exposure areas were identified for soil and groundwater based on current Site use. Each exposure area corresponds to one or more of the Target Areas and historical operations areas investigated at the Site as shown in the following table.

Exposure Area	Target Area			
Hypothetical Future Park Land / Green Space	TA15, TA19, and former Power Plant footprint			
Warehouse and Laydown Area	TA1, TA3, TA5, TA16, and former Coal Pile Area			
Salvage Yard and Waste Storage Area	TA4, TA10 and TA11			
Stores and Fleet Maintenance Area	Former Utility Pole Storage Area, Former Buildings #38 and #39			
Offices and Parking Lot	TA20, former Equipment Laydown Area and Rail Yard			
Substation #7	TA7 and former Utility Pole Storage Area			
Transformer Shop	Building #57 or TA12			
Vehicle Refueling Area	TA2 and TA13, former AST Area			

The following potential receptors and exposure pathways were evaluated for the Waterside Investigation Area:

- Current and future anglers who may be exposed via incidental ingestion of and dermal contact with fringe surface sediment and surface water in the Waterside Investigation Area, and via consumption of fish caught in the Upper Anacostia River. The fish consumption evaluation considered both recreational and high-end consuming anglers;
- Current and future swimmers and waders who may be exposed via incidental ingestion of and/or dermal contact with surface sediment and surface water.

 Current and future shoreline workers who may be exposed via incidental ingestion of and/or dermal contact with surface sediment and surface water.

The Waterside Investigation Area was evaluated as one exposure area for direct contact exposures to fringe surface sediment and surface water.

The risk assessment conceptual site model was developed taking into consideration the existing parks, walking trails, boat docks, and fishing activity within the Waterside Investigation Area, as well as potential improvements to these resources. However, it is possible that recreational use could increase at a level higher than assumed here; these uncertainties are discussed in **Appendix AA**.

Fish consumption exposure at the Waterside Investigation Area was evaluated using the Upper Anacostia River (upstream of the CSX bridge) data set collected by USFWS (Pinkney, 2017) within a several mile long segment of the River that includes the Waterside Investigation Area. To help place the Benning Road risk evaluation in a regional context, the following regional reaches were also evaluated for potential exposures via fish consumption: (1) Upper Potomac River (upstream of the 14th Street bridge), (2) Lower Potomac River (downstream of the 14th Street bridge, and (3) Lower Anacostia River (downstream of the CSX bridge). One reach identified as background by DOEE, the Upstream Non-Tidal Anacostia River (north of the Maryland state line) was also evaluated.

Both reasonable maximum exposure (RME) and central tendency exposure (CTE) scenarios were evaluated to provide information on a range of potential exposures and risks. The RME provides an estimate of the upper range of exposure in a population (the 90th percentile or greater of expected exposure, consistent with USEPA, 1992) and is based on a combination of the upper-bound and central estimates of exposure parameters. The CTE uses average exposure parameters to calculate an average exposure to an individual.

6.1.2 Landside Scenario Risk Characterization

The tables below present the total potential carcinogenic risks for all landside receptors as well as noncarcinogenic hazard indices (HIs). The potential risks and hazards are also presented graphically in Section 7.5.

Landside Receptors – Cumulative Cancer Risks and Noncancer Hazards						
F A	Cance	Cancer Risk		Noncancer HI ^a		
Exposure Area	RME	CTE	RME	CTE		
Current/Future Construction Worker (Adult)						
Hypothetical Future Park Land/Green Space	2E-08	8E-09	1	0.3		
Warehouse and Laydown Area	4E-07	7E-08	3	0.5		
Salvage Yard and Waste Storage Area	5E-07	1E-07	0.7	0.1		
Stores and Fleet Maintenance Area	9E-08	3E-08	0.2	0.07		
Offices and Parking Lot	4E-07	8E-08	0.8	0.2		
Substation #7	3E-07	3E-08	0.5	0.08		
Transformer Shop	2E-06	7E-07	1.6	0.5		
Vehicle Refueling Area	4E-08	1E-08	0.2	0.08		
Future Outdoor Industrial Worker (Adult)						
Hypothetical Future Park Land/Green Space	1E-06	1E-07	0.3	0.1		
Warehouse and Laydown Area	2E-05	1E-06	1	0.2		
Salvage Yard and Waste Storage Area	1E-05	1E-06	0.3	0.05		
Stores and Fleet Maintenance Area	4E-06	4E-07	0.08	0.03		
Offices and Parking Lot	3E-06	4E-07	0.03	0.01		
Substation #7	2E-05	6E-07	0.3	0.02		
Transformer Shop	2E-03	3E-05	124	8		
Vehicle Refueling Area	1E-06	1E-07	0.03	0.01		
Future Indoor Industrial Worker (Adult)						
Southern Boundary	2E-5		2			
Northern Boundary	4E-6	0.005 0.3 0.1		b		
Downgradient Perimeter	1E-6					
MW05A	8E-7					
Future Recreational Visitor (Older child/teen)						
Hypothetical Future Park Land/Green Space	7E-08	7E-09	0.04	0.009		

Notes:

Blue highlighting indicates that cancer risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that cancer risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

See the BHHRA in Appendix AA for definitions of Adult, Older Child, and Teen.

As shown in the table above, the majority of total potential carcinogenic risk and noncarcinogenic hazards for landside receptor scenarios are within or below the USEPA target cancer risk range of 10⁻⁶ to 10⁻⁴ and below a noncarcinogenic target endpoint HI of 1. The following summarizes the risk characterization for each receptor.

^a Highest target endpoint HI.

^b CTE scenario was not included for the screening level vapor intrusion evaluation.

- <u>Current/Future Construction Workers:</u> Potential cancer risks under the RME scenario are within or below USEPA's target risk range of 10⁻⁶ to 10⁻⁴. Under the RME scenario, the noncarcinogenic HI exceeds 1 in the warehouse and laydown area and the transformer shop. Under the CTE scenario, potential cancer risks are less than 10⁻⁶ and noncancer HI values are below 1 in all areas. COPCs with a cancer risk greater than 10⁻⁶ or a noncancer HI above 1 were identified as chemicals of concern (COCs) and include:
 - Vanadium in the warehouse and laydown area exposure unit surface and subsurface soil, likely associated with Target Area 1 (Former Sludge Dewatering Area) and the larger Former Coal Pile Area footprint that surrounds it.
 - PCBs in the transformer shop exposure unit surface and subsurface soil (Target Area 12 or Building #57)
- <u>Future Outdoor Industrial Worker:</u> Potential cancer risks under the RME scenario are within USEPA's target risk range of 10⁻⁶ to 10⁻⁴ and noncancer hazards are below an HI of 1 except for the transformer shop. Under the CTE scenario, potential cancer risks are within or below USEPA's target risk range of 10⁻⁶ to 10⁻⁴ and noncancer HI values are below 1. COCs with a cancer risk greater than 10⁻⁶ or a noncancer HI above 1 include:
 - o 2,3,7,8-TCDD-TEQ in surface soil in the salvage yard and storage area
 - PCBs in surface soil in the warehouse and laydown area, salvage and storage area,
 substation #7, and the transformer shop exposure unit (Target Area 12 or Building #57)
- <u>Future Indoor Industrial Worker:</u> Potential cancer risks are within USEPA's target risk range of 10⁻⁶ to 10⁻⁴. The noncancer HI exceeds 1 along the southern property boundary. COCs with a cancer risk greater than 10⁻⁶ or a noncancer HI above 1 include:
 - Chloroform in groundwater assuming a building is constructed along the northern property boundary
 - Tetrachloroethylene, trichloroethylene, and vinyl chloride in groundwater, assuming a building is constructed along the southern property boundary.
- <u>Future Recreational Visitor:</u> Potential cancer risks are below 10⁻⁶ and noncarcinogenic hazards are below an HI of 1 under both RME and CTE scenarios.

The table below presents the identified COCs with potential cancer risks greater than 10⁻⁶ or a target endpoint HI of 1 for the Landside Investigation Area; the noncancer hazard value representing the highest target endpoint HI is presented.

	Canaar	Landside Investigation Area					
Potential COC	Cancer Risk/ Noncanc er HI	Warehouse and Laydown Area	Salvage Yard and Storage Area	Stores and Fleet Maintenance Area	Substation #7	Transformer Shop	
2,3,7,8-TCDD-TEQ	Risk		4E-06 ^a				
Arsenic	Risk	1E-05	4E-06 ^a	2E-06 ^a	1E-05 ^a		
Vanadium	HI	3 ^b					
	Risk	5E-06 ^a	2E-06 ^a		4E-6 ^a	2E-03 ^a	
Total PCBs	НІ	-1			1	124ª 1.6 ^b	

Notes:

Blue highlighting indicates that cancer risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

While potential cancer risks associated with arsenic exceed 10⁻⁶, arsenic concentrations in soil are consistent with background in several areas of the Site, as discussed in **Appendix W**. Therefore, arsenic is not identified as a potential Landside soil COC.

Based on the conservative screening level evaluation of the vapor intrusion pathway, the following COCs are identified for the potential future scenario in which a building is constructed along the southern or northern property boundary. The hazard value representing the highest target endpoint HI is presented.

	Cancer	Potential COCs for the Future Vapor Intrusion Pathway ^a			
COPC	Risk/ Noncancer HI	Southern Boundary (a)	Northern Boundary (DP-60)		
Chloroform	Risk		4E-06		
Tetrachloroethylene	Risk	7E-06			
	HI	2			
Trichloroothylono	Risk	6E-06			
Trichloroethylene	HI	2			
Vinyl Chloride	Risk	2E-06			

Notes:

Blue highlighting indicates that cancer risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that cancer risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

⁻⁻ Indicates that cancer risk is less than 10⁻⁶ or noncancer HI is less than 1.

Yellow highlighting indicates that cancer risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

^a Future outdoor industrial worker surface soil (0-1 foot bgs).

^b Current/future construction worker soil (0-16 feet bgs).

⁻⁻ Indicates that cancer risk is less than 10⁻⁶ or noncancer HI is less than 1.

^a Future outdoor industrial worker.

Migration of chemicals in Site groundwater to the Anacostia River was also evaluated. In-stream concentrations of chemicals detected in groundwater at the downgradient edge of the property were modeled using conservative dilution attenuation factors. As discussed in Section 5, contaminants detected in on-Site wells further from the River are not expected to contribute significantly to the potential migration to surface water pathway. No modeled in-stream concentrations exceeded DOEE and federal surface water screening levels, which indicates that Site groundwater is not adversely impacting the Anacostia River.

6.1.3 Waterside Scenarios Risk Characterization

Because of the differences in activity patterns and sensitivity to exposures, three age groups were evaluated for Waterside recreational receptors:⁴

- Young child age 1 to 6 years (from 1 up to the 7th birthday, 1 to <7),
- Older child/teen age 7 to 18 years (from 7 up to the 19th birthday, 7 to <19), and
- Adults (>18 years of age).

For carcinogenic risk characterization, which assumes that effects are additive over a lifetime, potential cancer risks for the young child and adult age groups were calculated separately, and then summed to estimate the total potential lifetime excess cancer risk for the receptor, per standard USEPA practice. The older child/teen potential cancer risks were calculated separately. This section presents the results for the sum of the adult and child cancer risk because it is higher than the adult or child alone, and is also higher than the older child/teen. For noncarcinogenic risk characterization, effects were evaluated over the period of exposure. Therefore, noncancer hazards were calculated and presented separately for the young child, older child, and adult age groups. Because the young child is most sensitive to noncarcinogenic effects, the noncancer hazard is highest for this age group and is presented in this section. Section 6 of the BHHRA (Appendix AA) presents potential cancer risk and noncancer hazard values for all three age groups.

The cumulative RME and CTE cancer risks and noncancer hazards for the waterside receptors are summarized in the following table. Potential carcinogenic risks in the Waterside Investigation Area do not exceed 10⁻⁴. The HI exceeds 1 for the recreational fish consumption pathway. The potential cancer risks and noncancer hazards are also presented graphically in Section 7.5.

⁴ Infants under 1 year of age are assumed to not be exposed to Study Area-related media; the potential contribution from early life exposures to lifetime risk is discussed in the uncertainty analysis of the BHHRA (Appendix AA).

Waterside Receptors – Cumulative Cancer Risks and Noncancer Hazards					
Exposure Area		Cancer Risk		Noncancer HI	
·	RME	CTE	RME	CTE	
Swimmer Adult/Young Chil	d ^a				
Waterside Investigation Area (Direct Contact) ^b	2E-06	9E-08	0.08	0.008	
Wader Adult/Young Child	а				
Waterside Investigation Area (Direct Contact) ^b	4E-06	2E-07	0.2	0.02	
Shoreline Worker					
Waterside Investigation Area (Direct Contact) ^b	4E-06	1E-07	0.09	0.008	
Recreational Angler Adult/Young	Child a,c				
Anacostia River c					
(Fish Consumption and Direct Contact)					
Upper Anacostia (Total PCBs)	4E-05	2E-06	3	0.3	
Upper Anacostia (PCB-TEQ)	2E-05	1E-06	0.7	0.06	

Notes:

Blue highlighting indicates that cancer risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that cancer risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1. The highest target endpoint HI is shown.

As indicated by the table above, potential cancer risks are within the USEPA's target risk range of 10⁻⁶ to 10⁻⁴. The noncancer HI exceeds 1 for the recreational angler. A summary of the potential cancer risks and noncancer hazards is provided below.

- Potential RME cancer risks to recreational receptors and workers posed by direct contact with fringe surface sediment and surface water in the Anacostia River adjacent to the Site are within or below USEPA's target risk range of 10⁻⁶ to 10⁻⁴. TCDD-TEQ in fringe surface sediment is the only COPC with a cancer risk greater than 10⁻⁶. CTE risks are below 10⁻⁶.
- The RME and CTE noncarcinogenic HI for recreational receptors and workers posed by direct contact with fringe surface sediment and surface water in the Anacostia River adjacent to the Site are below 1.
- Potential RME and CTE cancer risks to recreational anglers posed by consumption of fish from the Upper Anacostia River are within or below USEPA's target risk range of 10⁻⁶ to 10⁻⁴. COCs with potential cancer risks greater than 10⁻⁶ are presented below and include PCBs and dieldrin (RME only).

^a Cancer risks for the swimmer, wader, and angler represent the combined adult and child, and noncancer hazards represent the child only.

^b Includes incidental ingestion and dermal contact with fringe surface sediment and surface water.

^c Includes incidental ingestion and dermal contact with fringe surface sediment and surface water, and consumption of a mixed fish diet. The Upper Anacostia encompasses the Waterside Investigation Area.

 The RME noncarcinogenic HI for recreational anglers posed by consumption of fish from the Upper Anacostia River exceeds 1 for PCBs. The CTE HI is below 1.

The table below presents the identified COCs with potential cancer risks greater than 10⁻⁶ or a target endpoint HI of 1 for the Upper Anacostia River and the Waterside Investigation Area; the noncancer hazard value representing the highest target endpoint HI is presented.

	Cancer Risk/	Fish Tissue ^a	Fringe Surface Sediment
Potential COC	Noncancer HI	Upper Anacostia	Pepco Waterside Investigation Area
2,3,7,8-TCDD-TEQ	Risk		2E-06 ^a 3E-06 ^{b,c}
Total PCBs	Risk	3E-05	
Total PCBS	HI	3	
PCB-TEQ	Risk	1E-05	
Dieldrin	Risk	5E-06	

Notes

Blue highlighting indicates that cancer risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that cancer risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

6.1.4 Background and Regional Reach Scenarios Risk Characterization

The fish consumption RME and CTE cancer risks and noncancer hazards for background and regional reaches are summarized in the following table.

Regional and Background Reaches – Fish Consumption Cancer Risks and Noncancer Hazards						
Exposure Area		· Risk ^a	Noncancer HI			
·	RME	CTE	RME	CTE		
Recreational Angler Adult/You	ng Child					
Background Reach ^b (Fish Consumption)						
Upstream Non-Tidal Anacostia (Total PCBs)	7E-06	5E-07	0.6	0.1		
Upstream Non-Tidal Anacostia (PCB-TEQ)	8E-06	5E-07	0.6	0.1		
Regional Reaches b (Fish Consumption)						
Lower Anacostia (Total PCBs)	7E-05	3E-06	5	0.5		

⁻⁻ Indicates that cancer risk is less than 10⁻⁶ or noncancer HI is less than 1. Cancer risk is presented for the sum of the adult and the young child, and the noncancer HI is presented for the young child. The older child/teen risk and HI values are lower.

^a Current/future recreational angler.

^b Current/future shoreline worker.

^c Current/future wader.

Lower Anacostia (PCB-TEQ)	9E-05	4E-06	3	0.3
Lower Potomac (Total PCBs)	6E-05	2E-06	2	0.3
Lower Potomac (PCB-TEQ)	6E-05	2E-06	1	0.1
Upper Potomac (Total PCBs)	2E-04	5E-06	10	0.7
Upper Potomac (PCB-TEQ)	2E-04	7E-06	9	0.5

Notes:

Blue highlighting indicates that cancer risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Yellow highlighting indicates that cancer risk exceeds 10^{-4} or the target endpoint HI exceeds 1. The highest target endpoint HI is shown.

The following conclusions were reached regarding recreational fish consumption in the regional reaches, as shown in the table above:

- Lower Anacostia River: Potential cancer risks are within USEPA's target risk range of 10⁻⁶ to 10⁻⁴ and the noncarcinogenic HI exceeds 1. COCs with cancer risk greater than 10⁻⁶ or an HI greater than 1 include arsenic, PCBs, dieldrin, and heptachlor epoxide. Under the CTE scenario, potential cancer risks are within the USEPA's target risk range of 10⁻⁶ to 10⁻⁴ and the HI is below one; only PCBs exceeds 10⁻⁶ cancer risk.
- <u>Upper Potomac River:</u> Potential cancer risks exceed 10⁻⁴ and the noncarcinogenic HI exceeds 1. COCs with cancer risk greater than 10⁻⁶ or HI greater than 1 include arsenic, PCBs, 4,4-DDE, and dieldrin. Under the CTE scenario, potential cancer risks are within the USEPA's target risk range of 10⁻⁶ to 10⁻⁴ and the HI is below one; only PCBs exceeds 10⁻⁶ cancer risk.
- Lower Potomac River: Potential cancer risks are within USEPA's target risk range of 10⁻⁶ to 10⁻⁴ and the noncarcinogenic HI exceeds 1. COCs with cancer risk greater than 10⁻⁶ or an HI greater than 1 include arsenic, PCBs, and dieldrin. Under the CTE scenario, potential cancer risks are within the USEPA's target risk range of 10⁻⁶ to 10⁻⁴ and the HI is below one. No COPCs exceed 10⁻⁶ under the CTE scenario.
- <u>Upstream Non-Tidal Anacostia</u>: Potential cancer risks are within USEPA's target risk range of 10⁻⁶ to 10⁻⁴ and the noncarcinogenic HI is below one. PCBs are the only COC with cancer risk greater than 10⁻⁶. Under the CTE scenario, potential cancer risks less than of 10⁻⁶ and the HI is below one.

Potential cancer risks and noncancer hazards were highest in the Upper Potomac River and lowest in the Upstream Non-Tidal Anacostia River. Under the high-end consuming angler scenario evaluated in the BHHRA uncertainty analysis, potential carcinogenic risks exceed 10⁻⁴ in all but the Upstream Non-Tidal Anacostia River, and the HI exceeds 1 in all regional reaches. As shown below, all of the chemicals

^a Cancer risks represent the combined adult and child, and noncancer hazards represent the child only. See Section 6 tables for age-specific risks/hazards.

^b Includes consumption of a mixed fish diet only.

identified as potential COCs in the Upper Anacostia area for recreational fish consumption are also identified in other regional reaches, and in many cases, at higher risk and hazard levels.

	Cancer	Current/F	onal Angler Fish C E Scenario	Consumption		
Chemical	Risk/ Noncancer	Regional Reaches		Regional Reaches		Background Reach
	HI	Lower Anacostia				
Arsenic	Risk	2E-06	3E-05	3E-06		
Total PCBs	Risk	5E-05	2E-05	1E-04	3E-06	
TOTAL PODS	HI	5	2	14		
PCB-TEQ	Risk	7E-05	3E-05	2E-04	4E-06	
PCB-TEQ	HI	3		9		
4,4-DDE	Risk			4E-06		
Dieldrin	Risk	1E-05	5E-06	2E-05		
Heptachlor epoxide	Risk	2E-06				

Notes:

Blue highlighting indicates that cumulative cancer risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

6.1.5 Potential COCs

COPCs with a potential cancer risk above 1 x 10⁻⁶ or a noncancer hazard greater than 1 have been identified as COCs as summarized below.

		Landside			rside
Potential COC	Surface Soil Direct Contact	Subsurface Soil Direct Contact	Groundwater Direct Contact	Fish Tissue Consumption	Sediment Direct Contact
TCDD-TEQ	COC (a)	Risk<10 ⁻⁶ HI <1	(i)	NA	COC (g)
Total PCBs	COC (a,b,j)	COC (c)	(i)	COC (f)	Risk<10 ⁻⁶ HI <1
PCB-TEQ	(h)	<sl< td=""><td>(i)</td><td>COC (f)</td><td>(h)</td></sl<>	(i)	COC (f)	(h)
Dieldrin	<sl< td=""><td><sl< td=""><td>(i)</td><td>COC (f)</td><td><sl< td=""></sl<></td></sl<></td></sl<>	<sl< td=""><td>(i)</td><td>COC (f)</td><td><sl< td=""></sl<></td></sl<>	(i)	COC (f)	<sl< td=""></sl<>
Vanadium	HI<1	COC (b)	(i)	<sl< td=""><td>HI<1</td></sl<>	HI<1
Chloroform	ND	ND	COC (d)	NA	<sl< td=""></sl<>
Tetrachloroethylene	<sl< td=""><td><sl< td=""><td>COC (e)</td><td>NA</td><td><sl< td=""></sl<></td></sl<></td></sl<>	<sl< td=""><td>COC (e)</td><td>NA</td><td><sl< td=""></sl<></td></sl<>	COC (e)	NA	<sl< td=""></sl<>
Trichloroethylene	ND	ND	COC (e)	NA	<sl< td=""></sl<>
Vinyl Chloride	ND	ND	COC (e)	NA	<sl< td=""></sl<>

⁻⁻ Indicates that cancer risk is less than or equal to 10^{-6} or noncancer HI is less than or equal to 1. Cancer risk is presented for the sum of the adult and the young child, and the HI is presented for the young child. The older child/teen risk and HI values are lower.

Yellow Highlighting indicates that cumulative cancer risk exceeds 10-4 or the target endpoint HI exceeds 1.

^a Current/future recreational angler.

Notes:

< SL - maximum detected concentration below applicable screening level.

COC - Constituent of Concern; cancer risk is greater than 10⁻⁶ and/or noncancer hazard index is greater than 1.

NA - Not Analyzed.

ND - Not Detected.

- (a) Salvage Yard and Storage Area.
- (b) Warehouse and Laydown Area.
- (c) Transformer Shop.
- (d) Northern property boundary.
- (e) Southern property boundary.
- (f) Upper Anacostia River.
- (g) Waterside Investigation Area.
- (h) PCB-TEQ is evaluated only for fish tissue.
- (i) The potential exposure pathway for groundwater is vapor intrusion. Non-volatile constituents were therefore not evaluated.
- (j) Substation #7.

The COCs listed above for fish tissue are based on measured fish tissue concentrations; no modeling from sediment to fish tissue was conducted for the BHHRA. The presence of bioaccumulative and biomagnifying COPCs in surficial sediment, surficial sediment pore water, and surface water within the Waterside Investigation Area indicates that there is a potential linkage between contaminants in these media and fish tissue. However, this linkage is uncertain due to the lack of information demonstrating sediment to fish tissue relationships in the River generally, and the small role that sediment and surface water in the Waterside Investigation Area likely play in COPC budgets and fish home ranges in the Anacostia River. Further, the pore water data collected as part of this RI indicates that PCB concentrations in pore water from the Cove are below effects levels, indicating low potential for PCB related impacts.

Potential fish consumption cancer risks and noncancer hazards were also calculated for the background and other regional reaches to provide important context for the Upper Anacostia area, as presented in Section 6.1.4 above. Potential cancer risks and noncancer hazards were highest in the Upper Potomac River and lowest in the Upstream Non-Tidal Anacostia River. Potential cancer risks and noncancer hazards for the Upper Anacostia fall within the range of potential cancer risks and noncancer hazards in the regional reaches (i.e., Potomac River, Upstream Non-Tidal Anacostia, and Lower Anacostia). These results are indicative of a regional footprint of contamination that is reflected in the fish tissue body burdens.

6.2 Baseline Ecological Risk Assessment Summary

A preliminary BERA was submitted to DOEE in April 2015 and finalized in response to DOEE comments in February 2016. The Preliminary BERA reached the following conclusions:

- There is low potential for risk to the benthic macroinvertebrate community from exposure to COPCs in surficial sediments adjacent to the Site, and the potential for risks are limited to sediments within the Cove.
- Many of the risks to the benthic macroinvertebrate community in the Waterside Investigation Area are similar to risks posed by surficial sediments at the Site-specific background sampling locations where the COPC concentrations are similar.
- A screening level analysis of fish tissue data collected by the United States Fish and Wildlife
 Service (USFWS) and the Maryland Department of the Environment (MDE) at sampling locations
 within the reach of the Anacostia River extending upstream and downstream of the Waterside
 Investigation Area showed no potential for ecological risks to the fish community based on COPC
 concentrations.
- There is no potential for ecological risks to the wildlife community from exposure to COPCs in the Waterside Investigation Area.

Following the submittal of the Preliminary BERA, additional field investigations were conducted to address remaining data gaps and uncertainties. Additional data collected in support of the BERA included surficial sediment chemistry, pore water chemistry, macroinvertebrate community, and toxicity testing. Sampling was conducted in the Waterside Investigation Area and at five upstream background locations. The BERA evaluated these newly collected data and incorporates these results with the results of the Preliminary BERA. In addition, the BERA includes whole body fish (and invertebrate) tissue samples collected by DOEE in support of the ARSP (Tetra Tech, 2018) instead of the USFWS and MDE fish tissue dataset described above. The BERA was performed in accordance with the DOEE approved Risk Assessment Work Plan and Addendum (AECOM, 2012b, 2016d) and applicable federal guidance (USEPA, 1997b, 1998, 2001).

As detailed in the Work Plan, the Waterside Investigation Area BERA integrates a variety of lines of evidence (LOE) to assess potential ecological risks. A weight-of-evidence (WOE) approach was used to synthesize conclusions regarding overall potential risks to ecological receptors by considering the results of all components of the assessment methodology (i.e., the approach was designed to integrate the results of physical, biological, toxicological, and field measurement endpoints to draw risk-based conclusions). The WOE components were designed to provide relative measures of potential risks for different ecological receptors and exposure pathways.

As noted above, the BERA data set was augmented with composite samples of fish and invertebrate tissue collected in the Anacostia River under separate DOEE programs and sediment data collected by DOEE for the ARSP. Because these sampling efforts were not confined to the Waterside Investigation Area, it is

uncertain if the sampling data reflect exposure to sediment in the Waterside Investigation Area, particularly for fish with limited homes ranges. In addition, although it is assumed that fish may accumulate constituents through direct contact with sediment or dietary uptake of the sediment (small forage fish with limited home ranges in particular), the significance of sediment as a source relative to other sources (e.g., surface water, prey tissue) is uncertain.

6.2.1 BERA Approach

The BERA was conducted to evaluate whether or not populations of ecological receptors (e.g., benthic macroinvertebrates, warmwater fish, birds, and mammals) are potentially at risk due to exposure to Study Area-related constituents within the Waterside Investigation Area surficial sediments. The benthic evaluation focused on 15 Waterside Investigation Area and five upstream background surficial sediment samples collected in 2017 by Pepco. Evaluation of risks to fish consisted of an analysis of critical body residues (CBR) in fish tissue. The wildlife analysis employed food web modeling to calculate Hazard Quotients (HQs), which evaluated ingested doses relative to toxicity reference values (TRVs).

Surficial sediment COPCs were initially identified by comparing maximum detected constituent concentrations to low-effect ecological screening values that are protective of ecological receptors (e.g., benthic and aquatic invertebrates and fish). As a result, 13 metals, 13 pesticides, total PCBs, six SVOCs, total PAHs, one VOC and cyanide were identified as COPCs for evaluation in the BERA.

Benthic Macroinvertebrate Community Risk Analysis

Several Site-specific chemical, biological, and toxicological measurements were used to evaluate potential risks to the benthic macroinvertebrate community in the Waterside Investigation Area.

Concentrations of COPCs in surficial sediment were evaluated relative to refined (ESVs to help identify a cohort of constituents requiring further evaluation in the BERA. COPCs were also compared to sediment BTVs to identify those COPCs that may be higher in the Study Area than in the rest of the Anacostia River. Concentrations of several constituents (e.g., total PCBs, metals, and pesticides) in surficial sediment exceeded literature derived benthic macroinvertebrate screening values in both the Waterside Investigation Area and the background area reaches of the Anacostia River evaluated in this BERA. Based on two-sample hypothesis tests, mean or median Site concentrations were greater than or equal to mean or median background concentrations for most COPCs with the exception of the following COPCs for which Site concentrations were less than background: cyanide, manganese, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, total HMW PAHs (Method 8270), and OCDD. The ranges of concentrations for most COPCs in Site samples are similar to the ranges detected in background samples and to background

threshold values. Several compounds (e.g., total PCBs) were present at higher concentrations in the Cove than elsewhere in the Waterside Investigation Area.

- Pore water COPCs were identified by comparing maximum detected chemical concentrations measured in pore water collected from the 15 Waterside Investigation Area sediment samples to applicable chronic surface water ESVs. Three dissolved phase metals (barium, iron, and manganese), one total recoverable phase metal (iron), and one SVOC (pyrene) were identified as COPCs. Iron is a common naturally occurring constituent in pore waters due to the high solubility of ferrous minerals in reducing conditions. Evaluation of pore water measured in 15 Waterside Investigation Area samples relative to the five upstream background samples indicated similar COPC concentrations in both areas. PCBs were not detected above screening values in any pore water samples collected from the Waterside Investigation Area.
- SEM, AVS, and TOC data were analyzed to evaluate potential bioavailability of divalent metals in surficial sediment. This evaluation indicated that divalent metals in surficial sediment in both the Waterside Investigation Area and the upstream background samples are not bioavailable.
- PAH data were evaluated using equilibrium partitioning modeling and dissolved phase pore water
 data. This evaluation indicated that, with the possible exception of two samples (SED7B, located in
 the channel immediately adjacent to the Cove, and SED7.5D, located in the Cove near Outfall 013),
 PAHs are not bioavailable at concentrations likely to pose adverse effects to benthic receptors.
- Laboratory toxicity tests were used to evaluate the potential toxicity of Study Area and upstream
 background area sediments to invertebrates. A 10-day amphipod (*Hyalella azteca*) test and a 10day midge (*Chironomus dilutus*) test were conducted; survival and growth (average weight based
 on the number of surviving organisms) were measured.
 - Survival: In general, amphipod and midge survival responses were similar among the five upstream background samples and the 15 Waterside Investigation Area samples. Only one sample (SED7B, located in the channel) had reduced amphipod survival relative to two upstream background samples. There were no differences between Waterside Investigation Area and background samples for midge survival.
 - O Growth: For the amphipod test, reduced growth was observed in Waterside Investigation Area sample SED7B relative to three background samples. For the midge test, two Waterside Investigation Area samples, SED7B and SED7.5E (collected in the Cove), had reduced growth responses for both organisms relative to all background sample responses.

- The amphipod and midge tests are based on a 10-day test duration, which limits the interpretation of potential longer-term chronic impacts. However, these sediment bioassays are one of several lines of evidence included in the BERA to evaluate potential impacts to the benthic invertebrate community. In addition, the presence of chronic impacts to the benthic community were also evaluated in the benthic community survey (described below) in which chronic exposures would be expected to result in degraded benthic communities. Longer duration amphipod tests were included in the ARSP RI, and the results of these tests for the six sampling locations in the Waterside Investigation Area indicated some impacts for growth and reproduction endpoints based on the longer duration amphipod tests (although the reproduction endpoint was not the more sensitive than the growth endpoint). However, only one ARSP location (R6-21) is located in the Cove, which limits the comparisons between ARSP and Pepco toxicity tests.
- A benthic macroinvertebrate survey was conducted at the same 15 Waterside Investigation Area and five upstream background locations where sediment analyses were performed. The community survey results indicated taxonomically poor benthic macroinvertebrate communities at Study Area and upstream background sampling locations dominated by worms (*Limnodrilus* spp.), Asiatic clams, Nematoda, and the chironomids *Tanypus neopunctipennis* and *Chironomus decorus*. Macroinvertebrate population density was significantly higher in Study Area samples compared to background samples and significantly higher numbers of pollution-tolerant taxa and deep-deposit feeders were found in background samples in comparison to Study Area samples. Most Study Area samples had bioassessment scores that met target community health goals, whereas most background samples had scores indicative of degraded community health. ⁵

Fish Community Risk Analysis

^{5 -}

⁵ Three general groupings of benthic organisms were identified based on similarity of numbers of taxa: Waterside Investigation Area sediment samples located in the Cove, Waterside Investigation Area samples in the channel, and a third group consisting of upstream background and two Waterside Investigation Area samples in the channel. A statistical analysis of COPC concentrations measured in the fifteen Phase II 2017 samples collected in the Cove versus the channel indicated that concentrations of most chemicals are comparable in these two areas; however, boxplot comparisons illustrate higher median total PCB Aroclor and total PAH concentrations in the Cove samples (Attachment K of **Appendix BB**). Insufficient samples are available to compare concentrations of total PCB congeners in the Cove and the channel. Therefore, the use of PCB Aroclor results may underestimate EPCs as estimated by PCB congener analysis, and the use of PCB totals based on Aroclors results in some uncertainty in the sediment benchmark screening. In short-term bioassays, two out of 15 samples (SED7B in the channel and SED7.5E in the Cove) had reduced growth responses for amphipods and/or chironomids relative to most or all background samples.

Potential risks to fish from COPC exposure via ingestion of sediment and contaminated food items was evaluated through an assessment of fish tissue body burdens relative to literature-derived critical body residues. CBRs were presumed to represent threshold tissue concentrations where concentrations in excess of the CBR value could potentially result in adverse biological effects to the exposed fish (not consumers of fish). COPCs evaluated through this approach included 10 inorganic COPCs (arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc), 14 pesticides compounds (4,4'-DDD, 4,4'-DDE, 4,4'-DDT, Aldrin, alpha-BHC, beta-BHC, chlordane, delta-BHC, dieldrin, endosulfan I, endrin, gamma-BHC (lindane), heptachlor, and heptachlor epoxide), total PAHs, total PCBs, and 2,3,7,8-TCDD.

- The fish tissue data set collected by the DEOE to support the ARSP (TetraTech, 2018) was used in this evaluation. Composite whole body samples of forage fish, mid- trophic level fish, and upper trophic level fish that were collected from Exposure Unit 3 (encompassing an area ranging from approximately 1.4 miles upstream of the Waterside Investigation Area just past the Kenilworth Park Landfill to approximately 1.4 miles downstream to the CSX bridge) and Kingman Lake were used to conservatively represent the fish in the Waterside Investigation Area. The habitat of Kingman Lake differs from the main stem of the River with slower moving water and shallower water depths. However, because there are no fish barriers between the main stem of the River and Kingman Lake, fish may move between these two areas. Therefore, both Exposure Unit 3 and Kingman Lake fish tissue samples are included in the fish community risk analysis.
- CBRs were identified based on no observed effect concentrations (NOECs) and lowest observed
 effects concentrations (LOECs) from two databases: Jarvinen and Ankley database (1999) and
 USACE Environmental Residue Effects Database. In addition, the CBRs identified by Berninger and
 Tillett (2019) were also reviewed which included several of the CBRs identified for the BERA.
 NOECs indicate a body residue concentration at which no adverse effects were observed and
 LOECs indicate a body residue concentration at which adverse effects may begin to be observed.
- Fish tissue exposure point concentrations (EPCs) were compared to the range of NOEC and LOEC CBRs.
- EPCs for all COPCs fell below the NOEC CBRs, indicating no risk to fish populations collected from Exposure Unit 3 and Kingman Lake. The maximum detected concentrations of PCBs in fish tissue are predicted to have significant growth, reproduction, and mortality impacts to less than 0.5% of fish species included in Berninger and Tillett (2019).

Wildlife Risk Analysis

To evaluate potential wildlife exposure, representative wildlife species were selected for evaluation in a food chain model that estimated exposures to wildlife species relative to their positions in the food chain. Three primarily piscivorous wildlife receptors were evaluated in the food chain model: great blue heron, belted kingfisher, and raccoon. To estimate potential dietary exposure, a total daily dose (TDD) was estimated for each species based on the following factors: concentrations of COPCs in the food items that the species would consume, estimated amounts of sediment that the receptor would incidentally ingest, the relative amount of different food items in its diet, body weight, exposure duration, species-specific area use factors, and food ingestion rates.

Potentially bioaccumulative or biomagnifying COPCs evaluated include 10 inorganic COPCs (arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc), 14 pesticides compounds (4,4'-DDD, 4,4'-DDE, 4,4'-DDT, Aldrin, alpha-BHC, beta-BHC, chlordane, delta-BHC, dieldrin, endosulfan I, endrin, gamma-BHC (lindane), heptachlor, and heptachlor epoxide), total HMW and LMW PAHs, total PCBs, and TCDD TEQs for birds and mammals.

TRVs were identified for each COPC. TRVs are literature-derived values that represent the daily dose of a constituent that is considered protective of wildlife (mammals and birds) populations or individuals. Both No Observed Adverse Effects Level (NOAEL) and Lowest Observed Adverse Effects Level (LOAEL) TRVs were identified. The TDD was evaluated relative to the NOAEL and LOAEL TRVs to calculate an HQ. HQs greater than 1 indicates a potential for risk to wildlife based on dietary exposure to COPCs.

HQs (calculated as TDD divided by TRV) for nearly all COPCs for the belted kingfisher, great blue heron, and raccoon were well below or equal to 1 for the maximum exposure scenarios (i.e., considering maximum EPCs and NOAEL- and LOAEL-based TRVs).

6.2.2 BERA Risk Characterization

The Waterside Investigation Area BERA integrated a variety of methodologies to assess potential ecological risks. The WOE data analysis approach employed in the BERA used both qualitative and semi-quantitative protocols to evaluate and interpret the results from the measurement endpoints for the Waterside Investigation Area and the background areas considered in the BERA. Individual measurement endpoint results were evaluated to determine whether they support a finding of no significant risk for each assessment endpoint.

The matrix presented below was used to characterize and summarize the different LOEs evaluated in this BERA. This matrix includes six benthic macroinvertebrate measurement endpoints, one warmwater fish measurement endpoint, and one protection of vertebrate wildlife measurement endpoint. The potential for risks was evaluated in four discrete categories, with decision rules identified for each category: (1) High potential for ecological risk; (2) Low potential for ecological risk; (3) Indeterminate potential for ecological risk; and (4) No potential for ecological risk. Decision rules for each of these categories are presented in the BERA (**Appendix BB**).

Weight of Evidence BERA Summary: Waterside Investigation Area

LOE Description	Observations	LOE Finding				
Be	enthic Macroinvertebrate Community					
Evaluation of Surface Sediment COPC Concentrations Relative to Screening Values	Few exceedances of screening values PCBs higher in the Cove surface sediment Waterside Investigation Area generally consistent with background	Low Potential for Risk				
Divalent Metal Bioavailability in BAZ	SEM, AVS, and TOC evaluation indicates that metals in surface sediment are not bioavailable	No Potential for Risk				
PAH Bioavailability in BAZ	Modeling and empirical data indicate that PAHs in surface sediment are not bioavailable	No Potential for Risk				
Pore Water	Pore water concentrations similar to background COPC concentrations in pore water less than screening values	No Potential for Risk				
Midge and Amphipod Toxicity Testing	 Growth and survival similar among Cove, channel and background area for both species Small deviations from laboratory controls for one endpoint Weak association between one endpoint and COPC concentrations (below screening value), and grain size 	Indeterminate / Low Potential for Risk				
Benthic Community	Waterside Investigation Area data indicate benthic community similar to or better than background area	No Potential for Risk				
	Fish					
Surface Water Screening Evaluation	Few exceedances of water quality standards	No Potential for Risk				
Ground Water	No exceedances of water quality standards	No Potential for Risk				
Critical Body Residues	Tissue concentration within range of NOECs. Fish near Waterside Investigation Area have tissue residues consistent with the rest of the River	No Potential for Risk				
Wi	Wildlife Receptors Food Chain Analysis					
Raccoon	• All LOAEL HQs < 1 • All NOAEL HQ < or = 1	No Potential for Risk				
Kingfisher	Near Waterside Investigation Area fish have consistent tissue residues as rest of the	No Potential for Risk				
Great Blue Heron	River, therefore, wildlife exposure via consumption of prey fish tissue is similar to background	No Potential for Risk				

Based on the WOE methodologies employed in the BERA, the following general conclusions can be made regarding the overall potential for risk.

- 1. No receptors evaluated in the BERA exhibited a high potential for ecological risk. The majority of the risk assessment endpoints evaluated in the BERA fell within the lower portion of the matrices ("Indeterminate" to "No Potential for Ecological Risks").
- 2. For the most part, the potential for ecological risk in the Waterside Investigation Area is no greater than the potential for risk in the upstream background areas.
- 3. No potential for risk was identified for fish. Fish tissue concentrations of all COPCs fell well below the majority of critical body residue thresholds evaluated in this BERA. This finding is consistent with the fish tissue CBR evaluation presented in the ARSP RI (Tetra Tech, 2018). In addition, tissue residues from fish collected upstream and downstream compared to the samples from Exposure Unit 3 and Kingman Lake (selected to represent Study Area conditions) are all similar to one another, suggesting no substantive differences between fish tissue residues collected in the vicinity of the Waterside Investigation Area and the remainder of the Anacostia River.
- 4. No potential for risk was identified for raccoon, great blue heron, or kingfisher. HQs for these receptors were well below or equal to 1 for all of the conservative exposure scenarios evaluated in the BERA, which considered maximum EPCs and NOAEL- and LOAEL-based TRVs. These results are consistent with the wildlife risk evaluation in the ARSP RI (Tetra Tech, 2018).
- 5. Multiple LOEs were considered relative to the potential for benthic invertebrate risk from exposure to COPCs in surficial sediment.
 - Concentrations of several constituents (e.g., total PCBs, metals, and pesticides) in surficial sediment exceeded literature derived benthic macroinvertebrate screening values in both the Waterside Investigation Area and the upstream background area samples evaluated in this BERA.
 - Several compounds (e.g., total PCBs) were present at slightly higher concentrations in the Cove than elsewhere in the Waterside Investigation Area. However, the ranges of concentrations for most COPCs were similar to the ranges detected in upstream background samples and to background threshold values.
 - The results of the divalent metals (copper, lead, cadmium, zinc, and nickel) and PAHs (34 constituents) bioavailability analysis demonstrates that these constituents are not bioavailable in surficial sediment and therefore are not stressors of concern, with the possible exception of PAHs at one sampling station (SED7B).

- Evaluation of surficial sediment pore water indicates, with only a few exceptions (iron, manganese, and barium) that constituents are not present in pore water at concentrations that pose an ecological concern, and further that concentrations of pore water constituents in the Waterside Investigation Area and the background area are similar to one-another.
 PCBs were not present in pore water at concentrations indicative of ecological risk.
- The benthic community survey results, which provide a Site-specific field based metric of community health, generally demonstrated no impacts associated with exposure to COPCs in the Waterside Investigation Area. In fact, the majority of benthic samples collected from the Waterside Investigation Area was more diverse and had higher bioassessment scores than those samples collected from the upstream background locations.
- The toxicity testing results included lethal (survival) and sub-lethal (growth) measurements. In general, amphipod and midge survival responses were similar among the five upstream background samples and the 15 Waterside Investigation Area samples. Only one sample (SED7B, located in the channel) had reduced amphipod survival relative to two upstream background samples. There were no differences between Waterside Investigation Area and background samples for midge survival. For the amphipod test, reduced growth was observed in Site sample SED7B relative to three background samples. For the midge test, two Site samples, SED7B and SED7.5E (collected in the Cove), had reduced growth responses for both organisms relative to all background sample responses.
- The results of the toxicity tests and co-located results for analytical, physical, and community survey results were evaluated on a sample-by-sample basis and across data sets to determine if any spatial trends were apparent among the parameters measured. For three of four toxicity endpoints (survival of both amphipod and midge, and amphipod growth), no significant trends between chemistry, physical characteristics, and toxicity were observed among Waterside Investigation Area and background locations. Midge growth was significantly and negatively correlated to percent fines, total PCB Aroclor PEC quotients, and PAH toxic units (TUs) in sediment and pore water. However, the total PCB Aroclors and PAH correlations are not toxicologically relevant because all but one sample contained PCBs at concentrations below the PEC (i.e., total PCB Aroclor PEC quotients less than 1) and PAH TUs below 1 (i.e., total PAH TU quotient less than 1). It is possible that the correlation with grain size is more meaningful than the COPCs.

6.2.3 BERA Uncertainty Evaluation

Several sources of uncertainties were evaluated to understand how they influenced or potentially biased the conclusions of the BERA. The uncertainties associated with the benthic community, fish community, and wildlife community risk characterizations are discussed below.

Uncertainties Associated with the Benthic Community Evaluation

There are several sources of uncertainties associated with the lines of evidence considered for the benthic community risk characterization, including the overestimation of risks due to the differences in sampling depths, the temporal and spatial variability in sediments, conservative ESVs, the lack of ESVs for certain COPCs, the bioavailability of COPCs in sediment and pore water, and uncertainties associated with sediment toxicity tests.

- Concentrations of COPCs were generally higher and more variable in the deeper samples (0 to 15.2 cm) collected in 2014 - 2016 than in the more recent, shallower samples (0 to 10 cm) collected in 2017. As such, the higher concentrations and the higher variability associated with the deeper samples may overestimate the concentrations of COPCs to which benthic organisms may be exposed.
- The WOE is based on sediment samples collected in 2017. A statistical comparison of the 2017 samples with the remainder of the Waterside Investigation Area samples indicated that COPC concentrations and percent fines are similar. Therefore, the uncertainties associated with this temporal variability are not likely to change the findings of the benthic community evaluation.
- Sediment ESVs considered in the BERA were derived from sources typically used in screening
 level ERAs (e.g., low-effect ESVs), which in some cases are adjusted by safety factors or based on
 very low TOC levels that are not representative of Site conditions, and therefore represent
 conservative values that may overestimate risks. They also do not generally account for possible
 synergistic, antagonistic, or additive effects of contaminant mixtures in environmental media, which
 may result in an underestimate or overestimate of potential risk. However, the evaluation of SEM,
 AVS, and TOC and PAHs in pore water provides estimates of bioavailability beyond the evaluation
 of the bulk sediment data alone.
- ESVs are not available for several constituents in sediment including beryllium, thallium, vanadium, acetophenone, caprolactam, 2,3,5-trimethylnaphthalene, and 2,6-dimethylnaphthalene. It was assumed that the evaluation of other COPCs within these chemical classes (i.e., metals and SVOCs) sufficiently captures the majority of the potential risks at the Waterside Investigation Area.

- The evaluation of AVS and SEM assumes a steady-state system and may not be extrapolated to field conditions, nor does it explicitly consider bioaccumulation or the toxicity of other inorganic constituents.
- The sediment toxicity tests are based on surrogate species that may not precisely predict the health of Site benthic communities and also may not emulate field conditions. In addition, the 10-day test may not capture longer term growth or reproduction impacts that could affect invertebrate populations. According to the ASTM guidance for the amphipod and midge toxicity tests (ASTM 2010), significant lethal or sublethal effects may be difficult to discern at moderate levels of sediment contamination during a shorter-term test (i.e., 10-day duration), but the results of short-term tests can be used to identify the need for further evaluation of sediment toxicity. In addition, the results of sediment toxicity tests should be interpreted along with other lines of evidence using a weight of evidence approach (ASTM, 2010). The sediment bioassays for midge and amphipod are one of several lines of evidence included in the BERA to evaluate potential impacts to the benthic invertebrate community, including the benthic community survey which captures long-term chronic impacts by evaluating the health of the community relative to established biological metrics (e.g., the Chesapeake Bay B-IBI).
- The ESVs used for pore water are based on chronic effects to analyze the potential for ecological risk to freshwater fish communities. Chronic toxicity values were used because it was assumed that pore water and sediment indicator species would experience continuous exposures within the aquatic exposure area. The assumption of chronic exposure may be realistic for the sediment-associated species (i.e., amphipods) and small juvenile fish, but is likely conservative for epibenthic macroinvertebrates. The ESVs are also designed to be protective of sensitive species that may not be present within the Waterside Investigation Area; therefore, this may result in an overestimate of potential toxicity for many aquatic organisms.
- The equilibrium partitioning modeling conducted for PAHs in sediment and pore water likely
 overpredicts the bioavailability of PAHs in sediment in comparison to pore water because the pore
 water analysis accounts for more Site-specific binding factors.
- Based on the ratio of total PCB congeners to total PCB Aroclors in sediment, the use of PCB Aroclor data may underestimate EPCs as estimated by PCB congener analysis, and use of PCB totals based on Aroclors results in some uncertainty in the sediment benchmark screening. Despite this uncertainty, even if the benchmark screening was based on PCB congeners rather than PCB Aroclors, the benthic invertebrate risk characterization would likely remain unchanged. Further, the PCB pore water analysis focused on bioavailable congeners and found that Site PCB pore water concentrations were universally below surface water screening levels for protection of aquatic life,

which is consistent with the findings of Ghosh et al. (2019) at Anacostia River sampling locations (i.e., PCB congener concentrations in pore water were below surface water screening levels).

Uncertainties Associated with the Fish Community Evaluation

There are several sources of uncertainties associated with the BERA fish community evaluation, including the relevance and representativeness of the fish tissue samples collected by DOEE for the ARSP to the Waterside Investigation Area and the determination of fish tissue CBRs.

- No fish tissue samples were collected in the Waterside Investigation Area, but were collected
 upstream and downstream of the Waterside Investigation Area and in Kingman Lake. The fish
 tissue samples may not be representative of Site conditions because they were collected outside of
 the Waterside Investigation Area and were not collected to evaluate Waterside Investigation Area
 attribution.
- The habitat of Kingman Lake differs from the main stem of the River with slower moving water and shallower water depths. Because there are no fish barriers between the main stem of the River and Kingman Lake, fish may move between these two areas and the Waterside Investigation Area. However, the frequency of fish movements between the main stem of the River and Kingman Lake are unknown for all trophic level fish and may be minimal for small forage fish.
- There is uncertainty about the relationship between sediment concentrations and fish tissue
 concentrations. While it is assumed that fish may accumulate constituents through direct contact
 with sediment or dietary uptake of the sediment, the significance of sediment as a source relative to
 other sources (e.g., surface water, prey tissue) is unknown.
- Fish tissue CBRs (i.e., tissue residues representing a toxicity threshold) may not be representative
 of Site conditions or fish species present in the Waterside Investigation Area. In addition, the lack of
 lipid data prevents normalization, which can help reduce uncertainties in the tissue concentrations
 and CBRs.

Uncertainties Associated with the Wildlife Community Evaluation

There are several sources of uncertainty in the evaluation of wildlife risks that may over- or under-estimate risks.

The assumption that all three wildlife receptors would acquire 100% of their food from the Waterside
Investigation Area overestimates exposure and risks. In addition, all receptors were assumed to
consume mostly fish, which may not be representative of their true diet.

- Site-specific information was not available for these receptors (e.g., body weights, dietary
 composition), so assumptions were made in the model that an average body weight was protective
 of the average receptor, but may not be protective of sensitive receptors.
- Sediment data set represents surface sediments collected throughout the Waterside Investigation
 Area. The heron and raccoon forage from the shoreline, so they are unlikely to be exposed to
 sediment in deeper water. However, sediment ingestion for the three representative species
 contributes less than 5% of the total daily dose, so an increase in the sediment concentration is
 unlikely to change the evaluation outcome.
- The fish and invertebrate tissue samples were not collected for the purposes of the BERA, and in addition, no fish tissue samples and only four invertebrate tissue samples were collected in the Waterside Investigation Area. It was assumed that the forage and mid-level trophic fish included as prey items were of appropriate size for consumption by the belted kingfisher and great blue heron; however, fish length data were not available to confirm this assumption. As a result, the representativeness of the COPC concentrations detected in the fish and invertebrate tissue samples to the Waterside Investigation Area is uncertain.
- The wildlife toxicity reference values considered were based on NOAELs, which represent a level
 where no effect has been observed and therefore are very conservative estimates of the exposure
 level that could potentially result in adverse effects to wildlife receptors.

6.2.4 BERA Conclusions

The results of this BERA indicate that: (1) there are elevated levels of several constituents present in Anacostia River surficial sediment in the Waterside Investigation Area and the upstream background locations; (2) concentrations of several constituents (e.g., PCBs) are elevated in the Waterside Investigation Area, particularly in the Cove; however, the majority of constituents are present at concentrations consistent with upstream background conditions; (3) there is no potential for risk to fish, birds, or mammals from exposure to COPCs in the Waterside Investigation Area; and (4) the potential for ecological risk to benthic invertebrates is low to indeterminate.

For the most part, the BERA analysis indicates a lack of constituent bioavailability in surficial sediments. The WOE benthic receptor results also suggest that the potential risks to benthic invertebrates in the Waterside Investigation Area are largely indistinguishable from those posed by the other segments of the tidal Anacostia River. In several of the comparisons considered in the WOE evaluation (e.g. macroinvertebrate community study), the potential for ecological risks in the upstream background area is actually slightly higher than the potential for ecological risks in the Waterside Investigation Area.

7 Summary and Conclusions

The purpose of the Pepco Benning Road Remedial Investigation/Feasibility Study (RI/FS) is to: (a) characterize environmental conditions within the Study Area, (b) investigate whether and to what extent past or current conditions at the Site have caused or contributed to contamination of the River, (c) assess current and potential risk to human health and the environment posed by conditions within the Study Area, and (d) develop and evaluate potential remedial actions, as may be warranted. This RI Report addresses the first three objectives. The FS Report will address the fourth objective. The RI field program consisted of two phases of investigation: Phase I field activities were conducted between January 25, 2013 and December 31, 2014, and Phase II field activities were conducted between December 1, 2017 and July 9, 2018. The Draft RI Report (AECOM, 2016a), which described the Phase I field investigation and its findings, was provided to the District Department of Energy and Environment (DOEE) on February 26, 2016. The Draft RI Report was made available for public comment from March 1, 2016 through April 18, 2016, and the response to public comments was released in August 2016. The Draft RI Report identified several data gaps with respect to the Phase I Site characterization, background data evaluation, baseline human health risk assessment (BHHRA), and baseline ecological risk assessment (BERA). The majority of these data gaps were addressed during the Phase II RI field program. However, a data gap remains regarding the specific source (or sources) of PCE detected in on-Site groundwater. The source(s) cannot be conclusively determined from the existing data, and further investigation will be conducted as warranted during post-RI investigation activities.

The RI/FS Study Area investigation consists of a "Landside Investigation Area" component focused on the Site itself, and a "Waterside Investigation Area" component focused on the shoreline and sediments in the segment of the Anacostia River adjacent to and immediately downstream of the Site. To help guide the Landside Investigation activities, a total of 20 Target Areas (TAs) and seven overlapping Operational Areas were identified based on historical investigations and remediation, underground storage tank (UST) closures, and former and current operations. In addition, Pepco investigated potential impacts from alleged dredge spoils placement on the Anacostia Park property adjacent to the National Park Service (NPS) Kenilworth Maintenance Yard (KMY) property. Pepco also completed a background sampling program to establish Site-specific background conditions for soil, groundwater, Anacostia River surface water, and Anacostia River sediment.

A total of 1,060 soil samples, 109 groundwater samples, 449 sediment samples, 20 surface water samples, 21 toxicity testing samples, 21 macroinvertebrate community health samples, and 21 surficial sediment

interstitial pore water samples were collected during the course of the RI. An additional 207 soil samples were collected and analyzed from the area adjacent to and beneath the cooling tower concrete basins to guide the removal of impacted soils around the basins. Although these samples were collected as part of the RI, they were not included in the RI dataset, because the soils had already been excavated. All samples collected during the RI field work were analyzed as outlined in the RI/FS Work Plan and its addenda (AECOM, 2012b; AECOM, 2014a; AECOM, 2014b; AECOM, 2016e); analytes included inorganic constituents (metals), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), pesticides, and dioxins/furans. Forensic samples were collected from different environmental media to facilitate contaminant fingerprinting and help determine the Site contribution to contamination in River sediments. In addition to the above-described data collected by Pepco in support of the Benning Road RI, relevant data collected by DOEE as part of the Anacostia Rive Sediment Project (ARSP) RI sampling effort were also evaluated in the BHHRA, BERA, and the background evaluation conducted as part of the RI and included in this RI report.

There were only a few deviations from the approved Work Plan in the performance of the field activities. In the majority of cases, the deviations resulted in collection of additional data above and beyond the Work Plan requirements. Analytical data were validated in accordance with the U.S. Environmental Protection Agency (USEPA) guidelines. Only 520 results out of 207,453 evaluated (0.25% of the total) were rejected and are not usable for project decisions. More than 99.5% of the laboratory results were deemed valid and usable for project decisions.

The analytical data were used to define the nature and extent of potential impacts, perform a Site-specific background analysis, BHHRA and BERA, and forensic analysis. Key findings from the Landside and Waterside Investigation Area RI activities are presented below.

7.1 Geology and Hydrogeology

• The subsurface beneath the Site consists of three geologic units: (1) historical fill material used to level the Site, (2) the Patapsco Formation underlying the fill, and (3) Arundel Clay underlying the Patapsco Formation. Fill material thickness averages about 5 to 8 ft. across much of the Site, and up to 20 ft. along subsurface utilities. The Patapsco Formation consists of a variegated mixture of brown and gray clays, silts, sands, and gravels. The Arundel Clay is a distinct regional confining layer, composed of very stiff, fat, mottled maroon and dark gray clay. The Arundel Clay underlies the Site at a depth of between 45 and 85 feet below ground surface (ft. bgs), and generally dips toward the west. Investigations at the Site did not penetrate through the Arundel Clay, which is reported to be as much as 100 ft. thick.

- The subsurface investigation identified a silt-clay semi-confining layer underlying much of the Site
 and dividing the Patapsco Formation into an upper water-bearing zone (UWZ) and a lower waterbearing zone (LWZ). The top of the silt-clay layer was encountered between 25 and 40 ft. bgs, and
 the layer averaged about 6 ft. in thickness.
- The top of the water table aquifer (UWZ) generally ranges from 9 to 16 ft. bgs. The piezometric surface of the LWZ aquifer at the Site generally averages 0 to 2 ft. deeper than the UWZ water table.
- Groundwater elevation measurements at the Site indicate that the direction of groundwater flow in both aquifers is generally toward the River to the west, with slight local variations. Horizontal hydraulic gradients ranged from approximately 0.0008 to 0.01 in the UWZ, and approximately 0.002 to 0.02 in the LWZ.
- Evidence of tidal influence in groundwater at the Site was apparent in both the upper and lower aquifers. The greatest influence was observed at monitoring well MW-01 in the southwest corner of the Site, where groundwater levels in both the UWZ and LWZ varied by approximately 3 ft over a tidal cycle. Groundwater levels across the rest of the Site in both the UWZ and LWZ fluctuated by only 1 to 3 inches over a tidal cycle, and exhibited less fluctuation with increasing distance from the River.
- The results of aquifer testing conducted in eight well pairs distributed evenly across the Site indicate that hydraulic conductivities in the UWZ and LWZ range from approximately 10⁻⁶ to 10⁻⁵ meters per second, which is consistent with unconsolidated deposits of silty sands or fine sands.

7.2 Nature and Extent of Impacts

7.2.1 Landside Investigation Area

Site Soils Summary

To help guide the Landside Investigation Area activities, the Phase I RI identified 18 Target Areas. The Phase II RI expanded these to a total of 20 Target Areas and seven historical Operational Areas (which in most cases overlap with the Target Areas) on the Landside portion of the Site, based on Phase I RI data, historical investigations and remediation, UST closures, and former and current operations. An iterative surficial and sub-surficial sampling approach was used to delineate analytes horizontally and vertically within the Target and Operational Areas relative to risk-based screening levels. Pepco worked closely with DOEE to delineate Constituents of Interest (COIs) in all Target Areas.

Vanadium, polycyclic aromatic hydrocarbons (PAHs), diesel range organics (DRO), and PCBs were detected in surface and subsurface soils at concentrations exceeding screening levels and background levels in a number of the Target Areas. Dioxin concentrations exceeded screening levels in the surface and subsurface soils, but were below background levels in the subsurface soils. VOCs, gasoline range organics (GRO) and pesticides were not detected in soils at concentrations in excess of screening levels at any of the Target Areas. All other COIs exceeded screening levels in soils, but were consistent with the background levels.

Groundwater Summary

- The investigation did not find any non-aqueous phase liquids in groundwater.
- Several metals were detected in the UWZ and LWZ at concentrations above screening levels, but were consistent with or below background levels.
- PCBs, PAHs, and dioxins were not detected at concentrations above screening levels. One
 pesticide was detected at one location at concentrations slightly above screening levels in the most
 recent round of groundwater sampling.
- Two organic compounds, tetrachloroethylene (PCE) and methyl tert-butyl ether (MTBE), were detected in groundwater at concentrations in excess of their screening levels.
 - PCE and its daughter products were detected above screening levels in both UWZ and LWZ in the southcentral and southwestern portions of the Site, respectively. Although both on-Site and off-Site sources have been considered, the exact source of the PCE is remains unknown at this time.
 - MTBE concentrations above screening levels were found in the northeast portion of the Site. It is likely that this finding is attributable to a combination of potential residual from a former petroleum cleanup at the Kenilworth Fueling Island (TA 18) and off-Site leaking USTs located hydraulically upgradient of the Pepco Site.

The following is a summary of the Landside Investigation Area impacts and potential source areas:

Target Area	Constituents of Interest	Potential Sources of Impacts
TA1 Former Sludge Dewatering Area	Vanadium, PCBs, PAHs, and dioxins largely surficial and shallow subsurficial. Vanadium impacts extend outside of TA1 over a larger former Coal Pile Area footprint to 3 ft below grade	Sludge from clarifiers, sludge from cooling tower basins, River water, and sediment processed in the clarifiers prior to use in cooling tower, and former coal pile; dioxins potentially from the DC Department of Public Works (DPW) incinerator upwind of the Site

Target Area	Constituents of Interest	Potential Sources of Impacts
TA4 Salvage Yard and Former Timber Pile Storage Area	PCBs, PAHs, and total petroleum hydrocarbons (TPH), largely to 5 ft below grade, some extend to 10 to 15 ft.	Historical activities and fill material
TA5 Former Cooling Tower Basins (East end of Cooling Tower #16)	PCBs and TPH to 6 ft below grade	PCB-containing caulk and potential historical dielectric fluid spill
TA10 Red Tag Storage Area	PCBs and dioxins in surface soils and shallow subsurface	PCBs from historical on-Site activities and dioxins potentially from the DC DPW incinerator upwind of the Site
TA11 Building 68	PCBs to 4 ft below grade	Historical activities in TA10 and TA 11
TA12 Building #57/Transformer Shop	PCBs and PAHs to five feet below grade	Historical operations involving electrical equipment, historical rail road operations, and/or coal tar paving sealants/fill soils
TA17 Storm Drain System	PCBs, PAHs, and metals	Historical industrial runoff, PCBs have not been detected in the ongoing NPDES stormwater discharges
TA18 Kenilworth Fueling Island	MTBE in groundwater	Residual from former cleanup and potential off- Site sources
TA19 PCE and its daughter products		The specific source (or sources) of PCE detected in on-Site groundwater cannot be conclusively determined from the existing data, and further investigation will be conducted during post-RI investigation activities
TA20 PAHs in Soil/Former Rail Yard and Laydown Area	PAHs largely to 5 ft below grade, some locations extend to 11 ft.	Former Rail Yard operations, coal tar paving sealants, and/or fill soils

7.2.2 Anacostia Park

With the exception of arsenic, all concentrations of constituents in surface soils (composite and discrete) and subsurface soil samples were below screening levels at the Anacostia Park property located between the Site and the River and immediately south of the NPS KMY site. Arsenic concentrations in soils were consistent with background levels. Detected concentrations of all constituents in the Anacostia Park groundwater samples were generally below screening levels, with the exception of several metals and TPH-DRO. Metal concentrations, however, were close to or below background levels. These data indicate that (1) there are no adverse impacts from the alleged historical staging of dredge spoils on Anacostia Park, and (2) groundwater transport from the Site has not impacted the subsurface conditions at Anacostia Park.

7.2.3 Waterside Investigation Area

The Waterside Investigation Area focused on sediment and surface water in the portion of the River adjacent to the Site, as well as upstream sediment background locations in the Anacostia River. The major Waterside findings are as follows:

- The levels of constituents in Study Area surface water were below ecological screening levels, with the exception of dissolved barium, two PAH compounds, and 4,4'-DDT. However, Study Area concentrations of these COIs are consistent with Site-specific background conditions.
- Concentrations of several metals, pesticides, PAHs, and PCBs exceeded ecological screening
 levels in sediment in the Waterside Investigation Area. The elevated levels of these constituents
 are generally located in an approximately 4.2-acre Cove of the River (the Cove) into which Outfall
 013 from the Site and three other outfalls not associated with the Site (referred to as non-Pepco
 outfalls) discharge.
- An evaluation of background conditions in a reach of the River approximately 0.5 miles upstream of
 the Site indicates that the levels of most COPCs in surface sediment in the Study Area were
 consistent with Site- specific background conditions. Waterside Investigation Area surficial
 sediment PCB concentrations exceed background concentrations in some locations. The highest
 concentrations of PCBs appear to be restricted to the Cove.

In most of the sediment cores, concentrations of key COIs decline to below screening levels and/or sediment background threshold values (BTVs) at depth indicating the characterization of the vertical extent of COIs in Waterside Investigation Area sediments is largely sufficient and complete. Additional interpretation of the core results will be provided in the Forensics Analysis and Source Evaluation Report.

- Multiple lines of evidence (including cesium cores, contaminant profiles, and grain size characterization) indicate that much of the Waterside Investigation Area, including the Cove, is net depositional.
- The total PCB maximum concentrations in cores occurred at approximately 2 ft bgs, corresponding to the 1963 ¹³⁷Cs peak. PCB concentrations in the surficial sediments are lower than those at depth.
- Surficial sediment pore water concentrations were generally similar in the Waterside Investigation
 Area and Site-specific background locations.

7.3 Evaluation of Contaminant Fate and Transport

There are limited pathways by which Site-related constituents may migrate from the Landside Investigation Area. Most of the Site surface is paved or otherwise stabilized; therefore, erosion and migration of eroded soils is not identified as a significant transport mechanism under existing Site conditions. Storm drains were sampled and groundwater discharges were evaluated to determine if these could serve as historical/current pathways for discharges to the River. Site data were compared to BTVs to help provide fate and transport context.

The findings are as follows:

- Concentrations of several metals, PAHs, TPH, PCBs, and low levels of pesticides were detected in storm drain residue and stormwater samples. Concentrations of COPCs in storm drain samples were mostly below BTVs and are consistent with typical industrial runoff.
- Storm drain residues sampled during the RI reflect accumulated sediments over a period of several decades. The presence of PCBs in storm drain residues in some locations suggests historical discharges from Outfall 013 may have contributed to PCB impacts in the Cove. Accumulated sediments were removed from the storm drains subsequent to the RI sampling and therefore do not represent a current potential source of contamination to the River. The Site currently employs various best management practices (BMPs) to control sediments and contaminants in stormwater discharged from the Site. Although sub-ppb levels of PCBs were detected in one stormwater sample collected from an upstream location during the RI, PCBs have not been detected in the stormwater discharges from Outfall 013 in the ongoing NPDES monitoring program.
- Groundwater beneath the Site discharges to the Anacostia River. Based on the low levels of COPC
 concentrations observed and the limited volume of COPCs discharged to the River, neither current
 nor historical groundwater discharges from the Site to sediment pore water or surface water are a
 significant contributor to the impacts in the Anacostia River.

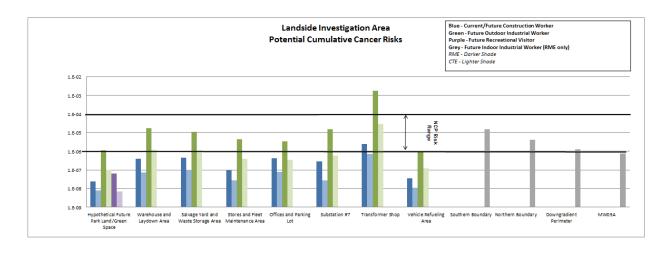
Available information indicates numerous background and regional sources of COIs to the Anacostia River and/or the Site. Historical and existing off-Site sources of COPCs identified in the RI include:

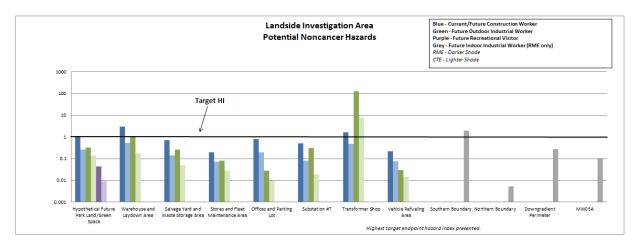
- Regional transportation and fossil fuel burning;
- Historical open burning at Langston Golf Course and Kenilworth Landfill;
- Historic landfilling at Langston Golf Course and Kenilworth Landfill;
- Former trash incinerator adjacent to the Site;

- KMY and Trash Transfer Station outfalls to the Cove:
- Upstream non-point sources in the Anacostia Watershed from the northeast and northwest branches of the Anacostia and various tributaries;
- Historical off-Site discharges to the Cove via Piney Run prior to storm drain construction in the early 1950s:
- Off-Site sources of PCE including dry cleaners; and
- Urban runoff (through both storm drain outfalls and non-point sources)/combined sewer overflows.

Several radiochemistry cores collected by DOEE as part of the ARSP RI indicate that there are high rates of sedimentation in the vicinity of the Waterside Investigation Area, with well-defined ¹³⁷Cs peaks and corresponding sedimentation rates that range from 1 to 3 centimeters per year (cm/yr). In addition, a radiochemistry core collected by Pepco in the Cove indicates a sediment deposition rate of approximately 1 cm/yr. Further, the grain size analysis in the Cove indicates that the Cove area is largely depositional.

There is insufficient data to demonstrate any linkage between constituents in sediments, pore water, or surface water in the Waterside Investigation Area and fish tissue concentrations. Fish tissue samples were collected within a reach of the River substantially larger than the Waterside Instigation Area and the home range of many of the fish species sampled is even larger. The absence of co-located and contemporaneous fish and sediment samples precludes any rigorous assessment of the relationship between sediment concentrations and fish tissue concentrations in this area of the River. Moreover, any contribution from sediment and surface water in the Waterside Investigation Area, in particular the Cove, is likely to be small relative to other sources affecting fish tissue concentrations in the Anacostia River.


7.4 Baseline Human Health Risk Assessment (BHHRA)


7.4.1 Landside Investigation Area

Potential exposures to on-Site surface and subsurface soils are currently incomplete due to perimeter fencing, 24-hour Site security, and the presence of pavement or gravel across the vast majority of the Site. The current lack of access to soil is expected to continue into the foreseeable future. However, the potential for future direct contact exposures to surface and subsurface soil was evaluated, including a hypothetical scenario in which the western portion of the Site next to Anacostia Avenue is re-developed into park or green space. It was also assumed that a construction worker and a hypothetical future indoor worker may be exposed via inhalation of vapors from groundwater. Based on the evaluation of potential migration of constituents from groundwater to surface water, discharge of Site groundwater is not adversely impacting

the Anacostia River. The figures below present the potential carcinogenic risks and the noncarcinogenic hazard indexes (HIs) for landside receptors, including the current/future construction worker, future outdoor industrial worker, future indoor industrial worker, and future recreational visitor.

As indicated by the figures above, the majority of total potential carcinogenic risk and noncarcinogenic hazards for landside receptor scenarios are within or below the USEPA target cancer risk range of 10⁻⁶ to 10⁻⁴ and below a noncarcinogenic target endpoint HI of 1. The table below presents the identified COCs with potential risks greater than 10⁻⁶ or a target endpoint HI of 1 for the Landside Investigation Area; the noncancer hazard value representing the highest target endpoint HI is presented.

		Landside Investigation Area				
Potential COC	Cancer Risk/ HI	Warehouse and Laydown Area	Salvage Yard and Storage Area	Substation #7	Transformer Shop	
2,3,7,8-TCDD-TEQ	Risk		4E-06 ^a			
Vanadium	HI	3 ^b				
	Risk	5E-06ª	2E-06 ^a	4E-6 ^a	2E-03 ^a	
Total PCBs	НІ				124 ^a 1.6 ^b	

Notes:

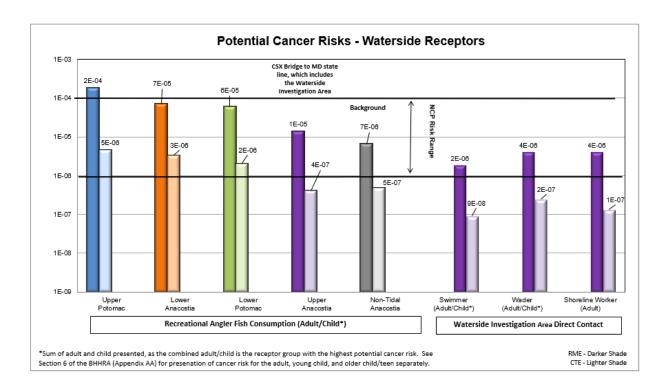
Blue highlighting indicates that cancer risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

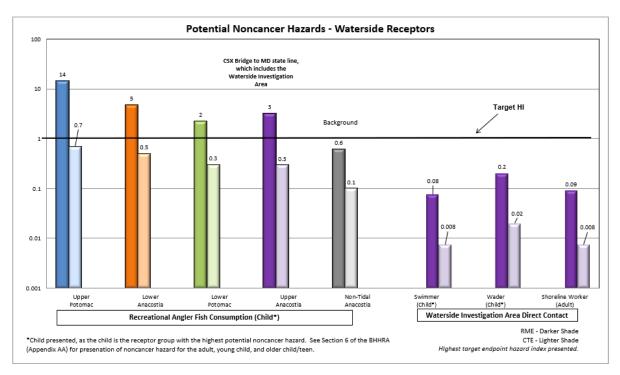
Yellow highlighting indicates that risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

7.4.2 Waterside Investigation Area

The following potential receptors and exposure pathways were evaluated for the Waterside Investigation Area:

- Current and future swimmers and waders who may be exposed via incidental ingestion of and/or dermal contact with surface sediment and surface water.
- Current and future shoreline workers who may be exposed via incidental ingestion of and/or dermal contact with surface sediment and surface water.
- Current and future anglers who may be exposed via incidental ingestion of and dermal contact with surface sediment and surface water, and via consumption of Anacostia River fish.


The figures below present the potential carcinogenic risks and noncancer HI for waterside receptors. In addition to the Upper Anacostia which encompasses the Waterside Investigation Area, potential risks and hazards for fish consumption are also presented for several regional reaches to provide additional context for potential risks in the Waterside Investigation Area.


⁻⁻ Indicates that cancer risk is less than 10⁻⁶ or noncancer HI is less than 1.

^a Future outdoor industrial worker surface soil (0-1 foot bgs).

^b Current/future construction worker soil (0-16 feet bgs).

As indicated by the figures above, potential cancer risks are within the USEPA's target risk range of 10⁻⁶ to 10⁻⁴ with the exception of the RME scenario for the Upper Potomac River. The noncancer HI exceeds 1 in under the RME scenario in all areas except the Upper Non-Tidal Anacostia. As shown below, all of the chemicals identified as potential COCs in the Upper Anacostia area for recreational fish consumption are also identified in other regional reaches, and in many cases, at higher cancer risk and hazard levels.

	Canc	Current/Future Recreational Angler Fish Consumption from Regional and Background Areas RME Scenario				
Chemical	er Risk/	Regional Reaches Backgro				
	н	Lower Anacostia	Lower Potomac	Upper Potomac	Upstream Non- Tidal Anacostia	
Arsenic	Risk	2E-06	3E-05	3E-06		
Total PCBs	Risk	5E-05	2E-05	1E-04	3E-06	
Total PCBS	HI	5	2	14		
PCB-TEQ	Risk	7E-05	3E-05	2E-04	4E-06	
POB-TEQ	HI	3		9		
4,4-DDE	Risk			4E-06		
Dieldrin	Risk	1E-05	5E-06	2E-05		
Heptachlor epoxide	Risk	2E-06				

Notes

Blue highlighting indicates that cumulative cancer risk exceeds 10⁻⁶ but is less than or equal to 10⁻⁴.

Overall, the BHHRA for recreational receptors show that PCBs in fish tissue is the dominant COPC and medium driving exposure risk; other COPCs including pesticides contribute negligibly to cumulative risk. Fish consumption cancer risks and noncancer hazards estimated using data collected by DOEE throughout the Anacostia and Potomac Rivers exceed 10⁻⁶ and an HI of 1; these findings suggest multiple sources of PCBs and other urban contaminants, including upstream of the extent of tidal influence of the Waterside Investigation Area.

7.4.3 BHHRA Conclusions

COPCs with a potential cancer risk above 1 \times 10⁻⁶ or noncancer HI of 1 have been identified as summarized below.

⁻⁻ Indicates that cancer risk is less than or equal to 10⁻⁶ or noncancer HI is less than or equal to 1. Cancer risk is presented for the sum of the adult and the young child, and the noncancer HI is presented for the young child. The older child/teen risk and HI values are lower.

Yellow highlighting indicates that cumulative cancer risk exceeds 10⁻⁴ or the target endpoint HI exceeds 1.

^a Current/future recreational angler.

		Landside			rside
Potential COC	Surface Soil Direct Contact	Subsurface Soil Direct Contact	Groundwater Vapor Intrusion	Fish Tissue Consumption	Sediment Direct Contact
TCDD-TEQ	COC (a)	Risk<10 ⁻⁶ HI <1	(i)	NA	COC (g)
Total PCBs	COC (a,b,j)	COC (c)	(i)	COC (f)	Risk<10 ⁻⁶ HI <1
PCB-TEQ	(h)	<sl< td=""><td>(i)</td><td>COC (f)</td><td>(h)</td></sl<>	(i)	COC (f)	(h)
Dieldrin	<sl< td=""><td><sl< td=""><td>(i)</td><td>COC (f)</td><td><sl< td=""></sl<></td></sl<></td></sl<>	<sl< td=""><td>(i)</td><td>COC (f)</td><td><sl< td=""></sl<></td></sl<>	(i)	COC (f)	<sl< td=""></sl<>
Vanadium	HI<1	COC (b)	(i)	<sl< td=""><td>HI<1</td></sl<>	HI<1
Chloroform	ND	ND	COC (d)	NA	<sl< td=""></sl<>
Tetrachloroethylene	<sl< td=""><td><sl< td=""><td>COC (e)</td><td>NA</td><td><sl< td=""></sl<></td></sl<></td></sl<>	<sl< td=""><td>COC (e)</td><td>NA</td><td><sl< td=""></sl<></td></sl<>	COC (e)	NA	<sl< td=""></sl<>
Trichloroethylene	ND	ND	COC (e)	NA	<sl< td=""></sl<>
Vinyl Chloride	ND	ND	COC (e)	NA	<sl< td=""></sl<>

Notes:

- < SL maximum detected concentration below applicable screening level.
- COC Constituent of Concern; cancer risk is greater than 10⁻⁶ and/or noncancer hazard index is greater than 1.
- NA Not Analyzed.
- ND Not Detected.
- (a) Salvage Yard and Storage Area.
- (b) Warehouse and Laydown Area.
- (c) Transformer Shop.
- (d) Northern property boundary.
- (e) Southern property boundary.
- (f) Upper Anacostia River.
- (g) Waterside Investigation Area.
- (h) PCB-TEQ is evaluated only for fish tissue.
- (i) The potential exposure pathway for groundwater vapor intrusion. Non-volatile constituents were therefore not evaluated.
- (i) Substation #7.

The COCs listed above for fish tissue are based on measured fish tissue concentrations; no modeling from sediment to fish tissue was conducted for the BHHRA. The presence of bioaccumulative and biomagnifying COPCs in surficial sediment, surficial sediment pore water, and surface water within the Waterside Investigation Area indicates that there is a potential linkage between contaminants in these media and fish tissue. However, this linkage is uncertain due to the lack of information demonstrating sediment to fish tissue relationships in the River generally, and the small role that sediment and surface water in the Waterside Investigation Area likely play in COPC budgets and fish home ranges in the Anacostia River.

The results of the regional and background evaluation are indicative of a regional footprint of contamination that is reflected in the fish tissue body burdens. Because of the significant regional and background cancer risks and noncancer hazards compared to Site cancer risks and noncancer hazards, regional and background conditions need to be carefully considered in risk management decision-making for the Site.

As with all risk assessments, assumptions have been made about variables and processes that are not fully known, such as human behavior, chemical toxicity, or environmental concentrations. While the use of assumptions leads to uncertainty, it is important to note that the assumptions and approaches used in this BHHRA are conservative, such that risks are much more likely to be overestimated than underestimated.

7.5 Baseline Ecological Risk Assessment (BERA)

A BERA was conducted to evaluate the potential for risks to ecological receptors posed by COPCs in sediment in the Waterside Investigation Area.

Ecological exposure pathways evaluated in the BERA include:

- Direct contact with surface sediment and pore water by benthic macroinvertebrates;
- Bioaccumulation of biomagnifying COPCs by warmwater fish; and
- Ingestion of contaminated prey items (i.e., fish) and abiotic media (i.e., sediment) by selected vertebrate wildlife receptors (i.e., piscivorous birds and mammals).

7.5.1 Benthic Invertebrate Risk Characterization

The evaluation of the potential for risks to the benthic community due to Study Area-related COPCs considered multiple measurement endpoints, as described below.

- Sediment Benchmark Screening. Concentrations of several constituents (e.g., total PCBs, metals, and pesticides) in surficial sediment exceeded literature-derived benthic macroinvertebrate screening values in both the Waterside Investigation Area and the background area reaches of the Anacostia River evaluated in the BERA. PCBs concentrations in the Cove were elevated compared to elsewhere in the Waterside Investigation Area. However, the ranges of concentrations for most COPCs were similar to the ranges detected in background samples and to Site-specific BTVs.
- **Divalent Metal and PAH Bioavailability**. Evaluation of SEM, AVS, and TOC data indicates that divalent metals (cadmium, copper, lead, nickel, and zinc) and PAHs (34 constituents) are not bioavailable in surficial sediment and therefore are not stressors of concern, with the possible exception of PAHs at one sampling station (SED7B).
- Pore Water. Evaluation of surficial sediment pore water using state-of-the-art technologies
 indicates that constituents are not present in pore water at concentrations that pose an ecological
 concern and that concentrations of pore water constituents in the Waterside Investigation Area and

the background area are similar to one another. PCBs were not present in pore water at concentrations indicative of ecological risk.

- Toxicity Testing. Testing was conducted with two species (midge and amphipod) to evaluate both lethal and sub-lethal impacts associated with sediment exposure. In general, amphipod and midge survival responses were similar among the five upstream background samples and the 15 Waterside Investigation Area samples. Only one sample (SED7B) had reduced amphipod survival relative to two upstream background samples. There were no differences between Waterside Investigation Area and background samples for midge survival. For the amphipod test, reduced growth was observed in the Cove sample SED7B relative to three background samples. For the midge test, two Cove samples, SED7B and SED7.5E, had reduced growth responses for both organisms relative to all background sample responses.
- Benthic Community Survey. The macroinvertebrate community survey provides a field based metric of community health. This analysis demonstrated no impacts associated with exposure to COPCs in the Waterside Investigation Area. In fact, the majority of benthic samples collected from the Waterside Investigation Area were more diverse and had higher bioassessment scores than those samples collected from the background area. 6

The above lines of evidence were evaluated in a weight-of-evidence (WOE) framework to characterize potential risks to benthic receptors. This WOE framework considered the results of all components of the assessment methodology (i.e., the approach was designed to integrate the results of physical, biological, toxicological, and field measurement endpoints to draw risk-based conclusions). The results of this analysis indicate a low to indeterminate potential risk to benthic invertebrates, particularly in the Cove. For the most part, the BERA analysis indicates a lack of constituent bioavailability in surficial sediments. The results of the WOE for the benthic community also suggest that any incremental risks contributed by the Site are largely indistinguishable from the anthropogenic, urban background conditions that characterize the

⁶ Three general groupings of benthic organisms were identified based on similarity of numbers of taxa: Waterside Investigation Area sediment samples located in the Cove, Waterside Investigation Area samples in the channel, and a third group consisting of upstream background and two Waterside Investigation Area samples in the channel. A statistical analysis of COPC concentrations measured in the fifteen Phase II 2017 samples collected in the Cove versus the channel indicated that concentrations of most chemicals are comparable in these two areas; however, boxplot comparisons illustrate higher median total PCB Aroclor and total PAH concentrations in the Cove samples (Attachment K of Appendix BB). Insufficient samples are available to compare concentrations of total PCB congeners in the Cove and the channel. Therefore, the use of PCB Aroclor results may underestimate EPCs as estimated by PCB congener analysis, and the use of PCB totals based on Aroclors results in some uncertainty in the sediment benchmark screening. In short-term bioassays, two samples (one from the channel and one from the Cove) had reduced growth responses for chironomids and/or amphipods relative to most to all background samples.

Anacostia River. In several of the comparisons considered in the WOE evaluation (e.g. macroinvertebrate community study), the potential for ecological risks in the upstream background area was actually slightly higher than the potential for ecological risks in the Waterside Investigation Area.

7.5.2 Fish Risk Characterization

One measurement endpoint was used to evaluate the assessment endpoint developed for the fish community: comparison of fish tissue concentrations to No Observed Effect Concentration (NOEC) and Low Observed Effect Concentration (LOEC) Critical Body Residues (CBRs). Maximum and average fish tissue EPCs fell below the maximum NOEC and LOEC CBRs for all COPCs. Because the fish tissue samples were not collected for the purpose of this BERA and no fish tissue samples were collected in the Waterside Investigation Area, the results of this evaluation are uncertain. In addition, comparisons of fish tissue samples collected upstream and downstream of the tissue samples selected to represent Waterside Investigation Area conditions indicate similar levels of all COPCs in fish tissue among Waterside Investigation Area, downstream areas, and upstream areas.

7.5.3 Wildlife Risk Characterization

The potential for risks to wildlife were evaluated through modeled dietary exposures, which indicated that HQs for the belted kingfisher, great blue heron, and raccoon were well below or equal to one for the most conservative exposure scenarios (i.e., considering maximum EPCs and NOAEL- and LOAEL-based TRVs). Based on these results, no risks to birds and mammals are expected through food chain exposure to COPCs in the Waterside Investigation Area.

7.5.4 BERA Summary

The following general conclusions can be made regarding the overall potential for risk.

- No receptors evaluated in the BERA exhibited a high potential for ecological risk. The majority of the risk assessment endpoints evaluated in the BERA fell within the lower portion of the matrices ("Indeterminate" to "No Potential for Ecological Risks").
- For the most part, the potential for ecological risks in the Waterside Investigation Area are indistinguishable from the potential for risk in the background area.
- While there is a low to indeterminate risk to macroinvertebrates from exposure to COPCs, for the
 most part the data collected in support of this RI indicate that key COPCs are not bioavailable to
 macroinvertebrates. Further, the results of the WOE assessment for the benthic community also

- suggests that any incremental risks contributed by the Site are largely indistinguishable from the anthropogenic, urban background conditions that characterize the Anacostia River as a whole.
- No potential risk was identified for fish. Fish tissue concentrations of all COPCs fell well below the majority of critical body residue (CBR) thresholds evaluated in the BERA. This finding is consistent with the fish tissue CBR evaluation presented in the ARSP RI (Tetra Tech, 2018). In addition, comparison of tissue residues from fish collected upstream and downstream of the samples selected to represent Study Area conditions are all similar to one another, suggesting no substantive differences between fish tissue residues near the Waterside Investigation Area and in the remainder of the Anacostia River.
- No potential risk was identified for wildlife. HQs for raccoon, great blue heron, and kingfisher were
 well below or equal to one for all of the conservative exposure scenarios evaluated in the BERA,
 which considered maximum EPCs and NOAEL- and LOAEL-based TRVs. These results are
 consistent with the wildlife risk evaluation in the ARSP RI (Tetra Tech, 2018).

The results of this BERA indicate that: (1) there are elevated levels of several constituents present in Anacostia River surficial sediment in the Waterside Investigation Area and the upstream background locations; (2) concentrations of several compounds (e.g., PCBs) are slightly higher in the Waterside Investigation Area, particularly in the Cove; however, the majority of compounds are present at concentrations consistent with upstream background conditions; (3) there is no potential for risk to fish, birds, or mammals from exposure to COPCs in the Waterside Investigation Area, and (4) the potential for ecological risk to benthic invertebrates is low to indeterminate.

7.6 Conclusions

A thorough characterization of the Study Area was completed through various RI activities. The majority of total potential carcinogenic risk and noncarcinogenic hazards for the landside receptor scenarios are within or below the USEPA target risk (10⁻⁶ to 10⁻⁴) and below the noncarcinogenic target endpoint HI of 1, with the exception of Target Area #1 and the surrounding area, the Former Coal Pile Area footprint, the Former Salvage Yard (Target Area #4), Substation #7, and the transformer shop area (Target Area #12). Additionally, a data gap remains regarding the specific source (or sources) of PCE detected in on-Site groundwater, which cannot be conclusively determined from the existing data; further investigation will be conducted as warranted during post-RI investigation activities. A vapor intrusion pathway evaluation indicated no current exposure; however, vapor controls may be necessary for future buildings constructed in the vicinity of the PCE detections in groundwater. Within the Waterside Investigation Area, concentrations of several COPCs are elevated in the Cove into which Outfall 013 and three other non-Pepco outfalls discharge. The BERA identified low to indeterminate risk to the benthic macroinvertebrate community

observed within the Cove, where COPC concentrations are higher than the background. The BHHRA identified PCBs in fish tissue to be the dominant COPC and medium driving the exposure risk. The contribution of other COPCs (pesticides and arsenic) to cumulative risk is negligible. Uncertainty exists regarding the relationship between concentrations of PCBs detected in fish tissue samples and PCBs detected in sediments within the Waterside Investigation Area.

7.7 Further Actions

The RI has identified areas where remediation may be warranted to address potential exposure risks exceeding the NCP cancer risk threshold of 1E-06 and/or the NCP non-cancer hazard index threshold of 1. Pepco will conduct a Feasibility Study to evaluate remedial alternatives for these areas, which may include both institutional controls and active remediation.

As part of the Feasibility Study process, Pepco identified the need for bench-scale Treatability Studies to support the evaluation of potential remedial alternatives to address sediments in the Waterside Investigation Area. These studies may include sediment dewatering studies, sediment treatability studies focused on analysis of sequestration agents (the use of amendments to reduce bioavailability of contaminants by sorption or biodegradation of contaminants) and other active and inert capping materials, and geotechnical evaluations to better understand sediment stability.

8 References

The Academy of Natural Sciences, 2001. Sediment Transport: Additional Chemical Analysis Study, Phase II. December 20, 2001.

AECOM, 2012a. Hazardous Materials Survey. March 2012. Amended April 2012.

AECOM, 2012b. Benning Road Facility Remedial Investigation and Feasibility Study (RI/FS) Work Plan (Final). December 2012.

AECOM, 2012c. Benning Road Facility Sampling and Analysis – Quality Assurance Project Plan (QAPP). December 2012.

AECOM, 2014a. Benning Road Facility RI/FS Work Plan Addendum #1 – Monitoring Well Installation Activities. March 2014.

AECOM, 2014b. Benning Road Facility RI/FS Work Plan Addendum #2 – Cooling Tower Concrete Basins Soil Sampling Activities. July 2014.

AECOM, 2015. Cooling Tower Basins Soil Removal Action Plan. July 2015.

AECOM, 2016a. Benning Road Facility Draft Remedial Investigation Report. February 2016.

AECOM, 2016b. Technical Memorandum #1 – Conceptual Site Model. Prepared for Pepco and Pepco Energy Services. September 2016.

AECOM, 2016c. Technical Memorandum #2 – Refined Background Evaluation Work Plan. Prepared for Pepco and Pepco Energy Services. October 2016.

AECOM, 2016d. Technical Memorandum #3 – Baseline Human Health and Ecological Risk Assessment Work Plan Addendum. Prepared for Pepco and Pepco Energy Services. September 2016.

AECOM, 2016e. RI/FS Work Plan Addendum #3 – Additional Field Investigations. Prepared for Pepco and Pepco Energy Services. October 2016.

AECOM, 2017. Cooling Tower Basins Remedial Action Completion Report, Pepco Benning Road Facility, Washington D.C. September 11, 2017.

Anacostia Watershed Toxics Alliance (AWTA). 2002. Charting a Course Toward Restoration: A Toxic Chemical Management Strategy for the Anacostia River.

Anacostia Watershed Toxics Alliance (AWTA). 2009. White Paper on PCB and PAH Contaminated Sediment in the Anacostia River. DRAFT FINAL. Anacostia Watershed Toxics Alliance. February 23, 2009.

ATSDR, 2006. Health Consultation. Kenilworth Park Landfill – South Side. Atlanta, Ga. January 23, 2006.

APEX. 2017. DC Department of Public Works NPDES Stormwater Monitoring. October 9, 2017.

Applied Physics Laboratory, the Johns Hopkins University, 1980. Quarterly Report for Energy Programs at the Johns Hopkins University Applied Physics Laboratory. July-September 1980.

ASTM. 2010. Standard Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates. E1706-05. ASTM International. Reapproved 2010. *Toxiological Profile for Polychlorinated Biphenyls. U.S. Department of Health and Human Services*. Public Health Service. https://www.atsdr.cdc.gov/ToxProfiles/tp17.pdf

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.

Berninger, J.P. and Tillitt, D.E., 2019. Polychlorinated biphenyl tissue-concentration thresholds for survival, growth, and reproduction in fish. Environmental toxicology and chemistry, 38(4), pp.712-736.

Burkhard, L. 2009. Estimation of Biota Sediment Accumulation Factor (BSAF) from Paired Observations of Chemical Concentrations in Biota and Sediment. U.S. Environmental Protection Agency, Ecological Risk Assessment Support Center, Cincinnati, OH. EPA/600/R-06/047.

Boehm, 2006. Boehm, P.D., *Polycyclic Aromatic Hydrocarbons (PAHs)* in Environmental Forensics: Contaminant Specific Guide, Morrison, R.D and Murphy, B.L. ed.s, Academic Press, 2006.

DC Department of Health, 2003. Final Total Maximum Daily Loads for Organics and Metals in the Anacostia River and Tributaries. August 2003.

DC Water Resources Research Center. 1993. Groundwater Water Resource Assessment Study for the District of Columbia.

Callahan, M.A., M.W. Slimak, N.W. Gabel, et al. 1979. Water-Related Environmental Fate of 129 Priority Pollutants. Volume I. EPA-440/4 79-029a. Washington, DC: U.S. Environmental Protection Agency (as cited in HSDB, 2004).

Choudry and Hutzinger. 1982. Photochemical Formation and Degradation of Polychlorinated Dibenzofurans and dibenzo-p-dioxins. Residue reviews 84:113-161. January 1982

Conestoga-Rovers and Associates, 2011. Decommissioning Plan Generating Facility, Pepco Energy Services. February 2011.

Conover, W.J. 1980. Practical Nonparametric Statistics.

CTI Consultants, Inc. 2009. Subsurface Investigation and Geotechnical Evaluation, Benning Substation.

Czuczwa, J.M. and Hites, R.A. 1986. Airborne dioxins and dibenzofurans: sources and fates. Environ. Sci. Technol. Vol. 20(2): 195-200.

District of Columbia Municipal Regulations (DCMR). 1994. *Water Quality Standards, Chapter 21 Section* 1155.3. March 4, 1994.

District of Columbia Municipal Regulations (DCMR). 1999. *Underground Storage tanks – Reporting of Releases, Investigation, Confirmation, Assessment and Corrective Action, Chapter 20-62.* October 1, 1999.

District of Columbia Municipal regulations (DCMR). 2013. Water Quality Standards, Chapter 21-11 Section 1104. November 1, 2013.

District of Columbia Water and Sewer Authority (DC Water). 2018. Clean Rivers Project News, Combined Sewer Overflow (CSO) Control Activities. Biannual Report. April 2018.

DOEE, 2002. Total Maximum Daily Loads, Upper Anacostia River, Lower Anacostia River, District of Columbia, Total Suspended Solids. March 1, 2002.

DOEE, 2014. Final Remedial Investigation Work Plan, Anacostia River Sediment Project, Washington, DC. January 29, 2014.

DOEE, 2018. Draft Remedial Investigation Report, Anacostia River Sediment Project, Washington, DC. March 30, 2018.

Dashalakis, K.D., and T.P. O'Connor. 1995. Normalization and elemental sediment contamination in the coastal United States. Environmental Science and Technology, Vol, 29, No. 2, pp. 470-477.

EDR Radius Map with GeoCheck®, prepared for 3400 Benning Road NE, Washington, DC 20019, dated September 2, 2016. Inquiry number 4717486.2s. Report prepared by Environmental Data Resources Inc., 6 Armstrong Road, Shelton, Connecticut 06484, (800) 352-0050, www.edrnet.com.

EDR Aerial Photos Decade Package, prepared for 3400 Benning Road NE, Washington, DC 20019, dated April 18, 2016. Inquiry number 4593698.1. Report prepared by Environmental Data Resources Inc., 6 Armstrong Road, Shelton, Connecticut 06484, (800) 352-0050, www.edrnet.com.

Erickson, 2011. Erickson, M.D. and Kaley, R.G. *Applications of polychlorinated biphenyls*. Environmental Science Pollution Research, vol.18, pp135-151.

Fetter, C.W., 1988. Applied Hydrogeology. Merril Publishing Co.

Fetter, C.W., 2001. *Applied Hydrogeology, Fourth Edition*. Prentice-Hall, Inc. Upper Saddle River, NJ. 2001. pp. 400-402

Frame, 1996. Frame, G.M., Cochran, J.W., and Bowadt, S. *Complete PCB Congner Distributions of 17 Aroclor Mixtures Determined by 3 HRGS Systems Optimized for Comprehensive, Quantitative, Congener-Specific Analysis*. Journal of High Resolution Chromatography, vol.19, pp.657-668

Freeze, R.A. and Cherry, J.A., 1979. Groundwater. Prentice Hall.

Fritz and Weiss. 2009. Anacostia River: Summary of Six Possible Sources of Sediment Contamination. Retrieved April 2015 at

http://www.anacostia.net/Archives/AWSC/documents/AWSC_23_Summary_Sources_Sediment_Contamination.pdf.

General Services Administration, 1975. Draft Environmental Impact Statement Government Printing Office Relocation. October 1975.

General Services Administration, 1978. Final Environmental Impact Statement. Statement number EDC 78005. October 27, 1978.

Geomatrix, Inc. 1988. Environmental and Geotechnical Study, Benning Road Generating Station.

GeoSea Consulting Ltd., 2000. Sediment Trend Analysis in the Anacostia River. November 2000.

Ghosh, U., N. Lombard, M. Bokare, A. Pinkney, L. Yonkos, and R. Harrison. 2019. Passive samplers and mussel deployment, monitoring, and sampling for organic constituents in Anacostia River tributaries: 2016-2018 Year 1 Interim Report. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD. CBFO-C19-02.

Greenhorne and O'Mara, Inc. 2010. Phase I Environmental Site Assessment, Improvements at the Benning Road Substation.

Groundwater & Environmental Services, Inc. (GES). 2018. Underground Storage Tank Removal Report. June 13, 2018.

Hemond, H. F. and E. J. Fechner. 1994. Chemical Fate and Transport in the Environment. Academic Press, San Diego, CA. 338 pp.

Hillis-Carnes Engineering Associates, Inc., 2010. Soil Investigation Factual Report, Pepco 230 kV Transmission Line, Benning Substation "A" to Ritchie Substation.

Hwang, 2006. Hwang, H.M., Foster, G.D., *Characterization of polycyclic aromatic hydrocarbons in urban stormwater runoff flowing into the tidal Anacostia River, Washington, DC, USA*. Environmental Pollution, vol.140, pp.416-426

Hwang, 2008. Hwang, H.M. and Foster, G.D. *Polychlorinated biphenyls in stormwater runoff entering the tidal Anacostia River, Washington, DC. through small urban catchments and combined sewer outfalls.*Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering. Vol.43, Issue 6, pp.567-575

Jacques Whitford Company, Inc. 2003. Salvage Yard Soil Investigation, Benning Service Center. Washington, DC.

Jarvinen, A.W., and G.T. Ankley. 1999. *Linkage of effects to tissue residues: Development of a comprehensive database for aquatic organisms exposed to inorganic and organic chemicals*. SETAC Press, pp. 1-358.

Johnson, 2006. Johnson, G.W., Quensen, J.F., Chiarenzelli, J.R Metric., and Hamilton, M.C. *Polychlorinated Biphenyls*, in Environmental Forensics: Contaminant Specific Guide, Morrison, R.D and Murphy, B.L., eds., Academic Press.

Johnson, 2008. Johnson, G.W., Hansen, L.G., Hamilton, M.C., Fowler, B., and Hermanson, M.H., *PCB,PCDD and PCDF congener profiles in two type of Aroclor 1254*. Environmental Toxicology and Pharmacology, vol.25, pp.156-163

Johnston, P.M. 1964. Geology and Ground-Water Resources of Washington, D.C., and Vicinity, prepared for the United States Department of the Interior, 1964.

Johnson Company, Inc. (JCO), 2012. Kenilworth Park Landfill Feasibility Study Report, NE Washington, DC. April 2007.

Judd, N., Tear, L., Toll, J. 2013. From Sediment to Tissue and Tissue to Sediment: An Evaluation of Statistical Bioaccumulation Models. Integrated Environmental Assessment and Management 10(1): 102-113.

Katz, C.N., A.R. Carlson and D.B. Chadwick. 2001. Draft Anacostia River Seepage and Pore water Survey Report. Space and Naval Warfare Systems Center (SPAWAR). 59 p.

Klamer, J.C., W.J.M. Hegeman, and F. Smedes. 1990. "Comparison of Grain Size Correction Procedures for Organic Micropollutants and Heavy Metals in Marine Sediments." Hydrobiologia, 208: 213-220.

Leister, D. and Baker, J., 1994. *Atmospheric Deposition of Organic Contaminants to the Chesapeake Bay.* Atmospheric Environment, v. 28, no. 8, pp. 1499-1520.

Lester, S. 1998. Background Levels of Dioxin in Soil. Center for Health, Environment & Justice.

Lichtenstein, E. and K. Schulz. 1959. Persistence of Some Chlorinated Hydrocarbon Insecticides as Influenced by Soil Types, Rate of Application and Temperature. J. Econ. Entomol. Vol. 52(1). February 1959.

Lohmann,2012. Critical review of low-density polyethylene's partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler. Environmental Science and. Technology.: Vol 46, pp. 606-618

Lombard, N., Bokare, M., Thodpanich, V., Magee, S., Ghosh, U. 2018. *Ongoing Inputs of Persistent Organic Pollutants to the Anacostia River*. Anacostia River Leadership Council for a Cleaner Anacostia River, September 13, 2018.

Love, J. 2009. Movement Patterns of Tournament Released Largemouth Bass (Micropterus salmoides): A Brief Meta-Analysis. Maryland Department of Natural Resources. May.

Mahler, 2005. Mahler, B.J., Van Metre, P.C., Bashara, T.J., Wilson, J.T., and Johns, D.A. *Parking Lot Sealcoat: An Unrecognized Source of Urban Polycyclic Aromatic Hydrocarbons*. Environmental Science and Technology, vol.38, pp.5560-5566

Martin, M., Stephenson, M.D., Smith, D.R., Gutierrez-Galindo, E.A., and Flores Munoz, G. (1988). *Use of silver in mussels as a tracer of domestic wastewater discharge*. Marine Pollution Bulletin 19, 512–520.

McGee, B.L.; Pinkney, A.E.; Velinsky, D.J.; Ashley, J.T.F.; Fisher, D.J.; Ferrington, L.C.; and Norberg-King, T.J. 2009. Using the Sediment Quality Triad to characterize baseline conditions in the Anacostia River, Washington, DC, USA. Environ Monit Assess (2009) 156:51–67.

MDE (Maryland Department of the Environment) and District of Columbia Department of the Environment, Natural Resources Administration. 2007. Total Maximum Daily Loads of Sediment/Total Suspended Solids for the Anacostia River Basin, Montgomery and Prince George's Counties, Maryland and The District of Columbia. Maryland Department of the Environment, Baltimore, MD, and District of Columbia Department of the Environment, Natural Resources Administration, Washington, DC.

MDNR, 2014. Maryland Biological Stream Survey Sampling Manual: Field Protocols. Maryland Department of Natural Resources, Chesapeake Bay and Watershed Programs.

Menzie, C. 1980. Reaction types in the environment. In: Hutzinger, O. (ed). Reactions and Processes. New York, NY: Springer-Verlag Berlin Heidelberg.

Michelson, T.C. and K. Bragdon-Cook. 1993. Organic Carbon Normalization for Sediment Data. Technical Information Memo, Washington State Department of Ecology.

Metropolitan Washington Council of Governments (MWCOG). 2007. Anacostia River Watershed: Environmental Condition and Restoration Overview. DRAFT. March 2007.

Montgomery, J.H., 1996. p,p-DDD, p,p-DDE, p,p-DDT physicochemical properties, Groundwater Chemicals Desk Reference (p.279-291).

National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC). 2015. "Station Name: VA Washington Reagan AP." Accessed March 5, 2015. www.ncdc.noaa.gov

National Park Service (NPS). 1995. The Reconstruction of Kenilworth Marsh – the Last Tidal Marsh in Washington, DC. Park Science, vol.15-1. 1995.

National Park Service (NPS). 2001. Preliminary Assessment/Site Investigation of Langston Golf Course, NE Washington, DC. Ecology & Environment, Inc. April 2001.

National Park Service (NPS). 2007. Final Remedial Investigation at the Kenilworth Park North Landfill, NE Washington, DC. Ecology & Environment, Inc. November 2007.

National Park Service (NPS). 2008. Final Remedial Investigation at the Kenilworth Park South Landfill, NE Washington, DC. Ecology & Environment, Inc. June 2008.

National Park Service (NPS). 2013. Proposed Plan for Cleanup of the Kenilworth Park Landfill Site. February 2013.

National Park Service (NPS). 2016. Supplemental Groundwater Study Report at the Kenilworth Park Landfill. The Johnson Company. November 2018.

National Research Council. 2008. Urban Stormwater Management in the United States. The National Academies Press, Washington, DC. 529 p.

NOAA Office of Coast Survey Navigation Chart #12289. 2010. Potomac River: Mattawoman Creek to Georgetown.

NPS, 2019a. Remedial Investigation Addendum Report. Final. Kenilworth Park Landfill. June 2019.

NPS, 2019b. Final NPS Tributary Sediment Sampling Study Report. Anacostia River Sediment Project Site. September 2019.

Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences 30 (7), 683-691.

Pepco, 1985. Benning Generating Station Oil Spill Inspection Report.

Pepco, 1988. Benning Substation #7 Parking Area Cleanup Report.

Pepco, 1991. Benning Generating Station PCB Leaking Capacitor Cleanup Report.

Pepco, 1995a. Benning Generating Station PCB Cleanup Report.

Pepco, 1995b. Draft Study Plan for Surface Water and Sediment Analysis for Benning Road Generating Station Intake/Wetland Project. April 27, 1995.

Pepco, 1996,1997. Benning Wetland PCB Data.

Pepco, 2003. *Salvage Yard Soil Investigation: Benning Service Center.* Potomac Electric Power Company. November, 2003.

Phelps, 2005. Phelps, H.L., *Identification of PCB, PAH, and Chlordane Source Areas in the Anacostia River Watershed.* DC Water Resources Research Center, Washington, DC.

Phelps,2008. Phelps,H.L., *Active Biomonitoring for PCB, PAH, and Chlordane Source Areas in the Anacostia River Watershed.* DC Water Resources Research Center, Washington, DC.

Pinkney, A.E. 2017. Analysis of contaminant concentrations in fish tissue collected from the waters of the District of Columbia. Final Report. CBFO-C14-03. U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD. September 2014. Revised November 2017.

Power, E., and P. Chapman. 1992. "Assessing Sediment Quality." In: G.A. Burton (ed.), Sediment Toxicity Assessment. Lewis Publishers, Chelsea, MI. pp. 1-18.

Sakaris P.C., Jesien, R.V. and Pinkney. A.E. 2005. Brown Bullhead as an Indicator Species: Seasonal Movement Patterns and Home Ranges within the Anacostia River, Washington, D.C.

Scatena, F.N. 1987. Sediment Budgets and Delivery in a Suburban Watershed: Anacostia Watershed., Ph.D. Dissertation; Johns Hopkins University, Baltimore, MD.

SCS Engineers. 2000. Needs Assessment for Municipal Solid Waste Transfer for the District of Columbia. Final Report. Reston, VA. November.

Slater, 2013. Slater, G.F., Benson, A.A., Marvin, C., Muir, D. *PAH Fluxes to Siskiwit Revisited: Trends in Fluxes and Sources of Pyrogenic PAH and Perylene Constrained via Radiocarbon Analysis*. Environmental Science and Technology, vol. 47, pp.5066-5073

Smedes etal 2009. Smedes, P., P., Geerstma, R. W., van der Zande, T., and Booij, K. 2009. Polymer-water partition coefficients of hydrophobic compounds for passive sampling: Application of cosolvent models for validation. Environmental Science and Technology. Vol. 43, pp.7047-7054

SRC and NOAA. 2000. Interpretive summary of existing data relevant to potential contaminants of concern within the Anacostia River watershed. Syracuse Research Corporation, North Syracuse, NY and National Oceanic and Atmospheric Administration, Seattle, WA. June.

SSC (Space and Naval Warfare (SPAWAR) System Center). 2003. Final Implementation Guide for Assessing and Managing Contaminated Sediment at Navy Facilities. SPAWAR Systems Center (SSC) San Diego. NFESC User's Guide UG-2053-ENV. March 2003.

Stout, 2004. Stout, S.A, Uhler, A.D., Emsbo-Mattingly, S.D., *Comparative Evaluation of Background Anthropogenic Hydrocarbons in Surficial Sediments from Nine Urban Waterways*. Environmental Science and Technology, vol. 38, pp.2987-2994

Sullivan, M.P. and W.E. Brown, 1988. The tidal Anacostia model-Documentation of the hydrodynamics and water quality parameters. Prepared for the DC Dept. of Consumer and Reg. Affairs by the Metropolitan Washington Council of Governments, Washington, DC.

Takada, H., Onda, T., Ogura, N.,1990. Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by capillary gas chromatography. Environ. Sci. Technol. 24:1179–1186.

Tarone and Ware, 1977. Tarone-Ware Test.

Tetra Tech, 2016. Draft Phase 1 Remedial Investigation Report for the Anacostia River Sediment Project, Washington, DC.

TetraTech. 2018. Draft Remedial Investigation Report. Anacostia River Sediment Project. Washington D.C. Prepared for District of Columbia, Department of Energy and Environment. Prepared by TetraTech, Sterling, VA. March 30.

TPH Technology, Incorporated, 1996. Remediation Program Work Plan, Potomac Electric Power Company, 20K UST Remediation Project, Benning Road Facility. June 21, 1996.

TPH Technology, Incorporated, 1997a. Quarterly Remediation Status Report, Fourth Quarter 1996, Kenilworth Substation 20,000-Gallon UST Site, Benning Station. January 7, 1997.

TPH Technology, Incorporated, 1997b. Petition for Case Closure, Gasoline Remediation Project at PEPCO Kennilworth Substation, 20K UST Site. September 4, 1997.

Urban, J., Wikoff, D., Bunch A., and Haws, L., 2014. A Review of Background Dioxin Concentrations in Urban/Suburban and Rural Soils across the United States: Implications for Site Assessments and the Establishment of Soil Cleanup Levels. Science of the Total Environment, v. 466, pp. 586-597.

URS. 1999. Phase I Environmental Site Assessment of the Benning Generating Facility, Washington, DC

USACE, 2013. Hydrographic Surveying, U.S. Army Corps of Engineers, Office of Publications, Pub Number EM 1110-2-1003. November 30, 2013.

USEPA, 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response. USEPA 540/G-89/004. October 1988.

USEPA. 1992. Guidelines for exposure assessment. Federal register notice, vol. 57, no. 104, pp. 22888-22938. US Environmental Protection Agency, Washington, DC.

USEPA, 1997a. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments (Interim Final). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response. USEPA 540/R-97/006. June 1997.

USEPA, 1997b. Superfund Program Representative Sampling Guidance, Volume 3: Biological, Appendix A: Checklist for Ecological Assessment/Sampling (Interim Final). U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response. May 1997. Available at: http://www.epa.gov/oswer/riskassessment/ecorisk/pdf/appb.pdf.

USEPA, 1997c. Multi-Media Inspection Report, Pepco, Benning Road Generating Station, Washington, DC.

USEPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates Second Edition. U.S. Environmental Protection Agency, Office of Research and Development, Office of Science and Technology. EPA 600/R-99-064. March 2000.

USEPA. 2002a. Role of background in the CERCLA cleanup program. OSWER 9285.6-07P. Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC.

USEPA. 2002b. Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites. Office of Emergency and Remedial Response. EPA-540-R-01-003. September 2002

USEPA, 2005a. Contaminated Sediment Remediation Guidance. EPA-540-R-05-012, OSWER 9355.0-85, December 2005.

USEPA, 2005b. Section 319-Nonpoint Source Program Success Story-District of Columbia: Oil and Grease Water Quality Goals Achieved in DC Area Stream.

http://water.epa.gov/polwaste/nps/success319/upload/2005 08 30 NPS Success319 state dc hickey.pdf

USEPA. 2008. National Functional Guidelines for Superfund Organic Methods Data Review. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washington, DC. OSWER 9240.1-48. June.

USEPA, 2009. Final Site Inspection Report for the Pepco Benning Road Site, Washington, DC.

USEPA. 2015. ProUCL Version 5.1. Technical Guide. Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. October. U.S. Environmental Protection Agency. Office of Research and Development. Washington, DC. October.

USEPA, 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA-540-R-2017-001. U.S. Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, DC. January 2017.

USEPA. 2018. Regional Screening Levels (RSLs) – Generic Tables. U.S Environmental Protection Agency, Washington DC. May 2018.

USGS, 2002. Lithologic Coring in the Lower Anacostia Tidal Watershed, Washington, DC Report 03-318.

USGS, 2019. Sediment and Chemical Contaminant Loads in Tributaries to the Anacostia River, Washington, District of Columbia, 2016-17. Reston, VA.

Van den Berg, G.A., Loch, J.P.G., Van der Heijdt, L.M, Zwolsman, J.J.G. 1998. Vertical Distribution of Acid-volatile sulfide and simultaneously extracted metals in a recent sedimentation areas of the river Meuse in the Netherlands. Environmental Toxicology and Chemistry, vol. 17, issue 4, pp. 758-763.

Van Metre, 2010. Van Metre, P.C., Mahler, B.J. *Contribution of PAHs from coal-tar pavement sealcoat and other sources to 40 U.S. lakes.* Science of the Total Environment, vol.409, pp.334-344

Van Ry, D., Gigliotti, C., Glenn, T., Nelson, E., Totten, L., and Eisenreich, S., 2002. Wet Deposition of Polychlorinated Biphenyls in Urban and Background Areas of the Mid-Atlantic States. Environmental Science & Technology, v. 36, pp. 3201-3209.

Velinsky, DJ, Cummins, JD. 1996. Distribution of Chemical Contaminants in 1993-1995 Wild Fish Species in the District of Columbia. ICPRB Report 96-1. Interstate Commission on the Potomac River Basin, Rockville, MD.

Velinsky, 2011. Velinsky, D.J., Riedel, G.F., Ashley, J.T.F., Cornwell, J.C., *Historical Contamination of the Anacostia River, Washington, D.C.* Environmental Monitoring and Assessment, vol. 183, pp.207-218, 307-328.

Wade, 1994. Wade, T.L., Velinsky, D.J., Reinharz, E., and Schlekat, C.E., *Tidal Sediments in the Washington, D.C. Area II. Distribution and Sources of Organic Contaminants*. Estuaries, Vol.17, No.2, pp.321-333.

Warner, A., Shepp, D.L., Corish, K., and Galli, J. 1997. An Existing Source Assessment of Pollutants to the Anacostia Watershed, prepared by the Metropolitan Washington Council of Governments, Washington, D.C.

WDNR, 2003. Consensus-Based Sediment Quality Guidelines Recommendations for Use & Application. Interim Guidance. Developed by the Contaminated Sediment Standing Team. WT-732 2003. December 2003

Woodard & Curran, 2019. Memorandum: Kenilworth Park South Landfill Human Health Risk Assessment Summary. Dedham, MA. May 30, 2019.

TABLES

Table 1-1 Key RI/FS Project Milestones Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Action/Event	Date	Notes
Entry of Consent Decree by U.S.		
District Court	December 1, 2011	
Pepco's Submission of Draft RI/FS SOW	December 21, 2011	Draft SOW submitted more than a month ahead of deadline stated in CD
Pepco's Submission of Draft CIP	December 21, 2011	Draft CIP submitted more than 6 months ahead of deadline stated in CD
DDOE Approval of RI/FS SOW	April 18, 2012	
DDOE Approval of CIP	June 18, 2012	
Pepco's Submission of Draft RI/FS Work Plans (including HSP, FSP, QAPP and CSM)	July 17, 2012	
DDOE Approval of Final RI/FS Work Plans	December 28, 2012	
Notify DDOE of the start of RI Field Work	January 11, 2013	Within 15 days of DDOE approval of Final RI/FS Work Plans
Beginning of Phase I RI Field Work	January 25, 2013	Not more than 30 days after DDOE approval of Final RI/FS Work Plans
Completion of Phase I RI Field Work	December 31, 2014	
Pepco's Submission of Draft RI Report	April 30, 2015	Not more than 120 days after completion of RI field work
Responses to Public Comments on Draft RI Report	August 23, 2016	
DOEE Approval of RI Phase II Work Plans	October 11, 2016	Also known as Work Plan Addendum #3 for Additional site Investigation
Beginning of RI Phase II Field Work	December 5, 2016	Fieldwork began more than a month ahead of schedule
Completion of RI Phase II Field Work	July 9, 2018	Subject to DOEE Final Approval
Pepco's Submission of Draft Final RI Report	November 5, 2018	Subject to DOEE Approval of Field Work Completion
Pepco's Submission of Draft FS Report	January 4, 2019	Not more than 180 days after completion of RI field work (or 120 days after approval of treatability study report, if required) ³
DOEE Issuance of Record of Decision Regarding Cleanup Actions	Promptly after approval of final RI and FS reports	
DOEE & Pepco first Joint Status Report to the Court	May 23, 2013	Approved by the Court on May 31, 2013
Second Status Report to the Court	May 23, 2014	The Court directed the parties to submit the next status report by May 24, 2015
Third Status Report to the Court	May 22, 2015	The Court directed the parties to submit the next status report on May 24, 2016
Fourth Status Report to the Court	May 24, 2016	The Court directed the parties to submit the next Status Report on May 31, 2017
Fifth Status Report to the Court	May 31, 2017	The Court directed the parties to submit a Supplemental Status Report on December 15, 2017

Table 1-1 Key RI/FS Project Milestones Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Action/Event	Date	Notes	
Supplemental Status Report to the Court	I December 15 2017	The Court directed the parties to submit the next status report on or before July 09, 2018.	
Sixth Status Report to the Court	July 9, 2018		

Notes:

- 1. Bold faced-entries indicate activities that will trigger request for public comment.
- 2. Dates are subject to change as project planning and implementation progresses. This document will
- 3. This schedule assumes treatability studies are not necessary. If a treatability study is required, the

CD - Consent Decree

CIP - Community Involvement Plan

CSM - Conceptual Site Model

FSP - Field Sampling Plan

FS - Feasibility Study

HSP - Health and Safety Plan

QAPP - Quality Assurance Project Plan

RI - Remedial Investigation

SOW - Scope of Work

Table 1-2 Historical Removal Actions and Investigations Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Date	Incident / Investigation	Location	Activities
May-85	PCB Cleanup: Underground pipe leaked waste transformer oil containing PCBs.	Underground pipe leading from Kenilworth Transformer Shop (Current Building 56) (See Target Area #8 in Table 1-3)	Removal of aboveground storage tank, associated piping, and excavation of PCB-contaminated material >5 ppm (approximately 288 cu ft). Aroclor 1260 was reported in 31% of the PCB results. Aroclor 1242 was reported in 18% of the PCB results. Aroclors were not identified for other total PCBs.
Sep-88	PCB Cleanup: Soil contamination detected under concrete pad used to prepare off-line PCB capacitor banks for disposal in area formerly used to store used electrical equipment.	Parking lot located in the northeast portion of facility (See Target Area #7 in Table 1-3)	Removal of approximately 2500 cu ft (389 tons) of PCB-contaminated material (>5 ppm), including concrete slab. Specific Aroclors were not identified with the total PCB results.
1989-91	UST Removals: A total of 6 USTs were removed/closed in place during this period.	550-gal #4 (south of bulk tank #1); 4,000-gal diesel (fuel island); 15K-gal #2 (est of Units 13 and 14); 2,000-gal used oil (Fleet Main.); 250-gal #4; 10K-gal Diesel (Fuel Island) (See Target Area #3 in Table 1-3)	All UST removals were inspected and approved for closure by the District.
Mar-91	PCB Cleanup: PCB capacitor leaked approximately 8 pounds onto concrete surface and seeped through expansion joints.	Concrete covered area located between Buildings 42 and 61 (See Target Area #6 in Table 1-3)	Approximately 126 cu ft PCB contaminated soil (>25 ppm PCBs) were removed and backfilled. Concrete replaced. Specific Aroclors were not identified with the total PCB results.
Apr-95	PCB Cleanup: PCB containing caulk and joint filler located inside colling tower structures were found to be impacting the cooling tower concrete basins, sludge and water inside the basins, and soil adjacent to the basin's wall expansion joints. Pre-cleanup sediment sampling results from cooling tower blowdown discharge location upstream of Outfall 013 indicated no PCBs above 1 ppm.	Unit 15 and 16 cooling tower basins and surrounding soil (See Target Area #5 in Table 1-3)	Approximately 185 cu ft of soil (>1-3 ppm) PCB was exacavated. Old joint filler and caulk were removed and the expansion joints and basin were double washed and rinsed. The basin was encapsulated with concrete sealant after all rinse water was removed. Aroclor 1254 was identified as predominant in soil and wipe samples.

Table 1-2 Historical Removal Actions and Investigations Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Date	Incident / Investigation	Location	Activities
Sep-96 to Mar-97	Intake Dredging: Dredging of Station Intake for creation of wetlands	Generating station intake and points up- and downstream	Intake area in the Anacostia River was dredged and the dredge spoils were used to construct wetlands. Preand post-dredge sediment samples exhibited total PCBs of 119-934 ppb. Specific Aroclors were not identified with the total PCB results.
Apr-97	USEPA Multi-media Inspection: NPDES, RCRA and TSCA compliance inspection conducted by USEPA.	Entire facility	No compliance problems noted. PCBs at 0.25-3.13 ppm detected in residue samples from storm sewers inlets and outfalls. Elevated concentrations of heavy metals were also detected. Aroclor 1260 was identified as the dominant Aroclor in all river sediments and storm sewer samples analyzed.
Dec-99	Phase I Environmental Site Assessment: conducted by PHI in anticipation of property transaction.	Entire facility	Recognized environmental concerns noted. Oil staining at two #4 and #2 fuel oil recirculation ASTs located east of the generating station. No concrete bottom noted in the containment areas.
Nov-03	Salvage Yard Investigation: Soil investigation was completed in area formerly used for storing used electrical equipment.	Salvage yard located west of Buildings 75 and 88 (See Target Area #4 in Table 1-3)	Approximately 296 cu ft of PCB contaminated material (>1 ppm) was removed from the site. TPH-DRO was detected, but were below DCDOH requirements upon final excavation.
Jun-09	USEPA Site Inspection Report: Site Inspection conducted during 2008-09 to determine further actions under CERCLA.	Former sludge dewatering area and the Anacostia River water and sediments (See Target Area #1 in Table 1-3)	Metals, PAHs and PCBs were detected in the former sludge dewatering area and in Anacostia River sediments at concentrations exceeding the screening levels. USEPA links the historical discharges at the site to contamination found in river sediments. Aroclors 1254 and 1260 were the only Aroclors reported detected.

Table 1-2 **Historical Removal Actions and Investigations** Benning Road Facility RI/FS Project 3400 Benning Road, NE

Washington, DC 20019

Date	Incident / Investigation	Location	Activities
Jan-10	Phase I ESA: conducted in connection with substation expansion.	18.5-acre area in the eastern and southern portions of the site that will be impacted by the substation expansion.	Conclusions noted potential for petroleum, metals and PCB impacts of subsurface soils and recommended sampling to develop proper health and safety and soils management procedures during construction. Specific Aroclors were not identified.
2013	AST Removals:four ASTs demolished.	AST #1, #2, #3 and #4 demolished (See Figure 1-4).	Four ASTs demolished and removed from the Site.
Jan-17 to May-17	PCB Cleanup: Remediation of PCB impacted materials in the vicinity of the former CTs including the concrete basins and adjacent soils.	Location of the two former power plant CTs	Removal of 9,923 tons of soil and 6,666 tons of concrete debris for PCB waste disposal. Two storm water bioretention basins have been installed in the locations of the former CTs. Aroclors 1254 and 1260 were detected.
2018	UST Removals: two USTs were removed from the Site.	20,000-gal diesel UST and 20,000-gal gasoline UST removed from the Benning Fuel Island.	The two USTs were removed and replaced with two 12,000-gal ASTs (gasoline and diesel).

Notes:

USEPA - United States Environmental Protection Agency

CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act

ESA - environmental site assessment

DCDOH - District of Columbia Department of Health

UST - underground storage tank

PCB - polychlorinated biphenyl

TPH-DRO - total petroleum hydrocarbon-diesel range organics

PAH - polycyclic aromatic hydrocarbons

ppm - parts per million

ppb - parts per billion

cu ft - cubic feet

UST - underground storage tank

AST - above ground storage tank

CT - cooling tower

TA Area #	Name	Location	Comments					
	Target Areas							
1	Sludge Between Building 65		Area exists in the former coal yard and was used as a decanting area for boiler fireside wash down for river sediment sludge from the clarifiers. In September 2008, TetraTech completed sampling to a depth of 1 ft bgs as part of a Site Inspection for USEPA. (USEPA, 2009; referred to as "USEPA SI Report")					
2	Benning Fueling Island	Located east of Building # 32	A 20,000 gallon gasoline UST and a 20,000 gallon diesel UST were installed in 1991 to hold fuel for fleet vehicles at the Benning Fueling Island. These tanks were removed in May 2018 and replaced with two 12,000 gallon ASTs (diesal and gasoline). In 1991, a 4,000 gallon diesel UST was removed in this area. Soil was found to be impacted and was removed according to a letter submitted by Pepco to DC DDOE. A 10,000 gallon diesel UST was removed in June 1991 with soil impact identified in the excavation. The impacted soil was reportedly excavated and the cases were closed with District approval. (URS, 1999).					
3	Former 15,000 Gal UST and 50,000 Gal AST (No. 2 Fuel Oil)	East of Generating Station, south of cooling tower unit 15	The UST was removed in 1989 and confirmatory samples showed TPH levels in excess of 100 mg/kg. A 20 ft by 20 ft area was excavated to 15 ft bgs where groundwater was encountered. An oil sheen was noted on the water table and the oil/water mixture was pumped out to the plant oil/water separator. The excavation was backfilled and a recovery well installed to recover any residual oil. DDOE issued Pepco a written notice of case closure on February 5, 1992. The 50,000 gallon AST was constructed in 1968 and drained, cleaned, and removed in early 2013.					
4	2003 Salvage Yard Investigation	Salvage yard located west of Buildings #75 and #88	Soil investigation and soil removal were completed in area formerly used for storing used electrical equipment. Jacques Whitford Company completed soil sampling down to a maximum depth of 5 feet. (Jacques Whitford Company, 2003)					
5	Former Cooling Towers - 1995 and 2017 Cleanup Area	Former CT 15 and CT 16 basins and surrounding soil	During 1995, PCB containing caulk and joint filler located inside cooling tower structures were found to be impacting the cooling tower (CT) concrete basins, sludge and water inside the basins, and soil adjacent to the basin's wall expansion joints. Precleanup sediment sampling results from cooling tower blowdown discharge location upstream of Outfall 013 indicated no PCBs above 1 ppm (Pepco, 1995). The cooling towers were demolished in early 2014. During 2017, the CT concrete basins and PCB-impacted soils in the vicinity of the former CTs. The CT removal activities are summarized in the Cooling Tower Basins Remedial Action Completion Report (AECOM, 2017).					
6	1991 Cleanup Area	Between Buildings # 41 and # 61	PCB capacitor leaked approximately 8 pounds onto concrete surface and seeped through expansion joints.1991 report stated that there were multiple excavations and that PCB concentrations were not detected. (Pepco, 1991)					

TA Area #	Name	Location	Comments			
Target Areas (continued)						
1988 Parking Parking lot located Tot Cleanup in the eastern portion of facility.		in the eastern	Soil contamination detected under concrete pad used to prepare off-line PCB capacitor banks for disposal in area formerly used to store used electrical equipment. The concrete pad was demolished and disposed followed by removal of soil to a depth of 12 inches below grade. The cleanup was performed and 19 truckloads of PCB impacted materials were disposed of at a Waste Management facility located in Model City, New York. (Pepco, 1988)			
8	1985 Excavation Area	Underground pipe leading from Kenilworth Transformer Shop (Current Building # 56)	Underground pipe leaked waste transformer oil containing PCBs. (Pepco, 1985)			
9	Green Tag Storage Area	Storage Building #66	Building utilized for temporary storage of drums containing sludge removed from manholes while they await analysis for PCB content. An area located outside and in front of building 66 is used to store empty transformer casings that were previously identified as non-PCB. At the time of the EPA inspection, all of the casings were marked with a green tag that indicated they were less than 50 mg/kg PCB. (USEPA, 1997).			
10	Red Tag Storage Area	South of Building # 68 (PCB Storage Building)	The area is concrete and used for storage of empty transformer casings which had previously been identified with red tags as PCB contaminated (50 to 499 mg/kg). The casings are stored in this area until they are shipped off site for recycling. The EPA inspector noted no indications of spills or leaks in the area around the casings. (USEPA, 1997)			
11	Building #68 (PCB Building)	Building #68	Building used for storage of PCBs and hazardous waste in drums. The floor is concrete with a continuous concrete curb one foot high providing containment for 22,443 gallons. There were no leaks observed by the EPA inspector on or around the containers. Additionally, no staining was observed by the EPA inspector in Building 68. (USEPA, 1997)			
12	Building #57	Building #57	Building houses two 10,000 gallon holding tanks for accumulating waste oil. All waste oil with a PCB concentration of less than 49 mg/kg is pumped to these tanks. Both tanks are located in a large concrete vault inside of the building. These tanks are reportedly inspected daily by Pepco personnel. Currently, accumulated oil is taken to a permitted off-site facility for disposal/recycling. In the past, oil was transported to Pepco's Morgantown Generating plant to be burned in their boilers. At the time of the EPA inspection, oil stains were observed on the outside of tank 1 and on the concrete floor in the vault area. A concrete sump located in the back corner of the vault area was also observed to be full of oil. The loading area is located on the ground level of the building just above the storage tank area. The loading area slopes downward from the front and drains back into the tanks via a drain. No cracks were observed in the concrete loading ramp. (USEPA, 1997)			

TA Area #	Name	Location	Comments				
	Target Areas (continued)						
13	Bulk Storage ASTs and Loading Rack	East of the Generating Station Building	Three ASTs located within dikes and on a clay floor with initial construction dates ranging from 1942 to 1968. Tank capacities ranged from 618,000 gallons to 1,984,000 gallons. In 1995 a HDPE liner covered with flowable fill was installed on the top of the clay floor. The tanks were upgraded with new steel bottoms in 1997 and 1999. TPH GRO and/or DRO was identified in soil samples collected in this area in January 2012 in connection with the proposed demolition of the tanks. (AECOM, 2012a). The three ASTs were demolished in early 2013. Additionally, two fuel oil USTs (250 and 550 gal) and one UST containing used oil (2,000 gal) were historically located in the area of the former ASTs (Target Area 13). These USTs have been removed.				
14	Former Railroad Switchyard	Adjacent to southern property boundary and east of Building # 32.	According to the URS Phase I ESA dated December 1999, four transformers likely existed in this area. Soil staining was observed by URS during Site reconnaissance. PCBs were not reported by URS in two oil samples collected by Pepco from each of the transformers that remained. Additionally, a soil sample was collected by Pepco prior to demolition activities in the switchyard and no PCBs were reported. URS could not confirm the location or rationale for the soil sample collected by Pepco. (URS, 1999)				
15	Generating Station Transformers	West of the Generating Station	According to the URS Phase I ESA dated December 1999, approximately 22 transformers with a total capacity of approximately 64,000 gallons were present in the vicinity of the Generating Station Building. Nineteen of these transformers were located on the exterior of the west side of the Generating Station. Pepco's 1993 SPCC-ERP indicates all large power transformers are surrounded by a concrete berm or pit capable of containing all the oil. In addition, the SPCC-ERP indicates some of the smaller service station transformers do not have containment pits or berms. No spills were reported in this area by URS (URS, 1999). All transformers were deenergized, drained to remove oil, and removed as part of the Power Plant building demolition.				
16	Print Shop	Southern portion of Building # 32	According to the URS Phase I ESA dated December 1999, the Print Shop stored small quantities (<5 gallons) of various solvents and chemicals. URS could not confirm how long the Print Shop had been in operation. URS reported that Pepco replaced hazardous products with non-hazardous substitutes as they became available. URS did not identify any floor drains in the print shop area. The facility had a silver recovery unit, which extracts silver from used developing chemicals. After the silver was extracted, the remaining non-hazardous fluids were discharged into the sanitary sewer with the approval of the POTW. Print Shop was dismantled and removed. Print Shop operations were relocated or contracted out.				

TA Area #	Name Location		Comments				
	Target Areas (continued)						
17	Storm Drain System	Across the site	Based on a review of the USEPA 2009 SI Report, all process water generated on the Site is discharged into the main storm drain that extends across the Site from the southeast corner to the northwest. This pipe discharges through the main outfall (#013) leaving the facility into a pipe that goes under Anacostia Avenue and drains into the Anacostia River. According to the USEPA SI report, there have been no NPDES violations. However, sediment sampling in the discharge location closest to the former Sludge Dewatering Area is needed to evaluate potential for discharge of contaminants to the Anacostia River. A review of the First Quarter 2012 Discharge Monitoring Reports (DMR) indicates excursions of copper, zinc and iron, and no excursions of PCBs. Pepco is implementing a Total Maximum Daily Load (TMDL) Implementation Plan approved by the USEPA to identify and reduce the sources of metals in the storm water discharges from the facility. Pepco also analyzes for PCB congeners as required by the NPDES permit, for monitoring purposes only.				
18	Kenilworth Fueling Island	Approximately 105 feet west of Building # 56	In 1996, a leaking UST case was reported in this area resulting from a leaking pressurized pipe associated with the UST. A remediation system was installed to recover free product and the case was closed by DDOE in September 1997. The tank was removed in August 2012 and DDOE issued Pepco a Permanant Tank Closure Letter on November 1, 2012.				
19*	PCE and Naphthalene in Groundwater	Southwest of former Power Plant footprint	During RI sampling, PCE was detected in groundwater in MW-01B at 110 μg/l. Naphthalene was detected above its screening level in MW-01A/B and MW-02A/B.				
20*	PAHs in Soil	Southeast parking lot	During RI sampling, PAHs were detected above screening levels at 1.5-2.5 ft bgs and 9.5-10.5 ft bgs in DP-19.				

OA Area #	Name	Location	Comments					
	Operational Areas							
1	· · · · · · · · · · · · · · · · · · ·		Timber poles appear to have been stored in these areas between approximately 1950 and 1970. No information exists on whether the timber poles were treated, and if so, where and with what chemicals.					
2	Equipment Laydown Areas	Majority of eastern half of Site	Many open areas of the Site were historically used for equipment staging and storage. These laydown areas varied in shape, location, and the materials stored there. It is suspected that many different materials related to the electric transmission and distribution were stored in these areas, including timber poles, cable reels, switchgear, circuit breakers, batteries, transformers, capacitors, and other electrical distribution system components.					
3	Vehicle Fleet Servicing Areas	Building #32, Building #75, Benning Fuel Island, Kenilworth Fuel Island	A fleet maintenance facility was historically located in Building #32, but was moved to Building #75 circa 2003. Both buildings either currently or formerly contained aboveground hydraulic lifts, lead acid batteries, motor oil, transmission fluid, antifreeze, and other materials and wastes typical to vehicle maintenance. The Benning and Kenilworth Fuel Islands are designated as Target Areas #2 and 18, respectively, and are discussed above.					
4	Coal Pile Area	Northwest corner of the Site	Coal was stored and used onsite from 1906 until the conversion to fuel oil in 1976. The coal pile was located in the northwest corner of the Site, but its size and approximate location changed over time.					
5	Fuel Oil Storage Area	East of Building #32 and south of Cooling Tower #15	These two former bulk fuel oil storage areas are designated Target Areas #3 and #13, and are discussed above.					
6	Transformer Operations Areas	north-central and	Two of these areas (the Green Tag and Red Tag Storage Areas, designated Target Areas #9 and 10, respectively) are discussed above. Former Buildings #38 and 39 to the north of Building #88 housed the onsite transformer shops from the 1950s to mid-1980s, when they were moved to Building #56 in the southeast of the Site. Associated with the transformer shops, Building #57, which houses two 10,000 gal holding tanks for waste transformer oil, is designated Target Area #12 and is discussed above.					
7	Chlorinated Solvent Storage and Usage Area	Southern portion of the former power plant building	In-person interviews revealed the use of degreasers SS25 and XL99, which are chlorinated solvents, in the southern portion of the former power plant building. Their use was discontinued in the 1980s.					

Notes:

TA - Target Areas

PPE - Probable Point of Entry

OA = Operational Area

µg/kg - micrograms per kilogram

ft bgs - feet below ground surface

µg/L - micrograms per Liter

UST - underground storage tank COPC - Contaminant of Potential Concern

LUST - leaking underground storage tank NPDES - National Pollutant Discharge Elimination System

mg/kg - milligrams per kilogram PAHs - Polycyclic aromatic hydrocarbons

TPH - Total Petroleum Hydrocarbons SI - Site Inspection

GRO - gasoline range organics USEPA - United States Environmental Protection Agency

DRO - diesel range organics DDOE - District Department of the Environment

PCBs - polychlorinated biphenyl s TSS - total suspended solids

ft - feet

mg/L - milligrams/liter

HDPE - high density polyethylene liner ASTs - Aboveground Storage Tanks

SPCC-ERP - Spill Prevention Control and Countermeasures - Emergency Response Plan

*These Target Areas added as a result of preliminary RI findings.

Table 2-1 Permits Obtained for RI/FS Field Activities Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Permit Name	Issuing Agency	Permit Number	Purpose	Date Applied	Date Received
Nationwide Permit 6	USACE	CENAB-OP- RMS 2012- 02685	River sediment sampling	8/24/2012	1/8/2013
Maryland State Programmatic General Permit 4	USACE	CENAB-OP- RMS 2012- 61826	Background sediment sampling in MD	1/4/2013	2/7/2013
Water Quality Certification	DDOE	DC-13-001	River sediment sampling	8/13/2012	1/23/2013
Tidal Wetland License	Maryland Board of Public Works	12-1506 (formerly 13- 0001EM)	River sediment sampling	1/7/2013	4/3/2013
Special Use Permit	NPS	NCR 9500-13- 001	River sediment sampling	8/22/2012	9/10/2013
*Special Use Permit	NPS	NCR NACE 5700 1415	One geotechnical boring in Anacostia Park	12/11/2012	2/5/2015
Building Permit	DCRA	B1307613	Staging area on Kingman Island	5/28/2013	6/7/2013
Soil Boring Permit	DCRA	SB1300069	Environmental and geotechnical borings	12/12/2012	1/14/2013
Soil Boring Permit	DCRA	SB1400431	Monitoring well installation	8/6/2014	9/11/2014
Miss Utility Ticket	Miss Utility	Various	Sub-surface excavation/drilling	Various	Various
DCRA Permit 1 - On-site	DCRA	SB1700024	On-site sampling	10/26/2016	11/28/2016
WMATA	WMATA	PCN# 251722	On-site sampling within WMATA easement.	11/21/2016	3/7/2017
DOEE Approval	DOEE	N/A	DOEE approval required for background sampling on NPS property	11/28/2016	12/13/2016
DCRA Permit 2 - Kenilworth Maintenance Yard	DCRA	SB1700067	Off-site sampling at Kenilworth Maintenance Yard (NPS)	12/2/2016	3/29/2017
DCRA Permit 3 - USDA	DCRA	SB1700132	Background sampling at USDA Arboretum	1/18/2017	2/1/2017
DCRA Permit 4 - Anacostia Park West	DCRA	SB1700061	Background sampling at Anacostia Park West (NPS)	12/2/2016	3/29/2017
DCRA Permit 5 - Anacostia Park East	DCRA	SB1700063	Background sampling at Anacostia Park East (NPS)	12/2/2016	3/29/2017
DCRA Permit 6 - Aquatic Gardens	DCRA	SB1700133	Background sampling at Aquatic Gardens (NPS)	12/21/2016	2/1/2017
DCRA Permit 7 - canceled	DCRA	N/A	N/A	N/A	N/A

Table 2-1 Permits Obtained for RI/FS Field Activities Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Permit Name	Issuing Agency	Permit Number	Purpose	Date Applied	Date Received
DCRA Permit 8 - Fort Chaplin Park	DCRA	SB1700059	Background sampling at Fort Chaplin Park (NPS)	12/2/2016	2/1/2017
DCRA Permit 9 - Benning Rd NE	DCRA	SB1700060	Background sampling at Fort Mahan Park (NPS)	12/2/2016	2/1/2017
DCRA Permit 10 - Ridge Rd SE	DCRA	SB1700058	Background sampling at Fort Dupont Park (NPS)	12/2/2016	2/1/2017
DDOT Permit	DDOT	PA200858	Background sampling at SE corner of Kenilworth Ave & Baker, NE	2/14/2017	4/4/2017
USDA Arboretum	USDA	FY-17-NA-010	Background sampling at USDA Arboretum	1/3/2017	1/4/2017
NPS	NPS	NCR NACE 9500 1625	Permit from NPS to cover all background sampling locations	11/14/2016	2/16/2017
USACE Approval	USACE	N/A	USACE approval following wetland delineation required by DCRA/DOEE for background sample locations on NPS properties	Wetland delineation report submitted - 3/20/17	USACE
USACE - DC	USACE	CENAB-OP- RMS 2012- 02685	Sediment sampling locations in Anacostia River within DC jurisdiction	11/3/2016	12/7/2016
DOEE FWD	DOEE	None	Scientific research permit	5/1/2017	5/2/2017
DOEE WQC	DOEE	DC-16-018	Water quality certification for USACE DC Permit	Forwarded USACE DC Permit to DOEE - 12/7/16	1 OY Waiver -
NPS - Sediment	NPS	NCR 9500-17- 001	NPS permit for sampling locations in the Anacostia River within DC jurisdiction	11/3/2016	3/16/2017
DCRA - Sediment Staging Area	DCRA	B1705170	Sediment staging area for sampling in Anacostia River	2/27/2017	2/27/2017
USACE - MD	USACE	CENAB-OP- RMS 2012- 61826	Covered three sediment sampling locations in Anacostia River within MD jurisdiction	11/3/2016	12/5/2016
MD DNR	MD DNR	SCP201734A	Scientific collection permit	5/1/2017	5/4/2017
MDE Wetlands License	MDE	17-0184	Water quality certification and wetland license	2/7/2017	6/5/2017
DCRA Permit 11 - On-site	DCRA	SB1700388	Additional on-site sampling	7/12/2017	7/14/2017
DCRA Permit 12 - Anacostia Park West	DCRA	SB1700387	Additional sampling at Anacostia Park West	7/11/2017	7/14/2017

Table 2-1 Permits Obtained for RI/FS Field Activities Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Permit Name	Issuing Agency	Permit Number	Purpose	Date Applied	Date Received
DCRA Permit 13 - Anacostia Park East	DCRA	SB1700386	Additional sampling at Anacostia Park East	7/11/2017	7/14/2017
NPS Permit Modification	NPS	NCR NACE 9500 1625	Modification of Special Use Permit to cover additional NPS properties	Request sent - 6/28/2017	8/1/2017
DCRA Permit 14 - Nature and Extent	DCRA	SB1800105	Additional nature and extent sampling	12/28/2017	1/8/2018
NPS Permit Extension	NPS	NCR NACE 9500 1625	Modification of Special Use Permit (NCR NACE 9500 1625) to cover arsenic sampling at the Kenilworth Maintenance Yard	Request sent - 4/9/18	4//0//0101

Notes:

USACE - US Army Corps of Engineers

DDOE - District Department of the Environment

NPS - National Parks Service

DCRA - Department of Consumer and Regulatory Affairs

*This permit received after conclusion of RI/FS field activities

								wasr	nington, D	C 2001	9																					
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340) Grain Size (D422)	Atterberg Limits Hydraulic Conductivity (lab)	Residue (E160.3)	HEM - Oil & Grease (E1664B) Amonia (E350.1)	PTOC (E440)	Gamma Radioassay	DOC (SM5310C) TOC (LKTOC)	Polonium-210 (PO-01-RC)	Metals (SW6020A)	Chromium (VI) (SW7199) Mercury (SW7470A)	Mercury (SW7471B)	Metals (field ARF) TPH-DRO (SW8015C)	TPH-GRO (SW8015B)	TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDS/PCDFS (SW9012B) Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
Phase I Landside Mobiliza	tion 1, Task 2: Surface	Soil Samp	oling																													
SUSDP01	SUS0100N	SO	N	0.33 - 1 ft	1323670.23	448434.09			2/4/2013									Х		X	X X)	X	XX	(Х		Х			X	
SUSDP01	SUS0100R	SO	FD	0.33 - 1 ft	1323670.23	448434.09			2/4/2013									Х		Х	Х)	X	XX	(Х		Х			X	
SUSDP02	SUS0200N	SO	N	0.33 - 0.83 ft	1323688.07	448977.16			2/4/2013									Х		X Z	X X)	X	XX	(Х		Х			X	
SUSDP03	SUS0300N	SO	N	0.5 - 1 ft	1324026.35	448120.86			2/4/2013									X		$X \mid X$	X X)	Χ	X	(Х		Х				
SUSDP04	SUS0400N	SO	N	0 - 1 ft	1324091.66	448808.97			2/4/2013									Х		$X \mid X$	X X)	X	X	(Х		Х				
SUSDP05	SUS0500N	SO	N	0 - 1 ft	1324087.93	449163.57	Forensics		2/4/2013									X		$X \mid X$	X X)	Χ	X	(X	Х		Х	Х			
SUSDP06	SUS0600N	SO	N	0 - 1 ft	1324259.23	448063.28	Forensics		2/5/2013									X		$X \mid X$	X X)	X	Χ	(X	Х		Х				
SUSDP07	SUS0700N	SO	N	0 - 1 ft	1324313.90	448780.43			2/5/2013									X		X	X X)	X	X	(Х		Х		Ш		
SUSDP08	SUS0800N	SO	N	0 - 1 ft	1324319.35	448910.93	Forensics		2/5/2013									X		X Z	X X)	X	XX	(X	Х	Ш	Х	Х	Ш`	X	
SUSDP09	SUS0900N	SO	N	0 - 1 ft	1324624.17	448048.31			2/5/2013									X		X 2	X X)	X	XX	(Х		Х			X	
SUSDP10	SUS1000N	SO	N	0.5 - 1 ft	1324662.91	448784.82	Forensics		2/5/2013									Х		X 2	X X)	X	XX	(X	Х		Х		Ш`	Χ	Ш
SUSDP11	SUS1100N	SO	N	0 - 1 ft	1324624.65	449239.72			2/5/2013									X		X 2	X X)	X	XX	(Х	Ш	Х		Ш`	X	
SUSDP12	SUS1200N	SO	N	0 - 1 ft	1324827.15	448435.68	Forensics		2/6/2013									X		X	X X)	X	Χ	(X	Х		Х		Ш		
SUSDP13	SUS1300N	SO	N	0 - 1 ft	1324899.54	449245.86			2/5/2013									X		X 2	X X)	X	Χ	(Х		Х		$\perp \perp$	丄	Ш
SUSDP14	SUS1400N	SO	N	0.17 - 1 ft	1325250.39	448089.70			2/6/2013								Ш	X		X 2	X X)	X	Χ	(Х	Ш	Х		Ш		
SUSDP15	SUS1500N	SO	N	0.17 - 1 ft	1325219.52	448484.64			2/6/2013									X		X 2	X X)	X	Χ	(Х		Х		$\perp \perp$	丄	Ш
SUSDP16	SUS1600N	SO	N	0.5 - 1 ft	1325155.21	448859.40			2/6/2013									X		X 2	X X)	X	Χ	(Х	Ш	Х		Ш		
SUSDP17	SUS1700N	SO	N	0.5 - 1 ft	1325548.72	448588.91			2/6/2013									X		X 2	X X)	X	XX	(Х		Х		<u> </u>	X	Ш
SUSDP18	SUS1800N	SO	N	0 - 1 ft	1325531.22	448976.92			2/6/2013									X		X 2	X X)	X	XX	(Х		Х		<u> </u>	X	Ш
SUSDP19	SUS1900N	SO	N	0.83 - 1 ft	1325677.11	447862.07	Forensics		2/6/2013									X		X 2	X X)	X	XX	(Х		Х	Х	 	X	Ш
SUSDP20	SUS2000N	SO	N	0.42 - 1 ft	1325651.50	448307.48	Forensics		2/7/2013									X		X 2	X X)	X	Χ	(X	Х		Х		$\perp \perp$	丄	Ш
SUSDP21	SUS2100N	SO	N	1 - 1.75 ft	1326039.45	447908.40	Forensics		2/7/2013	\perp		\perp		Ш				X		_	X X)	X	X	(X	Х	\sqcup	Х		\bot		
SUSDP23	SUS2300N	SO	N	0.5 - 1 ft	1325902.86	448372.41			2/7/2013									X		X 2	X X)	X	Χ	(Х		Х		$\bot \bot$	丄	Ш
SUSDP24	SUS2400N	SO		0 - 1 ft	1325886.22	448915.42			2/7/2013	\perp								X		X 2	X X			Χ		Х		Х	X	$\perp \perp$		Ш
				0.5 - 1 ft	1326293.73	448373.88		39.27	2/7/2013					Ш			Ш	X		X /	X X)	X	XX		Х	$oldsymbol{\perp}$	Х			X	
Phase I Landside Mobiliza																		1													—	
SD013	SDW013N			NA	1324412.90	449252.20			10/7/2013	<u> </u>		\perp			\perp			X	Х	\sqcup	X			XX		Х	$\sqcup \bot$	Х		++	—	\coprod
SD013	SDR013N			NA	1324412.90	449252.20			10/8/2013		_	\perp		\vdash	\perp	_		X		Х	X			XX			\vdash	X	X	++	—	\coprod
SDMH02	SDWMH02N			NA	1323703.60	448503.40			10/7/2013			\perp		\vdash			\vdash	X	X	\vdash	Х			XX		Х	\vdash	Х		++	—	Ш
SDPEPR1	SDWPEPR1N			NA	1324719.20	448739.70			10/7/2013		_	\perp		\vdash	\perp	_		X	Х		X			XX		Х	\vdash	X		++	—	\coprod
SDPEPR1	SDWPEPR1R		FD		1324719.20	448739.70			10/7/2013								\vdash	X	Х		X			XX		Х	\vdash	Х		++	—	Ш
SDPEPR2	SDWPEPR2N		_	NA	1325660.10	448281.30			10/7/2013		_	+		\vdash	+			X	X		X			XX		X	\vdash	X		++	—	\coprod
SDPEPR3	SDWPEPR3N	WS	_	NA	1325253.50	448267.60			10/7/2013		_	+	-	$\vdash \vdash$	+	_	$\vdash \vdash$	X	X	$\vdash \vdash$	X			XX		X	\vdash	X		++	+	\square
SDPEPR4	SDWPEPR4N	WS		NA	1325898.80	447966.50			10/7/2013	<u> </u>	_	+		\vdash	+			X	Х		X			XX		Х	\vdash	X		++	+	+
SDPEPR4	SDRPEPR4N	SE		NA	1325898.80	447966.50			10/8/2013	$\downarrow \downarrow \downarrow \downarrow$	+	+	-	$\vdash \vdash$	+	_	$\vdash \vdash$	X	-	Х	X			XX		_	\vdash	X	X	++	+	+
SDPEPR5	SDWPEPR5N	WS		NA	1325925.90	447899.30			10/7/2013	<u> </u>	_	+		$\vdash \vdash$	+		$\vdash \vdash$	X	X		X	_		XX		Х	++	X		++	+	\square
SDPEPR5	SDRPEPR5N			NA	1325925.90	447899.30			10/8/2013	\dashv	_	+	_	$\vdash \vdash$	+	_	$\vdash \vdash$	X	\perp	Х	X			XX		X	$\vdash \vdash$	X		++	+	+
SDPEPR5	SDRPEPR5R	SE	FD		1325925.90	447899.30			10/8/2013	\dashv	+	+		$\vdash \vdash$	+		$\vdash \vdash$	X	+	Х	X			XX		Х	\vdash	X	 	++	+	\square
SDR101	SDR101N	SE		NA	1323703.60	448503.40			10/8/2013	$\downarrow \downarrow \downarrow$	_	+	_	$\vdash \vdash$	+	_	$\vdash \vdash$	X		Х	X			XX		X	\vdash	X	X	++	+	+
SDW101	SDW101N	WS	N	NA	1323693.50	448741.10			10/7/2013	X								X	X		Х)	Λ .	XX	\	Х		Х		$\bot \bot$		

								wasr	ington, DC	<i>3</i> 200	119																						
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340) Grain Size (D422)	Atterberg Limits	Hydraulic Conductivity (lab)	HEM - Oil & Grease (E1664B)	Amonia (E350.1)	FIOC (E440) Field Parameters	Gamma Radioassay	TOC (LKTOC)	Polonium-210 (PO-01-RC) Metals (SW6010)	Metals (SW6020A)	Mercury (SW7470A)	Mercury (SW/4/1B) Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	OCF (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B)	NH VOCs (M8015D)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A) Total Cvanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
Phase I Landside Mobiliza	ation 1, Task 5: Geotech	nical Soil	Borin	igs																													
SB1	SB1, 5-7	SO		5-7 ft	448080.88	1324565.68			3/19/2013	Х	Х																			П			\Box
SB1	SB1, 7-9	SO		7-9 ft	448080.88	1324565.68			3/19/2013	Х							\top													\sqcap	\Box		
SB1	SB1, 15-17	SO		15-17 ft	448080.88	1324565.68			3/19/2013	Х	Х																			\Box			
SB1	SB1, 25-27	SO		25-27 ft	448080.88	1324565.68			3/19/2013		Х																			工			
SB1	SB1, 30-32	SO		30-32 ft	448080.88	1324565.68			3/19/2013		Х																			\Box			
SB1	SB1, 45-47	SO		45-47 ft	448080.88	1324565.68			3/19/2013	X	Χ	Χ				$oxed{\Box}$	$oldsymbol{\perp} oldsymbol{\perp}$			$oldsymbol{\perp}$		Ш		$oxed{oxed}$		$oxed{\Box}$				匚	┸┚	Ĺ	$\bot \bot \Box$
SB1	SB1, 65-67	SO		65-67 ft	448080.88	1324565.68			3/19/2013		Х					$oxed{oxed}$	$\bot \bot$			$\perp \perp \downarrow$										\perp	$oldsymbol{\perp}$		'
SB1	SB1, 75-77	SO		75-77 ft	448080.88	1324565.68			3/19/2013		Χ						\perp			$\perp \perp$										$oldsymbol{oldsymbol{\perp}}$	$oldsymbol{\perp}$	$\perp \perp$	'
SB1	SB1, 95-99	SO		95-99 ft	448080.88	1324565.68			3/19/2013		Χ			Ш		$\sqcup \bot$	\perp									\sqcup				\bot	$oldsymbol{\perp}$		'
SB1	SB1, 70-72	SO		70-72 ft	448080.88	1324565.68			3/19/2013		Χ			Ш		\sqcup	+			\bot						\sqcup				\dashv	$oldsymbol{\perp}$	\vdash	'
SB1	SB1, 90-92	SO		90-92 ft	448080.88	1324565.68			3/19/2013		Х						\perp						_		_	\sqcup				\vdash	\bot	\vdash	
SB2	SB2, 11-13	SO		11-13 ft	448726.57	1323663.20		16.93	3/27/2013		Х			\sqcup		$\sqcup \bot$	\perp			\perp						\sqcup				\vdash	\bot	\vdash	'
SB2	SB2, 20-22	SO		20-22 ft	448726.57	1323663.20		16.93	3/27/2013	X	Х					$\sqcup \bot$	\bot	\perp		++						\bot				\vdash	$\bot\!$	\vdash	'
SB2	SB2, 35-37	SO		35-37 ft	448726.57	1323663.20		16.93	3/27/2013		Х			\vdash		\vdash	+	\perp		+			_	\vdash		\vdash				\vdash	\bot	\vdash	
SB2	SB2, 40-42	SO		40-42 ft	448726.57	1323663.20		16.93	3/27/2013	—	Х		_	\vdash		\vdash	+	\perp		++				\vdash		\vdash				+	+	\vdash	 '
SB2	SB2, 50-52	SO		50-52 ft	448726.57	1323663.20		16.93	3/27/2013	X	Х	Х	_	\vdash		\vdash	++	\perp		++	_		+	\vdash	_	++				\vdash	+	\vdash	'
SB2	SB2, 55-57	SO	+	55-57 ft	448726.57	1323663.20		16.93	3/27/2013		X						+	+		++			+	\vdash	-	╀			+	\vdash	+	\vdash	 '
SB2	SB2, 60-62	SO	+	60-62 ft	448726.57	1323663.20		16.93	3/27/2013		X	_	_	\vdash		\vdash	++	+		++	_		+			+			+	+	+	\vdash	 '
SB2	SB2, 75-77	SO	+	75-77 ft	448726.57	1323663.20		16.93	3/27/2013	X	X	+	-	\vdash	-	\vdash	++	-	-	++	-	\vdash	+	₩	+	₩	_	\vdash	+	+	+	\vdash	 '
SB2	SB2, 80-82	SO	+	80-82 ft	448726.57	1323663.20		16.93	3/27/2013		X	-	-				+	+		++			-			+				\vdash	+	\leftarrow	 '
SB2	SB2, 85-87	SO	+	85-87 ft	448726.57	1323663.20		16.93	3/27/2013		X	V	-	\vdash	-	\vdash	++	-	_	++	-		-	\vdash	+	₩		\vdash	+	\vdash	+	\vdash	 '
SB2	SB2, 87-93	SO		87-93 ft	448726.57	1323663.20		16.93	3/27/2013		X	<u> </u>	-	\vdash	+	⊢⊢	++	-		++	-	\vdash	+	├		╁	_	\vdash	+	\vdash	+	\vdash	 '
SB3	SB3, 9-11	SO	1	9-11 ft	449239.80	1324624.88		20.01	3/14/2013	X	1	+	-	\vdash	+	\vdash	++		_	++	_		+	\vdash	-	+		\vdash	+	+	+	\vdash	 '
SB3 SB3	SB3, 15-17 SB3, 25-27	SO SO	+	15-17 ft 25-27 ft	449239.80	1324624.88 1324624.88		20.01 20.01	3/14/2013 3/14/2013	X	I ≎I	-	-	\vdash	-	\vdash	+			++	-		-	\vdash	-	╁			+	\vdash	+	\vdash	++-
SB3	SB3, 40-42	SO		40-42 ft		1324624.88		20.01	3/14/2013	+^	X	-	-	\vdash	-	\vdash	++	+		++	-	\vdash	+	╁		╁	-	\vdash	+	\vdash	+	+	+
SB3	SB3, 40-42 SB3, 50-52	SO		50-52 ft		1324624.88		20.01	3/14/2013	X		+	+	$\vdash\vdash$	+	$\vdash \vdash$	++	+	+	++	+	$\vdash \vdash$	+	$\vdash \vdash$	+	\vdash	+	$\vdash \vdash$	+	\vdash	+	\vdash	+
SB3	SB3, 60-62	SO		60-62 ft		1324624.88		20.01	3/14/2013		X	-	-		+		+			++	+		+	\vdash		+		\vdash		\vdash	+	\vdash	+++-
SB3	SB3, 65-67	SO		65-67 ft		1324624.88		20.01	3/14/2013		X	\dashv	+	\vdash	+	\vdash	++			++	+		+	\vdash	+	+	+	\vdash	+	\dashv	+	\vdash	++-
SB3	SB3, 70-72	SO		70-72 ft		1324624.88		20.01	3/14/2013	X		+	+	$\vdash\vdash$	+	$\vdash \vdash$	++	+	+	++	+	$\vdash \vdash$	+	\vdash	+	++		\vdash	+	\dashv	+	+	+
SB4	SB4, 15-17	SO		15-17 ft		1326248.97		20.01	3/26/2013		Х	\dashv	+	\vdash	+	 	++	+	+	++	+		+	 	+	+		\vdash	+	\dashv	+	+	+
SB4	SB4, 20-22	SO		20-22 ft					3/26/2013		X	+	+	\vdash		\vdash	++	+	+	++	+		+	+	+	+		\vdash		\dashv	+	+	+
SB4	SB4, 25-27	SO		25-27 ft	448370.51				3/26/2013		Х	\dashv	\top		\dashv		++	\dashv	\vdash	++	+	\vdash	\top		\dashv	+		\vdash	+	\vdash	++	+	+
SB4	SB4, 30-32	SO		30-32 ft	448370.51				3/26/2013	X		\dashv	\top	\vdash		\vdash	+	\top	\dashv	+	\top		+		\top	1 1		\vdash	\top	\dashv	+-	o	++-
SB4	SB4, 45-47	SO		45-47 ft	448370.51				3/26/2013		Х	\dashv	\top	\vdash		\vdash	+	\top	\dashv	++	\top		\top	\vdash	\top	\Box		\vdash	\top	\dashv	+	o	+
SB4	SB4, 55-57	SO		55-57 ft	448370.51				3/26/2013		Х	\neg	1		\top	一十	+	\top	\dashv	\top	\dashv	\vdash	\top	\sqcap	\neg	\Box			\top	\vdash	+	\top	+
SB4	SB4, 70-75	SO		70-75 ft					3/26/2013		Х		\top	\sqcap		\vdash	11	\top	\dashv	11	\top		\top	\sqcap	\top				\neg	\vdash	\top	\top	11
SB4	SB4, 65-67	SO		65-67 ft	448370.51				3/26/2013	X		\neg	1	\sqcap			11		\Box	\top	1		1	\sqcap		T				o	\top	\top	+
SB5	SB5, 5-7	SO		5-7 ft		1325826.24			3/20/2018		Х	\neg	\top	\sqcap		\vdash	11	\top	\dashv	11	\top		\top	\sqcap	\top	\Box			\neg	\vdash	\top	\top	11
SB5	SB5, 9-11	SO		9-11 ft		1325826.24			3/20/2018		Х						\top			11										o	\top		
SB5	SB5, 13-15	SO		13-15 ft		1325826.24			3/20/2018		Х	\neg		\sqcap		\sqcap	\top	\sqcap		\top	\top		\top		\top	\Box				o	\top	\vdash	11
	· · · · · · · · · · · · · · · · · · ·	-																							_		-			—			-

Page 2 of 46

								Wash	nington, D	C 200	19																					
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340) Grain Size (D422)	Atterberg Limits	Hydraulic Conductivity (lab) Total Residue (E160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1) PTOC (E440)	Field Parameters	Gamma Radioassay DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Metals (SW6020A) Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	OCP (SW8081B LL)	Aroclor PCBs (SW8082A)	VOCs (SW8260B)	VOCs (SW8260C) NH VOCs (M8015D)	CSIA (VOCs) (PAE-CSIA-004) SVOCs (SW8270D LL)	SVOCS (SW8270DM SIM)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A) Total Cvanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SB5	SB5, 15-17	SO		15-17 ft	448337.53	1325826.24			3/20/2018	X	Х																			oxdot	$oxed{oxed}$	
SB5	SB5, 35-37	SO		35-37 ft	448337.53				3/20/2018		Х																					
SB5	SB5, 40-42	SO		40-42 ft	448337.53				3/20/2018		Х		Ш				$\perp \perp$												$\perp \perp$	Ш		
SB5	SB5, 55-60	SO		55-60 ft	448337.53	1325826.24			3/20/2018		Х																			Ш		
	tion 2, Task 1: DPT Sub		nvesti			· · · · · · · · · · · · · · · · · · ·													1			1	1			1 1						
DP26	DPS2604N	SO	N	3.5 - 4.5 ft	1324598.97	448836.13		22.36	3/28/2013	$\sqcup \sqcup$	_	_	\sqcup	-	++	_	+	++	X	X		X	X	4	Х	X	\dashv	X		+		+
DP26	DPS2614N	SO	N	13.5 - 14.5 ft	1324598.97	448836.13		22.36	3/29/2013	$\vdash \vdash \vdash$	\dashv	+	\vdash	_	++	+	+	_	X	X	_	X	X	+	Х	X	+	X		+	<u> </u>	+
DP26	DPS2630N	SO	N	29.5 - 30.5 ft	1324598.97	448836.13		22.36	3/29/2013		_	_	\vdash	_	++	4	++		X	X		X	X	4	X	X	\bot	X		$+\!\!-\!\!\!+$	_	+++
DP27	DPS2707N	SO	N	6.5 - 7.5 ft	1324421.53	448861.73		22.08	3/26/2013		_	-	+	_	++	-	++		X	X	_	X	X	_	X	X	-	X		+	_	+
DP27	DPS2722N	SO		21.5 - 22.5 ft	1324421.53	448861.73		22.08	3/26/2013	-	-	-	++	_	+	-	++	_	X	X	$\overline{}$	X	X	-	Х	 X 	-	X		+	_	+
DP27	DPS2758N	SO	_	57.5 - 58.5 ft	1324421.53	448861.73		22.08	3/26/2013	-H		-	+		+	+	++	_	X	X	_	X	X	_	X	X	-	X		+	_	+
DP28 DP28	DPS2808N DPS2821N	SO SO		7.5 - 8.5 ft	1324197.54	448631.68		22.73 22.73	4/2/2013 4/2/2013			-	+	_	++	-	++		X	l X		 	X	+	<u> </u>	1	+	X		+		+++
DP28	DPS2821N DPS2832N			20.5 - 21.5 ft 31 - 33 ft	1324197.54 1324197.54	448631.68 448631.68		22.73	4/2/2013		-		+		+		+		X X	X	_	 	X	_	<u> </u>	1		X	_	+	+	+++
DP29	DPS2910N	SO	_	9 - 11 ft	1324524.98	448585.61		23.21	4/2/2013	-H			+		+	+	++		$\frac{\hat{x}}{x}$	H x		X	+ 💝 🕂	-	$\stackrel{\wedge}{\vee}$	TX	+	$\frac{1}{x}$		+	_	+++
DP29	DPS2930N	SO		29 - 31 ft	1324524.98	448585.61		23.21	4/2/2013	-H	-	-	+	_	+	+	+ +	-	<u>x</u>	H x	_	${\mathbf{v}}$	Ŷ	+	^ Y	1	+	$\frac{1}{x}$		++	+	+++
DP29	DPS2950N	SO		49 - 51 ft	1324524.98	448585.61		23.21	4/2/2013		-	+	+		+		++-	_	X	X		X	 	+	X	TX		$\frac{1}{x}$		+	+	+++
DP30	DPS3050N	SO		49 - 51 ft	1324149.06	448220.02		23.62	4/3/2013			-	+		+	+			X	H X		$\frac{\wedge}{x}$	T X		X	$\frac{1}{x}$		X		+	+	+++
DP30	DPS3028N	SO		27 - 29 ft	1324149.06	448220.02		23.62	4/3/2013		\dashv	+	+	-	++	+	+		X	X		X	TX X	+	X	T X	+	X		+	+	+++
DP31	DPS3120N	SO		19.5 - 20.5 ft	1324152.00	448274.18		23.73	4/1/2013	-H	-	+	+	-	++	+	++	_	$\frac{\lambda}{X}$	X	_	$\frac{\lambda}{x}$	X	+	X	$\frac{1}{x}$	+	X		+	+	+
DP31	DPS3142N	SO		41.5 - 42.5 ft	1324152.00	448274.18		23.73	4/1/2013		-	+	+		+	+	+ +	_	X	X	_	X	X	+	X	X	+	X		+	+	+
DP32	DPS3210N	SO		9.5 - 10.5 ft	1325446.88	448520.64		29.19	4/1/2013		-	+	+		1	+	++		$\frac{x}{x}$	X	_	$\frac{\lambda}{X}$	X	+	X	X	\blacksquare	X		+	\top	+
DP32	DPS3210R	so	_	9.5 - 10.5 ft	1325446.88	448520.64		29.19	4/1/2013			+	T		\dagger	+			X	l x	_	$\frac{x}{x}$	X	+	X	X	\dashv	X		+	+	+
DP32	DPS3230N	SO	N	29.5 - 30.5 ft	1325446.88	448520.64		29.19	4/1/2013				T				1 1	T	X	X		X	X		X	X	\top	X		+	\top	+
DP32	DPS3243N	SO	N	42.5 - 43.5 ft	1325446.88	448520.64		29.19	4/1/2013				\Box		1 1		+	T	Х	X		Х	X		Х	X		X		\top		+
DP33	DPS3315N			14 - 16 ft	1325826.24			36.42	4/4/2013										Х	X		Х	Х		Х	Х		X		\top		+
DP33	DPS3335N	SO	N	34 - 36 ft	1325826.24	448337.53		36.42	4/4/2013										Х	Х		Х	Х		Х	Х		Х		11		\top
DP34	DPS3405N	SO	N	4.5 - 5.5 ft	1326248.97	448370.51		39.43	3/13/2013										Х	Х		Х	Х		Х	Х		Х		\Box		$\Box\Box$
DP34	DPS3418N	SO	N	17.5 - 18.5 ft	1326248.97			39.43	3/29/2013										Х	Х		Х	Х		Х	Х		Х		\Box		$\Box\Box$
DP34	DPS3445N	SO	Ν	44.5 - 45.5 ft	1326248.97	448370.51		39.43	3/29/2013										Х	Х		Х	Х		Х	Х		Х				
DP34	DPS3460N	SO	N	59.5 - 60.5 ft	1326248.97	448370.51		39.43	3/29/2013										Х	Х		Х	Х		Х	Х		Х				
DP35	DPS3515N	SO		14.5 - 15.5 ft	1326034.61	447902.07		33.45	3/28/2013										Х	Х		Х	Х		Х	Х		Х				
DP35	DPS3534N	SO	N	33.5 - 34.5 ft	1326034.61	447902.07		33.45	3/28/2013										Х	Х		Х	Х		Х	Х		Х				
DP36	DPS3605N	SO	N	4.5 - 5.5 ft	1323668.75			17.62	5/17/2013													Х	Х		Χ			Χ				
DP36	DPS3610N			9.5 - 10.5 ft	1323668.75			17.62	5/20/2013	$\sqcup \sqcup$			Ш			\perp	$\bot \bot$	$oldsymbol{oldsymbol{\sqcup}}$				Х	$\perp \perp$		Х	$\perp \perp$		Х		$\perp \! \! \perp \! \! \perp$	\perp	$oldsymbol{oldsymbol{\sqcup}}$
DP36	DPS3615N			14.5 - 15.5 ft	1323668.75			17.62	5/20/2013	igsqcut			\sqcup	_	$\perp \perp$			\sqcup			X	Х	X	┷	Х	$\perp \perp$	Щ	Х	\Box	$\perp \! \! \perp$		$\perp \perp \downarrow \perp$
DP36	DPS3610N2	SO		9.5 - 10.5 ft	1323668.75			17.62	6/13/2013	$\sqcup \sqcup$			\sqcup	_	+	\bot	$\bot \bot$	$\sqcup \bot$		$\sqcup \!\!\! \perp$			X	\bot		X	\perp	\perp	$\bot \bot$	$\bot\!\!\!\!\bot$		+
DP38	DPS3805N			4.5 - 5.5 ft	1324339.39			23.11	5/16/2013	$\sqcup \sqcup$			\sqcup		+ +	\bot	+	igspace	Х	X	(X		X		Х	+ +	\perp	X		$\bot\!\!\!\!\bot$		+
DP38	DPS3810N			9.5 - 10.5 ft	1324339.39			23.11	5/22/2013	$\sqcup\sqcup$			\sqcup		+		+	$oldsymbol{oldsymbol{\sqcup}}$		igspace		Х	X	_	Х	$\bot \bot$	$\perp \!\!\! \perp \!\!\! \perp$	Х		\bot		+
DP38	DPS3815N			14 - 15 ft	1324339.39			23.11	5/22/2013	$\sqcup \sqcup$	_		\sqcup		+	\bot	++	igspace				Х	X	_	Х	+	\perp	Х		\bot	\bot	+
DP40	DPS4003N			2.5 - 3.5 ft	1324326.37			23.26	5/20/2013	$\sqcup\sqcup$			\sqcup		+		\bot	++	Х	$\perp \perp^{\times}$	(X		X		Х	\bot	$\perp \!\!\! \perp \!\!\! \perp$	X		\bot	<u></u>	+
DP40	DPS4010N	SO	N	9.5 - 10.5 ft	1324326.37	449009.85		23.26	5/28/2013								$\perp \perp$				Х	Х	Х		Х			Х		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		

								wasr	nington, D	C 20	1019																						
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation		ard is	Atterberg Limits	Hydraulic Conductivity (lab) Total Residue (E160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1)	Field Parameters	Gamma Radioassay	TOC (LKTOC)	Polonium-210 (PO-01-RC) Metals (SW6010)	Metals (SW6020A)	Mercury (SW7470A)	Mercury (SW7471B) Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C) TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Free Cyanide (SW9014) Sulfide (SW9034)
DP40	DPS4015N	SO	N	14.5 - 15.5 ft	1324326.37	449009.85		23.26	5/28/2013												Х	Х		Х	\overline{Tx}				Х		\top	T	\Box
DP40	DPS4010N2	SO	N	9.5 - 10.5 ft	1324326.37	449009.85		23.26	6/10/2013																		Х				\top		7 1
DP42	DPS4205N	SO	N	4.5 - 5.5 ft	1324349.24	449248.87		19.59	5/21/2013								11				X	Х		Х	X		Х		Х		\top		7 1
DP42	DPS4210N	SO		9.5 - 10.5 ft	1324349.24	449248.87		19.59	5/29/2013			Х							Х		ХХ	Х		Х	X				Х		\top		7 1
DP42	DPS4215N	SO	N	14.5 - 15.5 ft	1324349.24	449248.87		19.59	5/29/2013			Х							Х		X X	Х		Х	X				Х		\top		
DP45	DPS4503N	SO		2.5 - 3.5 ft	1325409.08	449077.83		25.78	5/23/2013												X	Х		Х	☐ ×		Х				\top	T	11
DP45	DPS4510N	SO		9.5 - 10.5 ft	1325409.08	449077.83		25.78	6/4/2013			X			\top	\top	\top			1 1	X	X	1	X	T X		Х		1		+	\top	++
DP45	DPS4515N	SO	_	14.5 - 15.5 ft	1325409.08	449077.83		25.78	6/4/2013	\neg	$\neg \vdash \neg$	X			\top		\top	\top		11	X	Х	1	x 📗	T X		Х		1		+	\top	++
DP46	DPS4605N	SO		4.5 - 5.5 ft	1325936.20	447842.90			5/22/2013								11			11	_	X		Х	☐ ×						+	\top	+
DP46	DPS4610N	SO		9.5 - 10.5 ft	1325936.20	447842.90			6/5/2013								1 1				Х	X		Х	☐ ×		Х				+	\top	11
DP46	DPS4615N	SO		14.5 - 15.5 ft	1325936.20	447842.90			6/5/2013								1 1				X	X		Х	\Box						+	\vdash	+
DP47	DPS4702N	SO	N	1.5 - 2.5 ft	1325809.57	448157.16		31.90	5/28/2013						\top		11		Х	1	$X \mid X$	X		X	\Box \times						+	\top	+
DP47	DPS4710N	SO	N	9.5 - 10.5 ft	1325809.57	448157.16		31.90	6/5/2013								1 1				X	X		х	Π×		Х				+	-	11
DP47	DPS4715N	SO		14 - 15 ft	1325809.57	448157.16		31.90	6/5/2013								1 1				X	X		х	\Box		Х				+	\vdash	+
SB3	SBS0303N	SO		2.5 - 3.5 ft	1324624.88	449239.80		20.01	3/13/2013								+ +					X		х	\vdash				X		オ┤┤	\vdash	+
SUSDP01	DPS0103N	SO		2.5 - 3.5 ft	1323670.23	448434.09			5/20/2013				T				11			1 1	X	X		Х	ХХ						+	X	
SUSDP01	DPS0110N	SO	N	9.5 - 10.5 ft	1323670.23	448434.09			5/20/2013						\top		+		Х	1	$X \mid X$	X		X	\Box \times						+	\top	+
SUSDP01	DPS0115N	SO	N	14 - 15 ft	1323670.23	448434.09			5/20/2013				T				11			1 1	X	X		Х	l x						+	\neg	
SUSDP01	DPS0110N2	SO		9.5 - 10.5 ft	1323670.23	448434.09			6/13/2013				T				111					\Box				1	Х				+	$\neg \top$	11
SUSDP02	DPS0205N	so		4.5 - 5.5 ft	1323688.07	448977.16			5/14/2013								11		Х	11	Х	X		Х	ХХ						+	Х	+
SUSDP02	DPS0210N	SO	_	9.5 - 10.5 ft	1323688.07	448977.16			5/20/2013								1 1					Х			X	_					+	\top	11
SUSDP02	DPS0215N	SO		14.5 - 15.5 ft	1323688.07	448977.16			5/20/2013								11					X			l x	_					+	\top	+
SUSDP02	DPS0210N2	SO	_	9.5 - 10.5 ft	1323688.07	448977.16			6/13/2013						\top		11			1		T		Х	\vdash	1	Х				+	\top	+
SUSDP02	DPS0215N2	SO		14.5 - 15.5 ft	1323688.07	448977.16			6/13/2013								1 1					1 1		-	\vdash						+	-	11
SUSDP03	DPS0305N	SO		4.5 - 5.5 ft	1324026.35	448120.86			5/14/2013								1 1					X	_	Х	\Box \times						+	\vdash	+
SUSDP03	DPS0310N	SO		9.5 - 10.5 ft					5/21/2013								+ +				X	Х		X	X						+	\vdash	+
SUSDP03	DPS0310R			9.5 - 10.5 ft	1324026.35	448120.86			5/21/2013								1 1					Х		Х	X	_					+	\top	11
SUSDP03	DPS0315N	SO	_	14.5 - 15.5 ft	1324026.35	448120.86			5/21/2013								1 1				X	X		Х	l x	_					+	\top	+
SUSDP03	DPS0310N2	SO		9.5 - 10.5 ft	1324026.35	448120.86			6/11/2013								1 1								\sqcap		Х				+	\top	
SUSDP04	DPS0403N	SO		2.5 - 3.5 ft	1324091.66		Forensics		5/15/2013								$\dagger \dagger$	\top	Х		Х	Х		х	Х		Х		Х	\	\forall	一	++
SUSDP04	DPS0410N	SO		9.5 - 10.5 ft	1324091.66	448808.97			5/20/2013	\neg			\top		\top		++	\top		11		X		X	X	_			X		+	\top	++
SUSDP04	DPS0415N	SO		14.5 - 15.5 ft	1324091.66	448808.97			5/20/2013				T				11			1 1	_	X		Х	l x				Х		+	\neg	
SUSDP05	DPS0505N	SO		4.5 - 5.5 ft	1324087.93	449163.57			5/15/2013								+		Х		XX	X		Х	ΙX						+	\top	+
SUSDP05	DPS0510N	so		9.5 - 10.5 ft	1324087.93	449163.57			5/21/2013				\top		\top		++		\vdash	1 1		Х	_	X	X	_			1		+	\top	++
SUSDP05	DPS0515N	SO	_	14.5 - 15.5 ft	1324087.93		Forensics		5/21/2013				\top		\top		++		\vdash			X		х		X			1		+	\top	++
SUSDP05	DPS0505N2	SO		4.5 - 5.5 ft	1324087.93	449163.57			6/12/2013				П		\top		+			11		+			\vdash	\top	Х				+	\vdash	++
SUSDP06	DPS0605N	SO		4.5 - 5.5 ft	1324259.23	448063.28			5/15/2013						\top		+		Х		ХХ	X		х	T X				Х		+	-	++
SUSDP06	DPS0610N	SO		9.5 - 10.5 ft	1324259.23	448063.28			5/22/2013						\top		+	1		\top		Х		х	X				X		+	一	++
SUSDP06	DPS0615N	SO		14.5 - 15.5 ft	1324259.23	448063.28			5/22/2013	一					\top		+			1		X		х	Х				X		+	\top	++
SUSDP07	DPS0705N	SO		4.5 - 5.5 ft	1324313.90	448780.43			5/15/2013						\top		+	\top	Х	1 1		X		х	X	_			X		+	T	++
SUSDP07	DPS0710N	SO		9.5 - 10.5 ft	1324313.90	448780.43			5/22/2013	\neg	$\neg \vdash \neg$		П		\top		\top	\top	Х	11		Х		x 📗	T X				Х		+	\top	++
SUSDP07	DPS0715N	SO		14.5 - 15.5 ft	1324313.90				5/22/2013	\neg	\Box		\top				\top	\top	Х		ХХ		_	Х					X	\sqcap	\top	$\neg \top$	+
-	•	•					•	•																									

								wasi	nington, D	C 2	0019																							
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation		ard	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	l otal Residue (E160.3) HEM - Oil & Grease (E1664B)	Amonia (E350.1)	PIOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C) TOC (LKTOC)	Polonium-210 (PO-01-RC)	Metals (SW6010) Metals (SW6020A)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Free Cyanide (SW9012B) Sulfide (SW9034)
SUSDP07	DPS0715N2	SO	N	14.5 - 15.5 ft	1324313.90	448780.43			6/12/2013																		\Box	X	\Box		. 🗍	TT	П	\Box
	DPS0803N	SO		2.5 - 3.5 ft	1324319.35	448910.93			5/15/2013										Х		Х		Х	Х	7	ΚX				Х		\top	Х	11
	DPS0810N	SO	N	9.5 - 10.5 ft	1324319.35	448910.93			5/23/2013										Х		Х	Х	Х	X		Х	\Box			Х		\top	\sqcap	\top
	DPS0815N	SO	N	14.5 - 15.5 ft	1324319.35	448910.93			5/23/2013										Х		Х	Х	Х	Х		Х				Х		\top	\sqcap	7 1
	DPS0905N	SO	N	4.5 - 5.5 ft	1324624.17	448048.31			5/17/2013													Х	Х	Х	7	ΚX						\top	X	
	DPS0910N	SO	N	9.5 - 10.5 ft	1324624.17	448048.31			6/11/2013										Х		Х	Х	Х	X		Х	\sqcap					\Box	\sqcap	
	DPS0915N	SO		14.5 - 15.5 ft	1324624.17	448048.31			6/11/2013		\neg		\top		\top	\sqcap	\top	1 1		1 1	\dashv	Х	х	X	\top	Х	一方	x d	\top	1 1	\top	\top	\sqcap	11
	DPS1005N	SO		4.5 - 5.5 ft	1324662.91	448784.82			5/15/2013		\neg		\top		\top	\sqcap	\top	1 1		1 1	\dashv	\Box	х	X		(X	\sqcap	\top	\top	1 1	\Box	\top	Х	11
	DPS1010N	SO		9.5 - 10.5 ft	1324662.91	448784.82			6/10/2013	\Box								T		\top		X	Х	X	\top	X	一			\Box		+	\sqcap	++
	DPS1015N	SO		14.5 - 15.5 ft	1324662.91	448784.82			6/10/2013									1 1		1		X	Х	X	\top	X	一	x l				+	\sqcap	++
	DPS1105N	SO		4.5 - 5.5 ft	1324624.65	449239.72			5/14/2013										Х		X		Х	X	\pm	ΧX	一十		一		\Box	+	xt	++
	DPS1110N	SO	_	9.5 - 10.5 ft	1324624.65	449239.72			5/28/2013									1 1	X		X	X	х	l x l	\top	X	一七	x H	\neg		\top	+	\sqcap	++
	DPS1115N	SO		14.5 - 15.5 ft	1324624.65	449239.72			5/28/2013													X	X	X	\top	X	广		-		\top	+	\sqcap	++
	DPS1205N	SO		4.5 - 5.5 ft	1324827.15	448435.68			6/13/2013	\Box		\vdash	+	t	_	t		T		+	+	X	X	X	+	X	o	+	-	1 X	X	+	\sqcap	++
	DPS1210N	SO	_	9.5 - 10.5 ft	1324827.15	448435.68			6/13/2013										X		X	X	Х	l x l	\top	X	一十		-	X	\top	+	\sqcap	++
	DPS1215N	SO	N	14.5 - 15.5 ft	1324827.15	448435.68			6/13/2013							t		1 1		1 1		X	х	X	\top	X	\Box	x l	\Box	X		+	一十	++
	DPS1305N	SO	N	4.5 - 5.5 ft	1324899.54	449245.86			5/20/2013									1 1	X		X	ΙXΙ	Х	1 x l	\top	X	一		\Box	1 1		+	\sqcap	++
	DPS1310N	SO		9.5 - 10.5 ft	1324899.54	449245.86			5/29/2013				x 🗆			Ħ		1 1	Х		X	Х	Х	X		Х		x l		1 1		+	\sqcap	\top
	DPS1315N	SO		14.5 - 15.5 ft	1324899.54	449245.86			5/29/2013				x 🗆			Ħ		1 1		1 1		Х	_	X		Х	一					+	\sqcap	\top
	DPS1310N 060713	SO	_	9.5 - 10.5 ft	1324899.54	449245.86			6/7/2013	\Box								T		1		X	1	1 1	\top		一			\Box		+	\sqcap	++
	DPS1403N	SO		2.5 - 3.5 ft	1325250.39	448089.70			5/22/2013									1 1		1		Х	Х	Х	\top	X	一					+	\sqcap	++
	DPS1410N	SO		9.5 - 10.5 ft	1325250.39	448089.70			6/6/2013											\top		_	Х	X	\top	Х		x l	\top	\Box		+	\sqcap	++
	DPS1415N	SO	_	14.5 - 15.5 ft	1325250.39	448089.70			6/6/2013	\Box								1 1		1		T	Х	X	\top	X	一	\dashv	\Box	1 1		+	\sqcap	++
	DPS1504N	SO		3.5 - 4.5 ft	1325219.52	448484.64			5/21/2013							t		1 1		1 1		_	х	X	\top	X	\Box	x l	\Box	1 1		+	一十	++
	DPS1510N	SO		9.5 - 10.5 ft	1325219.52	448484.64	Forensics		6/6/2013														х	X	\top	X	ХХ	x l	一		\Box	+	\sqcap	++
	DPS1515N			14.5 - 15.5 ft					6/10/2013													Х	X	X	\top	X			-		\top	+	\sqcap	++
	DPS1605N			4.5 - 5.5 ft	1325155.21	448859.40			5/15/2013							t		1 1	X		X	Х		X	\top	X	一十		\Box	1 1		+	一十	++
	DPS1610N	SO		9.5 - 10.5 ft	1325155.21	448859.40			6/10/2013	\Box										\top		X		X	\top	X	一		\top	\Box	\Box	+	一十	++
	DPS1615N	SO		14.5 - 15.5 ft	1325155.21	448859.40			6/10/2013									1 1		1		Х		Х	\top	Х	一	x l				+	\sqcap	++
	DPS1615R	SO		14.5 - 15.5 ft	1325155.21	448859.40			6/10/2013	H	\dashv	H	\top		\top	T	\dashv			\dagger	1	_	X	X	十	Х	_	X	一		\top	+	一十	++
	DPS1705N	SO		4.5 - 5.5 ft	1325548.72	448588.91			5/23/2013	\Box								1 1		1 1		Х		X	1	ХX	一	\dashv	\Box	1 1		+	xt	++
	DPS1710N	SO		9.5 - 10.5 ft	1325548.72	448588.91			6/11/2013							t		1 1		1 1		Х		X	\top	X	\Box	x l	\Box	1 1		+	一十	++
	DPS1715N	SO		14 - 15 ft	1325548.72	448588.91			6/11/2013													Х	_	X	\top	X	一十		一		\Box	+	\sqcap	++
	DPS1803N			2.5 - 3.5 ft	1325531.22	448976.92			5/23/2013	\vdash	\dashv	\vdash	\top	1 1	\top	\vdash	\top	† †	X	1 1	X	X	_	X	+ :	ΧX	\Box	x 🔠	\top	+	\top	+	X	++
	DPS1810N	SO		9.5 - 10.5 ft	1325531.22	448976.92			6/4/2013	\sqcap			Х			\sqcap	\top	+	<u> </u>	T	一 <u>一</u>	X	_	Х	十	Х	一十	\dashv	\top	\top	\top	+	一十	++
	DPS1818N	SO		17.5 - 18.5 ft	1325531.22	448976.92			6/4/2013	\vdash			х			\vdash		1 1		\Box		X	х	X	+	Х	一十:	x H	\top	+	\top	+	\sqcap	++
	DPS1902N	SO		1.5 - 2.5 ft	1325677.11	447862.07			5/23/2013	\vdash	\top					\vdash	\top	1 1	Х	\dagger	X	X	х	X	+ ;	ΧX	一片	x H	+	Х	\top	+	X	++
	DPS1902R			1.5 - 2.5 ft	1325677.11	447862.07			5/23/2013	\Box	\dashv		\top	TT	1	$\dagger \dagger$	\top	1 1	Х	T	X	_	Х	X		ΧX	一方	x H	\top	Х	\top	17	Х	++
	DPS1910N	SO	_	9.5 - 10.5 ft	1325677.11		Forensics		6/5/2013						\dashv	\vdash		1 1	Х			Х	х	X	+	Х	\sqcap		\top	Х	X	1	\sqcap	++
	DPS1915N	SO		14.5 - 15.5 ft	1325677.11	447862.07			6/5/2013		\dashv		\top	+	\top	\vdash	\top	1 1	- ``	1 1	 	X		X	+	Х	\sqcap	\top	+	X	+	+	\sqcap	++
	DPS1915R	SO		14.5 - 15.5 ft	1325677.11	447862.07			6/5/2013	\sqcap		\sqcap				\sqcap	\top	+		T		_	X	Х	\top	Х	\sqcap	\dashv	\top	X	\top	+	一十	++
	DPS2005N	SO		4.5 - 5.5 ft	1325651.50				5/30/2013				х		\dashv	\vdash		1 1		1 1	\neg	Х		X	+	Х	\Box	x H	+	+	\top	+	\sqcap	++
	!																															-		

								wasr	nington, D	C 2	0019																							
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation		ardr	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	Total Residue (E160.3) HEM - Oil & Grease (E1664B)	(0.1)	PTOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C)	Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Free Cyanide (SW9014) Sulfide (SW9034)
SUSDP20	DPS2010N	SO	N	9.5 - 10.5 ft	1325651.50	448307.48			6/12/2013							ī						Х	Х	Х		X	Ī		ΠT			Ħ	丁	\top
SUSDP20	DPS2018N	SO	Ν	17.5 - 18.5 ft	1325651.50	448307.48			6/12/2013													Х	Х	Х		Х						\Box		
SUSDP22	DPS2203N	SO		2.5 - 3.5 ft	1326045.35	448181.51			5/22/2013							1 1						Х	Х	X		Х			\sqcap			\Box	\top	+
SUSDP22	DPS2210N	SO	N	9.5 - 10.5 ft	1326045.35	448181.51			6/12/2013													Х	Х	Х		X)	X						\top
SUSDP22	DPS2215N	SO	Ν	14.5 - 15.5 ft	1326045.35	448181.51			6/12/2013													Х	Х	Х		X								
SUSDP22	SUS2200N	SO	N	0.5 - 1 ft	1326045.35	448181.51	Forensics		6/13/2013													Х	Х	Х		X)	X	П	Х	Х	\Box		$\top \Box$
SUSDP23	DPS2305N	SO	N	4.5 - 5.5 ft	1325902.86	448372.41			5/28/2013													Х	Х	Х		Х								
SUSDP23	DPS2310N	SO	Ν	9.5 - 10.5 ft	1325902.86	448372.41			6/12/2013													Х	Х	Х		Х)	X						
SUSDP23	DPS2315N	SO	N	14.5 - 15.5 ft	1325902.86	448372.41			6/12/2013													Х	Х	Х		Х								
SUSDP24	DPS2405N	SO	N	4.5 - 5.5 ft	1325886.22	448915.42			5/20/2013													Х	Х	Х	>	(X)	X		Х			X	
SUSDP24	DPS2405R	SO	FD	4.5 - 5.5 ft	1325886.22	448915.42			5/20/2013														Х	Х	>	(X)	X	Ш	Х			X	
SUSDP24	DPS2410N	SO		9.5 - 10.5 ft	1325886.22	448915.42			6/4/2013)	Х)	(X	X	Х	Х		Х			Щ	Х		Ш		
SUSDP24	DPS2415N	SO		14.5 - 15.5 ft	1325886.22	448915.42			6/4/2013)	Х									Х	Х	Х		X			Щ	Х		Ш		
SUSDP24	DPS2410R	SO		9.5 - 10.5 ft	1325886.22	448915.42			6/4/2013)	Х)	(Χ		Х	Х		X			Щ	Х		Ш	丄	$\perp \perp \perp$
SUSDP37	DPS3703N	SO	N	2.5 - 3.5 ft	1324207.01	448553.63			5/16/2013)	(Χ	X	Х	X		X			Щ	Х		ш		
SUSDP37	DPS3710N	SO	N	9.5 - 10.5 ft	1324207.01	448553.63			5/23/2013													Х	Х	Х		X			Щ	Х		Ш	丄	$\perp \perp \perp$
SUSDP37	DPS3715N	SO	N	14.5 - 15.5 ft	1324207.01	448553.63			5/23/2013					\sqcup		\perp						X	Х	X		X			\vdash	Х		\bot	\bot	\perp
SUSDP37	DPS3710N2	SO		9.5 - 10.5 ft	1324207.01	448553.63			6/10/2013					\perp		\perp	_					1		1				X	\vdash			\bot	_	
SUSDP39	DPS3903N	SO		2.5 - 3.5 ft	1324489.85	448470.19			5/17/2013					\bot		\bot							Х	X		X	/	X	\vdash	Х	X	$\bot \bot$	_	\perp
SUSDP39	DPS3910N	SO		9.5 - 10.5 ft	1324489.85	448470.19			5/22/2013					\bot					<u> </u>		X	-		X		X			\vdash	Х		\bot	_	+
SUSDP39	DPS3915N	SO		14.5 - 15.5 ft	1324489.85	448470.19			5/22/2013					\perp		\perp						_	Х	X		X			\vdash	X		\bot	_	
SUSDP41	DPS4103N	SO	_	2.5 - 3.5 ft	1324243.54	448900.74	Forensics		5/22/2013					+		\bot	_		1	(X	_	_	X		X			\vdash	X	X	++	+	+
SUSDP41	DPS41 10N	SO	N	9.5 - 10.5 ft	1324243.54	448900.74			5/24/2013		_	\vdash	_	+	_	+	_	_	1	(X		X	X	-	$\frac{1}{1}$	_	_	\vdash	X		+	+	+
SUSDP41	DPS41 15N	SO	N	14.5 - 15.5 ft	1324243.54	448900.74			5/24/2013				_	+	_	+	_		- /		X	·	Х	X	_	$+^{\times}$	_		\vdash	X		+	+	+
SUSDP41	DPS4110N	SO		9.5 - 10.5 ft	1324243.54	448900.74			6/3/2013		_	\vdash	_	+	_	+	_					X	_	+	-	\dashv	_		\vdash	_		+	+	+++
SUSDP41	DPS4115N	SO		14.5 - 15.5 ft					6/3/2013					+		+	_	_	Н,	,			V	 		+			\vdash			++	+	+++
SUSDP43	DPS4304N			3.5 - 4.5 ft	1324763.02				5/17/2013				_	+		+	_)	_		X		X		X	٠,	_	\vdash			++	+	+++
SUSDP43	DPS4310N			9.5 - 10.5 ft	1324763.02	448548.99			6/7/2013	\vdash	-	\vdash	-	++		+		-)			X		X	-	X	- 1	X	\vdash	+		++	+	+++
SUSDP43 SUSDP44	DPS4315N	SO SO		14.5 - 15.5 ft 2.5 - 3.5 ft	1324763.02	448548.99	Forensics		6/7/2013	\vdash		$\vdash \vdash$	+	++	+	++	-+	+	Н,	+	\vdash	X	X	X	+	X	\		\vdash	-		++	+	++
SUSDP44	DPS4403N DPS4410N	SO		2.5 - 3.5 It 9.5 - 10.5 ft	1324717.06 1324717.06				5/21/2013 6/10/2013	\vdash		\vdash	+	++	+	+	-+	+	++'	\vdash	 '		X	X	-	 ^	^	^	$\vdash\vdash$			++	+	+++
SUSDP44	DPS4415N	SO		14.5 - 15.5 ft	1324717.06				6/10/2013	\vdash		\vdash	_	++		+				-			<u>х</u>	^		 	-	-	\vdash			++	+	+++
Phase I Landside Mobiliza						440071.00	<u> </u>		0/10/2013													1^	^	1^1		1^1			Щ.			щ	<u> </u>	
DP26	DPW26(25-30)N	WG		25 - 30 ft	1324598.97	448836.13	1	22.36	3/29/2013	П		П	1	П		1 1	Т				Х	1	Х	X		I X I		χI	Г	Ιχ		T	$\overline{}$	+
DP27	DPW27(48-58)N	WG		48 - 58 ft	1324421.53	448861.73		22.08	3/26/2013	\vdash	+	\vdash	+	++	+	+	+	+)		X	+	X	X	+	X	+	<u>^ </u>	\vdash	X		++	+	+++
DP28	DPW2821N	WG		20 - 22 ft	1324197.54	448631.68		22.73	4/2/2013	\vdash	\dashv	\vdash	+	++	+	+	+	+	H ;		X	+	$\frac{\wedge}{X}$	X	\dashv	$\frac{1}{x}$	+	X	\vdash	X		++	+	+++
DP28	DPW2821R	WG		20 - 22 ft	1324197.54			22.73	4/2/2013	\vdash	+	$\vdash \vdash$	+	++	+	+ +	\dashv	+	H;		X	╅┩	$\frac{\hat{x}}{x}$	X	\dashv	$\frac{1}{x}$	\pm	X	\vdash	X		+	+	+++
DP29	DPW29(45-50)N	WG		45 - 50 ft	1324524.98			23.21	4/2/2013	\vdash	+	\vdash	+	+ +	\dashv	+	\dashv	+	 '		X	╅┩	$\frac{\hat{x}}{x}$	X		$\frac{1}{X}$		X	\vdash	X		+-+	+	+++
DP30	DPW3028N	WG		27 - 29 ft	1324149.06			23.62	4/3/2013	\vdash		\vdash	+	++	+	+ +	\dashv				X		X	X		$\frac{1}{X}$		X	\vdash	X		+	+	+++
DP30	DPW30(50-55)N	WG		50 - 55 ft	1324149.06			23.62	4/3/2013	\vdash	+	\vdash	\dashv	++	+	+	\dashv	+		_	X		X	X	\dashv	$\frac{1}{X}$	+	X	\vdash	X		++	十	+++
DP31	DPW3120N	WG		19.5 - 20.5 ft	1324152.00			23.73	4/1/2013	\vdash	+	\vdash	+	++	+	+	-	+		_	X	+	$\frac{\lambda}{X}$	X	\dashv	$\frac{1}{X}$	+	X I	\sqcap	X		+	十	+++
DP31	DPW31(37-42)N	WG		37 - 42 ft	1324152.00			23.73	4/1/2013	\vdash			+	+	\dashv	1 1	\dashv		1	d	X	+	X	X	\dashv	$\frac{1}{X}$	+	x 🗌	\sqcap	X		++	+	+++
	- (-: :=/																									لننب								

								wasr	nington, D	C 2	20019																								
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	Total Residue (E160.3)	1)	PTOC (E440)	Field Parameters Gamma Radioassav	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Metals (SW6020A) Chromium (VI) (SW7199)	Mercury (SW7470A)	Mercury (SW / 4 / 1 B) Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015B)	TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B) Free Cyanide (SW9014)	Sulfide (SW9034)
DP32	DPW32(38-43)N	WG	N	38 - 43 ft	1325446.88	448520.64		29.19	4/1/2013											Х	Х		X			Х		Х		Х		\top	П	\Box	П
DP33	DPW33(27-32)N	WG		27 - 32 ft	1325826.24	448337.53		36.42	4/4/2013											Х	Х		Х)		Х		Х		Х			\Box		\Box
DP34	DPW3453N	WG		52.5 - 54 ft	1326248.97	448370.51		39.43	3/29/2013											Х	Х		X	7		Х		Х		Х			\Box		
DP35	DPW3515N	WG	_	14 - 16 ft	1326034.61	447902.07		33.45	3/28/2013											Х	Х		Х	7		Х		Х		Х			\Box		\Box
DP36	DPW3612-17N	WG	N	12 - 17 ft	1323668.75	448779.51		17.62	5/20/2013						Ħ					Х	Х		Х	7		Х		Х		Х					
DP38	DPW3815-20N	WG		15 - 20 ft	1324339.39	448539.12		23.11	5/23/2013											Х	X		X			Х		Х		X			\Box		\top
DP40	DPW4015-20N	WG		15 - 20 ft	1324326.37	449009.85		23.26	5/28/2013	Ħ	\neg	\Box			\sqcap	\dashv	\top		\top	Х	X		X			Х		Х		X		\top	\sqcap	\top	\Box
DP40	DPW4050-55N	WG		50 - 55 ft	1324326.37	449009.85		23.26	5/28/2013			Ħ			Ħ		1 1		1 1	Х	X		X			Х		Х		X		1	\Box		\top
DP42	DPW4220-25N	WG		20 - 25 ft	1324349.24	449248.87		19.59	5/29/2013								\top			Х	l x l		1 x l	1		X		Х		X		+	\vdash	\top	\top
DP45	DPW4515-20N	WG	N	15 - 20 ft	1325409.08	449077.83		25.78	6/4/2013								\Box			X	X		X			X		X		X		+	\vdash	十	\top
DP46	DPW4615-20N	WG	N	15 - 20 ft	1325936.20	447842.90			6/5/2013		+	Ħ	_	+	H		\top		+	X	X	\top	X			X		X		X	t	+	\vdash	+	+
DP46	DPW4637-42N	WG		37 - 42 ft	1325936.20	447842.90			6/5/2013		+	T	_	+	\Box		\top		1 1	X	X	\top	X			X		X		X	t	+	\vdash	+	+
DP47	DPW4710-15N	WG		10 - 15 ft	1325809.57	448157.16		31.90	6/5/2013		+	Ħ		+	H		T		1 1	X	X	\top	X	1		X		X		X	tt	+	\vdash	+	+
SUSDP01	DPW0112-15N	WG		12 - 15 ft	1323670.23	448434.09		000	5/20/2013		+	H			H		+		+	X	X		X			X		X		$\frac{1}{X}$	t	+	\vdash	+	+
SUSDP01	DPW0112-15N2	WG		12 - 15 ft	1323670.23	448434.09			6/13/2013		+	t	_	+	H		\top		1 1		\dagger	+	+ + +	+		Х	+			+	t	+	xt	+	+
SUSDP02	DPW0212-17N	WG	N	12 - 17 ft	1323688.07	448977.16			5/20/2013		+	Ħ		+	H		T		1 1	Х	X	\top	l x l	+		X		Х		1 _X	tt	+	+	+	+
SUSDP02	DPW0212-17N2	WG	N	12 - 17 ft	1323688.07	448977.16			6/13/2013		+	T	\dashv	+	H		\top		+		+	\top	+ + +	+	1	Х	\top			+	t	+	xt	+	+
SUSDP03	DPW0310-15N	WG	N	10 - 15 ft	1324026.35	448120.86			5/21/2013								\Box			Х	X		X			X		Х		X		\top	Ħ	\top	\top
SUSDP03	DPW0347-52N	WG	N	47 - 52 ft	1324026.35	448120.86			5/22/2013								\Box			X	X		X			X		X		X		\top	\vdash	\top	\top
SUSDP04	DPW0415-20N	WG	N	15 - 20 ft	1324091.66	448808.97			5/20/2013			T	_	+	\Box		\top		1 1	X	X		X			X		X		X		+	\vdash	+	+
SUSDP05	DPW0514-19N		_	14 - 19 ft	1324087.93	449163.57			5/21/2013								\Box		_	X	X		X	3	_	X		X		X		+	\vdash	十	\top
SUSDP05	DPW0514-19R	WG		14 - 19 ft	1324087.93	449163.57			5/21/2013		+	Ħ	_	+	H		\top		-	X	X	\top	X	3	_	X		X		X	t	+	\vdash	+	+
SUSDP06	DPW0614.5-19.5N	WG	N	14.5 - 19.5 ft	1324259.23	448063.28			5/23/2013		+	T	_	+	H		\top		1 1		+	\top	+ + +		_		\top	Х		+	t	+	\vdash	+	+
SUSDP07	DPW0720-25N	WG	N	20 - 25 ft	1324313.90	448780.43			5/22/2013		+	Ħ	_	+	H		T		1 1	Х	X	\top	l x l			X		X		1 _X	tt	+	\vdash	+	+
SUSDP07	DPW0743-48N	WG		43 - 48 ft	1324313.90	448780.43			5/22/2013		+	H			H		+		+	X	X		X	7	_	X		X		X	t	+	\vdash	+	+
SUSDP08	DPW0815-25N			15 - 25 ft	1324319.35				5/24/2013		+	\Box	_		\Box		+		+	$\frac{x}{x}$	X	\top	X			XX		X		X		+	X	+	+
SUSDP08	DPW08 34-39N			34 - 39 ft	1324319.35	448910.93			5/24/2013			T	_		H		\top		1 1	X	X		X			X		X		X		+	$\stackrel{\cap}{\vdash}$	+	\top
SUSDP09	DPW0925-30N		_	25 - 30 ft	1324624.17	448048.31			6/11/2013		+	T	\dashv	+	H	_	\top		-	X	X	\top	X			ХХ		Х		X		+	X	+	+
SUSDP09	DPW0945-50N	WG	_	45 - 50 ft	1324624.17	448048.31			6/11/2013		+	Ħ	_	+	H		T		_	X	X	\top	X	1	_	X		X		X		+	+	+	+
SUSDP10	DPW1015-20N	WG	_	15 - 20 ft	1324662.91	448784.82			6/10/2013								\Box			X	X		X	3	_	ХХ		Χ		X		+	X	十	\top
SUSDP11	DPW1110-15N		_	10 - 15 ft	1324624.65	449239.72			5/28/2013		+	T	_	+	\Box		\top		_	X	X	\top	X			XX		Х		X	t	+	X	+	+
SUSDP12	DPW1215-20N	WG	_	15 - 20 ft	1324827.15	448435.68			6/13/2013		+	Ħ	_	+	H		T		_	X	X	\top	X	1		X		X		X	tt	+	+	+	+
SUSDP13	DPW1310-15N	WG	_	10 - 15 ft	1324899.54	449245.86			5/29/2013		+	H			H		+		-	X	X		X	1		X		X		$\frac{1}{X}$	t	+	\vdash	+	+
SUSDP13	DPW1345-50N	WG	_	45 - 50 ft	1324899.54	449245.86			5/29/2013		+	\Box	_		\Box		+		_	X	X		X		_	X	_	X		$\frac{1}{X}$		+	\vdash	+	+
SUSDP13	DPW1345-50R	WG		45 - 50 ft	1324899.54	449245.86			5/29/2013	H	\dashv	1 1	\dashv		$\vdash \vdash$	+	\top		\dagger	X	X	\top	X	+	\forall	$\frac{1}{x}$		Х	T	$\frac{1}{x}$	t	+	\vdash	\top	\forall
SUSDP14	DPW1423-28N	WG	_	23 - 28 ft	1325250.39	448089.70			6/6/2013	H	_	\Box	\dashv		\vdash	\dashv	\top		1 1	X	X	\top	 X 	+	\forall	X		Х		TX	t	十	\vdash	十	\forall
SUSDP15	DPW1520-25N		_	20 - 25 ft	1325219.52	448484.64		†	6/6/2013	\vdash	\dashv	\Box	\dashv		\vdash	\dashv	+		1 1	X	X	\top	 x 	+	\forall	$\frac{1}{x}$		Х	\vdash	 X		+	+	十	+
SUSDP16	DPW1615-20N	WG		15 - 20 ft	1325155.21	448859.40		1	6/10/2013	H	\dashv	1 1	\dashv		\vdash	\dashv	T		1 1	х	X	\top	X	15	d	X		Χ		$\frac{1}{X}$	1 1	+	\vdash	\top	\top
SUSDP16	DPW1615-20R	WG		15 - 20 ft	1325155.21	448859.40		1	6/10/2013	\vdash	\dashv	\Box	\dashv		\vdash	\dashv	\top		1 1	$\frac{x}{x}$	X	\top	X		\forall	X		X	\vdash	$\frac{1}{X}$		+	+	十	\forall
SUSDP17	DPW1713-18N	WG	_	13 - 18 ft	1325548.72	448588.91			6/11/2013	H	\dashv	1 1	\dashv		$\vdash \vdash$	+	\top		-	$\frac{x}{x}$	X	\top	X	- 1	_	XX		Х	t	$\frac{1}{X}$	t	+	xf	\top	\forall
SUSDP18	DPW1815-20N			15 - 20 ft	1325531.22			1	6/4/2013	H		\Box			\vdash	\dashv	\top			х	X		X		_	XX		Х		X		+	X	\top	\forall
SUSDP19	DPW191944.5-49.5N	WG		44.5 - 49.5 ft	1325677.11	447862.07		1	6/5/2013	H		\Box	\dashv		\sqcap		\sqcap			х	X		X		_	Х		Х		X		+	\vdash	\top	+
I—————————————————————————————————————		_								_																		-							

								vvasi	nington, D	C 20	0019																							
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation		直.	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	Total Residue (E160.3) HEM - Oil & Grease (E1664B)	(0.1)	PTOC (E440)	Field Parameters Gamma Radioassay	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Metals (SW6020A) Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Free Cyanide (SW9014) Sulfide (SW9034)
SUSDP19	DPW1915-20N	WG	N	15 - 20 ft	1325677.11	447862.07			6/5/2013											Х	Х		Х	Х		ХХ		Х	\Box	Х		\top	X	\Box
SUSDP20	DPW2015-20N	WG	N	13 - 20 ft	1325651.50	448307.48			6/12/2013											Х	Х		Х	Х		X		Х		Х		\top		
SUSDP22	DPW2215-20N	WG	N	15 - 20 ft	1326045.35	448181.51			6/12/2013								\Box			X	Х		Х	Х		X	\Box	Х		Х		\top	\Box	\Box
SUSDP23	DPW2323-28N	WG	N	23 - 28 ft	1325902.86	448372.41			6/12/2013											Х	Х		Х	Х		X		Х		Х		\Box	\Box	
SUSDP24	DPW2415-20N	WG	N	15 - 20 ft	1325886.22	448915.42			6/4/2013											X	Х		Х	Х		ХХ		Х		Х			X	
SUSDP24	DPW2415-20R	WG		15 - 20 ft	1325886.22	448915.42			6/4/2013											X	Х		Х	Х		ХХ		Х		Х			X	
SUSDP24	DPW2448.5-53.5N	WG		48.5 - 53.5 ft	1325886.22	448915.42			6/4/2013											Х	Х		Х	X		X		Х		Х			工	
SUSDP37	DPW3725-30N	WG		25 - 30 ft	1324207.01	448553.63			5/23/2013											X	Х		Х	Х		X	Ш	Х		Х			Ш	
SUSDP37	DPW3713-18N	WG		13 - 18 ft	1324207.01	448553.63			5/23/2013											X	Х		Х	Х		Х		Х		Х			Ш	
SUSDP39	DPW3913-18N	WG		13 - 18 ft	1324489.85	448470.19			5/22/2013			Ш							Ш	Х	Х		Х	Х	Ш	X	Ш	Х	Ш	Х		Ш	Щ.	/
SUSDP41	DPW41 39-44N	WG		39 - 44 ft	1324243.54	448900.74			5/24/2013			Ш		\perp			Ш			Х	Х		Х	Х	Ш	X	Ш	Х	Ш	Х		Ш	$oldsymbol{oldsymbol{\perp}}$	/
SUSDP41	DPW41 15-25N	WG		15 - 25 ft	1324243.54	448900.74			5/24/2013								Ш			Х	X		Х	Х		X	$\perp \perp$	Х	igspace	Х		$oldsymbol{\perp}$	$oldsymbol{oldsymbol{eta}}$	
SUSDP43	DPW4315-20N	WG		15 - 20 ft	1324763.02	448548.99			6/6/2013			Ш		\perp						Х	Х		Х	Х		X	ш	Х	Ш	Х		Ш	ightharpoonup	/
SUSDP44	DPW4413-18N	WG		13 - 18 ft	1324717.06	448871.86			6/10/2013											X	X		Х	Х		X		Х		Х			$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	
Phase I Landside Mobiliza																																		'
DPA1	DPWA120-25N	WG		20 - 25 ft	1324383.30	448016.85			4/17/2014	_	_			+		_	\bot		+		\vdash					+	₩	X	\vdash				\vdash	 '
DPA2	DPWA220-25N	WG		20 - 25 ft	1324467.15	447988.40			4/17/2014	_	_	\vdash		+	_	4	+	_	++	4	₩	4	_	_	$\vdash \vdash$	—		X	\vdash	-	\vdash		\vdash	
DPA2	DPWA220-25R	WG		20 - 25 ft	1324467.15	447988.40			4/17/2014	_		\vdash		++	_		+	_	++	_	\vdash				\vdash	+		X	\vdash	_	\vdash	+	\vdash	
DPA3	DPWA325-30N	WG		25 - 30 ft	1324542.03	447989.57			4/16/2014	_		\vdash		++			+		+		\vdash				\vdash	+		X	\vdash		\vdash	+	\vdash	
DPA4	DPWA425-30N	WG		25 - 30 ft	1324619.25	447981.38			4/16/2014	_	_	\vdash	_	+	_	-	+	_	++	_	\vdash				\vdash	+		X	├	_	\vdash	+	\vdash	
DPA4	DPWA445-50N	WG		45 - 50 ft	1324619.25	447981.38			4/18/2014	-	-	\vdash		+			+	_	+		+	-			\vdash	+	_	X	₩			+	\vdash	++-
DPA5	DPWA525-30N	WG		25 - 30 ft	1324684.77	447976.70			4/16/2014	-+	_	\vdash	_	++	_		+	_	++	-	₩	_	-	_	\vdash	+		X	$\vdash \vdash$	-	\vdash	+	\dashv	++-
DPA5	DPWA525-30R	WG		25 - 30 ft	1324684.77	447976.70 447916.30			4/16/2014	-	_	\vdash	-	+	-	+	+	_	++	+	++			+	\vdash	+	++	X	\vdash	+	\vdash	+	\dashv	 -'
DPB10 DPB11	DPWB1025-30N DPWB1125-30N	WG		25 - 30 ft	1325128.24	447916.30			4/17/2014	_	_	\vdash	_	++	_	+	+	_	++	_	++				\vdash	+	++	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	\vdash	+	\vdash	+	\dashv	++-
DPB12	DPWB1225-30N	WG WG		25 - 30 ft 25 - 30 ft	1325211.33 1325304.96				4/17/2014 4/17/2014	-	-	\vdash	-	+	-	-	+	-	╁		\vdash	-			\vdash	+	++	${\mathbf{x}}$	⊬	-		+	\vdash	++-
DPB2	DPWB220-25N			20 - 25 ft	1324482.36	448074.98			4/17/2014	+	-	\vdash		+		+	+		+	+	╁	+	-	-	\vdash	+		<u>^ </u>	\vdash	+	\vdash	+	\vdash	++-
DPB3	DPWB325-30N			25 - 30 ft	1324552.56	448065.62			4/16/2014	-	_	\vdash		+	-	_	+	_	+		+				\vdash	+	-	$\frac{\lambda}{X}$	\vdash	+	\vdash	+	\dashv	++-'
DPB5	DPWB525-30N	WG		25 - 30 ft	1324708.79	448039.23			4/16/2014	-	-	\vdash		+			+	-	++						\vdash	+		X	\vdash	+		+	\vdash	++-
DPB5	DPWB545-50N			45 - 50 ft	1324708.79	448039.23			4/18/2014	\dashv	+	\vdash	+	+ +	\dashv	+	╁┼	\dashv	+ +	+	++	+	\vdash	+	$\vdash \vdash$	+		X	$\vdash \vdash$	+	 	+	\dashv	++-
DPB6	DPWB625-30N			25 - 30 ft	1324776.03	447980.21			4/16/2014	\dashv	+	\vdash	+	+ +	\dashv	+	╁┼	\dashv	+ +	+	++	+	\vdash	+	$\vdash \vdash$	+		$\frac{\lambda}{X}$	$\vdash \vdash$	+	\vdash	+	\dashv	++-
DPB7	DPWB730-35N	WG		30 - 35 ft	1324869.64	447962.66			4/16/2014	_	+	H		+	-	+	+		++	1					H	+	-	X	一十	+		+	一十	++-
DPB7	DPWB750-55N	WG		50 - 55 ft	1324869.64	447962.66			4/18/2014	\dashv	+	\vdash	\dashv	+ +	\dashv	+	\dagger	\dashv	+	+	++	+	\vdash	\top	\vdash	+	-	$\frac{x}{x}$	\vdash	+		+	\vdash	++-
DPB9	DPWB925-30N	WG		25 - 30 ft	1325034.61	447933.85			4/17/2014	\dashv	\dashv	\vdash	\dashv	† †	\dashv	+	+	\dashv	+	+	+	\top	\vdash	\top	\vdash	+	-	$\frac{x}{x}$	\vdash	\top	\vdash	+	\dashv	++-
DPC3	DPWC325-30N	WG		25 - 30 ft	1324547.88	448129.97			4/16/2014	\neg	\neg	\vdash	\neg	1 1	\neg		o	1	\dagger	\top					\vdash	\top	\sqcap	Х	一十	1		+	一	1 1
DPC4	DPWC425-30N	WG		25 - 30 ft	1324640.31	448119.44			4/16/2014	十	\neg	\vdash		1 1	$\neg \vdash$		\top		\dagger						\vdash	\top	\sqcap	Х	\Box	1		+	一	1
DPC5	DPWC525-30N	WG		25 - 30 ft	1324717.46	448111.74			4/16/2014	\neg			\top	11		\top	\top		\top		\sqcap		\Box		\sqcap	\top	\Box	Х	\sqcap	1		\top	\vdash	1
DPC7	DPWC730-35N	WG		30 - 35 ft	1324874.32	448067.96			4/17/2014					\top			\sqcap									\top	\Box	Х				\top	\vdash	
DPC8	DPWC830-35N			30 - 35 ft	1324957.39				4/17/2014					\sqcap			\sqcap		T		\sqcap					\top	\Box	Х	\Box			\top	\vdash	
DPC9	DPWC930-35N	WG		30 - 35 ft	1325041.63	448036.84			4/18/2014					T^{\dagger}			\Box				\sqcap					\top	\Box	Х	\Box			\top	\Box	\top
DPD5	DPWD525-30N	WG		25 - 30 ft	1324732.67	448190.16			4/18/2014																		\Box	Х						
DPD6	DPWD630-35N	WG	N	30 - 35 ft	1324818.10	448167.92			4/17/2014					П														Х				\Box	īT	

								wasr	ington, D	C 20	0019																							
Location ID	Sample ID	Matrix ¹	Sample Type²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	ard .	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	l otal Residue (E160.3) HEM - Oil & Grease (E1664B)	Amonia (E350.1)	PTOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C)	Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B)	NH VOCs (M8015D)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHS (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B) Free Cyanide (SW9014) Sulfide (SW9034)
DPD7	DPWD730-35N	WG	N	30 - 35 ft	1324902.37	448149.19			4/17/2014																		TT	Х				\top	\prod	
Phase I Landside Mobilizat		_									-					•	•	•		•		•		•	•	•								
MW01A	MW01AN	WG	N		1323686.71	448230.77		12.48	11/5/2014											X	Х					XX	\Box	Х		Х		Т	Х	
MW01B	MW01BN	WG	N		1323686.71	448230.77		12.51	11/5/2014							\Box				X	Х			1		XX	\Box	Х		Х			Х	
MW02A	MW02AN	WG	N		1323684.71	448456.98		13.48	11/5/2014											X	Х					X X		Х		Х				
MW02A	MW02AN2	WG	N		1323684.71	448456.98		13.48	12/19/2014)	₹		
MW02B	MW02BN	WG	N		1323684.71	448456.98		13.47	11/5/2014											X	Х					X X		Х		Х				
MW03A	MW03AN	WG	N		1323686.31	448809.39		14.87	11/4/2014											X	Х					X X		Χ		Х			Х	
MW03B	MW03BN	WG	N		1323686.31	448809.39		14.90	11/4/2014											X	Х					X X		X		Х			Х	
MW04A	MW04AN	WG	N		1323752.83	449113.68		14.54	11/4/2014					Ш						X	Х					X X		Х		Х	Ш		X	
MW04A	MW04AN2	WG	N		1323752.83	449113.68		14.54	12/19/2014																		Х						Ш	
MW04B	MW04BN	WG	N		1323753.04	449113.85		14.53	11/4/2014											X	Х					X X		Х		X	$oxed{oxed}$		X	$\bot\bot\bot$
MW05A	MW05AN	WG	N		1324032.04	448172.22		20.00	11/4/2014											X	Х						Ш	Х		X			Ш	$\bot\bot$
MW05A	MW05ANB	WG	FD		1324032.04	448172.22		20.00	11/5/2014							Ш										X X					$oxed{oxed}$		ш	$\bot\bot\bot$
MW05B	MW05BN	WG	N		1324032.04	448172.22		20.15	11/4/2014			Ш		\sqcup	_	\bot	_			X	Х			\perp		X X	4	Х		X	\sqcup		\bot	\bot
MW05B	MW05BN2	WG	N		1324032.04	448172.22		20.15	12/19/2014			Ш		\sqcup	_	\sqcup	_										X			4	\sqcup		$\bot \bot$	$\bot\bot$
MW06A	MW06AN	WG	N		1324211.25	448553.86		20.44	11/4/2014					\sqcup		\bot				X	X			_		X X	1	X		X	$\sqcup \bot$	——	$\bot \!$	$+\!\!+\!\!\!+$
MW06A	MW06AR	WG	FD		1324211.25	448553.86		20.44	11/4/2014			\vdash		\sqcup	_	+			_	X	Х			+	_	XX	1	X		X	\vdash	—	₩	++
MW06B	MW06BN	WG	N		1324211.25	448553.86		20.43	11/4/2014		_	\vdash	_	\vdash	_	+				X	X		_	+	_	XX		X		X	\vdash	—	₩	++
MW07A	MW07AN	WG	N		1324287.51	448860.38		18.87	11/5/2014	_	_	\vdash	_	╀		+	4	4	\vdash	X	X	-	_	+	+	X X	+	Х		X	₩	—	X	++
MW07A	MW07AR	WG	FD		1324287.51	448860.38		18.87	11/5/2014			\vdash		\vdash	_	+	4	4	\vdash	4	\vdash		_	_	+	_	\downarrow	_		_	\vdash	—	X	++
MW07A	MW07AN2		N		1324287.51	448860.38		18.87	12/19/2014			\vdash		\vdash		+			\vdash		\vdash		_	_			X			-	₩,		++	+++
MW07A	MW07AN2 BACKUP	WG	N		1324287.51	448860.38		18.87	12/19/2014	\vdash	_	┝	_	┢	_	+	_	-						+	+	V V	,—	V			/	4	$\frac{1}{\sqrt{1}}$	++
MW07B	MW07BN	WG	N		1324287.51	448860.38		18.89	11/4/2014		_		_	\vdash	_	+		-		<u> </u>	X		_	+	_	XX	+	X		X	\vdash		+~+	++
MW08A	MW08AN	WG WG	N N		1324070.34	449147.19		16.93	11/10/2014	\vdash	-	\vdash	-	╁		+	-	+	+	<u> </u>	X	+	-	+		XX	;—	X	\vdash	$\frac{X}{X}$	₩	—	₩	++
MW08B MW08B	MW08BN MW08BR	WG	FD		1324070.31 1324070.31	449147.29 449147.29		16.93 16.93	11/5/2014 11/5/2014		_	\vdash	-	╁	-	+		-		_	X	-	-	+		X X		X	\vdash	^ X		+-'	++	+++
MW08B	MW08BN2	WG	N		1324070.31	449147.29		16.93	12/19/2014			\vdash	-	\vdash	-	+	-		H	$^{-}$	 ^ -	+	-	+	+	^ ^	X	^		+^	\vdash	+-	++	++
MW09A	MW09AN	WG	N		1324895.99	448067.35		36.05	11/3/2014	\vdash	-	\vdash	-	+	+	+	+	-	+	X	Х	+	+	+	+	ХХ		Х	++	+	++	+	 x 	++
MW09A	MW09AN2	WG	N		1324895.99	448067.35		36.05	12/19/2014			H			-	+	-			$^{\sim}$	 ^ -	+		+	+	^ ^	+	$\stackrel{\wedge}{\vdash}$		+^		X	+	+++
MW09B	MW09BN	WG	N		1324895.99	448067.35		36.02	11/3/2014		-	\vdash	+	+	+	+	-	+		x 	Х	+	-	+	+	X X	+	Х		 X	 	+-	X	+
MW10A	MW10AN	WG	N		1324574.04	448707.16		20.16	11/4/2014	\vdash	-	\vdash	-	+	+	+	\dashv	+	_	X	X	+	+	+		XX		X	\vdash	$\frac{1}{x}$	++	+	 ^ 	++
MW10B	MW10BN	WG	N		1324574.04	448707.16		20.26	11/4/2014			\vdash		+	_	+	\dashv	+		$\frac{\hat{x}}{x}$	X		_	+		$\frac{x}{x}$		X		$\frac{\hat{x}}{x}$	++	+	+	++
MW11A	MW11AN	WG	N		1324624.32	449241.15		16.76	11/4/2014							+		1	_	$\frac{x}{x}$	X			+		XX		$\frac{\hat{X}}{X}$		$\frac{1}{X}$		+	X	++
MW11A	MW11AN2	WG	N		1324624.32	449241.15		16.76	12/19/2014	\vdash		\vdash	+	+	\top	+	-	+	 		\vdash	\top	\dashv	+	+	~ ^	X			+^		+	+	++
MW11B	MW11BN	WG	N		1324624.32	449241.15		16.67	11/4/2014	\vdash		\vdash	\top	+	+	+	\dashv	\top		x 	X	\top	\dashv	+	+	x x	+++	${X}$		X	+	+	 x 	++
MW12A	MW12AN	WG	N		1325765.39	447922.55		30.80	11/3/2014	\vdash			\top	\vdash	\dashv	╫	\dashv			x l	Х	\top	\dashv			XX		Х		$\frac{1}{x}$	 	\top	X	++
MW12A	MW12AN2	WG	N		1325765.39	447922.55		30.80	12/19/2014					\vdash	\top	+								\top	1 1	+	+			1		$\sqrt{}$	+	+
MW12B	MW12BN	WG	N		1325765.39	447922.55		30.86	11/3/2014					\vdash	\dashv	+				X	Х	\top		\top	1 1	ХХ		Х		X	 	\top	Х	\top
MW13A	MW13AN	WG	N		1325558.01	448449.69		27.45	11/3/2014	\vdash			\top	\vdash	\dashv	╫	\dashv		_	X	X	\top	\dashv	\top		XX		X		$\frac{1}{X}$	\vdash	+	X	++
MW13B	MW13BN	WG	N		1325558.01	448449.69		27.54	11/3/2014				\top	\vdash	\top	+			-	X	Х			\top		XX		X		X	\vdash	\top	X	+
	MW14AN	WG	N		1325694.46	448965.11		24.90	11/3/2014					\vdash	\dashv	+				x 🗆	Х	\top		\top		ХХ		X		X	+	\top	\vdash	\top

								wasi	nington, D	C 200	19																					
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340) Grain Size (D422)		Hydraulic Conductivity (lab) Total Residue (E160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1) PTOC (E440)	Field Parameters	Gamma Kadioassay DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	OCP (SW8081B LL)	Aroclor PCBs (SW8082A) PCBs (F1668C)	VOCs (SW8260B)	VOCs (SW8Z60C) NH VOCs (M8015D)	CSIA (VOCs) (PAE-CSIA-004) SVOCs (SW8270D LL)	SVOCS (SW8270DM SIM)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Free Cyanide (SW9014) Sulfide (SW9034)
MW14B	MW14BN	WG	N		1325694.46	448965.11		24.87	11/3/2014		Ħ		Ħ				i i			Х	T		Ħ		Х	TXT	Ti	İχ	(\top	Ħ	TTT
MW15A	MW15AN		N		1326303.08	448363.57		35.92	11/3/2014				H							Х			1 1	Х		X		X		\top	一	+
MW15B	MW15BN	WG	N		1326303.08	448363.57		35.92	11/3/2014				\Box							Х	1 1	+	++	Х				X	(+	一十	+
Phase I Waterside Mobiliz				ng			ļ														-	-						-				-
SUW1B	SUW1BN	WS	N	Ĭ	1323022.01	447478.73			9/23/2013	Х			Х		Х)	(Х				Х	Х	X		Х			Х	
SUW2B	SUW2BN	WS	N		1323120.00	447932.70			9/23/2013	Х	П		H		Х)	<	Х	1 1		1 1		Х	\top		X		\top		+
SUW3C	SUW3CN	WS	N		1323124.13	448467.71			9/23/2013	Х			Х		Х)	<	Х				Х	Х	X		Х		\top	Х	
SUW4B	SUW4BN	WS	N		1323088.70	448900.28			9/24/2013	Х					Х)		Х					Х	\top		Х		\top		\Box
SUW5C	SUW5CN	WS	N		1323337.14	449338.07			9/24/2013	Х			П		Х)		Х					Х	\Box		Х		\top		\Box
SUW7B	SUW7BN	WS	N		1323647.81	449847.44			9/24/2013	Х			Х		Х)	<	Х				Х	Х	X		Х		\Box	Х	\Box
SUW6B	SUW6BN	WS	N		1323424.78	449687.44			9/24/2013	Х			Х		Х			>	<	Х				Х	Х	X		Х			Х	
SUW6B	SUW6BR	WS	FD		1323424.78	449687.44			9/24/2013	Х			Х					>	(Х				Х	Х	X		Х	(Х	
SUW8B	SUW8BN	WS	N		1323699.75	450124.44			9/24/2013	Х					Х			>	(Х					X			Х				
SUWBACK15	SUWBACK15N	WS	N		1313502.26	439976.25			9/25/2013	X			Х		Х			>	(Х				Х	X	X		Х	(Х	
SUWBACK13	SUWBACK13N	WS	N		1320694.37	442914.41			9/25/2013	X					Х			>	(Х					Х			Х	(
SUWBACK12	SUWBACK12N	WS	N		1321502.15	444821.89			9/25/2013	X			Х		Х			\	(Χ				Х	Χ	X		Х			Х	
SUWBACK11	SUWBACK11N	WS	N		1322284.05	446970.24			9/25/2013	Х	Ш		Ш		Х)	(Х			$\perp \perp$		Х	\bot		Х			Ш	
SUW9C	SUW9CN	WS	N		1323961.98	450423.72			9/25/2013	Х			Ш		Х)	_	Х			$\perp \perp$		Х	$\bot\bot$		Х		/		$\perp \perp \perp$
SUW10B	SUW10BN	WS	N		1324041.53	450790.50			9/26/2013	Х	Ш		X		X)		Х	\perp		$\bot \bot$	Х		X		Х		/	X	$\perp \! \! \perp \! \! \! \perp$
SUWBACK5	SUWBACK5N	WS	N		1326967.67	454617.45			9/26/2013	Х			Х		Х)	_	Х			$\bot \bot$	Х		X		Х	_	$\perp \!\!\! \perp \!\!\!\! \perp \!\!\! ! ! \perp \!\!\!\!\! \perp \!\!\!\!\! \perp \!\!\!\! \perp \!\!\!\!\! \perp \!\!\!\!\! \perp \!\!\!\!\!\!$	Х	$\perp \perp \perp$
SUWBACK4	SUWBACK4N	WS	N		1329783.99	457920.60			9/26/2013		Ш		X		Х)	_	Х	\perp		$\bot\bot$	Х	_	X		Х		/	Х	
SUWBACK3	SUWBACK3N	WS	N		1329107.33	462717.77			9/26/2013	Х	Ш		\sqcup		X)		Х	\bot	_	\bot		Х	+	\perp	Х		ДЦ	igspace	
SUWBACK6	SUWBACK6N	WS	N		1326311.59	454054.19			9/26/2013	X					X		oxdot	}		X	\bot	_	++		X	+		Х		42		+
SUWBACK1	SUWBACK1N	WS	N		1333186.62	470680.54			10/3/2013	X			X		X		\vdash	}		X	\bot		++	X	X	$\frac{1}{X}$	\perp	X		— —	X	+
SUWBACK2	SUWBACK2N	WS	N	<u> </u>	1327084.09	465951.44		ļ	10/3/2013	Х			Х		Х)		Х				Х	<u> </u>	X_		Х			Х	$\perp \perp \perp$
Phase I Waterside Mobiliz	-		_		1 4000000 00	4.47000.00			44/0/0040	Lv		Lv			1 1		LVI		, I	VIV	.								/ L			
SED1.5B	SED1.5B00N	SE	N	0 - 0.5 ft	1323208.90	447688.22		-3.14	11/6/2013	X		X	\vdash		+		X	XX		XX		_	+		 	++	-	X	()	\Box	₩	X
SED1A	SED1A00N	SE	N	0 - 0.5 ft	1322949.33	447487.01		-4.34	11/6/2013	X		X	╁	_	+	_	Х	XX		XX		_	++		Х	+	+	X		$+\!\!-\!\!\!\!-\!$		X
SED1B	SED1B00N	SE	N	0 - 0.5 ft	1323022.01	447478.73		-11.16	11/6/2013	X	_	X	₩	_	++		X	X >		XX			++	X	Х	X	+	X		+/	\vdash	X
SED1C	SED1C00N	SE	N	0 - 0.5 ft	1323207.62	447452.22		-0.35	11/7/2013	X	-	X	₩	_	+	-	X	XX		XX			++	_	Х	++	+	X		$+\!\!-\!\!\!\!-\!$	\vdash	X
SED2.5B	SED2.5B00N	SE SE	N	0 - 0.5 ft	1323217.10	448285.96		-0.67	11/7/2013	X	_	- X	₩	_	+	+	X	X >		XX		+	++	_	XXX	+	+	X		$+\!\!-\!\!\!\!-$	\vdash	X
SED2A SED2B	SED2A00N SED2B00N	SE	N	0 - 0.5 ft 0 - 0.5 ft	1323069.35 1323120.00	447930.53	Forensics	-13.14 -5.84	11/6/2013 11/5/2013	X	_	- ^	\vdash	_	++	_	X	$\frac{\lambda}{\lambda}$		X X		+	++		XX	++		$\frac{1}{x}$		$+\!\!-\!\!\!\!-$	\vdash	$\frac{1}{X}$
SED2C	SED2B00N SED2C00N	SE	N	0 - 0.5 ft	1323120.00	447932.70		-0.41	11/6/2013	X	_	- ^	\vdash		+		X	X >		^ ^			++	- V	X	+		$\frac{1}{x}$		+	₩	$\frac{1}{x}$
SED3.5B	SED3.5B00N	SE	N	0 - 0.5 ft	1323344.64	448558.14		-15.19	11/0/2013	X	_	- ^	₩	_	++	+	X	X >		X X		+	++	 ^	₩	+^+	+	+	+	+	⊬	 ^
SED3.5B	SED3.5B00N SED3A00N	SE	N	0 - 0.5 ft	1323036.60	448455.78		-15.19	11/7/2013	X	_	 \	┥	-	++	-	X	X >		^ ^		+	++	+	+	++	+	+		+	\vdash	 ^
SED3B	SED3B00N	SE	N	0 - 0.5 ft	1323010.07	448464.11		-11.22	11/8/2013	X	_	 ^	╫	-	+	+	X	$\begin{pmatrix} x \\ x \end{pmatrix}$	_	X X		+	++	+	${x}$	++	+	+	+	+	\vdash	 ^
SED3C	SED3C00N	SE	N	0 - 0.5 ft	1323062.66	448467.71		-14.70	11/6/2013	X	_	 ^	┥	-	+	+	X	X >		X X		+	++	Х	${x}$	+++	+	$\frac{1}{x}$	+	+	X	1 ^ X
SED3C	SED3C00N SED3C00R	SE	FD		1323124.13	448467.71		-2.75	11/7/2013	 ^	$\vdash \vdash$	 	┥	+	+	+	X	X >		XX		+	++		X	 ↑	+	$\frac{1}{x}$		+	X	$\frac{1}{x}$
SED4.5B	SED4.5B00N	SE	N	0 - 0.5 ft	1323124.13	449128.77		-7.44	11/8/2013	Х	$\vdash \vdash$	 ^	\vdash	-	++	+	X	X >		XX		+	++	+^	$\frac{}{x}$	+^+	+	$\frac{1}{x}$		+	+^+	 ^ x
SED4A	SED4.3B00N SED4A00N	SE	N	0 - 0.5 ft	1322976.43	448917.18		-13.12	11/12/2013	X	-	- ^	\vdash	-	++	+	X	X >		XX		+	++	+	$\frac{\hat{x}}{x}$	++	+	$\frac{1}{x}$	_	+	++	$\frac{1}{x}$
SED4B	SED4B00N	SE	N	0 - 0.5 ft	1323088.70			-5.79	11/12/2013	X	-	Y	\vdash	-	++	+	X	X >		XX			++	Y	X	+ Y +	+	X		+	X	$\frac{1}{x}$
OLDTD	TOED-DOOM	OL.	Ti A	0 - 0.0 IL	1020000.70	 0300.20		-0.18	11/12/2013	^	ш	^			$\perp \perp$		_ ^ _	$\Gamma \cap \Gamma'$	`	_ ^ _ ^	<u> </u>			^		\perp	\perp	^	`			^

								wasr	ington, D	C 2001	9																				
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340) Grain Size (D422)	Hydraulic Conductivity (lab)	Total Residue (E160.3) HEM - Oil & Grease (E1664B)	Amonia (E350.1) PTOC (E440)	Field Parameters	Gamma Radioassay DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	OCP (SW8081B LL)	Aroclor PCBs (SW8082A) PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13) PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SED4B	SED4B00R	SE	FD	0 - 0.5 ft	1323088.70	448900.28		-5.79	11/12/2013			Х				X	X >		ХХ				Х	Х	Х		Х		X	T	Х
SED4C	SED4C00N	SE	N	0 - 0.5 ft	1323146.06	448888.08		-3.66	11/12/2013	Х		Х				Х	XX		ХХ					Х			Х				Х
SED5.5B	SED5.5B00N	SE	N	0 - 0.5 ft	1323400.33	449512.52		-6.99	11/12/2013	Х		Х				Х	XX		ХХ					Х			Х			\Box	Х
SED5A	SED5A00N	SE	N	0 - 0.5 ft	1323198.27	449411.76		-6.94	11/8/2013	Х		Х				Х	XX		ХХ					Х			Х			\prod	Х
SED5B	SED5B00N	SE	N	0 - 0.5 ft	1323266.69	449349.09		-8.51	11/8/2013	Х		X				Х	XX	(X X					Х			Х				Х
SED5C	SED5C00N	SE	N	0 - 0.5 ft	1323337.14	449338.07		-1.87	11/11/2013	Х		Х				Х	XX	(ХХ					Х			Х				Х
SED6.5D	SED6.5D00N	SE	N	0 - 0.5 ft	1323798.17	449651.75		2.64	11/25/2013	Х		X				Х	XX	(X X					Х			Х				Х
SED6.5E	SED6.5E00N	SE	N	0 - 0.5 ft	1323969.79	449649.36		1.69	11/25/2013	X		X				Х	X	(X X				Х	Х	Х		Х		X		Х
SED6A	SED6A00N	SE	N	0 - 0.5 ft	1323401.29	449707.18		-6.12	11/13/2013	X		Х				X	X >		X X					Χ			Х			Ш	Х
SED6B	SED6B00N	SE	N	0 - 0.5 ft	1323424.78	449687.44		-7.64	11/13/2013	X		Х				Х	X	(X X				Х	Х	X		Х		X	<u> </u>	Х
SED6B	SED6B00R	SE	FD	0 - 0.5 ft	1323424.78	449687.44		-7.64	11/13/2013			Х				X	X		X X				Х	Х	X		Х		X	<u> </u>	Х
SED6C	SED6C00N	SE	N	0 - 0.5 ft	1323525.05	449590.24		-1.84	11/14/2013	Х		Х				Х	X >		X X				\perp	Х	oxdot		Х			$\perp \perp$	Х
SED7.5D	SED7.5D00N	SE	N	0 - 0.5 ft	1323906.87	449865.94		2.55	11/25/2013	X		Х				Х	X >	(X X					Х			Х			$\bot \bot$	Х
SED7.5E	SED7.5E00N	SE	N	0 - 0.5 ft	1324043.58	449782.68	Forensics	1.60	11/25/2013	Х		Х		\perp		Х	X >		X X			Ш	\bot	X X			X			$\bot \bot$	Х
SED7A	SED7A00N	SE	N	0 - 0.5 ft	1323526.84	449965.98		-3.94	11/13/2013	Х		Х		\perp		Х	XX		X X			$\sqcup \bot$	1	Х			Х			$\perp \perp$	Х
SED7B	SED7B00N	SE	N	0 - 0.5 ft	1323647.81	449847.44		-2.31	11/13/2013	X		Х		\perp		Х	XX		XX			\sqcup	X	Х	X		X		<u> X</u>	11	Х
SED7B	SED7B00R	SE	FD	0 - 0.5 ft	1323647.81	449847.44		-2.31	11/13/2013			Х	\vdash	\bot		X	XX		X X			\sqcup	X	X	X		X	\perp	<u> X</u>	44	X
SED7D	SED7D00N	SE	N	0 - 0.5 ft	1323814.32	449789.58		2.26	11/25/2013	X		X		\perp		X	XX		XX	-	_		\bot	X	++	\vdash	X	\perp	-	++	X
SED7E	SED7E00N	SE	N	0 - 0.5 ft	1323942.71	449728.24	Forensics	1.81	11/25/2013	X	\perp	X		+		X	XX		XX		_	\vdash	1	X			X	X			Х
SED7F	SED7F00N	SE	N	0 - 0.5 ft	1324119.87	449660.56	Forensics	2.11	11/25/2013	X	+	X		+	_	X	XX		XX	-	4	╀	X	X	X		X	X	— <u> X</u>	;++	X
SED7G	SED7G00N	SE	N	0 - 0.5 ft	1324216.84	449619.14		1.59	1/30/2014	X		X		+	_	X	XX		XX		4	\vdash	Х	X	X _		X		<u></u> X	++	X
SED8.5B	SED8.5B00N	SE	N	0 - 0.5 ft	1323863.72	450263.69		-8.34	11/13/2013	X		X		+		X	XX		XX			\vdash	++	X	++	 	X		_	++	X
SED8A	SED8A00N	SE	N	0 - 0.5 ft	1323627.03	450167.52		-1.82	11/13/2013	X		X	\vdash	+	_	X	XX		XX		-	┢	+	X	++	+	X	+	+	++	X
SED8B	SED8B00N	SE	N	0 - 0.5 ft	1323699.75	450124.44		-6.64	11/13/2013	- , 	+	X	\vdash	+		X	XX		XX		-	\vdash	 	X	 	+	X	-	- ,	,+	X
SED8C	SED8C00N	SE	N	0 - 0.5 ft	1323810.54	450062.60		-1.56	11/14/2013	X	+	X	\vdash	+		X	XX		XX		+	\vdash	X	X -	X	\vdash	X		X	,++	X
SED8C SED9.5B	SED8C00R SED9.5B00N	SE SE		0 - 0.5 ft	1323810.54				11/14/2013	-		\	 	+	_	X	X >		X X		+	\vdash	Х	X X			X			++	X
SED9.3B	SED9.5B00N SED9A00N	SE	N N	0 - 0.5 ft	1324031.21 1323815.06	450506.80	Forensics	-1.60 -4.25	11/11/2013 11/11/2013	X		X	 	+		X	X >		^ ^		-	\vdash	_	<u>^ </u>	++	+ +	X	-	+	++	X
SED9A SED9B	SED9A00N SED9B00N	SE	N	0 - 0.5 ft 0 - 0.5 ft	1323894.15	450467.75		-4.25 -9.20	11/11/2013	X		$\stackrel{\wedge}{\vee}$	 	+	+	X	X >		XX		+	++		X	+	 	X	-	+	++	X
SED9C	SED9B00N SED9C00N	SE	N	0 - 0.5 ft	1323961.98	450423.72		-1.67	11/11/2013	X		Ŷ		+		X	X >		XX		+	\vdash	X		l X		X		X	,+-+	X
SED10A	SED10A00N	SE	N	0 - 0.5 ft	1323959.18	450826.25		-14.31	11/11/2013	X		X		+		X	X >		XX			\vdash		$\frac{\wedge}{X}$	+^+		T _X		- ^	++	X
SED10B	SED10A00N SED10B00N	SE	N	0 - 0.5 ft	1324041.53	450790.50		-7.99	11/11/2013	X		X		+	-	X	X >		XX		+		X		X		X		+	++	X
SED10C	SED10D00N	SE	N	0 - 0.5 ft	1324112.83		Forensics	1.49	11/11/2013	X		X		+		$\frac{1}{x}$	XX		XX		+	\vdash	_	X	+^+		X	X	 ^	++	X
SEDBACK1	SEDBACK100N	SE	N	0 - 0.5 ft	1333186.62	470680.54		-0.60	12/3/2013	X	1	X	h	+	+	X	XX		XX		+	+	X		 x -	H	X	 ^	+	++	X
SEDBACK11	SEDBACK100N	SE	N	0 - 0.5 ft	1322284.05	446970.24		-2.54	11/15/2013	X	+			+	+	X	X >		XX		+	\vdash	_	XX	 		X	X	 ^	++	X
SEDBACK12	SEDBACK1200N	SE	N	0 - 0.5 ft	1321502.15	444821.89		-1.12	11/14/2013	X	+			+	+	X	XX		XX			++	X		 x -		X	+	+	++	X
SEDBACK12	SEDBACK1200R	SE	FD		1321502.15	444821.89		-1.12	11/14/2013	 	+	\vdash	H	+	-	X	$X \rightarrow$	_	XX		+	\vdash	X		 x -	HT	X	\vdash	$+\frac{\lambda}{x}$	+	X
SEDBACK13	SEDBACK1300N	SE	N	0 - 0.5 ft	1320694.37	442914.41		-9.84	11/14/2013	X	+	\dashv		+	+	X	XX		XX		+	\vdash	+^+	X	+^+		X	$\dashv \dashv$	 ^	++	X
SEDBACK15	SEDBACK1500N	SE	N	0 - 0.5 ft	1313502.26	439976.25		-6.01	11/12/2013	X	+	Х		+	\dashv	X	XX	_	XX		+	\vdash	X	X	l x l -		X	$\dashv \dashv$	+	+	X
SEDBACK2	SEDBACK200N		N	0 - 0.5 ft	1327084.09	465951.44		-1.81	12/3/2013	X	+	Х		+	\dashv	X	XX		XX		+		X		$\frac{1}{X}$		X	$\dashv \dashv$	$\frac{\lambda}{X}$	+	X
SEDBACK2	SEDBACK200R	SE	FD		1327084.09			-1.81	12/3/2013	- ` 	1 1	Х		1 1	\dashv	X	XX		XX		\top	\vdash	X		X		X	\dashv	$\frac{1}{x}$.++	X
SEDBACK3	SEDBACK300N	SE	N	0 - 0.5 ft	1329107.33			-0.44	11/15/2013	X	1 1			1 1	\dashv	X	X >		XX		\top	\vdash	+ +	Х			X	\dashv		++	X
1																													-		

Contain D Semple 10 Medic Sement Semen									wasr	nington, D	C 200	19																				
SCHEACA4 SEPRACA4(MIN) SE N 0 - 0.0 ft 13/978/39 40/70/0.00 Formings 0.88 11/44/0713 X X X X X X X X X	Location ID	Sample ID	Matrix ¹	Sample Type ²	_	Easting	Northing	•		Sample	ardness (SM2 rain Size (D42		ductivity (E160.3)	0.1)	Field Parameters	Gamma Radioassay	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C) TPH-GRO (SW8015D)	OCP (SW8081B LL)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13) PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SEPBACKS SEPBACKSONN SE N 0-0.6 ft 132090776 46910170 70010102 X X X X X X X X X	SEDBACK4	SEDBACK400N	SE	N	0 - 0.5 ft	1329783.99	457920.60	Forensics	-6.88	11/14/2013	X	Ì	X	TT	i	Ħ	X	X	(ХХ		i		X	(Х	i i	X	TX	X	i	X
SPRIADORS SPRIADORSON SET TO 0 - 0.5 1 120911678 44617 45 5.529 111407013 X X X X X X X X X				N									X					X X			-				ΚX	Х		Х		Х		
SEDBACKROON SE N 0 - 0.5 R 1328314652 44640378 4564052 45640578				FD									X				X	X X						X Z		Х		Х	\Box	X		
WSEDION SE FD 0 - 0.5 ft 133214-0.52 4449403.78 .1.08 411950115		SEDBACK600N	SE	N	0 - 0.5 ft	1326311.59	454054.19	Forensics	-0.51	11/15/2013	Х						Х	XX		ХХ				X 2	ΚX	Х		Х	X	X	\Box	X
WSEPDON SE N 0 - 0.5 19374-80 446582 1.53 1715/0715 X X X X X X X X X	WSED1	WSED100N	SE	Ν	0 - 0.5 ft	1323146.52	448403.78		-1.68	11/15/2013	Х						Х	XX	(ХХ				X	(Х		Х		Х		X
Pinase Waterside Mobilization 2, Task 3: Subsurface Sediment Samples Vision 1922006.90 47698.22 5.14 11/02/013 X	WSED1	WSED100R	SE	FD	0 - 0.5 ft	1323146.52	448403.78		-1.68	11/15/2013							Х	XX	<	X X				X	<	Х		Х	\Box	X	\Box	X
SED1.6B SED1.6B01N SE N 1-3 ft 1322208.90 44798.92 3.14 116/2013 X	WSED2	WSED200N	SE	N	0 - 0.5 ft	1323124.83	448582.42		-1.53	11/15/2013	Х						Х	X	(ХХ				X	(Х		Х		Х		X
SED1-5B SED1-5B0SIN SE N 3 - 5 ft 13/23/08 90 447688.22 -3.14 11/62/013 X	Phase I Waterside Mobiliz	ation 2, Task 3: Subsur	face Sedii	nent S	Samples/Vibra	acore Boring		•	•														•									
SED1.58 SED1.58 SED1.5807N SE N 7-7ft 132200.90 44768.22 -0.14 11962013 X X		SED1.5B01N		N	1 - 3 ft	1323208.90			-3.14	11/6/2013			Х												(Х				
SED14 SED1601N SE N 1-9-81 132208-90 47/688-223.14 11/62013		SED1.5B03N		N	3 - 5 ft			Forensics					Х]]	(Х	Х			
SED1A SED1AONN SE N 1-3 ft 1322949.33 44/497.01				N	5 - 7 ft								Х]]	(Х				
SEDIA SEDIAGON SE N 3 - 6 ft 1322949 33 447487 01 -4-34 11/62013				N									X												(Х	$oxed{oxed}$		$\perp \! \! \perp$	
SEDIA SEDIADRN SE N 5-7f 1322949.33 447487.01 -4.34 116/2013 X X X X X X X X X				N	1 - 3 ft								X												(Х			Ш	
SEDIA SEDIAO7N SE N 7-9 tt 13229433				_									X	\perp										1 2	(Х	$oxed{oxed}$		$\bot \bot$	
SED1B SED1BOTN SE N 1-3				N									X	$\bot \bot$							$\sqcup \bot$				($oldsymbol{\perp}$	$\perp \perp$	\bot	
SED1B SED180N SE N 3-5 ft 1323022.01 447478.73				N									X	$\perp \perp$			\bot				ш				($oldsymbol{ol}}}}}}}}}}}}}}}}}$	_	$oldsymbol{oldsymbol{\sqcup}}$		ш	\perp
SED1B				N									X			Ш	X	1 /	Щ	X	\sqcup									\vdash	$\bot\!\!\!\!\bot$	
SED1B SED1BOTN SE N 7-9 ft 13230202 ft 447452 22 -0.35 11/7/2013 X X X X X X X X X				_									X	++		\sqcup	++	\bot	\perp		\vdash				(++		\longrightarrow	\vdash	$\bot\!$	—
SEDIC SEDICOIN SE N N 3 - 5 ft 1323207.62 447452.22 -0.35 11/7/2013 N N N N N N N N N				_									X	++		\vdash	++	++	\perp		\vdash						++		$\dashv \dashv$	\vdash	$+\!\!-\!\!\!+$	+
SEDIC SEDICO3N SE N 3 - 5 ft 1323207.62 447452.22 -0.35 11/7/2013 X X X X X X X X X				_								-	X	+		\vdash		++	\bot		\vdash				_		+		\longrightarrow		$+\!\!-\!\!\!+$	_
SEDIC SEDICOSN SE N 5-7 ft 1323207.62 447452.22 -0.35 11/7/2013 X X X X X X X X X													X	+				++	\bot		\vdash			_	_			_	\longrightarrow		$+\!\!-\!\!\!+$	\longrightarrow
SEDIC SEDICOTN SE N 7-9 ft 1323207.62 447452.22 Forensics -0.35 11/7/2013 X X X X X X X X X													$\frac{1}{\lambda}$	++			++	+	\perp		\vdash			+ + ;			\vdash	_	\longrightarrow		$+\!\!-\!\!\!+$	
SED2.5B SED2.5B01N SE								F:			_		$\frac{1}{\sqrt{1}}$	++	-	┝	++	+		-	┢			+ + ;	X V		++	X	\dashv		+	+
SED2.5B SED2.5B03N SE N 3 - 5 ft 1323217.10 448285.96 -0.67 1177/2013				_							_		 	+	-		++	+	+	_	\vdash			+ +	X X		++	1 X	$\dashv \dashv$		+	+
SED2.5B SED2.5BO5N SE N 5 - 7 ft 1323217.10 448285.96 Forensics -0.67 11/7/2013 X N X												\vdash	 	+	-	\vdash	+	╁	+		\vdash		_	+ + ;			+		\dashv	\leftarrow	$+\!\!-\!\!\!+$	+
SED2.5B SED2.5B07N SE N 7 - 9 ft 1323217.10 448285.96 -0.67 11/7/2013 X N X				_									^	+	-	┢	++	╁	+		┢						\vdash		\dashv	\vdash	+	+
SED2A SED2AO1N SE N 1 - 3 ft 1323069.35 447930.53 -13.14 11/6/2013 X N X <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>- ^` -</td><td>+</td><td></td><td>\vdash</td><td>++</td><td>++</td><td>+</td><td>-</td><td>\vdash</td><td></td><td></td><td></td><td>_</td><td>-</td><td></td><td>_</td><td>$\dashv \dashv$</td><td>-</td><td>+</td><td>+</td></t<>				_							-		- ^` -	+		\vdash	++	++	+	-	\vdash				_	-		_	$\dashv \dashv$	-	+	+
SED2A SED2A03N SE N 3 - 5 ft 1323069.35 447930.53 -13.14 11/6/2013 X N X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td> </td><td>+</td><td></td><td>\vdash</td><td>++</td><td>+</td><td>+</td><td></td><td>\vdash</td><td>+</td><td></td><td></td><td></td><td></td><td>++</td><td></td><td>\dashv</td><td>+</td><td>+</td><td>+</td></t<>												\vdash	 	+		\vdash	++	+	+		\vdash	+					++		\dashv	+	+	+
SED2A SED2A05N SE N 5 - 7 ft 1323069.35 447930.53 -13.14 11/6/2013 X N X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> ^ </td><td>+ +</td><td></td><td>\vdash</td><td>++-</td><td>+</td><td>+</td><td></td><td>\vdash</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td>$\dashv \dashv$</td><td>+</td><td>+</td><td>+</td></t<>													 ^ 	+ +		\vdash	++-	+	+		\vdash				_			_	$\dashv \dashv$	+	+	+
SED2A SED2AO7N SE N 7 - 9 ft 1323069.35 447930.53 -13.14 11/6/2013 X N X <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$\frac{1}{x}$</td><td>+++</td><td>+</td><td></td><td>++-</td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td>_</td><td>-</td><td>\vdash</td><td></td><td>-</td><td>$\dashv \dashv$</td><td>-</td><td>+</td><td>+</td></t<>				_									$\frac{1}{x}$	+++	+		++-	+	+					_	-	\vdash		-	$\dashv \dashv$	-	+	+
SED2B SED2B07N SE N 7 - 9 ft 1323120.00 447932.70 -5.84 11/5/2013 X N X <th< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>l l</td><td>$\frac{1}{x}$</td><td>+</td><td>+</td><td>\vdash</td><td>++</td><td>++</td><td>+</td><td>+</td><td>\vdash</td><td>+</td><td></td><td></td><td></td><td>+</td><td>╁┼</td><td></td><td>\dashv</td><td>一一</td><td>+</td><td>+</td></th<>				_							-	l l	$\frac{1}{x}$	+	+	\vdash	++	++	+	+	\vdash	+				+	╁┼		\dashv	一一	+	+
SED2B SED2B01N SE N 1 - 3 ft 1323120.00 447932.70 -5.84 11/5/2013 X N SED2B X N 3 - 5 ft 1323120.00 447932.70 -5.84 11/5/2013 X N N X N <													$\frac{1}{x}$	+ +			++		+	-	+				_		+ +	- ' `	$\dashv \dashv$	+	+	+
SED2B SED2B03N SE N 3 - 5 ft 1323120.00 447932.70 -5.84 11/5/2013 X IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII													$\frac{1}{x}$	+ +			++	+	+						_		 	-	\dashv		+	\dashv
SED2B SED2B05N SE N 5 - 7 ft 1323120.00 447932.70 -5.84 11/5/2013 X N SED2C SED2CO1N SE N 1 - 3 ft 1323344.64 447937.51 -0.41 11/6/2013 X				_								\vdash	X	++		\vdash	+ +	+	+	\vdash	+					\vdash	+	X	\dashv	\vdash	+	$\dashv \dashv$
SED2C SED2C01N SE N 1 - 3 ft 1323344.64 447937.51 -0.41 11/6/2013 X <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\dashv</td><td>X</td><td>++</td><td></td><td>\vdash</td><td>+ +</td><td>++</td><td>+</td><td>\vdash</td><td> </td><td></td><td></td><td></td><td>$\forall \Box$</td><td>\vdash</td><td></td><td>$\frac{1}{X}$</td><td>$\dashv \dashv$</td><td>+</td><td>+</td><td>$\dashv \dashv$</td></th<>												\dashv	X	++		\vdash	+ +	++	+	\vdash	 				$\forall \Box$	\vdash		$\frac{1}{X}$	$\dashv \dashv$	+	+	$\dashv \dashv$
SED2C SED2C03N SE N 3 - 5 ft 1323344.64 447937.51 -0.41 11/6/2013 X Image: Control of the control				_							Х	\vdash	X	++	\top		X		$\langle \Box$	Х	\vdash				$\langle $	Х		X	$\dashv \dashv$	\top	+	$\dashv \dashv$
SED2C SED2C05N SE N 5 - 7 ft 1323344.64 447937.51 -0.41 11/6/2013 X Image: Control of the control				_								\Box	x	\top	\top	一十	 	 	\top		\vdash				d				$\dashv \dashv$	$\neg \vdash$	+	$\dashv \dashv$
SED2C SED2C07N SE N 7 - 9 ft 1323344.64 447937.51 -0.41 11/6/2013 X Image: Normal content of the c													X	11			 		\top									X	$\dashv \dashv$	\top	+	$\dashv \dashv$
SED3.5B0 SED3.5B01N SE N 1 - 3 ft 1323056.80 448558.14 -15.19 11/12/2013 X X X X X X X X X X X X X X X X X X X												\Box	X	 			1	\dagger	\top		\vdash							X	$\dashv \dashv$	$\neg \vdash$	\top	$\neg \neg$
													Х						T									X	$\dashv \dashv$	\Box	\top	一一
	SED3.5B			_					-15.19			T	Х	\top		\sqcap			T		\sqcap				$\langle $			X	$\dashv \dashv$	$\neg \neg$	\top	一一

								wasr	ington, D	C 20	019																						
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation		Hardness (SM2340)	terk	1cti	HEM - Oil & Grease (E1664B)	Amonia (E350.1) PTOC (E440)	Field Parameters	Gamma Radioassay DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Metals (SW6020A) Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C) VOCs (SW8260B)	VOCs (SW8260C) NH VOCs (M8015D)	CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL) SVOCs (SW8270DM SIM)	PAHs (ID-0016)	PAHS (D7363-13) PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SED3.5B	SED3.5B05N	SE	N	5 - 7 ft	1323056.80	448558.14		-15.19	11/12/2013			X													Х				Х			\Box	
SED3.5B	SED3.5B07N	SE	N	7 - 9 ft	1323056.80	448558.14		-15.19	11/12/2013			Х					T i								Х				Х			\Box	
SED3A	SED3A01N	SE	N	1 - 3 ft	1323010.07	448455.78		-11.22	11/7/2013			Х													Х				Х			\Box	\Box
SED3A	SED3A03N	SE	N	3 - 5 ft	1323010.07	448455.78		-11.22	11/7/2013			Х													Х	\Box			Х			\Box	\Box
SED3A	SED3A05N	SE	N	5 - 7 ft	1323010.07	448455.78		-11.22	11/7/2013			Х													Х	\Box			Х			\Box	
SED3A	SED3A07N	SE	N	7 - 9 ft	1323010.07	448455.78		-11.22	11/7/2013			Х													Х				Х	П		П	
SED3B	SED3B01N	SE	N	1 - 3 ft	1323062.88	448464.11		-14.70	11/8/2013			X													Х				Х				
SED3B	SED3B03N	SE	N	3 - 5 ft	1323062.88	448464.11		-14.70	11/8/2013			X													Х				Х				
SED3B	SED3B05N	SE	N	5 - 7 ft	1323062.88	448464.11		-14.70	11/8/2013			X													Х				Х				
SED3B	SED3B07N	SE	N	7 - 9 ft	1323062.88	448464.11		-14.70	11/8/2013			Х													Х				Х				
SED3C	SED3C01N	SE	N	1 - 3 ft	1323124.13	448467.71		-2.75	11/7/2013	>	Χ	X					X		Х	(Х	X			Х				
SED3C	SED3C01R	SE	FD	1 - 3 ft	1323124.13	448467.71		-2.75	11/7/2013			X					Х		Х)	(Х	X			X				
SED3C	SED3C03N	SE		3 - 5 ft	1323124.13	448467.71		-2.75	11/7/2013			X													Х				Χ	Ш		Ш	
SED3C	SED3C03R	SE	FD	3 - 5 ft	1323124.13	448467.71		-2.75	11/7/2013			X	Ш					Ш							Х				Х	Ш		Ш	
SED3C	SED3C05N	SE		5 - 7 ft	1323124.13	448467.71		-2.75	11/7/2013			X													Х				Х	$\perp \perp$		ш	$oldsymbol{oldsymbol{\sqcup}}$
SED3C	SED3C05R	SE	FD	5 - 7 ft	1323124.13	448467.71		-2.75	11/7/2013			X	Ш												Х				Х	Ш	丄	Ш	\perp
SED3C	SED3C07N	SE	N	7 - 9 ft	1323124.13	448467.71		-2.75	11/7/2013			X	Ш				\bot	\bot		$\perp \perp$			\perp		X			_	Х	\sqcup		ш	
SED3C	SED3C07R	SE	FD	7 - 9 ft	1323124.13	448467.71		-2.75	11/7/2013			Х	Ш		\sqcup		\bot	$\bot \bot$		$\perp \perp$					Х			_	Х	\sqcup	_	\bot	
SED4.5B	SED4.5B01N	SE	N	1 - 3 ft	1323163.53	449128.77		-7.44	11/8/2013			X	Ш				\bot	+		$\perp \perp$	\perp	X >			Х	X	_		Х	\sqcup		\bot	
SED4.5B	SED4.5B03N	SE	_	3 - 5 ft	1323163.53	449128.77		-7.44	11/8/2013			X	Ш				++	\bot		\bot			\perp		X	$oldsymbol{oldsymbol{\sqcup}}$	_	-	Х	₩	—	\bot	Щ.
SED4.5B	SED4.5B05N	SE	_	5 - 7 ft	1323163.53	449128.77		-7.44	11/8/2013			X	ш				++	+							X	ightarrow		_	X	₩	+	$oldsymbol{\sqcup}$	\longrightarrow
SED4.5B	SED4.5B07N	SE	_	7 - 9 ft	1323163.53	449128.77		-7.44	11/8/2013			X	\vdash		+	_	+	+		++	\perp		\perp		X	\longrightarrow	_	_	X	++	+	+	——
SED4A	SED4A01N	SE	N	1 - 3 ft	1322976.43	448917.18		-13.12	11/12/2013	_		X	\vdash	_	+	_	+	+	_	++	\perp	_	+	_	X	\longrightarrow	_	_	X	\vdash	+	+	
SED4A	SED4A03N	SE		3 - 5 ft	1322976.43	448917.18		-13.12	11/12/2013	_		X	\vdash	_	+	_	+	+	_	++	\perp		+	_	X	\longrightarrow	_		X	\vdash	+	+	
SED4A	SED4A05N	SE		5 - 7 ft	1322976.43	448917.18		-13.12	11/12/2013	_		X	\vdash	_	+	_	+	+	_	++	\perp	_	+	_	X	\longrightarrow	_		X	\vdash	+	+	
SED4A	SED4A07N			7 - 9 ft	1322976.43				11/12/2013			^	\vdash	-	+		+	+ +	<u></u>	₩,	+			_	X	\rightarrow	_		X	₩	+	+	+
SED4B	SED4B01N	SE		1 - 3 ft	1323088.70	448900.28			11/12/2013		X	X	\vdash	_	+	_	X	+	X	+ + /			+	_	X	X	_		X	₩	_	+	+
SED4B SED4B	SED4B03N	SE SE		3 - 5 ft	1323088.70	448900.28		-5.79 -5.79	11/12/2013		-	X	⊢┼		╁	-	+	++		╁	+		+		X	\dashv			X	₩	+	+	+
SED4B	SED4B05N SED4B07N			5 - 7 ft 7 - 9 ft	1323088.70 1323088.70	448900.28 448900.28		-5.79 -5.79	11/12/2013 11/12/2013	_		^	\vdash		+	_	+	+	_	╁	-			_	X	+	-	_	<u>^ </u>	++	+	+	
SED46	SED4607N SED4C01N	SE		1 - 3 ft	1323146.06	448888.08		-3.66	11/12/2013			^	\vdash			-	+	+	-	+	+		+		T _X	+	-		<u>^ </u>	++	+	+	
SED4C	SED4C01N SED4C03N	SE		3 - 5 ft	1323146.06	448888.08		-3.66	11/12/2013			Ŷ	\vdash	+	+	_	+ +	+	+	+	+		+	_	Y	+	-	+	^ Y	++	+	+	
SED4C	SED4C05N	SE		5 - 7 ft	1323146.06	448888.08		-3.66	11/12/2013	+	+	^	\vdash	+	++		++	++	+	+	+	+	+	+	$\frac{1}{x}$	+	+	++	<u>^ </u>	++	+	+	+
SED4C	SED4C07N	SE		7 - 9 ft	1323146.06	448888.08		-3.66	11/12/2013			X	\vdash			_	+ +	+	_	+	+		+ +		$\frac{1}{X}$	+			$\frac{\lambda}{X}$	++	+	+	+
SED5.5B	SED4C07N SED5.5B01N	SE		1 - 3 ft	1323400.33	449512.52		-6.99	11/12/2013	\dashv	+	^	$\vdash \vdash$	+	++	+	++	++	+	+	+	+	+	\dashv	Y X	+	-	++	X	++	+	+	+
SED5.5B	SED5.5B01N	SE	_	3 - 5 ft	1323400.33	449512.52		-6.99	11/12/2013	+		X	\vdash	+	++	+	++	++	+	+	+	+	+	+	X	+	\dashv	++	$\frac{x}{x}$	+	+	+	+
SED5.5B	SED5.5B05N	SE	_	7 - 9 ft	1323400.33	449512.52		-6.99	11/12/2013	\dashv	+	X	\vdash	+	+	+	++	++	+	+ +	+	\dashv	╅	\dashv	X	+	\dashv	++	$\frac{x}{x}$	+	+	+	+
SED5.5B	SED5.5B05N	SE	_	5 - 7 ft	1323400.33	449512.52		-6.99	11/13/2013	\dashv	+	X	\vdash	+	++	+	++	++	+	++	+	\dashv	╫	\dashv	X	+	\dashv	++	$\frac{\wedge}{X}$	+	+	+	+
SED5A	SED5A01N	SE		1 - 3 ft	1323198.27	449411.76		-6.94	11/8/2013	+		X	\vdash	\dashv	+		++	++	+	++	+	+	+	+	X	+	\dashv		X	+	+	+	+
SED5A	SED5A03N	SE	_	3 - 5 ft	1323198.27	449411.76		-6.94	11/8/2013	\dashv		X	\vdash	+	+	+	++	+	\dashv	++	+	\dashv	+	\dashv	X	+	-	-	X	++	十	+	+
SED5A	SED5A05N	SE		5 - 7 ft	1323198.27	449411.76		-6.94	11/8/2013	\dashv		X	\vdash	+	\vdash	$\neg f$	++	++	\dashv	+	+	+	+	\dashv	X	+	-		$\frac{x}{x}$	+	一	+	$\dashv \dashv$
SED5A	SED5A07N	SE		7 - 9 ft	1323198.27	449411.76		-6.94	11/8/2013	\dashv		X	\vdash		++		+ +	++	\dashv	+ +	+	\dashv	+	$\neg \vdash$	X	+	\dashv		$\frac{\lambda}{X}$	+	+	+	$\dashv \dashv$
	1		ı					<u> </u>	, 5, 25.10												-								· · ·			لب	

SEDBOON SE N S-7 PL 1322006.09 449440.09 4.55 11792015 X X X X X X X X X									wasr	nington, D	C 20	019																						
SELONG SELONGON SE N 1-8 N 2-7 N 15200000 440040 00	Location ID	Sample ID	Matrix ¹	mple Typ	_	Easting	Northing	•			ess (SM	terk	aulic Conductivity Residue (E160.3)	- Oil & Grease (E1	PTOC (E440)	Field Parameters	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D) OCP (SW8081B LL)	Aroclor PCBs (SW8082A)	PCBS (E1668C) VOCS (SW8260B)	VOCs (SW8260C)	CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL) SVOCs (SW8270DM SIM)	PAHs (ID-0016)	PAHS (D7363-13) PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SECOND SECOND SE N 0.5 FT 1322066.09 448540.09 -0.5 FT 1142070 N N N N N N N N N	SED5B	SED5B01N	SE	N	1 - 3 ft	1323266.69	449349.09		-8.51	11/8/2013			X													Х	\Box			Х	TT		TT	
SEDBER SEDBERT SE N 7 - 9 ft 1322208.08 448546.09 4.5 ft 13822035 X X X X X X X X X	SED5B	SED5B03N		N	3 - 5 ft	1323266.69	449349.09		-8.51	11/8/2013			Х													Х				Х				
SEPSIC SEPSICION SE N 1-3 ht 1233371-14 440380.07 1.07 1011/2013 X		SED5B05N	SE	N	5 - 7 ft	1323266.69	449349.09		-8.51	11/8/2013			X													Х	\Box		11	Х	\Box		П	
SEDEC SEDECOSN SE N 3 - 6 1 1232337.14 44938 07 1.197 1111/2013 X X X X X X X X X X X X X X X X X X X	SED5B	SED5B07N	SE	N	7 - 9 ft	1323266.69	449349.09		-8.51	11/8/2013			Х													Х				Х	Π		П	
SEDSG SEPSCOSN SE N 5 - 7 II 12033371-14 449030 07 -1.07 1111/2013 X X		SED5C01N	SE	N	1 - 3 ft	1323337.14	449338.07		-1.87	11/11/2013			Х													Х				Х				
SEDEG SECROTON SE N 7 - 9 ft 1232397.14 44933.07 1.87 1111/2013 X X X X X X X X X X X X X X X X X X X			SE	N	3 - 5 ft	1323337.14				11/11/2013			Х													Х				Х				
SEP08.50 SEP08.5001N SE N 1-3 ft 1323789.17 449651.75 2.64 11752013 X X X X X X X X X				N	5 - 7 ft					11/11/2013			Х													Х				Х				
SED6.5D SED6.5D33N SE N 3 - 4 N 1323798 17 449651.75 2.64 1/25/2013 X				N	7 - 9 ft								X													X				Х			Ш	
SED6.5D SED6.5DONN SE N 7-7 ft 1323796.17 449651.75				N	1 - 3 ft	1323798.17							X													Х				Х				
SED6.5D SED6.5DVTN SE N 7-9 II 1323798.77 449691.75													X									Ш		\perp		X				Х	Ш		Ш	
SED6.5E SED6.6E03N SE N 3-6 ft 1323969.79 4496949.80 Forensics 1.69 11/25/2013 X X X X X X X X X X X X X X X X X X X				N	5 - 7 ft								X									\perp		\perp		X	Ш		$\perp \perp$	Х	Ш	丄	Ш	
SEP0.6E SEP0.6E03N SE N 3 · 5 ft 1323989 / 78 · 449649.36				N									X									\perp				X	\bot			Х	$\bot \bot$		ш	
SED6.5E SED6.5EON SE N 5 - 7 th 1323980-77 449649.38 1.69 11/25/2013 X X				N				Forensics)	X	X					Х		X	Х					X ,	XX				$\perp \! \! \perp$	丄	Ш	
SED6.5E SED6.5EOTN SE N 7-8 ft 1323998,79 449943.36 1.99 11/25/2013 N X N N N N N N N N N N N N N N N N N													X						$\sqcup \bot$			\bot		\bot		X	\bot		+		\bot		Ш	
SED6.5E SED6.SED1R SE FD -3 ft 1323869.79 449649.36 1.69 11/25/2013 X X X X X X X X X											_		X		\perp				\sqcup			\bot		$\bot \bot$		X					\bot		\bot	
SEDBA SEDBAONN SE N 1-3 ft 1323401.29 449707.18 -6.12 11/13/2013											_		X		Ш				$\perp \perp$			\perp		$\bot \bot$		X	44		_		$\bot \bot$		\bot	
SED6A SED6A03N SE N 3-5 ft 1323401.29 449707.18				FD									X		\perp			Х		X L	X			\bot		X	X		_	_	++		\bot	
SED8A SED8AOSN SE N 5-7ft 1323401.29 449707.18 -6.12 11/13/2013 X X X X X X X X X				N							_		X	_	\perp				\vdash			+		\bot			$+\!\!-\!\!\!+$		_	_	++	—	+	
SED6B SED6BOIN SE N 1-3 ft 122424.78 449687.44 -7.64 11/13/2013 X X X X X X X X X											_		X	_	\perp				\vdash			+	_	+			$\dashv \dashv$				++	+	+	
SED6B SED6B03N SE N 3 - 5 ft 1323424.78 449687.44 - 7.64 11/13/2013 X <											4	,	X	4	\bot		4-		\vdash		Н,	. -	_	+	_		+	_	_	_	++	+	₩	
SED6B SED6BOSN SE N 5-7t 1323424.78 449687.44 .7.64 11/13/2013 N N N N N N N N N											/	X	X	_	\bot		4	Х	+ +	<u> </u>	X	++	_	+	_	_	$+$ \times	_	_	_	++	+	$+\!\!-\!\!\!+$	
SED6B SED6BOTN SE N 7-9 ft 1323424.78 449687.44 -7.64 11/13/2013 X N X		•											X		\perp				+			+	_	+		 X 	+		_	_	++	+	$+\!\!-\!\!\!+$	
SED6C SED6C 2 SE N 2 - 2.5 ft 1323525.05 449590.24 -1.84 11/14/2013 X X X X X X X X X											_	_	X	-			-		╀	-		+		+ +		 X 	+		+	X	++	+	+	
SED6C SED6C01N SE N 1-3 ft 1323525.05 449590.24 -1.84 11/14/2013											_		$\frac{1}{\sqrt{1}}$	-	+				+	-	\vdash	+	_	+		+	$\frac{1}{\sqrt{1}}$		+	<u> </u>	++	+	++	——
SED6C SED6C03N SE N 3 - 5 ft 1323525.05 449590.24 Forensics -1.84 11/14/2013 X N X											_	-	<u> </u>	+	+		-	_	╁	+	\vdash	+	+	++	-	+++	- ^- 		++	V	++	+	₩	——
SED6C SED6CO5N SE N 5 - 7 ft 1323525.05 449590.24 -1.84 11/14/2013 X N N X N <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>^</td><td>-</td><td>+</td><td></td><td>-</td><td></td><td>╁</td><td>-</td><td>├</td><td>+</td><td>_</td><td>+</td><td></td><td>1 ^ </td><td>+</td><td></td><td></td><td>^</td><td>+++</td><td>+</td><td>+</td><td></td></t<>				_							-		^	-	+		-		╁	-	├	+	_	+		1 ^	+			^	+++	+	+	
SED6C SED6CO7N SE N 7 - 9 ft 1323525.05 449590.24 -1.84 11/14/2013 X N X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>_</td><td>- ' '</td><td>+</td><td>+</td><td></td><td>-</td><td>_</td><td>++</td><td>+</td><td>\vdash</td><td>+</td><td>+</td><td>+</td><td>+</td><td></td><td>+</td><td>-</td><td>-</td><td>_</td><td>+^+</td><td>+</td><td>₩</td><td></td></t<>											+	_	- ' '	+	+		-	_	++	+	\vdash	+	+	+	+		+	-	-	_	+^+	+	₩	
SED7.5D SED7.5D01N SE N 1 - 3 ft 1323906.87 449865.94 2.55 11/25/2013 X N N X											+	+	 ^ 	+	+		+		+	+	\vdash	+	+	+	-		+	-			++	+	₩	+
SED7.5D SED7.5D03N SE N 3 - 5 ft 1323906.87 449865.94 Forensics 2.55 11/25/2013 X											-		- ^ 	+	+							+	+	+			++				++	+	+	
SED7.5D SED7.5D05N SE N 5 - 6.8 ft 1323906.87 449865.94 2.55 11/25/2013 X N N N S - 6.8 ft 1323906.87 449865.94 2.55 11/25/2013 X N N N N N 1 - 3 ft 1324043.58 449782.68 1.60 11/25/2013 X N N N N N N N N N N S - 7 ft 1324043.58 449782.68 1.60 11/25/2013 X N <											-		X	+	+				+		\vdash	+	-	+			$\frac{1}{x}$		_	_	++	+	+	_
SED7.5E SED7.5EO1N SE N 1 - 3 ft 1324043.58 449782.68 1.60 11/25/2013 X N X											+	+	$\frac{1}{x}$	+	+	-	+	+	++	+	\vdash	+	+	+	+	 x '	+	-+	_	_	++	+	+	
SED7.5E SED7.5E03N SE N 3 - 5 ft 1324043.58 449782.68 1.60 11/25/2013 X IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII											+		$\frac{1}{x}$	+	+		+		+ +	+		+ +	_	+		$\frac{1}{x}$	+	_			++	十	+	
SED7.5E SED7.5E05N SE N 5 - 7 ft 1324043.58 449782.68 1.60 11/25/2013 X N N X				_									TX X	+	+				+	1		+		+			+		-		++	+	+	
SED7.5E SED7.5E07N SE N 7 - 9 ft 1324043.58 449782.68 1.60 11/25/2013 X N N X											\dashv		X	\dashv	+	\vdash	+	\vdash	+	+	\vdash	+ +	+	+	\top	$\frac{x}{x}$	+	\dashv	+	X	++	十	+	\dashv
SED7A SED7A01N SE N 1 - 3 ft 1323526.84 449965.98 -3.94 11/13/2013 X Image: Normal Control of the											\dashv		X	\dashv	\top	\vdash	1	\dashv	+ +	1	\vdash	+	\neg	+ +	\top	X	$\dashv \dashv$	\dashv	+	Х	+	+	+	+
SED7A SED7A03N SE N 3 - 5 ft 1323526.84 449965.98 -3.94 11/13/2013 X Image: Control of the control											\dashv		X	\dashv	\top	\vdash		\vdash	1 1			1 1		+ +	\top	X	+	\dashv	++	Х	++	\top	+	\blacksquare
SED7A SED7A05N SE N 5 - 7 ft 1323526.84 449965.98 -3.94 11/13/2013 X Image: Control of the control													X		\top				+			11		+		X	$\dashv \dashv$	-			+	十	\vdash	\Box
SED7A SED7A07N SE N 7 - 9 ft 1323526.84 449965.98 -3.94 11/13/2013 X Image: Control of the control													x		\top				1 1			1 1		+		X	$\dashv \dashv$	\neg	+	Х	+	\top	\vdash	\Box
SED7B SED7B01N SE N 1 - 3 ft 1323647.81 449847.44 -2.31 11/13/2013 X X X X X X X X X X X X X X X X X X X											\dashv	\top	X	\dashv	\top	\vdash		\vdash	1 1			1 1		+ +	\top		+	\dashv	+	• •	++	\top	+	一
											1	X	X		\top			Х		x	Х			+		X	X	\neg			+	十	\vdash	\Box
	SED7B										+		x		\top							1 1		+		X	$\dashv \dashv$	\neg	_		+	十	\vdash	\Box

SECTION SET NO. 1 - 3									wasr	nington, D	C 20	UIS																						
SEPTON SEPTONIN SE N. 1-5 II 15201-123 440785-58 2-26 115201-13 X X X X X X X X X X X X X X X X X X X	Location ID	Sample ID	Matrix ¹	mple Typ	_	Easting	Northing	•			Size (Dz	terk	aulic Conducti Residue (E16	- Oil & Grease	Amonia (E350.1) PTOC (E440)	Field Parameters	Gamma Radioassay DOC (SM5310C)	TOC (LKTOC)	Polonium-210 (PO-01-RC) Metals (SW6010)	Metals (SW6020A)	Mercury (SW7470A)	Mercury (SW7471B) Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C) TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDS/PCDFS (SW8Z9UA) Total Cvanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SECTION SET NO. 1 - 3	SED7B	SED7B05N	SE	N	5 - 7 ft	1323647.81	449847.44		-2.31	11/13/2013			Х													X				Х	\Box			
SECTION SECTION SE N 1-3 ft 1322814.32 49798.58 2.28 11752011 X	SED7B			N	7 - 9 ft								Х													Х				Х		П		
SEDYDON SE N 5-7 ft 1323814.32 449780.56 2.26 117552019 X	SED7D			N	1 - 3 ft		449789.58		2.26				Х													Х				Х		П	\top	
SEDYOON SE N	SED7D	SED7D03N	SE	N	3 - 5 ft	1323814.32	449789.58		2.26	11/25/2013			Х													Х				Х		П	\Box	\Box
SEOTE SEDTEONN SE N 3-5 ft 1329342,71 449728,24 fromsloc 1.81 11/25/2013 X X X X X X X X X X X X X X X X X X X	SED7D	SED7D05N	SE	N	5 - 7 ft	1323814.32	449789.58		2.26	11/25/2013			Х													Х				Х				
SECTE SECTEONN SE N 3 - 5 ft 132942 71 49726 24 1.81 11/25/2013 X X X X X X X X X X X X X X X X X X X	SED7D			N	7 - 9 ft	1323814.32							Х													Х				Х				
SEDTE SEDTEONN SE N 5 - 6 II 1323492.71 449720.24 1.81 117252013 X X X X X X X X X X X X X X X X X X X	SED7E			N	1 - 3 ft			Forensics					X													Х				Х	Х			
SEDYF SETYFOND SE N 1-3 ft 133411837 449680.56	SED7E			N	3 - 5 ft								X													Х				Х		Ш	丄	
SEDYF SEDYFONN SE N 1-3 ft 13241987 449680-56	SED7E			N	5 - 6 ft				1.81				X													Х				Х				
SEDTF SEDTFONN SE N 3-51 1122411987 449600 56 2.11 1/292014 X X	SED7F			N							Χ		Х	Ш				X		Х		Х				Х				Х		Ш	┸	
SEDYF				N	1 - 3 ft								X	Ш														Х				Ш	丄	$\perp \perp \perp$
SEDTG SEDTGOTN SE N 7-9 ft 1324119.87 449660.56 2.11 1/23/2014 X S SEDTGOTN SE N 1-3 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTG SEDTGOTN SE N 1-3 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTG SEDTGOTN SE N 3-5 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTG SEDTGOTN SE N 3-5 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTG SEDTGOTN SE N 7-9 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTG SEDTGOTN SE N 7-9 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTGOTN SE N 7-9 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTGOTN SE N 7-9 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTGOTN SE N 7-9 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTGOTN SE N 7-9 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTGOTN SE N 7-9 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTGOTN SE N 7-9 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTGOTN SE N 7-9 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTGOTN SE N 7-9 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTGOTN SE N 7-9 ft 1324216.84 449619.14 1.59 1/30/2014 X X S SEDTGOTN SE N 7-9 ft 1324216.87 449619.14 1.59 1/30/2013 X X S SEDTGOTN SE N 7-9 ft 1324216.87 449619.14 1.79/2013 X X S SEDTGOTN SE N 7-9 ft 1324216.72 450/20.80 8-3.4 11/13/2013 X X S SEDTGOTN SE N 7-9 ft 1324216.72 450/20.80 8-3.4 11/13/2013 X X S SEDTGOTN SE N 7-9 ft 1324217.01 450/20.80 8-3.4 11/13/2013 X X S SEDTGOTN SE N 7-9 ft 1324217.01 450/20.80 8-3.4 11/13/2013 X X S SEDTGOTN SE N 7-9 ft 1324217.01 450/20.20 4													Х													Х				Х		$\bot \bot$		$\perp \perp \downarrow \downarrow$
SEDTG SEDTGOIN SE N 1-3 ft 1324216.84 449619.14 1.59 1/302014 X X					-								Х	Ш												Х				Х		Ш	丄	$\perp \perp \perp$
SEDTG SEDTGOIR SE FD 1-3 ft 1324216,84 449619.14 1.59 1/30/2014 X X				N									Х	Ш												Х						$\bot \bot$		$\perp \perp \downarrow \downarrow$
SEDTG SEDTGOSN SE N 3-5 ft 1324216.84 449619.14 1.59 1.502014 X X X X X X X X X													Х	Ш		\perp				\sqcup		_	\perp	_	\perp	Х	\sqcup					$\bot \bot$	_	
SED7G SED7GOSN SE N 5-7 ft 1324216.84 449619.14 1.99 1/30/2014 X				FD									Х	Ш		\perp		$\bot\bot$		Ш		_		_	\perp	Х	\sqcup				\bot	\sqcup	4	\bot
SED7G SED7GOTN SE N 7-9 ft 1324216.84 44491-14 1.59 1/30/2014 X X X X X X X X X X X X X X X X X X X				N									X	Ш		\bot		++				_	\perp	_		X	\sqcup			_	—	++	—	+
SEDB.5B SEDB.5BOTN SE N 1-3 ft 1323863.72 450263.69													X	ш		+		++		\vdash		_		_			\vdash			_	$-\!\!\!\!\!+\!\!\!\!\!\!-$	₩	+	+++
SED8.5B SED8.5BO3N SE N 3 - 5 ft 1323863.72 450283.69											_	\perp	X	ш		+		++		\vdash		_	\perp	_	\perp		\vdash				\dashv	₩	+	+++
SED8.5B SED8.5BON SE N 5 - 7 ft 1323863.72 450283.69 8.834 11/13/2013 X X SED8.5BON SE N 7 - 9 ft 1323863.72 450283.69 8.834 11/13/2013 X X SED8.5BON SE N 7 - 9 ft 1323863.72 450283.69 8.834 11/13/2013 X X SED8.6NON SE N 1-3 ft 1323827.03 450167.52 -1.82 11/13/2013 X X SED8.6NON SE N 3 - 5 ft 1323827.03 450167.52 -1.82 11/13/2013 X X SED8.6NON SE N 3 - 5 ft 1323827.03 450167.52 -1.82 11/13/2013 X X SED8.6NON SE N 5 - 7 ft 1323827.03 450167.52 -1.82 11/13/2013 X X SED8.6NON SE N 5 - 7 ft 1323827.03 450167.52 -1.82 11/13/2013 X X SED8.6NON SE N 5 - 7 ft 1323827.03 450167.52 -1.82 11/13/2013 X X SED8.6NON SE N 5 - 7 ft 1323827.03 450167.52 -1.82 11/13/2013 X X SED8.6NON SE N 5 - 7 ft 1323827.03 450167.52 -1.82 11/13/2013 X X SED8.6NON SE N 5 - 7 ft 1323827.03 450167.52 -1.82 11/13/2013 X X SED8.6NON SE N 5 - 7 ft 1323829.75 450124.44 -6.64 11/13/2013 X X SED8.6NON SE N 5 - 7 ft 1323899.75 450124.44 -6.64 11/13/2013 X X SED8.6NON SE N 5 - 7 ft 1323899.75 450124.44 -6.64 11/13/2013 X X SED8.6NON SE N 7 - 9 ft 1323899.75 450124.44 -6.64 11/13/2013 X X SED8.6NON SE N 7 - 9 ft 1323899.75 450124.44 -6.64 11/13/2013 X X SED8.6NON SE N 7 - 9 ft 1323899.75 450124.44 -6.64 11/13/2013 X X SED8.6NON SE N 7 - 9 ft 1323899.75 450124.44 -6.64 11/13/2013 X X SED8.6NON SE N 7 - 9 ft 1323891.54 450082.60 -1.56 11/14/2013 X X SED8.6NON SE N 7 - 9 ft 1323810.54 450082.60 -1.56 11/14/2013 X X SED8.6NON SE N 5 - 7 ft 1323810.54 450082.60 -1.56 11/14/2013 X X SED8.6NON SE N 7 - 9 ft 1323810.54 450082.60 -1.56 11/14/2013 X X SED8.6NON SE N 7 - 9 ft 1323810.54 450082.60 -1.56 11/14/2013 X X SED8.6NON SE N 7 - 9 ft 1323810.54 450082.60 -1.56 11/14/2013 X X SED8.6NON SE N 7 - 9 ft 1323810.54 450082.60 -1.56 11/14/2013 X X SED8.6NON SE N 7 - 9 ft 1323810.54 450082.60 -1.56 11/14/2013 X X SED8.6NON SE N 7 - 9 ft 1323810.54 450082.60 -1.56 11/14/2013 X X SED8.6NON SE N 7 - 9 ft 1323810.54 450082.60 -1.56 11/14/2013 X X SED8.6NON SE N 7 - 9 ft 1323810.54 450082.60 -1.56 11/14/2013 X X SED8.6NON SE N 7 - 9 ft 1323810.54 450082.60 -1.56 11/14/201											_	_	X	$\vdash \vdash$	_	+	_	++	4	\vdash	\perp	_	\perp	_	\perp		-	_		_	\rightarrow	₩	4	+++
SED8.5B SED8.6DTN SE N 7 - 9 ft 1323863.72 450263.69												\perp	X	\vdash	_	+	_	++	4	\vdash		_	\perp	_	\perp		_			_	\rightarrow	\vdash	+	+++
SEDBA SEDBAOIN SE N 1-3 ft 1323627.03 450167.52 -1.82 11/13/2013 X X X X X X X X X X X X X X X X X X X													X	\vdash		+		++		\vdash		_				X	\vdash			_	+	++	+	+
SEDBA SEDBAO3N SE N 3 - 5 ft 1323627.03 450167.52 -1.82 11/13/2013 X X				_								+	X	┝	_	+		++	-			_		_	\perp	X	╀			_	+	++	+	+++
SED8A SED8AOSN SE N 5-7ft 1323627.03 450167.52 -1.82 11/13/2013											_	+	X	\vdash		+		++			+	-	+	-	_	X	+				+	₩	+	+++
SED8A SED8AO7N SE N 7-9 ft 1323627.03 450167.52 -1.82 11/13/2013 X X X X X X X X X												+	X	₩		+	-	+	-	⊢⊢	+	+	+	-	+	X	₩	-	_		+	₩	+	+++
SED8B SED8BOIN SE N 1 - 3 ft 1323699.75 450124.44 -6.64 11/13/2013 X N X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>┢</td><td></td><td>+</td><td></td><td>+</td><td>-</td><td>\vdash</td><td>+</td><td>-</td><td>+</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>+</td><td>╁┼┼</td><td>+</td><td>+++</td></t<>												-		┢		+		+	-	\vdash	+	-	+	-				-			+	╁┼┼	+	+++
SED8B SED8BO3N SE N 3 - 5 ft 1323699.75 450124.44 -6.64 11/13/2013 X N X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td></td><td>\vdash</td><td></td><td>+</td><td></td><td>++</td><td></td><td>\vdash</td><td>+</td><td>+</td><td>+</td><td>\dashv</td><td>+</td><td></td><td>-</td><td></td><td></td><td>-</td><td>+</td><td>++</td><td>+</td><td>+</td></t<>											-	+		\vdash		+		++		\vdash	+	+	+	\dashv	+		-			-	+	++	+	+
SED8B SED8B05N SE N 5 - 7 ft 1323699.75 450124.44 -6.64 11/13/2013												+	^ Y	\vdash	+	+	-	++	+	\vdash		+	+	+	+						+	₩	+	+
SED8B SED8BO7N SE N 7 - 9 ft 1323699.75 450124.44 -6.64 11/13/2013 X N N X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>X</td><td>H</td><td>+</td><td>+</td><td></td><td>++</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td>_</td><td></td><td></td><td></td><td>-</td><td>+</td><td>++</td><td>+</td><td>+++</td></t<>													X	H	+	+		++				-		-		_				-	+	++	+	+++
SED8C SED8C01N SE N 1 - 3 ft 132810.54 450062.60 -1.56 11/14/2013 X <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td>X</td><td>\vdash</td><td>_</td><td>+</td><td></td><td>+</td><td>+</td><td>\vdash</td><td>+</td><td>+</td><td>+</td><td>\dashv</td><td>+</td><td></td><td>_</td><td></td><td></td><td>_</td><td>+</td><td>\vdash</td><td>+</td><td>+</td></th<>											-	+	X	\vdash	_	+		+	+	\vdash	+	+	+	\dashv	+		_			_	+	\vdash	+	+
SED8C SED8C03N SE N 3 - 5 ft 1323810.54 450062.60 -1.56 11/14/2013 X N X <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td>X</td><td>\vdash</td><td>+</td><td>+</td><td>+</td><td>T X</td><td>+</td><td>X</td><td>+</td><td>x</td><td>+</td><td>-</td><td>+</td><td></td><td>+</td><td>X</td><td>-</td><td></td><td>+</td><td>\vdash</td><td>+</td><td>+++</td></t<>											+		X	\vdash	+	+	+	T X	+	X	+	x	+	-	+		+	X	-		+	\vdash	+	+++
SED8C SED8C05N SE N 5 - 7 ft 1323810.54 450062.60 -1.56 11/14/2013 X N N X N <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- ´</td><td>+</td><td>X</td><td>\vdash</td><td>+</td><td>+</td><td></td><td>+^+</td><td></td><td> ^ </td><td></td><td>$\stackrel{\sim}{+}$</td><td>+</td><td>+</td><td>+</td><td>- ' '</td><td>1 1</td><td></td><td></td><td>- ' '</td><td>+</td><td>\vdash</td><td>十</td><td>+</td></t<>											- ´	+	X	\vdash	+	+		+^+		 ^ 		$\stackrel{\sim}{+}$	+	+	+	- ' '	1 1			- ' '	+	\vdash	十	+
SED8C SED8CO7N SE N 7 - 9 ft 1323810.54 450062.60 -1.56 11/14/2013 X Image: Control of the control	SED8C										\dashv	+	X	\vdash	\dashv	++	\dashv	++	+	$\vdash \vdash$	+	-	+	-+			+				+	+	十	+++
SED9.5B SED9.5B01N SE N 1 - 3 ft 1324031.21 450586.65 -1.60 11/11/2013 X N N N X	SED8C										\dashv	+	X	\vdash	\dashv	+	+	++	+	\vdash	+	\dashv	+	\dashv	\top	$\frac{x}{x}$	\vdash		\dashv	X	+	+	十	+++
SED9.5B SED9.5B03N SE N 3 - 5 ft 1324031.21 450586.65 Forensics -1.60 11/11/2013 X Image: Control of the contro	SED9.5B										\dashv	\top	X	\vdash	\dashv	$\dagger \dagger$	\dashv	++	\top	\vdash	11	\dashv	\top	\dashv	\top	$\frac{1}{x}$	+		\dashv	X	十	\vdash	十	+++
SED9.5B SED9.5B05N SE N 5 - 7 ft 1324031.21 450586.65 -1.60 11/11/2013 X Image: Control of the con	SED9.5B										\neg	\top	X	\sqcap		T	\neg	+	\top	一十	1	\neg	\top	-	\top	X	Х		\vdash	X	\top	\sqcap	十	+
SED9.5B SED9.5B07N SE N 7 - 9 ft 1324031.21 450586.65 -1.60 11/11/2013 X IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SED9.5B												Х	\sqcap	\neg	T	\dashv	$\dagger \dagger$	1	H		\neg	11		\top	Х	Ħ		\top	X	十	\sqcap	十	+
SED9A SED9A01N SE N 1 - 3 ft 1323815.06 450506.80 -4.25 11/11/2013 X IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SED9.5B											\top	X	\sqcap	\dashv	T	\dashv	+	十一	\sqcap		\neg	\top		\top	Х	T^{\dagger}			X	\top	\sqcap	十	+
SED9A SED9A03N SE N 3 - 5 ft 1323815.06 450506.80 -4.25 11/11/2013 X X X X X X X X X X X X X X X X X X X	SED9A											11	Х	\sqcap	\neg	T^{\dagger}	\dashv	\top	\top	\sqcap	1 1	\dashv	\top	\neg	\top	Х	\sqcap		\Box	X	\top	\sqcap	十	+
	SED9A												Х	\Box		T^{\dagger}		\top					T		\sqcap	Х				X	\top	\sqcap	\top	+
SED9A SED9A05N SE N 5 - 7 ft 1323815.06 450506.80 -4.25 11/11/2013 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	SED9A	SED9A05N	SE	N	5 - 7 ft	1323815.06	450506.80		-4.25	11/11/2013			X										JT			Х	\sqcap			X		\sqcap	╗	

Control Description Desc									wasr	ington, D	C 20	<i>)</i> 019																					
SEDBE SEDBERT SE N. 1-311 12289119 490407.75	Location ID	Sample ID	Matrix ¹	mple Typ	_	Easting	Northing	•			MS) ssar	rain terk	aulic Conductivity Residue (E160.3)	- Oil & Grease (E1	Amonia (E330.1) PTOC (E440)	Field Parameters	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C) TPH-GRO (SW8015D)	OCP (SW8081B LL)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A) Total Cvanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SEDBB SEDBBBON SE N S-77 13239415 480407.75 4.20 117172013 X X X X X X X X X	SED9B	SED9B01N	SE	N	1 - 3 ft	1323894.15	450467.75		-9.20	11/11/2013			X													X T			Х		\prod	\Box	
SEDBB SEDBBBON SE N S-77 13239415 480407.75 4.20 117172013 X X X X X X X X X				N									Х													X			Х		\Box		111
SEPOIG SEPOIGO SE FD 1-3 1323901 169 49042372 1-67 1111/2013 X X X X X X X X X		SED9B05N	SE	N	5 - 7 ft	1323894.15	450467.75		-9.20	11/11/2013			Х									11				X			Х		\Box	\top	\Box
SEDIC SEDICION SE N 3 - 5 ft 1323981 98 450423 72 -1.67 419192015 X X X X X X X X X	SED9C	SED9C01N	SE	N	1 - 3 ft	1323961.98	450423.72		-1.67	11/11/2013			Х					Х)		Х					X	Х		Х		\Box	\Box	\Box
SEPOIC SEPOICON SE N 5 - 7 1939961 98 450423.72 1.07 11/11/2013 X X X X X X X X X		SED9C01R	SE	FD	1 - 3 ft	1323961.98	450423.72		-1.67	11/11/2013			Х					Χ	\	(Х					X	Х		Х				
SEDBOC SEDBOCN SE N 7-9 ft 1322961.99 45042.72 1-167 1111/2013 X			SE	N	3 - 5 ft	1323961.98			-1.67	11/11/2013			Х													X			Х				
SEDIAA SEDIAGNIN SE N 1-3 ft 132399518 450826.25 1-14.31 111/2013 X X X X X X X X X				N	5 - 7 ft	1323961.98				11/11/2013			Х													X			Х				
SEPIDA SEPIDAGNSN SE N 3 - 5 ft 323989 18 459086 25 -14.31 11/12/013 X X X X X X X X X				Ν	7 - 9 ft								Х													X			Х		Ш		
SEDIOA SEDIOADNA SE N 7-7ft 1323999-18 409826.25 -14.31 11/11/2013 X X X X X X X X X				N	1 - 3 ft				-14.31				X													X			Х				
SEDIOA SEDIOAD7N SE N 7-9 ft 1323969.18 450826.26 -14.31 11/12/013 X X X X X X X X X													X									Ш			1 2	X			Х		Ш		$\perp \perp \perp$
SED10B SED10B03N SE N 1-3 ft 1324041 53 450790 50 7-99 11/12/013 X X X X X X X X X													X									\perp			1 2	X			Х		Ш	\bot	$\perp \perp \perp$
SED106				N									X									\perp			;	X	oxdot		Х	oxdot	$\perp \perp \downarrow$		\bot
SED10B SED10G3N SE N 5 - 6 ft 13240415.3 460790.50				N								X	X					Х)	(Х				1 2	X	Х		Х		ш	\bot	$\perp \perp \perp$
SEDIOC SEDIOCOIN SE N 1-3 ft 132411283 450738.10 1.49 11/11/2013 X X X X X X X X X				_									X									$\perp \perp$				X	oxdot			oxdot	$\bot \bot$		\bot
SEDIOC SEDIOCOSN SE N 3 - 5 ft 1324112.83 450738.10				N							_		X		\perp							\bot			11	X		$\perp \perp$			$\bot \bot$	_	$\perp \perp \parallel$
SEDIOC SEDIOCON SE N 5-7ft 1324112.83 450738.10 Forensics 1.49 11/11/2013 X X X X X X X X X X X X X X X X X X X				N							_		X									\bot			11	X		$\perp \perp$			$\bot \bot$	_	+
SEDIOC SEDIOCON SE N 7-9 ft 1324112.83 45073.04 Forensics 1.49 11/11/2013 X X X X X X X X X				N									X									\bot		$\perp \perp$	1 1	X	oxdot	$\perp \perp$	_	\vdash	++	\bot	+
SEDBACK11											_		X				_					+		\perp	1	X	\vdash	+	_	 	++	+	+++
SEDBACK11											_	_	X	_			_					+		\perp	+ + :	X	\vdash	++		X	++	+	+
SEDBACK11 SEDBACK1106N SE N 5-7f 132228405 446970.24 -2.54 11/15/2013 N N N N N N N N N											_	_		4	\perp		_				_	+	_		_	_		++	_		++	+	+++
SEDBACK12 SEDBACK1201N SE N 1-3 ft 1321502.15 444821.89 1.112 11/14/2013 X X X X X X X X X								Forensics			_			4	\perp		_					+	_		-	_		++	_		++	+	+++
SEDBACK12 SEDBACK1203N SE N 3 - 5 ft 1321502.15 444821.89 -1.12 11/14/2013 N N N N N N N N N				N								V .							Н,	,	, ,	+			++:	X		+	_	\vdash	++	+	+
SEDBACK12 SEDBACK1205N SE N 5-7 ft 1321502.15 444821.89 -1.12 11/14/2013 N N N N N N N N N				N							- +	* -	\vdash	-			+-	X	 		X		-	++	++:	X	<u> </u>	╀	_	\vdash	++	+	+++
SEDBACK12 SEDBACK1207N SE N 7-8 ft 1321502.15 444821.89 -1.12 11/14/2013											_		\vdash	-			-					+		++	+ + :	<u>X </u>	\vdash	+	_	$\vdash\vdash$	++	+	+++
SEDBACK13 SEDBACK1301N SE N 1 - 3 ft 1320694.37 442914.41 Forensics -9.84 11/14/2013 N N N N N N N N N											<u>+</u>	-		+	+	-	+		\vdash	+	-	+	-	+ +	+++	<u>X </u>	\vdash	╁		\vdash	++	+	+++
SEDBACK13 SEDBACK1303N SE N 3 - 5 ft 1320694.37 442914.41 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 11/14/2013 -9.84 -											-			-			-			-		+	-	+		^		╁			++	+	+++
SEDBACK13 SEDBACK1305N SE N 5 - 7 ft 1320694.37 442914.41 -9.84 11/14/2013 N N X X											-		H	-	+		+			+	\vdash	+	_	++		_	\vdash	++	_	 ^	++	+	+++
SEDBACK13 SEDBACK1307N SE N 7 - 8 ft 1320694.37 442914.41 -9.84 11/14/2013 N N N N 7 - 8 ft 1320694.37 442914.41 -9.84 11/14/2013 N N N N N N 1 - 3 ft 1313502.26 439976.25 Forensics -6.01 11/12/2013 X </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>-</td> <td></td> <td>+</td> <td>+</td> <td></td> <td>+</td> <td></td> <td>\vdash</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td></td> <td>_</td> <td>\vdash</td> <td>+</td> <td></td> <td>\vdash</td> <td>++</td> <td>+</td> <td>+++</td>				-							+	-		+	+		+		\vdash	+	+	+	+	+		_	\vdash	+		\vdash	++	+	+++
SEDBACK15 SEDBACK1501N SE N 1 - 3 ft 1313502.26 439976.25 -6.01 11/12/2013 X											-			+			+					+				_		+	_		++	+	+++
SEDBACK15 SEDBACK1503N SE N 3 - 5 ft 1313502.26 439976.25 Forensics -6.01 11/12/2013 X N SEDBACK1505N SE N 5 - 7 ft 1313502.26 439976.25 -6.01 11/12/2013 X N N N N 7 - 9 ft 1313502.26 439976.25 -6.01 11/12/2013 X N N N N N N N 7 - 9 ft 1313502.26 439976.25 -6.01 11/12/2013 X N											٠	X	X	\dashv	+		+	X			X	+ +	+			_	X	++			++	+	+++
SEDBACK15 SEDBACK1505N SE N 5 - 7 ft 1313502.26 439976.25 -6.01 11/12/2013 X N N N 7 - 9 ft 1313502.26 439976.25 -6.01 11/12/2013 X N N N 7 - 9 ft 1313502.26 439976.25 -6.01 11/12/2013 X N				-							+	$\stackrel{\sim}{+}$	$\frac{1}{x}$	+	+		+		 	+	 ^	+	+		+ + :	X	 ^ -	+	_	Hx	++	+	+++
SEDBACK15 SEDBACK1507N SE N 7 - 9 ft 1313502.26 439976.25 -6.01 11/12/2013 X N N N 7 - 9 ft 1313502.26 439976.25 -6.01 11/12/2013 X N N N N 1 - 3 ft 1327084.09 465951.44 -1.81 1/31/2014 X											+		$\frac{1}{x}$	+	+		+					+ +	+		++	X	\vdash	+		 ^	++	+	+++
SEDBACK2 SEDBACK201N SE N 1 - 3 ft 1327084.09 465951.44 -1.81 1/31/2014 X											-		X									+				_		+	_	\vdash	++	+	+++
SEDBACK3 SEDBACK303N SE N 3 - 3.6 ft 1329107.33 462717.77 -0.44 11/14/2013 Indicate of the content o				N								x 🗆	X	\dashv	+	$\vdash \vdash$	+	Х	 		l x		+	++		x \perp	X	+	$\frac{1}{X}$	\vdash	+	十	++-
SEDBACK3 SEDBACK301N SE N 1 - 3 ft 1329107.33 462717.77 -0.44 11/15/2013 N				N							+	1		\dashv	\top	\vdash	\top		H	\top	 	+	+	+	++	x 		+ +	$\frac{1}{x}$	\vdash	+	+	+++
SEDBACK4 SEDBACK401N SE N 1 - 3 ft 1329783.99 457920.60 Forensics -6.88 11/14/2013 X </td <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\dashv</td> <td></td> <td></td> <td>\dashv</td> <td>\top</td> <td>\vdash</td> <td>1</td> <td></td> <td></td> <td>\top</td> <td>\vdash</td> <td>1 1</td> <td>\dashv</td> <td>+</td> <td></td> <td>x T</td> <td>\vdash</td> <td>1 </td> <td>$\frac{1}{X}$</td> <td>\vdash</td> <td>+</td> <td>\top</td> <td>+++</td>				_							\dashv			\dashv	\top	\vdash	1			\top	\vdash	1 1	\dashv	+		x T	\vdash	1	$\frac{1}{X}$	\vdash	+	\top	+++
SEDBACK4 SEDBACK403N SE N 3 - 4 ft 1329783.99 457920.60 -6.88 11/14/2013 X IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII												Х	X	\dashv			1	Х			X		\top	+		хх	Х				+	十	+
SEDBACK5 SEDBACK501N SE N 1 - 3 ft 1326967.67 454617.45 -5.29 11/14/2013 X													X							\top		1 1	\dashv	+		x T		1	X		+	\top	+
SEDBACK5 SEDBACK503N SE N 3 - 5 ft 1326967.67 454617.45 Forensics -5.29 11/14/2013 X X X X X X X X X X X X X X												х	X	\dashv			1	Х			X		\top	+		x 📗	Х		_		+	十	+
											\neg		X	\dashv			1			\top		\top	\top	\vdash	1 1	хх		\dagger	_	Πx	\top	十	+
			_								\neg	\neg	X	十	\top		1		\sqcap	\top		11	\top	\vdash	1 1	x l	\sqcap	\top	X	\sqcap	\sqcap	\top	+

								Wasl	nington, D	C 20	019																							
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	ırdnes	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab) Total Residue (E160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1) PTOC (E440)	Field Parameters	Gamma Radioassay DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Metals (SW6020A) Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015R)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260C)		CSIA (VOCS) (PAE-CSIA-004) SVOCS (SW8270D LL)	SVOCS (SW8270DM SIM)	PAHS (ID-0016) PAHS (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B) Free Cyanide (SW9014)	Sulfide (SW9034)
SEDBACK5	SEDBACK507N	SE	N	7 - 8 ft	1326967.67	454617.45		-5.29	11/14/2013			X													Х	П		\Box	Х	\prod			\top	П
SEDBACK6	SEDBACK601N	SE	N	1 - 3 ft	1326311.59	454054.19		-0.51	11/15/2013		X				1 1		Х		Х	\ \					Х	П	Х	П	X	.11				П
SEDBACK6	SEDBACK603N	SE	N :	3 - 5 ft	1326311.59	454054.19		-0.51	11/15/2013						T										Х	П		П	Х	. 1				
SEDBACK6	SEDBACK605N	SE	N :	5 - 7 ft	1326311.59	454054.19		-0.51	11/15/2013																Х			П	X					
SEDBACK6	SEDBACK607N	SE	N	7 - 9 ft	1326311.59	454054.19		-0.51	11/15/2013																Х				X					
WSED1	WSED101N	SE	N	1 - 3 ft	1323146.52	448403.78		-1.68	11/15/2013		X						X		Х	\					Х		Х		Х					
WSED1	WSED103N	SE	_	3 - 5 ft	1323146.52	448403.78		-1.68	11/15/2013									\Box							X	\Box		\Box	X			\Box	\bot	Ш
WSED1	WSED105N	SE	N :	5 - 7 ft	1323146.52	448403.78		-1.68	11/15/2013																Х				X					
WSED1	WSED107N	SE	N	7 - 9 ft	1323146.52	448403.78		-1.68	11/15/2013																Х				X			Ш		
WSED2	WSED201N	SE	N	1 - 3 ft	1323124.83	448582.42		-1.53	11/15/2013	, ,	X						Х		X	>					Х		Х		X					
WSED2	WSED203N	SE	N :	3 - 5 ft	1323124.83	448582.42		-1.53	11/15/2013																Х				X					
WSED2	WSED205N	SE	N :	5 - 7 ft	1323124.83	448582.42		-1.53	11/15/2013																Х				Х					
WSED2	WSED207N	SE	N	7 - 9 ft	1323124.83	448582.42	Forensics	-1.53	11/15/2013																Х	X			X					
Phase II Landside Mobiliza	ation 1, Task 1: Onsite	Monitoring	y Well	Redevelopm	ent and Resar	npling																												
MW01A	MW01A122216N	WG	N		1323686.71	448230.77		12.48	12/22/2016																	X	Х		Х			X		
MW01A	MW01A122216R	WG	FD		1323686.71	448230.77		12.48	12/22/2016																	X	Х	Ш	Х			Х	\bot	Ш
MW01A	MW01A042517N	WG	N		1323686.71	448230.77		12.48	4/25/2017																				Х			Ш		
MW01B	MW01B122216N	WG	N		1323686.71	448230.77		12.51	12/22/2016																	X	Х		X			Ш		
MW01B	MW01B042517N	WG	N		1323686.71	448230.77		12.51	4/25/2017																				Х					
MW02A	MW02A122216N	WG	N		1323684.71	448456.98		13.48	12/22/2016																	Х	Х	Х	Х	.]	X _			
MW02B	MW02B122216N	WG	N		1323684.71	448456.98		13.47	12/22/2016																	Х			X					
MW03A	MW03A122116N	WG	N		1323686.31	448809.39		14.87	12/21/2016																	Х								
MW03B	MW03B122116N	WG	N		1323686.31	448809.39		14.90	12/21/2016																	Х								
MW04A	MW04A122116N	WG	N		1323752.83	449113.68		14.54	12/21/2016																	Х						Х		
MW04B	MW04B122116N	WG	N		1323753.04	449113.85		14.53	12/21/2016)	X	Х								
MW05A	MW05A122116N	WG	N		1324032.04			20.00	12/21/2016																		Х							
MW05A	MW05A042517N	WG	Ν		1324032.04	448172.22		20.00	4/25/2017																				Х					
MW05B	MW05B122116N	WG	N		1324032.04	448172.22		20.15	12/21/2016)	X									
MW05B	MW05B042517N	WG	N		1324032.04	448172.22		20.15	4/25/2017								$\perp \Gamma$	$oxed{\Box}$					\Box			\coprod	Х	Ш	Х	$oxed{oxed{\Box}}$		\coprod		Ш
MW06A	MW06A122116N	WG	N		1324211.25	448553.86		20.44	12/21/2016								\Box								X	\coprod		oxdot T		$oldsymbol{oldsymbol{oldsymbol{\Box}}}$		\coprod		Ш
MW06A	MW06A122116R	WG	FD		1324211.25	448553.86		20.44	12/21/2016)	X									
MW07A	MW07A122016N	WG	N		1324287.51	448860.38		18.87	12/20/2016								\Box								X	Х		oxdot T		$oldsymbol{oldsymbol{oldsymbol{\Box}}}$		Х		Ш
MW07B	MW07B122016N	WG	Ν		1324287.51	448860.38		18.89	12/20/2016																	Х						Х		
MW08A	MW08A122116N	WG	N		1324070.34	449147.19		16.93	12/21/2016								$\perp \Gamma$									Х		oxdot		$\perp \! \! \! \perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		\Box	\bot	Ш
MW08B	MW08B122116N	WG	N		1324070.31	449147.29		16.93	12/21/2016																X	Х		Ш		Ш		Ш		Ш
MW09A	MW09A122116N		N		1324895.99			36.05	12/21/2016								$\perp \Gamma$	$oxed{\Box}$					\Box			Ш	Х	Ш		$oxed{oxed{\Box}}$		Х		Ш
MW09A	MW09A042517N	WG	N		1324895.99			36.05	4/25/2017				$oxed{\Box}$		$oldsymbol{\perp}$		$oxedsymbol{oxedsymbol{oxed}}$	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		\Box			$oxed{\Box}$			Ш		\coprod	Х	\coprod		\coprod		Ш
MW09B	MW09B122116N	WG	N		1324895.99			36.02	12/21/2016																	oxdot	Х			Ш		Х		Ш
MW10B	MW10B122116N	WG	N		1324574.04			20.26	12/21/2016						Ш		\Box									Ш	Х			Ш		Ш		Ш
MW11A	MW11A122216N	WG	N		1324624.32			16.76	12/22/2016				$oxed{\Box}$		$oldsymbol{\perp}$		$oxedsymbol{oxedsymbol{oxed}}$	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		\Box			$oxed{\Box}$		X	Х	Х			\coprod		Х		Ш
MW11B	MW11B122216N	WG	N		1324624.32			16.67	12/22/2016				Ш							oxdot	$oldsymbol{\perp}$		Ш			Х	Х	Ш		$\perp \perp \Gamma$		Х		Ш
MW12A	MW12A122016N	WG	N		1325765.39	447922.55		30.80	12/20/2016																	1						X		

								Wash	nington, D	C 20	019																						
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation		Irdnes	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab) Total Residue (F160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1) PTOC (E440)	Field Parameters	Gamma Radioassay DOC (SM5310C)	TOC (LKTOC)	Metals (SW6010)	Metals (SW6020A) Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015R)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D)	CSIA (VOCS) (PAE-CSIA-004) SVOCS (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHS (ID-0016) PAHS (D7363-13)	PCDDs/PCDFs (SW8290A)	Free Cyanide (SW9014) Sulfide (SW9034)
MW12B	MW12B122016N	WG	N		1325765.39	447922.55		30.86	12/20/2016																		\Box			\prod	\Box	Х	\Box
MW13A	MW13A122016N	WG	N		1325558.01	448449.69		27.45	12/20/2016																	П	Х	П		\Box	\neg	\Box	
MW13B	MW13B122016N	WG	N		1325558.01	448449.69		27.54	12/20/2016									1 1			11			7	X	П	Х	П		\Box	\neg		\Box
MW14A	MW14A122016N	WG	N		1325694.46	448965.11		24.90	12/20/2016												1 1					Х	Х	\Box		\Box	\neg		
MW14B	MW14B122016N	WG	N		1325694.46	448965.11		24.87	12/20/2016)	X	Х	Х	П		\Box	\neg	\Box	
MW15A	MW15A122116N	WG	N		1326303.08	448363.57		35.92	12/21/2016									1 1			11					Х	Х	П		\Box	\neg		
MW15B	MW15B122116N	WG	Ν		1326303.08	448363.57		35.92	12/21/2016																	Х	Х			\Box			
Phase II Landside Mobiliza			d Exte	nt Soil Deline			-				,											•											
AST3A-1A	AST3A1A00N	SO	Ν	0 - 1 ft	1324467.62	448586.01			8/2/2017												1 1	Х				\prod				T = T	$\neg \neg$		\Box
SB50303N-EAST	SB50303N-EAST	SO	Ν		NA	NA			2/15/2017												11	Х									\neg		
SB50303N-North	SB50303N-NORTH	SO	Ν	3 - 3.5 ft	1324619.74	449248.35			2/15/2017									1 1		T	11	Х			Х	\Box		\Box		T	\top	\neg	\top
SUS061C	SUS061C00N	SO	N	0 - 1 ft	1324280.52	448056.58			3/13/2017									1 1		T	11				X	\Box		\Box		++	\top		\top
SUS061D	SUS061D00N	SO	Ν	0 - 1 ft	1324279.09	448015.56			3/13/2017																Х			П		1	\neg		
SUS061E	SUS061E00N	SO	N	0 - 1 ft	1324252.82	448022.19			3/13/2017						1 1			1 1			11		1 1		Х	\Box		\sqcap		T	$\neg \neg$	\Box	\top
SUS061G	SUS061G00N	SO	Ν	0 - 1 ft	1324232.37	448066.77			3/13/2017												\top				Х	\Box		\Box		1			71
SUS08-2A	SUS082A00N		Ν	0 - 1 ft	1324310.21	448958.97	Forensics		3/22/2017																			П		1	\neg	Х	
SUS08-2B	SUS082B00N	SO	Ν	0 - 1 ft	1324341.46	448962.41	Forensics		3/22/2017																	\Box		\Box		1	\neg	Х	
SUS08-2F	SUS082F00N	SO	Ν	0 - 1 ft	1324376.35	448892.50	Forensics		3/22/2017										Х		11				Х						\neg	X	
SUS08-2F	SUS082F00R		FD	0 - 1 ft	1324376.35	448892.50			3/22/2017																Х					\Box			
SUS08-2H	SUS082H00N	SO	Ν	0 - 1 ft	1324347.54	448862.12	Forensics		3/22/2017										Х						Х	\Box		П		T	\top	X	
SUS08-2I	SUS082I00N	SO	Ν	0 - 1 ft	1324327.38	448861.09	Forensics		3/22/2017												11				Х						\neg	Х	
SUS08-2I	SUS082I00R	SO	FD	0 - 1 ft	1324327.38	448861.09	Forensics		3/22/2017																	\Box		\Box		T	\top	Х	
SUS08-2J	SUS082J00N	SO	Ν	0 - 1 ft	1324295.53	448862.76	Forensics		3/22/2017										Х						Х	\Box		П		TT	\top	Х	
SUS08-2J	SUS082J00R	SO	FD	0 - 1 ft	1324295.53	448862.76			3/22/2017										Х		11				Х						\neg		
SUS08-2N	SUS082N00N	SO	Ν	0 - 1 ft	1324258.81	448928.68	Forensics		3/22/2017										Х						Х	\Box		\Box		T	\top	Х	
SUS08-2O	SUS082O00N	SO	Ν	0 - 1 ft	1324256.80				3/23/2017																Х	\Box		П		TT	\top	Х	71
SUS08-2P	SUS082P00N	SO	N	0 - 1 ft	1324284.46	448958.96	Forensics		3/22/2017										Х		1 1				Х	П		П			$\neg \neg$	Х	
SUS10-2A	SUS102A00N	SO	N	0 - 1 ft	1324664.41	448839.02	Forensics		3/23/2017									1 1			11				Х	П		П			\neg	Х	
SUS10-2B	SUS102B00N	SO	Ν	0 - 1 ft	1324702.85				3/23/2017																Х	\Box	\neg	\sqcap		\sqcap	$\neg \neg$	Х	
SUS10-2D	SUS102D00N	SO	N	0 - 1 ft	1324719.93				3/23/2017																Х	\Box	\top	\Box		\sqcap	\top	Х	
SUS10-2E	SUS102E00N	SO	N	0 - 1 ft	1324709.44	448783.10			3/23/2017					\sqcap				\top		\top	7 1		11			\sqcap	\top	\sqcap	\neg	\sqcap	\top	Х	7
SUS10-2F	SUS102F00N	SO	Ν	0 - 1 ft	1324710.18	448747.69	Forensics		3/22/2017																					\Box		X	
SUS10-2L	SUS102L00N	SO	N	0 - 1 ft	1324616.12	448752.72	Forensics		3/22/2017									1 1			11					П		П			\neg	X	\Box
SUS10-2M	SUS102M00N		N	0 - 1 ft	1324616.25	448784.04			3/22/2017									\top		\top	11					\sqcap	\top	\sqcap		\sqcap	\top	Х	7
SUS10-2N	SUS102N00N			0 - 1 ft	1324611.49	448814.57			3/22/2017																	\Box	\neg	\sqcap		\sqcap	$\neg \neg$	X	
SUS10-2O	SUS102000N	_	_	0 - 1 ft	1324613.58				3/22/2017					\sqcap				11		\top	11					\sqcap	\top	\sqcap		\sqcap	$\neg \neg$	Х	71
SUS10-2P	SUS102P00N	SO	_	0 - 1 ft	1324629.23				3/23/2017									\top		\top	11				Х	\sqcap	\top	\sqcap		\sqcap	\top	Х	7
SUS19-2E	SUS192E00N		Ν	0 - 1 ft	1325727.55				3/22/2017																	\Box	\neg	\sqcap	Х	\prod	$\neg \neg$		
SUS21-2D	SUS212D00N	SO		0 - 1 ft	1326086.71	447926.70			3/23/2017					\sqcap				1 1		\top	\top		11	\neg	Х	\sqcap	\top	\sqcap		\sqcap	\top		11
SUS21-2E	SUS212E00N	SO	_	0 - 1 ft	1326100.23				3/23/2017					\sqcap				11		\top	1 1				Х	\sqcap	\top	\sqcap		\sqcap	$\neg \neg$	\Box	77
SUS21-2I	SUS212I00N		Ν	0 - 1 ft	1326041.25				3/22/2017																Х	\Box	\neg	\sqcap		\sqcap	$\neg \neg$		
SUS21-2J	SUS212J00N	SO	N	0 - 1 ft	1325999.56	447862.87			3/22/2017												T				Х	П		\Box			\neg		

								wasr	nington, D	C 2	20019																								
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	Total Residue (E160.3) HEM - Oil & Grease (E1664B)	(0.1)	PTOC (E440)	Field Parameters Gamma Radioassay	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Metals (SW6020A) Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHS (ID-0016) PAHS (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Sulfide (SW9034)
SUS21-2L	SUS212L00N	SO	N	0 - 1 ft	1325979.25	447861.09			3/22/2017																	Х	\Box					T	TT	op	\Box
SUS21-2M	SUS212M00N	SO	N	0 - 1 ft	1325988.59	447896.36			3/22/2017	П		H		1 1			1 1								1 1	Х	Ħ						+	\vdash	\top
SUS21-2N	SUS212N00N	SO	N	0 - 1 ft	1325996.61	447942.76			3/22/2017			П														Х	\Box					十	+	o	\top
SUSDP06	SUS06F00N	SO	N	0 - 1 ft	1324259.23	448063.28	Forensics		3/13/2017			П														Х	П		Х	Х			\top	\Box	\top
SUSDP06	DPS06F01N	SO	N	1 - 2 ft	1324259.23	448063.28	Forensics		3/13/2017																	Х			Х	Х			\top		\top
SUSDP06	DPS06F02-05N	SO	N	2 - 5 ft	1324259.23	448063.28	Forensics		3/13/2017			П														Х	П		Х	Х			\top	\Box	\top
SUSDP08-2G	SUS082G00N	SO	N	0 - 1 ft	1324375.03	448864.60	Forensics		3/22/2017											Х						Х	П						Х	П	
SUSDP19-2D	SUS192D00N	SO	N	0 - 1 ft	1325733.14	447879.86			3/22/2017																					Х			\Box		
SUSDP19-2D	SUS192D00R	SO	FD	0 - 1 ft	1325733.14	447879.86			3/22/2017			П															П			Х			\Box	П	\Box
SUSDP19-2M	SUS192M00N	SO	N	0 - 1 ft	1325618.56	447873.44			3/23/2017																					Х					
SUSDP19-2M	SUS192M02N	SO	N	2 - 3 ft	1325618.56	447873.44			3/23/2017																					Х					
SUSDP19-2N	SUS192N00N	SO	N	0 - 1 ft	1325619.56	447903.91			3/23/2017																					Х				Ш	
SUSDP19-2N	SUS192N02N	SO	N	2 - 3 ft	1325619.56	447903.91			3/23/2017																					Х				Ш	
SUSDP19-2O	SUS192000N	SO	N	0 - 1 ft	1325619.16	447930.94			3/23/2017																		Ш			Х				Ш	
SUSDP19-2O	SUS192O02N	SO	N	2 - 3 ft	1325619.16	447930.94			3/23/2017			Ш															Ш			Х		丄	Ш	\sqcup	
SUSDP19-2P	SUS192P00N	SO	N	0 - 1 ft	1325659.63	447922.99			3/23/2017			Ш															Ш			Х		丄	Ш	\Box	Ш
SUSDP19-2P	SUS192P02N	SO	N	2 - 3 ft	1325659.63	447922.99			3/23/2017			Ш					Ш										Ш			Х		丄	Ш	\sqcup	\perp
SUS05-1D	SUS05ID00N	SO	-	0 - 1 ft	1324109.57	449133.33			1/24/2017	Ш		Ш														Х	\sqcup						Ш	\vdash	
SUS05-1F	SUS05IF00N	SO	_	0 - 1 ft	1324060.85	449133.28			1/24/2017	Щ		Ш					\perp									Х	\sqcup						$oldsymbol{\perp}$	\vdash	\perp
SUS08-1B	SUS081B00N	SO	-	0 - 1 ft	1324334.66	448940.44			1/24/2017			Ш	_	\perp		_	\perp			Х		(4	\bot	Х	\sqcup		Ш				$\perp \!\!\! \perp \!\!\! \perp$	\vdash	
SUS08-1D	SUS081D00N2	SO	_	0 - 1 ft	1324337.55	448888.98			6/29/2018			Ш		\perp			\perp			X X					\perp		\sqcup						$oldsymbol{\perp}$	\vdash	\perp
SUS08-1H	SUS081H00N2	SO		0 - 1 ft	1324283.33	448936.08			6/29/2018			\sqcup	_	\bot			\perp			X X				_	\perp		\sqcup		\sqcup			4	$oldsymbol{\perp}$	\vdash	Щ
SUS08-1H	SUS081H00R2	SO	_	0 - 1 ft	1324283.33	448936.08			6/29/2018							_	\perp			X X				_	\perp		₩				\perp	+	$oldsymbol{\perp}$	\vdash	+
SUS10-1H	SUS101H00N	SO	-	0 - 1 ft	1324631.59	448811.34			1/27/2017			ш		\perp			\bot								\perp	X	₩					—	$+\!\!-\!\!\!-$	\vdash	+
SUS12-1B	SUS121B00N	SO		0 - 1 ft	1324862.77	448454.75			1/25/2017			ш		\perp		_	+		+			_		_	\perp	X	\vdash				+	+	$oldsymbol{\perp}$	\vdash	+
SUS12-1D	SUS121D00N			0 - 1 ft	1324860.56				1/25/2017	Ш		\vdash	_	+		_	+	_	+	_				_	+	X				_	+	+	+	\vdash	+
SUS12-1F	SUS121F00N			0 - 1 ft	1324814.31	448413.96			1/25/2017	Ш		\vdash	_	+		_	+		+	_		_		_	+	X						+	$+\!\!-\!\!\!\!-$	\vdash	+
SUS12-1H	SUS121H00N			0 - 1 ft	1324817.65	448451.67			1/25/2017			╁	_	+	\vdash	-	+	_	+	-		-		-	+	X				-	+	+	$+\!\!-\!\!\!\!+$	\vdash	+
SUS181C	SUS181C00R	SO	-	0 - 1 ft	1325546.51	448976.35			1/25/2017			₩		+	\vdash		+		╁		├	-		╬	+	X	_	-	₩	+	╁┼┼	+	$+\!\!-\!\!\!+$	\vdash	+
SUS201A SUS201B	SUS201A00N SUS201B00N	SO	_	0 - 1 ft	1325650.33	448344.58 448339.64			1/27/2017 1/27/2017	\vdash		₩	_	+	\vdash	-	+		+		╁	-	-	+	+	X	_	_	\vdash	+	╁	+	$+\!\!-\!\!\!+$	\vdash	+
SUS201B	SUS201B00N SUS201B00R	SO SO		0 - 1 ft 0 - 1 ft	1325677.21 1325677.21	448339.64			1/27/2017			╁	-	+	\vdash	-	+	_	+	-		-		-	+	- X	╁			-	╁┼	+	+	\vdash	+
SUS201C	SUS201C00N	SO		0 - 1 ft	1325677.21	448310.63			1/27/2017			\vdash		+		-	+							+	+ +	$\frac{1}{x}$	++			-	+	+	+	\vdash	+
SUS201D	SUS201D00N	SO		0 - 1 ft	1325677.39	448292.97			2/2/2017	Н		\vdash		+	\vdash	-	+		+	-	╁	-		+	+	$\frac{1}{x}$		-	\vdash	+	+	+	+	\vdash	+
SUS201E	SUS201E00N	SO	_	0 - 1 ft	1325648.88	448284.09			1/27/2017	Н		\vdash	+	+	\vdash	+	+	-	$\vdash \vdash$	+			\vdash	+	++	^ Y	\vdash		$\vdash \vdash$	+	++	+	+	\dashv	+
SUS201F	SUS201F00N	SO	_	0 - 1 ft	1325624.26	448282.30			1/27/2017	H		\vdash	+	+	\vdash	+	+	\dashv	+	\dashv		+		+	++	Y	H	-	\vdash	\dashv	++	+	+	\vdash	+
SUS201G	SUS201G00N	SO	-	0 - 1 ft	1325625.18	448311.86			1/27/2017	Н	\vdash	\vdash	+	+	\vdash	+	+	-	+	+		+	\vdash	+	++	\ \ \ \ \ \ \	+	-	\vdash	+	++	+	+	\dashv	+
SUS201H	SUS201H00N	SO		0 - 1 ft	1325625.46				1/27/2017	H		\vdash	+	+	\vdash	+	+	-	++	+			\vdash	+	+	X	+		\vdash	+	+ +	+	+	\vdash	+
SUS21-1A	SUS211A00N	SO		0 - 1 ft	1326042.65				1/27/2017	H		\vdash	+	+	\vdash	+	+	-	+	+			\vdash	+	+	$\frac{\lambda}{X}$	+		\vdash	+	+ +	+	+	\dashv	+
SUS21-1B	SUS211B00N		_	0 - 1 ft	1326063.05				1/27/2017	H		\vdash	-	+	\vdash	+	+	-	\vdash	+		+		+	+	$\frac{\lambda}{X}$		+	\vdash	+	++	+	+	\dashv	+
SUS21-1E	SUS211E00N	SO	_	0 - 1 ft	1326027.90				1/27/2017	H		\vdash	+	+	\vdash	\dashv	+	-	\vdash	+		+	+	+	+	$\frac{\lambda}{x}$	H	\dashv	\vdash	+	+	十	+-	\dashv	卄
SUS21-1F	SUS211F00N	SO	_	0 - 1 ft	1326004.84				1/27/2017	Н		\vdash	+	+	\vdash	+	+	\dashv	+	+		+	\vdash	\top	+	X	\vdash		\vdash	+	+	+	++	\dashv	+
	1	1	1																														لبب		

Location to Sample to Market Sample to Sampl									wasr	nington, D	C 20	0019																							
9.0521-103	Location ID	Sample ID	Matrix ¹	mple Typ	_	Easting	Northing	•			ess (SM	rain terk	uctivity	- Oil & Grease (E1	Amonia (E350.1)	PIOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C)	Polonium-210 (PO-01-RC)	Metals (SW6010) Metals (SW6020A)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C) VOCs (SW8260B)	VOCs (SW8260C)	NH VOCS (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A) Total Cvanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SUSPENDED SUSP	SUS21-1G	SUS211G00N	SO	N	0 - 1 ft	1326013.82	447903.75			1/27/2017																	Х						П	T	
SUSHI-1A				N	0 - 1 ft		447935.10			1/27/2017																	Х								
SUS-441 C	SUS44-1A	SUS441A00N		N	1.5 - 2.5 ft	1324718.81	448891.50			1/27/2017							\Box						\Box		\top		Х				П		П		\Box
SUSH-11 SUSH	SUS44-1B	SUS441B00N	SO	N	1.5 - 2.5 ft	1324740.02	448890.73			1/27/2017							\Box						П				Х				\Box		П		\Box
SUS441F SUS44FONN SO N 1.5-2.5 10349897 448852.56 1725/017		SUS441C00N	SO	Ν	1.5 - 2.5 ft	1324734.80	448870.82			1/25/2017																	Х								
SUS4416 SUS441000N SO N 15-25 ft 1324761.94 44897.50 12250917		SUS441E00N		N	1.5 - 2.5 ft	1324713.97				1/25/2017																	Х								
SUSPIPA DPSOFF 0-15N SO N 1-15 1 124901-68 44890-87 1727/2017				N	1.5 - 2.5 ft	1324699.67																					Х								
SUSPOP4-14 DPSQH1402N SO N 2 - 3 ft 33409573 448934.07 8172017 N N N N N N N N N				N																							Х						Ш		
SUSPIPAL DPS041 AGAN SO N 3 - 4 ft 1324065.73 448834.07 81/2017				N	10 - 15 ft																						Х						Щ		
SUSPOP4-1A DPS041AO4N SO N 4 - 5 ft 1324095.73 448934.07 81/2017				N	2 - 3 ft																				Ш		Х				X		Ш	丄	
SUSPIPOR-1C DPS041CO2N SO N 2-3 ft 132416.34 448809.68 81/2017																	\perp								\perp		Х				X		Ш	丄	\bot
SUSDP04-1C DPS041CONN SO N 3 -4 ft 1324116.34 448909.68 8/1/2017																									\perp		Х						ш		\bot
SUSDP04-1C DPS04162NN SO N 2 -3 ft 132492,60 448783.89 8472017				_															\perp				\perp		\bot		Х				X		ш		\bot
SUSDP04-1E DPS041E02N SO N 2 - 3 ft 1324092.60 448783.89 8472017																	\perp						\sqcup		\bot		X		\sqcup		X		\sqcup	\bot	\bot
SUSPP04-1E DPS041EG3N SO N 3 - 4 ft 1324092.00 448783.89											_				\sqcup		\perp		\perp				\perp		\bot		Х		$\perp \perp$		1		\sqcup	_	44
SUSDP04-1E				_							_						\perp				\perp		\perp		\bot		X		\perp		X		\sqcup	4	\bot
SUSDP04-IG DPS04IG02N SO N 2-3ft 1324062.24 448809.30											_				\sqcup		\bot		\perp				\bot		\bot		X		\bot	_	X		₩	\dashv	+
SUSDP04-1G DPS041GON SO N 3 - 4 ft 1324066.24 44809.30 8/1/2017 N N N N N N N N N											_				\vdash		+	_	\perp				\bot		+		_	_	\bot	_			₩	+	+++
SUSDP04-1G DPS041G05N SO N 4 - 5 ft 1324066 24 448903.30 81/2017 N N N N N N N N N				_							_				\vdash		+	_	+	_			+		+			_	\vdash	_			₩	+	+
SUSDP04-1G DPS041G05N SO N 5-6 ft 1324066.24 448809.30 8/1/2017 SUSDP04-21 DPS042102N SO N 2-3 ft 1324095.97 448766.55 2/1/2018 SUSDP05-1C SUS051C00N SO N 0-1 ft 1324112.78 449160.88 1/24/2017 SUSDP05-1C SUSO51C00N2 SO N 0-1 ft 1324112.78 449160.88 1/24/2017 SUSDP05-1C SUSO51C00N2 SO N 0-1 ft 1324112.78 449160.88 7/31/2017 SUSDP05-1C SUSO51C00N2 SO N 0-1 ft 1324112.78 449160.88 7/31/2017 SUSDP05-1E SUSO51E00N SO N 0-1 ft 1324082.50 449133.52 1/24/2017 SUSDP05-1E SUSO51E00N2 SO N 0-1 ft 1324082.50 449133.52 1/24/2017 SUSDP05-1E SUSO51E00N2 SO N 0-1 ft 1324082.50 449133.52 7/31/2017 SUSDP05-1G SUSO51E00N2 SO N 0-1 ft 1324082.50 449133.52 7/31/2017 SUSDP05-1G SUSO51E00N2 SO N 0-1 ft 1324082.50 449133.52 7/31/2017 SUSDP05-1G SUSO51E00N2 SO N 0-1 ft 1324082.50 449133.52 7/31/2017 SUSDP05-1G SUSO51E00N2 SO N 0-1 ft 1324082.50 449130.00 1/24/2017 SUSDP05-1G SUSO51E00N2 SO N 0-1 ft 1324082.30 449160.00 7/31/2017 SUSDP05-1G SUSO51E00N2 SO N 0-1 ft 1324050.32 449160.00 7/31/2017 SUSDP05-1G SUSO51E00N2 SO N 0-1 ft 1324050.32 449160.00 7/31/2017 SUSDP05-2M SUSO52M0N SO N 0-1 ft 1324034.11 449159.28 2/1/2018 SUSO52M0N SO N 0-1 ft 1324034.11 449159.28 2/1/2018 SUSO52M0N2 SO N 0-1 ft 1324034.11 449159.28 2/1/2018 SUSDP06-1G SUSO61E0N1 SO N 1-2 ft 1324313.53 44888.29 8/2/2017 SUSDP06-1G SUSO81E0N2 SO N 0-1 ft 1324313.53 44888.29 8/2/2017 SUSDP06-1G SUSO81E0N2 SO N 0-1 ft 1324375.03 44888.29 8/2/2017 SUSDP06-1G SUSO81E0N2 SO N 0-1 ft 1324375.03 44888.29 8/2/2017 SUSDP06-2G DPS081E0N2 SO N 0-1 ft 1324375.03 44888.29 8/2/2017 SUSDP06-2G DPS082G01R SO N 0-1 ft 1324375.03 44888.29 8/2/2017 SUSDP06-2G DPS082G01R SO N 0-1 ft 1324375.				_							_	_		4	₩	_	+	_	+	_	\bot		+	_	+	_		_	+	_	X	_	₩	+	+
SUSDP04-2 DPS042I02N SO N 2-3 ft 1324095.97 448766.55 2/1/2018 SUSDP05-1C SUS05IC00N SO N 0-1 ft 1324112.78 449160.88 1/24/2017 SUSDP05-1C SUS05IC00N2 SO N 0-1 ft 1324112.78 449160.88 7/31/2017 SUSDP05-1C DPS05IC01N SO N 1-2 ft 1324112.78 449160.88 7/31/2017 SUSDP05-1E SUS05IC00N SO N 0-1 ft 1324082.50 449133.52 1/24/2017 SUSDP05-1E SUS05IC00N SO N 0-1 ft 1324082.50 449133.52 1/24/2017 SUSDP05-1E DPS05IC01N SO N 1-2 ft 1324082.50 449133.52 7/31/2017 SUSDP05-1E DPS05IC01N SO N 1-2 ft 1324082.50 449133.52 7/31/2017 SUSDP05-1G SUS05IC00N SO N 1-2 ft 132409.92 449160.00 1/24/2017 SUSDP05-1G SUS05IC00N SO N 0-1 ft 132409.92 449160.00 1/24/2017 SUSDP05-1G SUS05IC00N SO N 0-1 ft 132409.92 449160.00 7/31/2017 SUSDP05-1G SUS05IC00N SO N 0-1 ft 132409.92 449160.00 7/31/2017 SUSDP05-1G DPS05IC01N SO N 1-2 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS05IC02N SO N 2-3 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS05IC02N SO N 2-3 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS05IC02N SO N 2-3 ft 1324059.32 449160.00 7/31/2017 SUSDP05-2M DPS05IC02N SO N 2-1 ft 1324034.11 449159.28 2/1/2018 SUSDP05-2M DPS05IC01N SO N 2-1 ft 1324313.53 44888.99 8/2/2017 SUSDP08-1E DPS06IC01N SO N 1-2 ft 1324313.53 44888.99 8/2/2017 SUSDP08-1E DPS06IC01N SO N 1-2 ft 1324313.53 44888.99 8/2/2017 SUSDP08-2G DPS06IC01N SO N 1-2 ft 1324313.53 44888.99 8/2/2017 SUSDP08-2G DPS06IC01N SO N 1-2 ft 1324313.53 448864.60 Forensics 8/3/2017 SUSDP08-2G DPS06IC01N SO N 1-2 ft 1324313.53 448864.60 Forensics 8/3/2017 SUSDP08-2G DPS06IC01N SO FD 1-2 ft 1324375.03 448864.60 Forensics 8/3/2017 SUSDP08-2G DPS06IC01N SO FD 1-2 ft 1324375.03 448864.60 Forensics				_							_			_	\vdash	_	+	_	+	_	\perp		+	_	+	_	_	_	+	_	+		₩	+	++
SUSDP05-1C SUSSICOON SO N 0 - 1 ft 1324112.78 449160.88 1/24/2017 N N N N N N N N N											_				\vdash		+		+				+		+				+		+		₩	+	+
SUSDP05-1C SUS051C00N2 SO N 0 - 1 ft 1324112.78 449160.88 7/31/2017 SUSDP05-1C DP5051C01N SO N 1 - 2 ft 1324112.78 449160.88 7/31/2017 N N N N N 1 - 2 ft 1324112.78 449160.88 7/31/2017 N				_								-		-	++	-	+	_	+				+	_	+	_	X	_	+	_	+		₩	+	+
SUSDP05-1C DPS051C01N SO N 1 - 2 ft 1324112.78 449160.88 7/31/2017 SUSDP05-1E SUSD51E00N SO N 0 - 1 ft 1324082.50 449133.52 1/24/2017 N<				_							-				+		+	_	+	_	+		+		+		 ^ 	-	+	-			₩	+	+++
SUSDP05-1E SUS06IE00N SO N 0 - 1 ft 1324082.50 449133.52 1/24/2017 N N N N O - 1 ft 1324082.50 449133.52 1/24/2017 N N N O - 1 ft 1324082.50 449133.52 7/31/2017 N												-			╁		+	-	+	-	+		+		+		+		+	_	1	-	₩	+	+++
SUSDP05-1E SUS051E00N2 SO N 0 - 1 ft 1324082.50 449133.52 7/31/2017 SUSDP05-1E DPS051E01N SO N 1 - 2 ft 1324082.50 449133.52 7/31/2017 SUSDP05-1G SUS051G00N SO N 0 - 1 ft 1324082.50 449180.00 1/24/2017 SUSDP05-1G SUS051G00N2 SO N 0 - 1 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS051G01N SO N 1 - 2 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS051G01N SO N 1 - 2 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS051G02N SO N 2 - 3 ft 1324059.32 449160.00 7/31/2017 SUSDP05-2M SUS052M00N SO N 0 - 1 ft 1324034.11 449159.28 2/1/2018 SUSDP05-2M DPS052M01N SO N 1 - 2 ft 1324034.11 449159.28 2/1/2018 SUSDP06-2M DPS051E01N SO N 1 - 2 ft 1324034.11 449159.28 2/1/2018 SUSDP06-1E DPS081E01N SO N 1 - 2 ft 1324313.53 448884.29 8/2/2017 SUSDP08-1E DPS081E01R SO FD 1 - 2 ft 1324313.53 448888.29 8/2/2017 SUSDP08-2G DPS082G01N SO N 1 - 2 ft 1324313.53 44888.29 8/2/2017 SUSDP08-2G DPS082G01N SO N 1 - 2 ft 1324375.03 448864.60 Forensics S/3/2017 SUSDP08-2G DPS082G01R SO FD 1 - 2 ft 1324375.03 448864.60 Forensics S/3/2017 SUSDP08-2G DPS082G01R SO FD 1 - 2 ft 1324375.03 448864.60 Forensics S/3/2017 SUSDP08-2G DPS082G01R SO FD 1 - 2 ft 1324375.03 448864.60 Forensics S/3/2017 SUSDP08-2G DPS082G01R SO FD 1 - 2 ft 1324375.03 448864.60 Forensics S/3/2017 SUSDP08-2G DPS082G01R SO FD 1 - 2 ft 1324375.03 448864.60 Forensics S/3/2017 SUSDP08-2G DPS082G01R SO FD 1 - 2 ft 1324375.03 448864.60 Forensics S/3/2017 SUSDP08-2G DPS082G01R SO FD 1 - 2 ft 1324375.03 448864.60 Forensics S/3/2017 SUSDP08-2G DPS082G01R SO FD 1 - 2 ft 1324375.03 448864.60 Forensics S/3/2017 SUSDP08-2G DPS082G01R SO FD 1 - 2 ft 1324375.03 448864.60 Forensics S/3/2017 SUSDP08-2G DPS082G														-	╁┼	-	+	-	+			_	+	-	+		- V	-	+		+^+		₩	+	++
SUSDP05-1E DPS051E01N SO N 1 - 2 ft 1324082.50 449133.52 7/31/2017 N N N DPS051E01N SO N 0 - 1 ft 1324059.32 449160.00 1/24/2017 N N N N DPS051G00N SO N 0 - 1 ft 1324059.32 449160.00 7/31/2017 N N N DPS051G01N SO N 1 - 2 ft 1324059.32 449160.00 7/31/2017 N N DPS051G01N SO N 1 - 2 ft 1324059.32 449160.00 7/31/2017 N N DPS051G01N SO N 1 - 2 ft 1324059.32 449160.00 7/31/2017 N N DPS051G02N SO N 2 - 3 ft 1324059.32 449160.00 7/31/2017 N				_							-			+	+		+	-	+	+	+		\vdash	+	+		+^+	-	+	+	 		₩	+	+++
SUSDP05-1G SUS05IG00N SO N 0 - 1 ft 1324059.32 449160.00 1/24/2017 SUSDP05-1G SUSD51G00N2 SO N 0 - 1 ft 1324059.32 449160.00 7/31/2017 SO N 1 - 2 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS051G01N SO N 1 - 2 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS051G02N SO N 2 - 3 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS051G02N SO N 2 - 3 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS051G02N SO N 2 - 3 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS051G02N SO N 2 - 3 ft 1324059.32 449160.00 7/31/2017 D D D D X D D D D D D D D D D D D D D D D D D D <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td>+</td><td>++</td><td>+</td><td>+</td><td>+</td><td>+</td><td>-+</td><td>+</td><td></td><td>╁┼</td><td>+</td><td>+</td><td>-</td><td>+</td><td>-</td><td>+</td><td>+</td><td>_</td><td>-</td><td>\vdash</td><td>+</td><td>+++</td></t<>				_								+		+	++	+	+	+	+	-+	+		╁┼	+	+	-	+	-	+	+	_	-	\vdash	+	+++
SUSDP05-1G SUS051G00N2 SO N 0 - 1 ft 1324059.32 449160.00 7/31/2017 N 0 - 1 ft 1324059.32 449160.00 7/31/2017 N 0 - 1 ft 1324059.32 449160.00 7/31/2017 N 0 - 1 ft X N 0 - 1 ft X N 0 - 1 ft X N 0 - 2 ft X N 0 - 3 ft 1324059.32 449160.00 7/31/2017 N 0 - 1 ft X N 0 - 1 ft X N 0 - 3 ft 1324059.32 449160.00 7/31/2017 N 0 - 1 ft X N 0 - 1 ft 1324034.11 449159.28 2/1/2018 N 0 - 1 ft X N 0 - 1 ft				_							-+			+	++	+	++	+	╫		+		++	-	+	+	Y	-	++	+	+^+		++	+	+
SUSDP05-1G DPS051G01N SO N 1 - 2 ft 1324059.32 449160.00 7/31/2017 SUSDP05-1G DPS051G02N SO N 2 - 3 ft 1324059.32 449160.00 7/31/2017 SUSDP05-2M SUS052M00N SO N 0 - 1 ft 1324034.11 449159.28 2/1/2018 SUSDP05-2M DPS082M01N SO N 1 - 2 ft 1324034.11 449159.28 2/1/2018 SUSDP08-2M DPS082M01N SO N 1 - 2 ft 1324034.11 449159.28 2/1/2018 SUSDP08-2M DPS081E01N SO N 0 - 1 ft 1324319.35 448910.93 SUSDP08-1E DPS081E01N SO N 1 - 2 ft 1324313.53 448888.29 8/2/2017 SUSDP08-1E SUS081E00N2 SO N 0 - 1 ft 1324313.53 448888.29 8/2/2017 SUSDP08-2G DPS082G01N SO N 1 - 2 ft 1324375.03 448864.60 Forensics 8/3/2017 SUSDP08-2G DP											-			+	+	-	+	+	+	-			+	+	+		+^+	+	+	+	X		++	+	++
SUSDP05-1G DPS051G02N SO N 2 - 3 ft 1324059.32 449160.00 7/31/2017 SUSDP05-2M SUS052M00N SO N 0 - 1 ft 1324034.11 449159.28 2/1/2018 SUSDP05-2M DPS052M01N SO N 1 - 2 ft 1324034.11 449159.28 2/1/2018 SUSDP08-2M DPS052M01N SO N 1 - 2 ft 1324034.11 449159.28 2/1/2018 SUSDP08-2M DPS062M01N SO N 0 - 1 ft 1324319.35 448910.93 6/29/2018 SUSDP08-1E DPS081E01N SO N 1 - 2 ft 1324313.53 448888.29 8/2/2017 SUSDP08-1E DPS081E01R SO FD 1 - 2 ft 1324313.53 448888.29 8/2/2017 SUSDP08-1E SUS081E00N2 SO N 0 - 1 ft 1324313.53 448888.29 8/2/2017 SUSDP08-2G DPS082G01N SO N 1 - 2 ft 1324375.03 448864.60 Forensics 8/3/2017 SUS												+		+	++	+	+	+	+	-	+		╁	+	+	-	+	+	+ +	+	 ^ 		\vdash	+	+++
SUSDP05-2M SUS052M00N SO N 0 - 1 ft 1324034.11 449159.28 2/1/2018 1 1 2/1/2018 1 1 2/1/2018 1 1 2/1/2018 1 1 1 2/1/2018 1 1 1 2/1/2018 1 1 1 2/1/2018 1 1 2/1/2018 2/1/2018 2/1/2018 2/1/2018 2/1/2018 2/1/2018 2/1/2018 2/1/2018 2/1/2018 2/1/2018 2/1/2018 2/1/2018				_							-			+	+	+	+		+	_	+		+ +	_	+ +	_	+	_	+ +	_	X		\vdash	+	+++
SUSDP05-2M DPS052M01N SO N 1 - 2 ft 1324034.11 449159.28 2/1/2018 1 1 X X 1 X <				_							-						+ +		+	_	1		+		+		+		+	1	+		\vdash	十	+
SUSDP08 SUS0800N2 SO N 0 - 1 ft 1324319.35 448910.93 6/29/2018 X											\dashv		\vdash	+	++	+	$\dagger \dagger$	\dashv	+	-	+		+	\dashv	+ +	\dashv	+	+	+	+	X		卅	十	+++
SUSDP08-1E DPS081E01N SO N 1 - 2 ft 1324313.53 448888.29 8/2/2017 Image: Control of the											\dashv		\vdash	+	++	+	+	\dashv	+	X	(x		+	\dashv	+ +	\dashv	+	+	+	+	+		十	+	+++
SUSDP08-1E DPS081E01R SO FD 1 - 2 ft 1324313.53 448888.29 8/2/2017 Image: Control of the control of th											\dashv	+	\vdash	+	+	+	+	+	╅		+	\top	+ +	\dashv	+	\dashv	X	+	+	\top	+ +	\dashv	\vdash	十	+++
SUSDP08-1E SUS081E00N2 SO N 0 - 1 ft 1324313.53 448888.29 6/29/2018 N X											\neg						+		+		\top		+	\neg	11	\neg	X		1 1	\top	+		\vdash	\top	+
SUSDP08-2G DPS082G01N SO N 1 - 2 ft 1324375.03 448864.60 Forensics 8/3/2017 I											\neg						1 1		+	X	(X		1 1	\dashv	1 1	\neg			1 1	\top	1 1		\Box	\top	+
SUSDP08-2G DPS082G01R SO FD 1 - 2 ft 1324375.03 448864.60 Forensics 8/3/2017				_							\neg						+	\dashv	+		\top		+	\neg	11	\neg	\top		1 1	\top	1 1		\vdash	\overline{X}	+
														1		1	11	\top	\top		\top		\sqcap	\dashv	\top	\dashv	11	\neg	T	\top	1 1			\overline{X}	\top
														\top	T	十	\top	\top	\top		\top		\sqcap	\dashv	\top	\dashv	77	\neg	\top	\top	+			\overline{X}	+

								Wash	nington, D	C 2	0019																						
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	Total Residue (E160.3) HEM - Oil & Grease (E1664B)	Amonia (E350.1)	FIOC (E440) Field Parameters	Gamma Radioassay	TOC (LKTOC)	Polonium-210 (PO-01-RC) Metals (SW6010)	Metals (SW6020A)	-	Mercury (SW7471B) Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015B)	TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D)	CSIA (VOCs) (PAE-CSIA-004) SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Free Cyanide (SW9014) Sulfide (SW9034)
SUSDP08-3K	SUS083K00N	SO	N	0 - 1 ft	1324370.71	448836.15	Forensics		8/3/2017																						\Box	X	
SUSDP10-3F	SUS103F00N	SO	N	0 - 1 ft	1324734.69	448809.87	Forensics		8/8/2017																\Box							X	
SUSDP10-3F	DPS103F01N	SO	N	1 - 2 ft	1324734.69	448809.87	Forensics		8/8/2017																\Box	<						Х	
SUSDP10-3G	SUS103G00N	SO	N	0 - 1 ft	1324734.02	448783.65	Forensics		8/8/2017)	〈			\perp		Ш	X	
SUSDP10-3G	DPS103G01N	SO	N	1 - 2 ft	1324734.02	448783.65	Forensics		8/8/2017	Ш															Щ	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$	Ш	Ш	Щ	Ш	Ш	Х	$\perp \perp \perp$
SUSDP10-3G	DPS103G02N	SO	N	2 - 3 ft	1324734.02	448783.65	Forensics		8/8/2017	Ш															Щ	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	$ldsymbol{\sqcup}$			Ш	Ш	Х	$\perp \perp \perp$
SUSDP10-3X	SUS103X00N	SO	N	0 - 1 ft	1324629.12	448860.90	Forensics		8/8/2017								$\perp \perp$								$\perp \perp^{\prime}$	($ldsymbol{ldsymbol{\sqcup}}$			$\bot\bot$	$\perp \! \! \perp$	X	$\perp \perp \downarrow \downarrow$
SUSDP10-3X	SUS103X00R		FD	0 - 1 ft	1324629.12	448860.90			8/8/2017	Щ				ш			$\bot\bot$			\perp					$\perp \perp^{\times}$		$oldsymbol{\sqcup}$	\perp		$\bot\bot$	$\bot\!\!\!\!\bot$		\bot
SUSDP10-3X	DPS103X01N	SO	N	1 - 2 ft	1324629.12	448860.90			8/8/2017	Ш				ш			\bot			\perp					Х		igspace	ш		$\bot \bot$	\bot		$\perp \downarrow \downarrow \downarrow$
SUSDP10-3X	DPS103X02N			2 - 3 ft	1324629.12	448860.90			8/8/2017	Ш				$\perp \perp$		Ш	$\perp \perp$		$\perp \perp$	\bot	_	ш			X		Щ.	\sqcup		$\bot \bot$	\bot	_	\perp
SUSDP10-3X	DPS103X03N			3 - 4 ft	1324629.12	448860.90			8/8/2017	Ш				$\perp \perp$			++			\bot					$\perp \perp^{\times}$		\vdash	\sqcup	+	++	\dashv	_	+
SUSDP10-3X	DPS103X04N	SO	_	4 - 5 ft	1324629.12	448860.90			8/8/2017	ш		\vdash		\vdash			++			\perp	_				$++^{\times}$	\Box	\vdash	₩	+	++	\dashv	+	+
SUSDP10-4E	DPS104E01R	SO	FD	1 - 2 ft	1324759.19	448791.92	Forensics		2/1/2018	Ш			_	\vdash			++	_		+	_	+			\vdash		\vdash	\vdash	+	++	\dashv	$\frac{X}{Y}$	+
SUSDP10-4E	DPS104E01N	SO	N	1 - 2 ft	1324759.19	448791.92	Forensics		2/1/2018	\vdash	_	\vdash	_	++		\vdash	+	_	╀	+	_	+	_		X	`	\vdash	++	+	++	+	<u> </u>	+
SUSDP10-4NW	SUS104NW00N	SO	N	0 - 1 ft	1324606.79	448882.30			1/30/2018	H	_	\vdash		╀			++				_			-	X		\vdash	╀	+	++	+	+	+
SUSDP10-4NW	DPS104NW01N	SO	N	1 - 2 ft	1324606.79	448882.30			1/30/2018	H			_	++			++	_	\vdash	+	-	+			X	_	\vdash	+	+	++	+	+	+++
SUSDP10-4NW	DPS104NW02N			2 - 3 ft	1324606.79	448882.30			1/30/2018	H	_	\vdash		╀			++				_			-	X		\vdash	╀	+	++	+	+	+
SUSDP10-4NW	DPS104NW03N	SO SO		3 - 4 ft	1324606.79	448882.30	Farancias		1/30/2018	\vdash	-	\vdash	+	++		\vdash	++	-	+	+	+	+		_	++	+	\vdash		+	++	+	+	+++
SUSDP11-1A	SUS111A00N DPS111A01N		N	0 - 1 ft	1324625.00	449258.54	Forensics		2/22/2018	\vdash		\vdash	_	++		\vdash	+	_	+	+	_	+			- (+	\vdash	 	+	++	++	+	+++
SUSDP11-1A SUSDP11-1A	DPS111A01N DPS111A02N	+	N N	1 - 2 ft 2 - 3 ft	1324625.00 1324625.00	449258.54 449258.54	Forensics		2/22/2018 2/22/2018	H	-	\vdash	_	╁┼	-	\vdash	++	-	╁		-	+			/ (+	$\vdash \vdash$	 	+	++	+	+	+++
SUSDP11-1A	DPS111A02N			3 - 4 ft	1324625.00	449258.54	Forensics Forensics		2/22/2018	H				++			++			+	-	+			H	+	$\vdash \vdash$	╁┼	+	++	+	+	+++
SUSDP11-1A	DPS111A04N			4 - 5 ft	1324625.00	449258.54	Forensics		2/22/2018	\vdash	-	\vdash	-	++			+		+	+	+	+	-		H	+	$\vdash \vdash$	╁┼	+	++	+	+	+++
SUSDP11-1A	DPS111A04N	SO	_	5 - 6 ft	1324625.00	449258.54	Forensics		2/22/2018	\vdash	+	\vdash	+	++		\vdash	+	+	+	+	-	Y		+	一长	+	\vdash	1	+	++	++	+	+++
SUSDP11-1A	DPS111A06N	SO	N	6 - 7 ft	1324625.00	449258.54	1 OTETISICS		3/28/2018	\vdash			_	++			++			+	+	X			一长	+	\vdash	 ^ 	+	++	+	+	+++
SUSDP11-1B	SUS111B00N		N	0 - 1 ft	1324675.32		Forensics		3/16/2018	\vdash	+		+	++			+	+	+	+	+	X	-+		X	+	\vdash	X	+	++	++	+	+++
SUSDP11-1B	DPS111B01N		_	1 - 2 ft	1324675.32				3/16/2018		+	\vdash	+	++		\vdash	+	+	+	+	+	X		+	X	_	\vdash	$\frac{1}{X}$	+	\vdash	++	+	+++
SUSDP11-1B	DPS111B02N	_		2 - 3 ft	1324675.32				3/16/2018		+		_	++			++	_	+	+	+	1			X	`	\vdash	X	+	\vdash	++	+	+++
SUSDP11-1B	DPS111B03N			3 - 4 ft	1324675.32				3/16/2018				+	++			++				+	+			X	-		X	+	+	+	一	+
SUSDP11-1B	DPS111B04N	SO		4 - 5 ft	1324675.32				3/16/2018		\dashv	\vdash	\top	++	\top	\vdash	++	+	t	+	\dashv	+	\vdash		一方	d	\vdash	X	+	++	+	十	+++
SUSDP11-1B	DPS111B05N	SO		5 - 6 ft	1324675.32				3/16/2018		+			t			+ +			\top	_	\top				$\langle \Box \rangle$		X	+	++	+	十	+
SUSDP11-1H	SUS111H00N	1		0 - 1 ft	1324575.29		Forensics		3/16/2018					TT			11									\overline{A}		X	\top	\vdash	+	十	+
SUSDP11-1H	DPS111H01N	_		1 - 2 ft	1324575.29		Forensics		3/16/2018								11					Х			1	$\langle \Box \rangle$	\vdash	X	\neg	\vdash	\top	一	+
SUSDP11-1H	DPS111H02N	-		2 - 3 ft	1324575.29		Forensics		3/16/2018								11			\top					Х	$\langle $		X	\top	\vdash	11	十	+
SUSDP11-1H	DPS111H03N	1		3 - 4 ft	1324575.29		Forensics		3/16/2018	_	\neg	\sqcap	\top	$\dagger \dagger$		\sqcap	77			$\dashv \dashv$	\dashv	11			\Box	⇃	\sqcap	Х	\top	\sqcap	\top	\top	+
SUSDP11-1H	DPS111H04N			4 - 5 ft	1324575.29		Forensics		3/16/2018	_	\neg	\sqcap	\neg	\top		\sqcap	\top			$\dashv \dashv$	\dashv	\top	\Box		X	⇃	\sqcap	Х	\top	\sqcap	\top	\top	+
SUSDP11-1H	DPS111H05N	-	_	5 - 6 ft	1324575.29		Forensics		3/16/2018	\Box							\top			$\dashv \dashv$					7	$\langle \Box \rangle$	\sqcap	Х	\top		\top	\top	\top
SUSDP11-1H	DPS111H01R		_	1 - 2 ft	1324575.29		Forensics		3/16/2018													T			\Box	\Box	\sqcap	Х	\top		\top		\top
SUSDP11-2A	SUS112A00N	SO	Ν	0 - 1 ft	1324626.42	449279.29	Forensics		3/16/2018													Х						Х					
SUSDP11-2A	DPS112A01N	SO	N	1 - 2 ft	1324626.42	449279.29	Forensics		3/16/2018													Х			Х	<		Х					
SUSDP11-2A	DPS112A02N		N	2 - 3 ft	1324626.42				3/16/2018																Х	〈		Х					
SUSDP11-2A	DPS112A03N	SO	Ν	3 - 4 ft	1324626.42	449279.29	Forensics		3/16/2018																Х	$\langle \Box \Box$		Х					

								Wasi	ington, D	C 2	2001	9																									
Location ID	Sample ID	Matrix ¹	Sample Type ²		Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422)	Atterberg Limits	Hydraulic Conductivity (lab) Total Residue (E160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1)	PTOC (E440)	Gamma Radioassay	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Metals (SW6020A) Chromium (VI) (SW7199)	اءا	Mercury (SW7471B)	Metals (field XRF) TPH-DRO (SW8015C)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	OCP (SW8081B LL)	Aroclor PCBs (SW8082A)	PCBs (E1668C) VOCs (SW8260B)	VOCs (SW8260C)	\sim	CSIA (VOCS) (PAE-CSIA-004) SVOCS (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHs (ID-0016)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SUSDP11-2A	DPS112A04N	SO	N	4 - 5 ft	1324626.42	449279.29	Forensics		3/16/2018																			Х		$\overline{\Box}$	Х				T	\Box	
SUSDP11-2A	DPS112A05N	SO	Ν	5 - 6 ft	1324626.42	449279.29	Forensics		3/16/2018																			Х			Х					\top	
SUSDP11-2D	SUS112D00N	SO	N	0 - 1 ft	1324725.28	449262.94			4/5/2018									П		\Box								Х		\top						\Box	П
SUSDP11-2D	DPS112D01N	SO	N	1 - 2 ft	1324725.28	449262.94			4/5/2018									П										Х		\Box						\Box	ПП
SUSDP11-2N	SUS112N00N	SO	N	0 - 1 ft	1324525.11	449258.83			4/6/2018																			Х								\square'	
SUSDP11-2N	DPS112N01N	SO	N	1 - 2 ft	1324525.11	449258.83			4/6/2018																			Х									
SUSDP11-2N	DPS112N02N	SO	N	2 - 3 ft	1324525.11	449258.83			4/6/2018																			Х		$oldsymbol{ol}}}}}}}}}}}}}}$					丄	$oxed{oxed}'$	
SUSDP12-1A	SUS121A00N	SO	N	0 - 1 ft	1324836.56	448457.47			1/25/2017									Ш		Ш		Ш						Х		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$					┸	<u></u> '	
SUSDP12-1A	SUS121A00R		FD		1324836.56	448457.47			1/25/2017		Ш							Ш		Ш								Х		Ш					丄	<u> </u>	Ш
SUSDP12-1A	SUS121A00N2	SO	N	0 - 1 ft	1324836.56	448457.47			8/10/2017									Ш												Ш		Х			丄	<u></u>	Ш
SUSDP12-1A	DPS121A01N	SO	N	1 - 2 ft	1324836.56	448457.47			8/10/2017		Ш				Щ			Ш		\perp		$oxed{oxed}$						Х				Х				<u> </u>	Ш
SUSDP12-1A	DPS121A01R		FD		1324836.56	448457.47			8/10/2017		\sqcup		_		Ш	_		Ш		\sqcup		\sqcup		_			_	Ш		╨		Х		_	4	 '	
SUSDP12-1A	DPS121A02N	SO	N	2 - 3 ft	1324836.56	448457.47			8/10/2017		\sqcup	_			Ш			Ш		\sqcup		\sqcup			\Box			Х		$oldsymbol{\perp}$		Х			_	<u></u> '	Ш
SUSDP12-1A	DPS121A03N	SO	N	3 - 4 ft	1324836.56	448457.47			8/10/2017		\sqcup				Ш			Ш		\bot		\sqcup						Х		╨		Х			4	 '	Щ
SUSDP12-1A	DPS121A04N	SO	N	4 - 5 ft	1324836.56	448457.47			8/10/2017			_			Ш	_	_			\sqcup		\perp			\bot			X		$\perp \!\!\!\!\perp \!\!\!\!\!\perp$		X			—	 -'	$oldsymbol{\sqcup}$
SUSDP12-1A	DPS121A10N	SO	N	10 - 11 ft	1324836.56	448457.47			8/23/2017		\sqcup	_						ш		\bot		\bot								$\bot\!$		X			—	 '	Ш
SUSDP12-1A	DPS121A11N	SO	N	11 - 12 ft	1324836.56	448457.47			8/23/2017		\vdash	_	_		Ш	_	_	ш		\perp	_	+		_	+					$\perp \!\!\! \perp \!\!\! \perp$		X		_	—	₩'	igapha
SUSDP12-1A	DPS121A12N	SO	N	12 - 13 ft	1324836.56	448457.47			8/23/2017		\vdash	-	_	_	\sqcup	4	-	\vdash	_	+	_	+	_	_	+	_	-	Ш	_	$+\!\!-\!\!\!\!-$	_	X		_	4	<u></u> '	igspace
SUSDP12-1A	DPS121A13N	SO	N	13 - 14 ft	1324836.56	448457.47			8/23/2017		\vdash	4	_		Н			\vdash		+	_	+		_						$+\!\!-\!\!\!-$		X	,		+	 '	+++
SUSDP12-1A	DPS121A14N	SO	N	14 - 15 ft	1324836.56	448457.47			8/23/2017		\vdash	_	-	_	\vdash	_	-	\vdash		╁		+		_	+		+			+		X		_	+	<u></u> '	$\vdash\vdash\vdash$
SUSDP12-1C	SUS121C00N	SO SO	IN N	0 - 1 ft	1324860.36	448430.40			1/25/2017		\vdash	-	-		\vdash	+	-	₩	-	\vdash	-	+	-	+	+	-	+	^	_	+	\vdash	$\overline{}$		-	+	₩	HH
SUSDP12-1C	SUS121C00N2		IN N	0 - 1 ft	1324860.36	448430.40		-	8/10/2017		\vdash	+	-	+	\vdash	+	-	₩	_	+	-	+	+	+	+	-	+	$\overline{}$	_	+		X	_	+	+	┼'	HH
SUSDP12-1C	DPS121C01N	SO SO	IN N	1 - 2 ft	1324860.36	448430.40		-	8/10/2017		\vdash	-	-		\vdash	_		\vdash		+	-	+		+	+			🔆		+		X	-		+	₩	+++
SUSDP12-1C	DPS121C02N	SO	IN N	2 - 3 ft	1324860.36	448430.40			8/10/2017		\vdash	+	-		Н			Н		+	_	+		_				X		+		X	,		+	₩	+++
SUSDP12-1C SUSDP12-1C	DPS121C03N DPS121C04N	00	IN N	3 - 4 ft 4 - 5 ft	1324860.36 1324860.36	448430.40 448430.40		-	8/10/2017 8/10/2017		\vdash	+	-		\vdash			\vdash		+	_	+		+	+			X		+		 \	,		+	₩	+++
SUSDP12-1C	DPS121C04N DPS121C05N	SO	IN N	5 - 6 ft	1324860.36				8/23/2017		┢	-	+	+	H	+	+	\vdash	+	╁	-	+	-	+	+	-	-	-	+	+		$\frac{1}{x}$,	+	+	+'	+++
SUSDP12-1C	DPS121C10N	SO	N	10 - 11 ft	1324860.36			<u> </u>	8/23/2017		\vdash	+	+	+	\vdash	+	+	\vdash	-	+	+	+	-	+	+	-	+	\vdash	-	+	\vdash	X		-	+	₩	+++
SUSDP12-1C	DPS121C11N	SO	N N	11 - 12 ft	1324860.36	448430.40			8/23/2017		\vdash	+	+		\vdash	+		\vdash	+	+	-	+	+	+	+			\vdash	_	+		 ↑	_	+	+	┼─′	\vdash
SUSDP12-1E	SUS121E00N	so	N	0 - 1 ft	1324839.87	448407.52			1/25/2017			-	-		\vdash	+	+			+	+	+		+	+			X		+		+^	`		+	+'	+++
SUSDP12-1E	SUS121E00N2	so		0 - 1 ft	1324839.87	448407.52			8/11/2017			-	-					\vdash		+	+	+		+	+			 ^ 		+		 X			+	+'	\vdash
SUSDP12-1E	SUS121E00R2			0 - 1 ft	1324839.87	448407.52			8/11/2017			-	-		\vdash	+	+			+	+	+		+	+					+		$\frac{1}{X}$			+	+'	+++
SUSDP12-1E	DPS121E01N			1 - 2 ft	1324839.87	448407.52			8/11/2017		\vdash	+	+		\vdash	\dashv	+	\vdash	+	+	+	+	-	+	+			\vdash	+	+	+	$\frac{1}{x}$	_	+	+	₩	H
SUSDP12-1E	DPS121E02N	SO	N	2 - 3 ft	1324839.87	448407.52			8/11/2017			+	+		\vdash	+		\vdash	+	1 1	-	+	+	+	+			X	+	+		$\frac{1}{x}$	_	+	+	╫	\vdash
SUSDP12-1E	DPS121E03N	so	N	3 - 4 ft	1324839.87	448407.52		+	8/11/2017		+	+	+	+	\vdash	+	+	 	+	+ +	\dashv	╁┼	\dashv	+	+	\dashv	+	X	+	+	\vdash	 	_	\dashv	+	╆	\vdash
SUSDP12-1E	DPS121E04N	so	N	4 - 5 ft	1324839.87	448407.52			8/11/2017		\vdash	+	+	+	\vdash	\dashv	+	 	+	+ +	+	+	\dashv	+	+	\dashv	+	X	\dashv	+	\vdash	$\frac{1}{x}$		\dashv	+	┰	\vdash
SUSDP12-1E	DPS121E10N	SO	Ň	10 - 11 ft	1324839.87	448407.52			8/23/2017		\vdash	+	\top		\vdash	\dashv	+	╁	+	+	+	+	-	+	+	-	+		-	+	\vdash	$\frac{1}{x}$	_		+	+	\vdash
SUSDP12-1E	DPS121E11N	SO	N	11 - 12 ft	1324839.87	448407.52			8/23/2017	\vdash	\vdash	+	\top	+	\vdash	\dashv	+	\vdash	\top	+	\dashv	+	\dashv	\top	+	\dashv	+	\vdash	-	+	\vdash	TX		_	+	+	\vdash
SUSDP12-1E	DPS121E12N	SO	N	12 - 13 ft	1324839.87	448407.52			8/23/2017		\vdash	+	\dashv	+	\vdash	\dashv	\top	+ +	\dashv	+	\dashv	+	\dashv	\top	+	\dashv	+	\vdash		+	\vdash	$\frac{1}{x}$			+	+	\vdash
SUSDP12-1E	DPS121E13N	SO	N	13 - 14 ft	1324839.87	448407.52			8/23/2017		†	\dashv	\top		\vdash	\dashv	\top	┰	\dashv	1 1	\top	+	\neg	\top	+	\neg	1	\vdash	\dashv	+	\vdash	$\frac{\hat{x}}{x}$		\dashv	+	\top	H
SUSDP12-1E	DPS121E14N	SO	N	14 - 15 ft	1324839.87	448407.52			8/23/2017	T	\sqcap	十	\neg		\Box	\dashv	\top	\Box		T		\top	\neg	\neg	\top	$\neg \vdash$	1	П		+	\vdash	X			\top	T	ПП
SUSDP12-1G	SUS121G00N	SO	N	0 - 1 ft	1324809.44				1/25/2017			十	\top			\dashv		\vdash	\dashv	1 1		\dagger		\neg			1	Х		+			\top		\top	\top	\Box
		-!	-																	-															—		

Company Comp									vvasi	nington, D	C Z	0019																								
SUSPIP-1-16	Location ID	Sample ID	Matrix ¹	mple Typ	_	Easting	Northing	•			ness (SM	rain	uctivity	Residue (E160.3) - Oil & Grease (E1	(0.1)	PTOC (E440)	Field Parameters Gamma Radioassay	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C) VOCs (SW8260B)	VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	l otal Cyanide (SW9014)	Sulfide (SW9034)
SUSPIP2-10 DPS171GDPN SO N 12-37 13248064 44843280 87172077 N N N N N N N N N	SUSDP12-1G	SUS121G00N2	SO	N	0 - 1 ft	1324809.44	448432.80			8/11/2017																					Х		\Box	ıπ	\Box	\neg
SUSPIP-1-1G				N	1 - 2 ft																										Х		\Box	ı	\top	
SUSPIP2-1G DPS/17GGNN SO N 3 - 4 1 132409-44 448422 00 8712017				N	2 - 3 ft					8/11/2017																	Х				Х		\Box	iП	\top	
SUSPIP-2-G DPS121G1ON SO N 10-11 ft 132400444 4449432 80 8232017	SUSDP12-1G	DPS121G03N	SO	N	3 - 4 ft	1324809.44	448432.80			8/11/2017			П					П									Х				Х		Π	П	\Box	
SUSPIP-12-G	SUSDP12-1G	DPS121G04N	SO	N	4 - 5 ft	1324809.44	448432.80			8/11/2017																	Х				Х					
SUSPIP-12-G				N	10 - 11 ft	1324809.44																									Х			П		
SUSDP12-1G OP512/1G19N SO N 12-131 1924899-44 448432.80 82/32/017																															Х			Ш		
SUSDP12-1G DPS171G18N SO N 13 - 14 ft 1324809.44 448432.80 8232077																															Х			Ш		
SUSPP12-16 DPS12TG14M SO N 14-15II 1324809.44 444432.80 8232017																															Х		Ш	$oldsymbol{oldsymbol{\sqcup}}$	Ш	
SUSPIP12-K DPS122KOIN SO N 0-1 ft 1324781.08 448387.96 1730/2018																															Х			$oldsymbol{\sqcup}$	Ш	
SUSPP12-2K DPS12ZK01N SO N 1-2 ft 132478108 448987.96 1,302018				N	14 - 15 ft								Ш																		Х		Ш	$oldsymbol{\sqcup}$	Ш	
SUSDP12-3A SUS123A00N SO N 1-1ft 132482867 448504.73 21/2018																															Х		\perp	$oldsymbol{\sqcup}$	$oldsymbol{\perp}$	
SUSDP12-3A DPS123A01N SO N 1-2 ft 1324828 67 448504.73 2172018				N											\perp			\perp		ш					\perp				\perp		Х		$oldsymbol{oldsymbol{\perp}}$	igspace	Щ	
SUSDPI2-3A DPS123A10N SO N 2-3 ft 1324826.07 448504.73 21/2018				N									\sqcup		\perp			\sqcup		\sqcup			\perp		\perp		\perp		\perp			\perp	$\perp \!\!\! \perp$	\vdash	Ш	_
SUSDP12-3A DPS123A10N SO N 10-11 ft 132428.67 448504.73 32282018													Ш		\perp	_		\perp		\sqcup			\bot				\perp		\perp			\dashv	$\perp \!\!\! \perp$	\vdash	Ш	_
SUSDP16-1C SUS151COON SO N 0 - 1 ft 1325252.30 44844.32 8/14/2017 N N N N N N N N N													\sqcup		\perp			\perp		\sqcup			\perp				\perp		\perp		X		\bot	ightharpoonup	Ш	_
SUSDP15-1C DPS151COIN SO N 1-2 ft 1332525.30 448484.32 8/14/2017 N N N N N N N N N																	_	\perp					\perp		\perp				\perp		X	+	+	\vdash	$oldsymbol{\perp}$	_
SUSDP15-1C DPS151CO1R SO FD 1-2 ft 1325252.30 448484.32 8/14/2017				N								_	\vdash		+	_		₩	_	\vdash		_	+	_	+	4	-	_	+	_	+		+	\vdash	$+\!\!-\!\!\!+$	_
SUSDP15-1C DPS151C02N SO N 2-3 ft 1325252.30 448484.32 8/14/2017 SUSDP15-1C DPS151C03N SO N 3-4 ft 1325252.30 448484.32 8/14/2017 SUSDP15-1C DPS151C05N SO N 5-6 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C06N SO N 6-7 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C07N SO N 7-8 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C08N SO N 8-9 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C08N SO N 9-10 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C09N SO N 9-10 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C09N SO N 9-10 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C09N SO N 0-11 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C09N SO N 0-11 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1G DPS151G09N SO N 0-11 ft 1325194.48 44848.34 8/15/2017 SUSDP15-1G DPS151G09N SO N 0-1 ft 1325194.48 44848.38 8/15/2017 SUSDP15-1G DPS151G09N SO N 1-2 ft 1325194.48 44848.38 8/15/2017 SUSDP15-1G DPS151G09N SO N 5-6 ft 1325194.48 44848.38 8/30/2017 SUSDP15-1G DPS151G09N SO N 6-7 ft 1325194.48 44848.38 8/30/2017 SUSDP15-1G DPS151G09N SO N 6-7 ft 1325194.48 44848.38 8/30/2017 SUSDP15-1G DPS151G09N SO N 6-7 ft 1325194.48 44848.38 8/30/2017 SUSDP15-1G DPS151G09N SO N 6-7 ft 1325194.48 44848.38 8/30/2017 SUSDP15-1G DPS151G09N SO N 6-7 ft 1325194.48 44848.38 8/30/2017 SUSDP15-1G DPS151G09N SO N 6-7 ft 1325194.48 44848.38 8/30/2017 SUSDP15-1G DPS151G09N SO N 6-7 ft 1325194.48 44848.38 8/30/2017 SUSDP15-1G DPS151G09N SO N 6-7 ft 1325194.48 44848.38 8/30/2017 SUSDP15-1G DPS151G09N SO N 6-7 ft 1325194.48 44848.38 8/30/2017 SUSDP15-1G DPS151G09N SO N 6-7 ft 1325194.48 44848.38 8/30/2017 SUSDP15-1G DPS151G09N S				N									$\vdash \vdash$		+			\vdash		\vdash			+		+	_			+		+	+	+	\vdash	+	_
SUSDP15-1C DPS151C03N SO N 3 - 4 ft 1325252.30 448484.32 8/14/2017													\vdash		+	_	_	╁		┢			+	_	+	_			+		+	\vdash	+	\vdash	\dashv	_
SUSDP15-1C DP5151C05N SO N 5 - 6 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DP5151C06N SO N 6 - 7 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DP5151C07N SO N 7 - 8 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DP5151C08N SO N 8 - 9 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DP5151C09N SO N 9 - 10 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DP5151C09N SO N 10 - 11 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DP5151C09N SO N 10 - 11 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1G DP5151G0N SO N 1 - 1 ft 1325252.30 448483.84 8/15/2017 SUSDP15-1G DP5151G0N SO N 1 - 2 ft 1325194.48 448483.84 8/15/2017 SUSDP15-1G													\vdash		+	_		+		\vdash			+	_	+		_		+		+	_	+	\vdash	+	_
SUSDP15-1C DPS151C08N SO N 6-7 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C08N SO N 7-8 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C08N SO N 8-9 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C09N SO N 9-10 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C09N SO N 9-10 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1C DPS151C09N SO N 1-11 ft 1325252.30 448484.32 8/22/2017 SUSDP15-1G SUS151G00N SO N 0-1 ft 1325194.48 448483.84 8/15/2017 SUSDP15-1G DPS151G09N SO N 1-2 ft 1325194.48 448483.84 8/15/2017 SUSDP15-1G DPS151G09N SO N 5-6 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 5-6 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 7-8 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 7-8 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 7-8 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 7-8 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 7-8 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9-10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9-10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9-10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9-10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9-10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9-10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9-10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9-10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9-10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9-10 ft 1325678.88 47889.24 2/1/2017 SUSDP15-													\vdash	_	+	-	-	₩	-	\vdash	_	-	+	-	+	-	<u> </u>	-	+	_		_	+	\dashv	+	\dashv
SUSDP15-1C DPS151C07N SO N 7 - 8 ft 1325252.30 448484.32 8/22/2017 N N N N N N N N N													\vdash	-	+	-+	_	+		\vdash	_		+	-	+	+	+	_	+	_	X	+	+	\dashv	$\dashv \dashv$	\dashv
SUSDP15-1C DPS151C08N SO N 8-9 ft 1325252.30 448484.32 8/22/2017 N N N N N N N N N													\vdash	_	+	_	_	++		\vdash			+	_	+	_	+		+		<u>^</u>	+	+	\dashv	$+\!\!-\!\!\!+$	\dashv
SUSDP15-1C DPS151C09N SO N 9-10 ft 1325252.30 448484.32 8/22/2017 N N N N N N N N N													\vdash		+	-		+		\vdash			+	_	+		+		+			+	+	\vdash	$\dashv\dashv$	\dashv
SUSDP15-1C DPS151C10N SO N 10 - 11 ft 1325252.30 448484.32 8/22/2017				_								-	\vdash	+	+	+	-	╁┼	-	\vdash	+		+	+	+	+	Y	-	+	+		+	+	\dashv	+	\dashv
SUSDP15-1G SUS151G00N SO N 0 - 1 ft 1325194.48 448483.84 8/15/2017 SUSDP15-1G DPS151G01N SO N 1 - 2 ft 1325194.48 448483.84 8/15/2017 SUSDP15-1G DPS151G05N SO N 5 - 6 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G06N SO N 6 - 7 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G06N SO N 7 - 8 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G06N SO N 8 - 9 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G08N SO N 8 - 9 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9 - 10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9 - 10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G													\vdash		+	_		+		+			+	_	+ +				+		+^-	+	+	\dashv	$+\!\!-\!\!\!+$	\dashv
SUSDP15-1G DPS151G01N SO N 1 - 2 ft 1325194.48 448483.84 8/15/2017 SUSDP15-1G DPS151G05N SO N 5 - 6 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G06N SO N 6 - 7 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G07N SO N 7 - 8 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G08N SO N 8 - 9 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9 - 10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9 - 10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G10N SO N 10 - 11 ft 1325194.84 448483.84 8/30/2017 SUSDP19-1A DPS151G10N SO N 10 - 11 ft 1325678.88 447889.24 2/1/2017 10 - 11 ft 1325678.88<													\vdash		+	-		+		\vdash			+	_	+		_		+		+ +	+	+	一十	+	
SUSDP15-1G DPS151G05N SO N 5 - 6 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G06N SO N 6 - 7 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G07N SO N 7 - 8 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G08N SO N 8 - 9 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9 - 10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G10N SO N 9 - 10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G10N SO N 0 - 11 ft 1325194.48 448483.84 8/30/2017 SUSDP19-1A SUS191A00N SO N 0 - 1 ft 1325678.88 447889.24 2/1/2017 SUSDP19-1A DPS191A10N SO N 10 - 11 ft 1325678.88 447889.24 2/1/2017													\vdash	+	+	-	+	+		\vdash			+ +		+ +		_		+	+	+	+	+	\vdash	+	\dashv
SUSDP15-1G DPS151G06N SO N 6 - 7 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G07N SO N 7 - 8 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G08N SO N 8 - 9 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9 - 10 ft 1325194.48 448483.84 8/30/2017 N															+	_		+					1 1		+		1		+		X	+	+	一十	+	\dashv
SUSDP15-1G DPS151G07N SO N 7 - 8 ft 1325194.48 448483.84 8/30/2017 SO N 7 - 8 ft 1325194.48 448483.84 8/30/2017 SO N 9 - 9 ft 1325194.48 448483.84 8/30/2017 SO N 9 - 10 ft 1325194.48 448483.84 8/30/2017 SO N 9 - 10 ft 1325194.48 448483.84 8/30/2017 SO N 10 - 11 ft 1325194.48 448483.84 8/30/2017 SO N 10 - 11 ft 1325678.88 447889.24 2/1/2017 SO N 2 - 3 ft 1325678.88 447889.24 2/1/2017 SO N 10 - 11 ft 1325678.88 447889.24 2/8/2017 SO N 10 - 11 ft 1325678.88 447889.24 2/8/2017 SO N 10 - 11 ft 1325678.88 447889.24 2/8/2017 SO N 10 - 11 ft 1325678.88 447889.24 2/8/2017 SO N 10 - 11 ft 1325678.88 447889.24 2/8/2017 SO N 10 - 11														+	+	\dashv	+	+		\vdash	+		+	\dashv	+		+		+		X	+	+	一十	+	\dashv
SUSDP15-1G DPS151G08N SO N 8 - 9 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G09N SO N 9 - 10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G10N SO N 10 - 11 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G SUSDP15-1G DPS151G10N SO N 10 - 11 ft 1325678.88 447889.24 2/1/2017 SUSDP19-1A DPS191A02N SO N 2 - 3 ft 1325678.88 447889.24 2/1/2017 SUSDP19-1A DPS191A10N SO N 10 - 11 ft 1325678.88 447889.24 2/8/2017 SUSDP19-1A															+	\dashv		+		\vdash			1 1		+		\top		\top		X	+	+	一	$\dashv \dashv$	\dashv
SUSDP15-1G DPS151G09N SO N 9 - 10 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G DPS151G10N SO N 10 - 11 ft 1325194.48 448483.84 8/30/2017 SUSDP15-1G SUSDP15-1G N 0 - 1 ft 1325678.88 447889.24 2/1/2017 SUSDP19-1A DPS191A02N SO N 2 - 3 ft 1325678.88 447889.24 2/1/2017 SUSDP19-1A DPS191A10N SO N 10 - 11 ft 1325678.88 447889.24 2/8/2017 SUSDP19-1A SUSDP19-1A DPS191A10N SO N 10 - 11 ft 1325678.88 447889.24 2/8/2017 SUSDP19-1A														+	1 1	_		1 1					1 1				\top		\top		X	+	+	\dashv	+	\dashv
SUSDP15-1G DPS151G10N SO N 10 - 11 ft 1325194.48 448483.84 8/30/2017 Image: Control of the control of											H		\vdash	\top	1 1	\dashv		 					† †		1 1	\dashv	X	\dashv	+	\dashv	X	+	+-+	\dashv	$\dashv \dashv$	\dashv
SUSDP19-1A SUS191A00N SO N 0 - 1 ft 1325678.88 447889.24 2/1/2017 Image: Control of the											H		\vdash	\dashv	1 1	\dashv		+ +		\vdash			+		1 1	\dashv	X	\dashv	\top	\dashv	+ 1	\vdash	+-+	\dashv	$\dashv \dashv$	\dashv
SUSDP19-1A DPS191A02N SO N 2 - 3 ft 1325678.88 447889.24 2/1/2017 Image: Control of the											H		\sqcap	_	11	\neg		† †		\vdash		\Box	\top		\top	\dashv	11	\neg	\top		X	\top	+	\vdash	$\dashv \dashv$	\dashv
SUSDP19-1A DPS191A10N SO N 10 - 11 ft 1325678.88 447889.24 2/8/2017													\sqcap	\neg	11			+				\Box	T		1 1	十	\top	1	11	十	Х	一	+	一	\top	\dashv
													\sqcap	\dashv	11	\neg	\neg	1 1		\sqcap		\Box	\top		\top	十	\top	\dashv	\top	\dashv	X	\top	+	一	\dashv	\dashv
SUSDP19-1A DPS191A15N SO N 15 - 16 ft 1325678.88 447889.24 2/8/2017	SUSDP19-1A	DPS191A15N				1325678.88	447889.24			2/8/2017	H		\sqcap	\neg	11	\neg		1 1		\sqcap			11		1 1	\dashv	77	\neg	11	\neg	Х	\top	\top	egthinspace = 1	\dashv	\neg
SUSDP19-1B SUS191B00N SO N 0 - 1 ft 1325701.28 447887.72 2/1/2017 X													\sqcap		11			1 1					\top		\top		\top				Х		\sqcap	i	$\neg \neg$	ヿ
SUSDP19-1B DPS191B02N SO N 2 - 3 ft 1325701.28 447887.72 2/1/2017	SUSDP19-1B	DPS191B02N	SO	N	2 - 3 ft	1325701.28	447887.72			2/1/2017								П							П				П		Х		Π	ıΤ	\Box	\neg

								wasr	nington, D		2001	9																								
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422)	Atterberg Limits	Total Residue (E160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1)	PIOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C)	Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (\$W8015C) TPH-GRO (\$W8015B)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	1 (0	PCBs (E1668C)	VOCs (SW8260C)		CSIA (VOCS) (PAE-CSIA-004) SVOCS (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHS (ID-0016) PAHS (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SUSDP19-1B	DPS191B10N	SO	N	10 - 11 ft	1325701.28	447887.72			2/8/2017																						Х			TT	П	
SUSDP19-1B	DPS191B15N	SO	N	15 - 16 ft	1325701.28	447887.72			2/8/2017																						Х			1		\Box
SUSDP19-1C	SUS191C00N	SO	N	0 - 1 ft	1325702.57	447857.37			1/27/2017																						Х			\Box	П	\Box
SUSDP19-1C	SUS191C00R	SO	FD	0 - 1 ft	1325702.57	447857.37			1/27/2017														1 1								Х			Π	П	\Box
SUSDP19-1C	SUS191C02N	SO	N	2 - 3 ft	1325702.57	447857.37			1/27/2017																						Х				П	
SUSDP19-1C	SUS191C02R	SO	FD	2 - 3 ft	1325702.57	447857.37			1/27/2017																						Х				П	
SUSDP19-1C	DPS191C10N	SO	N	10 - 11 ft	1325702.57	447857.37			2/8/2017																						Х		\perp		\Box	
SUSDP19-1C	DPS191C15N	SO	N	15 - 16 ft	1325702.57	447857.37			2/8/2017		Ш														Ш						Х			Ш	Ш	
SUSDP19-1D	SUS191D00N	SO	N	0 - 1 ft	1325692.69	447833.81			8/22/2017					Ш																	Х	_			\sqcup	
SUSDP19-1D	DPS191D01N	SO	N	1 - 2 ft	1325692.69	447833.81			8/22/2017																						Х		丄	Ш	Щ	
SUSDP19-1D	DPS191D01R	SO	FD	1 - 2 ft	1325692.69	447833.81			8/22/2017					Ш									\perp		$oxed{oxed}$						Х			Ш	Щ	
SUSDP19-1D	DPS191D02N	SO	N	2 - 3 ft	1325692.69	447833.81			8/22/2017		ш		_	\perp							\perp		\perp		\sqcup	_			4		Х	$\perp \perp$		Ш	\vdash	
SUSDP19-1D	DPS191D03N	SO	N	3 - 4 ft	1325692.69	447833.81			8/22/2017		ш			\sqcup			\bot				\bot		\perp		\sqcup				\perp	\sqcup	Х	\perp	_	ш	\vdash	
SUSDP19-1D	DPS191D04N	SO	N	4 - 5 ft	1325692.69	447833.81			8/22/2017		ш		_	\perp			\bot				\perp		\bot		\sqcup	_				\sqcup	Х	-	_	ш	\vdash	
SUSDP19-1D	DPS191D05N	SO	N	5 - 6 ft	1325692.69	447833.81			8/22/2017			4	_			_	\bot		4					_	\perp		_		_		X	\bot	+	$\perp \perp$	\vdash	
SUSDP19-1F	DPS191F01N	SO	N	1 - 2 ft	1325644.66	447840.60			8/22/2017			4	_			_	+	_	+		\perp		1	_	+	_	4		_		X	+	+	igspace	\vdash	
SUSDP19-1F	DPS191F02N	SO	N	2 - 3 ft	1325644.66	447840.60			8/22/2017		+	4	-	+	4	_	+	_	-		+	_	+	_	+	_	-		4	\vdash	X	+	+	+	\vdash	
SUSDP19-1F	DPS191F03N	SO	N	3 - 4 ft	1325644.66	447840.60			8/22/2017		\vdash	4	-	+			+	_			+		+		+	_			_	\vdash	X	++	+	+	\vdash	
SUSDP19-1F	DPS191F04N	SO	N	4 - 5 ft	1325644.66	447840.60			8/22/2017		\vdash	4	_	+			+				+		+		+	_			_	\vdash	X	+	+	+	\vdash	
SUSDP19-1G	SUS191G00N	SO	N	0 - 1 ft	1325648.01	447868.63			2/1/2017		\vdash	+	-	+	_	-	+		+		+		+	_	+	_	-		+	\vdash	X	-	+	+	\vdash	
SUSDP19-1G	DPS191G02N	SO SO	IN N	2 - 3 ft	1325648.01 1325648.01	447868.63			2/1/2017	1	₩	-	+	+	-	-	+	-	+-		+	_	+	-	+	+	+	\vdash	+	╁	X		+	+	\vdash	+
SUSDP19-1G	DPS191G10N	SO	IN N	10 - 11 ft		447868.63			2/8/2017	-	++	+	+	+	+			_	+		+		+	-	+	_	+		+	\vdash	X	+	+	+	\vdash	+
SUSDP19-1G SUSDP19-1H	DPS191G15N SUS191H00N	SO	NI NI	15 - 16 ft 0 - 1 ft	1325648.01 1325653.40	447868.63 447895.65			2/8/2017 2/1/2017	-	\vdash	+	-	+	-	-	+		-		+		+	-	+	-	+		+	┢	X	-	+	+	\vdash	-
	DPS191H02N	SO	NI NI	2 - 3 ft	1325653.40	447895.65			2/1/2017	1		+	+	+		-	+	-			+		+	-	+	-	+		+	\vdash	+ ÷	+	+	+	\vdash	+
SUSDP19-1H SUSDP19-1H	DPS191H10N	SO	NI NI	10 - 11 ft	1325653.40				2/8/2017	╁	++	+	╬	+	-		+		-		+	-	+	+	+	+	+	\vdash	+	\vdash	+ ÷	+	+	+	\vdash	+
SUSDP19-1H	DPS191H15N	SO	N	15 - 16 ft	1325653.40	447895.65			2/8/2017	+	++	+	+	+	+	+	+	-			+		+		+	+	+		+	\vdash	 ↑	+	+	+	\vdash	++
SUSDP19-2D	DPS192D01N	SO	N	1 - 2 ft	1325733.14	447879.86			8/17/2017	1		+	+	+			+	-	+		+		+		+	-			+	\vdash	$\frac{\lambda}{X}$		+	+	\vdash	
SUSDP19-2D	DPS192D02N	SO	N	2 - 3 ft	1325733.14	447879.86			8/17/2017	1	++	+	+	+	\dashv	+	+	_			+		+ +		+	+	+		+	\vdash	$\frac{1}{x}$	_	+	+	\vdash	+
SUSDP19-2D	DPS192D03N		N	3 - 4 ft	1325733.14	447879.86			8/17/2017	1		1	+	+	_		+				+		+		+	\dashv	+		+		$\frac{\lambda}{X}$	_	+	+	一十	+
SUSDP19-2D	DPS192D04N	SO	N	4 - 5 ft	1325733.14	447879.86			8/17/2017			1	+	+			1	_	+		+		+ +		+	-	+		+		$\frac{1}{X}$		+	+	一十	+
SUSDP19-2D	DPS192D05N	SO	N	5 - 6 ft	1325733.14	447879.86			8/17/2017	1	+	\top	+	\top	+	-	1 1		+		+		+ +	-	†	\dashv	+		+	tt	X		+	+	一十	-
SUSDP19-2M	DPS192M03N	SO		3 - 4 ft	1325618.56	447873.44			8/16/2017	1	t	1	\top	\top	+		T				\top		+		\Box	\dashv	+			t	X	_	+	+	一十	
SUSDP19-2M	DPS192M03R			3 - 4 ft	1325618.56	447873.44			8/16/2017			1		1 1			1 1				1 1		1 1		\Box						X		\top	+	一十	\Box
SUSDP19-2M	DPS192M04N	SO	N	4 - 5 ft	1325618.56	447873.44			8/16/2017	1	口	十	1	\top			1 1	\neg		\vdash	\top		\top	\top	\top	\neg	1		1		X	_	十	+	\sqcap	+
SUSDP19-2M	DPS192M05N	SO	N	5 - 6 ft	1325618.56	447873.44			8/16/2017	T	T^{\dagger}	十		1			1			\vdash	\top		1 1	\top	\top	\neg	1		1		X	$\dagger \dagger$	十	+	\sqcap	\top
SUSDP19-2O	DPS192O03N	SO	N	3 - 4 ft	1325619.16	447930.94			8/23/2017	1	\sqcap	十		\top			1 1			\Box	11	\neg	11		\top	\neg	1	\sqcap	1		X	$\dagger \dagger$	\top	\top	\sqcap	$\neg \neg$
SUSDP19-2O	DPS192O04N	SO	N	4 - 5 ft	1325619.16	447930.94			8/23/2017	ĺ																					Х		\top	\sqcap	\sqcap	
SUSDP19-2O	DPS192O05N	SO	N	5 - 6 ft	1325619.16	447930.94			8/23/2017																						Х			\Box	\Box	
SUSDP19-2O	DPS192O06N	SO	N	6 - 7 ft	1325619.16	447930.94			3/28/2018																	[Х			\Box	厂	
SUSDP19-2O	DPS192O07N	SO	N	7 - 8 ft	1325619.16	447930.94			3/28/2018																						Х					
SUSDP19-20	DPS192O10N	SO	N	10 - 11 ft	1325619.16	447930.94			3/28/2018																						Х			$oxed{oxed}$	Ш	

								wasr	nington, D	C	20019)																							
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation		Hardness (SM2340)	Grain Size (D422) Atterbera Limits	Hydraulic Conductivity (lab)	E16	HEM - Oil & Grease (E1664B) Amonia (E350.1)	PTOC (E440)	Field Parameters	Gamma Radioassay DOC (SM5310C)	TOC (LKTOC)	Metals (SW6010)	Metals (SW6020A)	Chromium (VI) (SW7199) Mercury (SW7470A)	Mercury (SW7471B)	Metals (field XRF)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	OCP (SW8081B LL)	Aroclor PCBs (SW8082A)	VOCs (SW8260B)	VOCs (SW8260C)	CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCS (SW8Z/0DM SIM) PAHs (ID-0016)	PAHs (D7363-13) PCDDs/PCDFs (SW8290A)	PCDUS/FCUTS (SW9012B) Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SUSDP19-2O	DPS192O11N	SO	N	11 - 12 ft	1325619.16	447930.94			3/28/2018																						Х	\Box	T		\Box
SUSDP19-2P	DPS192P03N	SO	Ν	3 - 4 ft	1325659.63	447922.99			8/17/2017																						Х	\top			\Box
SUSDP19-2P	DPS192P04N	SO	Ν	4 - 5 ft	1325659.63	447922.99			8/17/2017																						Х	\top			\Box
SUSDP19-2P	DPS192P05N	SO	N	5 - 6 ft	1325659.63	447922.99			8/17/2017							П															Х	\Box			\Box
SUSDP19-3F	DPS193F01N	SO	Ν	1 - 2 ft	1325761.23	447872.88			8/18/2017																						Х				
SUSDP19-3F	DPS193F02N	SO	N	2 - 3 ft	1325761.23	447872.88			8/18/2017																						Х	\Box			П
SUSDP19-3F	DPS193F03N	SO	N	3 - 4 ft	1325761.23	447872.88			8/18/2017																						Х				
SUSDP19-3F	DPS193F04N	SO	Ν	4 - 5 ft	1325761.23	447872.88			8/18/2017																						Х				
SUSDP19-3F	DPS193F05N	SO	N	5 - 6 ft	1325761.23	447872.88			8/18/2017																						Х				
SUSDP19-3S	SUS193S00N	SO	N	0 - 1 ft	1325581.45	447878.32			8/24/2017																						Х				
SUSDP19-3S	DPS193S01N	SO	N	1 - 2 ft	1325581.45	447878.32			8/24/2017																						Х				
SUSDP19-3S	DPS193S01R	SO	FD		1325581.45	447878.32			8/24/2017													Ш									Х	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}$			
SUSDP19-3S	DPS193S02N	SO	N	2 - 3 ft	1325581.45	447878.32			8/24/2017																						Х	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$			
SUSDP19-3S	DPS193S03N	SO	N	3 - 4 ft	1325581.45	447878.32			8/24/2017													Ш									Х	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		丄	Ш
SUSDP19-3S	DPS193S04N	SO	_	4 - 5 ft	1325581.45	447878.32			8/24/2017									$oldsymbol{\perp}$													Х	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$			Ш
SUSDP19-3S	DPS193S05N	SO	N	5 - 6 ft	1325581.45	447878.32			8/24/2017													Ш									Х	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	\perp	丄	Ш
SUSDP19-3V	DPS193V01N	SO	N	1 - 2 ft	1325595.71	447958.44			8/24/2017									\sqcup		ш	_	Ш						\perp			Х	$\perp \!\!\! \perp \!\!\! \perp$	\perp	_	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
SUSDP19-3V	DPS193V02N	SO	_	2 - 3 ft	1325595.71	447958.44			8/24/2017			_	Ш	_		\sqcup		\sqcup		\sqcup	_	ш						\perp		\perp	Х	$\perp \!\!\! \perp \!\!\! \perp$		_	444
SUSDP19-3V	DPS193V03N	SO		3 - 4 ft	1325595.71	447958.44			8/24/2017			_		_		\sqcup		\sqcup		\sqcup	_	Ш						\bot		\perp	Х	$\perp \!\!\! \perp \!\!\! \perp$			$\perp \perp \perp$
SUSDP19-3V	DPS193V04N	SO	_	4 - 5 ft	1325595.71	447958.44			8/24/2017			_		_	_			$\bot\bot$		\sqcup		\perp				_		\perp	_	\perp	Х	$\perp \!\!\! \perp \!\!\! \perp$		—	+
SUSDP19-3V	DPS193V05N	SO		5 - 6 ft	1325595.71	447958.44			8/24/2017					_				++		\sqcup		\perp								\perp	Х	$\bot\!$	\vdash	+	+
SUSDP19-3X	DPS193X01N	SO	N	1 - 2 ft	1325660.35	447949.89			8/18/2017			_		_		\vdash	_	\vdash	_	\vdash	_	\perp	_	_		_		+	_	\perp	Х		\vdash	—	+++
SUSDP19-3X	DPS193X02N	SO	_	2 - 3 ft	1325660.35	447949.89			8/18/2017		\vdash	-	\vdash	_	_	\vdash	4	++	4	₩	4	\bot	_	-	\vdash	+		+	_	\bot	Х	+	\vdash	—	+++
SUSDP19-3X	DPS193X03N	SO		3 - 4 ft	1325660.35	447949.89			8/18/2017					_				++		\vdash	_	\perp		-		_		+		\perp	Х	+	\vdash	+	+++
SUSDP19-3X	DPS193X04N	SO		4 - 5 ft	1325660.35	447949.89			8/18/2017			-		_	_	\vdash	_	++	4	\vdash	4	\bot	_	-		+		+	_	\perp	Х	+	\vdash	—	+++
SUSDP19-3X	DPS193X05N		_	5 - 6 ft	1325660.35				8/18/2017			+		_	-			++	+	\vdash	-	+		_		+		+	_	+	Х	\dashv	\vdash	+	+
SUSDP19-4N	SUS194N00N			0 - 1 ft	1325664.31	447997.13			1/26/2018			-		_	_			++		\vdash	_	+				-		+	_	\perp	Х	+	\vdash	+	+++
SUSDP19-4N	DPS194N01N	SO		1 - 2 ft	1325664.31	447997.13			1/26/2018			+	┝	_	+	┢	_	╀	-	╀	-	+	_			-		+	_		Х	+	\vdash	+	+++
SUSDP19-4N SUSDP19-4N	DPS194N02N DPS194N02R	SO SO		2 - 3 ft 2 - 3 ft	1325664.31 1325664.31	447997.13 447997.13			1/26/2018 1/26/2018		\vdash	+		-	+			++	+	+	-	+		+	\vdash	+		+	_	+	X	+	\vdash	+	+++
SUSDP19-4N	DPS194N02R DPS194N03N	SO	_		1325664.31	447997.13			1/26/2018		\vdash	+		_	+	\vdash		++	+	+	_	+		+		+		+	_	+	X	+	\vdash	+	+++
SUSDP19-4N	DPS194N04N		_	3 - 4 ft 4 - 5 ft	1325664.31	447997.13			1/26/2018		\vdash	+	\vdash	-	-	┢	_	╁┼	-	╁	-	+	-		\vdash	+		+	-	+	\rightarrow	+	\vdash	+	+++
SUSDP19-4N	DPS194N04N	so		5 - 6 ft	1325664.31	447997.13			1/26/2018		\vdash	╁	\vdash	+	+	\vdash	-	++	+	+	+	+	+	+	\vdash	+		+	-	+	X	+	\vdash	+	+++
SUSDP19-4N	DPS194N06N	so		6 - 7 ft	1325664.31	447997.13			3/28/2018		\vdash	+		+	+	\vdash	_	++	+	+	+	+	-	+		+		+	-	+	X	+	\vdash	+	+++
SUSDP19-4N	DPS194N07N	SO		7 - 8 ft	1325664.31	447997.13			3/28/2018	H	$\vdash\vdash$	+	$\vdash \vdash$	-	+	$\vdash \vdash$	-	++	+	++	-	+	\dashv	+	$\vdash \vdash$	+	\vdash	+	-	+	X	+	+	+	+
SUSDP19-4N	DPS194N10N	SO		10 - 11 ft	1325664.31	447997.13			3/28/2018	Н	$\vdash\vdash$	+	\vdash	+	+	\vdash	-	++	+	++	-	+	\dashv	+	\vdash	+	\vdash	+	\dashv	+	X	+	+	+	+++
SUSDP19-4N	DPS194N11N	so	_	11 - 12 ft	1325664.31	447997.13			3/28/2018		$\vdash \vdash$	+	\vdash	\dashv	+	$\vdash \vdash$	+	++	+	+ +	\dashv	+	\dashv	+	$\vdash \vdash$	+	$\vdash \vdash$	+	\dashv	+	X	+	\dashv	+	+++
SUSDP19-4NW	SUS194NW00N	so	_	0 - 1 ft	1325561.19	448018.53			2/1/2018	H	\vdash	+	\vdash	\dashv	+	$\vdash \vdash$	+	++	+	+ +	\dashv	+	\dashv	+	\vdash	+	\vdash	+	\dashv	+	X	+	+	+	+++
SUSDP19-4NW	DPS194NW01N	so		1 - 2 ft	1325561.19	448018.53			2/1/2018	H	\vdash	+	\vdash	+		\vdash	+	++	+	++	+	+	\dashv	+	\vdash	+	\vdash	+	\dashv	+	X	+	+	+	+++
SUSDP19-4NW	DPS194NW02N	SO		2 - 3 ft	1325561.19	448018.53			2/1/2018		$\vdash \vdash$	+	\vdash	-	+	$\vdash \vdash$	\dashv	++	+	++	-	+	\dashv	+	\vdash	+	\vdash	+	-	+	X	+	\vdash	十	+++
SUSDP19-4NW	DPS194NW03N	SO	_	3 - 4 ft	1325561.19	448018.53			2/1/2018		\vdash		\vdash	\dashv	+	\vdash	+	++	+	+	\dashv	+	\dashv	\top	\vdash	+	\vdash	+	-	+	X	+	+	十	+++
SUSDP19-4NW	DPS194NW04N	SO		4 - 5 ft	1325561.19	448018.53			2/1/2018		\vdash	+	\vdash	\dashv	+	$\vdash \vdash$	+	++	+	\vdash	+	+	\dashv	\top		+	\vdash	+	\dashv	+	Х	\dashv	+	十	+++
		1																																—	

SUSSIPPI-SHAW DISTRIBUTION SO N 1-11 1.21 1.32555119 440718 51 2.72018									wasr	nington, D	C 2	0019																							
SUBSPIEMENT Location ID	Sample ID	Matrix ¹	mple Typ	-	Easting	Northing	•			ess (SM	ain terk	uctivity	Residue (E160.3) - Oil & Grease (E1	(0.1)	PTOC (E440)	Field Parameters Gamma Radioassay	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260E)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Free Cyanide (SW9014) Sulfide (SW9034)	
SUSDIPPI-MAW OPS INAM/WORN SO N 7-71 139586.19 44001.55 3050016	SUSDP19-4NW	DPS194NW05N	SO	N	5 - 6 ft	1325561.19	448018.53			2/1/2018																					Х		\Box	\Box	$\Box\Box$
SUSPIP-16-MW DPS 1947-WOYN SO N T - PR 13298-119 440716.55 32620716 N N N N N N N N N				N	6 - 7 ft								Ħ		1 1			1 1					1 1				1				X		\Box	\top	+
SUSDIP-16-MW DPS-19MWIN SO N 10 - 11 1 132566.11 440718.55 3.052018 N 1 - 12 N 1 N 1 12 N 1 N 1 12 N 1				N	7 - 8 ft								П					\Box					1 1		11						X		Ħ	十	+
SUSSPIP-04W SUS16WYOON SO N 0-1-R 1325052-12 447875-01 2112018	SUSDP19-4NW	DPS194NW10N		N	10 - 11 ft	1325561.19	448018.53			3/28/2018																					Х				$\Box\Box$
SUSPIPI-MY OPSIGNWORN SO N 1-2ft 1326265.12 447875.01 2712018	SUSDP19-4NW	DPS194NW11N	SO	Ν	11 - 12 ft	1325561.19	448018.53			3/28/2018																					Х		П		$\Box\Box$
SUSSPIP-94W DPS194W0TR SO FD 1-2 ft 1325505.12 447875.01 21/2018	SUSDP19-4W	SUS194W00N	SO	Ν	0 - 1 ft	1325525.12	447875.01			2/1/2018																					Х		П		$\Box\Box$
SUSPIP-9-W DPS194W02N SO	SUSDP19-4W	DPS194W01N	SO	N	1 - 2 ft	1325525.12	447875.01			2/1/2018																					Х				
SUSPIP-9-W DPS194W0SN SO N 3-4 ft 1325525 12 447975.01 2712016 N SUSPIP-9-W DPS194W0SN SO N 4-5 ft 1325525 12 447975.01 2712018 N SUSPIP-9-W DPS194W0SN SO N 6-6 ft 1325625 12 447975.01 2712018 N SUSPIP-9-W DPS195W0SN SO N 2-3 ft 1325666 07 448060 85 22712018 N SUSPIP-9-W SUSPIP-9-W SUSPIP-9-W SUSPIP-9-W SUSPIP-9-W SUSPIP-9-W DPS195W0SN SO N 2-3 ft 1325660 11 448060 85 22712018 N SUSPIP-9-W SUSPIP-9-W DPS195W0SN SO N 2-3 ft 1325660 11 448060 85 22712018 N SUSPIP-9-W SUSPIP-9-W DPS195W0SN SO N 2-3 ft 1325660 11 448060 85 22712018 N SUSPIP-9-W SUSPIP-9-W DPS195W0SN SO N 2-3 ft 1325660 11 448060 85 22712018 N SUSPIP-9-W SUSPIP-9-W DPS195W0SN SO N 2-3 ft 1325660 11 448060 85 22712018 N SUSPIP-9-W DPS195W0SN SO N 2-3 ft 1325599 11 448093 41 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325599 11 448093 41 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325599 11 448093 41 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325599 11 448093 41 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325599 11 448093 41 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325599 11 448093 41 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325477 01 44799 138 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325477 01 44799 138 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325477 01 44799 138 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325477 01 44799 138 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325477 01 44799 138 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325477 01 44799 138 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325467 01 44799 138 SUSPIP-9-W DPS195W0SN SO N 3-4 ft 1325467 01	SUSDP19-4W	DPS194W01R	SO	FD	1 - 2 ft	1325525.12	447875.01			2/1/2018																					Х				
SUSDP19-4W DPS194WOMN SO N 4 - 5 ft 10259521.2 447975.01 2712018				N	2 - 3 ft	1325525.12				2/1/2018																					Х				
SUSDP19-9M				N	3 - 4 ft																										Х				
SUSDP19-SN SUS198NOON SO N 0-1ft 1325666.07 44090.85 221/2018				N	4 - 5 ft																										X				
SUSDP19-SN DPS19SNOTN SO N 1 - 2 ft 1325666.07 448060.85 22/1/2018				Ν	5 - 6 ft								Ш					Ш													Х		Ш	丄	
SUSDP19-SN DPS198NORN SO N 2 - 3 ft 1325666.07 448060.85 22112018					-								Ш					Ш													Х		Ш	丄	Ш
SUSDP19-SN DPS198N03N SO N 3 - 4 ft 1325696 07 448900.95 221/2018													Ш					\sqcup															Ш	丄	$\perp \perp \perp \perp$
SUSDP19-5N DPS198N/00N SO N 4 - 5 ft 1325666.07 448060.85 2717/018 N N N N N N N N N N N N N N N N N N N				_									Ш																				\sqcup	\bot	\bot
SUSDP19-5NW												Ш		\perp			Ш													_		\sqcup		$\perp \perp \downarrow \downarrow$	
SUSDP19-SWW DPS19SW00N SO N 1-2 ft 1325590.01 448093.41 22/12/018 N N N N N N N N N N N N N N N N N N N				_									Ш					\sqcup		\sqcup			\perp				\perp				_		\sqcup	_	\bot
SUSDP19-SNW DPS19SNW01N SO N 1-2t				+							_		ш		\perp			\sqcup					\perp		\perp		\perp				_		\vdash	\bot	+
SUSDP19-SNW DPS195NW02N SO N 2.3 ft 132559.01 448093.41 2/21/2018 N N N N N N N N N					-						_		\vdash		+		_	\vdash	_		_		+	_	+		\perp			_		_	\vdash	+	+++
SUSDP19-SNW DPS195NW03N SO N 3 - 4 ft 1325509.01 448093.41											_	_	\vdash	_	+	_	_	\vdash	_	\vdash	_	_	+	_	+	_	\bot	_		_	_	_	₩	+	+++
SUSDP19-SNW DPS195NW04N SO N 4-5 ft 1325509.01 448093.41				+							_	_	\vdash	_	+		_	\vdash	_	\vdash	_		+	_	+	_	\bot			_	_		\vdash	+	+++
SUSDP19-SNW DPS195NW0SN SO N S - 6 ft 1325593.01 448093.41											_		\vdash		+			\vdash					+	_	+		\perp				_		₩	+	+++
SUSDP19-5W SUS198WOON SO N 0-1 ft 1325477.01 447891.38 2/21/2018 N N N N N N N N N				_							_	_	₽	_	+		-	+	_		+-		+		+	_	+		-	_	_	_	₩	+	+++
SUSDP19-5W DPS195W01N SO N 1-2 ft 1325477.01 447891.38 2/21/2018				-	_						-		\vdash		+		_	+	_		-		+	_	+		+			_	_	_	₩	+	+++
SUSDP19-5W DPS19SW02N SO N 2-3 ft 1325477.01 447891.38											-	_	\vdash		+	-	-	+	-	₩	+	-	+	+	+	-	+		-	_		_	₩	+	+++
SUSDP19-5W DPS195W03N SO N 3 - 4 ft 1325477.01 447891.38 2/21/2018											-	-	╁	-	+		-	╁	-	\vdash	-		+	_	+		+		-				╁┼	+	+++
SUSDP19-5W DPS195W04N SO N 4 - 5 ft 1325477.01 447891.38 2/21/2018				+							\dashv	-	\vdash	+	+	-	-	\vdash	+	\vdash	+	\vdash	+	-	+	+	+			-	_	-	++	+	+++
SUSDP19-6N SUS196N00N SO N 0 - 1 ft 1325656.18 448114.90 3/15/2018 Image: Control of the control of th											\dashv	+	\vdash	+	+	-	+	+	-	\vdash	+	+	+	+	+	+	+	-	+	-	_	+	++	+	+++
SUSDP19-6N DPS196N01N SO N 1 - 2 ft 1325656.18 448114.90 3/15/2018 I				_							\dashv	-	H	-	+		+	+					+		+		+				_	_	++	+	+++
SUSDP19-6N DPS196N02N SO N 2 - 3 ft 1325656.18 448114.90 3/15/2018											\dashv	+	\vdash	-	+	-+	+	+	+	\vdash	+	+	+	-	+	\dashv	+	-		-	_	+	++	+	+
SUSDP19-6N DPS196N03N SO N 3 - 4 ft 1325656.18 448114.90 3/15/2018 Image: Control of the control of th											\dashv	+	\vdash	+	+	-+		+	+	\vdash	+	+	1 1	+	+	+	+		+	-	$\frac{1}{x}$	+	++	十	+++
SUSDP19-6N DPS196N04N SO N 4 - 5 ft 1325656.18 448114.90 3/15/2018 Image: Control of the contro				_							_	_	\vdash	_	+		+	+	_		+		+	-	+	+	+			_	X	_	+	+	+
SUSDP19-6NW SUS196NWOON SO N 0-1 ft 1325459.80 448155.78 3/15/2018 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											_		\vdash		+			\Box					1 1		+		+					_	++	+	+++
SUSDP19-6NW DPS196NW01N SO N 1 - 2 ft 1325459.80 448155.78 3/15/2018 Image: Control of the control of				_							\dashv		\vdash	\dashv	+		+	+	-		+		+	+	\dagger	\dashv	+			\dashv	X		十	十	+++
SUSDP19-6NW DPS196NW02N SO N 2 - 3 ft 1325459.80 448155.78 3/15/2018 Image: Control of the control of				_							\dashv	\dashv	\vdash	\dashv	╅	\dashv	\dashv	+ +	\dashv	\vdash	\top	\vdash	+	\neg	† †	\dashv	+				X		\vdash	十	+++
SUSDP19-6NW DPS196NW03N SO N 3 - 4 ft 1325459.80 448155.78 3/16/2018 Image: Control of the control of												\dashv	\vdash	\dashv	╅	\dashv		1 1	\dashv		1	\vdash	+		† †	\dashv	\top			\dashv	X	\dashv	\vdash	\top	+++
SUSDP19-6NW DPS196NW04N SO N 4 - 5 ft 1325459.80 448155.78 3/16/2018 Image: Control of the control of	SUSDP19-6NW			_							_		\vdash	\dashv	+			1 1			1		\top		1 1		\top				Х		\vdash	十	111
SUSDP19-6NW DPS196NW05N SO N 5 - 6 ft 1325459.80 448155.78 3/16/2018 Image: Control of the control of	SUSDP19-6NW										\dashv		\vdash	\dashv	+	\vdash		1 1					+		1 1		\top				Х		\vdash	十	+
SUSDP19-6W SUS196W00N SO N 0-1 ft 1325427.49 447898.64 3/16/2018				-							_		\vdash	\dashv	+			1 1			1		\top		1 1	\neg	\top						\vdash	十	111
	SUSDP19-6W											\neg	\sqcap	\top	\top	\dashv		1 1	\neg				\top		1 1	\dashv	\top				Х		\sqcap	十	\top
	SUSDP19-6W			N	1 - 2 ft						\neg		\sqcap		\top								\sqcap		17						Х		\sqcap	\top	\top

								wasi	nington, D		2001	9																										
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422)	Atterberg Limits	Hydraulic Conductivity (lab) Total Residue (E160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1)	PTOC (E440)	Field Parameters Gamma Radioassay	DOC (SM5310C)	TOC (LKTOC)	Metals (SW6010)	Metals (SW6020A)	Chromium (VI) (SW7199) Mercury (SW7470A)	Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B)	VOCs (SW8260C) NH VOCs (M8015D)	CSIA (VOCs) (PAE-CSIA-004)	1 - 1	SVOCs (SW8270DM SIM)	PAHS (ID-0016) PAHS (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SUSDP19-6W	DPS196W02N	SO	N	2 - 3 ft	1325427.49	447898.64			3/16/2018																						\top		Х		T	\Box		\square
SUSDP19-6W	DPS196W03N	SO	N	3 - 4 ft	1325427.49	447898.64			3/16/2018																								Х			\top		$\Box\Box$
SUSDP19-7N	SUS197N00N	SO	N	0 - 1 ft	1325663.16	448158.39			4/5/2018		П				П												П				\top		Х		\top	\Box	\Box	$\Box\Box$
SUSDP19-7N	DPS197N01N	SO	N	1 - 2 ft	1325663.16	448158.39			4/5/2018		П																П		1				Х			\Box		$\Box\Box$
SUSDP19-7N	DPS197N02N	SO	N	2 - 3 ft	1325663.16	448158.39			4/5/2018																								Х					
SUSDP19-7N	DPS197N02R		FD	2 - 3 ft	1325663.16	448158.39			4/5/2018																								Х			\square'		
SUSDP19-7N	DPS197N03N	SO	N	3 - 4 ft	1325663.16	448158.39			4/5/2018																								Х					
SUSDP19-7N	DPS197N04N	SO	N	4 - 5 ft	1325663.16	448158.39			4/5/2018																						\perp		Х			\perp		
SUSDP19-7NW	SUS197NW00N	SO	N	0 - 1 ft	1325414.81	448200.55			4/5/2018																						\perp		Х	\perp	\perp	oxdot	\square	
SUSDP19-7NW	DPS197NW01N	SO	N	1 - 2 ft	1325414.81	448200.55			4/5/2018												Ш			Ш			Ш						Х			<u></u> '	Ш	Ш
SUSDP19-7NW	DPS197NW02N	SO	N	2 - 3 ft	1325414.81	448200.55			4/5/2018		Ш													Ш			Ш				丄		Х			<u> </u>	Ш	Ш
SUSDP19-7NW	DPS197NW03N	SO	N	3 - 4 ft	1325414.81	448200.55			4/5/2018		Ш				Ш												\perp						Х			<u> </u>	Ш	ш
SUSDP19-7NW	DPS197NW04N	SO	N	4 - 5 ft	1325414.81	448200.55			4/5/2018																						丄		Х		丄	<u></u> '	Ш	Щ
SUSDP19-7W	SUS197W00N	SO	N	0 - 1 ft	1325377.32	447903.12			4/5/2018		\sqcup	_			Ш						Ш			Ш			$oxed{oxed}$			Ш	\bot		Х	_		<u>↓</u> ′	\sqcup	igcup
SUSDP19-7W	DPS197W01N	SO	N	1 - 2 ft	1325377.32	447903.12			4/5/2018		\sqcup					_	_			_	Ш	_		Ш			\perp			Ш	\bot		Х			<u></u> '	╜	Щ
SUSDP19-7W	DPS197W02N	SO	N	2 - 3 ft	1325377.32	447903.12			4/5/2018		\sqcup	_	_				_					_		Ш			\bot	_		\sqcup	\bot		X		_	 -'	╜	\square
SUSDP19-7W	DPS197W03N	SO	N	3 - 4 ft	1325377.32	447903.12			4/5/2018		\sqcup	4		_	ш		_				\sqcup			Ш			\bot			\sqcup	\bot	_	Х	_	—	 -'	\sqcup	igcup
SUSDP19-7W	DPS197W04N	SO	N	4 - 5 ft	1325377.32	447903.12			4/5/2018		\sqcup	_	_	_	Ш		_				\sqcup	_	_	Ш	_	_	+		-		+	_	X	_	+	₩'	Ш	$oldsymbol{\sqcup}$
SUSDP19-7W	DPS197W05N	SO	N	5 - 6 ft	1325377.32	447903.12			4/5/2018		\vdash	_	_	_	Н	_	_			_	\vdash	_	4	ш	_	_	+	4.	_	\vdash	+	_	Х	_	+	₩'	\sqcup	$oldsymbol{\sqcup}$
SUSDP21-1C	SUS211C00N	SO	N	0 - 1 ft	1326050.65	447909.33			1/27/2017		₩	-	_	_	Н	_	_	_		-	\vdash	4	-	Н	+	-	+	×		\vdash	+	+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	4	 —'	\sqcup	\longrightarrow
SUSDP21-1C	SUS211C00N2	SO	N	0 - 1 ft	1326050.65	447909.33			8/24/2017		\vdash	-	_	_		_	_	_		_	\vdash	4	4	Н	_	_	+		_		+	_	X	+	+	 —'	Ш	+++
SUSDP21-1C	DPS211C01N	SO	N	1 - 2 ft	1326050.65	447909.33			8/24/2017		\vdash	+		_	Н		_			_	\sqcup			Н	_		+	X	_	\vdash	+	_	Х	+	+	 	\vdash	H
SUSDP21-1C	DPS211C02N	SO	N	2 - 3 ft	1326050.65	447909.33			8/24/2017		┢	+		_	Н		-				\vdash	-	+	H	_	+	+	X	,	┢	+	-	\vdash	+	+	<u></u> '	igwdap	H
SUSDP21-1C	DPS211C03N	SO	IN	3 - 4 ft	1326050.65	447909.33			8/24/2017		\vdash	+	-	+	Н	-	+			+	\vdash	-	+	\vdash	-	-	+	- 1	,		+	+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+	+	₩	igwdap	H
SUSDP21-3A	DPS213A01N	SO	N	1 - 2 ft	1326031.48	447992.22			8/25/2017		╁	-	-	+	Н	-	+	+	\vdash	+	\vdash	+	+	₩	+	+	+	X		┝	+	+	X	_	+	₩	$\vdash\vdash$	H
SUSDP21-3A	DPS213A02N	SO SO	_	2 - 3 ft	1326031.48				8/25/2017		\vdash	+	-	+	Н	_	+	+		+	\vdash	+	+	\vdash	_	+	+		X	\vdash	+	+	X	+	+	₩	\vdash	H
SUSDP21-3G SUSDP21-3G	SUS213G00N DPS213G01N	SO	_	0 - 1 ft	1326110.03 1326110.03	447895.61 447895.61	Forensics		8/28/2017 8/28/2017		\vdash	+	+	+	Н	-	+			+	\vdash	-	+	H	-	+	+	_	1	┢	+	+	+^-	+	+	+'	\vdash	H
SUSDP21-3G	DPS213G01N DPS213G02N	SO		1 - 2 ft 2 - 3 ft	1326110.03	447895.61		<u> </u>	8/28/2017		\vdash	+	+	+	Н	+	+	+		+	\vdash	+	+	\vdash	+	+	╁┼	$+\frac{1}{\lambda}$	_	\vdash	+	+	+	+	+	╫	\vdash	H
SUSDP21-3M	SUS213M00N	SO		0 - 1 ft	1326045.73	447829.51	Forensics		8/28/2017		\vdash	+	+	+	Н	-	+			+	\vdash	+		H	+	+	\vdash		X	\vdash	+	+	X	+	+	₩	\vdash	H
SUSDP21-3M	DPS213M01N	SO	N	1 - 2 ft	1326045.73	447829.51	TOTETISICS		8/28/2017		\vdash	+		+	Н		+			+	\vdash			\vdash	+		+	$+\frac{1}{\lambda}$	· ^	\vdash	+	+	X	+	+	╫	\vdash	H
SUSDP21-3M	DPS213M02N	SO	N	2 - 3 ft	1326045.73	447829.51		 	8/28/2017			+	-	+			-			+	H	+	+	H	+	+	+	$+\frac{1}{\lambda}$	-	H	+	+	X	+	+	+	$m{H}$	H
SUSDP21-3M	DPS213M03N	SO	N	3 - 4 ft	1326045.73	447829.51			8/28/2017		H	+	+	+	H	-	+			+	H	+	+	H	+	+	+	+	+		+	+	$\frac{1}{X}$	+	+	₩	\vdash	H
SUSDP21-3M	DPS213M04N	SO	N	4 - 5 ft	1326045.73	447829.51			8/28/2017		$\vdash \vdash$	+	+	+	\vdash	\dashv	+	+	$\vdash \vdash$	+	$\vdash \vdash$	+	+	$\vdash \vdash$	+	+	╫	+	+	\vdash	+	+	X	+	+	┰	${m H}$	$\overline{}$
SUSDP21-3Q	SUS213Q00N	SO	N	0 - 1 ft	1325934.85	447856.82			8/24/2017		++	+	+	+	H	\dashv	+	+	\vdash	+	$\vdash \vdash$	+	+	\vdash	+	+	╅	 		\vdash	+	+	X	+	+	╆	\vdash	\sqcap
SUSDP21-3T	DPS213T01N	SO	N	1 - 2 ft	1325963.13	447939.82			8/25/2017		\vdash	+	+	+	H	+	+			+	$\vdash \vdash$	+		\vdash	+	+	╁┼	 ×		\vdash	+	+	X	+	+	┰	\vdash	\sqcap
SUSDP21-3T	DPS213T02N	SO	N	2 - 3 ft	1325963.13	447939.82			8/25/2017		\vdash	+	\top	+	H	-	\top	+	\vdash	+	$\vdash \vdash$	\dashv	+	\vdash	\dashv	+	+	$\frac{1}{\lambda}$		\vdash	十	+	X	十	十	+	\vdash	\sqcap
SUSDP21-3T	DPS213T03N	SO	N	3 - 4 ft	1325963.13	447939.82			8/25/2017		\vdash	+	\top	+	H	\dashv	\top	\top	\vdash	+	\vdash	+	+	\vdash	\dashv	+	+ +	T x		\vdash	十	+		+	+	+	\vdash	\sqcap
SUSDP21-3V	DPS213V01N	SO		1 - 2 ft	1325970.50	447975.41			8/25/2017		$\vdash \vdash$	\top	\top	\top	H	\dashv	\top		\vdash	\top	\vdash	+	+	\vdash	\dashv	+	+ +	$\frac{1}{\lambda}$		\vdash	+	\top	X	+	+	+	\vdash	\sqcap
SUSDP21-5W	SUS215W00N	SO	-	0 - 1 ft	1325877.44	447912.71			1/26/2018		\vdash	\top	\top	+	H	\dashv	\top	T	\vdash	+	\vdash	+	+	\vdash	\dashv	\top	+ +	Ηź		\vdash	十	+	X	+	+	+	\vdash	\sqcap
SUSDP21-5W	DPS215W01N	SO	N	1 - 2 ft	1325877.44				1/26/2018		\vdash	十	\top	1	П		\top			1	\vdash	\dashv		\vdash		\top	+	T _X			+		Х	一	十	T	\vdash	\sqcap
SUSDP21-5W	DPS215W02N	SO	N	2 - 3 ft	1325877.44				1/26/2018		\vdash	十	\top	1	H	\dashv	\top	1	\vdash	\top	\vdash	\dashv	\top	\sqcap	\top	\top	† †	\ \ \ \ \		\vdash	+	\top	X	\top	\top	\top	\vdash	$\dashv \dashv$
J.																																			—			

Laciation 10 Sample 10 Marketin Sampl									wasr	nington, D	C 20	JU19																							
\$0.5557-1000. \$0	Location ID	Sample ID	Matrix ¹	mple Typ	_	Easting	Northing	•			ness (SM	terk an	uctivity	Residue (E160.3) - Oil & Grease (E1	Amonia (E350.1)	PTOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C)	Polonium-210 (PO-01-RC)	Metals (SW6010) Metals (SW6020A)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A) Total Cvanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SISSPEP1-0FM DPS910MORT SQ FO 1 - 2 1 1050MAR 00 447916-14 201107016	SUSDP21-6W	SUS216W00N	SO	N	0 - 1 ft	1325846.60	447916.14			2/21/2018																					X			\top	\Box
SUSPANDED SUSP	SUSDP21-6W	DPS216W01N	SO	N	1 - 2 ft	1325846.60	447916.14			2/21/2018						Î															Х		П		\Box
SUSPR-92 OPS-43220IN SO N 1-2 ft 1324755.00 444963.779 889.017	SUSDP21-6W	DPS216W01R	SO	FD	1 - 2 ft	1325846.60	447916.14			2/21/2018																					Х		П		\Box
SUSPRA2_20 DPSA3_202N SO N 2 - 2 ft 1324736_00 446483.79 885.0017 N X X X X X X X X X		SUS432J00N	SO	N	0 - 1 ft	1324735.90	448493.79			8/8/2017																	Х				Х				
SUSPRADURAL SO N 3 - 4 II 132475.00 448693.79 882077 N 3 - 4 II 132475.00 448693.79 882077 N 3 - 5 II 132475.00 1		DPS432J01N	SO	N	1 - 2 ft	1324735.90	448493.79			8/8/2017																	Х				Х				
SUSDPA3-21 DPS-422-MON SO N 4-5 ft 13247768 444905.70 B92-017		DPS432J02N	SO	N	2 - 3 ft	1324735.90	448493.79			8/8/2017																	Х				Х				
SUSPA3-3M SUS-428/000N SO N 0-1 ft 1324708.61 44953.524 89;2017				N	3 - 4 ft																						Х				Х				
SUSPIRAS-3M DP6432MOTN SO N 2 - 2 ft 1324708.61 44855.24 89/2017 N N N N N N N N N		DPS432J04N		N	4 - 5 ft	1324735.90				8/8/2017																	Х				Х				
SUSPRA3-2M DPS442M003N SO N 2-3 ft 1324706.81 448535.24 892017				N	0 - 1 ft																						Х				Х				
SUSDP43-2M DP6492M04N SO N 3-4 1 1324708.61 448553.24 89/2017 N N N N N N N N N				N	1 - 2 ft																						Х				Х		Ш	丄	
SUSDPA3-3M DPS432MON SO N 4 - 5 ft 1324708.61 448595.24 889/017				N	2 - 3 ft																						Х				Х		Щ	丄	$\perp \perp \perp \perp$
SUSPP43-3A DPS433A01N SO N 1-2 ft 1324764.25 448623.32 810;2017																											Х				Х		$\perp \perp$		Ш
SUSDP43-3A DPS433AQ7N SO N 2 - 3 ft 1324764.25 448623.32 810/2017																									\perp		Х		Ш		Х		$oldsymbol{\sqcup}$		ш
SUSPR43-3A DP8433403N SO N 3 - 4 ft 1324764.25 448623.32 81/02017				_													\sqcup						\bot	Х	\perp		Х		\perp				\sqcup	\bot	+
SUSDP43-3A DPS43340NN SO N 4 - 5 ft 1324764.25 448623.32				-											\sqcup		\bot	_									Х		\perp				\sqcup	_	$\perp \perp \downarrow \downarrow \downarrow$
SUSDP43-3P																	\perp	_			\perp						Х		\perp		_		\sqcup	4	+
SUSDP43-3P DPS43P01N SO N 1-2 ft 1324725.50 448431.10 1/30/2018 N N N N N N N N N				N								_			\sqcup		\perp	_					\perp				Х		\perp		_		\vdash	\bot	$+\!+\!+\!+$
SUSDP43-9P DPS435P02N SO N 2 - 3 ft 1324725.50 448456.93 1730/2018				N							_			_	\vdash		+	_	\perp				+		\bot				\perp		_		\vdash	+	+++
SUSDP43-3T SUSA43TOON SO N 0 - 1 ft 1324667.56 448566.93 1/30/2018 N SUSDP43-3T DP8433TONN SO N 1 - 2 ft 132466.98 448560.93 1/30/2018 N SUSDP43-3T DP843470V01N SO N 1 - 2 ft 132466.98 448580.85 2/23/2018 N N N N N N N N N				N							_	_		_	\vdash	_	+	_	+	_			+	_	\bot	_	\perp		\bot	_			\vdash	+	+++
SUSDP43-3T OPS433T01N SO N 1 - 2 ft 1324667.56 448566.93 1/30/2018				_							_	_		4	₩	_	+	_	+	_	\bot		+	_	+	_	+		\bot	_	_	_	₩	+	+++
SUSDP43-4NW DPS434NW01N SO N 1 - 2 ft 1324646.98 44858.0.55 2/23/2018 SUSDP43-4NW DPS434NW02N SO N 2 - 3 ft 132466.98 44858.0.55 2/23/2018 SUSDP43-4SW SUS434SW00N SO N 0 - 1 ft 1324673.89 448515.79 2/23/2018 SUSDP43-4SW DPS434SW01N SO N 1 - 2 ft 1324673.89 448515.79 2/23/2018 SUSDP43-4SW DPS434SW02N SO N 2 - 3 ft 1324673.89 448515.79 2/23/2018 SUSDP43-5NW DPS435SW02N SO N 2 - 3 ft 1324673.89 448515.79 2/23/2018 SUSDP43-5NW SUS435NW00N SO N 0 - 1 ft 1324673.89 448605.21 3/15/2018 SUSDP43-5NW DPS435SW07N SO N 1 - 2 ft 1324673.80 448605.21 3/15/2018 SUSDP43-5NW DPS435SW07N SO N 1 - 2 ft 1324673.80 44869.57 3/15/2018 SUSDP44-1D SUS441D00N SO N 1 - 2 ft 1324730.55 44869.57 1/25/2017 SUSDP44-1D DPS441D02N SO N 1 - 2 ft 1324730.55 448849.57 SUSDP44-1D DPS441D02N SO N 2 - 3 ft 1324730.55 448849.57 SUSDP44-1D DPS441D02N SO N 2 - 3 ft 1324730.55 448849.57 SUSDP44-1D DPS441D02N SO N 2 - 3 ft 1324730.55 448849.57 SUSDP44-1D DPS441D02N SO N 3 - 4 ft 1324730.55 448849.57 SUSDP44-1D DPS441D02N SO N 3 - 4 ft 1324730.55 448849.57 SUSDP44-1H DPS441H02N SO N 1 - 2 ft 1324730.52 448892.64 SUSDP44-1H DPS441H02N SO N 1 - 2 ft 1324730.52 448892.64 SUSDP44-1H DPS441H02N SO N 1 - 2 ft 1324730.52 448892.64 SUSDP44-1H DPS441H02N SO N 1 - 2 ft 1324730.62 448892.64 SUSDP44-2N DPS442N0TN SO N 1 - 2 ft 1324730.62 448892.64 SUSDP44-2N DPS442N0TN SO N 1 - 2 ft 1324666.18 448892.38 SusdP44-2N DPS442N0TN SO N 1 - 2 ft 1324666.18 448892.38 SusdP44-2N DPS442N0TN SO N 1 - 2 ft 1324666.18 448892.38 SusdP44-2N DPS442N0TN SO N 1 - 2 ft 1324666.18 448892.38 SusdP44-2N DPS442N0TN SO N 1 - 2 ft 1324666.18 448892.38 SusdP44-2N DPS442N0TN SO N 1 - 2 ft 1324666.18 44				_							_	_		4	\vdash	_	+	_	\perp	_	\perp		+	_	\perp	_	+		+	_	_	_	\vdash	+	+++
SUSDP43-4NW DPS434NW02N SO N 2 - 3 ft 1324669.88 448580.85 2/23/2018											_				\vdash		+	_							\perp		\perp		\perp		_		++	+	+
SUSDP43-4SW SUS434SW00N SO N 0 - 1 ft 1324673.89 448415.79 2/23/2018 SUSDP43-4SW DPS434SW01N SO N 1 - 2 ft 1324673.89 448415.79 2/23/2018 SUSDP43-4SW DPS434SW02N SO N 2 - 3 ft 1324673.89 448415.79 2/23/2018 SUSDP43-SWW DPS435W00N SO N 0 - 1 ft 1324673.89 448615.79 2/23/2018 SUSDP43-SNW SUS435W00N SO N 0 - 1 ft 1324618.67 448605.21 3/15/2018 SUSDP44-1D SUS441D00N SO N 1 - 2 ft 1324730.55 448849.57 1/25/2017 SUSDP44-1D DPS441D01N SO N 1 - 2 ft 1324730.55 448849.57 1/25/2017 SUSDP44-1D DPS441D02N SO N 2 - 3 ft 1324730.55 448849.57 8/9/2017 SUSDP44-1D DPS441D03N SO N 3 - 4 ft 1324730.55 448849.57 8/9/2017 SUSDP44-1H				_							_	_		-	╀		+	_	+				+	_	+	_			+		_		₩	+	+++
SUSDP43-4SW DPS434SW01N SO N 1 - 2 ft 1324673.89 448415.79 2/23/2018 SUSDP43-4SW DPS434SW02N SO N 2 - 3 ft 1324673.89 448415.79 2/23/2018 N 1 X N X N N 1 X N N 1 X N N N 1 X N N N 1 X N N N 1 X N N N N N 1 X N N N N N 1 2/23/2018 N											-	_		-	+	_	+	_	+	_	+		+	_	+	_	+		+	_	_		₩	+	+++
SUSDP43-4SW DPS434SW02N SO N 2 - 3 ft 1324673.89 448415.79 2/23/2018											-	-		+	╁	-	+	-	+	-	+	_	+	-	+	-	+		+				₩	+	+++
SUSDP43-5NW SUS435NW00N SO N 0 - 1 ft 1324618.67 448605.21 3/15/2018 SUSDP43-5NW DP5435NW01N SO N 1 - 2 ft 1324618.67 448605.21 3/15/2018 N 1 - 2 ft 1324618.67 448649.57 1/25/2017 N N N 1 - 2 ft 1324730.55 448849.57 Forensics 8/9/2017 N												-		-	╁┼		++	-	+				+		+	-	+		+	_	_	_	╁┼	+	+++
SUSDP43-5NW DPS435NW01N SO N 1 - 2 ft 1324618.67 448605.21 3/15/2018 3/15/2018 X <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>+</td> <td></td> <td>+</td> <td>-</td> <td>+</td> <td>-</td> <td>+</td> <td></td> <td>+</td> <td>-</td> <td>+</td> <td></td> <td>+</td> <td></td> <td>+</td> <td>_</td> <td>_</td> <td></td> <td>₩</td> <td>+</td> <td>+++</td>											-	-		-	+		+	-	+	-	+		+	-	+		+		+	_	_		₩	+	+++
SUSDP44-1D SUS441D00N SO N 1.5 - 2.5 ft 1324730.55 448849.57 1/25/2017 SUSDP44-1D DPS441D01N SO N 1 - 2 ft 1324730.55 448849.57 Forensics 8/9/2017 SUSDP44-1D DPS441D02N SO N 2 - 3 ft 1324730.55 448849.57 8/9/2017 SUSDP44-1D DPS441D03N SO N 3 - 4 ft 1324730.55 448849.57 8/9/2017 SUSDP44-1B DPS441D03N SO N 3 - 4 ft 1324703.62 448849.57 8/9/2017 SUSDP44-1H SUS441H00N SO N 1 - 5 - 5 ft 1324703.62 448892.64 1/27/2017 SUSDP44-1H DPS441H02N SO N 2 - 3 ft 1324703.62 448892.64 8/9/2017 SUSDP44-1H DPS442H03N SO N 3 - 4 ft 1324703.62 448892.64 8/9/2017 SUSDP44-2N DPS442N01N SO N 1 - 2 ft 1324696.18 448892.38 8/9/2017 <											-	-	+	+	++	+	+	+	+	-+	+		+	+	+	-	+		+	-+	_		++	+	+++
SUSDP44-1D DPS441D01N SO N 1 - 2 ft 1324730.55 448849.57 Forensics 8/9/2017 N DPS441D02N SO N 2 - 3 ft 1324730.55 448849.57 8/9/2017 N N N N N 1 - 2 ft 1324730.55 448849.57 8/9/2017 N											-	-		+	++		+		+	-			+	-	+		Y		+	_	+^	_	++	+	+++
SUSDP44-1D DPS441D02N SO N 2 - 3 ft 1324730.55 448849.57 8/9/2017 SUSDP44-1D DPS441D03N SO N 3 - 4 ft 1324730.55 448849.57 8/9/2017 SUSDP44-1H SUS441H00N SO N 1.5 - 2.5 ft 1324703.62 448892.64 1/27/2017 SUSDP44-1H DPS441H02N SO N 2 - 3 ft 1324703.62 448892.64 8/9/2017 SUSDP44-1H DPS441H03N SO N 3 - 4 ft 1324703.62 448892.64 8/9/2017 SUSDP44-2N DPS442N01N SO N 1 - 2 ft 1324696.18 448892.38 Forensics 8/9/2017 SUSDP44-2N DPS442N02N SO N 2 - 3 ft 1324696.18 448892.38 8/9/2017 SUSDP44-2N DPS442N02R SO FD 2 - 3 ft 1324696.18 448892.38 8/9/2017 SUSDP48-1C SUS481C00N SO N 0 - 1 ft 1325244.46 448345.86 8/15/2017				_							\dashv	+		+	++	_	+	\dashv	+	\dashv	+		++	+	+	_	+^		+	-	+	_	++	$\frac{1}{x}$	+++
SUSDP44-1D DPS441D03N SO N 3 - 4 ft 1324730.55 448849.57 8/9/2017 SUSDP44-1H SUS441H00N SO N 1.5 - 2.5 ft 1324703.62 448892.64 1/27/2017 SUSDP44-1H DPS441H02N SO N 2 - 3 ft 1324703.62 448892.64 8/9/2017 SUSDP44-1H DPS441H03N SO N 3 - 4 ft 1324703.62 448892.64 8/9/2017 SUSDP44-2N DPS442N01N SO N 1 - 2 ft 1324696.18 448892.38 Forensics SUSDP44-2N DPS442N02N SO N 2 - 3 ft 1324696.18 448892.38 8/9/2017 SUSDP44-2N DPS442N02R SO N 2 - 3 ft 1324696.18 448892.38 8/9/2017 SUSDP44-2N DPS442N02R SO FD 2 - 3 ft 1324696.18 448892.38 8/9/2017 SUSDP48-1C SUS481C00N SO N 0 - 1 ft 1325244.46 448345.86 8/15/2017 SO N 1 - 2											-	-	\vdash	+	++	+	+	-	+	-	+		\dagger	+	+	-	X	-	+		+		一十	+	+++
SUSDP44-1H SUS441H00N SO N 1.5 - 2.5 ft 1324703.62 448892.64 1/27/2017 Image: Control of the control o											_	_		+	+		+	_		_	+		+ +		+ +		X		+	_	+	_	+	+	+++
SUSDP44-1H DPS441H02N SO N 2 - 3 ft 1324703.62 448892.64 8/9/2017 N N N N 2 - 3 ft 1324703.62 448892.64 N												+			+		1 1		+	_	1		1		+		_		+		+		++	十	+++
SUSDP44-1H DPS441H03N SO N 3 - 4 ft 1324703.62 448892.64 8/9/2017 N N N N 1 - 2 ft 1324696.18 448892.38 Forensics 8/9/2017 N				_							\dashv	+		+	+	1	+	\dashv	+	\dashv	+		\dagger	\dashv	+		X		+	_	+		十	十	+++
SUSDP44-2N DPS442N01N SO N 1 - 2 ft 1324696.18 448892.38 Forensics 8/9/2017 N N N N N 2 - 3 ft 1324696.18 448892.38 N </td <td></td> <td>\dashv</td> <td>+</td> <td>\vdash</td> <td>+</td> <td>++</td> <td>\top</td> <td>+</td> <td>\dashv</td> <td>1 1</td> <td>\dashv</td> <td></td> <td></td> <td>+</td> <td>\dashv</td> <td>+</td> <td>\dashv</td> <td>X</td> <td></td> <td>+</td> <td>\dashv</td> <td>+</td> <td>$\neg \vdash$</td> <td>+</td> <td>十</td> <td>+++</td>											\dashv	+	\vdash	+	++	\top	+	\dashv	1 1	\dashv			+	\dashv	+	\dashv	X		+	\dashv	+	$\neg \vdash$	+	十	+++
SUSDP44-2N DPS442N02N SO N 2 - 3 ft 1324696.18 448892.38 8/9/2017 N <											\dashv			\top	t	\top	† †	\dashv	† †		\top		† †	\dashv	+	\dashv	X		\dashv	\dashv	\top		\vdash	$\frac{1}{x}$	+
SUSDP44-2N DPS442N02R SO FD 2 - 3 ft 1324696.18 448892.38 8/9/2017 N N N N N 0 - 1 ft 1325244.46 448345.86 8/15/2017 N N N N N 1 - 2 ft 1325244.46 448345.86 8/15/2017 N																	+		+ +		\top		+	\neg	1 1		X		\dashv		\top		\vdash	\top	+
SUSDP48-1C SUS481C00N SO N 0 - 1 ft 1325244.46 448345.86 8/15/2017 Image: Control of the control of th				_													1 1		11				† †		\dagger		X		\dashv		\top		\vdash	\top	+
SUSDP48-1C DPS481C01N SO N 1 - 2 ft 1325244.46 448345.86 8/15/2017 N N N N N N N N N N N N N N N N N N N				_													+		+ +		\top		+	\neg	1 1				\dashv		\top		\vdash	\top	+
																			11				T^{\dagger}			\dashv	Х						\vdash	十	+
				_							一			1	\sqcap		\sqcap	\neg	11		П		\top	\neg	\top	\neg	X		┪		T		\sqcap	\top	\sqcap

								vvasi	nington, D	CZ	.0019																								
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation		Hardness (SM2340)	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	Total Residue (E160.3) HEM - Oil & Grease (E1664B)	(0.1)	PTOC (E440)	Gamma Radioassay	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Sulfide (SW9034)
SUSDP48-1G	DPS481G01N	SO	N	1 - 2 ft	1325185.71	448345.59			8/16/2017																	X	\Box					TT	\Box		\Box
SUSDP48-2E	SUS482E00N	SO	N	0 - 1 ft	1325274.15	448343.97			1/30/2018																	Х						$\uparrow \uparrow \uparrow$	ıΤ		\Box
SUSDP48-2E	DPS482E01N	SO	N	1 - 2 ft	1325274.15	448343.97			1/30/2018															1 1		Х	П					\Box	П		П
SUSDP49	DPS4901N	SO	N	1 - 2 ft	1324939.37	448475.33			8/11/2017																	X	П					\Box	П		\Box
SUSDP49	DPS4901R	SO	FD	1 - 2 ft	1324939.37	448475.33			8/11/2017																	Х							\Box		
SUSDP49	DPS4902N	SO	N	2 - 3 ft	1324939.37	448475.33			8/11/2017																	Х							П		
SUSDP49-1C	SUS491C00N	SO	N	0 - 1 ft	1324964.26	448474.34			8/11/2017																	Х							П		
SUSDP49-1C	DPS491C01N	SO	N	1 - 2 ft	1324964.26	448474.34			8/11/2017																	Х	Щ.					Ш	Щ		
SUSDP49-1C	DPS491C02N	SO	N	2 - 3 ft	1324964.26	448474.34			8/11/2017	Ш		Ш														Х	Щ					Ш	$oldsymbol{\sqcup}$		Ш
SUSDP49-1E	SUS491E00N	SO	N	0 - 1 ft	1324942.27	448444.52			8/11/2017	Ш		Ш					Ш									X	Щ					Ш	$oldsymbol{\sqcup}$		Ш
SUSDP49-1E	DPS491E01N	SO	N	1 - 2 ft	1324942.27	448444.52			8/11/2017	Ш		Ш														X	Щ					Ш	ightarrow		Ш
SUSDP49-1E	DPS491E02N	SO	-	2 - 3 ft	1324942.27	448444.52			8/11/2017																	X	$oldsymbol{oldsymbol{eta}}$					Ш	$oldsymbol{\sqcup}$		Ш
SUSDP49-1E	DPS491E03N	SO	_	3 - 4 ft	1324942.27	448444.52			8/11/2017			Ш		\perp												Ш	Щ.	Ш		Х		Ш	ightarrow		Ш
SUSDP49-1E	DPS491E04N	SO	_	4 - 5 ft	1324942.27	448444.52			8/11/2017	Ш		ш		\perp			Ш					\bot		\perp		Ш	$oldsymbol{oldsymbol{oldsymbol{eta}}}$	\perp		X		Ш	ightarrow		Ш
SUSDP50	DPS5001N	SO	N	1 - 2 ft	1324848.39	448598.52			8/10/2017	Ш		\sqcup		\bot			Ш						Х			X_	\vdash	\perp		X		\bot	\vdash	_	Ш
SUSDP50	DPS5001R	SO	FD	1 - 2 ft	1324848.39	448598.52			8/10/2017	Ш		\sqcup		\bot									Х			44	\vdash	\perp				\bot	\vdash		Ш
SUSDP50	DPS5002N	SO	_	2 - 3 ft	1324848.39	448598.52			8/10/2017	Ш		\sqcup		\perp						\perp			Х	\perp		<u> X </u>	\vdash	\perp		X		$\bot\!$	\vdash		Ш
SUSDP50-2A	SUS502A00N	SO		0 - 1 ft	1324851.34	448652.69			8/8/2017	Ш		\sqcup		\perp	_		\vdash						Х	+		$oldsymbol{\perp}$	\vdash	\perp				\bot	\vdash	+	Щ
SUSDP50-2A	DPS502A02N	SO		2 - 3 ft	1324851.34	448652.69			8/8/2017	Ш		\vdash		+	_		\vdash	_		\perp			Х	+		+	\vdash	\bot	_			+	\vdash	+	—
SUSDP50-2A	DPS502A01N	SO	N	1 - 2 ft	1324851.34	448652.69			8/15/2017	Ш	_	\vdash	_	+	_		\vdash	_	_	\perp			Х	+	_	$+\!\!-\!\!\!\!+$	\vdash	\bot	_	_		+	\vdash	+	+
SUSDP50-3A	SUS503A00N	SO		0 - 1 ft	1324852.92	448672.62			1/30/2018	Ш		\vdash	_	+	_			_		\perp		_	Х	+	_	$+\!\!-\!\!\!\!-$	\vdash	+	_			$+\!\!-\!\!\!\!-$	\vdash	+	+
SUSDP50-3A	DPS503A01N	SO	N	1 - 2 ft	1324852.92	448672.62			1/30/2018	Ш		\vdash		+									Х	+		+	\vdash	\perp				$+\!\!-\!\!\!+$	\vdash	+	+
SUSDP51	SUS51F00N	SO	_	0 - 1 ft	1325047.03	448745.81			1/26/2017				-	+ +		_	\vdash	_		+		+		+	_	$\frac{1}{2}$	\vdash	+	_	X		+	\vdash	+	+
SUSDP64	DPS6401N	SO	N	1 - 2 ft	1324922.32	448581.83			8/10/2017	\vdash				+	_		\vdash	-		+		+	* -	+		+	\vdash	+	_			+	\vdash	+	+
SUSDP65	SUS6500N	SO		0 - 1 ft 1 - 2 ft	1325094.21	448487.74			1/30/2018	$\vdash\vdash$	_	₩		+	-	-	₩		-	+		+	+	+		+	\vdash	+	-	_		+	\vdash	+	+
SUSDP65 SUSDPCT16-1C	DPS6501N SUSCT161C00N		-	0 - 1 ft	1325094.21 1324640.48	448487.74 449141.01			1/30/2018 2/1/2018	\vdash	_	\vdash	-	+			┢			+	_	+	_	+		X	\vdash	+	_			+	\vdash	+	+
SUSDPCT16-1C	DPCT161C01N		_	1 - 2 ft	1324640.48	449141.01			2/1/2018	Н		\vdash	+	+	-		\vdash	-		+		+	-	+		$\frac{1}{x}$	\vdash	+	-			+	\vdash	+	+
SUSDPCT16-1C	DPCT161C01N	SO		2 - 3 ft	1324640.48		Forensics		2/1/2018	$\vdash\vdash$		+	+	+	+		\vdash	-		+		+	+	+	+	+^	\vdash	+	Y	+		+	\vdash	+	+
SUSDPCT16-1C	DPCT161C03N	SO		3 - 4 ft	1324640.48		Forensics		2/1/2018	\vdash		H		+			\vdash					+	_	+		+	一十	+	Y			+	\vdash	+	+
SUSDPCT16-1C	DPCT161C04N	SO	_	4 - 5 ft	1324640.48	449141.01			2/1/2018	\vdash	_	\vdash	+	+			\vdash	+		+		++	X	+	-	+	\vdash	+	$\stackrel{\sim}{+}$			+	\dashv	+	+
SUSDPCT16-1E	SUSCT161E00N	SO	-	0 - 1 ft	1324610.82	449117.35			2/1/2018	\vdash		\vdash	+	+						+		+ +	^	+	+	+	\vdash	+				+	\vdash	+	+
SUSDPCT16-1E	DPCT161E01N	SO	_	1 - 2 ft	1324610.82		Forensics		2/1/2018	\vdash	_	\vdash	+	+								+ +	_	+	_	$\frac{1}{X}$	\vdash	+	Х			+	\vdash	+	+1
SUSDPCT16-1E	DPCT161E02N		_	2 - 3 ft	1324610.82		Forensics		2/1/2018	H	-	\vdash	\dashv	+ +	\dashv		\vdash		\vdash	+		++		+ +	\dashv	+	\vdash	+	X			+	\dashv	+	+
SUSDPCT16-1G	SUSCT161G00N	SO	-	0 - 1 ft	1324591.54	449144.43			2/1/2018	H	$\neg \vdash$	\Box	+	\top	\dashv	\top	\vdash	+	$\vdash \vdash$	+	+	+	\top	† †	\dashv	+	\vdash	\dashv		1	\vdash	+	\dashv	十	+
SUSDPCT16-1G	DPCT161G01N			1 - 2 ft	1324591.54	449144.43			2/1/2018	H	\neg	\Box	\dashv	1 1	\dashv	\top	\vdash	+	\vdash	\top	\dashv	+	x	† †	\dashv	X	\vdash	\dashv	Х	1	\vdash	+	\dashv	十	+
SUSDPCT16-1G	DPCT161G02N	SO		2 - 3 ft	1324591.54	449144.43			2/1/2018	П		\Box	_	11	\dashv		T	1	\vdash	\top		\top		+ +	十	X	\sqcap	\top	Х			+	\sqcap	十	\top
SUSDPCT16-1G	DPCT161G03N		_	3 - 4 ft	1324591.54	449144.43			2/1/2018	П		Ħ	\neg	11	十		H	\top				T	Х	1 1	\dashv	++	o					\top	一十	十	\top
SUSDPCT16-1G	DPCT161G04N	_		4 - 5 ft	1324591.54	449144.43			2/1/2018	П		\Box	\dashv	11	十		\sqcap	\dashv	\Box	\top		o	Х	1 1	\dashv	1	\vdash	\top				\top	一	十	\top
SUSDPCT16-2E	SUSCT162E00N		_	0 - 1 ft	1324669.43	449137.96			2/22/2018	H			\dashv	11	十			\neg		11		\top		1 1	\dashv	X	\vdash	11	Х			\top	\sqcap	\top	\top
SUSDPCT16-2E	DPSCT162E01N	SO		1 - 2 ft	1324669.43	449137.96			2/22/2018	П		ΠŤ		11								\top		1 1	$\neg \vdash$	X	\sqcap		Х			\Box	一十	\top	\top
SUSDPCT16-2E	DPSCT162E02N	SO	N	2 - 3 ft	1324669.43	449137.96	Forensics		2/22/2018			Πİ										\perp		T		\top	\sqcap		Х			\Box	一	\top	\top

								vvasi	nington, D	<i>7</i>	20013																								
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	Total Residue (E160.3)	nia (E350.1)	PTOC (E440)	Field Parameters Gamma Radioassay	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D) OCP (SW8081B_LL)	Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260C)	NH VOCs (M8015D)	CSIA (VOCs) (PAE-CSIA-004) SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHs (ID-0016) PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B) Free Cyanide (SW9014)	Sulfide (SW9034)
SUSDPCT16-2E	DPSCT162E03N	SO	N	3 - 4 ft	1324669.43	449137.96	Forensics		2/22/2018																		\Box		Х				\Box	\Box	
SUSDPCT16-2E	DPSCT162E04N	SO	N	4 - 5 ft	1324669.43	449137.96	Forensics		2/22/2018													1 1	Х						Х				\Box		\Box
SUSDPCT16-2I	SUSCT162I00N	SO	N	0 - 1 ft	1324615.29	449096.22	Forensics		2/22/2018			П										\Box				Х			Х		П		\Box		\Box
SUSDPCT16-2I	DPSCT162I01N	SO	N	1 - 2 ft	1324615.29	449096.22	Forensics		2/22/2018														Х			Х			Х						
SUSDPCT16-2I	DPSCT162I02N	SO	N	2 - 3 ft	1324615.29	449096.22	Forensics		2/22/2018																				Х						
SUSDPCT16-2I	DPSCT162I03N	SO	N	3 - 4 ft	1324615.29	449096.22	Forensics		2/22/2018																				Х						
SUSDPCT16-2I	DPSCT162I04N	SO	N	4 - 5 ft	1324615.29	449096.22	Forensics		2/22/2018																\perp		\perp		Х				Ш		
SUSDPCT16-2M	SUSCT162M00N	SO	N	0 - 1 ft	1324566.60	449145.05	Forensics		2/22/2018			Ш					Ш									Х			Х		Ш		Ш		
SUSDPCT16-2M	DPSCT162M01N	SO	N	1 - 2 ft	1324566.60	449145.05	Forensics		2/22/2018																\bot	Х	\perp		Х		$\perp \perp$	丄	Ш		Ш
SUSDPCT16-2M	DPSCT162M02N	SO		2 - 3 ft	1324566.60	449145.05	Forensics		2/22/2018			Ш										\perp	Х		\bot	Х	\perp		Х		Ш	丄	Ш		
SUSDPCT16-2M	DPSCT162M03N	SO	N	3 - 4 ft	1324566.60	449145.05	Forensics		2/22/2018			Ш											Х		\bot	Х	\perp		Х		Ш	丄	Ш		Ш
SUSDPCT16-2M	DPSCT162M04N	SO	N	4 - 5 ft	1324566.60	449145.05	Forensics		2/22/2018			Ш					Ш					\perp	Х	\perp	_	Х		\perp	Х		\sqcup		Ш		
SUSDPCT16-3Q	SUSCT163Q00N	SO	N	0 - 1 ft	1324538.67	449098.97			6/29/2018			Ш					Ш					\perp				Х		\perp			\bot		Ш		\perp
SUSDPCT16-3Q	SUSCT163Q00R		_	0 - 1 ft	1324538.67	449098.97			6/29/2018			Ш					\sqcup					\perp		\perp	\bot	Х		\perp			\sqcup		Ш		\perp
SUSDPCT16-3Q	DPSCT163Q01N	SO	N	1 - 2 ft	1324538.67	449098.97			6/29/2018			\sqcup										\perp			\dashv	Х	\vdash	\perp	_		$\bot \bot$	_	\bot		44
SUSDPCT16-3Q	DPSCT163Q02N	SO		2 - 3 ft	1324538.67	449098.97			6/29/2018			Ш										\bot			\dashv	Х	\vdash	\perp	_		$\bot \bot$		igspace		
SUSDPCT16-3R	SUSCT163R00N	SO		0 - 1 ft	1324539.51	449123.73			5/31/2018			\perp					\sqcup			4			Х	\bot	\dashv	X	\vdash			_	\perp	_	igspace		+
SUSDPCT16-3R	DPSCT163R01N	SO	N	1 - 2 ft	1324539.51	449123.73			5/31/2018			\sqcup				_	\sqcup						Х	+	+	X	\vdash	\perp	_		+	—	$oldsymbol{\perp}$		+
SUSDPCT16-3R	DPSCT163R02N	SO		2 - 3 ft	1324539.51	449123.73			5/31/2018			\vdash	_	\perp		_	\sqcup	_					Х	+	+	X		+	_	_	++	+	$+\!\!-\!\!\!-\!\!\!\!-$		+
SUSDPCT16-3R	DPSCT163R03N	SO		3 - 4 ft	1324539.51	449123.73			5/31/2018			\vdash		\perp			\vdash	_					Х	+	+	+	\vdash	+	_		++	+	$+\!\!-\!\!\!-$		+
SUSDPCT16-3R	DPSCT163R03R	SO		3 - 4 ft	1324539.51	449123.73			5/31/2018			\vdash					\vdash						X	\perp	+		\vdash	\perp	_		++	+	+	\vdash	+
SUSDPCT16-3R	DPSCT163R04N	SO		4 - 5 ft	1324539.51	449123.73	F		5/31/2018			+					\vdash	_		+		+	Х	+	+	- V		+	$\overline{}$	-	+	+	+		+
SUSDPCT16-3S	SUSCT163S00N	SO	N	0 - 1 ft	1324540.35	449147.04	Forensics		3/15/2018			+	_		\vdash	-	\vdash					+ +		+	+	X	\vdash		X	_	+	+	+		+
SUSDPCT16-3S	DPSCT163S01N	SO		1 - 2 ft	1324540.35	449147.04	Forensics		3/15/2018			+		+		_	+	_				+		+	+	X	\vdash	+	$\frac{\lambda}{\lambda}$		1	$\overline{}$	$+\!\!-\!\!\!+$	_	+
SUSDPCT16-3S SUSDPCT16-3S	DPSCT163S02N	SO SO	_	2 - 3 ft	1324540.35	449147.04	Forensics		3/15/2018	1	\vdash	╁		+	\vdash		+		\vdash	+	-	+	Х	+	+	X	\vdash	+	X		X	4	+	+	+
SUSDPCT16-3S	DPSCT163S03N DPSCT163S04N	SO		3 - 4 ft 4 - 5 ft	1324540.35 1324540.35	449147.04	Forensics Forensics		3/15/2018 3/15/2018			+	_		\vdash	-	╁	_		-		+	_	+	+	 ^	\vdash	+	- 	-	+	+	+	+	+
SUSDPCT16-3S	SUSCT164W00N	SO		0 - 1 ft	1324540.33	449147.59	rotetisics		4/6/2018			\vdash	-	+		-	+	+		+		+	$\overline{\vee}$	+	+	 ^	\vdash	+	^ +	+	++	+	+	+	+
SUSDPCT16-4W	DPSCT164W00N	SO		1 - 2 ft	1324517.38	449147.59			4/6/2018	1	\vdash	+		+	\vdash		+		\vdash	-	-	+	^ -	+	+	 ^	-+	+			╁	+	+	+	+
SUSDPCT16-4W	DPSCT164W02N	SO		2 - 3 ft	1324517.38	449147.59			4/6/2018		-	+			-		+	_				+	Y	+	+	Y	一十	+	-		+	+	+	+	+
SUSDPCT16-4W	DPSCT164W03N	SO		3 - 4 ft	1324517.38	449147.59			4/6/2018		\vdash	\vdash	-	+		+	+	+		+	+	+ +	$\frac{\lambda}{X}$	+	+	+^	+	+	-	+	+	+	+	+	+
SUSDPCT16-4W	DPSCT164W04N	SO		4 - 5 ft	1324517.38	449147.59			4/6/2018		\vdash	╁┼	+	+	\vdash		+	+	\vdash	+	+	+	$\frac{\wedge}{x}$	+	+	+	\vdash	+	-	+	+	+	+	+	++
SUSDPGD21-C3	SUSGD21C300N			0 - 1 ft	1325974.27	447791.84			7/2/2018			╁	+	+	+	+	+	+	\vdash	+	+	+	$\stackrel{\sim}{\vdash}$	+	+	X	\vdash	+	\dashv	+	+	+	+	+	+
SUSDPGD21-C3	DPSGD21C301N	SO		1 - 2 ft	1325974.27	447791.84			7/2/2018			+	+				+	_	\vdash			+ +		+	+	X	\vdash	+	-	+	+	+	+	+	+
SUSDPGD21-C3	DPSGD21C302N	SO		2 - 3 ft	1325974.27	447791.84			7/2/2018	Н	\vdash	\dagger	\dashv	+	\vdash	+	+	\dashv	\vdash	\top	\vdash	+	+	\dagger	十	X	+	+	\dashv	\dashv	+	+	+	一	+
SUSDPGD21-C3	DPSGD21C303N	SO		3 - 4 ft	1325974.27	447791.84			7/2/2018	Н	\vdash	╁	\dashv	\top	\vdash	\dashv	┪	\dashv	\vdash	\top	\vdash	\dagger	\neg	+ +	十	X	+	\dashv	\dashv	+	++	+	+	\top	+
SUSDPGD21-C5	SUSGD21C500N	SO		0 - 1 ft	1325964.07	447805.33			5/31/2018	П		\Box	\neg	\top			1 1			\top		11		1 1	十	X	\vdash	\dashv	\neg	\top	+	十	+	\top	+
SUSDPGD21-C5	DPSGD21C501N	SO		1 - 2 ft	1325964.07	447805.33			5/31/2018	П				\top					H			11		11	十	Х	\top		_	\top	T^{\dagger}	十	+	一	\top
SUSDPGD21-C5	DPSGD21C502N	SO		2 - 3 ft	1325964.07	447805.33			5/31/2018	_		┰	\neg	\top	\sqcap		1 1		\sqcap	\top	\Box	\top		1 1	\neg	Х	\top	$\dashv \dashv$		\neg	\sqcap	一	\sqcap	\Box	\Box
SUSDPGD21-C5	DPSGD21C503N		_	3 - 4 ft	1325964.07	447805.33			5/31/2018	_		\sqcap		\top										1 1	\top	Х	\top	$\neg \neg$			\top	\neg	\sqcap	\Box	\Box
SUSDPGD21-C5	DPSGD21C504N	SO	N	4 - 5 ft	1325964.07	447805.33			5/31/2018			\Box		П											\neg	Х	\Box				\sqcap	\top	\sqcap		\Box
SUSDPGD21-D1	SUSGD21D100N	SO	N	0 - 1 ft	1325994.56	447789.83			5/30/2018																	Х							\sqcap		\top

								Wash	nington, D	C 2	2001	9																								
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422)	Atterberg Limits	Total Residue (E160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1)	FIOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C) TOC (LKTOC)	Polonium-210 (PO-01-RC)	Metals (SW6010) Metals (SW6020A)		Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)		Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260C)		CSIA (VOCS) (PAE-CSIA-004) SVOCS (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHS (ID-0016) PAHS (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SUSDPGD21-D1	DPSGD21D101N	SO	N	1 - 2 ft	1325994.56	447789.83			5/30/2018																		Х						T		\sqcap	\Box
SUSDPGD21-D1	DPSGD21D102N	SO	N	2 - 3 ft	1325994.56	447789.83			5/30/2018																		Х							\Box		
SUSDPGD21-D1	DPSGD21D103N	SO	N	3 - 4 ft	1325994.56	447789.83			5/30/2018								П		П								Х							П	\sqcap	\Box
SUSDPGD21-D1	DPSGD21D104N	SO	N	4 - 5 ft	1325994.56	447789.83			5/30/2018								П										Х			П				П	\sqcap	\Box
SUSDPGD21-E1	SUSGD21E100N	SO	N	0 - 1 ft	1326003.15	447794.95			5/30/2018																		Х								П	
SUSDPGD21-E1	DPSGD21E101N	SO		1 - 2 ft	1326003.15	447794.95			5/30/2018																		Х								П	
SUSDPGD21-E1	DPSGD21E102N	SO	N	2 - 3 ft	1326003.15	447794.95			5/30/2018																		Х						\perp	Ш	\Box	
SUSDPGD21-E1	DPSGD21E103N	SO	N	3 - 4 ft	1326003.15	447794.95			5/30/2018								Ш		Ш								X			Ш				Ш	\Box	
SUSDPGD21-E1	DPSGD21E104N	SO	N	4 - 5 ft	1326003.15	447794.95			5/30/2018					Ш													Х							Ш	\sqcup	
SUSDPGD21-F1	SUSGD21F100N	SO	N	0 - 1 ft	1326011.74	447800.07			5/30/2018																		Х						丄	Ш	ightharpoonup	
SUSDPGD21-F1	DPSGD21F101N	SO	N	1 - 2 ft	1326011.74	447800.07			5/30/2018					Ш			$oxed{oxed}$		Ш								Х					\perp		ш	$oldsymbol{\sqcup}$	\perp
SUSDPGD21-F1	DPSGD21F102N	SO	N	2 - 3 ft	1326011.74	447800.07			5/30/2018			_	_	\perp		_	\sqcup		\sqcup				\perp	_	\perp		X			Ш		$\perp \perp$	_	\bot	\vdash	
SUSDPGD21-F1	DPSGD21F103N	SO	N	3 - 4 ft	1326011.74	447800.07			5/30/2018			_	\perp	\sqcup			\sqcup		Ш		\bot		\bot				X					\bot	_	\bot	\vdash	
SUSDPGD21-F1	DPSGD21F104N	SO	N	4 - 5 ft	1326011.74	447800.07			5/30/2018					\perp		_	\bot		\sqcup				\bot	_	\perp		X					\bot	4	\bot	\vdash	
SUSDPGD21-G1	SUSGD21G100N	SO	N	0 - 1 ft	1326020.33	447805.20			4/4/2018			_			_	_	\sqcup				+		\bot				X				٠,	1 1	+	$oldsymbol{\sqcup}$	\vdash	
SUSDPGD21-G1	DPSGD21G101N	SO	N	1 - 2 ft	1326020.33	447805.20			4/4/2018			_		\perp			\bot		\sqcup				\bot				X				X	\perp	\dashv	+	\vdash	—
SUSDPGD21-G1	DPSGD21G102N	SO	N	2 - 3 ft	1326020.33	447805.20			4/4/2018			_	_	\perp	_	_	+		Ш		+		+	_			X				X	+	+	+	\vdash	
SUSDPGD21-G1	DPSGD21G103N	SO	N	3 - 4 ft	1326020.33	447805.20			4/4/2018			-	+	+	_	-	+	_	\vdash	4	+	_	+	_	+		X		4-	┝	X	+	+	₩	\dashv	
SUSDPGD21-G1	DPSGD21G104N	SO	N	4 - 5 ft	1326020.33	447805.20			4/4/2018	Ш		+	_	+		_	+		\vdash				+	_	\perp		X					++	+	$+\!\!-\!\!\!+$	\vdash	
SUSDPGD21-G1	DPSGD21G105N	SO	N	5 - 6 ft	1326020.33	447805.20			4/4/2018		\vdash	-	+	+	_	-	+	_	+	_	+		+	-	+		X		-	\vdash		+	+	+	\vdash	+
SUSDPGD21-G2	SUSGD21G200N	SO	IN N	0 - 1 ft	1326014.92	447810.29			4/4/2018		\vdash	+	+	+	-	+	\vdash	_	+	-	+	-	+	+	+		X	\vdash	-	₩	-	+	+	₩	\vdash	+
SUSDPGD21-G2	DPSGD21G201N DPSGD21G202N	SO	IN N	1 - 2 ft	1326014.92	447810.29			4/4/2018			+	+	+	+	+	++	_	+	_	+		+	_	+		X			\vdash	_	++	+	₩	\vdash	+
SUSDPGD21-G2 SUSDPGD21-H1	SUSGD21H100N	SO SO	NI.	2 - 3 ft 0 - 1 ft	1326014.92 1326028.86	447810.29 447811.54			4/4/2018			+	+	+	-	-	+		╁	-	+	-	++	-	+		 ↑		-			+	+	+	\vdash	+
SUSDPGD21-H1	DPSGD21H101N	SO	NI NI	1 - 2 ft	1326028.86	447811.54			3/14/2018 3/14/2018			+	+	+		+	+	-	+		+		+	-	+		$\frac{1}{x}$		-			+	+	++	\vdash	+
SUSDPGD21-H1	DPSGD21H101N DPSGD21H102N	SO	NI.	2 - 3 ft	1326028.86				3/14/2018			+	+	+	-	-	╁	-	╁		+		+	-	+		X		-			+	+	+	\vdash	+
SUSDPGD21-H1	SUSGD21H102N	SO		0 - 1 ft	1326028.60	447817.73		<u> </u>	3/14/2018	Н	\vdash	+	+	+	-+	+	+		+		+		++		+		$\frac{1}{x}$		-	\vdash	-	++	+	₩	\dashv	+
SUSDPGD21-H2	DPSGD21H201N	SO	_	1 - 2 ft	1326022.60	447817.73			3/14/2018			+	+	+		+	+	_	+		+ +		+	_	+		$\frac{1}{x}$	_				+	+	+	\dashv	+
SUSDPGD21-H2	DPSGD21H202N	SO	_	2 - 3 ft	1326022.60	447817.73		<u> </u>	3/14/2018			+	-		+	+	+		+		+		+	-			$\frac{1}{x}$					+	+	+	一十	+
SUSDPGD21-I1	SUSGD211100N	SO	_	0 - 1 ft	1326035.24				2/20/2018		\vdash	+	+	+	-+	+	+		+	+	\dagger	+	+	+	+		$\frac{1}{x}$	╁	+	\vdash	X	++	+	+	一十	+
SUSDPGD21-I1	DPSGD21I101N	SO	_	1 - 2 ft	1326035.24	447818.30			2/20/2018			+	+	+	+	+	+ +	\dashv	+	+	+ +	+	+	+	+		X		+		$\frac{\lambda}{X}$		+	+	一十	+
SUSDPGD21-I1	DPSGD21I101R			1 - 2 ft	1326035.24	447818.30			2/20/2018			+	+	+	_	+	+	-	\vdash		+		+	+	+		$\frac{x}{x}$				$\frac{\lambda}{X}$		+	+	一十	+
SUSDPGD21-I1	DPSGD21I102N			2 - 3 ft	1326035.24	447818.30			2/20/2018			+	+	+		+	+	-	\vdash		+ +		+	_	+		$\frac{1}{X}$				$\frac{\lambda}{X}$		+	+	一十	+
SUSDPGD21-I1	DPSGD21I103N	SO	_	3 - 4 ft	1326035.24	447818.30			2/20/2018			+	+	\top	+	+	+	\dashv	\Box	+	\dagger	+	+	+	\top		Ť		+		X	-	+	+	\dashv	+
SUSDPGD21-I2	SUSGD21I200N	SO	_	0 - 1 ft	1326028.98	447824.49			2/20/2018			T					\Box		\Box				1 1				1 _X			\vdash	X	_	+	+	一十	+
SUSDPGD21-I2	DPSGD21I201N	SO	_	1 - 2 ft	1326028.98	447824.49			2/20/2018		\vdash	十	\top	\top	\dashv	\top	+ +	\dashv	1 1	\dashv	† †	\top	† †	\dashv	\top	\vdash	X	\vdash		\vdash	X	-	\top	+	\dashv	+
SUSDPGD21-I2	DPSGD21I202N	SO	_	2 - 3 ft	1326028.98	447824.49			2/20/2018			十	1	\top			1 1		1 1		+	\top	\dagger	\neg	\top	\vdash	X	\vdash		\vdash	X		\top	\vdash	\dashv	\forall
SUSDPGD21-J1	SUSGD21J100N	SO	_	0 - 1 ft	1326042.23	447825.02			1/24/2018	П	\Box	十	\top	\top	\dashv	_	+	$\neg \vdash$	\dagger		\top	_	\top	\neg	\top	\vdash	X	\vdash		\vdash	X	T	十	+	\dashv	\top
SUSDPGD21-J1	DPSGD21J101N	SO	_	1 - 2 ft	1326042.23	447825.02			1/24/2018			十	\top	\top	\neg	\top	+	\neg	\sqcap	\dashv	\sqcap	\dashv	\dagger	\dashv	П	\vdash	X			\sqcap	Х	1 1	\top	\sqcap	\dashv	\top
SUSDPGD21-J1	DPSGD21J101R		_	1 - 2 ft	1326042.23	447825.02			1/24/2018			\top	\top	\top	\neg	\top	1 1		1 1	\dashv	1 1	\dashv	1 1	\dashv	\Box	\vdash	X			\sqcap	X	1 1	\top	\sqcap	\dashv	\top
SUSDPGD21-J1	DPSGD21J102N	SO	_	2 - 3 ft	1326042.23	447825.02			1/24/2018			十		\top			\top				\top		\sqcap				Х			\sqcap	Х	1 1	\top	\sqcap	o	11
SUSDPGD21-J1	DPSGD21J103N	SO	N	3 - 4 ft	1326042.23	447825.02			1/24/2018			\top					T				\top		\sqcap							\Box	X	\sqcap	\top	\Box	\sqcap	
	*															-				•		-		-		-					-					

								wasr	nington, D	C 20	JU19																							
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation		[호	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	l otal Residue (E160.3) HEM - Oil & Grease (E1664B)	Amonia (E350.1)	PTOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C) TOC (LKTOC)	Polonium-210 (PO-01-RC)	Metals (SW6010) Metals (SW6020A)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	OCP (SW8081B LL)	Aroclor PCBs (SW8082A)	VOCs (SW8260B)	VOCS (SW8Z6UC) NH VOCs (M8015D)	CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270DM SIM)	PAHs (ID-0016) PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SUSDPGD21-J1	DPSGD21J104N	SO	N	4 - 5 ft	1326042.23	447825.02			1/24/2018																	T				X I	\Box	T		\Box
SUSDPGD21-J1	DPSGD21J105N	SO	N	5 - 6 ft	1326042.23	447825.02			1/24/2018																					X				\Box
SUSDPGD21-J2	SUSGD21J200N	SO	N	0 - 1 ft	1326035.68	447832.31			1/24/2018																	X				X		\top	П	\Box
SUSDPGD21-J2	DPSGD21J201N	SO	N	1 - 2 ft	1326035.68	447832.31			1/24/2018																	Х				X		\Box	П	\Box
SUSDPGD21-J2	DPSGD21J202N	SO	N	2 - 3 ft	1326035.68	447832.31			1/24/2018																	X				X				
SUSDPGD21-J2	DPSGD21J203N	SO	N	3 - 4 ft	1326035.68	447832.31			1/24/2018																					X				
SUSDPGD21-K1	SUSGD21K100N	SO	N	0 - 1 ft	1326050.48	447832.31			1/24/2018																	X				X			\Box	
SUSDPGD21-K1	DPSGD21K101N	SO	N	1 - 2 ft	1326050.48	447832.31			1/24/2018																	Χ				X			Ш	
SUSDPGD21-K1	DPSGD21K102N	SO	N	2 - 3 ft	1326050.48	447832.31			1/24/2018																	Х				X				
SUSDPGD21-K1	DPSGD21K103N	SO	N	3 - 4 ft	1326050.48	447832.31			1/24/2018							Ш										Щ				X		'	Ш	
SUSDPGD21-K1	DPSGD21K104N	SO	N	4 - 5 ft	1326050.48	447832.31			1/24/2018							Ш										Щ				X		'	Ш	
SUSDPGD21-K1	DPSGD21K105N	SO	N	5 - 6 ft	1326050.48	447832.31			1/24/2018																	$oldsymbol{oldsymbol{eta}}$	\bot			X		/	ш	\perp
SUSDPGD21-K1.5	SUSGD21K1.500N	SO		0 - 1 ft	1326045.64	447837.41			1/26/2018							Ш										X	\bot			X		'	ш	ш
SUSDPGD21-K1.5	DPSGD21K1.501N	SO	_	1 - 2 ft	1326045.64	447837.41			1/26/2018							\sqcup		\perp		\bot				\sqcup		X				X		'	\sqcup	\bot
SUSDPGD21-K1.5	DPSGD21K1.502N	SO	-	2 - 3 ft	1326045.64	447837.41			1/26/2018					\sqcup		$\perp \perp$		\perp		\bot				\sqcup		X	\perp			X			\vdash	_
SUSDPGD21-K1.5	DPSGD21K1.503N	SO		3 - 4 ft	1326045.64	447837.41			1/26/2018							\bot		\perp		\bot				\sqcup		\vdash	\bot			X		4	\sqcup	
SUSDPGD21-K1.5	DPSGD21K1.504N	SO	N	4 - 5 ft	1326045.64	447837.41			1/26/2018					\sqcup		\perp		\perp		\bot				\sqcup		 	+			X	\dashv	42	\vdash	—
SUSDPGD21-K2	SUSGD21K200N	SO	N	0 - 1 ft	1326043.08	447839.96			1/24/2018	_			_	\vdash		+	_	\perp		+		\vdash		\vdash		Х	+	_		X	\dashv	$+\!\!-\!$	\vdash	+
SUSDPGD21-K2	DPSGD21K201N	SO	N	1 - 2 ft	1326043.08	447839.96			1/24/2018	_	_		_	\vdash	_	+	_	+	_	+		\vdash	_	\vdash		X	++	_		X	_		\vdash	+
SUSDPGD21-K2	DPSGD21K202N	SO	_	2 - 3 ft	1326043.08	447839.96			1/24/2018	_	_		_	₩	_	+	_	+	_	+	_	\vdash	_	\vdash		Х		_		X		4	\vdash	+
SUSDPGD21-L1	SUSGD21L100N	SO	_	0 - 1 ft	1326058.16	447839.94			2/20/2018	_	_		_	\vdash	_	+	_	+	_	+	_	\vdash	_	\vdash		Х		_	_	X	_	42	\vdash	
SUSDPGD21-L1	DPSGD21L101N	SO	N	1 - 2 ft	1326058.16	447839.94			2/20/2018				_	\vdash		++		+		+				\vdash		Х	++			X	\vdash	$+\!\!-\!$	\vdash	+
SUSDPGD21-L1	DPSGD21L102N	SO	-	2 - 3 ft	1326058.16	447839.94			2/20/2018	_	_		-	╀		+	_	+		+	_	\vdash		┢	-	\vdash	++	_		X	+	$+\!\!-\!$	₩	+
SUSDPGD21-L1	DPSGD21L103N	SO		3 - 4 ft	1326058.16	447839.94			2/20/2018	-	-		-	+	_	+	_	+	_	+			_	\vdash	-	\vdash	++	-		X	+	$+\!\!-\!\!\!\!\!-$	₩	+
SUSDPGD21-L1	DPSGD21L104N	SO		4 - 5 ft 0 - 1 ft	1326058.16	447839.94			2/20/2018	-	-		-	╁	-	++	-	+		+	-	├	-	\vdash	-	Y	++	-		X	+	+/	\vdash	+
SUSDPGD21-L2	SUSGD21L200N DPSGD21L201N				1326050.39	447847.09 447847.09			2/20/2018	-	-		_	++	+	++		+	_	+		\vdash	_	\vdash		X		+		X X	+	+	\vdash	+
SUSDPGD21-L2 SUSDPGD21-L2	DPSGD21L201N			1 - 2 ft 1 - 2 ft	1326050.39 1326050.39	447847.09			2/20/2018 2/20/2018	-	-		-	+	-	+	-	+	-	+			-	\vdash	_	X	++	-	_	^	+	+	₩	+
SUSDPGD21-L2	DPSGD21L201R	SO		2 - 3 ft	1326050.39	447847.09			2/20/2018	+	-		-	╁┼	+	++		+		+	+	╁	-	\vdash	+-	\rightarrow	++	+		<u>^ </u>	+	$+\!\!-\!\!\!\!-$	₩	+
SUSDPGD21-L2	DPSGD21L202N	SO	_	3 - 4 ft	1326050.39	447847.09			2/20/2018	-	+		+	++	+	++	+	+	-	+			+	\vdash		$rac{1}{2}$	+	+		X	+	+	\vdash	+
SUSDPGD21-L2	DPSGD21L204N	SO		4 - 5 ft	1326050.39	447847.09			2/20/2018				+		+	++	-	+		+			+			\vdash	+			$\frac{x}{x}$	+	+	╁	+
SUSDPGD21-M1	SUSGD21M100N	so	-	0 - 1 ft	1326065.26	447847.81			3/14/2018		_		-	+	+	+		+					+			$\frac{1}{x}$	+	_		$\frac{^{\wedge}}{^{\times}}$	+	+	\vdash	+
SUSDPGD21-M1	DPSGD21M101N	so	_	1 - 2 ft	1326065.26	447847.81			3/14/2018	-	-		+		+	+	-	+	-	+			+		+	í x l-	+	+		$\frac{x}{x}$	+	+	\vdash	+
SUSDPGD21-M1	DPSGD21M101R	SO		1 - 2 ft	1326065.26	447847.81			3/14/2018	-	+		+	+	+	++	+	+	-	+	+		+	+		$\frac{1}{x}$	+	+		X	+	+	\vdash	+
SUSDPGD21-M1	DPSGD21M101N	SO		2 - 3 ft	1326065.26	447847.81			3/14/2018	\dashv	+	\vdash	+	+	+	+ +	+	╅	\dashv	╫	+	 	+	+		$\frac{x}{x}$	++	+	++	$\frac{1}{x}$	+	+	\vdash	+
SUSDPGD21-M1	DPSGD21M103N	SO		3 - 4 ft	1326065.26	447847.81			3/14/2018	\dashv	\vdash		+		+	+ +	+	╫	-	+	\dashv	+	+	+		\cap	++	+	++	X	+	+	\vdash	+
SUSDPGD21-M1	DPSGD21M104N	SO	_	4 - 5 ft	1326065.26	447847.81			3/14/2018	-	+	\vdash	\dashv	++	\dashv	+	-	+	-	+	\dashv	+	+	++	\top	\dashv	+	+	++	$\frac{1}{x}$	+	+	\vdash	+
SUSDPGD21-M2	SUSGD21M200N	SO	_	0 - 1 ft	1326057.90				3/14/2018	\dashv	\vdash	\vdash	+	+	\top	+	\dashv	+	-	+	\dashv	\vdash	+	+		$\frac{1}{x}$	+	+	 	\times	+	+	\vdash	+
SUSDPGD21-M2	DPSGD21M201N			1 - 2 ft	1326057.90				3/14/2018	\dashv		\vdash	\top	\vdash	\top	+ +	\dashv	╁	\dashv	╫	\dashv	\vdash	+	\vdash		$\frac{1}{X}$	+	+	 	$\frac{\hat{x}}{x}$	+	+	\vdash	+
SUSDPGD21-M2	DPSGD21M201R	SO	_	1 - 2 ft	1326057.90	447854.61			3/14/2018	\dashv	\vdash	\vdash	+	+	\top	+	\dashv	+	\dashv	+	\dashv	\vdash	+	\vdash	+	\overline{x}	+	+	_	$\frac{\hat{x}}{x}$	\top	+	\sqcap	十十
SUSDPGD21-M2	DPSGD21M202N	SO		2 - 3 ft	1326057.90	447854.61			3/14/2018	\dashv	1	\vdash	\top	1 1	\top	† †	\dashv	+ +	\dashv	+	\dashv	\vdash	\top	\vdash	\top	X	+ +	\top		X	_	\top	\sqcap	\top
SUSDPGD21-M2	DPSGD21M203N	SO	_	3 - 4 ft	1326057.90				3/14/2018							+	\neg	1 1		+		\vdash		\vdash		\dashv	11			x I	$\neg \vdash$	\top	一	\top
L																																		

								wası	nington, D	C 20	0019																								
Location ID	Sample ID	M atrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation		ardr .	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	l otal Residue (E160.3) HEM - Oil & Grease (E1664B)	Amonia (E350.1)	PIOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C)	Polonium-210 (PO-01-RC)	Metals (SW6010) Metals (SW6020A)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAF-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Sulfide (SW9034)
SUSDPGD21-M2	DPSGD21M204N	SO	N	4 - 5 ft	1326057.90	447854.61			3/14/2018																					Х		TT	\Box	$\overline{}$	\Box
SUSDPGD21-N1	SUSGD21N100N	SO	N	0 - 1 ft	1326071.99	447854.74			4/4/2018																	Х				Х			\Box		
SUSDPGD21-N1	DPSGD21N101N	SO	N	1 - 2 ft	1326071.99	447854.74			4/4/2018							1 1		1 1						1 1		Х				Х		Π	\Box		П
SUSDPGD21-N1	DPSGD21N102N	SO	N	2 - 3 ft	1326071.99	447854.74			4/4/2018																					Х		\prod	\Box		П
SUSDPGD21-N1	DPSGD21N103N	SO	N	3 - 4 ft	1326071.99	447854.74			4/4/2018																					Х			\Box		П
SUSDPGD21-N2	SUSGD21N200N	SO	N	0 - 1 ft	1326064.23	447861.53			4/4/2018																	Х				Х			\Box		
SUSDPGD21-N2	DPSGD21N201N	SO	N	1 - 2 ft	1326064.23	447861.53			4/4/2018																	X				Х			Ш		
SUSDPGD21-N2	DPSGD21N201R	SO	FD	1 - 2 ft	1326064.23	447861.53			4/4/2018																	Х				Х			Ш		
SUSDPGD21-N2	DPSGD21N202N	SO	N	2 - 3 ft	1326064.23	447861.53			4/4/2018																					Х			Ш		
SUSDPGD21-P1	SUSGD21P100N	SO	N	0 - 1 ft	1326087.96	447871.29			5/30/2018					Ш												Х				Х		Ш	ш		Ш
SUSDPGD21-P1	DPSGD21P101N	SO	N	1 - 2 ft	1326087.96	447871.29			5/30/2018																	Х				Х		Ш	ш		Ш
SUSDPGD21-P1	DPSGD21P101R	SO	FD		1326087.96	447871.29			5/30/2018																	Х				Х		Ш	ш		Ш
SUSDPGD21-P1	DPSGD21P102N	SO	N	2 - 3 ft	1326087.96	447871.29			5/30/2018															\perp		Х				Х		Ш	$oldsymbol{\sqcup}$		Ш
SUSDPGD21-R1	SUSGD21R100N	SO	N	0 - 1 ft	1326106.28	447890.25			1/23/2018			Ш		ш		\perp	_	\bot		\perp		\bot		\perp		X				X		\bot	\leftarrow		Ш
SUSDPGD21-R1	SUSGD21R100R	SO	FD	0 - 1 ft	1326106.28	447890.25			1/23/2018			\sqcup		\sqcup		\perp	_	\bot		\perp						Х						\bot	\vdash	_	Ш
SUSDPGD21-R1	DPSGD21R101N	SO	N	1 - 2 ft	1326106.28	447890.25			1/23/2018			\sqcup		\sqcup		\perp	_	\bot		\bot						X				X		\bot	\vdash	_	Ш
SUSDPGD21-R1	DPSGD21R102N	SO	_	2 - 3 ft	1326106.28	447890.25			1/23/2018					\sqcup		\bot	_	\bot		\perp		\perp								Х		\bot	\vdash	_	ш
SUSDPGD21-R1	DPSGD21R103N	SO	N	3 - 4 ft	1326106.28	447890.25			1/23/2018					\sqcup		+	_	\perp		\perp		+		\bot	_	4				X		\bot	\vdash	+	Ш
SUSDPGD21-R2	SUSGD21R200N	SO	N	0 - 1 ft	1326099.44	447896.43			1/23/2018			\vdash		\vdash		+	_	+	_	+		+		\bot	_	X				X		$+\!\!-\!\!\!+$	\vdash	+	44
SUSDPGD21-R2	DPSGD21R201N	SO	N	1 - 2 ft	1326099.44	447896.43			1/23/2018		_	\vdash		\vdash	_	+	_	+	_	+		+	_	+	_	X		\perp		X		$+\!\!-\!\!\!+$	\vdash	+	+
SUSDPGD21-R2	DPSGD21R202N		_	2 - 3 ft	1326099.44	447896.43			1/23/2018			\vdash	_	\vdash	_	+	_	+	_	+		+	_	\perp	_	\perp		\perp		X		$+\!\!-\!\!\!+$	\vdash	+	44
SUSDPGD21-R2	DPSGD21R203N	SO	_	3 - 4 ft	1326099.44	447896.43			1/23/2018			\vdash		\vdash		+	_	+		+				\perp						X		$+\!\!-\!\!\!+$	\vdash	+	+
SUSDPGD21-S1	SUSGD21S100N	SO		0 - 1 ft	1326112.54	447896.81			1/23/2018	_			-	┢	-	+	_	+		+		+	_	+		X				- -		+	\vdash	+	+
SUSDPGD21-S1	DPSGD21S101N	so	N	1 - 2 ft	1326112.54	447896.81			1/23/2018					\vdash		+	-	+	_	+		+		+	_	- 				X		+	\vdash	+	+
SUSDPGD21-S1	DPSGD21S102N	SO		2 - 3 ft	1326112.54	447896.81			1/23/2018	-		\vdash		╁		+	+	+	-	+	_	+		+	-			+		X	\vdash	+	\vdash	+	+
SUSDPGD21-S2 SUSDPGD21-S2	SUSGD21S200N DPSGD21S201N		_	0 - 1 ft 1 - 2 ft	1326106.56 1326106.56				1/24/2018 1/24/2018		_	\vdash	-	╁	-	+	-	+		+		+	-	+		X		_		-		+	\vdash	+	+
TA1A1	SUSTAIAI00N		_	0 - 1 ft	1324113.66	448760.84			1/24/2017	-		\vdash		++	-	+	+	+	X	,	X	++		+	-	+^		+	-	+	-	+	\vdash	+	+
TA1A3	SUSTAIA300N	SO		0 - 1 ft	1324218.07	448793.02			1/24/2017		_	\vdash	-	++	-	+	+	+	X		X		-	+		+		+		+		+	\vdash	+	+
TA1A7	SUSTAIA700N	SO	_	0 - 1 ft	1324413.72	448757.67			1/24/2017			\vdash		\vdash		+	-	+	$\frac{1}{x}$		X			+				+		+		+	一十	+	+
TA1A9	SUSTAIA700N	so		0 - 1 ft	1324520.00	448762.20			1/24/2017			\vdash		+		++	+	+	X	_	X	_	-	+						+		+	\vdash	+	+
TA1C1	SUSTAICI00N	SO		0 - 1 ft	1324115.85				1/24/2017			H	+		+	+		+	X	_	X			+	+							+	一十	+	+
TA1C3	SUSTAIC300N	SO	_	0 - 1 ft	1324219.53	448854.29			1/24/2017		_	\vdash	+	++	+	+	+	+	X	_	X	_	+	+		+		+		+		+	一十	+	+
TA1C4	SUSTAIC400N	SO		0 - 1 ft	1324260.74	448859.07			1/24/2017			\vdash	+	+	+	+	+	+	X	-	X	_	+	+	+	+		+		+	\vdash	+	\vdash	+	+
TA1C4	SUSTA1C400N2	SO		0 - 1 ft	1324260.74	448859.07			6/29/2018		+	\vdash	+	++	+	+ +	\dashv	+		X	 ^	+ +	+	+	\dashv	+	\vdash	+		+		+-+	\vdash	+	+
TA1C5	SUSTAIC500N	SO		0 - 1 ft	1324312.39	448859.68			1/24/2017		+	\vdash		++	+	╅	\dashv	+	$\frac{1}{x}$		X	+ +	+	+	+	+	\vdash	+				+-+	\vdash	+	+
TA1C5	SUSTA1C500N2	SO	_	0 - 1 ft	1324312.39				6/29/2018		\dashv	\vdash		++	+	+	-	+	$\frac{1}{x}$	X	 ^	+	-	+	\dashv	+		\vdash		+		+	一十	+	+
TA1C7	SUSTAI C700N	SO		0 - 1 ft	1324414.77	448854.00			1/24/2017		\dashv	\vdash	+	\vdash	+	╅	\dashv	+	X	_	X	++	+	+	+	\top	\vdash	\vdash		\top	\vdash	+	一十	十	+
TA1C9	SUSTAIC900N	SO		0 - 1 ft	1324520.92				1/24/2017		\dashv	\vdash	+	\vdash	+	╅	\dashv	+	X		X		\dashv	+	\dashv	\top	\vdash	\top		1	\vdash	+	\sqcap	十	+
TA1E0	DPSTA1E0001N	SO	_	1 - 2 ft	1324064.34				8/1/2017		\dashv	\vdash	+	\vdash	+	+	\dashv	+	X	-	X		\dashv	+	\dashv	+	\vdash	\top		+	\vdash	++	一十	十	十一
TA1E0	DPSTA1E0002N			2 - 3 ft	1324064.34				8/1/2017			\vdash	\top		\top	† †	\dashv	11	X	-	X		\dashv	1 1	\dashv	\top	\vdash	\top				1	\sqcap	+	+
TA1E0	DPSTA1E0003N	SO	_	3 - 4 ft	1324064.34				8/1/2017		$\neg \vdash$		1	\sqcap	1	\top	\dashv	\top	X		Х	_	\dashv	\top	\dashv	П	\vdash	\top		1		\top	\sqcap	\top	\top
	•		•	•			•	•	•																								-		

								wasr	nington, D	C 2	20019																								
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	Total Residue (E160.3) HEM - Oil & Grease (E1664B)	nia (E350.1)	PTOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C)	Polonium-210 (PO-01-RC)	Metals (SW6010)	Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260C)	NH VOCs (M8015D)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Free Cyanide (SW9014)	Sulfide (SW9034)
TA1E1	SUSTAIEI00N	SO	N	0 - 1 ft	1324111.62	448961.30			1/24/2017	Ħ							- i)	-	X						一					+	$\overline{}$	+++	7
TA1E1	DPSTA1E0101N		N	1 - 2 ft	1324111.62	448961.30			7/31/2017					1 1		\top			>	_	X						\vdash				\vdash	+	\vdash	++	-
TA1E1	SUSTA1E100N2	SO	_	0 - 1 ft	1324111.62	448961.30			6/29/2018							+				(X		1					H				\vdash	+	\vdash	++	┪
TA1E10	SUSTA1E1000N	SO	N	0 - 1 ft	1324577.18	448955.80			8/8/2017							\top			>		X											+	\vdash	11	٦
TA1E10	SUSTA1E1000R	SO	FD	0 - 1 ft	1324577.18	448955.80			8/8/2017										>		X											\top		11	٦
TA1E10	DPSTA1E1001N	SO	N	1 - 2 ft	1324577.18	448955.80			8/8/2017			\Box				\top			>		X										\Box	\top	\vdash	77	╗
TA1-E11	SUSTA1E1100N	SO	N	0 - 1 ft	1324616.15	448950.77			1/30/2018					\top		\top			>		X			\top							\sqcap	\top	\top	77	ヿ
TA1-E11	SUSTA1E1100R		FD	0 - 1 ft	1324616.15	448950.77			1/30/2018										>		X														\Box
TA1E3	SUSTAIE300N	SO	N	0 - 1 ft	1324216.87	448962.02			1/24/2017			П							\ \		Χ						П					\top		\Box	٦
TA1E4	SUSTAIE400N	SO	N	0 - 1 ft	1324255.92	448962.40			1/24/2017										>	(Χ											\Box		\Box	
TA1E5	SUSTAIE500N	SO	N	0 - 1 ft	1324306.33	448959.82			1/24/2017										>	(Χ											\Box			
TA1E7	SUSTAI E700N	SO	N	0 - 1 ft	1324426.52	448955.28			1/24/2017										>	(X														
TA1E9	SUSTAI E900N	SO	Ν	0 - 1 ft	1324514.82	448947.70			1/24/2017										>	(Χ														
TA1E9	DPSTA1E0901N	SO	N	1 - 2 ft	1324514.82	448947.70			8/3/2017										\	(Χ														
TA1E9	SUSTA1E900N2	SO	N	0 - 1 ft	1324514.82	448947.70			6/29/2018										>	(X															
TA1F4	SUSTAIF400N	SO	N	0 - 1 ft	1324276.32	449010.65			1/24/2017										\	(X														
TA1F4	SUSTA1F400N2	SO	N	0 - 1 ft	1324276.32	449010.65			6/29/2018										\	(X							Ш								
TA1F5	SUSTAIF500N	SO	N	0 - 1 ft	1324328.61	449012.91			1/24/2017			Ш							>	(X						Ш				Ш	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$			
TA1G1	SUSTAIGI00N	SO	N	0 - 1 ft	1324119.96	449069.08			1/24/2017			Ш							>		Χ	_					Ш				Ш	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$		$\perp \perp \perp$	Ш
TA1G10	SUSTA1G1000N	SO	N	0 - 1 ft	1324566.88	449062.09			8/4/2017			Ш							>	(X						Ш				Ш	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$			
TA1G10	DPSTA1G1001N	SO	N	1 - 2 ft	1324566.88	449062.09			8/4/2017										>	(X						Ш				Ш	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}$			
TA1G3	SUSTAIG300N	SO	N	0 - 1 ft	1324221.56	449061.18			1/24/2017										>	(Χ														
TA1G5	SUSTAIG500N	SO	N	0 - 1 ft	1324329.08	449051.19			1/24/2017			Ш							>	_	Χ						Ш				$\sqcup \!\!\!\! \perp$	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$		$\perp \perp \perp$	Ц
TA1G7	SUSTAIG700N	SO	N	0 - 1 ft	1324420.45	449045.05			1/24/2017			Ш							>		X	_					Ш				Ш	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$		$\bot\bot$	_
TA1G9	SUSTAIG900N	SO	N	0 - 1 ft	1324522.94	449067.33			1/24/2017										>	-	Χ						Ш								
TA1G9	DPSTA1G0901N			1 - 2 ft		449067.33			8/4/2017			Ш							>		Χ						Ш				Ш	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$		$\bot\bot$	┙
TA1G9	DPSTA1G0902N	SO	N	2 - 3 ft	1324522.94				8/4/2017			Ш							>		X						Ш				Ш	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$		$\bot\bot$	Ш
TA1G9	SUSTA1G900N2	SO		0 - 1 ft	1324522.94	449067.33			6/29/2018			Ш								(X							Ш				$\sqcup \!\!\!\! \perp$	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$	\perp	$\perp \perp \perp$	Ц
TA1H9	SUSTA1H0900N	SO		0 - 1 ft	1324523.72				8/4/2017										>	_	Χ						Ш				$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	$oldsymbol{\perp}$		$\bot\bot$	_
TA1H9	DPSTA1H0901N			1 - 2 ft	1324523.72				8/4/2017			ш							>		X						Ш				Щ	$oldsymbol{\perp}$		$\bot\bot$	_
SUSDP19-3V	SUS193V00N			0 - 1 ft	1325595.71	447958.44			8/24/2017																		Ш			Х	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$			_
Phase II Landside Mobiliza	-								· · · · - · - · - · - · - · - · - · - ·									_												1					4
SB2	SBS0200N			0 - 1 ft	1323663.20	448726.57			1/25/2017			\sqcup		\bot		\bot	_					\bot		\bot		X	\sqcup		Х	X	\sqcup	$\bot\!\!\!\!\bot$	\vdash	+	_
SB2	SBS0201N	SO		1 - 2 ft	1323663.20	448726.57	Forensics		1/25/2017	Ш		\sqcup		\bot	\bot	+				\perp		\perp		+		X	\vdash		Х	X		44		+	4
SB2	SBS0202-05N	SO		2 - 5 ft	1323663.20	448726.57	Forensics		1/25/2017	Ш		\sqcup		\bot	\bot	+				\bot				\perp		X	\vdash		Х	X	_			++	_
SB2	SBS0205-10N	SO		5 - 10 ft	1323663.20	448726.57	Forensics		1/26/2017			\sqcup	\perp	+	\bot	+		+		\bot		+	_	+	_	X	\vdash	\perp	Х	X		44		++	4
SB2	SBS0210-15N	SO	_	10 - 15 ft	1323663.20	448726.57	Forensics		1/26/2017	\sqcup	+	$\vdash \vdash$	+	++	+	+	_	+	Н.	+	Н.	+	_	+	\perp	X	\vdash	\perp	Х	X	$\vdash \vdash$	44		++	4
SUS08-1A	SUS081A00N	SO		0 - 1 ft	1324310.88		Forensics		1/24/2017	Н		$\vdash \vdash$	\perp	++	\perp	+	_	+	\ \ \ \ \ \		X			+	_	X	\vdash	\perp		+	\vdash	44	X	++	4
SUS08-1B	SUS081B00N2	SO		0 - 1 ft	1324334.66				2/3/2017	Н		$\vdash \vdash$	+	++	\perp	+	_	+	\ \ \	_	X			+		X	\vdash	+		+	$\vdash \vdash$	4	Х	++	4
SUS08-1C	SUS081C00N	SO	_	0 - 1 ft	1324334.57	448914.51	Forensics		1/24/2017	\sqcup		\vdash	+	++	_	+	_	+	\ \ \	_	X		_	+	\perp	X	\vdash	+		+	\vdash	4	Х	++	4
SUS08-1D	SUS081D00N	SO		0 - 1 ft	1324337.55	448888.98			1/24/2017	Н		$\vdash \vdash$	\perp	++	\bot	+	-	+	>		X	_		+	\perp	X	\vdash	\perp		+	$\vdash \vdash$	4	Х	++	4
SUS08-1F	SUS081F00N	SO	N	0 - 1 ft	1324287.99	448885.36	Forensics		1/24/2017										\ \		Χ					Х	ш				$\perp \perp$		Х		

								vvasi	າington, D	C 2	0019																						
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	宣	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	I otal Kesidue (E160.3) HEM - Oil & Grease (E1664B)	Amonia (E350.1)	PTOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C) TOC (LKTOC)	Polonium-210 (PO-01-RC)	Metals (SW6020A)	Chromium (VI) (SW7199)	Mercury (SW7471B)	Metals (field XRF)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C) TPH-GRO (SW8015D)	OCP (SW8081B LL)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D)	CSIA (VOCS) (PAE-CSIA-004) SVOCS (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A) Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SUS08-1G	SUS081G00N	SO	N	0 - 1 ft	1324287.23	448911.84	Forensics		1/24/2017										Х		Х				\	(X	$\Box\Box$
SUS08-1H	SUS081H00N	SO	N	0 - 1 ft	1324283.33	448936.08	Forensics		1/24/2017										Х		Х)	(T	X	Ш
SUS10-1A	SUS101A00N	SO	Ν	0 - 1 ft	1324662.61	448809.30	Forensics		1/27/2017)	(X	
SUS10-1B	SUS101B00N	SO	N	0 - 1 ft	1324686.33	448810.82	Forensics		1/25/2017)	(X	
SUS10-1B	SUS101B00R	SO	FD	0 - 1 ft	1324686.33	448810.82	Forensics		1/25/2017																\	(Х	
SUS10-1C	SUS101C00N	SO	N	0 - 1 ft	1324683.90	448782.99	Forensics		1/25/2017																\	(X	
SUS10-1D	SUS101D00N	SO	Ν	0 - 1 ft	1324685.07	448749.42	Forensics		1/25/2017)	(Ш	Χ	
SUS10-1E	SUS101E00N	SO	N	0 - 1 ft	1324660.80	448758.04	Forensics		1/25/2017																\	(Ш	Х	
SUS10-1F	SUS101F00N	SO	N	0 - 1 ft	1324635.69	448760.23	Forensics		1/27/2017)	(Ш	Х	Ш
SUS10-1G	SUS101G00N	SO	N	0 - 1 ft	1324635.56	448784.18	Forensics		1/27/2017)	(Ш	Х	Ш
SUS10-1H	SUS101H00N2	SO	N	0 - 1 ft	1324631.59	448811.34	Forensics		2/3/2017					Ш											$\sqcup \bot$						Ш	Х	Ш
SUS181A	SUS181A00N	SO	N	0 - 1 ft	1325529.97	448998.15	Forensics		1/25/2017			Ш		ш		\sqcup				Ш					<u> </u>	_					\bot	Х	$\perp \perp \perp$
SUS181B	SUS181B00N	SO	N	0 - 1 ft	1325546.56	448995.24	Forensics		1/25/2017																\	`					\bot	Х	Ш
SUS181C	SUS181C00N		_	0 - 1 ft	1325546.51	448976.35	Forensics		1/25/2017			Ш		ш		\sqcup									<u> </u>	_					\bot	Х	$\perp \perp \perp$
SUS181D	SUS181D00N	SO	_	0 - 1 ft	1325546.82	448956.27	Forensics		1/25/2017			\sqcup		\sqcup		\sqcup				Ш						(\bot	Х	$\perp \perp \perp$
SUS181E	SUS181E00N	SO	_	0 - 1 ft	1325530.94	448949.91	Forensics		1/25/2017			\sqcup		\sqcup		\perp				Ш					1 1						\bot	Х	$\perp \perp \perp$
SUS181F	SUS181F00N	SO		0 - 1 ft	1325514.20	448969.06	Forensics		1/25/2017			\sqcup		\sqcup		\bot							_	$oxed{oxed}$)	($\bot \bot$	Х	+
SUS181G	SUS181G00N	SO		0 - 1 ft	1325503.55	448980.70	Forensics		1/25/2017					\sqcup		\bot							_	oxdot	<u> </u>	(+	X	+
SUS181H	SUS181H00N	SO		0 - 1 ft	1325502.60	449003.26	Forensics		1/25/2017					\sqcup		\bot								$\vdash \vdash$)	(+	Х	+
SUSDP02	SUS02F00N	SO		0 - 1 ft	1323688.07	448977.16	Forensics		1/25/2017					\sqcup	_	\bot							_	\vdash	<u> </u>	(X	X		++	+	+++
SUSDP02	DPS02F01N	SO	N	1 - 2 ft	1323688.07	448977.16	Forensics		1/25/2017			\vdash		\vdash		+							_	\vdash	1 /	(X	X		++	+	+++
SUSDP02	DPS02F02-05N	SO		2 - 5 ft	1323688.07	448977.16	Forensics		1/25/2017	_	_	\vdash	_	\vdash	_	+	_	_		\vdash	_		_		 	<u> </u>		X	X		+	\rightarrow	+
SUSDP04	SUS04F00N	SO	N	0 - 1 ft	1324091.66	448808.97	Forensics		1/25/2017		_	\vdash	_	\vdash		++							+	-	1	(X	X		+	+	+
SUSDP04	DPS04F01N	SO		1 - 2 ft	1324091.66	448808.97	Forensics		1/25/2017			\vdash		\vdash		+							_		 	(X	X		++	+	+
SUSDP04	DPS04F01R			1 - 2 ft	1324091.66	448808.97	Forensics		1/25/2017			\vdash		\vdash		+							+	 		(V		X	X		++	+	+++
SUSDP04 SUSDP04	DPS04F02-05N	SO		2 - 5 ft	1324091.66	448808.97			1/25/2017	-+		\vdash		╁		+		\vdash	-	₩	-	-	+	\vdash	 '	(X		X	 ^	V V	+	+	+++
SUSDP04	DPS04F05-10N	SO SO	_	5 - 10 ft	1324091.66	448808.97			1/27/2017			\vdash		++		+							+		\vdash	/				XX	₩	+	+++
SUSDP05	SUS05F00N DPS05F01N	SO		0 - 1 ft 1 - 2 ft	1324087.93 1324087.93	449163.57 449163.57	Forensics Forensics		1/24/2017 1/24/2017		_	\vdash	-	╁	-	+	-	\vdash					+	 	\ <u>\</u>	/		 	- ^	XX	,++	+	+++
SUSDP05	DPS05F01N	SO	_	2 - 5 ft	1324087.93	449163.57	Forensics		1/24/2017	-+		\vdash		╁		+		\vdash	-	\vdash	+	-	+	\vdash	$++\langle$	/	\vdash	1	+ ÷	 ^ ^	++	+	+++
SUSDP08	SUS08F00N	SO		0 - 1 ft	1324319.35	448910.93	Forensics		1/24/2017		_	\vdash	+	++	+	+	+						+	 	++	/		Y	1 ^		++	+	+++
SUSDP08	DPS08F01N	SO		1 - 2 ft	1324319.35	448910.93	Forensics		1/24/2017			\vdash		\vdash		+	-	-					+	 	 '	X		Y	$\frac{\wedge}{x}$	XX	#	+	+++
SUSDP08	DPS08F02-05N	SO		2 - 5 ft	1324319.35	448910.93			1/24/2017			\vdash		+		+	-						+		++			X	$\frac{1}{x}$		++	+	+++
SUSDP08	DPS08F05-10N	SO	_	5 - 10 ft	1324319.35	448910.93	Forensics		1/24/2017			H	-	\vdash	+	+	+						+		 '	X		X	$\frac{1}{x}$	XX	+	+	+++
SUSDP08	DPS08F10-15N	SO		10 - 15 ft	1324319.35	448910.93	Forensics		1/24/2017	-		\vdash	+	+	+	+ +	+	\vdash	+	\vdash	+	-	+	+ +	++		+	X	$\frac{1}{x}$	 ^ ^	++	+	+++
SUSDP08-1E	SUS081E00N	SO		0 - 1 ft	1324313.53	448888.29	Forensics		1/24/2017	\vdash	\dashv	$\vdash \vdash$	+	\vdash	+	+	+	$\vdash \vdash$	X	$\vdash \vdash$	Х	+	+	\vdash	++		\vdash	 ^ 	+^	\vdash	++	${X}$	+++
SUSDP08-1E	SUS081E00R	SO		0 - 1 ft	1324313.53	448888.29	Forensics		1/24/2017	\vdash	-	\vdash	+	++	+	++	\dashv	\vdash	$\frac{\lambda}{X}$	$\vdash \vdash$	X		+		 		\vdash	\vdash	+		++	X	+++
SUSDP10	DPS10F01N	SO	_	1 - 2 ft	1324662.91	448784.82	Forensics		1/27/2017	\vdash	\dashv	\vdash	+	++	+	+	\dashv	\vdash	+^	\vdash	+^		+	\vdash	 '	_	\vdash	X	X		++	+	+++
SUSDP10	DPS10F02-05N	SO		2 - 5 ft	1324662.91	448784.82	Forensics		1/27/2017	\vdash	+	\vdash	+	+	+	++		\vdash		\vdash	+		+	\vdash	 ' >	`—	\vdash	X	$\frac{\lambda}{X}$		++	+	+++
SUSDP10	SUS10F00N	SO	_	0 - 1 ft	1324662.91	448784.82	Forensics		1/27/2017	\vdash	+	\vdash	+	+	+	++	+	\vdash	+	\vdash	+		+	\vdash	 	_	\vdash	X	$\frac{\lambda}{X}$		++	+	+++
SUSDP11	SUS11F00N	SO	_	0 - 1 ft	1324624.65	449239.72	Forensics		1/24/2017	\vdash	\dashv	\vdash	+	\vdash	+	+	+	\vdash		\vdash			+	\vdash	 		\vdash	X	$\frac{\lambda}{X}$		++	+	++
SUSDP11	DPS11F01N	SO	_	1 - 2 ft	1324624.65	449239.72			1/25/2017	\vdash	\dashv	\vdash	\dashv	+	\dashv	++	_	\vdash	\dashv	\vdash			+		 	X		X		ХХ	:++	+	+++
		1				0_00.12																			<u> </u>					··· / ′			

								wasr	nington, D		20019																								
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	Total Residue (E160.3) HEM - Oil & Grease (E1664B)	=	PTOC (E440)	Field Parameters Gamma Radioassay	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Metals (5 W60Z0A) Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260E)	NH VOCs (M8015D)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B) Free Cyanide (SW9014)	Sulfide (SW9034)
SUSDP11	DPS11F02-05N	SO	N	2 - 5 ft	1324624.65	449239.72	Forensics		1/25/2017																П	Х	П		Х	Х		\top	П		П
SUSDP11	DPS11F05-10N	SO	N	5 - 10 ft	1324624.65	449239.72	Forensics		1/25/2017																П	Х	П		Х			\top	П		П
SUSDP12	SUS12F00N	SO	N	0 - 1 ft	1324827.15	448435.68	Forensics		1/26/2017			П													П	Х	П		Х	Х	XX	$\langle \Box \rangle$	П		П
SUSDP12	DPS12F01N	SO	N	1 - 2 ft	1324827.15	448435.68	Forensics		1/26/2017																П	Х	П		Х	Х		\top	П		П
SUSDP12	DPS12F02-05N	SO	N	2 - 5 ft	1324827.15	448435.68	Forensics		1/26/2017																П	Х	Х		Х	Х	XX				
SUSDP12	DPS12F05-10N	SO	N	5 - 10 ft	1324827.15	448435.68	Forensics		1/30/2017																	Х			Х	Х					
SUSDP12	DPS12F10-15N	SO		10 - 15 ft	1324827.15	448435.68	Forensics		1/30/2017																	Х	Ш		Х	Х	XX		Ш		
SUSDP12	DPS12F15N	SO	N	14.5 - 15.5 ft	1324827.15	448435.68	Forensics		1/30/2017																		Ш		Х	Х			Ш		
SUSDP15	SUS15F00N	SO	N	0 - 1 ft	1325219.52	448484.64	Forensics		1/30/2017																	Х	Ш		Х	Х			Ш		
SUSDP15	DPS15F01N	SO	N	1 - 2 ft	1325219.52	448484.64	Forensics		1/30/2017			Ш							Ш						Ш	Х	Х		Х	Х	X		Щ		Ш
SUSDP15	DPS15F02-05N	SO		2 - 5 ft	1325219.52	448484.64	Forensics		1/30/2017			Ш							Ш						Ш	Х	\sqcup		Х	Х		$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}$	ightharpoonup		Ш
SUSDP15	DPS15F05-10N	SO		5 - 10 ft	1325219.52	448484.64	Forensics		2/2/2017			Ш													$\bot \bot$	Х	X		Х	Х	X >		$oldsymbol{\sqcup}$		Ш
SUSDP15	DPS15F10-15N	SO		10 - 15 ft	1325219.52	448484.64	Forensics		2/2/2017			Ш					\perp		$\sqcup \sqcup$		Ш				\bot	Х	X		Х	Х	XX	\Box	$oldsymbol{\sqcup}$		ш
SUSDP15	DPS15F15N	SO		14.5 - 15.5 ft	1325219.52	448484.64	Forensics		2/2/2017	Ш		Ш					\perp		\sqcup		Ш				\bot		\vdash	\perp	Х			$\bot\!\!\!\!\bot\!\!\!\!\!\bot$	\vdash		Ш
SUSDP18	SUS18F00N	SO	N	0 - 1 ft	1325531.22	448976.92	Forensics		1/26/2017			Ш					\perp		\sqcup		$\sqcup \bot$			_	\sqcup	Х	\vdash		Х	X		$\bot\!\!\!\!\bot$	\vdash		Ш
SUSDP18	DPS18F01N	SO	N	1 - 2 ft	1325531.22	448976.92	Forensics		1/26/2017			Ш					\perp		\sqcup		\sqcup				\sqcup	X	\vdash		Х	X		$\bot\!\!\!\!\bot$	\vdash		Ш
SUSDP18	DPS18F02-05N	SO	N	2 - 5 ft	1325531.22	448976.92	Forensics		1/26/2017	Ш		ш					\perp		\sqcup		\sqcup	\perp		_	++	X	\vdash	\perp	Х	X		╨	\vdash		ш
SUSDP19	SUS19F00N	SO	N	0 - 1 ft	1325677.11	447862.07	Forensics		1/30/2017			ш		\perp			\perp		\sqcup	_				_	₩	X	\vdash		X	X	XX	4	\vdash		Ш
SUSDP19	DPS19F01N	SO	N	1 - 2 ft	1325677.11	447862.07	Forensics		1/30/2017			\vdash		\perp		_	+		\vdash	_	\vdash	\perp	_	_	₩	X	\vdash	\perp	X	X		+	\vdash	——	Ш
SUSDP19	DPS19F02-05N	SO	_	2 - 5 ft	1325677.11	447862.07	Forensics		1/30/2017			\vdash	_	\perp		_	+	_	\vdash	_	\vdash	\perp	_	4	₩	X	\vdash	+	X	X	\ \ \ \		\vdash	——'	Н
SUSDP19	DPS19F05-10N	SO		5 - 10 ft	1325677.11	447862.07	Forensics		2/8/2017			\vdash	_	\perp		_	+	_	\vdash	_	\vdash	\perp	_	_	\vdash	X	\vdash	\perp	X	_	XX	4	\vdash	—	Ш
SUSDP19	DPS19F10-15N	SO		10 - 15 ft	1325677.11	447862.07	Forensics		2/8/2017	Ш		\vdash					+		\vdash	_	\vdash		_	-	++	X	\vdash		X	X		+	\vdash		Н
SUSDP20	SUS20F00N	SO		0 - 1 ft	1325651.50	448307.48	Forensics		1/27/2017			₽	_	+			+	_	╀	_	┢	+		-	++	X	\vdash		X	X		+	\vdash	-	Н
SUSDP20	DPS20F01N	SO	N	1 - 2 ft	1325651.50	448307.48	Forensics		1/27/2017	Н		\vdash		+		_	+		╁	-	\vdash	+	_	+	₩	X	\vdash	+	X	$\frac{1}{\sqrt{2}}$		+	\vdash		Н
SUSDP20	DPS20F02-05N	SO		2 - 5 ft	1325651.50	448307.48	Forensics		1/27/2017			\vdash		+	-	+	+	-	₩	+	╁┼	+	-	+	₩	X	\vdash	+	X	 ^	\vdash	+	\vdash	——	Н
SUSDP20 SUSDP21	DPS20F15N SUS21F00N				1325651.50		Forensics		1/30/2017	\vdash		\vdash	_	+			+		++	_	\vdash	+	_	+	++	X	\vdash	+	<u> </u>	X		+	\vdash	$+\!-\!\!\!-$	Н
SUSDP21	DPS21F01N	SO SO		0 - 1 ft 1 - 2 ft	1326039.45 1326039.45	447908.40 447908.40			1/27/2017 1/27/2017	Н		\vdash	-	+		-	+		╁	-	\vdash	+	-	+	++	X	 	+	- 		X >	\mathcal{H}	\vdash	-	Н
SUSDP21	DPS21F01N DPS21F02-05N	SO		2 - 5 ft	1326039.45	447908.40	Forensics Forensics		1/27/2017	Н		\vdash	+	+	-	+	+	+	+	+	++	+	+	+	╁┼	- ^	/ 	+	Ŷ	$\frac{1}{x}$	 ^ ′	+	\vdash	+	Н
SUSDP21	DPS21F05-10N	SO		5 - 10 ft	1326039.45	447908.40	Forensics		2/2/2017	Н		\vdash	+	+		+	+		++	+	\vdash	+		+	++	X	\vdash	+	^ 	X		+	\dashv	+	Н
SUSDP37	SUS37F00N	SO	_	0 - 1 ft	1324207.01	448553.63	Forensics		1/25/2017	Н		\vdash	-				+		++	+	\vdash			+	++	$\frac{1}{X}$	\vdash	+	Y		XX	\mathcal{H}	\vdash	+	Н
SUSDP37	DPS37F01N	SO		1 - 2 ft	1324207.01	448553.63	Forensics		1/25/2017	Н		H	-			+	+	+		+		+		+	++	X	\vdash	+	X		XX		\vdash	+	Н
SUSDP37	DPS37F02-05N	SO		2 - 5 ft	1324207.01	448553.63	Forensics		1/25/2017	Н		\vdash	+	+		+	+		+	+	\vdash	+	_	+	++	$\frac{1}{X}$	\dashv	+	$\frac{\lambda}{X}$	$\frac{1}{X}$		+	\vdash	+	Н
SUSDP39	SUS39F00N	SO		0 - 1 ft	1324489.85	448470.19	Forensics		1/25/2017	Н		\vdash	+	+		+	+		+		+			+	++	X	\vdash	+	X	$\frac{\lambda}{X}$		+	\vdash	+	Н
SUSDP39	DPS39F01N	SO	_	1 - 2 ft	1324489.85	448470.19	Forensics		1/25/2017	H		+ +	+	+	\vdash	+	+	+	++	+	\vdash	+	\dashv	+	++		Х	+	X		X >	オ┤	\dashv	+	\square
SUSDP39	DPS39F02-05N	SO		2 - 5 ft	1324489.85	448470.19	Forensics		1/25/2017	H		\vdash	+	+		+	+	\dashv	++	+	++	+	\dashv	+	+	X	产	+	X	X	 	+	\dashv	+	\sqcap
SUSDP39	DPS39F05-10N	SO	_	5 - 10 ft	1324489.85	448470.19	Forensics		1/26/2017	H		$\vdash \vdash$	-	+		+	+	\dashv	++	+	++	+	\dashv	+	十	X	\dashv	+	$\frac{x}{x}$	X		+	\dashv	+	\sqcap
SUSDP39	DPS39F10-15N	SO		10 - 15 ft	1324489.85	448470.19	Forensics		1/26/2017	Н		\vdash	+	+	+	+	+	\dashv	\vdash	+	\vdash	+	\dashv	+	+	X	\dashv	+	X	$\frac{1}{x}$	\vdash	+	\dashv	+	\sqcap
SUSDP41	SUS41F00N	SO	_	0 - 1 ft	1324243.54	448900.74	Forensics		1/24/2017	Н		\vdash	\dashv	\top	+	+	+	\dashv	\vdash	\top	\vdash	\top	\dashv	\top	+	X	\dashv	+	X	$\frac{1}{X}$	\vdash	+	\dashv	\top	\sqcap
SUSDP41	DPS41F01N	SO		1 - 2 ft	1324243.54	448900.74	Forensics		1/24/2017	Н		\vdash	\dashv	+	\vdash	+	+	\dashv	\vdash	+		+	\dashv	+	+	X	一十	+	X	$\frac{1}{X}$	\vdash	+	\dashv	+	\Box
SUSDP41	DPS41F02-05N	SO		2 - 5 ft	1324243.54	448900.74	Forensics		1/24/2017	H			\dashv	\top	\vdash	\dashv	1 1	\dashv	\vdash	\top	\vdash	\top	\dashv	1	\vdash	X	\dashv	\dashv	Х	X	\vdash	+	\dashv	\top	\square
SUSDP41	DPS41F05-10N	SO	_	5 - 10 ft	1324243.54				1/24/2017	Н		\vdash	\dashv	\top	\vdash	\dashv	+	\dashv	\vdash	\top	\vdash	\top	\dashv	\top	\vdash	X	\dashv	\dashv	Х	X	\vdash	+	\dashv	\top	\square
J																																			

								wasr	nington, D	C 20	0019																						
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	rdr	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	HEM - Oil & Grease (E1664B)	Amonia (E350.1)	Field Parameters	Gamma Radioassay	TOC (LKTOC)	Metals (SW6010)	Metals (SW6020A) Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D) OCP (SW8081B LL)	Aroclor PCBs (SW8082A)	PCBs (E1668C) VOCs (SW8260B)	VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Free Cyanide (SW9014) Sulfide (SW9034)
SUSDP41	DPS41F10-15N	SO	N	10 - 15 ft	1324243.54	448900.74	Forensics		1/24/2017																Х	\Box	\Box	Х	Х				\Box
SUSDP43	SUS43F00N	SO	N	0 - 1 ft	1324763.02	448548.99	Forensics		1/26/2017																Х	Х	\top	X	Х	XX	\Box	T	11
SUSDP43	DPS43F01N	SO	N	1 - 2 ft	1324763.02	448548.99	Forensics		1/26/2017								\top			\top			1 1		Х		\top	X	Х		П	\top	
SUSDP43	DPS43F02-05N	SO	N	2 - 5 ft	1324763.02	448548.99	Forensics		1/26/2017											\top					Х	Х	\Box	X	Х	ХХ	П	\Box	
SUSDP43	DPS43F05-10N	SO	N	5 - 10 ft	1324763.02	448548.99	Forensics		1/30/2017																Х	Х		X	Х	ХХ			
SUSDP43	DPS43F10-15N	SO		10 - 15 ft	1324763.02	448548.99	Forensics		1/30/2017															工	Х	工		X	X			工	
SUSDP44	SUS44F00N	SO		1.5 - 2.5 ft	1324717.06	448871.86	Forensics		1/27/2017																Х		$oxed{\Box}$	Х	Х		\Box		$\bot \Box$
SUSDP44	DPS44F01N	SO		2.5 - 3.5 ft	1324717.06	448871.86	Forensics		1/27/2017											$\perp \perp$					Х	Х	Ш	Х	Х	X X	Ш	丄	
SUSDP44	DPS44F01R		FD	2.5 - 3.5 ft	1324717.06	448871.86	Forensics		1/27/2017																		Ш	Χ	Х		Ш	丄	$\perp \perp$
SUSDP44	DPS44F02-05N	SO	N	3.5 - 5 ft	1324717.06	448871.86	Forensics		1/27/2017															丄	Х	丄	Ш	Х	Х		ш	丄	$\bot\bot$
SUSDP44	DPS44F02-05R	SO	FD	3.5 - 5 ft	1324717.06	448871.86	Forensics		1/27/2017								\bot			$\bot \bot$							Щ	X	Х	\bot	$\bot \bot$		$\bot\bot$
SUSDP48	SUS4800N	SO	N	0 - 1 ft	1325216.80	448346.01	Forensics		1/26/2017					Ш	\perp		\bot		Х	-	X	Х		X X	_		Х	\bot	Х		Ш,	X	\bot
SUSDP48	SUS4800R	SO	FD	0 - 1 ft	1325216.80	448346.01	Forensics		1/26/2017								$\bot\bot$		Х	+	X	Х		X X			Х		Х	\bot	Щ,	X	$\bot\bot$
SUSDP48	SUS48F00N	SO	N	0 - 1 ft	1325216.80	448346.01	Forensics		1/26/2017					Ш						++			\perp	_	Х	Х	$\bot\!\!\!\!\bot$	X	X		$\bot\bot$	_	
SUSDP48	DPS48F01N	SO	N	1 - 2 ft	1325216.80	448346.01	Forensics		1/26/2017						\perp		+			+				\dashv	X	+	ightarrow	X	X	+	₩	+	++
SUSDP48	DPS48F01R	SO	FD	1 - 2 ft	1325216.80	448346.01	Forensics		1/26/2017		_				\perp		++			++	_			+	X	+	\dashv	X	X	+	₩	+	++
SUSDP48	DPS48F02-05N	SO	-	2 - 5 ft	1325216.80	448346.01	Forensics		1/26/2017	_	_		_	\vdash	+	_	+	_		++	_	_	+	+	X	+	$+\!\!-\!\!\!+$	X	X	\rightarrow	₩	+	++
SUSDP48	DPS48F02-05R	SO		2 - 5 ft	1325216.80	448346.01	Forensics		1/26/2017		_				+		++			++	_		+	+	X	$\overline{}$	$+\!\!+\!\!\!+$	X	X	\	₩	+	++
SUSDP48	DPS48F05-10N	SO		5 - 10 ft	1325216.80	448346.01	Forensics		1/27/2017					\vdash	+		++			++				+	X	* -	$+\!\!-\!\!\!+$	X -	X	X X	₩	+	++
SUSDP48	DPS48F10-15N	SO	N	10 - 15 ft	1325216.80	448346.01	Forensics		1/27/2017		_		-	H	+		++		V	++	_	V	+	$\frac{1}{\sqrt{1}}$	X X	+	+	* -	X	+	₩	+	++
SUSDP49	SUS4900N	SO	IN I	0 - 1 ft	1324939.37	448475.33	Forensics		1/26/2017	-	_			\vdash	+	-	++	-	× -	+++	` 	X -	+	XX	-	+	X	+	X	+	+++	⇌	+
SUSDP50	SUS5000N	SO SO	N	0 - 1 ft	1324848.39	448598.52	Forensics		1/26/2017				_	\vdash	+		++		X		X	<u> </u>	+	XX		+	X	$\overline{}$	X	+	╁┼┼	X	+
SUSDP51 SUSDP51	SUS5100N DPS51F01N	SO SO	N	0 - 1 ft 1 - 2 ft	1325047.03 1325047.03	448745.81 448745.81	Forensics		1/26/2017 1/26/2017		-				+		+	-		++	<u> </u>		+	X X	\ \ \ \	+	+++	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	X	+	+++	1	++
SUSDP51	DPS51F01N DPS51F02-05N	SO	N N		1325047.03	448745.81	Forensics		1/26/2017		-				+		+	-		++	+		+	+	+	+	+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	+	+	++	+	++-
SUSDP51	DPS51F02-05N			2 - 5 ft 5 - 10 ft		448745.81	Forensics		1/20/2017	-	-	-		\vdash	+	-	+	-		++	-	-	+	+	 ^	+	+	X	+	+	++	+	++
SUSDP51	DPS51F10-15N	_		10 - 15 ft	1325047.03				1/27/2017		_		+	\vdash	+		++			++	+		+	+	X	+		X	X	+	++	+	++-
SUSDP52	SUS5200N	_		0 - 1 ft	1325244.87	448758.54			1/26/2017		_			\vdash	+		+		Х	++	x 🕇	Х	+	ХХ		+	X		T _X	+	++	Х	++-
SUSDP53	SUS53F00N			0 - 1 ft	1325244.63	447972.38			1/31/2017						+		+			++		-	+ +	^ +^	X	+	+	${X}$	X	+	廾	+	++
SUSDP53	DPS53F01N			1 - 2 ft	1325144.63	447972.38			1/31/2017	-+	-	\vdash	+	\vdash	+	-	++	+		++	+	-+	+	+	X	+	++	$\frac{\wedge}{x}$	X	+	++	十	++
SUSDP53	DPS53F02-05N			2 - 5 ft	1325144.63	447972.38			1/31/2017					\vdash	+		+ +			++	+		+	+	X	+	++	$\frac{x}{x}$	X	+	++	+	++
SUSDP53	DPS53F05-10N			5 - 10 ft	1325144.63	447972.38			2/2/2017		+				+		+ +			+	+		+ +	+	X	+	++	$\frac{\lambda}{X}$	X	+	++	+	++-
SUSDP53	DPS53F10-15N			10 - 15 ft	1325144.63	447972.38			2/2/2017		_				+ +		+ +			++	+		+ +	+	X	+	++	$\frac{\lambda}{X}$	X	+	++	+	++
									,,_,																1 7 1			<u> </u>	1 '` 1				
						448758.54			2/3/2017															\top		\top	ТхТ	\top		\top	ТТ	\top	TT
									2/3/2017								11			+			11	\top	+	\top		\top	+	\top	\vdash	十	+
DP54	DPW5415-20N	_		15 - 20 ft	1325783.51	448123.21			2/2/2017					\sqcap	\top	\neg	77			+	\top		+	\top	\top	\top	Х	\top	$\dagger \dagger$	\top	\sqcap	十	
DP54	DPW5438-42N	WG		38 - 42 ft	1325783.51	448123.21			2/2/2017								11			\top			\top	\neg	\top	\neg	Х	\neg	\top	\top	\sqcap	丁	
DP55	DPW5515-20N	WG		15 - 20 ft	1325582.28	448101.27			2/2/2017	\Box				\sqcap	\top	\neg	77			\top	\top		\top	\neg	\top	\top	Х	\top	\top	\top	\sqcap	\top	\top
DP55	DPW5515-20R			15 - 20 ft	1325582.28	448101.27			2/2/2017											\top			11	\neg	\top	\neg	Х	\neg	\top	\top	\sqcap	十	
DP55	DPW5538-42N	WG		38 - 42 ft	1325582.28	448101.27			2/2/2017								11			\top			\top	\neg	\top	\neg	Х	\neg	\top	\top	\sqcap	丁	
DP56	DPW5615-20N	WG	Ν	15 - 20 ft	1325378.32	448274.13			2/3/2017						$oxed{\Box}$						1		ፗᅦ		$oxed{\Box}$		Х		$oxed{oxed}$			丁	
Phase II Landside Mobiliza SUSDP52 SUSDP52 DP54 DP55 DP55 DP55	DPW5215-20N DPW5245-50N DPW5415-20N DPW5438-42N DPW5515-20N DPW5515-20R DPW5538-42N	WG WG WG WG WG WG WG WG	N N N N N N N FD	er Investigati 15 - 20 ft 45 - 50 ft 15 - 20 ft 38 - 42 ft 15 - 20 ft 15 - 20 ft 38 - 42 ft	1325244.87 1325244.87 1325783.51 1325783.51 1325582.28 1325582.28 1325582.28	448758.54 448758.54 448123.21 448123.21 448101.27 448101.27 448101.27			2/3/2017 2/3/2017 2/2/2017 2/2/2017 2/2/2017 2/2/2017 2/2/2017																X		X X X		X				

Company Comp									wasr	nington, D	C 2	0019																							
UN-WESS-SEN WO N 10 - 25 1 122571 33 2 2 2 2 2 2 2 2 2	Location ID	Sample ID	Matrix ¹	Sample Type ²		Easting	Northing	•			ess (SM	ain ter	uctivity	Residue (E160 - Oil & Grease	(0.1)	PTOC (E440)	Field Parameters Gamma Radioassay	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Metals (SW6020A) Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D) CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDS/PCDFs (SW8Z9UA) Total Cvanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
Direct	DP56	DPW5630-35N	WG	N	30 - 35 ft	1325378.32	448274.13			2/3/2017																			X						
DIPST DPWSTG-GRN WG N 16 - 45 n 13224588 44800.81 202017		DPW5715-20N	WG				448403.81			2/3/2017																			Х						\Box
DPSS		DPW5715-20R	WG	FD	15 - 20 ft	1325486.89	448403.81			2/3/2017			П							T						П			Х	\top	П		П	\top	$\Pi\Pi$
DPWS DPWS	DP57	DPW5740-45N	WG	N	40 - 45 ft	1325486.89	448403.81			2/3/2017																			Х						\Box
DP98 DPW9815-20N WG N 15-20T 1325/2012 12 46900.58 29/2017 N N N N N N N N N		DPW5815-20N	WG	N	15 - 20 ft	1325291.95	448513.69			2/6/2017																			Х						
DPWS		DPW5845-50N		N	45 - 50 ft	1325291.95				2/6/2017																			Х						
DP80																																			
DPWO015-SON		DPW5945-50N																															Ш		
DPWG115-20N		DPW6015-20N																															Ш		
DP61 DPWS145-50N WG N 65-50 ft																																	ш		
DPV2													Ш							Ш								Ш					Ш		
DP62 DPW2624-50N WG M 5-90 ft 1324778.29 448744.99 2662017													Ш																				ш		\bot
DPR22 DPW624-560N WG N 45 - 50 ft 1324778_29 448744.99 26/2017													Ш							Ш													Ш	丄	\bot
DPR3													Ш							$\perp \perp$													ш		\bot
DP63													Ш		\perp			ш		$\bot \bot$		$\sqcup \bot$		_	_			Ш			\sqcup		\vdash	_	\bot
TA19B3													Ш		\perp			ш		\vdash		\sqcup		_				Ш			\sqcup		\vdash		+
TA1983 DPWTA198345-50N WG N 45-50 t 1323733.98 44823.48 2772017											_		ш		\perp					+		\sqcup						Ш		—	\sqcup	——	\vdash	—	$+\!+\!+\!+$
TA19C1 DPWTA19C115-20N WG N 15 - 20 ft 1323644.69 448271.78 28/2017 TA19C2 DPWTA19C125-20N WG N 15 - 20 ft 132364.59 44829.97 2/72017 TA19C2 DPWTA19C25-20N WG N 15 - 20 ft 1323675.50 448290.97 2/72017 TA19C2 DPWTA19C245-50N WG N 15 - 20 ft 1323675.50 448290.97 2/72017 TA19C2 DPWTA19C125-20N WG N 15 - 20 ft 1323675.50 448290.97 2/72017 TA19C2 DPWTA19C125-20N WG N 15 - 20 ft 1323675.50 448290.97 2/72017 TA19C3 DPWTA19C15-20N WG N 15 - 20 ft 1323738.61 448317.07 2/72017 TA19C3 DPWTA19C15-20N WG N 15 - 20 ft 1323738.61 448317.07 2/72017 TA19C3 DPWTA19C15-20N WG N 15 - 20 ft 1323628.39 448517.03 2/72017 TA19C1 DPWTA19C15-20N WG N 15 - 20 ft 1323628.39 448517.03 2/72017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323628.39 448517.03 2/72017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323628.39 448517.03 2/72017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323628.39 448517.03 2/72017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323688.89 448519.26 3/202017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323688.89 44859.26 3/202017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323688.89 44859.26 3/202017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323674.51 448148.18 3/202017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323674.51 448148.18 3/202017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323674.51 448148.18 3/202017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323674.51 448148.18 3/202017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323674.51 448148.18 3/202017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323674.51 448148.18 3/202017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323674.51 448148.18 3/202017 TA19C2 DPWTA19C15-20N WG N 15 - 20 ft 1323632.35 44864.64 3/3/2017 TA19C3 DPWTA19C15-20N WG N 15 - 50 ft 132375.55 44845.64 3/3/2017 TA19C3 DPWTA19C15-20N WG N 15 - 50 ft 132375.55 44845.64 3/3/2017 TA19C3 DPWTA19C15-20N WG N 15 - 50 ft 132375.55 44845.64 3/3/2017 TA19C3 DPWTA19C15-20N WG N 15 - 50 ft 132375.55 44845.64 3/3/2017 TA19C3 DPWTA19C15-20N WG N 15 - 50 ft 132375.55 44845.64 3/3/2017 TA19C3 DPWTA19C15-20N WG N 15 - 50 ft 132375.55 44845.66 3/3/2017 TA19C3 DPWTA19C15-20N WG N 15 -											_		ш				_	\perp		+				_	4	\vdash		Ш		4	\vdash	——	\vdash	+	+++
TA19C1 DPWTA19C145-50N WG N 45 - 50 ft 1323644.69 448271.78				N							_		\vdash		+		_	\perp		+		\vdash		_	_	\vdash		Ш				——	\vdash	—	+
TA19C2 DPWTA19C215-20N WG N 15 - 20 ft 1323678.50 448290.97 2/7/2017				N							_	_	\vdash	_	+		_	+	_	+	4	\vdash		_	4	₩	_	\vdash					\vdash	+	+
TA19C2 DPWTA19C245-50N WG N 45 - 50 ft 1323678.50 448290.97 2/7/2017 TA19C3 DPWTA19C315-20N WG N 15 - 20 ft 1323738.61 448317.07 2/7/2017 TA19C3 DPWTA19C315-50N WG N 45 - 50 ft 1323738.61 448317.07 2/7/2017 TA19E1 DPWTA19E115-20N WG N 15 - 20 ft 1323628.39 448517.03 2/7/2017 TA19E1 DPWTA19E145-50N WG N 15 - 50 ft 1323628.39 448517.03 2/7/2017 TA19E1 DPWTA19E145-50N WG N 15 - 20 ft 1323628.39 448517.03 2/7/2017 TA19E2 DPWTA19E145-50N WG N 15 - 20 ft 1323688.89 448517.03 2/7/2017 TA19E2 DPWTA19E145-20N WG N 15 - 20 ft 1323697.80 44850.81 2/7/2017 TA19E2 DPWTA19E145-20N WG N 15 - 20 ft 1323698.89 448159.26 3/20/2017 TA19A1 DPWTA19A115-20N WG N 15 - 20 ft 1323638.89 448159.26 3/20/2017 TA19A1 DPWTA19A144-49N WG N 15 - 20 ft 1323638.89 448159.26 3/20/2017 TA19A2 DPWTA19A15-20N WG N 15 - 20 ft 1323674.51 448148.18 3/20/2017 TA19A2 DPWTA19A15-20N WG N 15 - 20 ft 1323674.51 448148.18 3/20/2017 TA19A3 DPWTA19A15-20N WG N 15 - 20 ft 1323674.51 448148.18 3/20/2017 TA19A3 DPWTA19A315-20N WG N 15 - 20 ft 1323674.51 448148.18 3/20/2017 TA19A3 DPWTA19A315-20N WG N 15 - 20 ft 1323678.55 t48464.46 3/3/20/2017 TA19B1 DPWTA19A15-20N WG N 15 - 20 ft 1323678.55 t48464.46 3/3/20/2017 TA19B1 DPWTA19A15-50N WG N 15 - 20 ft 1323678.55 t48464.46 3/3/20/2017 TA19B1 DPWTA19A15-50N WG N 15 - 20 ft 1323678.55 t48464.46 3/3/20/2017 TA19B1 DPWTA19A15-50N WG N 15 - 20 ft 1323678.55 t48464.46 3/3/20/2017 TA19B1 DPWTA19B145-50N WG N 15 - 20 ft 1323632.35 t48464.46 3/3/20/2017 TA19B1 DPWTA19B145-50N WG N 15 - 20 ft 1323632.35 t48464.46 3/3/20/2017 TA19B1 DPWTA19B145-50N WG N 15 - 20 ft 1323635.35 t48464.66 3/3/20/2017 TA19B3 DPWTA19B145-50N WG N 15 - 20 ft 1323635.35 t48465.64 3/3/20/2017 TA19B3 DPWTA19B145-50N WG N 15 - 50 ft 1323635.55 t48465.66 3/3/20/2017 TA19B3 DPWTA19B145-50N WG N 15 - 50 ft 1323660.01 449465.76 9.47 8/24/20/17											_	_	\vdash	_	+		_	+		+	4	\vdash		_	+	\vdash	_	\vdash		$+^{\times}$	\vdash	——	\vdash	+	+
TA19C3 DPWTA19C315-20N WG N 15 - 20 ft 1323738.61 448317.07 2/7/2017											_		\vdash		+			+		++		\vdash		_	_			\vdash		+	\vdash	 '	\vdash	+	+
TA19C3 DPWTA19C345-50N WG N 45 - 50 ft 1323738.61 448317.07 27/2017 TA19E1 DPWTA19E115-20N WG N 15 - 20 ft 1323628.39 448517.03 27/2017 TA19E1 DPWTA19E145-50N WG N 45 - 50 ft 1323628.39 448517.03 27/2017 TA19E2 DPWTA19E215-20N WG N 15 - 20 ft 1323683.89 448502.81 27/2017 TA19E2 DPWTA19E245-50N WG N 45 - 50 ft 1323683.89 448502.81 27/2017 TA19E2 DPWTA19E345-50N WG N 15 - 20 ft 1323683.89 448502.81 27/2017 TA19A1 DPWTA19A115-20N WG N 15 - 20 ft 1323683.89 448159.26 3720/2017 TA19A1 DPWTA19A144-49N WG N 44 - 49 ft 1323638.89 448159.26 3720/2017 TA19A2 DPWTA19A15-20N WG N 15 - 20 ft 1323674.51 448148.18 3720/2017 TA19A2 DPWTA19A345-50N WG N 45 - 50 ft 1323674.51 448148.18 3720/2017 TA19A3 DPWTA19A345-50N WG N 15 - 20 ft 1323678.69 448158.39 3720/2017 TA19A3 DPWTA19A345-50N WG N 15 - 20 ft 1323782.66 448158.39 3720/2017 TA19B1 DPWTA19B115-20N WG N 15 - 20 ft 1323782.66 448158.39 3720/2017 TA19B1 DPWTA19B115-20N WG N 15 - 20 ft 1323782.66 448158.39 3720/2017 TA19B1 DPWTA19B115-20N WG N 15 - 20 ft 1323782.66 448158.39 3720/2017 TA19B1 DPWTA19B115-20N WG N 15 - 20 ft 1323782.66 448158.39 3720/2017 TA19B1 DPWTA19B115-20N WG N 15 - 20 ft 132363.35 448464.46 373/2017 TA19B1 DPWTA19B115-20N WG N 15 - 20 ft 1323783.55 448464.46 373/2017 TA19B1 DPWTA19B115-20N WG N 15 - 20 ft 1323783.55 448464.46 373/2017 TA19B1 DPWTA19B15-20N WG N 15 - 20 ft 1323783.55 448464.46 373/2017 TA19B1 DPWTA19B15-20N WG N 45 - 50 ft 1323783.55 448464.46 373/2017 TA19B1 DPWTA19B15-20N WG N 45 - 50 ft 1323783.55 448464.46 373/2017 TA19B1 DPWTA19B15-20N WG N 45 - 50 ft 1323783.55 448465.64 374/2017 DPOS-01 DPWOS0116-20N WG N 16 - 20 ft 1323735.95 448455.64 374/2017 DPOS-01 DPWOS0116-20N WG N 16 - 20 ft 1323735.95 448455.76 9.47 8724/2017												_	₽	_			_	+ -		+	-	┢		_	+	┢	-	\vdash			╀	——	\vdash	+	+
TA19E1 DPWTA19E115-20N WG N 15 - 20 ft 1323628.39 448517.03 277/2017											-		\vdash		+		-	+		+		\vdash		-	+		_	\vdash		 -	+	——	₩	+	+++
TA19E1 DPWTA19E145-50N WG N 45 - 50 ft 1323628.39 448517.03 277/2017											\dashv		\vdash		+	-	-	+	-	+		\vdash	+	-	+	╁		₩		—	₩		\vdash	+	+++
TA19E2 DPWTA19E215-20N WG N 15 - 20 ft 1323697.80 448502.81 277/2017													\vdash	-	+		-	+		+	-	┢	-	-	+	╁	-	┢		+-	╁		₩	+	+++
TA19E2 DPWTA19E245-50N WG N 45 - 50 ft 1323697.80 448502.81 277/2017											-		\vdash	+	+		+	+		+	+	\vdash	+	+	+	\vdash	_	\vdash		+-	\vdash		\vdash	+	+
TA19A1 DPWTA19A115-20N WG N 15 - 20 ft 1323638.69 448159.26 3/20/2017											\dashv	+	\vdash	+	+	-	+	+	-	+	+	++	+	+	+	╁	+	\vdash		+	╁┼	+	\vdash	+	+++
TA19A1 DPWTA19A144-49N WG N 44 - 49 ft 1323638.69 448159.26 3/20/2017				_							\dashv	+	$\vdash \vdash$	+	+		+	+		++	+	\vdash	+	-+	+	\vdash		\vdash		+-	++	+	\vdash	+	++-
TA19A2											-		\vdash	+	+		+	+		+	+	\vdash	+	-	+	\vdash	+			+	++	+	\vdash	+	+
TA19A2 DPWTA19A245-50N WG N 45 - 50 ft 1323674.51 448148.18 3/20/2017 TA19A3 DPWTA19A315-20N WG N 15 - 20 ft 1323728.76 448158.39 3/20/2017 TA19A3 DPWTA19A345-50N WG N 45 - 50 ft 1323728.76 448158.39 3/20/2017 TA19D1 DPWTA19D115-20N WG N 15 - 20 ft 1323632.35 448464.46 3/3/2017 TA19D1 DPWTA19D145-50N WG N 45 - 50 ft 1323632.35 448464.46 3/3/2017 TA19D3 DPWTA19D315-20N WG N 45 - 50 ft 1323735.95 448425.64 3/8/2017 TA19D3 DPWTA19D345-50N WG N 45 - 50 ft 1323735.95 448425.64 3/8/2017 0 0 N X 0 0 TA19D3 DPWTA19D345-50N WG N 45 - 50 ft 1323735.95 448425.64 3/8/2017 0 0 N X 0 0				_							\dashv	+	\vdash	+	+	-+	+	+	+	+	+	+	+	+	+	\vdash	+	\vdash		+	+	+	\vdash	+	+
TA19A3 DPWTA19A315-20N WG N 15 - 20 ft 1323728.76 448158.39 3/20/2017			_								\dashv	\dashv	┰	\dashv	╫	\dashv	+	+	\dashv	++	+	\vdash	+	\dashv	+	$\vdash \vdash$	+	$\vdash \vdash$		+	┰	+	\vdash	+	+++
TA19A3 DPWTA19A345-50N WG N 45 - 50 ft 1323728.76 448158.39 3/20/2017 Image: Control of the control of				_									\vdash		+		+	+		+ +		\vdash			+					+	1 1	+	一十	+	+++
TA19D1 DPWTA19D115-20N WG N 15 - 20 ft 1323632.35 448464.46 3/3/2017			_	_							十	+	\vdash	\dashv	+		\top	+		+	+	+	\top	-	+	+	+	\vdash		+	+	+	一十	十	+++
TA19D1 DPWTA19D145-50N WG N 45 - 50 ft 1323632.35 448464.46 3/3/2017				_							\dashv	\dashv	\vdash	\dashv	╅	+	\top	\top	\dashv	++	+	\vdash	\top	\dashv	+	\vdash		$\vdash \vdash$		+	\vdash	+	\vdash	十	+
TA19D3 DPWTA19D315-20N WG N 15 - 20 ft 1323735.95 448425.64 3/8/2017 N N N N N A5 - 50 ft 1323735.95 448425.64 3/8/2017 N N N N N A5 - 50 ft 1323735.95 448425.64 3/8/2017 N N N N N A5 - 50 ft 1323735.95 448425.64 3/8/2017 N N N N N A5 - 50 ft 1323735.95 448425.64 3/8/2017 N N N N A5 - 50 ft 1323735.95 448425.64 3/8/2017 N N N N A5 - 50 ft 1325160.10 449465.76 9.47 8/24/2017 N			_	_							\neg	\dashv	\vdash	\dashv	╅┪	\vdash	\top	\top	\dashv	† †	\top	\vdash	\top	\dashv	\top	\vdash		\vdash		\top	 	\top	\vdash	+	+
TA19D3 DPWTA19D345-50N WG N 45 - 50 ft 1323735.95 448425.64 3/8/2017 N N N N N A5 - 50 ft 1323735.95 448425.64 3/8/2017 N <th< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>\neg</td><td>\top</td><td>\vdash</td><td>\dashv</td><td>+</td><td></td><td>\top</td><td>\top</td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td></td><td>\vdash</td><td></td><td>\top</td><td>\vdash</td><td>\top</td><td>\vdash</td><td>\top</td><td>+</td></th<>				_							\neg	\top	\vdash	\dashv	+		\top	\top		+						\vdash		\vdash		\top	\vdash	\top	\vdash	\top	+
DPOS-01 DPWOS0116-20N WG N 16 - 20 ft 1325160.10 449465.76 9.47 8/24/2017 Image: New York of the control of the con											一十		\vdash	\dashv	+		\top	\top		+			\top			\vdash				\top	\vdash	\top	一十	\top	+
DPOS-01 DPWOS0146-50N WG N 46 - 50 ft 1325160.10 449465.76 9.47 8/24/2017			_	_					9.47		\neg	\dashv	\vdash	\dashv	+		\top	\top		+						\vdash		\vdash		\top	+	\top	\vdash	\top	+
									9.47			$\neg \vdash$	\sqcap	\top	\top	\Box	\top	\top	\neg	+	1		\top	\dashv	1	\sqcap	1	\sqcap		丁	\sqcap	\top	\sqcap	\top	+
				_							一	\neg	\sqcap	\dashv	\top	\Box	\dashv	П	\neg	\top	\top		\top	\dashv	\top	\sqcap	\neg	\sqcap		\top	\sqcap	\top	\sqcap	\top	+

								wasr	nington, D	C 20	019																						
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340) Grain Size (D422)	terk	Hydraulic Conductivity (lab) Total Residue (E160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1) PTOC (E440)	Field Parameters	Gamma Radioassay	TOC (LKTOC)	Metals (SW6010)	Metals (SW6020A)	: .	Mercury (SW7471B) Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015B)	TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A) Total Cuanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
DPOS-02	DPWOS0216-20N	WG	N	16 - 20 ft	1325283.62	449445.87		21.73	8/24/2017																		Х				\top	T	$\top \Box$
DPOS-02	DPWOS0246-50R	WG	_	46 - 50 ft	1325283.62	449445.87		21.73	8/24/2017						1 1		11			11		1 1		11		1 1	X			\Box	+		+
DPOS-02	DPWOS0246-50N	WG		46 - 50 ft	1325283.62	449445.87		21.73	8/24/2017		\Box						\top			11		\Box		\top		\Box	X			\vdash	+	一	+
DPOS-03	DPWOS0312-16N	WG	N	12 - 16 ft	1325465.16	449323.38		23.41	8/21/2017																		Х				\top	П	\top
DPOS-03	DPWOS0346-50N	WG	N	46 - 50 ft	1325465.16	449323.38		23.41	8/21/2017																		Х						
Phase II Landside Mobiliz	ation 2, Task 1: Backg	round Soil	Samp	oling																												<u> </u>	
SOBACK01	SOBACK0100N	SO	N	0 - 1 ft	1319864.18	453387.05	Forensics		2/28/2017	Х									Х		Х	Х			XX		Х		Х	X		XX	
SOBACK01	SOBACK0103N	SO	N	3 - 4 ft	1319864.18	453387.05	Forensics		2/28/2017	Х									Х		Х	Х			X X		Х		Х			XX	$\langle \Box \Box$
SOBACK02	SOBACK0200N	SO	N	0 - 1 ft	1328627.26	447619.60	Forensics		2/28/2017	Х									Х		Х	Х			X X		Х		Х	X		XX	<
SOBACK02	SOBACK0203N	SO	N	3 - 4 ft	1328627.26	447619.60	Forensics		2/28/2017	Х									Х		Х	Х			X X		Х		Х			XX	ζ
SOBACK03	SOBACK0300N	SO	N	0 - 1 ft	1329214.24	444497.88	Forensics		3/2/2017	Х									Х		Х	Х			X X		X		Х	XX		XX	〈
SOBACK03	SOBACK0303N	SO	N	3 - 4 ft	1329214.24	444497.88	Forensics		3/2/2017	Х									Х		Х	Х			X X		X		Х	oxdot	Ш	X X	
SOBACK04/ DPBACK04	SOBACK0400N	SO	N	0 - 1 ft	1323248.40	445546.29	Forensics		4/5/2017	Х									Х	\perp	Х	Х			X X		Х		Х	Ш	Ш	X X	
SOBACK04/ DPBACK04	SOBACK0403N	SO	N	3 - 4 ft	1323248.40	445546.29	Forensics		4/5/2017	Х									Х	\perp	Х	X			X X		Х		Х	XX		XX	
SOBACK05/ DPBACK15	SOBACK0500N	SO	N	0 - 1 ft	1320831.45	447594.39	Forensics		4/5/2017	Х							\perp		Х	\perp	Х	X			X X		Х		X	oxdot	$oldsymbol{\perp}$	X X	
SOBACK05/ DPBACK15	SOBACK0503N	SO	N	3 - 4 ft	1320831.45	447594.39	Forensics		4/5/2017	Х	_				\perp		\perp		Х	\perp	Х	X			X X	Ш	Х		Х	XX		X X	
SOBACK06	SOBACK0600N	SO	N	0 - 1 ft	1320783.91	451508.96	Forensics		2/28/2017	Х					\perp		$\bot \bot$		Х	\perp	Х	X		\perp	X X	Ш	Х		Х	<u> </u>		X X	
SOBACK06	SOBACK0603N	SO	N	3 - 4 ft	1320783.91	451508.96	Forensics		2/28/2017	Х					\perp				Х	\perp	Х	X	_	\bot	X X	Ш	Х		Х	\bot	$\perp \!\!\! \perp \!\!\! \perp$	X X	
SOBACK07	SOBACK0700N	SO	N	0 - 1 ft	1321557.44	453527.57	Forensics		2/27/2017	Х		_			\perp		$\bot\bot$		Х	\bot	Х	X	_	\bot	X X	\perp	Х		X	\bot	$\perp \!\!\! \perp \!\!\! \perp$	X X	
SOBACK07	SOBACK0703N	SO		3 - 4 ft	1321557.44	453527.57	Forensics		2/27/2017	Х					\perp		++		Х	\perp	Х	X	_		X X	\bot	Х		X	++	\bot	XX	
SOBACK08/ DPBACK12	SOBACK0800N	SO	_	0 - 1 ft	1323513.39	446903.48	Forensics		4/5/2017	Х		_			\perp		++		Х	\perp	Х	X	_		X X		Х		X	\bot	$\bot\!\!\!\!\!\bot$	XX	
SOBACK08/ DPBACK12	SOBACK0803N	SO	_	3 - 4 ft	1323513.39	446903.48	Forensics		4/5/2017	X		_			\perp		+		X	+	X	X	_		XX		X		X	₩		XX	
SOBACK09	SOBACK0900N	SO	_	0 - 1 ft	1327403.24	447472.65	Forensics		3/6/2017	X		_	4		+	_	++	-	X	+	Х	X	_		XX	+	X		X	$\vdash \vdash$	$+\!\!-\!\!\!-\!\!\!\!-$	XX	
SOBACK09	SOBACK0903N	SO	_	3 - 4 ft	1327403.24	447472.65	Forensics		3/6/2017	X	_	_	4		+		++	4	X	+	Х	X	_	_	XX	\vdash	X		X	$\vdash \vdash$		XX	
SOBACK10/ DPBACK01	SOBACK1000N	SO		0 - 1 ft	1324538.28	442393.07	Forensics		3/3/2017	X					+		++		X	+	X	X	_		XX	+	X		X	$++^{\times}$		XX	
SOBACK10/ DPBACK01	SOBACK1003N	SO	_	3 - 4 ft	1324538.28		Forensics		3/3/2017			_			-		++	-			X	Х			XX		X		^		+	XX	
SOBACK11	SOBACK1100N	SO	_	0 - 1 ft	1325016.99				4/7/2017	X	_				+		++		X	_	X	Х	-		XX		X		X	_	+	XX	
SOBACK11 SOBACK12/ DPBACK09	SOBACK1103N	SO SO	_	3 - 4 ft	1325016.99	446512.25	Forensics		4/7/2017	X		_			+		++		X		X	X	_		X X		X		X		+	X X	
SOBACK12/ DPBACK09	SOBACK1200N SOBACK1203N	SO	_	0 - 1 ft 3 - 4 ft	1327368.99 1327368.99	451106.18 451106.18	Forensics Forensics		4/4/2017 4/4/2017	X			+		+	-	+	-	X		X	X	-		^ ^ X		X		X		+	XX	
SOBACK12/ DFBACK09	SOBACK1203N SOBACK1300N	SO	+	0 - 1 ft	1322878.35	444258.44	Forensics		4/4/2017	X	_		+		+	-	+		 	++	X	X	+		X X		X		 		+	XX	
SOBACK13	SOBACK1300N SOBACK1303N	SO	_	3 - 4 ft	1322878.35	444258.44			4/5/2017	X		-	+		+		+	+	 	+	X	X	+		^ ^ X		X		_	X X	+	XX	
SOBACK14	SOBACK1400N	SO		0 - 1 ft	1323622.17	453759.47	Forensics		3/3/2017	X	_				+ +		+		 	+	X	 ^	-		XX		X	_	 \hat{x}	_	+	XX	
SOBACK14	SOBACK1400R	SO	_	0 - 1 ft	1323622.17	453759.47	Forensics		3/3/2017	X					+		+		X	+	X	X	+		XX		X		$\frac{\lambda}{X}$	_	+	XX	
SOBACK14	SOBACK1400K	SO	_	3 - 4 ft	1323622.17	453759.47	Forensics		3/3/2017	X		+	+	$\vdash\vdash$	+	+	++	+	χ	+	X	X	+		X X		X		$\frac{1}{x}$	++	+	XX	
SOBACK15	SOBACK1500N	SO	_	0 - 1 ft	1324917.01	454385.13	Forensics		2/27/2017	X	_	-	+		+		+	+	X	+	X	 x 	+		XX		X		$\frac{\lambda}{x}$	\vdash	+	XX	
SOBACK15	SOBACK1500N SOBACK1503N	SO	_	3 - 4 ft	1324917.01	454385.13	Forensics		2/27/2017	X		\dashv	+	$\vdash \vdash$	+	+	++	+	X	++	X	 ^	\dashv		XX		X		$\frac{1}{x}$	\vdash	+	XX	
SOBACK16	SOBACK1600N	SO	_	0 - 1 ft	1324848.90	455005.08			2/27/2017	X		\dashv	\top	\vdash	+	+	++	+	X	+	X	$\frac{1}{X}$	+		XX		X		$\frac{1}{X}$	\vdash	+	XX	
SOBACK16	SOBACK1600R	SO		0 - 1 ft	1324848.90	455005.08			2/27/2017	- ^	+	\dashv	+	\vdash	+	\dashv	++	+	$\frac{1}{X}$	++	X	 x 	\dashv		XX		X		$\frac{\lambda}{X}$	\vdash	+	XX	
SOBACK16	SOBACK1603N	SO	+	3 - 4 ft	1324848.90	455005.08	Forensics		2/27/2017	X	+	\dashv	\top	\vdash	+	\dashv	++	+	X	+	X	X	\dashv		XX		X		$\frac{\lambda}{X}$	+	+	XX	
SOBACK17/ DPBACK05	SOBACK1700N	SO	_	0 - 1 ft	1329476.81	454066.94	Forensics		2/28/2017	X	_	\dashv	+	\vdash	+	\dashv	++	+	X	+	X	X	+		XX		X			ХХ	オ┤	XX	
SOBACK17/ DPBACK05	SOBACK1703N	SO	_	3 - 4 ft	1329476.81	454066.94			2/28/2017	X	_	_	\top		+	\dashv	++	1	X	++	$\frac{x}{x}$	X	\dashv		XX		X		$\frac{1}{X}$	111	+	XX	
2327.0 21 27.01.00	15 527 15.1.1 0011	1	1	,	. 5 = 5 . 7 5 . 5 1	.0.000.01	. 5.5116166		_,, , , ,										ــــــــــــــــــــــــــــــــــــــ		- `	1					1.'					<u>``</u>	للللث

Control Cont									Wash	nington, Do	C 20	019																						
SOBACKIE PERACKIE SOBACKIERON SC N. 0 - 11 121086.89 44589 Peranets ARS917 X N. 0 X X X X X X X X X X X X X X X X X X	Location ID	Sample ID	Matrix ¹	Sample Type ²		Easting	Northing				rdness (SM ain Size (D	terber	c Conductivity sidue (E160.3)	se (E1	Amonia (E350.1) PTOC (E440)	Field Parameters	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Metals (SW60Z0A) Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C) TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	OCP (SW80815D)	Aroclor PCBs (SW8082A)	PCBs (E1668C) VOCs (SW8260B)		NH VOCS (M8015D) CSIA (VOCS) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8Z70DM SIM) PAHs (ID-0016)	PAHs (D7363-13) PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SORACK19F	SOBACK18/ DPBACK13	SOBACK1800N	SO	N	0 - 1 ft	1321086.38	446369.96	Forensics		4/5/2017	X									X				T	X	Х	Х	Х	Х	X	X X	X	\overline{TXT}	\Box
SOBACK19F SOBACK19FON SO N 3 -4 ft 132810784 449700.48 Fonesias 4.442077 X X X X X X X X X	SOBACK18/ DPBACK13	SOBACK1803N		N	3 - 4 ft					4/5/2017										X			Х					Х	Х	X	X X	Х		$\neg \neg$
SUB-RC01 SUB-RC0100N SO N 0 - 1 R 1327278 445492.00 Forensics 446017 X N X X X X X X X X	SOBACK19F	SOBACK19F00N	SO	N	0 - 1 ft	1325107.84	449700.48	Forensics		4/4/2017	Х									X	\		Х	T	Х	Х		Х		X	X	Х		\neg
SU-BR-01 SU-BR-0103N SO N 3 - 4 ft 1322727.88 464392.00 Forenates 4442017 X	SOBACK19F	SOBACK19F03N	SO	N	3 - 4 ft	1325107.84	449700.48	Forensics		4/4/2017	Х			I						X	\ \		Х	\top	Х	Х		Х		Х	X	Х		\Box
SUERCO SUERCOZON SO N 0 - 1 ft 1328140-06 464777.51 Forensics 4442017 X N X X X X X X X X	SU-BK-01	SU-BK-0100N	SO	Ν	0 - 1 ft	1327237.88	454392.00	Forensics		4/4/2017	Х	(X)		Х		Х	Х		Х		Х		Х	X	
SUBK-02 SUBK-0203N SO N 3 - 4 ft 1328440.06 45477-75 Formatics 44/2017 X N X X X X X X X X	SU-BK-01	SU-BK-0103N	SO	Ν	3 - 4 ft	1327237.88	454392.00	Forensics		4/4/2017	Х									X)		Х		Х	Х		Х		Х	\Box	X	(X	\Box
Pinase Landside Mobilization 2, Task 2: Background DPT Groundwater Sampling	SU-BK-02	SU-BK-0200N	SO	N	0 - 1 ft	1328149.06	454777.51	Forensics		4/4/2017	Х									X	\		Х		Х	Х		Х		Х	X	Х	$\langle X \rangle$	
DPMBACKIT1 DPMBACKIT11-19N MG N 21 - 21 - 21 1325/31 3497017 N X X X X X X X X X	SU-BK-02	SU-BK-0203N	SO	Ν	3 - 4 ft	1328149.06	454777.51	Forensics		4/4/2017	Х									X	\ \		Х		Х	Х		Х		Х		Х	X	
SOBACK/000 PPRACKIS PPWBACK/000 PPWB	Phase II Landside Mobiliza		ound DPT	Grou	ndwater Sam																													
SOBACK10DPBACK90 PWBACK916-20N WG N 5-9 ft 1324538.28 442393.07 3772017																				X	Х		Х							X				
SOBACK1720PBACK090 PVMBACK0913-17N WG N 16 - 20 ft 1327368.99 451106.18 44182017 N X X X X X X X X X				N	21 - 25 ft															X	Х			$\perp \perp$						X				
SOBACKI17 DEPACKOS DPWBACKOS13-17R WG N 13-17 1329476 81 454068.94 32/2017 N X X X X X X X X X														$\perp \perp$					Ш	X	Х			$\perp \perp$						X	'			
SOBACKI17 DPBACK150 DPWBACK1610-17 N° N° N° N° N° N° N° N														\perp					_	_	Х	_	_	\perp										
SOBACKI18 DPWBACK1300+10N WG N 6 - 10 ft 132108.38 446369.98																				_	Х			$\perp \perp$						+				\perp
SOBACKI8/ DPBACKI13 DPWBACKI1341-45N W/G N												\perp		ш		\sqcup				_	Х	_		$\bot \bot$						_				
DPBACKI10 DPWBACKI016-20N WG N 16 - 20 ft 1320862.14 445123.10 8/30/2017 N X X X X X X X X X				_								\perp		\sqcup		\sqcup			+	_	_	_		$\bot \bot$						-				\perp
DPBACK10												\perp		\sqcup		\sqcup			$\perp \perp$	Х				++						_	/			4
DPMBACK1620-24N W/G N 20 - 24 ft 1320555.10 444160.27 8/29/2017 N N N N N N N N N												\bot							\bot	X	X			\perp						X	——			\dashv
DPWBACK1640-44N WG N 40 - 44 ft 1320555.10 444160.27 8/29/2017												+		\vdash		\vdash			+	X	X			++					_	X	——			+
SOBACK04 DPWBACK10420-24N WG N 20 - 24 ft 1323248.40 445546.29 8/22/2017 N X X X X X X X X X											_	+	_	+	_	₩		_	+	X				++			_		_	X	/			\rightarrow
SOBACK05/ DPBACK15 DPWBACK1524-28N WG N 24 - 28 ft 1320831.45 447594.39 8/28/2017 N X X X X X X X X X												+		\vdash		\vdash			+	X	X			++						1 X I	— —			+
SOBACKIS DPWACK1550-54N WG N 50 - 54 ft 132081 45 447594.39 8/28/2017 N X X X X X X X X X											_	\perp		\vdash		\vdash			+	X	X			++					_	X	——			+
Phase Landside Mobilization 3, Task 1: Kenilworth Maintenance Yard Surface Soil Sampling												+	_	+		\vdash			++	X	X	_		++							$+\!\!-\!\!\!+\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!$			+
KMY02 SUSKMY0200N SO N 0 - 1 ft 1323528.19 449429.81 5/15/2018										8/28/2017										X	X		Х		X	X		X		X		X	<u>. X </u>	Щ
KMY03 SUSKMY0300N SO N 0-1 ft 1323477.83 449326.78 5/15/2018				_		•				E/4E/2040				т т		т т	_		т т	 		1 1		т т		1 1		т т		т т	$\overline{}$	$\overline{}$		\dashv
KMY03 SUSKMY0300R SO FD 0 - 1 ft 1323477.83 449326.78 5/15/2018				_								+		+	_	╁	-				╁┼	+	-	+	-	+		+	-	+	+	+	+	+
KMY04 SUSKMY0400N SO N 0 - 1 ft 1323417.88 449254.71 5/15/2018												+		+		++				_	\vdash	+		++		+		+		+	+	+	+	+
KMY05												+	_	+	_	++		-			\vdash	+	-	++	-	+		++		+	$+\!\!-\!\!\!+\!\!\!-\!\!\!\!-$	-	+	+
KMY07 SUSKMY0700N SO N 0 - 1 ft 1323323.26 448847.05 5/15/2018 N X X X X X X X X X				_							+	+	+	++	-	\vdash	+	_				++	+	++	+	╂┼	+	++	-	++	$+\!\!\!-\!\!\!\!+$	+	+	+
KMY08 SUSKMY0800N SO N 0 - 1 ft 1323328.15 448771.01 5/15/2018 N X X X X X X X X X											-	+	-	╁	-	++	+-	-				+	+	++	-	+	-	++	-	++	$+\!\!\!-\!\!\!\!-$	+	+	+
KMY09 SUSKMY0900N SO N 0 - 1 ft 1323312.83 448628.53 5/15/2018 N X N N N N N N N N											+	+	_	+	_	++						+	+	++	+	+		+		+	+	+	+	+
KMY10 SUSKMY1000N SO N 0 - 1 ft 1323389.65 448450.96 5/15/2018 N X N N 0 - 1 ft 1323389.65 448450.96 5/15/2018 N X N 0 - 1 ft N 0 - 1 ft 1323555.94 448678.33 5/15/2018 N X N 0 - 1 ft N 0 - 1 ft N N N 0 - 1 ft N N N 0 - 1 ft N N 0 - 1 ft N				_								+	-	+		++			_	_	\vdash	+		+		+		+		+	+	+	+	+
KMY12 SUSKMY1200N SO N 0 - 1 ft 1323555.94 448678.33 5/15/2018 N 0 - 1 ft 1323483.63 448619.10 5/15/2018 N 0 - 1 ft 1323483.63 448619.10 5/15/2018 N 0 - 1 ft 1323483.63 448619.10 5/15/2018 N 0 - 1 ft 1323549.43 448589.47 5/15/2018 N 0 - 1 ft 1323549.43 448589.47 5/15/2018 N 0 - 1 ft 1323529.61 448482.53 448482.53 5/15/2018 N 0 - 1 ft 1323559.61 448482.53 5/15/2018 N 0 - 1 ft 1323505.30 449363.66 Forensics 4/12/2017 N 0 - 1 ft 132341.50 448717.63 Forensics 4/12/2017 N 0 - 1 ft 1323341.50 448717.63 Forensics 4/12/2017 N 0 - 1 ft 1323559.22 448663.73 Forensics 4/13/2017 N 0 - 1 ft 1323559.22 448663.73 Forensics 4/13/2017 N 0 - 1 ft 0 - 1 ft 1323559.22 448663.73 Forensics <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>-</td> <td>+</td> <td>-</td> <td>++</td> <td></td> <td></td> <td></td> <td>_</td> <td>\vdash</td> <td>++</td> <td></td> <td>+</td> <td></td> <td>+</td> <td></td> <td>+</td> <td></td> <td>+</td> <td>+</td> <td>_</td> <td>+</td> <td>+</td>												+	-	+	-	++				_	\vdash	++		+		+		+		+	+	_	+	+
KMY13 SUSKMY1300N SO N 0 - 1 ft 1323483.63 448619.10 5/15/2018 N X N N 0 - 1 ft 1323483.63 448619.10 5/15/2018 N X N N 0 - 1 ft 1323549.43 448589.47 5/15/2018 N X											+	+	\dashv	+	-	\vdash	+	+			\vdash	+	+	++	+	╁┼	+	++	+	++	+	+	+	+
KMY14 SUSKMY1400N SO N 0 - 1 ft 1323549.43 448589.47 5/15/2018 1 X X N 0 - 1 ft 1323549.43 448589.47 5/15/2018 1 X X N 0 - 1 ft 1323529.61 448482.53 5/15/2018 1 X											+	+	\dashv	+	-	\vdash	+	\dashv	_	_	\vdash	+	+	++	+	╁┼	+	+	+	+ +	+	+	+-+	+
KMY15 SUSKMY1500N SO N 0 - 1 ft 1323529.61 448482.53 5/15/2018 N N N N 0 - 1 ft 1323529.61 448482.53 5/15/2018 N											+	+	\dashv	++		+ +	+	\dashv			\vdash	+ +	\dashv	++		+ +	\dashv	++		+ +	+	+	+-+	+
KMY-DU01 SUSNPSMI0100N SO N 0 - 1 ft 1323505.30 449363.66 Forensics 4/12/2017 N				_							\dashv	+	-	+	-	+				_		+	\dashv	++	+	+	\dashv	+	+	+	+	+	+	+
KMY-DU02 SUSNPSMI0200N SO N 0 - 1 ft 1323341.50 448717.63 Forensics 4/12/2017 N N N N 0 - 1 ft 1323359.22 448663.73 Forensics 4/13/2017 N <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\dashv</td> <td>+</td> <td>\dashv</td> <td>+</td> <td>\dashv</td> <td>+</td> <td></td> <td>\dashv</td> <td></td> <td>_</td> <td> ,</td> <td> </td> <td>$\frac{1}{x}$</td> <td> x </td> <td>X</td> <td> X </td> <td>${X}$</td> <td>+</td> <td>$\frac{1}{x}$</td> <td>X</td> <td>X X</td> <td>X</td> <td>[</td> <td>+</td>				_							\dashv	+	\dashv	+	\dashv	+		\dashv		_	 ,	 	$\frac{1}{x}$	 x 	X	X	${X}$	+	$\frac{1}{x}$	X	X X	X	[+
KMY-DU03 SUSNPSMI0300N SO N 0-1 ft 1323559.22 448663.73 Forensics 4/13/2017 X X X X X X X X X X X X X X X X X X X											+	+	\dashv	+		+	\top	\dashv		_								+	X					+
											\dashv	+	\dashv	1 1		 	\top	\dashv	-	_														$\dashv \dashv$
											\dashv	\top		T						_			\dashv	† †		-	\dashv	11		_	\dashv	_	_	$\dashv \dashv$

								wasr	ington, Do	<i>2</i> 00	19																							
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340) Grain Size (D422)	Atterberg Limits	160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1) PTOC (E440)	Field Parameters	Gamma Radioassay DOC (SM5310C)	TOC (LKTOC)	Polonium-210 (PO-01-RC) Metals (SW6010)	Metals (SW6020A)	:	Mercury (SW7471B) Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015B)	TPH-GRO (SW8015D)	OCP (SW8081B LL)	Arocior PCBs (SW8082A) PCBs (E1668C)	VOCs (SW8260B)		CSIA (VOCs) (PAE-CSIA-004) SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHs (ID-0016) PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B) Free Cyanide (SW9014)	Sulfide (SW9034)
KMY-DU03	SUSNPSMI0300N2	SO	N	0 - 1 ft	1323559.22	448663.73	Forensics		4/13/2017										Х		Х					Х			Х			Х		П
KMY-DU03	SUSNPSMI0300N3	SO	N	0 - 1 ft	1323559.22	448663.73	Forensics		4/13/2017										Χ		Χ					Х			Х	/ 		Х		
KMY-DU03	SUSNPSMI0300R1	SO	FD	0 - 1 ft	1323559.22	448663.73	Forensics		4/13/2017			11			T				Х		Х	1 x l		(Х	X	H	+	Х	オ╅	\dashv	Х	\top	П
KMY-DU03	SUSNPSMI0300R2	SO	FD	0 - 1 ft	1323559.22	448663.73	Forensics		4/13/2017										Х		Χ	X	7	<	Х	X			Х	⇃		Х		
Phase II Landside Mobiliz	ation 3, Task 2: Kenilwo	orth Maint	enanc	e Yard Discre	ete Subsurface	Soil and Gro	undwater Sa	mpling		•			•			•		•			•					•								
KMY-DU01	DPSNPS0105N	SO	N	5 - 6 ft	1323505.30	449363.66			4/20/2017										Х		Х	X		Х		Х			Х	\Box		TT		
KMY-DU01	DPSNPS0110N	SO		10 - 11 ft	1323505.30	449363.66			4/20/2017										Х		Х	Х		Х		Х			Х					
KMY-DU01	DPSNPS0115N	SO	N	15 - 16 ft	1323505.30	449363.66			4/20/2017										Χ		Х	Х		Х		Х			Х					
KMY-DU01	DPWNPS0108-12N	WG	N		1323505.30	449363.66			4/20/2017										Χ	Х		Х)	(Х	X X		X X	У	(X	X	Х		
KMY-DU02	DPSNPS0205N	SO	N	5 - 6 ft	1323341.50	448717.63			4/21/2017										Χ		Х	X		Х		X	Ш		У			Ш		
KMY-DU02	DPSNPS0210N	SO	N	10 - 11 ft	1323341.50	448717.63			4/21/2017										Х		Х	X		Х		X	Ш		Х			Ш		
KMY-DU02	DPSNPS0215N	SO	N	15 - 16 ft	1323341.50	448717.63			4/21/2017						$\perp \perp$				Х		Х	X		Х		X	Ш	Ш	Х			Ш		
KMY-DU02	DPWNPS0210-14N	WG	N		1323341.50	448717.63			4/21/2017						$\perp \perp$				Х	Х		X		(Х	X X		X X	Х	(X	Х	Х	\bot	Ш
KMY-DU03	DPSNPS0305N	SO	N	5 - 6 ft	1323559.22	448663.73			4/21/2017						$\perp \perp$				Х		Х	X		Х		X	\sqcup	\bot	×			$\perp \perp$		Ш
KMY-DU03	DPSNPS0310N	SO	N	10 - 11 ft	1323559.22	448663.73			4/21/2017		\sqcup	\perp			$\bot\bot$		\sqcup		Х	\perp	Х	X	_	Х		X	₩	\longrightarrow	Х	_		$\bot \bot$	_	Ш
KMY-DU03	DPSNPS0315N	SO	N	15 - 16 ft	1323559.22	448663.73			4/21/2017		Ш	\perp			$\bot \bot$		\sqcup		Х		Х	X		X		X L	\sqcup	\bot	Х	\Box		\bot		Ш
KMY-DU03	DPWNPS0315-19N	WG	N	L	1323559.22	448663.73			4/21/2017										Х	Х		X		(Х	X X		<u> </u>	X	(X	<u> </u>	Х		Щ
Phase II Landside Mobiliz			_					1		1,,																					—		—	ᅰ
SB6	SB6, 10-12	SO		10 - 12 ft	1323479.00	448670.25				X	\vdash	+	_	_	++	_	\vdash	4	\vdash	\bot		+	_	-	\vdash	_	₩	\dashv		44	—	++	+	Ш
SB6	SB6, 24-25	SO		24 - 25 ft	1323479.00	448670.25				X	\ \ \	+	4	_	++	_	\vdash	4		+		+	_	_	\vdash	_	\vdash	+	_	44	\rightarrow	++	+	Ш
SB6	SB6, 31-33	SO		31 - 33 ft	1323479.00	448670.25				X		\perp			++					\perp		+					₩	+	\vdash	+	+	++	+	Н
SB6	SB6, 44-46	SO	N	44 - 46 ft	1323479.00	448670.25				X	^	+	_		+	_	\vdash	-		+		+	_	-		_	₩	+	_	+	+	++	+	Н
SB6	SB6, 49-51	SO	N	49 - 51 ft	1323479.00	448670.25				X	V	+	_		+	_		-				+		+-		-	₩	+	\vdash	+	+	++	+	\vdash
SB6 SB6	SB6, 51-53	SO	IN	51 - 53 ft	1323479.00	448670.25				X	_	+	_	+	++	_	\vdash	+	\vdash	+		+	+	+	\vdash	+	₩	+	_	++	+	₩	+	Н
	SB6, 63-65	SO	IN	63 - 65 ft	1323479.00	448670.25				Х	Χ																щ		—	ш	—	щ	—	ч
Cooling Towers 2017 (Sep CT16SO9G	CT16S09G-12	so	INI	1 - 2 ft	1324615.28	449146.69		1	3/1/2017	-		1 1		-	т т	-		1		_		1 1	- 1	1		хI	т	$\neg \neg$	$\overline{}$	$\overline{}$	$\overline{}$	T	$\overline{}$	Н
CT16SO9H	CT16S09G-12			1 - 2 ft	1324617.65	449144.99		16.26	8/4/2017	+	\vdash	+	-	+	++	+	\vdash	+	-	+		+	+	+	_	x -	₩	+	+	++	+	++	+	Н
CT16SO9H	CT16S09H01N			2 - 3 ft	1324617.65	449144.99		16.26	8/4/2017	-	\vdash	+	-	-	++	+	\vdash	+		+		+		+		<u>^ </u>	₩	+	+	++	+	++	+	Н
CT16SO9I	CT16SO9H02N			1 - 2 ft	1324618.45	449139.60		13.92	8/4/2017	-	\vdash	+	-	_	+			-	\vdash	+		+	-	+	-	X	++	+	+	++	+	++	+	\vdash
CT16SO9I	CT16SO9I02N			2 - 3 ft	1324618.45	449139.60		13.92	8/4/2017		\vdash	+		_	+				\vdash	+		+	-			X	++	+	_	++	+	++	+	\vdash
CT16SO9I	CT16SO9I03N			3 - 4 ft	1324618.45	449139.60	Forensics	13.92	8/4/2017	+	\vdash	+	+	+	++	+	\vdash	+		+		+	\dashv	+	\vdash	^	\vdash	X	+	++	+	++	+	Н
CT16SO9I	CT16SO9I04N			4 - 5 ft	1324618.45	449139.60	1 010113103	13.92	8/4/2017	+	\vdash	+	\dashv	+	++	+	\vdash	+	\vdash	+		X	\dashv	+		+	\vdash	+^+	+	++	+	++	+	Н
Phase II Waterside Mobilis								10.02	0/ 1/2017													1.							<u> </u>		—		—	щ
SED6C	SED6C00EN	SE		0 - 0.33 ft	1323525.05	449590.24	Near-Site		6/7/2017	X	П		П	Т	П	T	Х	Х	Х	X	Х	Х	Т	T	Х	χΙ	П	\Box	\top	\top	ХI	X	\top	Х
SED8C	SED8C00EN	SE		0 - 0.33 ft	1323810.54	450062.60		-1.56	6/7/2017	$\frac{\lambda}{X}$		+		\dashv	$\dagger \dagger$	+	X		X	X		X	\dashv	+	Х		\vdash	++	+	++	X	X	+	Х
SED7B	SED7B00EN	SE		0 - 0.33 ft	1323647.81	449847.44		-2.31	6/7/2017	X		+	\dashv	\dashv	$\dagger \dagger$	\dashv	X		X	X		X	\dashv	\top	Х		十	+++	\vdash	-	X	X	十	X
SED7F	SED7F00EN	SE	N	0 - 0.33 ft	1324119.87	449660.56		2.11	6/8/2017	X		+		\neg	+		X	_	X	X		X	\neg	1		XX	\vdash	+	\vdash	-	X	X	+	X
SED7.5E	SED7.5E00EN	SE	N	0 - 0.33 ft	1324043.58	449782.68	Near-Site	1.60	6/8/2017	X		+			+		Х	_	Х	X		X				XX		+	\vdash	+	X	X	\top	Х
SED6.5E	SED6.5E00EN	SE	N	0 - 0.33 ft	1323969.79	449649.36	Near-Site	1.69	6/8/2017	X		++	\dashv	\top	† †	\top	X		X	X		X	\dashv	1		XX		+	-		X	X	+	X
SED7E	SED7E00EN	SE	N	0 - 0.33 ft	1323942.71	449728.24	Near-Site		6/8/2017	X		\top		\neg	TT		X		Х	X		X	\neg	1		XX		+	\top		X	X	十	X
SED6B	SED6B00EN	SE	N	0 - 0.33 ft	1323424.78	449687.44		-7.64	6/8/2017	X		++	\dashv	\dashv	+ +	\dashv	X		X	X		X	\dashv	\top		XX		+-+		_	X	X	+	X
							3													اننا		لنب										للنب		انت

								wasr	ington, D	C 200)19																					
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340) Grain Size (D422)		Hydraulic Conductivity (lab) Total Residue (E160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1) PTOC (E440)	Field Parameters Gamma Radioassav	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010) Metals (SW6020A)	Chromium (VI) (SW7199)	Mercury (SW7471B)	Metals (field XRF) TPH-DRO (SW8015C)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C) TPH-GRO (SW8015D)	OCP (SW8081B LL)	PCBs (E1668C)	VOCs (SW8260B) VOCs (SW8260C)	NH VOCs (M8015D)		SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A) Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SED6A	SED6A00EN	SE	N	0 - 0.33 ft	1323401.29	449707.18	Near-Site	-6.12	6/8/2017	X	Ħ		Ħ				Х	ХХ	İ	XX				X	ΧX	$\overline{}$	亓	一		ÍΠ	X	X
SED7.5D	SED7.5D00EN	SE	N	0 - 0.33 ft	1323906.87	449865.94	Near-Site	2.55	6/9/2017	X			t		\vdash		X	XX		XX	X			X	X	一十	\vdash	+		+	$\frac{x}{x}$	X
SED7D	SED7D00EN	SE	N	0 - 0.33 ft	1323814.32	449789.58	Near-Site	2.26	6/9/2017	X			T				X	ХХ		XX	X			X	X	一一	\vdash	+		(††	X	X
SED6.5D	SED6.5D00EN	SE	N	0 - 0.33 ft	1323798.17	449651.75	Near-Site	2.64	6/9/2017	Х							Х	хх		ХХ	Х	_		X :	X	\Box	\sqcap	\top	17	(11)	X	X
SED8A	SED8A00EN	SE	N	0 - 0.33 ft	1323627.03	450167.52	Near-Site	-1.82	6/9/2017	Х							Х	ХХ		ХХ	X			X :	X	П			У	\Box	X	X
SED7A	SED7A00EN	SE	N	0 - 0.33 ft	1323526.84	449965.98	Near-Site	-3.94	6/9/2017	Х	-		T				Х	ХХ	_	ХХ	Х	\Box		X :			П		7	\Box	X	X
SED8B	SED8B00EN	SE	N	0 - 0.33 ft	1323699.75	450124.44	Near-Site	-6.64	6/9/2017	Х	_						Х	ХХ		ХХ	Х			X Z		П			У		X	X
SED6C	PW6C00EN	WPO	N		1323525.05	449590.24			7/26/2017	Х				ХХ		Х		X		Х		\Box			Х		П			Х		ПП
SED8C	PW8C00EN	WPO	N		1323810.54	450062.60		-1.56	7/26/2017	Х				ХХ		Х		Х		Х					Х	П	П		\Box	Х		Ш
SED7B	PW7B00EN	WPO	N		1323647.81	449847.44		-2.31	7/26/2017	Х				ХХ		Х		X		Х					Х					Х		
SED7F	PW7F00EN	WPO	N		1324119.87	449660.56		2.11	7/26/2017	Х				ХХ		Х		X		Х		П			Х	\Box	П			Х		П
SED7.5E	PW7.5E00EN	WPO	N		1324043.58	449782.68		1.60	7/26/2017	Х				ХХ		Х		X		Х					Х					Х		Ш
SED6.5E	PW6.5E00EN	WPO	N		1323969.79	449649.36		1.69	7/26/2017	Х				ХХ		Х		X		Х					Х					Х		
SED7E	PW7E00EN	WPO	N		1323942.71	449728.24			7/26/2017	Х				ХХ		Х		X		Х					Х					Х		
SED6B	PW6B00EN	WPO	N		1323424.78	449687.44		-7.64	7/26/2017	Х				ХХ		Х		X		Х					Х					Х		
SED6A	PW6A00EN	WPO	N		1323401.29	449707.18		-6.12	7/26/2017	Х				ХХ		Х		Х		Х					Х					Х		
SED7.5D	PW7.5D00EN	WPO	N		1323906.87	449865.94		2.55	7/26/2017	Х				ХХ		Х		X		Х					Х					Х		
SED7D	PW7D00EN	WPO	N		1323814.32	449789.58		2.26	7/26/2017	Х				ХХ		Х		X		Х					Х					Х		
SED6.5D	PW6.5D00EN	WPO	N		1323798.17	449651.75		2.64	7/26/2017	Х				ХХ		Х		Х		Х					Х					Х		
SED8A	PW8A00EN	WPO	N		1323627.03	450167.52		-1.82	7/26/2017	Х				ХХ		Х		Х		Х					Х					Х		
SED7A	PW7A00EN	WPO	N		1323526.84	449965.98		-3.94	7/26/2017	Х				ХХ		Х		Х		Х					Х					Х		
SED8B	PW8B00EN	WPO	N		1323699.75	450124.44		-6.64	7/26/2017	Х				ХХ		Х		X		Х					Х					Х		
Phase II Waterside Mobiliz	zation 2, Task 2: Backç	ground and	Fore	nsics Surface		ace Sediment	Sampling																									
SEDBACK16	SEDBACK1600N	SE	N	0 - 0.33 ft	1329539.61		Background		6/12/2017	X							Х	XX		X X	X			X 2	XX	X	Х	Х	XX		X	XX
SEDBACK16	PWBACK1600N	WPO	N		1329539.61	461605.35			6/12/2017					ХХ		Х		Х		Х					Х					Х		
SEDBACK17	SEDBACK1700N	SE	N	0 - 0.33 ft	1329694.41	459358.19	Background		6/12/2017	X							Χ	XX		ХХ	X			X	ΧX	X	Х	Х	XX		Х	XX
SEDBACK17	PWBACK1700N	WPO	N		1329694.41	459358.19			6/12/2017	Х				X X		Х		X		Х					Х					Х		
SEDBACK18	SEDBACK1800N		N	0 - 0.33 ft	1329623.25		Background		6/12/2017								X	XX		X X	X			X	X X		Х	Х	XX		X	XX
SEDBACK18	PWBACK1800N	WPO	N		1329623.25	456839.30			6/12/2017		Ш		Ш	X X		Х		X		Х					Х		Ш		$\perp \perp$	Х		Щ
SEDBACK19	SEDBACK1900N	SE	N	0 - 0.33 ft	1328365.16		Background		6/13/2017				Ш				Х	X X		X X	Х	Ш		X 2	XX		Х	X	XX		Х	XX
SEDBACK19	PWBACK1900N	WPO	N		1328365.16	455288.85			6/13/2017	Х				X X		Х		X		Х	oxdot				Х		$\perp \perp$		$\bot\bot$	Х		$\sqcup \sqcup$
SEDBACK19	SEDBACK1900R	SE		0 - 0.33 ft	1328365.16		Background		6/13/2017		Ш		ш		Ш		Х	X X	+-	X X	Х	Ш		X 2	ΧX		Х	X	XX	_	Х	XX
SEDBACK19	PWBACK1900R	WPO	FD		1328365.16	455288.85			6/13/2017		Ш			X X	Ш	Х		X		Х	oxdot				Х		igspace		$\bot\bot$	X		$\sqcup \sqcup$
SEDBACK20	SEDBACK2000N	SE	_	0 - 0.33 ft	1325556.64		Background		6/13/2017		\sqcup		$\sqcup \!\!\!\! \perp$		$\sqcup \!\!\! \perp$	\perp	Х	X X		X X	X	\sqcup	oxdot	X 2	XX		X	<u> </u>	X X	\perp	Х	XX
SEDBACK20	PWBACK2000N	WPO	N		1325556.64	454320.61			6/13/2017	Х	\sqcup	\bot	Ш	X X	oxdot	X		X		Х	oxdot	\sqcup		$oxed{oxed}$	Х		\coprod	\bot	$\bot \bot$	X	Щ.	$\sqcup \sqcup$
SEDBACK20	SEDBACK2000R	SE	_	0 - 0.33 ft	1325556.64		Background		6/13/2017		\sqcup		\sqcup		$\sqcup \!\!\! \perp$	\bot		X X	_	X X			ot		XX				X X		X	XX
SEDBACK21	SEDBACK2100N	SE	N	0 - 0.33 ft	1324615.04		Background		6/13/2017			\bot	$\sqcup \bot$	\perp	$\sqcup \!\!\! \perp$	\perp	Х	X	_	X					XX			_	X X	-	X	X
SEDBACK21	SEDBACK2101N	SE		1 - 3 ft	1324615.04		Background		6/14/2017	Х			\sqcup	\perp	$\sqcup \!\!\! \perp$	\perp	X	X	_	X			$oxed{oxed}$	X Z		X		Х				X
SEDBACK21	SEDBACK2103N			3 - 5 ft	1324615.04		Background		6/14/2017	X	\sqcup	\bot	\sqcup	\perp	$\sqcup \!\!\! \perp$	\perp	Х	X	$\downarrow \downarrow$	X	X	\sqcup	$oxed{oxed}$	X		Х	\sqcup	Х			Х	X
SED5C	SED5C00FN		_	0 - 1 ft	1323337.14	449338.07		-1.87	6/14/2017		\sqcup	\bot	\sqcup		$\sqcup \!\!\! \perp$			$\vdash \vdash$	$oldsymbol{\sqcup}$		oxdot	\sqcup		$\perp \perp$	XX	igspace	X		X X	+	\bot	\coprod
SED5C	SED5C02FN	SE		2 - 3 ft	1323337.14	449338.07		-1.87	6/14/2017		\sqcup	\bot	$oldsymbol{\sqcup}$	\perp	$\sqcup \!\!\! \perp$	\perp		oxdot	+		oxdot	igspace		$\perp \perp$	X	igspace	X	Х	+	$+\!\!\!+\!\!\!\!+$	\dashv	igspace
SED5C	SED5C04FN	SE	N	4 - 5 ft	1323337.14	449338.07	Forensics	-1.87	6/14/2017																X		X	Х	Ш.	Ш		

Column C									wasr	nington, D	C 2	0019																								
SECONO SECONOPIN SE N 6-71 1233374 44538.07 Francisco 1-17 6142017	Location ID	Sample ID	Matrix ¹	mple Typ	=	Easting	Northing			Sample	ardness (SM2	rain	tivity	(E160.3) ease (E1	0.1)	PTOC (E440)	Field Parameters Gamma Radioassay	DOC (SM5310C)	TOC (LKTOC) Polonium-210 (PO-01-RC)	Metals (SW6010)	Metals (5 W60Z0A) Chromium (VI) (SW7199)	Mercury (SW7470A)	Metals (field XRF)	TPH-DRO (SW8015C)	TPH-GRO (SW8015C)	TPH-GRO (SW8015D)	OCP (SW8081B LL) Aroclor PCBs (SW8082A)	PCBs (E1668C)	VOCs (SW8260E)	NH VOCs (M8015D) CSIA (VOCs) (PAF-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9014) Free Cyanide (SW9014)	Sulfide (SW9034)
SEDIC SEDICOFN SE N 0 - 1 ft 132314200 4088808 Forensias -3.66 6142017	SED5C	SED5C06FN	SE	N	6 - 7 ft	1323337.14	449338.07	Forensics	-1.87	6/14/2017																	Х	īT		Х	X	Х	\top	П	Т	П
SEDIC SEDICOPEN SE N 2 - 3 1 13214 0.00 44688.00 Formatics -366 614/2017	SED5C	SED5C08FN	SE	N	8 - 9 ft	1323337.14	449338.07	Forensics	-1.87	6/14/2017								\Box									Х	iП		Х	Х		\top	П		П
SEPAC SEPACORN SE N 4-5 ft 1323440.00 446988.00 Formatics 3.06 01442017	SED4C	SED4C00FN	SE	N	0 - 1 ft	1323146.06	448888.08	Forensics	-3.66	6/14/2017																	Х			Х	Х		\square	\Box		
SEPUC SEPUCORN SE N 6 - 7 ft 1323140.00 448880 Forensics 3.06 6.142017 N X X X X X X X X X		SED4C02FN	SE	N	2 - 3 ft	1323146.06	448888.08	Forensics	-3.66	6/14/2017																	Х	\Box		Х	Х					
SEPIACO				N	4 - 5 ft			Forensics																			Х	Х		Χ	Х	ΧХ		Ш		
SEPH8				Ν				Forensics																			Х	Щ		Χ	X		$oldsymbol{ol}}}}}}}}}}}}}}}}}$	Ш		
SED-48 SED-4902FN SE N 2-3 ft 13220867,0 44990.02 ft Forensics 5-79 6475/2017				N	8 - 9 ft			Forensics					Ш					Ш								Ш	Х	$oldsymbol{oldsymbol{\sqcup}}$		Х	Х	XX		\sqcup		Ш
SED48 SED460FN SE N 6-7 ft 33200870 44990.28 Forensics 5-79 6152017								Forensics			Ш							Ш		Ш						Ш	Х	$oldsymbol{oldsymbol{\perp}}$		Х	X	Ш		\sqcup		Ш
SED48				N							Ш																Х	$oldsymbol{\sqcup}$		Х	X			Щ		Ш
SED1.6B SED1.6B00FN SE N 7-8 ft 1323088 70 44890.28 Fotomasics -5.79 617-5017				N							Ш		Ш					Ш									Х	igspace		Х	X	XX		igspace		ш
SED1.5B SED1.5BOSEN SE N 2-11 1323208.90 477688.22 Forensics -3.14 6752077				N							Ш				\perp			\sqcup		\sqcup						\sqcup	Х	\vdash		Х	X			\vdash		\perp
SED1.5B SED1.5BO4FN SE N 2.3 ft 1323208.90 447688.22 Formacis 3.14 6752017 SED1.5B SED1.5B04FN SE N 4.5 ft 1323208.90 447688.22 Formacis 3.14 6752017 SED1.5B SED1.5B04FN SE N 6.7 ft 1323208.90 447688.22 Formacis 3.14 6752017 SED1.5B SED1.5B04FN SE N 6.7 ft 1323208.90 447688.22 Formacis 3.14 6752017 SED1.5B04FN SE N 1.5 ft 132308.90 447688.22 Formacis 3.14 6752017 SED1.5B04FN SE N 1.5 ft 132308.90 ft 147489.74 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 1323199.71 447498.74 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 1323199.71 447498.74 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 1323199.71 447498.74 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 1323199.71 447498.74 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 1323199.71 447498.74 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 1323199.71 447498.74 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 1323199.71 447498.74 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 1323199.71 447498.74 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 1323199.71 447498.74 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 1323199.71 447498.74 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 132269.73 445798.70 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 132269.73 445798.70 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 132269.73 445798.70 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 132269.73 445798.70 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 132269.73 445798.70 Formacis 6752017 SED1.5B04FN SE N 1.5 ft 132269.73 445798.70 Formacis 6752017 SED1.5B04FN SED1.5B04FN SE N 1.5 ft 132269.73 445798.70 Formacis 6752017 SED1.5B04FN SED1.5B04FN SE N 1.5 ft 1322717.03 445793.70 Formacis 6752017 SED1.5B04FN SED1.5B04FN SE N 1.5 ft 132269.73 445798.70 Formacis 6752017 SED1.5B04FN SE				N							Ш		\sqcup		\perp	_	_	\sqcup		\sqcup		\sqcup			_	\sqcup		\vdash	\perp		4	L X	4	\vdash	_	Ш
SED1.5B SED1.5B04FN SE N 4 - 5 ft 1323208.90 44798.72 Forensics -3.14 615/2017				N	-						Ш		Ш		\perp	_	_	\sqcup		\sqcup			\perp			\sqcup	Х	X	\perp	Х	X	XX	4	\vdash		Ш
SEDISBOR SEDI-SBO6FN SE N 6-7ft 13232089, 447688.21 Forensics -3.14 6/15/2017				_									\sqcup		\perp			\sqcup		\sqcup						\sqcup	Х	\vdash		X	X	$\perp \perp$	$\bot\!\!\!\!\bot\!\!\!\!\!\bot$	\vdash		ш
SEDREFO2 SEDREFO200N SE N 0-1ft 1323199.71 447498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO202R SE FD 2-3 ft 1323199.71 447498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO202R SE FD 2-3 ft 1323199.71 447498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO202R SE FD 2-3 ft 1323199.71 447498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO206N SE N 0-1ft 1323199.71 447498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO206N SE N 0-1ft 13223199.71 447498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO206N SE N 0-1ft 13223199.71 A47498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO206N SE N 0-1ft 1322388.73 SEDREFO2 SEDREFO208N SE N 0-1ft 1322388.73 SEDREFO2 SEDREFO208N SE N 0-1ft 1322388.73 SEDREFO2 SEDREFO208N SE N 0-1ft 1322388.73 SEDREFO2 SEDREFO208N SE N 0-1ft 1322388.73 SEDREFO2 SEDREFO208N SE N 0-1ft 1322388.73 SEDREFO2 SEDREFO3 SEDREFO2 SEDREFO3 SEDREFO2 SEDREFO3 SEDREFO2 SEDREFO3				N							\sqcup				\perp	_	_	\vdash	_	₩					_	\vdash	X	\vdash		X	X	Н.	44	\vdash	—	\blacksquare
SEDREFO2 SEDREFO202N SE N 2-3 ft 1323199.71 447498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO204N SE N 2-3 ft 1323199.71 447498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO204N SE N 4-5 ft 1323199.71 447498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO204N SE N 4-5 ft 1323199.71 447498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO205N SEDREFO205N SE N 6-7 ft 1323199.71 447498.74 Forensics 6/15/2017 SEDREFO2 SEDREFO205N SE N 2-3 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO2 SEDREFO205N SE N 2-3 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO3 SEDREFO305N SE N 2-3 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO3 SEDREFO305N SE N 4-5 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO3 SEDREFO305N SE N 6-7 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO3 SEDREFO305N SE N 6-7 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO3 SEDREFO305N SE N 6-7 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO3 SEDREFO305N SE N 6-7 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO3 SEDREFO305N SE N 8-9 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO3 SEDREFO305N SE N 8-9 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO3 SEDREFO305N SE N 8-9 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO3 SEDREFO305N SE N 8-9 ft 1322283.73 445798.70 Forensics 6/15/2017 SEDREFO3 SEDREFO305N SE N 8-9 ft 1322217.03 445793.70 Forensics 6/15/2017 SEDREFO4 SEDREFO402N SE N 8-9 ft 132217.03 445793.70 Forensics 6/15/2017 SEDREFO4 SEDREFO404N SE N 8-9 ft 132217.03 445793.70 Forensics 6/16/2017 SEDREFO4 SEDREFO404N SE N 8-9 ft 132217.03 445793.70 Forensics 6/16/2017 SEDREFO4 SEDREFO404N SE N 8-9 ft 132217.03 445793.70 Forensics 6/16/2017 SEDREFO4 SEDREFO404N SE N 8-9 ft 132217.03 445793.70 Forensics 6/16/2017 SEDREFO4 SEDREFO406N SE N 8-9 ft 132217.03 545793.70 Forensics 6/16/2017 SEDREFO4 SEDREFO406N SE N 8-9 ft 1322217.03 545793.70 Forensics 6/16/2017 SEDREFO4 SEDREFO406N SE N 8-9 ft 1322217.03 545793.70 Forensics 6/16/2017 SEDREFO4 SEDREFO406N SE N 8-9 ft 1322217.03 545793.70 Forensics 6/16/2017 SEDREFO4 SEDREFO406N SE N 8-9 ft 1322246.2				N					-3.14		Ш		\vdash		+	_	_	+		\vdash	_		+		_	\vdash	X	\vdash		X	X		4	\vdash	—	+
SEDREF02 SEDREF0202R SE FD 2 :3 ft 1323199.71				N							\vdash	_	\vdash	_	+	_	4	₩	4	₩	-	- -	4	_	-	₩	X	\vdash	\perp	X	1 X			\vdash	$+\!\!\!-$	+
SEDREF02 SEDREF0204N SE N 4 - 5 ft 1323199.71 447498.74 Forensics 6/15/2017 SEDREF03 SEDREF0306N SE N 6 - 7 ft 1322198.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0302N SE N 2 - 3 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0302N SE N 2 - 3 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0302N SE N 4 - 5 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0306N SE N 4 - 5 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0306N SE N 6 - 7 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0306N SE N 6 - 7 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0308N SE N 8 - 9 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0308N SE N 8 - 9 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0308N SE N 8 - 9 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0308N SE N 8 - 9 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF04 SEDREF040NN SE N 8 - 9 ft 1322717.03 445798.70 Forensics 6/15/2017 SEDREF04 SEDREF040NN SE N 2 - 3 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040NN SE N 2 - 3 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040NN SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040NN SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040NN SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040NN SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040NN SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040NN SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF050NN SE N 6 - 7 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF050NN SE N											\vdash		\vdash	_	+	_		\vdash		\vdash	_	\vdash			_	\vdash	X	 	\perp	X	X	$ X ^{X}$	4	\vdash	+	++
SEDREF02 SEDREF0206N SE N 6 - 7 ft 1323199.71 447498.74 Forensics 6/15/2017				FD							\sqcup		\vdash		+			+		\vdash			+			++	X	<u> </u>	\perp	X	X	\vdash	$+\!\!-\!\!\!\!\!-$	\vdash	+	+
SEDREF03 SEDREF0300N SE N 0 - 1 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0302N SE N 2 - 3 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0300N SE N 4 - 5 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0300N SE N 6 - 7 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0300N SE N 6 - 7 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0300N SE N 6 - 7 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0300N SE N 8 - 9 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0300N SE N 8 - 9 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF04 SEDREF0400N SE N 0 - 1 ft 1322717.03 445798.70 Forensics 6/15/2017 SEDREF04 SEDREF040N SE N 2 - 3 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 2 - 3 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 2 - 3 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 2 - 3 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 3 - 9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 3 - 9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 3 - 9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF05 SEDREF050N SE N 3 - 9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF060N SE N 3 - 9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF060N SE N 3 - 9 ft 132246.27 445796.27 Forensics 6/16/2017 SEDREF060N SE N 3 - 9 ft 132246.27 445796.27 Forensics 6/16/2017 SEDREF060N SE N 4 - 5 ft 132246.27 445796.27 Forensics 6/16/2017 SEDREF060N SE N 4 - 5 ft 132246.27 445796.27 Forensics 6/16/2017 SEDREF060N SE N 5 - 9 ft 132246.27 445				N							\vdash		├	_	+	_	-	+	_	\vdash	_	├	+		+	₩	X		+	X		 		\vdash	+	+
SEDREF03 SEDREF0302N SE N 2-3 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0306N SE N 4-5 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0306N SE N 6-7 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0306N SE FD 6-7 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0308N SE N 8-9 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0308N SE N 8-9 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF04 SEDREF0400N SE N 0-1 ft 1322717.03 445798.70 Forensics 6/16/2017 SEDREF04 SEDREF0402N SE N 2-3 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0404N SE N 4-5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0404N SE N 4-5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0406N SE N 4-5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0406N SE N 6-7 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0406N SE N 6-7 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0406N SE N 8-9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0406N SE N 6-7 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF05 SEDREF0500N SE N 6-7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0500N SE N 2-3 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 2-5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 2-5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 2-5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 2-5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 2-5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE											\vdash		-	-	+	-		+		+	-		+		+	+	X	/ 	+	X			+	\vdash	+	+
SEDREF03 SEDREF0306N SE N 4 - 5 ft 1322638.73 445798.70 Forensics 6/15/2017											\vdash	_	\vdash	-	+	-		₩		₩	-	┝	+	-	+	₩	X		+	$\frac{\lambda}{\lambda}$			+	\vdash	+	+
SEDREF03 SEDREF0306N SE N 6-7 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF0308N SEDREF0308N SE FD 6-7 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF0308N SE N 8-9 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF0308N SE N 8-9 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF04 SEDREF0400N SE N 0-1 ft 1322171.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 2-3 ft 1322171.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 4-5 ft 1322171.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 4-5 ft 1322171.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 4-5 ft 1322171.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 6-7 ft 1322171.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 8-9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF040N SE N 8-9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF050N SE N 8-9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322246.27 445796.27 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF050N SE N 8-9 ft 1322846.27				-							\vdash	_	\vdash	+	+	-	+	+	-	++	+	\vdash	+	_	+	++	X	/ 	+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	 	 ^ ^	+	\vdash	+	+
SEDREF03 SEDREF0306R SE FD 6 - 7 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF03 SEDREF0308N SE N 8 - 9 ft 1322638.73 445798.70 Forensics 6/15/2017 SEDREF0400N SE N 0 - 1 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0402N SE N 2 - 3 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0404N SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0404N SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0404N SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0404N SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0406N SE N 6 - 7 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF04 SEDREF0408N SE N 6 - 7 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF05 SEDREF0500N SE N 0 - 1 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0504N SE N 2 - 3 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics											\vdash		\vdash	_	+	_	+	+		++	_	\vdash	+	_	+	++		\dashv	+	- 	+÷	\vdash	+	\vdash	+	++
SEDREF03 SEDREF0308N SE											\vdash		\vdash	-	+			+			-	\vdash	+		+	++		+	+	- 	 	╁┼	+	\vdash	+	+
SEDREF04 SEDREF0400N SE N 0 - 1 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0402N SE N 2 - 3 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0404N SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0404N SE FD 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0404N SE FD 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0406N SE N 6 - 7 ft 132246.27 445796.27 Forensics 6/16/2017 SEDREF050 SEDREF0504N SE N 2 - 3 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF050 SEDREF0506N SE N 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF060N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF06 SEDREF060N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF06 SEDREF060N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF06 SEDREF060N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF06 SEDREF060N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF06 SEDREF060N SE N				_							\vdash	+	\vdash	+	+	-	+	+	+	\vdash	-	\vdash	+	+	+	₩		\dashv	+	- 	^	₩	+	\vdash	+	+
SEDREF04 SEDREF0402N SE N 2 - 3 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0404N SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0404N SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0404N SE FD 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0404N SE N 6 - 7 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0406N SE N 8 - 9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0408N SE N 8 - 9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0408N SE N 8 - 9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0504N SE N 8 - 9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF0504N SE N 0 - 1 ft 1322846.27 445796.27 Forensics			_								\vdash	_	\vdash	+	+	+	+	+	-	++	+	\vdash	+	-	+	+		\dashv	+	$\stackrel{\wedge}{\vee}$		$\frac{1}{\sqrt{1}}$	┦┦	\vdash	+	+
SEDREF04 SEDREF044NN SE N 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 N N X											\vdash		\vdash	+	+				-		+	\vdash		-	+	+		$\overline{\mathbf{x}}$	+	X	_	 ^ ^	+	\vdash	+	+
SEDREF04 SEDREF0404R SE FD 4 - 5 ft 1322717.03 445793.70 Forensics 6/16/2017 N N X			_								\vdash	+	\vdash	+	+	+	+	+	+	++	+		+	-	+	+	_	\cap	+	$\frac{\wedge}{x}$		\vdash	+	\vdash	+	+
SEDREF04 SEDREF0466N SE N 6 - 7 ft 1322717.03 445793.70 Forensics 6/16/2017 N SEDREF04 SEDREF0408N SE N 8 - 9 ft 1322717.03 445793.70 Forensics 6/16/2017 N				_							\vdash		\vdash	+	+	+	+	+	+	++	+		+	-	+	+		\vdash	+	$\frac{\lambda}{x}$			┦	\vdash	+	+
SEDREF04 SEDREF0408N SE N 8 - 9 ft 1322717.03 445793.70 Forensics 6/16/2017 SEDREF05 SEDREF0500N SE N 0 - 1 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0502N SE N 2 - 3 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0504N SE N 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0504R SE FD 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0504R SE FD 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0508N SE N 8 - 9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF06 SEDREF0600N			_	_							\vdash	+	\vdash	+	+	+	+	+	+	+	+			_	+	+	X	\vdash	+	X	$\frac{1}{x}$	$\frac{1}{1}$	+	\vdash	+	+
SEDREF05 SEDREF050NN SE N 0 - 1 ft 1322846.27 445796.27 Forensics 6/16/2017 N N N N N N N N D-1 ft 1322846.27 Forensics 6/16/2017 N <											\vdash			_	+	+	+	+	+	+				_	+	+	X	\dashv	+	X	$\frac{1}{x}$	\times	オ┤┤	\vdash	+	+
SEDREF05 SEDREF0502N SE N 2 - 3 ft 1322846.27 445796.27 Forensics 6/16/2017 Image: Control of the co											\vdash			_	+		+	+			+				+	+	_	一十	+	X				\vdash	+	+
SEDREF05 SEDREF0504N SE N 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0504R SE FD 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF0508N SE N 8 - 9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF0508N SE N 8 - 9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF0508N SE N 8 - 9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF0508N SE N 8 - 9 ft 1322846.27 445796.27 Forensics 6/16/2017 SEDREF0600N SE N 0 - 1 ft 1322461.05 444613.49 Forensics 6/16/2017 SEDREF0602N SE N 2 - 3 ft 1322461.05 444613.49 Forensics 6/16/2017 SEDREF0602N SE N 2 - 3 ft 1322461.05				_							\vdash	\dashv	\vdash	\top	+	-		+	\dashv	+	+	\vdash	\top	\dashv	+	+	X	\dashv	+	X	$\frac{1}{x}$	H	+	一十	十	\forall
SEDREF05 SEDREF0504R SE FD 4 - 5 ft 1322846.27 445796.27 Forensics 6/16/2017 N N N N SEDREF0506N SE N N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 N N N N N N N SEDREF0508N SE N N SEDREF06.27 Forensics 6/16/2017 N											$\vdash \vdash$	\dashv	\vdash	\top	╁	\dashv	+	╁┤	\dashv	\vdash	+		\top	\dashv	\top	\vdash	X	\dashv	\dashv	X	X	一十	+-	\sqcap	十	\forall
SEDREF05 SEDREF0506N SE N 6 - 7 ft 1322846.27 445796.27 Forensics 6/16/2017 N SEDREF0508N SE N 8 - 9 ft 1322846.27 445796.27 Forensics 6/16/2017 N											\vdash	\dashv	\vdash	\top	╅	\dashv	\top	╅┪	\dashv	† †	\top		\top	\dashv	1	+	X	\dashv	\top	X	TX	X >	オ┸	\sqcap	\top	\forall
SEDREF05 SEDREF0508N SE N 8 - 9 ft 1322846.27 445796.27 Forensics 6/16/2017 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				-							\vdash	\neg	一	\top	\top			+		\Box					1	+	Х	\dashv	\top	Х	X	一广	+	一十	十	П
SEDREF06 SEDREF0600N SE N 0 - 1 ft 1322461.05 444613.49 Forensics 6/16/2017 I I X											\vdash		\vdash		+			$\dagger \dagger$		T			\top		1	\vdash	Х	\dashv	\dashv	Х	X	\vdash	+	\sqcap	十	\sqcap
SEDREF06 SEDREF0602N SE N 2-3 ft 1322461.05 444613.49 Forensics 6/16/2017											\vdash	\neg	\vdash	\top	\top			+		T					1	+	Х	\dashv	\dashv	Х		X >	オ┸	一十	十	П
											\Box	$\neg \vdash$			\sqcap	\dashv	\top	\sqcap	\dashv	T	\top		\top	\dashv	1	\sqcap	Х	X	\top	Х				一十	\top	П
											\Box	\neg		一	\top	\dashv	\top	\top	\dashv	\sqcap	\top		\top	一	\top	\sqcap	Х	\dashv	$\neg \neg$	Х	X	\Box		\sqcap	\top	П

								wasi	nington, D	C 2	0019																						
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	l otal Kesidue (E160.3) HEM - Oil & Grease (E1664B)	Amonia (E350.1)	PTOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C) TOC (LKTOC)	Polonium-210 (PO-01-RC)	Metals (SW6010) Metals (SW6020A)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	OCP (SW8081B LL)	Aroclor PCBs (SW8082A) PCBs (E1668C)	VOCs (SW8260B)	NH VOCs (M8015D)	CSIA (VOCs) (PAE-CSIA-004) SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A) Total Cvanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SEDREF06	SEDREF0606N	SE	N	6 - 7 ft	1322461.05	444613.49	Forensics		6/16/2017					Ī		T		T				T			Ī	X		X	Х	(X)	रांच	丁	\Box
SEDREF06	SEDREF0608N	SE	N	8 - 9 ft	1322461.05	444613.49	Forensics		6/16/2017									1 1								\overline{X}		Х	Х		11	\neg	+
SEDREF07	SEDREF0700N	SE	N	0 - 1 ft	1322239.64	444275.61	Forensics		6/16/2017	П						\Box		11		\top		T			11	\overline{X}		X	X	(X)	$\langle \Box \Box$	\neg	+
SEDREF07	SEDREF0702N	SE	N	2 - 3 ft	1322239.64	444275.61	Forensics		6/16/2017									1 1		\top					1 1	X X		Х	X	(X)	⇃		+
SEDREF07	SEDREF0704N	SE	N	4 - 5 ft	1322239.64	444275.61	Forensics		6/16/2017																	X		Х	Х				\Box
SEDREF07	SEDREF0706N	SE	N	6 - 7 ft	1322239.64	444275.61	Forensics		6/16/2017									1 1		1 1					1 1	X		Х	Х		\Box		\Box
SEDREF07	SEDREF0708N	SE	N	8 - 9 ft	1322239.64	444275.61	Forensics		6/16/2017																	X		Х	Х	(X)	⇃		$\Box\Box$
SEDREF08	SEDREF0800N	SE	N	0 - 1 ft	1322362.06	444295.41	Forensics		6/19/2017																	X		Х	Х	(X)			
SEDREF08	SEDREF0802N	SE	N	2 - 3 ft	1322362.06	444295.41	Forensics		6/19/2017																	XX		Х	Х	(X)	◁▢		\Box
SEDREF08	SEDREF0804N	SE	N	4 - 5 ft	1322362.06	444295.41	Forensics		6/19/2017																	X		Х	Х				
SEDREF08	SEDREF0806N	SE	N	6 - 7 ft	1322362.06	444295.41	Forensics		6/19/2017																	X		Х	Х				
SEDREF08	SEDREF0808N	SE	N	8 - 9 ft	1322362.06	444295.41	Forensics		6/19/2017																	X		Х	Х	(X)			
SEDREF01	SEDREF0100N	SE	N	0 - 1 ft	1323134.14	447475.05	Forensics		6/19/2017																	X		Х	Х	(X)	〈		
SEDREF01	SEDREF0102N	SE	N	2 - 3 ft	1323134.14	447475.05	Forensics		6/19/2017																	X		Х	Х				
SEDREF01	SEDREF0104N	SE	N	4 - 5 ft	1323134.14	447475.05	Forensics		6/19/2017	Ш								Ш				Ш				Х		Х	Х	(X)	<u> </u>		Щ
SED5B	SED5B00FN	SE	N	0 - 1 ft	1323266.69	449349.09	Forensics		6/19/2017	Ш						Ш		Ш		\perp		Ш				Х		Х	Х		Ш		Щ
SED5B	SED5B02FN	SE		2 - 3 ft	1323266.69	449349.09	Forensics		6/19/2017							Ш										X		Х	Х		<u> </u>		$\perp \perp \downarrow \downarrow$
SED5B	SED5B04FN	SE	N	4 - 5 ft	1323266.69	449349.09	Forensics		6/19/2017																	Х		Х	Х		\bot		$\perp \perp \downarrow \downarrow$
SED5B	SED5B06FN	SE	N	6 - 7 ft	1323266.69	449349.09	Forensics		6/19/2017	Ш								\bot		\perp		\sqcup			\perp	X		X	Х		\bot		$\perp \downarrow \downarrow \downarrow$
SEDBACK20	SEDBACK2001N	SE	N	1 - 3 ft	1325556.64		Background		6/20/2017	Ш	Х	Ш				\sqcup	Х	-	Х	_	Х	-	Х	Ш	X)		X	+	$\perp \!\!\! \perp$	Х	X
SEDBACK20	SEDBACK2001R	SE		1 - 3 ft	1325556.64		Background		6/20/2017	Ш		Ш				\sqcup	Х	_	X	_	X	_	X	Ш	X)		X		\bot	X	X
SEDBACK20	SEDBACK2003N	SE	N	3 - 5 ft	1325556.64		Background		6/20/2017	_	Х	\sqcup				\sqcup	Х		X	_	X		Х	\sqcup	X)		X		\bot	X	X
SEDBACK19	SEDBACK1901N	SE	N	1 - 3 ft	1328365.16		Background		6/20/2017		Х		_			\sqcup	X		X		X		X		X)		X		\dashv	X	<u> </u>
SEDBACK18	SEDBACK1801N	SE	N	1 - 3 ft	1329623.25		Background		6/21/2017	-	Х					\sqcup	X	_	X		X		X		X	X)		X		\dashv	X	<u> X _ </u>
SEDBACK17	SEDBACK1701N	SE		1 - 3 ft	1329694.41		Background		6/21/2017		Х	\vdash	4	+	_	+	X		X		X		X	\vdash	X	X	<u> </u>		X		$+\!\!-\!\!\!+$	X	X
SEDBACK17	SEDBACK1701R	SE		1 - 3 ft	1329694.41		Background		6/21/2017		V .	\vdash	_	+	_	\vdash	X		X	`	X		Х	\vdash	X)		X		$+\!\!-\!\!\!+$		^
SEDBACK16	SEDBACK1601N	SE		1 - 3 ft	1329539.61		Background	0.04	6/22/2017	Н	Х	\vdash	_	+		+	X	<u> </u>	X	+	X	\vdash	X	\vdash	Х)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X			+	X
SED6.5D	SED6.5D00FN	SE		0 - 1 ft	1323798.17	449651.75		2.64	6/27/2017	\vdash		\vdash	-	+	_	+	_	+	_	+	_	\vdash	-	\vdash	+	XX	++	X	_	(X)	\Box	+	+++
SED6.5D SED6.5D	SED6.5D02FN	SE	_	2 - 3 ft	1323798.17	449651.75	Forensics	2.64	6/27/2017	$\vdash\vdash$	_	\vdash	+	+	_	+	_	+	_	+	-	\vdash	+	\vdash	+	ᡧ	+	X	X		+	+	+++
SED6.5D	SED6.5D04FN SED6.5D08FN	SE SE		4 - 5 ft	1323798.17 1323798.17	449651.75 449651.75	Forensics	2.64 2.64	6/27/2017 6/27/2017	Н		\vdash		+	_	+		+	_	+		\vdash	+	\vdash	_	X	++	- ^-	X		+	+	+++
SED7D	SED7D00FN	SE	_	8 - 9 ft 0 - 1 ft	1323796.17		Forensics Forensics	2.04	6/27/2017	\vdash		H	-	+	_	╁	-	+	-	+ +	-	\vdash	-	\vdash		X X	++	 		X >	+	+	+++
SED7D	SED7D00FN SED7D02FN	SE		2 - 3 ft	1323814.32			2.26	6/27/2017	\vdash					-	+		+	-	+	-	+	-		_	$\frac{^{\wedge}}{^{\times}}$	+	+ 💝 🖯	$+\hat{x}$		+	+	+++
SED7D	SED7D02FN SED7D04FN	SE		4 - 5 ft	1323814.32			2.26	6/27/2017	$\vdash\vdash$	-	\vdash		+	-	+	+	+	-	+	-	\vdash	+	\vdash		XX	++	+ 💝 🖯		X >	+	+	+++
SED7D	SED7D04FN SED7D06FN	SE		6 - 7 ft	1323814.32	449789.58		2.26	6/27/2017	$\vdash \vdash$	+	⊢┼	+	+	+	+	+	++	+	+	+	\vdash	+	$\vdash\vdash$	++	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	+	^	+	111	++	+	+++
SED7D	SED7D00FN SED7D08FN	SE		8 - 9 ft	1323814.32	449789.58		2.26	6/27/2017	H		$\vdash \vdash$	+	++	+	++	-	++	+	+		\vdash	\dashv	\vdash	++	$\frac{1}{X}$	++	^	$+\hat{\mathbf{x}}$		+	+	+++
SED6.5D	SED6.5D06FN	SE		6 - 7 ft	1323798.17			2.64	6/27/2017	$\vdash \vdash$	+	\vdash	+	+	+	++	+	++	\dashv	+	\dashv	\vdash	+	\vdash	++	$\frac{\hat{x}}{x}$	++	TX X	$+\hat{x}$	++	+	+	+++
Phase II Waterside Mobili					1020700.17	110001.70	1 010110100	2.01	0/21/2011				!										_			<u>~</u> _		1 // 1		<u>, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>			
SED5B	SED5B00AN	SE		0 - 0.33 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017	П				П		X		Х	Тх		X	П	Х			ХХ		ΙXΙ	Τx	(X)	λП	\neg	\top
SED5B	SED5B00RN	SE	N	0.33 - 0.67 ft	1323266.69			-8.51	6/20/2017	H	\dashv	$\vdash \vdash$	+	++	\dashv	X	\dashv	X	X	_	$\frac{\lambda}{X}$		X	\vdash		X	++	+	$\frac{1}{x}$		+	+	+++
SED5B	SED5B00CN	SE	N	0.67 - 1 ft	1323266.69			-8.51	6/20/2017	H	+	\vdash	+	+	\dashv	X	+	X	$\frac{1}{x}$	 	X		X	\vdash	+	$\frac{1}{x}$	+	+	$\frac{1}{x}$		+	+	+++
SED5B	SED5B01AN	SE	N	1 - 1.33 ft	1323266.69			-8.51	6/20/2017	\vdash	+	\vdash	+	+	+	X	+	 x 	$\frac{\hat{x}}{x}$	1	X		X	\vdash	+	$\frac{1}{X}$	++	+	X		+	+	+++
<u> </u>	1				12220.00	1120.0.00											_		`		`												

								vvasi	nington, D		.0019																								
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422) Atterberg Limits	Hydraulic Conductivity (lab)	HEM - Oil & Grease (E1664B)	Amonia (E350.1)	PTOC (E440) Field Parameters	Gamma Radioassay	DOC (SM5310C) TOC (LKTOC)	Polonium-210 (PO-01-RC)	Metals (SW6020A)	Chromium (VI) (SW7199)	Mercury (SW7470A) Mercury (SW7471B)	Metals (field XRF)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C)	OCP (SW8081B LL)	Aroclor PCBs (SW8082A)	PCBs (E1668C) VOCs (SW8260B)	VOCs (SW8260C)	CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270D LL)	SVOCs (SW8270DM SIM) PAHs (ID-0016)	PAHs (D7363-13)	PCDDs/PCDFs (SW8290A)	Total Cyanide (SW9012B) Free Cyanide (SW9014)	Sulfide (SW9034)
SED5B	SED5B01AR	SE	FD	1 - 1.33 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017							X		X								\Box	$\overline{}$				\Box	TT	iΠ	\top	П
SED5B	SED5B01BN	SE	N	1.33 - 1.67 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017							Х		Х	Х		Х)	X			X	Х	1	X	Х	ХХ		ı		\Box
SED5B	SED5B01BR	SE	FD	1.33 - 1.67 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017							Х		Х								\Box	\top					\Box	\top		П
SED5B	SED5B01CN	SE	N	1.67 - 2 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017							Х		Х	Х		Х	7	X			X	\neg			Х		Π	П		\Box
SED5B	SED5B01CR	SE	FD	1.67 - 2 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017							Х		Х															\Box		
SED5B	SED5B02AN	SE	N	2 - 2.33 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017							Х		Х	Х		Х)	X			Х				Х			П		
SED5B	SED5B02BN	SE	N	2.33 - 2.67 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017							Х		Х	X		Х)	X			Х				Х		$oxedsymbol{oxed}$	工		
SED5B	SED5B02CN	SE	N	2.67 - 3 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017							Х		Х	Х		Х)	X			X				Х			Ш		
SED5B	SED5B03AN	SE	N	3 - 3.33 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017							Х		Х	Х		Х)	X			X				Х			Ш		
SED5B	SED5B03BN	SE	N	3.33 - 3.67 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017	Ш						Х		Х	Х		X)	X			X	'	Ш		Х			$oldsymbol{\sqcup}$		
SED5B	SED5B03CN	SE	N	3.67 - 4 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017	Ш						X		X	Х		X)	X			X	<u>X</u>		X	X	X X		$oldsymbol{oldsymbol{\sqcup}}$	丄	Ш
SED5B	SED5B04AN	SE	N	4 - 4.33 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017	Ш				Ш		Х		X	Х		X)	X			X	'	Ш		X		Ш	$oldsymbol{\sqcup}$	丄	Ш
SED5B	SED5B04BN	SE	N	4.33 - 4.67 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017	Ш						X		Х	Х		X)	X			X	'	Ш		Х	丄	Ш	$oldsymbol{\sqcup}$	丄	Ш
SED5B	SED5B04CN	SE	N	4.67 - 5 ft	1323266.69	449349.09		-8.51	6/20/2017							X		X	Х		X)	X			X	'			X		$oldsymbol{\perp}$	igspace		Ш
SED5B	SED5B05AN	SE	N	5 - 5.33 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017	Ш		Ш				X		X	Х		X		X _	$\sqcup \bot$		X	'	\sqcup		X	_	$\perp \!\!\! \perp$	\vdash		ш
SED5B	SED5B05BN	SE	N	5.33 - 5.67 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017	Ш		Ш				X		X	X		X		<u> </u>	\sqcup		X	 _'	\sqcup		X	4	\bot	ightharpoonup	4	ш
SED5B	SED5B05CN	SE	N	5.67 - 6 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017							X		X	X	\sqcup	X	_	X _	\sqcup		X	<i>——'</i>	\vdash		X	\dashv	\bot	\vdash	\bot	ш
SED5B	SED5B06AN	SE	N	6 - 6.33 ft	1323266.69	449349.09	HRC	-8.51	6/20/2017	Ш		\vdash		\vdash		X		X	X	\vdash	X	1	X _		_	X		\vdash		X	. 	$oldsymbol{\perp}$	\vdash	—	ш
SED1.5C	SED1.5C00AN	SE	N	0 - 0.33 ft	1323331.98	447788.51			6/21/2017	Ш	_	\vdash	4	\vdash	_	X	_	X	X	\vdash	X		<u> </u>	\vdash	4	 	<u> </u>	₽	<u> </u>	X	X X	44	\vdash	—	Ш
SED1.5C	SED1.5C00AR	SE	FD	0 - 0.33 ft	1323331.98	447788.51	HRC		6/21/2017	$\vdash \vdash$		\vdash	+	\vdash		X		X		\vdash	- , , 	Н,	_	\vdash	+	$\frac{1}{1}$	——'	\vdash	_	,	+	+	\vdash	+	+
SED1.5C	SED1.5C00BN	SE	N	0.33 - 0.67 ft	1323331.98	447788.51	HRC		6/21/2017	┝		\vdash	-			X		X	X	\vdash	X	_	X	\vdash	-	X	+	₩		X	+	,—	\vdash	+	+
SED1.5C	SED1.5C00CN	SE	N	0.67 - 1 ft	1323331.98	447788.51	HRC		6/21/2017	Н	_	\vdash	+	\vdash		X		 	X	₩	X		X	\vdash	+-	X	Х	₩	-	X	 -	+	\dashv	+	+
SED1.5C	SED1.5C01AN	SE	IN N	1 - 1.33 ft	1323331.98	447788.51	HRC		6/21/2017	$\vdash\vdash$	_	\vdash	+	\vdash	+	X		 	X	\vdash	X	_	X X	\vdash	+	 	+	 	, -	 	$\frac{1}{\sqrt{1-x}}$,—	\dashv	+	+
SED1.5C SED1.5C	SED1.5C01BN	SE	IN NI	1.33 - 1.67 ft	1323331.98 1323331.98	447788.51	HRC HRC		6/21/2017	$\vdash\vdash$	_	\vdash	+	\vdash		X		14	- ^	\vdash	X		$\frac{1}{x}$	++	+	 	Х	++'	`	X	X X	+	\dashv	+	++
SED1.5C	SED1.5C01CN SED1.5C02AN	SE SE	N	1.67 - 2 ft 2 - 2.33 ft	1323331.98	447788.51 447788.51			6/21/2017 6/21/2017			\vdash	-			X		1	1 ×	╁	X		X -	╁	-	 ^ 	$+\!\!-\!\!\!-\!\!\!\!-$	┼┼	-	$\frac{ \cdot }{ \cdot }$	+	+	\vdash	+	+
SED1.5C	SED1.5C02AR			2 - 2.33 ft	1323331.98	447788.51	HRC		6/21/2017	\vdash		\vdash		\vdash		+^+		+^+	 \hat{x}		X			\vdash	+	 ^	+'	╁	-	X	+	+	\vdash	+	+
SED1.5C	SED1.5C02AN	SE		2.33 - 2.67 ft	1323331.98	447788.51	HRC		6/21/2017	\vdash	_	\vdash				X		T _V	X	-	X			+	+	X	$+\!\!-\!\!\!-$	\vdash		$\frac{1}{X}$	+	+	\dashv	+	+
SED1.5C	SED1.5C02BR	SE		2.33 - 2.67 ft	1323331.98	447788.51	HRC		6/21/2017	\vdash	-	\vdash	+	\vdash	+	+^+	-	+^+	X		$\frac{\lambda}{X}$		X	\vdash	+	X	+	\vdash	+	X	+	+	\dashv	+	+
SED1.5C	SED1.5C02CN	SE		2.67 - 3 ft	1323331.98	447788.51	HRC		6/21/2017							X		X	X		X			\vdash	+	X	+	一十		X	+	+	一十	+	+
SED1.5C	SED1.5C02CR	SE		2.67 - 3 ft	1323331.98	447788.51	HRC		6/21/2017									+^+	$\frac{1}{X}$		X		X	++		 X 	+	一十		$\frac{1}{X}$	+	+	一十	+	+
SED1.5C	SED1.5C03AN	SE		3 - 3.33 ft	1323331.98	447788.51	HRC		6/21/2017	Н		\vdash	+	\vdash	+	Х		 x	$\frac{x}{x}$	\vdash	$\frac{x}{x}$	_	X	\vdash	+	 X 	+	一十	+	X	+	+	一十	十	+
SED1.5C	SED1.5C03BN	SE		3.33 - 3.67 ft	1323331.98	447788.51	HRC		6/21/2017	Н		\vdash			+	X		X	X		X	_	X		+	X	\times	一	x 🗆	X	ХХ	+	一	十	\vdash
SED1.5C	SED1.5C03CN	SE	_	3.67 - 4 ft	1323331.98	447788.51	HRC		6/21/2017	\Box		\vdash	+		+	X		X	X		X	_	X	1 1	+	X	+	H		X	+	+	\dashv	+	\Box
SED1.5C	SED1.5C04AN	SE		4 - 4.33 ft	1323331.98	447788.51			6/21/2017	\Box		一十	\top	\vdash	\top	X	\dashv	X	X	\vdash	X	_	X	\vdash	\top	X	\overline{X}	一	x l		ХХ	.††	eg	十	\forall
SED1.5C	SED1.5C04BN	SE	_	4.33 - 4.67 ft	1323331.98	447788.51			6/21/2017	H				\Box		X	\top	X	X		X	_	X T			X	\top	一		X	十	+	一	\top	П
SED1.5C	SED1.5C04CN	SE		4.67 - 5 ft	1323331.98	447788.51			6/21/2017	H			1	\sqcap	1	Х	\top	X	Х	\sqcap	X	_	X T		1	X	\top			X	\top	+	\dashv	\top	П
SED1.5C	SED1.5C05AN	SE		5 - 5.33 ft	1323331.98				6/21/2017	П						Х		X	Х		X)	X			X	\Box			Х	\neg	\Box	i	\top	П
SED1.5C	SED1.5C05BN	SE		5.33 - 5.67 ft	1323331.98				6/21/2017	П		一		\sqcap		Х		Х	Х		X		X			X	\Box			Х	\top	\sqcap	i	\top	П
SED1.5C	SED1.5C05CN	SE		5.67 - 6 ft	1323331.98	447788.51			6/21/2017	П						Х		Х	Х	\sqcap	X	_	X			Х	\Box		X	X	ХХ	. -	一	\top	\sqcap
SED1.5C	SED1.5C06AN	SE	N	6 - 6.33 ft	1323331.98				6/21/2017							Х		Х	Х		Х		X			X				Х		\Box	二十	丁	П
SED1.5C	SED1.5C06BN	SE	N	6.33 - 6.67 ft	1323331.98	447788.51	HRC		6/21/2017							Х		Х	Х		Х)	X			Х	\Box			Х		TT	ıΤ		

								vvasi	ווngton, ט	C Z	2001	J																							
Location ID	Sample ID	Matrix ¹	Sample Type ²	Depth Interval	Easting	Northing	Sample Category	Surface Elevation	Sample Date	Hardness (SM2340)	Grain Size (D422)	Attended Limits Hydraulic Conductivity (lab)	E160.3)	HEM - Oil & Grease (E1664B)	Amonia (E350.1) PTOC (E440)	Field Parameters	Gamma Radioassay DOC (SM5310C)		Polonium-210 (PO-01-RC) Metals (SW6010)	Metals (SW6020A)	Chromium (VI) (SW7199) Mercury (SW7470A)	Mercury (SW7471B)	Metals (field XRF) TPH-DRO (SW8015C)	TPH-GRO (SW8015B)	TPH-GRO (SW8015C) TPH-GRO (SW8015D)	OCP (SW8081B LL)	Aroclor PCBs (SW8082A) PCBs (E1668C)	VOCs (SW8260B)	Cs (M8015D)	CSIA (VOCs) (PAE-CSIA-004)	SVOCs (SW8270DM SIM)	PAHs (ID-0016)	PAHS (D7363-13) PCDDS/PCDFs (SW8290A)	Total Cyanide (SW9012B)	Free Cyanide (SW9014) Sulfide (SW9034)
SED1.5C	SED1.5C06CN	SE	N	6.67 - 7 ft	1323331.98	447788.51	HRC		6/21/2017								Х		Х	Х		Х	Х				Х			>	(
SED1.5C	SED1.5C07AN	SE	N	7 - 7.33 ft	1323331.98	447788.51	HRC		6/21/2017								Х		Х	Х		Х	Х				Х			>	(П			
SED7E	SED7E00AN	SE	N	0 - 0.33 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х		Х	>	(X				
SED7E	SED7E00BN	SE	N	0.33 - 0.67 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х			>					
SED7E	SED7E00CN	SE	N	0.67 - 1 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х			>					
SED7E	SED7E01AN	SE	N	1 - 1.33 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		X	Х				Х			>					
SED7E	SED7E01BN	SE	N	1.33 - 1.67 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х			>					
SED7E	SED7E01CN	SE	N	1.67 - 2 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				XX		Х	>	(X	X			
SED7E	SED7E02AN	SE	N	2 - 2.33 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х			>		П			\Box
SED7E	SED7E02AR	SE	FD	2 - 2.33 ft	1323942.71	449728.24	HRC	1.81	6/22/2017											Х		X	Х				Х			>					
SED7E	SED7E02BN	SE	N	2.33 - 2.67 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х	Π		>		П			\Box
SED7E	SED7E02BR	SE	FD	2.33 - 2.67 ft	1323942.71	449728.24	HRC	1.81	6/22/2017											Х		Х	Х				Х			>	(П			\Box
SED7E	SED7E02CN	SE	N	2.67 - 3 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х			>		П			\Box
SED7E	SED7E03AN	SE	N	3 - 3.33 ft	1323942.71	449728.24	HRC	1.81	6/22/2017		П						Х	П	Х	Х		Х	Х				Х	\Box		>		П			\Box
SED7E	SED7E03BN	SE	N	3.33 - 3.67 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х			>		П			\Box
SED7E	SED7E03CN	SE	N	3.67 - 4 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х			>		П			\Box
SED7E	SED7E04AN	SE	N	4 - 4.33 ft	1323942.71	449728.24	HRC	1.81	6/22/2017			\top	Ħ			11	Х	1 1	Х	X		X	Х			11	X X		Х	>	X	X	\top		$\neg \neg$
SED7E	SED7E04BN	SE	N	4.33 - 4.67 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х			>					$\neg \neg$
SED7E	SED7E04CN	SE	N	4.67 - 5 ft	1323942.71	449728.24	HRC	1.81	6/22/2017							1 1	Х		Х	Х		Х	Х				Х			>		\sqcap			\Box
SED7E	SED7E05AN	SE	N	5 - 5.33 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	X		Х	Х			1 1	Х			>		П	\top		$\neg \neg$
SED7E	SED7E05BN	SE	N	5.33 - 5.67 ft	1323942.71	449728.24	HRC	1.81	6/22/2017							1 1	Х		Х	Х		Х	Х				Х			>		\sqcap			\Box
SED7E	SED7E05CN	SE	N	5.67 - 6 ft	1323942.71	449728.24	HRC	1.81	6/22/2017				Ħ			1 1	Х	1 1	Х	X		X	Х			11	Х	\Box		>		П	\Box		$\neg \neg$
SED7E	SED7E06AN	SE	N	6 - 6.33 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х	\Box		>		П			\Box
SED7E	SED7E06BN	SE	N	6.33 - 6.67 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х			>	(П			\Box
SED7E	SED7E06CN	SE	N	6.67 - 7 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х	П	Х	Х		Х	Х				Х	\Box	Х	>	(X	Х			\Box
SED7E	SED7E07AN	SE	N	7 - 7.33 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х			>	(П			\Box
SED7E	SED7E07BN	SE	N	7.33 - 7.67 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	Х				Х			>	(П			\Box
SED7E	SED7E07CN			7.67 - 8 ft	1323942.71	449728.24	HRC	1.81	6/22/2017								Х		Х	Х		Х	X			11	Х	\prod		>		\Box	\Box	\Box	$\neg \neg$
SED6.5D	SED6.5D06FN	SE	N	6 - 7 ft	1323798.17	449651.75	Forensics	2.64	6/27/2017																		Х		Х	>		П			\Box
Phase II Waterside Mobili	zation 4: City Storm Dr	ain Sedime	nt Sa	mpling	•																														
SDRF025074	SDRF025074N	SE	N	0 - 1 ft	1323364.83	445500.89	Storm Drain		7/25/2017		Х							Х		Х		Х				Х	X X	X	X	\ \	(X	Х	X		Х
SDRF025074	SDRF025074R		FD	0 - 1 ft	1323364.83	445500.89	Storm Drain		7/25/2017		Х							Х		Х		Х				Х	ХХ	X	X	>	X	Х	Х		Х
SDRF477827	SDRF477827N	SE	N	0 - 1 ft	1323268.08	446101.04	Storm Drain		7/25/2017		Х							Х		Х		Х				Х	ХХ	У	X	\	(X	X	Х		Х
A																																			

- 1. Matrix: SE = Sediment, SO = Soil, WG = Groundwater, WPO = Pore Water
- 2. Sample Type: N = Field Sample, FD = Field Duplicate
- 3. X and Y coordinates are presented in US Survey Feet, North American Datum 83, State Plane Zone Maryland DPS = Direct Push Soil

DPW = Direct Push Water

CT = Cooling Towers

KMY = Kenilworth Maintenance Yard

PW = Pore Water

SED = River Sediment

SD = Storm Drain

SOBACK = Soil Background SUS = Surface Soil

TA = Target Area

PTOC = Particulate Organic Carbon

TOC = Total Organic Carbon

HRC = High Resolution Core

DOC = Dissolved Organic Carbon

OCP = Organoclorine Pestacides

NH = Nonhalogenated

NA = Not Available

N = Normal Sample

PCDD = Polychlorinated dibenzodioxins

PCDF = Polychlorinated dibenzofurans

VOC = Volatile Organic Compound

PCB = polychlorinated biphenyl

Table 2-3
Monitoring Well Details
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

Nested Well	Northing (MD State Plane ft)	Easting (MD State Plane ft)	Surface Elevation (NAVD88 ft)	Well ID	Riser Elevation (NAVD88 ft)	Total Depth (ft bgs)	Screened Interval (ft bgs)
NAVA 04	440000 700	4202000 707	40.004	MW-01A	12.476	35	10-35
MW-01	448230.768	1323686.707	12.881	MW-02B	12.509	52	40-52
NAVA (0 0	440456 075	4222604.706	12.010	MW-02A	13.479	28	8-28
MW-02	448456.975	1323684.706	13.819	MW-02B	13.471	53	38-53
NAVA (0 2	440000 204	1222606 207	15.123	MW-03A	14.87	25	10-25
MW-03	448809.394	1323686.307	15.123	MW-03B	14.897	50	40-50
MM 04	440420 450	1222722 70	14.002	MW-04A	14.593	26	6-26
MW-04	449128.159	1323723.78	14.893	MW-04B	14.573	44	34-44
MW-05	448172.221	1224022 042	20.611	MW-05A	19.995	20	10-20
10100-05	440172.221	1324032.042	20.011	MW-05B	20.147	58	41-56
MM 06	440EE2 0EE	1204044 052	20.050	MW-06A	20.435	28	8-28
MW-06	448553.855	1324211.253	20.959	MW-06B	20.429	56	41-56
MW-07	448860.381	1324287.511	19.093	MW-07A	18.865	28	8-28
IVIVV-U7	440000.301	1324207.311	19.093	MW-07B	18.887	51	36-51
MW-08	449146.902	1324070.237	17.115	MW-08A	16.719	25	10-25
10100-00	449140.902	1324070.237	17.113	MW-08B	16.758	60	50-60
MW-09	448067.345	1324895.994	36.36	MW-09A	36.046	38	18-38
10100-09	440007.343	1324093.994	30.30	MW-09B	36.024	66	51-66
MW-10	448707.159	1324574.043	20.563	MW-10A	20.157	30	10-30
10100-10	440707.139	1324374.043	20.505	MW-10B	20.255	56	41-56
MW-11	449241.152	1324624.32	17.146	MW-11A	16.763	42	27-42
10100-11	449241.132	1324024.32	17.140	MW-11B	16.674	62	50-62
MW-12	447922.55	1325765.393	31.144	MW-12A	30.799	29	9-29
IVIVV-12	447922.55	1323703.393	31.144	MW-12B	30.86	46	38-46
MW-13	448449.691	1325558.014	27.851	MW-13A	27.445	20	8-20
10100-13	440443.031	1323330.014	21.001	MW-13B	27.54	45	30-45
MW-14	448965.107	1325694.459	25.243	MW-14A	24.902	27	7-27
10100-14	440803.107	1323094.439	25.243	MW-14B	24.865	57	39-57
MW-15	448363.567	1326303.084	36.363	MW-15A	35.92	38	28-38
10100-13	440303.307	1320303.004	30.303	MW-15B	35.92	60	50-60

Notes:

ft bgs - feet below ground surface

MW - Monitoring Well

Table 3-1 Summary of Historical Development Benning Road Facility RI/FS Project 3400 Benning Rd. NE Washington DC

Year	Development
1906	Original generating station constructed in southwest corner of the Site. Coal storage area existed to the northwest of the generating station. Railroad spur constructed entering the Site from the east. Surrounding properties primarily underdeveloped.
1937	Generating station has been extended northward.
1942	No. 6 fuel oil aboveground storage tank (AST) #1 constructed to the east of the generating station.
1949	Residential structures have been developed to the south and northeast of the Site.
1951	No. 6 fuel oil AST #2 and the retired Substation 14 have been constructed.
1957	Warehouses, administrative offices, and other facilities have been constructed onsite.
1965	Generating station has been expanded northward. No. 6 fuel oil AST #3 has been constructed. Substation 41 has been constructed. North of the Site the Washington D.C. Municipal Incinerating Station has been constructed.
1970	Cooling towers have been constructed in the northwest portion of the Site. Oil burning Units #15 and #16 are brought on line circa 1970. National Parks Service Kenilworth Maintenance Yard has been developed to the northwest of the Site.
1976	Pepco stops using coal circa 1976. A sludge dewatering pond is constructed in place of the former coal storage area.
1981	Substation 7 has been constructed. Building #65 warehouse has been constructed.
1988	Building #57, which houses two 10,000 gallon tanks for PCB contaminated mineral oil, has been constructed. Administrative building #59 has been constructed.
1996	Pepco conducts cooling water intake dredging in the Anacostia River to the southwest of the Site
2013	ASTs #1, #2, #3, and #4 demolished
2014 - 2015	Generating station and cooling tower superstructures demolished
2016	Cooling tower basins and PCB-impacted soil removed
2017	Two storm water bioretention basins installed in the location of the former cooling towers
2018	Two 20,000-gal USTs (gasoline and diesel) removed and replaced with two 12,000-gal ASTs (gasoline and diesel)

Sources:

URS Phase I Site Assessment of the Benning Generating Station (1999) and aerial photographs obtained from Environmental Data Resources, Inc. (2015)

UST - underground storage tank

AST - above ground storage tank

Table 3-2
Geotechnical Results Summary
Benning Road Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

Location	Depth (ft)	Gra	in Size Anal	ysis	Liquid	Plastic	К
Location	Deptii (it)	% Gravel	% Sand	% Silt & Clay	Limit	Limit	(cm/s)
Landside							
*SB1	5-7	61.2%	38.6%	0.1%	NP	NP	
SB1	7-9	0.0%	6.1%	93.9%	60	26	
*SB1	15-17	7.5%	91.3%	1.2%	28.6	23.1	
*SB1	25-27	14.4%	66.8%	18.8%	NP	NP	
SB1	30-32	0.3%	80.5%	19.2%	NP	NP	
*SB1	45-47	0.0%	77.8%	22.2%	61.2	35.9	3.71E-08
*SB1	65-67				29.9	21.9	
*SB1	75-77	0.0%	77.5%	22.5%	NP	NP	
*SB1	95-99	0.0%	95.6%	4.4%	NP	NP	
SB1	70-72	0.0%	50.7%	49.3%	0.23	0.14	
SB1	90-92	0.0%	4.5%	95.5%	0.53	0.32	
*SB2	11-13	2.7%	97.1%	0.2%	NP	NP	
*SB2	20-22	45.6%	54.3%	0.1%	NP	NP	
*SB2	35-37				36.3	23.6	
*SB2	40-42				NP	NP	
*SB2	50-52	23.3%	54.0%	22.7%	NP	NP	5.50E-08
*SB2	55-57				30.7	22	
SB2	60-62	0.0%	50.2%	49.8%	26	18	
SB2	75-77	0.0%	31.0%	69.0%	33	17	
*SB2	80-82	0.070	0.110.70	001070	27.7	22.9	
SB2	85-87	0.0%	5.1%	94.9%	56	0.21	
*SB2	87-93	0.0%	39.1%	60.9%	70.1	27.6	7.72E-08
*SB3	9-11	59.7%	39.5%	0.8%	NP	NP	
*SB3	15-17	001.70	00.070	0.070	38.9	30.4	
*SB3	25-27	42.3%	55.8%	1.9%	NP	NP	
*SB3	40-42	,	33.375		33.5	20.5	
SB3	50-52	0.0%	72.9%	27.1%	NP	NP	
*SB3	60-62	0.070	72.070	211170	79.1	31.8	
SB3	65-67	0.0%	22.9%	77.1%	39	16	
*SB3	70-72	17.9%	62.1%	20.0%			
*SB4	15-17	0.0%	98.5%	1.5%	NP	NP	
*SB4	20-22	0.070	00.070		77.5	27.2	
SB4	25-27	0.0%	4.8%	95.2%	36	21	
*SB4	30-32	26.0%	73.8%	0.3%			
*SB4	45-47	20.070	7 0.0 70	0.070	40.7	23.9	
*SB4	55-57	0.0%	99.5%	0.5%	NP	NP	
*SB4	70-75	0.0%	98.2%	1.8%	88.5	41	7.07E-07
SB4	65-67	0.0%	1.1%	98.9%	84	24	7.07 = 07
*SB5	5-7	4.8%	94.8%	0.4%	NP	NP	
*SB5	9-11	7.070	U-1.U /U	0.470	18.3	18	
*SB5	13-15	57.5%	42.5%	0.0%	NP	NP	
SB5	15-17	0.0%	2.6%	97.4%	48	24	

Table 3-2
Geotechnical Results Summary
Benning Road Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

Location	Donth (ft)	Gra	in Size Analy	/sis	Liquid	Plastic	K
Location	Depth (ft)	% Gravel	% Sand	% Silt & Clay	Limit	Limit	(cm/s)
*SB5	35-37				NP	NP	
*SB5	40-42				76.5	44.8	
*SB5	55-60				70.9	29.3	
SB6	10-12	0.0%	0.0%	19.8%			
SB6	24-25	0.0%	0.0%	8.0%			
SB6	31-33	0.0%	11.9%	88.1%	45	19	
SB6	44-46	6.4%	62.6%	31.0%	24	14	
SB6	49-51	0.0%	0.0%	38.7%			
SB6	51-53	21.9%	23.0%	55.2%	36	16	
SB6	63-65	0.5%	2.1%	97.4%	52	21	
Waterside	•			•			
SED1A00N	0-0.5	0.0%	12.0%	88.0%			
SED1B00N	0-0.5	0.0%	7.2%	92.8%			
SED1C00N	0-0.5	0.0%	62.0%	38.0%			
SED1.5B00N	0-0.5	0.0%	34.0%	66.0%			
SED2A00N	0-0.5	32.5%	29.7%	37.8%			
SED2B00N	0-0.5	0.4%	51.4%	48.2%			
SED2C00N	0-0.5	0.0%	52.6%	47.4%			
SED2C01N	1-3	0.0%	11.5%	88.5%			
SED2.5B00N	0-0.5	0.2%	69.5%	30.3%			
SED3A00N	0-0.5	0.1%	13.6%	86.3%			
SED3B00N	0-0.5	0.0%	91.8%	8.2%			
SED3C00N	0-0.5	0.0%	65.7%	34.3%			
SED3C01N	1-3	0.0%	56.2%	43.8%			
SED3.5B00N	0-0.5	0.1%	87.1%	12.8%			
SED4A00N	0-0.5	0.3%	24.1%	75.6%			
SED4B00N	0-0.5	7.7%	52.5%	39.8%			
SED4B01N	1-3	0.0%	7.9%	92.1%			
SED4C00N	0-0.5	0.0%					
SED4.5B00N	0-0.5	0.0%		80.6%			
SED5A00N	0-0.5	0.0%	37.0%	63.0%			
SED5B00N	0-0.5	5.2%	18.7%	76.1%			
SED5C00N	0-0.5	0.0%	7.4%	92.6%			
SED5.5B00N	0-0.5	0.0%	8.5%	91.5%			
SED6A00N	0-0.5	0.0%	64.6%	35.4%			
SED6B00N	0-0.5	0.0%	64.7%	35.3%			
SED6B01N	1-3	0.0%	19.6%	80.4%			
SED6C00N	0-0.5	0.0%	12.5%	87.5%			
SED6.5D00N	0-0.5	3.6%	34.5%	61.9%			
SED6.5E00N	0-0.5	6.0%	39.4%	54.6%			
SED6.5E01N	1-3	0.3%	15.7%	84.0%			
SED7A00N	0-0.5	0.0%	30.2%	69.8%			
SED7B00N	0-0.5	0.0%	15.2%	84.8%			

Table 3-2
Geotechnical Results Summary
Benning Road Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

Location	Depth (ft)	Gra	in Size Analy	/sis	Liquid	Plastic	K
Location	Deptii (it)	% Gravel	% Sand	% Silt & Clay	Limit	Limit	(cm/s)
SED7B01N	1-3	0.0%	8.7%	91.3%			
SED7D00N	0-0.5	0.1%	20.0%	79.9%			
SED7E00N	0-0.5	4.2%	56.6%	39.2%			
SED7F00N	0-0.5	3.5%	47.1%	49.4%			
SED7F01N	1-3	28.1%	66.4%	5.5%			
SED7G00N	0-0.5	22.4%	71.8%	5.8%			
SED7.5D00N	0-0.5	0.0%	2.8%	97.2%			
SED7.5E00N	0-0.5	0.9%	14.9%	84.2%			
SED8A00N	0-0.5	0.0%	23.4%	76.6%			
SED8B00N	0-0.5	0.0%	66.9%	33.1%			
SED8C00N	0-0.5	0.0%	31.0%	69.0%			
SED8C01N	1-3	0.0%	10.3%	89.7%			
SED8.5B00N	0-0.5	0.0%	46.4%	53.6%			
SED9A00N	0-0.5	0.0%	14.6%	85.4%			
SED9B00N	0-0.5	0.0%	35.5%	64.5%			
SED9C00N	0-0.5	0.0%	46.1%	53.9%			
SED9.500N	0-0.5	0.0%	41.2%	58.8%			
SED10A00N	0-0.5	0.0%	17.8%	82.2%			
SED10B00N	0-0.5	1.2%	77.6%	21.2%			
SED10B01N	1-3	0.0%	83.5%	16.5%			
SED10C00N	0-0.5	0.0%	54.8%	45.2%			
SEDBACK100N	0-0.5	42.9%	53.8%	3.3%			
SEDBACK200N	0-0.5	11.3%	87.7%	1.0%			
SEDBACK201N	1-3	27.9%	48.0%	24.1%			
SEDBACK2 2.5'-3'	2.5-3	12.0%	75.8%	12.2%			
SEDBACK300N	0-0.5	9.8%	88.4%	1.8%			
SEDBACK3 4'-4.5'	4-4.5	11.2%	13.4%	75.4%	56	18	
SEDBACK400N	0-0.5	0.0%	37.5%	62.5%			
SEDBACK401N	1-3	0.0%	14.2%				
SEDBACK500N	0-0.5	0.0%	74.3%				
SEDBACK501N	1-3	0.0%	11.5%				
SEDBACK600N	0-0.5	0.0%	17.3%	82.7%			
SEDBACK601N	1-3	0.0%	21.9%	78.1%			
SEDBACK1100N	0-0.5	0.0%	3.2%	96.8%			
SEDBACK1200N	0-0.5	0.0%	5.8%	94.2%			
SEDBACK1201N	1-3	0.0%	5.8%	94.2%			
SEDBACK1300N	0-0.5	0.0%	48.2%				
SEDBACK1500N	0-0.5	19.1%	67.1%				
SEDBACK1501N	1-3	2.9%	58.6%				
WSED101N	1-3	0.0%	41.9%				
WSED100N	0-0.5	0.0%	60.2%	39.8%			
WSED201N	1-3	0.0%	62.8%	37.2%			
WSED200N	0-0.5	0.0%	39.3%				

Table 3-2 Geotechnical Results Summary Benning Road Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Location	Donth (ft)	Grai	in Size Anal	ysis	Liquid	Plastic	К
Location	Depth (ft)	% Gravel	% Sand	% Silt & Clay	Limit	Limit	(cm/s)
SDRF025074N		12.5%	71.4%	16.1%			
SDRF025074R		8.3%	79.8%	11.9%			
SDRF477827N		1.3%	96.4%	2.3%			
SED6.5D00EN		5.2%	57.2%	37.6%			
SED6.5E00EN	0-0.5	19.8%	52.8%	27.4%			
SED6A00EN	0-0.5	0.0%	44.7%	55.3%			
SED6B00EN	0-0.5	0.0%	59.0%	41.0%			
SED6C00EN	0-0.5	4.6%	11.8%	83.6%			
SED7.5D00EN	0-0.5	1.0%	18.9%	80.1%			
SED7.5E00EN	0-0.5	0.0%	40.7%	59.3%			
SED7A00EN	0-0.5	2.5%	18.3%	79.2%			
SED7B00EN	0-0.5	0.0%	3.1%	96.9%			
SED7D00EN	0-0.5	0.3%	18.0%	81.7%			
SED7E00EN	0-0.5	4.6%	64.2%	31.2%			
SED7F00EN	0-0.5	0.0%	49.9%	50.1%			
SED8A00EN	0-0.5	1.7%	8.3%	90.0%			
SED8B00EN	0-0.5	6.0%	59.7%	34.3%			
SED8C00EN	0-0.5	3.5%	18.9%	77.6%			
SEDBACK1600N	0-0.5	12.1%	47.5%	40.4%			
SEDBACK1601N	0-1	2.7%	64.2%	33.1%			
SEDBACK1700N	0-0.5	18.2%	32.1%	49.7%			
SEDBACK1701N	1-2	0.0%	28.4%	71.6%			
SEDBACK1800N	0-0.5	11.7%	51.5%	36.8%			
SEDBACK1801N	1-2	0.0%	48.0%	52.0%			
SEDBACK1900N	0-0.5	71.9%	20.7%	7.4%			
SEDBACK1901N	0-1	11.1%	78.3%	10.6%			
SEDBACK2000N	0-0.5	0.0%	82.7%	17.3%			
SEDBACK2001N	1-2	1.5%	86.6%	12.0%			
SEDBACK2003N	3-4	2.1%	83.1%	14.8%			
SEDBACK2100N	0-0.5	0.0%	70.8%	29.2%			
SEDBACK2101N	1-3	20.3%	61.9%	17.9%			
SEDBACK2103N	3-3.5	0.0%	65.9%	34.1%			

Notes:

*These sample analyzed by Craig Testing, Inc. All other samples analyzed by GeoTesting Express, Inc., except SB-6 SB-6 analyzed by AECOM, Germantown, MD. SED6 and following analyzed by TestAmerica Laboratories, Inc.

K = Hydraulic Conductivity

cm/s = centimeters per second

NP = non-plastic

A blank cell indicates that the sample was not analyzed for this parameter.

Table 3-3
Monitoring Well Vertical Hydraulic Gradients
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

Well ID	Vertical Hydi	raulic Gradient
Well ID	Magnitude	Flow Direction
MW-1	0.0004	down
MW-2	0.0058	up
MW-3	0.0115	down
MW-4	0.0121	down
MW-5	0.0771	down
MW-6	0.0128	up
MW-7	0.0070	up
MW-8	0.0360	down
MW-9	0.0555	down
MW-10	0.0103	down
MW-11	0.0628	down
MW-12	0.0111	down
MW-13	0.0696	down
MW-14	0.1300	down
MW-15	0.1182	down

Notes:

Groundwater elevation data collected on September 28, 2017 Gradients are for mid-tide conditions

EPA On-line Tools for Site Assessment Calculation, Vertical Gradient Calculator, https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/vgradient.html
Hydraulic gradient presented as screen mid-point values (M:M).

Table 3-4
Aquifer Testing Hydraulic Conductivities
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

Test	MW-1A	MW-1B	MW-3A	MW-3B	MW-6A	MW-6B	MW-9A	MW-9B
1st Slug In	*2.75E-03	5.16E-05	8.022E-05	8.01E-05	0.0000173	0.0000268	3.544E-06	1.434E-05
1st Slug Out	2.6E-05	5.41E-05	0.0000565	7.03E-05	2.399E-05	1.901E-05	3.158E-06	2.824E-05
2nd Slug In	2.82E-05	5.57E-05	5.023E-05	7.01E-05	2.221E-05	2.869E-05	3.815E-06	2.547E-05
2nd Slug Out	2.74E-05	5.97E-05	5.748E-05	5.11E-05	2.251E-05	2.498E-05	3.759E-06	2.012E-05
3rd Slug In	2.75E-05	7.12E-05	4.915E-05	9.75E-05	0.0000213	2.324E-05	3.515E-06	2.477E-05
3rd Slug Out	2.78E-05	5.47E-05	5.104E-05	6.48E-05	1.976E-05	1.652E-05	3.624E-06	2.28E-05
Average	2.74E-05	5.78E-05	5.744E-05	7.23E-05	2.118E-05	2.321E-05	3.569E-06	2.262E-05

Test	MW-10A	MW-10B	MW-11A	MW-11B	MW-13A	MW-13B	MW-15A	MW-15B
1st Slug In	1.1E-05	*1.18E-03	1.376E-05	3.33E-05	1.196E-05	2.618E-05	7.522E-05	*2.40E-03
1st Slug Out	1.17E-05	2.78E-05	1.278E-05	2.15E-05	1.285E-05	2.632E-05	3.295E-05	1.462E-05
2nd Slug In	1.17E-05	2.56E-05	2.109E-05	2.16E-05	0.0000124	2.687E-05	1.191E-05	1.757E-05
2nd Slug Out	1.07E-05	2.22E-05	1.388E-05	2.02E-05	1.229E-05	2.668E-05	1.243E-05	1.242E-05
3rd Slug In	1.07E-05	2.19E-05	1.903E-05	2.33E-05	1.376E-05	2.713E-05	3.524E-05	1.623E-05
3rd Slug Out	1.09E-05	2.46E-05	1.377E-05	2.24E-05	1.187E-05	2.641E-05	2.233E-05	*1.04E-03
Average	1.11E-05	2.44E-05	1.572E-05	2.37E-05	1.252E-05	2.66E-05	3.168E-05	1.521E-05

Notes:

Hydraulic Conductivities (K) are given in units of feet per second

^{*}These values were statistical outliers and were not used in the calculation of average hydraulic conductivities

Table 4-1
Surface Soil Results
Inorganic Concentrations in Surface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

												Location ID	SUS08-1A	SUS08-1B
												Sample ID	SUS081A00N	SUS081B00N
												Depth	0 - 1 ft	0 - 1 ft
												Sample Date	1/24/2017	1/24/2017
												Туре	N	N
		Project Screening			Max	Min	Mean	Median		Count	Count			
Analyte	Unit	Criteria	Method	CAS	Detect	Detect	Detect	Detect	Max Location	Detect	Total			
Aluminum	mg/kg	110000	SW6020A	7429-90-5	37000	820	6600	5000	SUSDP08-1E	70	70		8500	8200
Antimony	mg/kg	47	SW6020A	7440-36-0	11	0.066	0.7	0.39	TA1E1	56	70		0.99	0.17 J
Arsenic	mg/kg	3	SW6020A	7440-38-2	190	0.65	15	7.2	SUSDP08-1E	70	70		3.1 J	3.1 J
Barium	mg/kg	22000	SW6020A	7440-39-3	870	14	96	56	SUSDP08-1E	70	70		63	54
Beryllium	mg/kg	230	SW6020A	7440-41-7	1.8	0.11	0.5	0.41	TA1E1	70	70		0.33	0.32
Cadmium	mg/kg	98	SW6020A	7440-43-9	7.1	0.02	0.64	0.21	SUSDP01	65	70		0.22	< 0.11 U
Calcium	mg/kg	EN	SW6020A	7440-70-2	150000	310	24000	12000	SUSDP23	70	70		50000	50000
Chromium	mg/kg	180000	SW6020A	7440-47-3	400	3.7	42	19	SUSDP08-1E	81	81		24 J	21 J
Chromium, hexavalent	mg/kg	6.3	SW7199	18540-29-9	0.6	0.18	0.34	0.25	SUS08-1D	3	11			
Cobalt	mg/kg	35	SW6020A	7440-48-4	240	2	19	6.7	TA1G9	70	70		5.9	4.1
Copper	mg/kg	4700	SW6020A	7440-50-8	2700	3.8	130	27	SUSDP08-1E	70	70		16	13
Iron	mg/kg	82000	SW6020A	7439-89-6	78000	4200	16000	13000	TA1E1	70	70		12000	11000
Lead	mg/kg	800	SW6020A	7439-92-1	2000	4.4	130	54	TA1E1	70	70		41	35
Magnesium	mg/kg	EN	SW6020A	7439-95-4	76000	270	9000	4300	SUSDP23	70	70		5100	4200
Manganese	mg/kg	2600	SW6020A	7439-96-5	6600	10	380	170	SUSDP08-1E	70	70		240	130
Mercury	mg/kg	35	SW7471B	7439-97-6	1.9	0.0068	0.13	0.075	TA1E1	67	70		0.053	0.063
Nickel	mg/kg	2200	SW6020A	7440-02-0	8000	2.2	340	25	TA1G9	70	70		31	16
Potassium	mg/kg	EN	SW6020A	7440-09-7	2400	130	670	670	SUS08-1G	70	70		920	840
Selenium	mg/kg	580	SW6020A	7782-49-2	9.1	0.087	0.91	0.47	TA1E1	67	70		0.30 J	0.18 J
Silver	mg/kg	580	SW6020A	7440-22-4	0.61	0.018	0.14	0.08	TA1C5	48	70		0.044 J	0.044 J
Sodium	mg/kg	EN	SW6020A	7440-23-5	1300	45	230	130	TA1G9	66	70		130	100
Thallium	mg/kg	1.2	SW6020A	7440-28-0	0.46	0.033	0.16	0.14	TA1E7	42	70		< 0.12 U	< 0.11 U
Vanadium	mg/kg	580	SW6020A	7440-62-2	42000	3.4	1500	57	TA1E1	77	77		44	35
Zinc	mg/kg	35000	SW6020A	7440-66-6	3000	6.1	210	56	SUSDP08-1E	70	70		44 J	32 J

Table 4-1
Surface Soil Results
Inorganic Concentrations in Surface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	SUS08-1B	SUS08-1C	SUS08-1D	SUS08-1D	SUS08-1F	SUS08-1G	SUS08-1H	SUS08-1H	SUS08-1H	SUS08-2F
			Sample ID	SUS081B00N2	SUS081C00N	SUS081D00N	SUS081D00N2	SUS081F00N	SUS081G00N	SUS081H00N	SUS081H00N2	SUS081H00R2	SUS082F00N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	2/3/2017	1/24/2017	1/24/2017	6/29/2018	1/24/2017	1/24/2017	1/24/2017	6/29/2018	6/29/2018	3/22/2017
			Type	N	N	N	N	N	N	N	N	N	N
		Project Screening											
Analyte	Unit	Criteria											
Aluminum	mg/kg	110000		5500	7000	18000		6700	11000	18000			
Antimony	mg/kg	47		0.21 J	0.14 J	0.72		0.74	0.34	1.0			
Arsenic	mg/kg	3		2.1	2.4 J	24 J		6.8 J	3.4 J	27 J			
Barium	mg/kg	22000		46	51	160		62	89	530			
Beryllium	mg/kg	230		0.27	0.29	0.90		0.27	0.56	0.60			
Cadmium	mg/kg	98		0.14	< 0.12 U	0.92		0.16	0.15	0.90			
Calcium	mg/kg	EN		45000	45000	60000		30000	38000	17000			
Chromium	mg/kg	180000		18	20 J	80 J	69	23 J	30 J	66 J	42	53	
Chromium, hexavalent	mg/kg	6.3					0.60				0.25 J	0.18 J	
Cobalt	mg/kg	35		3.8	4.3	18		5.9	9.1	30			
Copper	mg/kg	4700		17	15	120		24	28	170			
Iron	mg/kg	82000		9400	10000	18000		14000	18000	21000			
Lead	mg/kg	800		30	29	89		61	57	76			
Magnesium	mg/kg	EN		12000 J	4700	13000		3700	5900	4300			
Manganese	mg/kg	2600		200	120	1000		130	320	440			
Mercury	mg/kg	35		0.054	0.063	0.15		0.090	0.066	0.16			
Nickel	mg/kg	2200		23	24	300		87	52	700			
Potassium	mg/kg	EN		620	740	1100		980	2400	610			
Selenium	mg/kg	580		< 0.69 U	< 0.59 U	1.6		3.1	0.48 J	1.2			
Silver	mg/kg	580		0.043 J	0.043 J	0.30		0.13	0.081 J	0.26			
Sodium	mg/kg	EN		140	110	170		110	140	64			
Thallium	mg/kg	1.2		0.057 J	< 0.12 U	0.12		< 0.11 U	0.17	0.13			
Vanadium	mg/kg	580		64	23	900		260	190	1300			23 J
Zinc	mg/kg	35000		24	31 J	310 J		43 J	72 J	280 J			

Table 4-1
Surface Soil Results
Inorganic Concentrations in Surface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	SUS08-2H	SUS08-2J	SUS08-2J	SUS08-2N	SUS08-2P	SUS25	SUSDP01	SUSDP01	SUSDP02	SUSDP03	SUSDP04
			Sample ID	SUS082H00N	SUS082J00N	SUS082J00R	SUS082N00N	SUS082P00N	SUS2500N	SUS0100N	SUS0100R	SUS0200N	SUS0300N	SUS0400N
			Depth	0 - 1 ft	0.5 - 1 ft	0.33 - 1 ft	0.33 - 1 ft	0.33 - 0.83 ft	0.5 - 1 ft	0 - 1 ft				
			Sample Date	3/22/2017	3/22/2017	3/22/2017	3/22/2017	3/22/2017	2/7/2013	2/4/2013	2/4/2013	2/4/2013	2/4/2013	2/4/2013
			Туре	N	N	FD	N	N	N	N	FD	N	N	N
		Project Screening												
Analyte	Unit	Criteria												
Aluminum	mg/kg	110000							2900	2800	2700	3600	1500	4400
Antimony	mg/kg	47							< 0.22 UJ	0.36 J	0.39 J	< 0.21 UJ	0.24 J	< 0.23 UJ
Arsenic	mg/kg	3							2.6 J	2.6 J	1.9 J	1.8 J	6.3 J	7.7 J
Barium	mg/kg	22000							23 J	230 J	32 J	15 J	56 J	56 J
Beryllium	mg/kg	230							0.24	0.38	0.35	0.18	0.30	0.45 J
Cadmium	mg/kg	98							0.093 J	4.6 J	7.1 J	0.073 J	0.29 J	0.27 J
Calcium	mg/kg	EN							28000	8300	5700	2100	16000	42000
Chromium	mg/kg	180000							6.3	9.2	7.8	11	3.7	19
Chromium, hexavalent	mg/kg	6.3												
Cobalt	mg/kg	35							3.1 J	92 J	52 J	130 J	3.2 J	7.2 J
Copper	mg/kg	4700							5.7 J	230 J	51 J	14 J	32 J	45 J
Iron	mg/kg	82000							8100	13000	9300	8100	4800	12000
Lead	mg/kg	800							12	1100	1300	9.1	42	70
Magnesium	mg/kg	EN							17000	920	840	790	6600	18000 J
Manganese	mg/kg	2600							140	200	170	36	62	260
Mercury	mg/kg	35							0.020 J	0.040 J	0.045 J	0.029 J	0.064 J	0.26 J
Nickel	mg/kg	2200							3.6	12	11	8.7	7.2	72 J
Potassium	mg/kg	EN							750	370	370	210	140	670
Selenium	mg/kg	580							0.16 J	0.14 J	0.089 J	0.087 J	0.44 J	0.60 J
Silver	mg/kg	580							< 0.11 U	< 0.11 U	0.12	< 0.11 U	< 0.12 U	< 0.12 U
Sodium	mg/kg	EN							< 290 U	790	700	370	920	120
Thallium	mg/kg	1.2							< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.12 U	0.13
Vanadium	mg/kg	580		59 J	1900 J	930 J	1400 J	56 J	11 J	58 J	47 J	16 J	9.9 J	140 J
Zinc	mg/kg	35000							17 J	1300 J	1700 J	20 J	58 J	59 J

Table 4-1
Surface Soil Results
Inorganic Concentrations in Surface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	SUSDP05	SUSDP06	SUSDP07	SUSDP08	SUSDP08	SUSDP08-1E	SUSDP08-1E	SUSDP08-1E	SUSDP08-2G	SUSDP09	SUSDP10
			Sample ID	SUS0500N	SUS0600N	SUS0700N	SUS0800N	SUS0800N2	SUS081E00N	SUS081E00R	SUS081E00N2	SUS082G00N	SUS0900N	SUS1000N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.5 - 1 ft
			Sample Date	2/4/2013	2/5/2013	2/5/2013	2/5/2013	6/29/2018	1/24/2017	1/24/2017	6/29/2018	3/22/2017	2/5/2013	2/5/2013
			Type	N	N	N	N	N	N	FD	N	N	N	N
		Project Screening												
Analyte	Unit	Criteria												
Aluminum	mg/kg	110000		2400	1700	6200	16000		37000 J	25000			3800	2200
Antimony	mg/kg	47		0.49 J	0.38 J	< 0.23 UJ	< 0.26 UJ		1.6 J	1.4			< 0.21 UJ	< 0.22 UJ
Arsenic	mg/kg	3		7.3 J	11 J	3.0 J	12 J		190 J	110 J			2.2 J	13 J
Barium	mg/kg	22000		39 J	56 J	65 J	110 J		870 J	740			32 J	41 J
Beryllium	mg/kg	230		0.38	0.41	0.28	0.54		0.97	1.0			0.25	0.53
Cadmium	mg/kg	98		0.19 J	0.58 J	0.20 J	0.73 J		3.2 J	2.4			0.11 J	0.12 J
Calcium	mg/kg	EN		3500	970	55000	55000		82000 J	49000			12000	16000
Chromium	mg/kg	180000		10	5.9	33	60	27	400 J	210 J	160		11	12
Chromium, hexavalent	mg/kg	6.3						< 0.36 U			< 0.38 U			
Cobalt	mg/kg	35		4.6 J	5.9 J	8.2 J	23 J		67 J	47			4.6 J	9.6 J
Copper	mg/kg	4700		26 J	27 J	20 J	190 J		2700 J	1900			12 J	21 J
Iron	mg/kg	82000		8000	5600	11000	18000		47000 J	34000			8100	10000
Lead	mg/kg	800		22	97	38	91		200	160			23	33
Magnesium	mg/kg	EN		1500	1500	21000	16000		5200 J	4200			3400	9600
Manganese	mg/kg	2600		150	49	270	690		6600	5100			130	210
Mercury	mg/kg	35		0.059 J	0.075 J	0.11 J	0.19 J		0.14 J	0.16			0.043 J	0.043 J
Nickel	mg/kg	2200		16	28	97	610		460 J	380			19	9.8
Potassium	mg/kg	EN		230	130	1000	750		1300 J	1100			780	370
Selenium	mg/kg	580		0.38 J	0.36 J	0.20 J	0.51 J		0.94	0.82			0.11 J	0.68 J
Silver	mg/kg	580		< 0.11 U	< 0.11 U	< 0.12 U	0.25		0.33	0.31			< 0.10 U	< 0.11 U
Sodium	mg/kg	EN		49	49 J	370 J	150 J		340 J	280			360 J	76 J
Thallium	mg/kg	1.2		< 0.11 U	0.14	< 0.12 U	< 0.13 U		0.13 J	0.11 J			< 0.10 U	0.16
Vanadium	mg/kg	580		75 J	20 J	45 J	1700 J		1500 J	900		52 J	16 J	22 J
Zinc	mg/kg	35000		33 J	87 J	45 J	240 J		3000 J	1600 J			22 J	44 J

Table 4-1
Surface Soil Results
Inorganic Concentrations in Surface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	SUSDP11	SUSDP12	SUSDP13	SUSDP14	SUSDP15	SUSDP16	SUSDP17	SUSDP18	SUSDP19	SUSDP20	SUSDP21	SUSDP23
			Sample ID	SUS1100N	SUS1200N	SUS1300N	SUS1400N	SUS1500N	SUS1600N	SUS1700N	SUS1800N	SUS1900N	SUS2000N	SUS2100N	SUS2300N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.17 - 1 ft	0.17 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0 - 1 ft	0.83 - 1 ft	0.42 - 1 ft	1 - 1.75 ft	0.5 - 1 ft
			Sample Date	2/5/2013	2/6/2013	2/5/2013	2/6/2013	2/6/2013	2/6/2013	2/6/2013	2/6/2013	2/6/2013	2/7/2013	2/7/2013	2/7/2013
			Туре	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening													
Analyte	Unit	Criteria													
Aluminum	mg/kg	110000		2200	4100	2800	4100	4900	2600	3700	3200	5000	2100	2300	1500
Antimony	mg/kg	47		0.21 J	0.49 J	0.22 J	< 0.24 UJ	0.36 J	< 0.23 UJ	< 0.22 UJ	< 0.22 UJ	0.26 J	0.31 J	< 0.22 UJ	< 0.21 UJ
Arsenic	mg/kg	3		3.6 J	14 J	12 J	3.7 J	5.7 J	3.2 J	3.0 J	7.0 J	3.0 J	33 J	1.7 J	0.65 J
Barium	mg/kg	22000		57 J	79 J	58 J	70 J	67 J	24 J	43 J	36 J	55 J	74 J	27 J	14 J
Beryllium	mg/kg	230		0.17	0.37	0.26	0.32	0.40	0.28	0.37	0.40	0.34	0.33	0.15	0.11
Cadmium	mg/kg	98		0.52 J	3.5 J	0.80 J	0.26 J	0.30 J	0.064 J	0.047 J	0.14 J	0.22 J	0.63 J	0.11 J	0.062 J
Calcium	mg/kg	EN		86000	12000	5400	3800	2800	41000	440	2300	12000	59000	110000	150000
Chromium	mg/kg	180000		20	14	27	11	13	6.0	7.3	7.1	11	10	7.3	5.0
Chromium, hexavalent	mg/kg	6.3													
Cobalt	mg/kg	35		4.4 J	4.4 J	15 J	5.0 J	4.8 J	3.2 J	3.1 J	3.8 J	11 J	4.6 J	2.7 J	3.7 J
Copper	mg/kg	4700		35 J	280 J	38 J	16 J	23 J	5.9 J	6.3 J	12 J	49 J	29 J	11 J	3.8 J
Iron	mg/kg	82000		7500	9400	10000	9700	12000	8700	8600	7700	13000	9500	6200	4200
Lead	mg/kg	800		53	380	140	32 J	56	11	11	21	170	89	65	5.5
Magnesium	mg/kg	EN		48000	6700	24000	1800	2000	24000	360	1700	3300	35000	53000	76000
Manganese	mg/kg	2600		280	120	190	260 J	110	150	58	220	170	120	260	370
Mercury	mg/kg	35		0.10 J	0.14 J	0.098 J	0.054 J	0.088 J	0.057 J	0.051 J	0.080 J	0.081 J	0.11 J	0.075 J	< 0.033 UJ
Nickel	mg/kg	2200		33	27	230	19	19	2.2	3.4	7.7	30	14	16	12
Potassium	mg/kg	EN		340	320	660	630	650	290	270	280	720	340	420	700
Selenium	mg/kg	580		0.30 J	0.59 J	0.47 J	0.26 J	0.33 J	0.23 J	0.28 J	0.38 J	0.19 J	1.7 J	0.13 J	0.26 J
Silver	mg/kg	580		0.17	0.23	0.24	< 0.12 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.10 U
Sodium	mg/kg	EN		120 J	59	130 J	160	170	60	48	160	160	84	< 390 U	< 96 U
Thallium	mg/kg	1.2		< 0.11 U	0.18	0.17	< 0.12 U	0.14	< 0.11 U	< 0.11 U	< 0.11 U	< 0.11 U	0.25	< 0.11 U	< 0.10 U
Vanadium	mg/kg	580		78 J	36 J	35 J	23 J	26 J	11 J	12 J	13 J	19 J	21 J	9.7 J	3.4 J
Zinc	mg/kg	35000		110 J	390 J	110 J	33 J	65 J	15 J	13 J	78 J	66 J	36 J	32 J	9.9 J

Table 4-1
Surface Soil Results
Inorganic Concentrations in Surface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	SUSDP24	SUSDP48	SUSDP48	SUSDP49	SUSDP50	SUSDP51	SUSDP52	TA1A1	TA1A3	TA1A7	TA1A9
			Sample ID	SUS2400N	SUS4800N	SUS4800R	SUS4900N	SUS5000N	SUS5100N	SUS5200N	SUSTAIAI00N	SUSTAIA300N	SUSTAIA700N	SUSTAIA900N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	2/7/2013	1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017
		_	Туре	N	N	FD	N	N	N	N	N	N	N	N
		Project Screening												
Analyte	Unit	Criteria												
Aluminum	mg/kg	110000		4200	6700	9400	5600	1900	5700	3000	6100	5100	6900	6000
Antimony	mg/kg	47		< 0.23 UJ	0.59	0.62	0.39	0.44	0.17 J	0.14 J	0.47	0.14 J	0.55	0.23
Arsenic	mg/kg	3		3.8 J	4.8 J	6.4 J	7.5 J	7.1 J	5.1 J	4.1 J	14 J	6.3 J	11 J	9.5 J
Barium	mg/kg	22000		52 J	42	49	48	44	32	14	95	51	49	54
Beryllium	mg/kg	230		0.33	0.53	0.63	0.67	0.58	0.49	0.37	0.75	0.60	0.91	0.71
Cadmium	mg/kg	98		0.31 J	0.17	0.27	0.21	0.31	0.042 J	< 0.11 U	0.29	0.25	0.14	0.17
Calcium	mg/kg	EN		2900	1600 J	2500 J	3700 J	1900 J	740 J	430 J	19000	9800	15000	2900
Chromium	mg/kg	180000		14	19	24	18	14	15	12	31 J	13 J	17 J	17 J
Chromium, hexavalent	mg/kg	6.3												
Cobalt	mg/kg	35		4.7 J	5.8	7.9	7.1	17	3.9	2.0	12	4.9	13	8.0
Copper	mg/kg	4700		14 J	30 J	35 J	54 J	25 J	8.1 J	7.2 J	27	16	31	30
Iron	mg/kg	82000		9800	19000	22000	20000	20000	19000	18000	15000	13000	25000	19000
Lead	mg/kg	800		95	65	72	60	64	9.8	4.4	79	24	55	36
Magnesium	mg/kg	EN		2900	1800 J	3000 J	1700 J	1000 J	630 J	450 J	5500	1500	1300	1000
Manganese	mg/kg	2600		160	90	110	160	500	93	42	280	130	160	130
Mercury	mg/kg	35		0.10 J	0.049	0.051	0.062	< 0.030 U	0.037	0.0068 J	0.26	0.097	0.043	0.14
Nickel	mg/kg	2200		12	17 J	31 J	20 J	14 J	4.7 J	2.6 J	120	18	18	19
Potassium	mg/kg	EN		830	710	770	830	400	500	420	910	760	720	660
Selenium	mg/kg	580		0.28 J	0.38 J	0.45 J	0.45 J	0.70 J	0.40 J	0.32 J	0.78	0.31 J	0.77	0.72
Silver	mg/kg	580		0.16	0.033 J	0.042 J	0.047 J	0.023 J	0.019 J	< 0.11 U	0.091 J	0.049 J	0.043 J	0.061 J
Sodium	mg/kg	EN		< 52 U	60	70	100	110	450	340	650	82	220	120
Thallium	mg/kg	1.2		< 0.11 U	0.13	0.15	0.17	0.20	0.085 J	0.060 J	0.33	0.089 J	0.15	0.14
Vanadium	mg/kg	580		23 J	26	30	28	16	24	22	290	180	32	53
Zinc	mg/kg	35000		80 J	54 J	61 J	50 J	44 J	20 J	9.7 J	100 J	37 J	58 J	50 J

Table 4-1
Surface Soil Results
Inorganic Concentrations in Surface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	TA1C1	TA1C3	TA1C4	TA1C4	TA1C5	TA1C5	TA1C7	TA1C9	TA1E1
			Sample ID	SUSTAICI00N	SUSTAIC300N	SUSTAIC400N	SUSTA1C400N2	SUSTAIC500N	SUSTA1C500N2	SUSTAI C700N	SUSTAIC900N	SUSTAIEI00N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft			
			Sample Date	1/24/2017	1/24/2017	1/24/2017	6/29/2018	1/24/2017	6/29/2018	1/24/2017	1/24/2017	1/24/2017
			Туре	N	N	N	N	N	N	N	N	N N
			- 7/									
		Project Screening										
Analyte	Unit	Criteria										
Aluminum	mg/kg	110000		2300	7900	12000		31000		6700	5500	5500
Antimony	mg/kg	47		0.28	0.17 J	1.2		2.6		0.066 J	0.37	11
Arsenic	mg/kg	3		11 J	3.2 J	8.6 J		57 J		2.0 J	22 J	43 J
Barium	mg/kg	22000		85	73	110		280		54	56	370
Beryllium	mg/kg	230		1.1	0.40	0.47		1.1		0.27	0.65	1.8
Cadmium	mg/kg	98		0.14	0.14	0.37		1.7		0.079 J+	0.21	1.9
Calcium	mg/kg	EN		1200	55000	30000		22000		58000	10000	8900
Chromium	mg/kg	180000		12 J	20 J	79 J	120	150 J	160	23 J	40 J	290 J
Chromium, hexavalent	mg/kg	6.3					< 2.6 U		< 3.5 U			
Cobalt	mg/kg	35		5.4	5.3	23		41		3.2	11	120
Copper	mg/kg	4700		16	15	98		1300		8.4	27	290
Iron	mg/kg	82000		7400	12000	23000		43000		7100	20000	78000
Lead	mg/kg	800		35	47	160		200		15	44	2000
Magnesium	mg/kg	EN		1100	4500	5100		7900		4500	6900	2900
Manganese	mg/kg	2600		50	200	330		1400		110	160	310
Mercury	mg/kg	35		0.28	0.058	0.13		0.16		< 0.047 U	0.11	1.9
Nickel	mg/kg	2200		50	15	790		1300		25	100	6800
Potassium	mg/kg	EN		440	1100	1400		990		330	650	950
Selenium	mg/kg	580		2.7	0.30 J	0.89		7.3		< 0.63 U	1.0	9.1
Silver	mg/kg	580		0.064 J	0.22	0.18		0.61		< 0.13 U	0.059 J	0.58 J
Sodium	mg/kg	EN		130	260	310		300		630	95	580
Thallium	mg/kg	1.2		0.29	< 0.11 U	0.18		0.22		0.033 J	0.17	0.26 J
Vanadium	mg/kg	580		470	41	7000		3800		16	200	42000
Zinc	mg/kg	35000		26 J	45 J	130 J		860 J		14 J	78 J	430 J

Table 4-1
Surface Soil Results
Inorganic Concentrations in Surface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	TA1E1	TA1E10	TA1E10	TA1-E11	TA1-E11	TA1E3	TA1E4	TA1E5	TA1E7
			Sample ID	SUSTA1E100N2	SUSTA1E1000N	SUSTA1E1000R	SUSTA1E1100N	SUSTA1E1100R	SUSTAIE300N	SUSTAIE400N	SUSTAIE500N	SUSTAI E700N
			Depth	0 - 1 ft 0 - 1 ft	0 - 1 ft	0 - 1 ft						
			Sample Date	6/29/2018	8/8/2017	8/8/2017	1/30/2018	1/30/2018	1/24/2017	1/24/2017	1/24/2017	1/24/2017
			Туре	N	N	FD	N	FD	N	N	N	N
		Project Screening										
Analyte	Unit	Criteria										
Aluminum	mg/kg	110000			6500	6300	6000	5700	820	8100	10000	3300
Antimony	mg/kg	47			0.51 J	0.44 J	0.72	1.0	0.54	0.35	0.26	0.16 J
Arsenic	mg/kg	3			11 J	7.2 J	19	18	54 J	2.4 J	5.2 J	71 J
Barium	mg/kg	22000			68 J	74 J	57	56	47	82	81	41
Beryllium	mg/kg	230			0.57 J	0.50 J	0.81	0.78	0.59	0.45	0.37	0.74
Cadmium	mg/kg	98			0.13	< 0.12 U	0.51	0.61	0.028 J	0.15	0.19	0.10
Calcium	mg/kg	EN			4700 J	2900 J	2700	2400	1400	32000	60000	19000
Chromium	mg/kg	180000		18	43 J	27 J	49 J	41 J	5.6 J	21 J	32 J	12 J
Chromium, hexavalent	mg/kg	6.3		< 0.43 U								
Cobalt	mg/kg	35			14 J	9.7 J	15	15	3.5	6.4	8.2	5.2
Copper	mg/kg	4700			50 J	27 J	58 J	58 J	14	18	41	37
Iron	mg/kg	82000			28000	20000	21000	23000	9600	13000	13000	20000
Lead	mg/kg	800			130	170	100	120	14	78	44	12
Magnesium	mg/kg	EN			3400	3000	5600 J	7000 J	270	5200	5100	1500
Manganese	mg/kg	2600			110 J	95 J	220	240	10	210	320	33
Mercury	mg/kg	35			0.054 J	0.16 J	0.11 J	0.12 J	0.065	0.064	0.13	0.027 J
Nickel	mg/kg	2200			490 J	190 J	110 J	130 J	8.5	26	70	9.5
Potassium	mg/kg	EN			830	710	730	670	260	1500	990	1000
Selenium	mg/kg	580			0.81 J	0.64 J	1.2	1.2	1.6	0.30 J	0.30 J	3.0
Silver	mg/kg	580			0.079 J	0.075 J	0.16	0.17	0.054 J	0.11 J	0.072 J	0.022 J
Sodium	mg/kg	EN			540	350	100	100	92	140	110	260
Thallium	mg/kg	1.2			0.13	0.12	0.23	0.23	0.22	< 0.12 U	< 0.12 U	0.46
Vanadium	mg/kg	580			3800	3200	160 J	180 J	57	100	190	20
Zinc	mg/kg	35000			72 J	47 J	250	230	6.1 J	64 J	65 J	25 J

Table 4-1
Surface Soil Results
Inorganic Concentrations in Surface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	TA1E9	TA1E9	TA1F4	TA1F4	TA1F5	TA1G1	TA1G10	TA1G3	TA1G5
			Sample ID	SUSTAI E900N	SUSTA1E900N2	SUSTAIF400N	SUSTA1F400N2	SUSTAIF500N	SUSTAIGI00N	SUSTA1G1000N	SUSTAIG300N	SUSTAIG500N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	1/24/2017	6/29/2018	1/24/2017	6/29/2018	1/24/2017	1/24/2017	8/4/2017	1/24/2017	1/24/2017
			Туре	N	N	N	N	N	N	N	N	N
			• •									
		Project Screening										
Analyte	Unit	Criteria										
Aluminum	mg/kg	110000		3900		18000		5500	2800	3900	3000	2500
Antimony	mg/kg	47		0.95		1.1		0.47 J	0.19 J	0.22 J	0.32	0.14 J
Arsenic	mg/kg	3		8.1 J		16 J		11 J	7.4 J	4.0	23 J	8.9 J
Barium	mg/kg	22000		87		110		65	32	32	35	21
Beryllium	mg/kg	230		0.75		0.55		0.45	0.35	0.40	0.35	0.28
Cadmium	mg/kg	98		0.92		0.96		0.23	0.060 J+	< 0.12 U	0.020 J+	0.054 J+
Calcium	mg/kg	EN		11000		28000		21000	820	1100	670	310
Chromium	mg/kg	180000		51 J	11	110 J	22	27 J	12 J	11	12 J	11 J
Chromium, hexavalent	mg/kg	6.3			< 0.32 U		< 0.42 U					
Cobalt	mg/kg	35		11		35		10	4.7	6.9	3.1	3.5
Copper	mg/kg	4700		160		260		48 J	13	11	14	9.1
Iron	mg/kg	82000		18000		42000		13000	15000	13000	17000	15000
Lead	mg/kg	800		160		120		110	12	14	14	7.8
Magnesium	mg/kg	EN		4400		15000		8900 J	690	950	380	630
Manganese	mg/kg	2600		240		690		170 J	150	86	49	47
Mercury	mg/kg	35		0.62		0.23		0.092	0.036	0.097	0.044	0.013 J
Nickel	mg/kg	2200		240		1000		150 J	16	8.1	12	19
Potassium	mg/kg	EN		660		710		690	340	440	400	350
Selenium	mg/kg	580		0.46 J		1.5		0.75 J	0.43 J	0.53 J	0.93	0.48 J
Silver	mg/kg	580		0.20		0.29		0.071 J	0.021 J	0.024 J	0.028 J	0.018 J
Sodium	mg/kg	EN		160		390		79	73	110	61	66
Thallium	mg/kg	1.2		0.089 J		0.12 J		0.15	< 0.10 U	< 0.12 U	0.13	0.071 J
Vanadium	mg/kg	580		1100		3800		610	68	37	98	330
Zinc	mg/kg	35000		360 J		310 J		95 J	33 J	23	16 J	21 J

Table 4-1
Surface Soil Results
Inorganic Concentrations in Surface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	TA1G7	TA1G9	TA1G9	TA1H9
				_			
			Sample ID				SUSTA1H0900N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	1/24/2017	1/24/2017	6/29/2018	8/4/2017
			Туре	N	N	N	N
		Project Screening					
Analyte	Unit	Criteria					
Aluminum	mg/kg	110000		2300	4000		3100
Antimony	mg/kg	47		0.13 J	0.81		0.69
Arsenic	mg/kg	3		8.2 J	38 J		6.2
Barium	mg/kg	22000		24	210		48
Beryllium	mg/kg	230		0.39	0.88		0.44
Cadmium	mg/kg	98		0.023 J+	0.20		1.5
Calcium	mg/kg	EN		360	7900		45000
Chromium	mg/kg	180000		12 J	170 J	18	27
Chromium, hexavalent	mg/kg	6.3				< 0.36 U	
Cobalt	mg/kg	35		6.5	240		18
Copper	mg/kg	4700		9.8	49		90
Iron	mg/kg	82000		19000	21000		13000
Lead	mg/kg	800		5.4	49		34
Magnesium	mg/kg	EN		1200	65000		16000
Manganese	mg/kg	2600		200	200		400
Mercury	mg/kg	35		0.018 J	0.069		0.12
Nickel	mg/kg	2200		43	8000		300
Potassium	mg/kg	EN		370	410		360
Selenium	mg/kg	580		0.27 J	1.4		0.49 J
Silver	mg/kg	580		< 0.10 U	0.19		0.11 J
Sodium	mg/kg	EN		45 J	1300		120
Thallium	mg/kg	1.2		0.069 J	0.14		< 0.12 U
Vanadium	mg/kg	580		190	37000		450
Zinc	mg/kg	35000		15 J	140 J		470

Table 4-1

Surface Soil Results Inorganic Concentrations in Surface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable

RSL Table, May 2018 Industrial Soil [ELCR = 1E-6, HQ=0.1]

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte
- JN = The analyte was tentatively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

mg/kg = milligrams per kilogram

											Location ID	AST3A-1A	CD2	SUS10.2E	CLICAE	SUSDP01	CLICDD01	CHEDDO	CHEDDOS	CHEDDUS	CHCDD04	CHCDD04	CHEDDOE	SUSDP05	SUSDP05-1C
											Location ID Sample ID	AST3A-TA AST3A1A00N	SB2 SBS0200N S	SUS19-2E SUS192E00N	SUS25 SUS2500N	SUS0100N	SUSDP01 SUS0100R	SUSDP02 SUS0200N	SUS02F00N	SUSDP03 SUS0300N	SUS0400N		SUSDP05 SUS0500N	SUS05F00N	SUS051C00N2
											Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.5 - 1 ft	0.33 - 1 ft	0.33 - 1 ft	0.33 - 0.83 ft	0 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
											Sample Date	8/2/2017	1/25/2017	3/22/2017	2/7/2013	2/4/2013	2/4/2013	2/4/2013	1/25/2017	2/4/2013	2/4/2013	1/25/2017	2/4/2013	1/24/2017	7/31/2017
		Project	T	1 1		1					Туре	N	N	N	N	N	FD	N	N	N	N	N	N	N	N
		Project Screening			Max	Min	Mean Median		Count	Count Count	:														
Analyte	Unit	Criteria	Method	CAS	Detect		Detect Detect	Max Location	Detect																
Diesel Range Organics (C10-C20)	mg/kg	440	M8015D	C10C20	220	157	189 189	SUSDP11-1B	2	2															
Oil Range Organics (C20-C36)	mg/kg	350000	M8015D	C20C36	903 13400		826 826	SUSDP11-1B SUSDP43	2	30	1		450						440			400		624	
TPH (C9-C44) Diesel Range Organics (C10-C20)	mg/kg mg/kg	440	M8015D SW8015C DRO	TPH C10C20	3400		1310 510 410 73	SUSDP43	30 20	39		380	150		20	< 19 U	13 J	< 92 U	112	15 J	66 J	199	180 J	631	
Diesel Range Organics (C10-C28)	mg/kg	440	SW8015C DRO	DIESELCOMP	5200		1200 140	SUSDP50	5	6		000				1 10 0	100	102 0		100			1000		
Oil Range Organics (C20-C36)	mg/kg	350000	SW8015C DRO	C20C36	3500	25	530 270	SUSDP50-2A	38	39		980			67 J	43 J	54 J	300 J		110 J	270 J		1800 J		
Gasoline Range Organics (C6-C10)	ug/kg	42000	SW8015C GRO/SW8015D GRO	8006-61-9	350	250	300 300	SUSDP02	2	32					< 95 UJ	< 99 U	< 100 U	350		< 160 U	< 110 U		< 110 U		
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/kg ug/kg	3.6e+006 2700	SW8260B/SW8260C SW8260B/SW8260C	71-55-6 79-34-5						32	+				< 4.6 U	< 4.9 U < 4.9 U	< 4.9 U	< 4.2 U < 4.2 U		< 7.5 U	< 5.7 U < 5.7 U	-	< 5.8 U < 5.8 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg ug/kg	2.8e+006	SW8260B/SW8260C	76-13-1						32	†				< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U	1	< 5.8 U		
1,1,2-Trichloroethane	ug/kg	630	SW8260B/SW8260C	79-00-5	6.3	6.3	6.3 6.3	SUSDP15	1	32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
1,1-Dichloroethane	ug/kg	16000	SW8260B/SW8260C	75-34-3						32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
1,1-Dichloroethene 1,2,3-Trichlorobenzene	ug/kg	100000 93000	SW8260B/SW8260C SW8260B/SW8260C	75-35-4 87-61-6	2.1	2.1	2.1 2.1	SUSDP04	- 1	32	+		-		< 4.6 U	< 4.9 U < 4.9 U	< 4.9 U < 4.9 U	< 4.2 U < 4.2 U		< 7.5 U	< 5.7 U 2.1 J	-	< 5.8 U < 5.8 U		
1,2,4-Trichlorobenzene	ug/kg ug/kg	26000	SW8260B/SW8260C	120-82-1	2.1	2.1	2.1 2.1	303DF04	'	32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
1,2-Dibromo-3-chloropropane	ug/kg	64	SW8260B/SW8260C	96-12-8						32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U	_	
1,2-Dibromoethane	ug/kg	160	SW8260B/SW8260C	106-93-4						32	\bot				< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
1,2-Dichlorobenzene 1,2-Dichloroethane	ug/kg	930000 2000	SW8260B/SW8260C	95-50-1	2.3	2.2	2.3 2.3	CHCDD4F	4	32	+				< 4.6 U < 4.6 UJ	< 4.9 U	< 4.9 U	< 4.2 U < 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
1,2-Dichloropthane 1,2-Dichloropropane	ug/kg ug/kg	6600	SW8260B/SW8260C SW8260B/SW8260C	107-06-2 78-87-5	2.3	2.3	2.3 2.3	SUSDP15	1	32	+ +				< 4.6 UJ < 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U < 5.7 U	 	< 5.8 UJ < 5.8 U		
1,3-Dichlorobenzene	ug/kg ug/kg	11000	SW8260B/SW8260C	541-73-1			t			32	<u>† </u>				< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
1,4-Dichlorobenzene	ug/kg	11000	SW8260B/SW8260C	106-46-7						32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
1,4-Dioxane	ug/kg	24000	SW8260B/SW8260C	123-91-1		 		1	-	31 32 6 32	1				< 4.6 U	R	R	R		R	R		R		
2-Butanone 2-Hexanone	ug/kg ug/kg	1.9e+007 130000	SW8260B/SW8260C SW8260B/SW8260C	78-93-3 591-78-6						6 32	+				< 4.6 U	< 4.9 U	< 4.9 U < 4.9 U	< 4.2 U < 4.2 U		< 7.5 U	< 5.7 U < 5.7 U	 	< 5.8 U < 5.8 U		
4-Methyl-2-pentanone	ug/kg	1.4e+007	SW8260B/SW8260C	108-10-1	2.1	2.1	2.1 2.1	SUSDP15	1	32	†				< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U	1	< 5.8 U		
Acetone	ug/kg	6.7e+007	SW8260B/SW8260C	67-64-1	35	5.1	16 12	SUSDP02	7						< 18 UJ	< 20 UJ	< 20 UJ	35 J		< 30 UJ	< 23 UJ		< 23 UJ		
Benzene	ug/kg	5100	SW8260B/SW8260C	71-43-2						32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
Bromochloromethane Bromodichloromethane	ug/kg ug/kg	63000 1300	SW8260B/SW8260C SW8260B/SW8260C	74-97-5 75-27-4						32	+				< 4.6 U	< 4.9 U < 4.9 UJ	< 4.9 U < 4.9 UJ	< 4.2 U < 4.2 UJ		< 7.5 U < 7.5 UJ	< 5.7 U < 5.7 UJ		< 5.8 U < 5.8 UJ		
Bromoform	ug/kg ug/kg	86000	SW8260B/SW8260C	75-25-2						32	†				< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U	1	< 5.8 U		
Bromomethane	ug/kg	3000	SW8260B/SW8260C	74-83-9						6 32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
Carbon Disulfide	ug/kg	350000	SW8260B/SW8260C	75-15-0						32					< 4.6 UJ	< 4.9 UJ	< 4.9 UJ	< 4.2 UJ		< 7.5 UJ	< 5.7 UJ		< 5.8 U		
Carbon Tetrachloride Chlorobenzene	ug/kg ug/kg	2900 130000	SW8260B/SW8260C SW8260B/SW8260C	56-23-5 108-90-7						32	+		-		< 4.6 U	< 4.9 U < 4.9 U	< 4.9 U < 4.9 U	< 4.2 U < 4.2 U		< 7.5 U	< 5.7 U < 5.7 U	-	< 5.8 U < 5.8 U		
Chloroethane	ug/kg ug/kg	5.7e+006	SW8260B/SW8260C	75-00-3						6 32					< 4.6 UJ	< 4.9 UJ	< 4.9 UJ	< 4.2 UJ		< 7.5 UJ	< 5.7 UJ		< 5.8 UJ		
Chloroform	ug/kg	1400	SW8260B/SW8260C	67-66-3						32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
Chloromethane	ug/kg	46000	SW8260B/SW8260C	74-87-3						32					< 4.6 UJ	< 4.9 UJ	< 4.9 UJ	< 4.2 UJ		< 7.5 UJ	< 5.7 UJ		< 5.8 U		
cis-1,2-Dichloroethylene cis-1,3-Dichloropropene	ug/kg ug/kg	230000 8200	SW8260B/SW8260C SW8260B/SW8260C	156-59-2 10061-01-5						32	+				< 4.6 U	< 4.9 U < 4.9 U	< 4.9 U < 4.9 U	< 4.2 U < 4.2 U		< 7.5 U	< 5.7 U < 5.7 U	-	< 5.8 U < 5.8 U		
Cyclohexane	ug/kg ug/kg	2.7e+006	SW8260B/SW8260C	110-82-7						32	†				< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U	1	< 5.8 U		
Dibromochloromethane	ug/kg	39000	SW8260B/SW8260C	124-48-1						32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
Dichlorodifluoromethane	ug/kg	37000	SW8260B/SW8260C	75-71-8	0.4	4.0	20	OLIOPPOO		32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
Ethylbenzene Isopropylbenzene	ug/kg ug/kg	25000 990000	SW8260B/SW8260C SW8260B/SW8260C	100-41-4 98-82-8	3.1	1.3	2.2 2.2	SUSDP02	2	32	+				< 4.6 U	< 4.9 U	< 4.9 U < 4.9 U	3.1 J < 4.2 U		< 7.5 U	< 5.7 U < 5.7 U	+	< 5.8 U < 5.8 U		
m, p-Xylene	ug/kg ug/kg	240000	SW8260B/SW8260C	XYLMP	20	1.3	9.8 8.1	SUSDP02	3	32	†				< 9.2 U	< 9.8 U	< 9.8 U	20		< 15 U	< 11 U	1	< 12 U		
Methyl Acetate	ug/kg	1.2e+008	SW8260B/SW8260C	79-20-9						32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000	SW8260B/SW8260C	1634-04-4						32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
Methylcyclohexane Methylene Chloride	ug/kg ua/ka	2.7e+006 320000	SW8260B/SW8260C SW8260B/SW8260C	108-87-2 75-09-2		1		+	1	32	+ +				< 4.6 U < 4.6 UJ	< 4.9 U < 4.9 UJ	< 4.9 U < 4.9 UJ	< 4.2 U < 4.2 UJ		< 7.5 U < 7.5 UJ	< 5.7 U < 5.7 UJ		< 5.8 U < 5.8 UJ		
o-Xylene	ug/kg ug/kg	280000	SW8260B/SW8260C	95-47-6	13	0.96	6.1 4.2	SUSDP02	3	32	†				< 4.6 U	< 4.9 U	< 4.9 U	13		< 7.5 U	< 5.7 UJ		< 5.8 U		
Styrene	ug/kg		SW8260B/SW8260C	100-42-5						32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
Tetrachloroethylene	ug/kg	39000	SW8260B/SW8260C	127-18-4	0.75		0.75 0.75	SUSDP21	1	32	1				< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
Toluene trans-1,2-Dichloroethene	ug/kg ug/kg	4.7e+006 2.3e+006	SW8260B/SW8260C SW8260B/SW8260C	108-88-3 156-60-5	1.4	1.3	1.4 1.4	SUSDP02	2	32					< 4.6 U	< 4.9 U	< 4.9 U < 4.9 U	1.4 J < 4.2 U		< 7.5 U	< 5.7 U < 5.7 U	 	< 5.8 U < 5.8 U		
trans-1,3-Dichloropropene	ug/kg ug/kg	8200	SW8260B/SW8260C	10061-02-6				<u> </u>		32	<u> </u>				< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
Trichloroethene	ug/kg	1900	SW8260B/SW8260C	79-01-6						32					< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U	< 5.7 U		< 5.8 U		
Trichlorofluoromethane	ug/kg	3.5e+007	SW8260B/SW8260C SW8260B/SW8260C	75-69-4 75-01-4		 		1	-	32	1				< 4.6 U	< 4.9 U	< 4.9 U < 4.9 U	< 4.2 U < 4.2 U		< 7.5 U	< 5.7 U < 5.7 U		< 5.8 UJ < 5.8 U		
Vinyl Chloride Xylenes (total)	ug/kg ug/kg	1700 250000	SW8260B/SW8260C SW8260B/SW8260C	1330-20-7	33	2.3	16 12	SUSDP02	3	26	+				< 4.6 U	< 4.9 U	< 4.9 U	< 4.2 U		< 7.5 U < 15 U	< 5.7 U	1	< 5.8 U		
1,1'-Biphenyl	ug/kg	20000	SW8270D LL	92-52-4	30	20	25 25	SUSDP10	3	11					< 37 U	< 190 U	< 190 U	< 180 U		1100	- 110		120		
1,2,4,5-Tetrachlorobenzene	ug/kg	35000	SW8270D LL	95-94-3	9.6	9.6	9.6 9.6	SUSDP18	1	11					< 37 U	< 190 U	< 190 U	< 180 U							
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006	SW8270D LL	108-60-1						11	1				< 7.5 U	< 39 U	< 38 U	< 37 U							
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	ug/kg ug/kg	2.5e+006 8.2e+006	SW8270D LL SW8270D LL	58-90-2 95-95-4		1		+	1	11	+ +				< 37 U < 37 U	< 190 U < 190 U	< 190 U < 190 U	< 180 U < 180 U							
2,4,6-Trichlorophenol	ug/kg ug/kg	82000	SW8270D LL	88-06-2				†		11	† †				< 37 U	< 190 U	< 190 U	< 180 U				 			
2,4-Dichlorophenol	ug/kg	250000	SW8270D LL	120-83-2						11					< 7.5 U	< 39 U	< 38 U	< 37 U							
2,4-Dimethylphenol	ug/kg	1.6e+006	SW8270D LL	105-67-9						11	 				< 37 U	< 190 U	< 190 U	< 180 U							
2,4-Dinitrophenol 2,4-Dinitrotoluene	ug/kg ug/kg	160000 7400	SW8270D LL SW8270D LL	51-28-5 121-14-2		+		 	<u> </u>	11	+				< 190 UJ < 37 U	< 980 U < 190 U	< 970 U < 190 U	< 930 U < 180 U				 			
2.6-Dinitrotoluene	ug/kg ug/kg	1500	SW8270D LL SW8270D LL	606-20-2		 			 	11	†				< 37 U	< 190 U	< 190 U	< 180 U		<u> </u>					
2-Chloronaphthalene	ug/kg	6e+006	SW8270D LL	91-58-7						11					< 7.5 U	< 39 U	< 38 U	< 37 U							
2-Chlorophenol	ug/kg	580000	SW8270D LL	95-57-8						11					< 37 U	< 190 U	< 190 U	< 180 U							
2-Methylphonol	ug/kg		SW8270D LL	91-57-6 95-48-7	85	4.5		SUSDP10 SUSDP09	9	11	+				4.5 J	< 39 U < 190 U	< 38 U	17 J		1					
2-Methylphenol 2-Nitroaniline	ug/kg ug/kg	4.1e+006 800000	SW8270D LL SW8270D LL	95-48-7 88-74-4	13	13	13 13	909DF08	1	11	+ +				< 37 U < 190 U	< 190 U	< 190 U < 970 U	< 180 U < 930 U				 	1		
2-Nitrophenol			SW8270D LL	88-75-5			1	1		11	† †				< 37 U		< 190 U								
			<u> </u>				•	•	•						V										

													Location ID	AST3A-1A	SB2	SUS19-2E	SUS25	SUSDP0		SUSDP02	SUSDP02	SUSDP03	SUSDP04	SUSDP04	SUSDP05	SUSDP05	SUSDP05-1C
													Sample ID		SBS0200N	SUS192E00N		SUS0100			SUS02F00N	SUS0300N	SUS0400N		SUS0500N	SUS05F00N	SUS051C00N2
													Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.5 - 1 ft	0.33 - 1 f			0 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
													Sample Date		1/25/2017	3/22/2017	2/7/2013	2/4/2013		2/4/2013 N	1/25/2017	2/4/2013	2/4/2013 N	1/25/2017	2/4/2013	1/24/2017	7/31/2017
	1	Desirat			1					1	1	1	Туре	N	N	N	N	N	FD	N	N	N	N	N	N	N	N
		Project Screening			Max	Min	Mean	Median		Count	Count	Count															
Analyte	Unit	Criteria		Method CAS	Detect	Detect		Detect	Max Location			Total															
3.3'-Dichlorobenzidine	ug/kg	5100	SW8270D LL		Detect	Detect	Detect	Detect	IVIAX LOCATION	Detect	Reject	11					< 37 U	< 190 U	< 190 U	< 180 U							
3-Nitroaniline	ug/kg	110000	SW8270D LL	99-09-2								11					< 190 U	< 980 U	< 970 U	< 930 U							
4,6-Dinitro-2-methylphenol	ug/kg	6600	SW8270D LL	534-52-1								11					< 190 U	< 980 U	< 970 U	< 930 U							
4-Bromophenyl-phenylether	ug/kg	0000	SW8270D LL	. 101-55-3								11					< 37 U	< 190 U	< 190 U	< 180 U							
4-Chloro-3-methylphenol	ug/kg	8.2e+006	SW8270D LL	. 59-50-7								11					< 37 U	< 190 U	< 190 U	< 180 U							
4-Chloroaniline	ug/kg	11000	SW8270D LL	. 106-47-8								11					< 37 U	< 190 U	< 190 U	< 180 U							
4-Chlorophenyl-phenylether	ug/kg		SW8270D LL	. 7005-72-3								11					< 37 U	< 190 U	< 190 U	< 180 U							
4-Methylphenol	ug/kg	8.2e+006	SW8270D LL	. 106-44-5	26	26	26	26	SUSDP09	1		11					< 37 U	< 190 U	< 190 U	< 180 U							
4-Nitroaniline	ug/kg	110000	SW8270D LL									11					< 190 U	< 980 U		< 930 U							
4-Nitrophenol	ug/kg	2.5e+007	SW8270D LL	100-02-7								11					< 190 U	< 980 U	< 970 U	< 930 U							
Acenaphthene	ug/kg	4.5e+006	SW8270D LL	83-32-9	2700	1.4		44	SUSDP19-6N	80		121	ļ		< 110 U	38	< 7.5 U	< 39 U	< 38 U	21 J	11 J	< 40 U	73	47 J	29 J	14	13
Acenaphthylene	ug/kg	4.5e+006	SW8270D LL	208-96-8	970	1.2	75	37	SUSDP43-3T	84	_	121	ļ		< 110 U	58	20	< 39 U	< 38 U	< 37 U	11 J	8.9 J	30 J	60 J	11 J	6.0 J	3.5 J
Acetophenone	ug/kg	1.2e+007	SW8270D LL	98-86-2	53	3.5	27	23	SUSDP02	6		11					< 37 U	< 190 U	< 190 U	53 J			ļ		ļ		
Anthracene	ug/kg	2.3e+007	SW8270D LL	. 120-12-7	8400	2.3	300	95	SUSDP19-6N	94		121	ļ	ļ	15 J	150	16	15 J	10 J	44	30	18 J	180	140	71	42	34
Atrazine	ug/kg	10000	SW8270D LL	. 1912-24-9	470	4-7	0.5	400	OLIOPEC.	<u> </u>	-	11	ļ		-	ļ	< 37 U	< 190 UJ	< 190 UJ	< 180 UJ			ļ				
Benzaldehyde	ug/kg	820000	SW8270D LL	. 100-52-7	170	17	85	100	SUSDP02	5		11	<u> </u>			000 1	17 J	< 190 UJ	< 190 UJ	170 J	400	- 00	700.1	500	500	000	440
Benzo(a)anthracene	ug/kg	21000	SW8270D LL SW8270D LL	. 56-55-3 . 50-32-8	14000	2.7	780 720	290 320	SUSDP19-6N SUSDP19-6N	104 102		121 121	1	-	77 J	930 J-	57	120	74	160	190	92	700 J	560	520	260	110
Benzo(a)pyrene	ug/kg	2100			11000							121			99 J*	940 J-	58 J	120	180	160	180	100	680	450	550	240	92
Benzo(b)fluoranthene	ug/kg	21000	SW8270D LL	205-99-2	12000	3.8 2.6	930	420 250	SUSDP19-6N	104 104		121			130 * 88 J*	1200 J-	83 J 54 J	85 110	98 91	170	260	120 91	710 J	580	630 430	340	110
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ug/kg ug/kg	2.3e+006 210000	SW8270D LL SW8270D LL	. 191-24-2 . 207-08-9	7500 5500	3	590 360	170	SUSDP19-6N SUSDP19-6N			121			40 J*	860 430	33 J	91	45	130 71	190 70	36 J	540 370	470 200	360	190 140	85 49
bis-(2-chloroethoxy)methane	ug/kg	250000	SW8270D LL	. 111-91-1	3300		300	170	303DF 19-0IN	100		11			40 3	430	< 37 U	< 190 U	< 190 U	< 180 U	70	30 3	370	200	300	140	49
bis-(2-Chloroethyl)ether	ug/kg	1000	SW8270D LL	. 111-44-4								11					< 7.5 U	< 39 U	< 38 U	< 37 U							
bis-(2-Ethylhexyl)phthalate	ug/kg	160000	SW8270D LL	117-81-7	230	10	91	54	SUSDP02	10		11					10 J	140 J	140 J	230 J							
Butylbenzylphthalate	ug/kg	1.2e+006	SW8270D LL		130	6.4	82	130	SUSDP01	5							6.4 J	130 J	130 J	130 J							
1 , , ,									SUSDP02			11															
Caprolactam	ug/kg	4e+007	SW8270D LL	. 105-60-2								11					< 190 U	< 980 UJ	< 970 UJ	< 930 UJ							
Carbazole	ug/kg	3e+006	SW8270D LL	. 86-74-8	260	8.2	52	26	SUSDP19	8		11					8.2	< 39 U	< 38 U	21 J							
Chrysene	ug/kg	2.1e+006	SW8270D LL	. 218-01-9	12000	3.1	800	350	SUSDP19-6N	104		121			92 J	980 J-	64	130	84	190	200	190	790 J	530	700	320	100
Dibenzo(a,h)anthracene	ug/kg	2100	SW8270D LL	. 53-70-3	2200	2.9	170	81	SUSDP19-6N	90		121			30 J*	220	12 J	19 J	23 J	30 J	46	40	110	110 J	110	52	23
Dibenzofuran	ug/kg	100000	SW8270D LL	. 132-64-9	120	4.1	49	31	SUSDP19	5		11					< 37 U	< 190 U	< 190 U	< 180 U							
Diethylphthalate	ug/kg	6.6e+007	SW8270D LL	. 84-66-2	19	5.5	11	8.2	SUSDP18	3		11					5.5 J	< 190 U	< 190 U	< 180 U							
Dimethylphthalate	ug/kg	6.6e+007	SW8270D LL	. 131-11-3	210	130	170	170	SUSDP11	2		11			-		< 37 U	< 190 U	< 190 U	< 180 U							
Di-n-butylphthalate	ug/kg	8.2e+006	SW8270D LL	. 84-74-2	320	5.6	160	160	SUSDP02	2		11					< 37 U	< 190 U	< 190 U	320							
Di-n-octylphthalate Fluoranthene	ug/kg	820000 3e+006	SW8270D LL SW8270D LL	. 117-84-0 . 206-44-0	20000	3.9	1600	480	SUSDP19-6N	104	1	11 121	1		110	1500 J-	< 37 U	< 190 U	< 190 U 90	< 180 U 310	280	130	1200 !	910	830	460	160
Fluorantnene	ug/kg ug/kg	3e+006 3e+006	SW8270D LL	. 206-44-0	29000 2800		100	38	SUSDP19-6N			121	1		< 110 U	1500 J- 34 J	< 7.5 U	< 39 U	< 38 U	19 J	7.6 J	8.2 J	1300 J 69	910 37 J	20 J	8.7	13
Hexachlorobenzene	ug/kg ug/kg	960	SW8270D LL	. 118-74-1	2000	1.0	100	30	200DF 13-0IN	02		11		1	* 110 0	34 3	< 7.5 U	< 39 U	< 38 U	< 37 U	1.03	0.2 J	09	3/ 3	20 0	0.1	13
Hexachlorobutadiene	ug/kg ug/kg	5300	SW8270D LL	87-68-3	1				1	1	1	11	1		1	1	< 7.5 U	< 39 U	< 38 U	< 37 U			1				
Hexachlorocyclo-pentadiene	ug/kg	750	SW8270D LL	77-47-4								11	Ì		1	Ì	< 37 U	< 190 U	< 190 U	< 180 U			Ì				
Hexachloroethane	ug/kg	8000	SW8270D LL	67-72-1								11					< 37 U	< 190 U	< 190 U	< 180 U							
Indeno(1,2,3-cd)pyrene	ug/kg	21000	SW8270D LL	. 193-39-5	7100	2.1	530	230	SUSDP19-6N	103		121			85 J*	720	48 J	82	64	97	150	68	440	380	330	160	72
Isophorone	ug/kg	2.4e+006	SW8270D LL	. 78-59-1								11					< 37 U	< 190 U	< 190 U	< 180 U							
Naphthalene	ug/kg	17000	SW8270D LL		630	1.6	69	42	SUSDP37	83		121			< 110 U	23 J	3.8 J	< 39 U	< 38 U	18 J	6.4 J	37 J	84	45 J	42	440	6.9 J
Nitrobenzene	ug/kg	22000	SW8270D LL	. 98-95-3								11					< 75 U	< 380 U	< 380 U	< 370 U							
N-Nitroso-di-n-propylamine	ug/kg	330	SW8270D LL	621-64-7					1			11	ļ		1	ļ	< 7.5 U	< 39 U	< 38 U	< 37 U			ļ				
N-Nitrosodiphenylamine	ug/kg	470000	SW8270D LL	86-30-6					ļ	1		11			ļ		< 37 U	< 190 U	< 190 U	< 180 U			ļ				
Pentachlorophenol	ug/kg	4000	SW8270D LL	87-86-5							1	11	ļ	ļ			< 37 U	< 190 U	< 190 U	< 180 U							
Phenanthrene	ug/kg	2.3e+007	SW8270D LL	. 85-01-8	26000	3	930	310	SUSDP19-6N	102		121	ļ		53 J	510	32	31 J	30 J	180	120	160	870 J	490	480	230	140
Phenol	ug/kg	2.5e+007	SW8270D LL		110	8.7	38	16	SUSDP02	4		13	1			40	< 7.5 U	< 39 U	< 38 U	110		4	4455 :				4=-
Pyrene	ug/kg	2.3e+006	SW8270D LL	. 129-00-0 BAP	20000		1200	420	SUSDP19-6N	106 104		121 121	1	-	90 J	1300 J-	88	190	110	250	260	140	1100 J	750	750	390	170
BaP-TE Total High-molecular-weight PAHs	ug/kg ug/kg	2100	SW8270D LL SW8270D LL	TOT-PAH-H	16600 120000	0.714	1080	486 2900	SUSDP19-6N SUSDP19-6N	104		121	1		159 840	1450 9100	89.2 630	169 1100	227 860	234 1600	287 1800	169 1000	979 6700	715 4900	812 5200	370 2600	145 970
Total Low-molecular-weight PAHs	ug/kg ug/kg		SW8270D LL	TOT-PAH-L	41000	3	1500	490	SUSDP19-6N	106		121	1		68	810	72	46	40	280	190	230	1300	820	650	740	210
Total PAHs (sum 16)	ug/kg ug/kg		SW8270D LL	TOT-PAH-L	160000	U			SUSDP19-6N		1	121	<u> </u>		910	9900	700	1100	900	1900	2000	1200	8000	5800	5900	3300	1200
Total FALIS (Sulli 10)	lug/kg	l	IONNOZIOD LL	. ITOT-FAR	100000	16.0	0900	3400	000DF 19-0IN	100	ı	121	1	1	310	3300	700	1100	300	1300	2000	1200	0000	3000	3300	3300	1200

		Location ID SUSDP05-1E SUSDP05-1G	SUSDP05-2M	SUSDP06	SUSDP06	SUSDP07	SUSDP08	SUSDP08	SUSDP09	SUSDP10	SUSDP10	SUSDP11	SUSDP11	Tellennii 1A	SUSDP11-1B	CHCDD11 1H	SUSDP11-2A	SUSDP12	SUSDP12	SUSDP12-1A	SUSDP12-1C	SUSDP12-1E	SUSDP12-1E
		Sample ID SUS051E00N2 SUS051G00N2	SUS052M00N	SUS0600N	SUS06F00N	SUS0700N	SUS0800N	SUS08F00N		SUS1000N	SUS10F00N		SUS11F00N		SUS111B00N	SUS111H00N	SUS112A00N	SUS1200N		SUS121A00N2	SUS121C00N2	SUS121E00N2	SUS121E00R2
		Depth 0 - 1 ft 0 - 1 ft Sample Date 7/31/2017 7/31/2017	0 - 1 ft 2/1/2018	0 - 1 ft 2/5/2013	0 - 1 ft 3/13/2017	0 - 1 ft 2/5/2013	0 - 1 ft 2/5/2013	0 - 1 ft 1/24/2017	0 - 1 ft 2/5/2013	0.5 - 1 ft 2/5/2013	0 - 1 ft 1/27/2017	0 - 1 ft 2/5/2013	0 - 1 ft 1/24/2017	0 - 1 ft 2/22/2018	0 - 1 ft 3/16/2018	0 - 1 ft 3/16/2018	0 - 1 ft 3/16/2018	0 - 1 ft 2/6/2013	0 - 1 ft 1/26/2017	0 - 1 ft 8/10/2017	0 - 1 ft 8/10/2017	0 - 1 ft 8/11/2017	0 - 1 ft 8/11/2017
		Type N N	N	N	N	N	N	N	N	N	N	N	N	N	N	3/10/2016 N	3/10/2016 N	N	N	8/10/2017 N	N	N	6/11/2017 FD
	Project																						ĺ
Analyte	Unit Screening Criteria																						1
	mg/kg 440														220		157						
Oil Range Organics (C20-C36) TPH (C9-C44)	mg/kg 350000 mg/kg				37.7			785			255		6140	4480	903 1440	162	749 1120		1130				
	mg/kg 440			< 95 U	31.1	< 97 U	< 110 U	703	< 18 U	98	233	< 88 U	0140	4400	280	102	280	79 J	1130				
	mg/kg 440																						
Oil Range Organics (C20-C36) Gasoline Range Organics (C6-C10)	mg/kg 350000 ug/kg 42000			300 J 250		350 J < 110 U	1800 J < 130 U		150 J < 100 U	550 J < 100 U		260 J < 98 U		+	1100		1400	330 J < 110 UJ					
1,1,1-Trichloroethane	ug/kg 3.6e+006			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg 2700 ug/kg 2.8e+006			< 5.6 U < 5.6 U		< 5.0 U < 5.0 U	< 5.9 U < 5.9 U		< 4.8 U	< 4.9 U < 4.9 U		< 4.6 U		+				< 5.2 U < 5.2 U					
	ug/kg 2.86+000 ug/kg 630			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
1,1-Dichloroethane	ug/kg 16000			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
	ug/kg 100000 ug/kg 93000			< 5.6 U < 5.6 U		< 5.0 U < 5.0 U	< 5.9 U < 5.9 U		< 4.8 U	< 4.9 U < 4.9 U		< 4.6 U						< 5.2 U < 5.2 U					
1,2,4-Trichlorobenzene	ug/kg 26000			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
	ug/kg 64 ug/kg 160			< 5.6 U < 5.6 U		< 5.0 U < 5.0 U	< 5.9 U < 5.9 U		< 4.8 U	< 4.9 U < 4.9 U		< 4.6 U		+				< 5.2 U					
	ug/kg 160 ug/kg 930000			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
1,2-Dichloroethane	ug/kg 2000			< 5.6 UJ		< 5.0 UJ	< 5.9 UJ	-	< 4.8 UJ	< 4.9 UJ		< 4.6 UJ	-					< 5.2 UJ					
	ug/kg 6600 ug/kg 11000			< 5.6 U < 5.6 U		< 5.0 U < 5.0 U	< 5.9 U < 5.9 U		< 4.8 U < 4.8 U	< 4.9 U < 4.9 U		< 4.6 U < 4.6 U		1				< 5.2 U < 5.2 U	1				
1,4-Dichlorobenzene	ug/kg 11000			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
1,4-Dioxane 2-Butanone	ug/kg 24000 ug/kg 1.9e+007	 	1	R < 5.6 U		R < 5.0 U	R < 5.9 U		R < 4.8 U	R < 4.9 U		R < 4.6 U		1	1			< 5.2 U		1			
	ug/kg 1.9e+007 ug/kg 130000			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U					<u> </u>	< 5.2 U					
, · ·	ug/kg 1.4e+007			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
	ug/kg 6.7e+007 ug/kg 5100			34 J < 5.6 U		< 20 UJ < 5.0 U	7.0 J < 5.9 U		< 19 UJ < 4.8 U	< 19 UJ < 4.9 U		< 18 UJ < 4.6 U		+				< 21 UJ < 5.2 U					
Bromochloromethane	ug/kg 63000			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
	ug/kg 1300 ug/kg 86000	 		< 5.6 UJ < 5.6 U		< 5.0 UJ < 5.0 U	< 5.9 UJ < 5.9 U		< 4.8 UJ < 4.8 U	< 4.9 UJ < 4.9 U		< 4.6 UJ < 4.6 U						< 5.2 U < 5.2 U					
	ug/kg 3000			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U		1				< 5.2 U					
	ug/kg 350000			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
	ug/kg 2900 ug/kg 130000			< 5.6 U < 5.6 U		< 5.0 U < 5.0 U	< 5.9 U < 5.9 U		< 4.8 U < 4.8 U	< 4.9 U < 4.9 U		< 4.6 U < 4.6 U		+				< 5.2 U < 5.2 U					
Chloroethane	ug/kg 5.7e+006			< 5.6 UJ		< 5.0 UJ	< 5.9 UJ		< 4.8 UJ	< 4.9 UJ		< 4.6 UJ						< 5.2 UJ					
	ug/kg 1400 ug/kg 46000			< 5.6 U < 5.6 U		< 5.0 U < 5.0 U	< 5.9 U < 5.9 U		< 4.8 U	< 4.9 U < 4.9 U		< 4.6 U		+				< 5.2 U < 5.2 UJ					
	ug/kg 230000			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
	ug/kg 8200			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
	ug/kg 2.7e+006 ug/kg 39000			< 5.6 U < 5.6 U		< 5.0 U < 5.0 U	< 5.9 U < 5.9 U		< 4.8 U	< 4.9 U < 4.9 U		< 4.6 U						< 5.2 U					
	ug/kg 37000			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
	ug/kg 25000 ug/kg 990000		+	1.3 J < 5.6 U		< 5.0 U < 5.0 U	< 5.9 U < 5.9 U		< 4.8 U	< 4.9 U < 4.9 U		< 4.6 U		+	+			< 5.2 U < 5.2 U					
	ug/kg 240000			8.1 J		< 10 U	< 12 U		< 9.5 U	< 9.7 U		< 9.2 U						< 10 U					
	ug/kg 1.2e+008 ug/kg 210000			< 5.6 U		< 5.0 U < 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U < 4.9 U		< 4.6 U		1				< 5.2 U					
	ug/kg 210000 ug/kg 2.7e+006			< 5.6 U < 5.6 U		< 5.0 U	< 5.9 U < 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U < 5.2 U	<u> </u>				
Methylene Chloride	ug/kg 320000			< 5.6 UJ		< 5.0 UJ	< 5.9 UJ		< 4.8 UJ	< 4.9 UJ		< 4.6 UJ						< 5.2 UJ					
	ug/kg 280000 ug/kg 3.5e+006	+ + + + + + + + + + + + + + + + + + + +	 	4.2 J < 5.6 U		< 5.0 U < 5.0 U	< 5.9 U < 5.9 U		< 4.8 U	< 4.9 U < 4.9 U		< 4.6 U		+	 			< 5.2 U < 5.2 U					
Tetrachloroethylene	ug/kg 39000			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U						< 5.2 U					
	ug/kg 4.7e+006 ug/kg 2.3e+006	 	1	1.3 J < 5.6 U		< 5.0 U < 5.0 U	< 5.9 U < 5.9 U		< 4.8 U	< 4.9 U < 4.9 U		< 4.6 U		1	1			< 5.2 U		1			
	ug/kg 8200			< 5.6 U	_	< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U	_	< 4.6 U						< 5.2 U					
	ug/kg 1900			< 5.6 U		< 5.0 U	< 5.9 U		< 4.8 U	< 4.9 U		< 4.6 U		1				< 5.2 U					
	ug/kg 3.5e+007 ug/kg 1700	+ + +		< 5.6 UJ < 5.6 U		< 5.0 UJ < 5.0 U	< 5.9 UJ < 5.9 U		< 4.8 UJ < 4.8 U	< 4.9 UJ < 4.9 U		< 4.6 UJ < 4.6 U					1	< 5.2 U < 5.2 U	1				
Xylenes (total)	ug/kg 250000			12		< 10 U	< 12 U		< 9.5 U	< 9.7 U		< 9.2 U						< 10 U					$\overline{}$
	ug/kg 20000 ug/kg 35000						20 J < 210 U		< 180 U < 180 U	30 J < 180 U		25 J < 180 U		-									
2,2'-oxybis(1-Chloropropane)	ug/kg 4.7e+006						< 43 U		< 36 U	< 38 U		< 36 U											
	ug/kg 2.5e+006	 					< 210 U	· ·	< 180 U	< 180 U		< 180 U		1				1					
	ug/kg 8.2e+006 ug/kg 82000	+ + + + + + + + + + + + + + + + + + + +					< 210 U < 210 U		< 180 U < 180 U	< 180 U < 180 U		< 180 U < 180 U					1	+	1				
2,4-Dichlorophenol	ug/kg 250000						< 43 U		< 36 U	< 38 U		< 36 U											<u> </u>
	ug/kg 1.6e+006 ug/kg 160000		-				< 210 U < 1100 U		< 180 U < 910 U	< 180 U < 950 U		< 180 U < 910 U		1	-			+	-				
2,4-Dinitrotoluene	ug/kg 7400						< 210 U		< 180 U	< 180 U		< 180 U											
	ug/kg 1500	 					< 210 U	· ·	< 180 U	< 180 U		< 180 U		1				1					
	ug/kg 6e+006 ug/kg 580000	 					< 43 U < 210 U		< 36 U < 180 U	< 38 U < 180 U		< 36 U < 180 U					1	+	1				
2-Methylnaphthalene	ug/kg 300000						58		11 J	85		46											<u> </u>
	ug/kg 4.1e+006 ug/kg 800000	+ + +					< 210 U < 1100 U		13 J < 910 U	< 180 U < 950 U		< 180 U < 910 U		+				+					—
	ug/kg 000000 ug/ka 2.5e+007	1 1	1				< 210 U		< 180 U	< 180 U		< 180 U		1	1	1	1	İ	1	1			

			Location ID	SUSDP05-1E	SUSDP05-1G	SUSDP05-2M	SUSDP06	SUSDP06	SUSDP07	SUSDP08	SUSDP08	SUSDP09	SUSDP10	SUSDP10	SUSDP11	SUSDP11	SUSDP11-1A	SUSDP11-1B	SUSDP11-1H	SUSDP11-2A	SUSDP12	SUSDP12	SUSDP12-1A	SUSDP12-1C	SUSDP12-1E	SUSDP12-1E
			Sample ID	SUS051E00N2	SUS051G00N2	SUS052M00N	SUS0600N	SUS06F00N	SUS0700N	SUS0800N	SUS08F00N		SUS1000N	SUS10F00N		SUS11F00N		SUS111B00N					SUS121A00N2	SUS121C00N2	SUS121E00N2	SUS121E00R2
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date		7/31/2017	2/1/2018	2/5/2013	3/13/2017	2/5/2013	2/5/2013	1/24/2017	2/5/2013	2/5/2013	1/27/2017	2/5/2013	1/24/2017	2/22/2018	3/16/2018	3/16/2018	3/16/2018	2/6/2013	1/26/2017	8/10/2017	8/10/2017	8/11/2017	8/11/2017
		Project	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FD
		Screening																								
Analyte	Unit	Criteria																								
3,3'-Dichlorobenzidine	ug/kg	5100								< 210 U		< 180 U	< 180 U		< 180 U											
3-Nitroaniline	ug/kg	110000								< 1100 U		< 910 U	< 950 U		< 910 U											<u> </u>
4,6-Dinitro-2-methylphenol	ug/kg ug/kg	6600								< 1100 U < 210 U		< 910 U < 180 U	< 950 U < 180 U		< 910 U < 180 U	-										
4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	ug/kg ua/ka	8.2e+006								< 210 U		< 180 U	< 180 U		< 180 U											
4-Chloroaniline	ug/kg	11000								< 210 U		< 180 U	< 180 U		< 180 U											
4-Chlorophenyl-phenylether	ug/kg									< 210 U		< 180 U	< 180 U		< 180 U											
4-Methylphenol	ug/kg	8.2e+006								< 210 U		26 J	< 180 U		< 180 U											
4-Nitroaniline	ug/kg	110000								< 1100 U		< 910 U	< 950 U		< 910 U											
4-Nitrophenol	ug/kg	2.5e+007		420	400	20.1	4 20 LI	< 7.5 U	co	< 1100 U	< 160 U	< 910 U 9.7 J	< 950 U	40.1	< 910 U	< 70 U			+		110	42	240 1	200	24	FC.
Acenaphthene Acenaphthylene	ug/kg ug/ka	4.5e+006 4.5e+006		120 95	180 100	28 J 29 J	< 38 U 11 J	< 7.5 U	62 57	33 J 55	< 160 U	9.7 J 81	30 J 12 J	18 J 15 J	18 J 10 J	< 70 U	+	 	+	+	140 170	13 16	340 J < 720 U	280 63 J	24 50	56 50
Acetophenone	ug/kg ug/kg	1.2e+007		33	100	230	110	` 1.0 0	31	23 J	- 100 0	< 180 U	15 J	133	23 J	1700		1	1		170		1200	0.50	30	
Anthracene	ug/kg	2.3e+007		300	350	78	17 J	2.3 J+	190	97	49 J	80	64	50	75	< 70 U					420	44	660 J	490	100	160
Atrazine	ug/kg	10000								< 210 U		< 180 U	< 180 U		< 180 U											
Benzaldehyde	ug/kg	820000								100 J		< 180 UJ	< 180 UJ		120 J											
Benzo(a)anthracene	ug/kg	21000		1100	1200	310	98	20 J+	980	410	180	250	300	280	270	120		1			1700	110	2000	980	380	460
Benzo(a)pyrene Benzo(b)fluoranthene	ug/kg ug/ka	2100 21000		1200 1400	1200 1400	310 420	100 220	15 24	820 920	450 J 440 J	150 J 210	290 320	330 J 370 J	280 380	280 J 310 J	160 J- 160 J-		†	1		1800 J 2400 J	89 160	1900 2300	810 1000	350 630	390 660
Benzo(g,h,i)perylene	ug/kg ug/kg	2.3e+006		1200	1200	290	140	14 J+	670	330 J	150 J	220	230 J	250	160 J	100 J-					1500 J	99	1700	740	330	400
Benzo(k)fluoranthene	ug/kg	210000		420	540	140	46	9.1	340	220 J	66 J	87	170 J	180	110 J	38 J-					770 J	51	720	490	180	230
bis-(2-chloroethoxy)methane	ug/kg	250000								< 210 U		< 180 U	< 180 U		< 180 U											
bis-(2-Chloroethyl)ether	ug/kg	1000								< 43 U		< 36 U	< 38 U		< 36 U											<u> </u>
bis-(2-Ethylhexyl)phthalate	ug/kg	160000								220 J		34 J	< 370 U		73 J				1							
Butylbenzylphthalate	ug/kg	1.2e+006								< 210 U		< 180 U	< 180 U		< 180 U											
Caprolactam	ua/ka	4e+007								< 1100 U		< 910 U	< 950 U		< 910 U											
Carbazole	ug/kg	3e+006								39 J		17 J	31 J		34 J											
Chrysene	ug/kg	2.1e+006		1200	1300	310	250	18 J+	920	400	220	260	370	400	340	200					2000	130	1900	950	490	560
Dibenzo(a,h)anthracene	ug/kg	2100		310	280	78	42	< 7.5 U	160	86 J	< 160 U	45	65 J	77	49 J	< 70 U					420 J	20	< 720 U	< 70 U	110 J	< 22 UJ
Dibenzofuran Diethylphthalate	ug/kg ug/kg	100000 6.6e+007								31 J < 210 U		< 180 U < 180 U	68 J < 180 U		22 J < 180 U											
Dimethylphthalate	ug/kg ug/kg	6.6e+007								130 J		< 180 U	< 180 U		210											
Di-n-butylphthalate	ug/kg									< 210 U		< 180 U	< 180 U		< 180 U											
Di-n-octylphthalate	ug/kg	820000								< 210 U		< 180 U	< 180 U		< 180 U											
Fluoranthene	ug/kg	3e+006		2200	2400	630	190	31 J+	1800	710	280	420	510	340	480	310					3900	250	4400	2600	820	1000
Fluorene	ug/kg	3e+006		91	150	25 J	11 J	< 7.5 U	39	32 J	< 160 U	< 36 U	33 J	< 43 U	25 J	< 70 U	1	 	+	1	98	19	300 J	220	19	45
Hexachlorobenzene Hexachlorobutadiene	ug/kg ug/kg	960 5300				1				< 43 U < 43 U		< 36 U < 36 U	< 38 U < 38 U		< 36 U < 36 U	 		 	+	1		1	 		 	
Hexachlorocyclo-pentadiene	ug/kg ug/kg	750								< 210 U		< 180 U	< 180 U		< 180 U				1							
Hexachloroethane	ug/kg	8000								< 210 U		< 180 U	< 180 U		< 180 U			1	1		1	İ				
Indeno(1,2,3-cd)pyrene	ug/kg	21000		960	1100	250	98	12 J+	560	290 J	110 J	170	210 J	200	140 J	95 J-					1300 J	85	1400	680	310	370
Isophorone	ug/kg	2.4e+006								< 210 U		< 180 U	< 180 U		< 180 U											
Naphthalene	ug/kg	17000		64	65 J	18 J	42	< 7.5 U	74	52	< 160 U	27 J	120	70	42	68 J		-	+		230	56	< 720 U	150	51	50
Nitrobenzene	ug/kg	22000 330	 			-				< 430 U < 43 U		< 360 U < 36 U	< 370 U < 38 U		< 360 U < 36 U			 	+	-	1	1	 		 	
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	ug/kg ug/kg	470000								< 43 U		< 180 U	< 180 U		< 180 U	 		 	+	+	+	<u> </u>	 		 	
Pentachlorophenol	ug/kg	4000								< 210 U		< 180 U	< 180 U		< 180 U			1	1			İ	1		1	
Phenanthrene	ug/kg	2.3e+007		1000	1200	310	220	12 J+	690	300	180	130	290	310	320	240					1800	220	2400	1700	390	560
Phenol	ug/kg	2.5e+007			· ·					< 43 U		< 36 U	16 J		< 36 U											
Pyrene	ug/kg	2.3e+006		1300	1600	450	140	24	1400	490	220	280	330	410	360	220					2300	150	3400	1600	560	670
BaP-TE	ug/kg	2100		1860	1860	488	184	20.7	1230	653	201	410	485	445	402	198		 	+	1	2770	145	2480	1080	594	542
Total High-molecular-weight PAF Total Low-molecular-weight PAH		+		11000 1700	12000 2000	3200 490	1300 300	170 14	8600 1100	3800 570	1600 230	2300 330	2900 550	2800 460	2500 490	1400 310	+	 	+	+	18000 2900	1100 370	20000 3700	9900 2900	4200 630	4700 920
Total PAHs (sum 16)	ua/ka			13000	14000	3700	1600	180	9700	4400	1800	2700	3400	3300	3000	1700			+	-	21000	1500	23000	13000	4800	5700
TUIAI FANS (SUIII 10)	lug/kg	I		13000	14000	3/00	1000	100	3100	4400	1000	2100	3400	3300	3000	1700	·		1	<u> </u>	21000	1000	23000	13000	4000	3700

			Location ID	SUSDP12-1G	SUSDP12-2K	SUSDP12-3A	SUSDP13	SUSDP14	SUSDP15	SUSDP15	SUSDP16	SUSDP17	SUSDP18	SUSDP18	SUSDP19	SUSDP19	SUSDP19-1A	SUSDP19-1B	SUSDP19-1C	SUSDP19-1C	SUSDP19-1D	SUSDP19-1G	SUSDP19-1H	SUSDP19-2D	SUSDP19-2D	SUSDP19-2M
			Sample ID Depth	SUS121G00N2 0 - 1 ft		SUS123A00N 0 - 1 ft	SUS1300N 0 - 1 ft		SUS1500N				SUS1800N 0 - 1 ft	SUS18F00N 0 - 1 ft				SUS191B00N 0 - 1 ft	SUS191C00N 0 - 1 ft	SUS191C00R 0 - 1 ft	SUS191D00N 0 - 1 ft	SUS191G00N 0 - 1 ft	SUS191H00N 0 - 1 ft	SUS192D00N 0 - 1 ft	SUS192D00R 0 - 1 ft	SUS192M00N 0 - 1 ft
			Sample Date	8/11/2017 N	1/30/2018 N	2/1/2018 N	2/5/2013 N	2/6/2013 N		1/30/2017 N	2/6/2013 N	2/6/2013 N	2/6/2013 N	1/26/2017 N	2/6/2013 N	1/30/2017 N	2/1/2017 N	2/1/2017 N	1/27/2017 N	1/27/2017 FD	8/22/2017 N	2/1/2017 N	2/1/2017 N	3/22/2017 N	3/22/2017 FD	3/23/2017 N
		Project	Турс	14	11	14	14	14		- 14	14	- IN	14	IV.	IN		14		14	10	IN .			14	10	
Analyte	Unit	Screening Criteria																								<u></u>
Diesel Range Organics (C10-C20) Oil Range Organics (C20-C36)	mg/kg mg/kg	350000																								
TPH (C9-C44)	mg/kg									533				13.2		1450										
Diesel Range Organics (C10-C20) Diesel Range Organics (C10-C28)	mg/kg mg/kg	440 440					< 90 U	< 99 UJ	170		< 19 U	< 19 U	21		< 94 U											,! I
Oil Range Organics (C20-C36) Gasoline Range Organics (C6-C10)	mg/kg ug/kg	350000 42000					340 J < 100 U	270 J < 110 UJ	720 J < 89 UJ		25 J < 88 UJ	30 J < 92 U	80 J < 110 U		360 J < 88 U											
1,1,1-Trichloroethane	ug/kg	3.6e+006					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg ug/kg	2700 2.8e+006					< 4.8 U	< 4.7 U < 4.7 U	< 4.7 U < 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U < 5.1 U		< 4.3 U < 4.3 U											!
1,1,2-Trichloroethane	ug/kg	630 16000					< 4.8 U < 4.8 U	< 4.7 U < 4.7 U	6.3 < 4.7 U		< 4.6 U < 4.6 U	< 4.3 U < 4.3 U	< 5.1 U < 5.1 U		< 4.3 U < 4.3 U											
1,1-Dichloroethane 1,1-Dichloroethene	ug/kg ug/kg	100000					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ug/kg ug/kg	93000 26000					< 4.8 U < 4.8 U	< 4.7 U	< 4.7 U < 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U < 5.1 U		< 4.3 U < 4.3 U											
1,2-Dibromo-3-chloropropane	ug/kg	64					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
1,2-Dibromoethane 1,2-Dichlorobenzene	ug/kg ug/kg	160 930000					< 4.8 U	< 4.7 U	< 4.7 U < 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U < 5.1 U		< 4.3 U < 4.3 U											! !
1,2-Dichloroethane	ug/kg	2000 6600					< 4.8 UJ < 4.8 U	< 4.7 UJ < 4.7 U	2.3 J < 4.7 U		< 4.6 UJ < 4.6 U	< 4.3 UJ < 4.3 U	< 5.1 UJ < 5.1 U		< 4.3 UJ < 4.3 U											_
1,2-Dichloropropane 1,3-Dichlorobenzene	ug/kg ug/kg	11000					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
1,4-Dichlorobenzene 1.4-Dioxane	ug/kg ug/kg	11000 24000					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U R											
2-Butanone	ug/kg	1.9e+007					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
2-Hexanone 4-Methyl-2-pentanone	ug/kg ug/kg	130000 1.4e+007					< 4.8 U	< 4.7 U < 4.7 U	< 4.7 U 2.1 J		< 4.6 U	< 4.3 U	< 5.1 U < 5.1 U		< 4.3 U < 4.3 U											
Acetone Benzene	ug/kg ug/kg	6.7e+007 5100					< 19 UJ < 4.8 U	< 19 UJ < 4.7 U	< 19 UJ < 4.7 U		< 18 UJ < 4.6 U	< 17 UJ < 4.3 U	< 20 UJ < 5.1 U		5.1 J < 4.3 U											
Bromochloromethane	ug/kg ug/kg	63000					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
Bromodichloromethane Bromoform	ug/kg ug/kg	1300 86000					< 4.8 UJ < 4.8 U	< 4.7 U < 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U < 5.1 U		< 4.3 U < 4.3 U											
Bromomethane	ug/kg	3000					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
Carbon Disulfide Carbon Tetrachloride	ug/kg ug/kg	350000 2900					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U < 5.1 U		< 4.3 U											<u>'</u> I
Chlorobenzene Chloroethane	ug/kg ug/kg	130000 5.7e+006					< 4.8 U < 4.8 UJ	< 4.7 U < 4.7 UJ	< 4.7 U < 4.7 UJ		< 4.6 U < 4.6 UJ	< 4.3 U < 4.3 UJ	< 5.1 U < 5.1 UJ		< 4.3 U < 4.3 UJ											
Chloroform	ug/kg	1400					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
Chloromethane cis-1,2-Dichloroethylene	ug/kg ug/kg	46000 230000					< 4.8 U	< 4.7 UJ < 4.7 U	< 4.7 UJ < 4.7 U		< 4.6 UJ < 4.6 U	< 4.3 UJ < 4.3 U	< 5.1 UJ < 5.1 U		< 4.3 UJ < 4.3 U											
cis-1,3-Dichloropropene Cyclohexane	ug/kg	8200 2.7e+006					< 4.8 U < 4.8 U	< 4.7 U < 4.7 U	< 4.7 U < 4.7 U		< 4.6 U < 4.6 U	< 4.3 U	< 5.1 U < 5.1 U		< 4.3 U < 4.3 U											
Dibromochloromethane	ug/kg ug/kg	39000					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
Dichlorodifluoromethane Ethylbenzene	ug/kg ug/kg	37000 25000					< 4.8 U	< 4.7 U < 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U < 5.1 U		< 4.3 U											
Isopropylbenzene	ug/kg	990000					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
m, p-Xylene Methyl Acetate	ug/kg ug/kg	240000 1.2e+008					< 9.6 U < 4.8 U	< 9.4 U < 4.7 U	< 9.4 U < 4.7 U		< 9.2 U < 4.6 U	< 8.6 U < 4.3 U	< 10 U < 5.1 U		< 8.7 U < 4.3 U											!
Methyl tert-Butyl Ether (MTBE) Methylcyclohexane	ug/kg ug/kg	210000 2.7e+006					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U < 5.1 U		< 4.3 U											
Methylene Chloride	ug/kg ug/kg	320000					< 4.8 UJ	< 4.7 UJ	< 4.7 UJ		< 4.6 UJ	< 4.3 UJ	< 5.1 UJ		< 4.3 UJ											
o-Xylene Styrene	ug/kg ug/kg	280000 3.5e+006	1				< 4.8 U	< 4.7 U	< 4.7 U				< 5.1 U < 5.1 U		< 4.3 U											
Tetrachloroethylene Toluene	ug/kg ug/kg	39000 4.7e+006					< 4.8 U	< 4.7 U < 4.7 U	< 4.7 U < 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U < 5.1 U		< 4.3 U < 4.3 U											
trans-1,2-Dichloroethene	ug/kg	2.3e+006					< 4.8 U	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
trans-1,3-Dichloropropene Trichloroethene	ug/kg ug/kg	8200 1900					< 4.8 U < 4.8 U	< 4.7 U < 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U < 5.1 U		< 4.3 U < 4.3 U											
Trichlorofluoromethane	ug/kg	3.5e+007					< 4.8 UJ	< 4.7 U	< 4.7 U		< 4.6 U	< 4.3 U	< 5.1 U		< 4.3 U											
Vinyl Chloride Xylenes (total)	ug/kg ug/kg	1700 250000					< 4.8 U < 9.6 U	< 4.7 U < 9.4 U	< 4.7 U < 9.4 U		< 4.6 U < 9.2 U	< 4.3 U < 8.6 U	< 5.1 U < 10 U		< 4.3 U < 8.7 U											,! I
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	ug/kg ug/kg	20000 35000										< 37 U	< 73 U 9.6 J		< 180 U < 180 U		1									
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006										< 7.5 U	< 15 U		< 37 U											
2,3,4,6-Tetrachlorophenol 2.4.5-Trichlorophenol	ug/kg ug/kg	2.5e+006 8.2e+006										< 37 U	< 73 U < 73 U		< 180 U < 180 U											
2,4,6-Trichlorophenol	ug/kg	82000										< 37 U	< 73 U		< 180 U											
2,4-Dichlorophenol 2,4-Dimethylphenol	ug/kg ug/kg	250000 1.6e+006										< 7.5 U < 37 U	< 15 U < 73 U		< 37 U < 180 U											
2,4-Dinitrophenol 2,4-Dinitrotoluene	ug/kg ug/kg	160000 7400										< 190 U < 37 U	< 370 U < 73 U		< 950 U < 180 U											_
2,6-Dinitrotoluene	ug/kg	1500										< 37 U	< 73 U		< 180 U											
2-Chloronaphthalene 2-Chlorophenol	ug/kg ug/kg	6e+006 580000										< 7.5 U < 37 U	< 15 U < 73 U		< 37 U < 180 U											
2-Methylnaphthalene	ug/kg	300000										6.0 J	23		52											
2-Methylphenol 2-Nitroaniline	ug/kg ug/kg	4.1e+006 800000										< 37 U < 190 U	< 73 U < 370 U		< 180 U < 950 U											
2-Nitrophenol	ug/kg											< 37 U	< 73 U		< 180 U											

			Location ID	SUSDP12-1G	SUSDP12-2K	SUSDP12-3A	SUSDP13	SUSDP14	SUSDP15	SUSDP15	SUSDP16	SUSDP17	SUSDP18	SUSDP18	SUSDP19	SUSDP19	SUSDP19-1A	SUSDP19-1B	SUSDP19-1C	SUSDP19-1C	SUSDP19-1D	SUSDP19-1G	SUSDP19-1H	SUSDP19-2D	SUSDP19-2D	SUSDP19-2M
			Sample ID	SUS121G00N2	SUS122K00N	SUS123A00N		SUS1400N	SUS1500N	SUS15F00N	SUS1600N	SUS1700N	SUS1800N	SUS18F00N	SUS1900N	SUS19F00N	SUS191A00N			SUS191C00R		SUS191G00N	SUS191H00N	SUS192D00N	SUS192D00R	SUS192M00N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.17 - 1 ft	0.17 - 1 ft	0 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0.83 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date Type	8/11/2017 N	1/30/2018 N	2/1/2018 N	2/5/2013 N	2/6/2013 N	2/6/2013 N	1/30/2017 N	2/6/2013 N	2/6/2013 N	2/6/2013 N	1/26/2017 N	2/6/2013 N	1/30/2017 N	2/1/2017 N	2/1/2017 N	1/27/2017 N	1/27/2017 FD	8/22/2017 N	2/1/2017 N	2/1/2017 N	3/22/2017 N	3/22/2017 FD	3/23/2017 N
		Project	Туре	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	FD	IN	IN	IN	IN	FD	IN
		Screening																								
Analyte	Unit	Criteria																								
3,3'-Dichlorobenzidine	ug/kg	5100										< 37 U	< 73 U		< 180 U											
3-Nitroaniline	ug/kg	110000										< 190 U	< 370 U		< 950 U											
4,6-Dinitro-2-methylphenol	ug/kg	6600										< 190 U	< 370 U		< 950 U											
4-Bromophenyl-phenylether	ug/kg	0.0000										< 37 U	< 73 U	-	< 180 U											
4-Chloro-3-methylphenol 4-Chloroaniline	ug/kg ug/kg	8.2e+006 11000										< 37 U	< 73 U < 73 U		< 180 U < 180 U											
4-Chlorophenyl-phenylether	ug/kg ug/kg	11000										< 37 U	< 73 U		< 180 U											
4-Methylphenol	ug/kg	8.2e+006										< 37 U	< 73 U		< 180 U											
4-Nitroaniline	ug/kg	110000										< 190 U	< 370 U	İ	< 950 U							1				
4-Nitrophenol	ug/kg	2.5e+007										< 190 U	< 370 U		< 950 U											
Acenaphthene	ug/kg	4.5e+006		70	9.5	51	17 J	57	46	35 J	2.9 J	1.4 J	5.0 J	3.1 J	230	81	23 J	4.2 J	130	66 J	160 J	320	52	89 J	150	55 J
Acenaphthylene	ug/kg	4.5e+006		150	21	48	29 J	31 J	33 J	27 J	2.0 J	< 7.5 U	7.2 J	3.6 J	150	58 J	34 J	7.6 J	68 J	81	280	110	15 J	64 J	200 J	39 J
Acetophenone	ug/kg	1.2e+007										3.5 J	47 J	1	< 180 U							ļ				
Anthracene	ug/kg	2.3e+007		310	45	150 J+	84	160	160	120	5.5 J	3.4 J	12 J	10	720	230	99	5.5 J	420 J+	300 J+	660	1100	190	330	680	160
Atrazine	ug/kg	10000										< 37 U	< 73 U		< 180 U											
Benzaldehyde	ug/kg	820000 21000		4000	400	000 1	440	200 1	550.1	200	2.7	19 J	< 73 UJ	0.5	< 180 UJ	4000	200		4000 1	4700 1	0000	4000	700	4000 1	0700 1	0.40
Benzo(a)anthracene Benzo(a)pyrene	ug/kg ug/ka	21000		1000 820	130 130	260 J+ 220 J+	440 500 J	680 J 700	550 J 440 J	360 320	37 41	12 11	80 87 J	65 54	2900 J 2800 J	1000	380 430	60 67	1800 J+ 1800 J+	1700 J+ 1700 J+	2300	4200 3800	780 670	1300 J 1200 J	2700 J 2300 J	640 610
Benzo(b)fluoranthene	ug/kg ug/kg	21000		1400	190	530 J+	650 J	820	540 J	420	50	15	150 J	76	3300 J	1400	490	74	2600 J+	2100 J+	2800	4700	920	1600 J	2900 J	730
Benzo(g,h,i)perylene	ug/kg	2.3e+006		810	110	220 J+	340 J	570	380 J	250	40	13	90 J	43	2100 J	900	420	52	1500 J+	1300 J+	2500	2700	570	1100 J	2100 J	560
Benzo(k)fluoranthene	ug/kg	210000		350	71	180 J	200 J	290	310 J	160	21	7.8	36 J	36	1100 J	460	220	30 J	880 J+	920 J+	860	1900	280	500 J	1200 J	330
bis-(2-chloroethoxy)methane	ug/kg	250000							0.00			< 37 U	< 73 U		< 180 U					0200.				0000	.2000	
bis-(2-Chloroethyl)ether	ug/kg	1000										< 7.5 U	< 15 U		< 37 U											
bis-(2-Ethylhexyl)phthalate	ug/kg	160000										12 J	16 J		34 J											
Butylbenzylphthalate	ug/kg	1.2e+006										15 J	< 73 U		< 180 U											
Caprolactam	ug/kg	4e+007										< 190 U	< 370 U	İ	< 950 U							1				
Carbazole	ug/kg	3e+006										< 7.5 U	8.2 J		260											
Chrysene	ug/kg	2.1e+006		1100	130	430	500	670 J	590 J	360	49	25	190	66	2800 J	1100	390	60	1800 J+	1700 J+	2300	3900	810	1300 J	2600 J	630
Dibenzo(a,h)anthracene	ug/kg	2100		250	36	63	95 J	150	90 J	68	9.5	2.9 J	25 J	9.7	690 J	240	90	14 J	360 J+	340 J+	610	710	130	280	560	140
Dibenzofuran	ug/kg	100000										4.1 J	< 73 U		120 J											
Diethylphthalate	ug/kg	6.6e+007										8.2 J	19 J		< 180 U											
Dimethylphthalate	ug/kg	6.6e+007										< 37 U	< 73 U		< 180 U											
Di-n-butylphthalate	ug/kg	8.2e+006										5.6 J	< 73 U	-	< 180 U											
Di-n-octylphthalate	ug/kg	820000		2400	200	000 1	700	4400 1	4500	CEO	67	< 37 U	< 73 U	440	< 180 U	4000	400	64	2200	2700	4200	7700	4400	2500 1	E400 I	4200
Fluoranthene Fluorene	ug/kg ug/kg	3e+006 3e+006	+	2100 46	260 7.1 J	800 J+ 49 J+	700 13 J	1400 J 45	1500 55	650 38	67 2.1 J	27 1.5 J	200 4.8 J	110 2.6 J	6200 220	1800 84	460 25 J	4.7 J	3200 110	2700 60 J	4300 160 J	7700 350	1400 56	2500 J 77 J	5100 J 170	1200 55 J
Hexachlorobenzene	ug/kg	960	+	70	7.13	73 37	133	73	- 55	30	2.10	< 7.5 U	< 15 U	2.0 0	< 37 U	U-4	200	7.7 3	110	000	100 0	330	- 30	,,,	170	55.0
Hexachlorobutadiene	ug/kg	5300										< 7.5 U	< 15 U		< 37 U			1								
Hexachlorocyclo-pentadiene	ug/kg	750										< 37 U	< 73 U		< 180 U											
Hexachloroethane	ug/kg	8000										< 37 U	< 73 U		< 180 U											
Indeno(1,2,3-cd)pyrene	ug/kg	21000		750	100	220 J+	310 J	490	340 J	230	33	9.8	74 J	38	1900 J	770	330	40	1200 J+	1200 J+	2000	2500	420	960 J	1900 J	480
Isophorone	ug/kg	2.4e+006		Ţ.								< 37 U	< 73 U		< 180 U											
Naphthalene	ug/kg	17000		140	18	220	26 J	28 J	67	40	4.3 J	6.2 J	16	3.5 J	56	46 J	21 J	6.6 J	40 J	26 J	< 230 U	74 J	41	< 140 U	68 J	31 J
Nitrobenzene	ug/kg	22000								-	1	< 75 U	< 150 U	1	< 370 U	1		1	1	1	1	.	1	1		
N-Nitroso-di-n-propylamine	ug/kg	330					-					< 7.5 U	< 15 U	-	< 37 U	 		 	-	-						
N-Nitrosodiphenylamine Pentachlorophenol	ug/kg ug/ka	470000 4000	+				 				1	< 37 U	< 73 U < 73 U	+	< 180 U < 180 U	1		+	1	1	1	 				
Pentacniorophenoi Phenanthrene	ug/kg ua/ka	2.3e+007	+	720	130	570 J+	270	610 J	540	410	35	20	< 73 U 80	42	2600	810	310	31 J	1600 J+	1200 J+	2000	4000	640	1300 J	2300 J	500
Phenol	ug/kg ua/ka	2.5e+007 2.5e+007	+	120	130	31037	210	0103	340	410	33	< 7.5 U	8.7 J	72	16 J	010	310	313	< 380 U	< 350 U	2000	4000	040	1300 3	2300 3	300
Pyrene	ug/kg	2.3e+006	+	1400	190	460 J+	480	910 J	870 J	560	48	17	130	85	3600 J	1700	710	85	2600 J+	2000 J+	3200	6500	1200	1900 J	3800 J	920
BaP-TE	ug/kg	2100		1390	209	386	738	1050	677	491	62.8	17.7	143	82.0	4310	1560	643	98.8	2730	2550	3630	5670	1020	1870	3620	939
Total High-molecular-weight PAH				10000	1300	3400	4200	6700	5600	3400	400	140	1100	580	27000	10000	3900	550	18000	16000	23000	39000	7200	13000	25000	6200
Total Low-molecular-weight PAH				1400	230	1100	440	930	900	670	52	33	130	65	4000	1300	510	60	2400	1700	3300	6000	990	1900	3600	840
Total PAHs (sum 16)	ug/kg			11000	1600	4500	4700	7600	6500	4000	450	170	1200	650	31000	12000	4400	610	20000	17000	26000	45000	8200	15000	29000	7100

Table 4-2

Surface Soil Results VOCs, SVOCs, and TPH Fractions Concentrations in Surface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP19-2N	SUSDP19-20	SUSDP19-2P	SUSDP19-3S	SUSDP19-3V S	SUSDP19-4N	SUSDP19-4NW	SUSDP19-4W	SUSDP19-5N	SUSDP19-5NW	SUSDP19-5W	SUSDP19-6N	SUSDP19-6NW	SUSDP19-6W	SUSDP19-7N	SUSDP19-7NW	SUSDP19-7W	SUSDP20	SUSDP20	SUSDP21	SUSDP21
			Sample ID	SUS192N00N	SUS192000N	SUS192P00N	SUS193S00N	SUS193V00N S	US194N00N	SUS194NW00N	SUS194W00N	SUS195N00N	SUS195NW00N	SUS195W00N	SUS196N00N	SUS196NW00N	SUS196W00N	SUS197N00N	SUS197NW00N	SUS197W00N	SUS2000N	SUS20F00N	SUS2100N	SUS21F00N
			Depth Sample Date	0 - 1 ft 3/23/2017	0 - 1 ft 3/23/2017	0 - 1 ft 3/23/2017	0 - 1 ft 8/24/2017	0 - 1 ft 8/24/2017	0 - 1 ft 1/26/2018	0 - 1 ft 2/1/2018	0 - 1 ft 2/1/2018	0 - 1 ft 2/21/2018	0 - 1 ft 2/21/2018	0 - 1 ft 2/21/2018	0 - 1 ft 3/15/2018	0 - 1 ft 3/15/2018	0 - 1 ft 3/16/2018	0 - 1 ft 4/5/2018	0 - 1 ft 4/5/2018	0 - 1 ft 4/5/2018	0.42 - 1 ft 2/7/2013	0 - 1 ft 1/27/2017	1 - 1.75 ft 2/7/2013	0 - 1 ft 1/27/2017
			Туре	N	N	N	N	N N	N	N N	N N	N	N	N N	N	N N	N	N	N N	N N	N	N	N	N N
		Project Screening																						
Analyte		Criteria																						
Diesel Range Organics (C10-C20)	mg/kg	440																						
Oil Range Organics (C20-C36) TPH (C9-C44)	mg/kg mg/kg	350000				-												1		+		47.8		685
Diesel Range Organics (C10-C20)	mg/kg	440																			< 94 U		80 J	
Diesel Range Organics (C10-C28)	mg/kg	440			-															1	000.1		040.1	<u> </u>
Oil Range Organics (C20-C36) Gasoline Range Organics (C6-C10)		350000 42000																			230 J < 100 UJ		340 J < 90 UJ	
1,1,1-Trichloroethane	ug/kg 3	3.6e+006																			< 4.8 U		< 4.4 U	
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2700 2.8e+006																			< 4.8 U < 4.8 U		< 4.4 U < 4.4 U	
1,1,2-Trichloroethane	ug/kg 2	630																			< 4.8 U		< 4.4 U	1
1,1-Dichloroethane	ug/kg	16000																			< 4.8 U		< 4.4 U	
1,1-Dichloroethene 1,2,3-Trichlorobenzene		100000 93000																			< 4.8 U < 4.8 U		< 4.4 U < 4.4 U	
1,2,4-Trichlorobenzene		26000																			< 4.8 U		< 4.4 U	1
1,2-Dibromo-3-chloropropane	ug/kg	64																			< 4.8 U		< 4.4 U	
1,2-Dibromoethane 1,2-Dichlorobenzene	ug/kg ug/kg	160 930000			-						 						1			+	< 4.8 U < 4.8 U	+	< 4.4 U < 4.4 U	
1,2-Dichloroethane	ug/kg ug/kg	2000															<u> </u>				< 4.8 UJ		< 4.4 UJ	
1,2-Dichloropropane	ug/kg	6600																			< 4.8 U		< 4.4 U	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	3 3	11000 11000			-						 						1			+	< 4.8 U < 4.8 U	+	< 4.4 U < 4.4 U	\vdash
1,4-Dioxane		24000																			R		R	
2-Butanone		1.9e+007																			< 4.8 U		< 4.4 U	
2-Hexanone 4-Methyl-2-pentanone		130000 1.4e+007																1		+	< 4.8 U < 4.8 U		< 4.4 U < 4.4 U	1
Acetone		6.7e+007																			< 19 UJ		7.6 J	
Benzene	ug/kg	5100																			< 4.8 U		< 4.4 U	ļ
Bromochloromethane Bromodichloromethane	ug/kg ug/kg	63000 1300																			< 4.8 U < 4.8 U		< 4.4 U < 4.4 U	\vdash
Bromoform	ug/kg	86000																			< 4.8 U		< 4.4 U	
Bromomethane	ug/kg	3000 350000																		1	< 4.8 U < 4.8 UJ		< 4.4 U < 4.4 UJ	
Carbon Disulfide Carbon Tetrachloride	ug/kg ug/kg	2900																			< 4.8 U		< 4.4 UJ	
Chlorobenzene		130000																			< 4.8 U		< 4.4 U	
Chloroethane Chloroform	ug/kg 5 ug/kg	5.7e+006 1400																1		+	< 4.8 UJ < 4.8 U		< 4.4 UJ < 4.4 U	1
Chloromethane	ug/kg	46000																			< 4.8 UJ		< 4.4 UJ	
cis-1,2-Dichloroethylene		230000																		1	< 4.8 U		< 4.4 U	ļ
cis-1,3-Dichloropropene Cyclohexane	ug/kg ug/kg 2	8200 2.7e+006																			< 4.8 U < 4.8 U		< 4.4 U < 4.4 U	
Dibromochloromethane	ug/kg	39000																			< 4.8 U		< 4.4 U	
Dichlorodifluoromethane Ethylbenzene		37000 25000																		+	< 4.8 U < 4.8 U		< 4.4 U < 4.4 U	
Isopropylbenzene		990000																			< 4.8 U		< 4.4 U	
m, p-Xylene		240000																			< 9.5 U		< 8.7 U	
Methyl Acetate Methyl tert-Butyl Ether (MTBE)		1.2e+008 210000																1		+	< 4.8 U < 4.8 U		< 4.4 U < 4.4 U	1
Methylcyclohexane		2.7e+006																			< 4.8 U		< 4.4 U	
Methylene Chloride		320000																		1	< 4.8 UJ < 4.8 U		< 4.4 UJ < 4.4 U	<u> </u>
o-Xylene Styrene		280000 3.5e+006									 						1			1	< 4.8 U		< 4.4 U	+
Tetrachloroethylene	ug/kg	39000	_										_						_		< 4.8 U		0.75 J	
Toluene trans-1,2-Dichloroethene		4.7e+006 2.3e+006												-							< 4.8 U < 4.8 U		< 4.4 U < 4.4 U	+
trans-1,3-Dichloropropene	ug/kg	8200																			< 4.8 U		< 4.4 U	
Trichloroethene	ug/kg	1900																			< 4.8 U		< 4.4 U	igspace
Trichlorofluoromethane Vinyl Chloride	ug/kg 3 ug/kg	3.5e+007 1700						 			+						 			+	< 4.8 U < 4.8 U		< 4.4 U < 4.4 U	\vdash
Xylenes (total)	ug/kg	250000																			< 9.5 U		< 8.7 U	
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene		20000 35000			-	1											1			1				<u> </u>
2,2'-oxybis(1-Chloropropane)		4.7e+006									<u> </u>						<u> </u>			1				
2,3,4,6-Tetrachlorophenol	ug/kg 2	2.5e+006																						
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		82000			-						 						1			+		+		\vdash
2,4-Dichlorophenol		250000															<u> </u>							
2,4-Dimethylphenol	ug/kg 1	1.6e+006							-	-														
2,4-Dinitrophenol 2,4-Dinitrotoluene	ug/kg ug/kg	160000 7400									+						 			+				
2,6-Dinitrotoluene	ug/kg	1500																						
2-Chloronaphthalene	ug/kg	6e+006																						
2-Chlorophenol 2-Methylnaphthalene		580000 300000			1	1		 			+			+						1	+	1		
2-Methylphenol	ug/kg 4	4.1e+006	_																					
2-Nitroaniline		800000																		1				
2-Nitrophenol	ug/kg 2	2.5e+007			1	1				I	1			1		l				I				1 1

			Location ID	SUSDP19-2N	SUSDP19-20	SUSDP19-2P	SUSDP19-3S	SUSDP19-3V	SUSDP19-4N	SUSDP19-4NW	SUSDP19-4W	SUSDP19-5N	SUSDP19-5NW	SUSDP19-5W	SUSDP19-6N	SUSDP19-6NW	SUSDP19-6W	SUSDP19-7N	SUSDP19-7NW	SUSDP19-7W	SUSDP20	SUSDP20	SUSDP21	SUSDP21
			Sample ID	SUS192N00N	SUS192000N	SUS192P00N	SUS193S00N	SUS193V00N	SUS194N00N	SUS194NW00N	SUS194W00N	SUS195N00N	SUS195NW00N	SUS195W00N	SUS196N00N	SUS196NW00N	SUS196W00N	SUS197N00N	SUS197NW00N	SUS197W00N	SUS2000N	SUS20F00N	SUS2100N	SUS21F00N
			Depth		0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.42 - 1 ft	0 - 1 ft	1 - 1.75 ft	0 - 1 ft
			Sample Date		3/23/2017 N	3/23/2017 N	8/24/2017 N	8/24/2017 N	1/26/2018 N	2/1/2018 N	2/1/2018 N	2/21/2018 N	2/21/2018 N	2/21/2018 N	3/15/2018 N	3/15/2018 N	3/16/2018 N	4/5/2018 N	4/5/2018 N	4/5/2018 N	2/7/2013 N	1/27/2017 N	2/7/2013 N	1/27/2017 N
		Project	Турс		.,		.,	,,	.,	.,	- '	- '		.,	.,	.,	.,		, , ,				.,,	
		Screening																						1
Analyte	Unit	Criteria																						
3,3'-Dichlorobenzidine	ug/kg	5100									1							1						
3-Nitroaniline 4,6-Dinitro-2-methylphenol	ug/kg ug/kg	110000 6600																						\vdash
4-Bromophenyl-phenylether	ug/kg	0000																						
4-Chloro-3-methylphenol	ug/kg	8.2e+006																						
4-Chloroaniline	ug/kg	11000																						
4-Chlorophenyl-phenylether	ug/kg																							-
4-Methylphenol	ug/kg																							
4-Nitroaniline 4-Nitrophenol	ug/kg ug/kg	110000 2.5e+007																						
Acenaphthene	ug/kg ug/kg	4.5e+007		42 J	3.4 J	84	20 J	< 70 U	< 7.2 U	< 7.1 U	< 75 U	56	< 28 U	< 77 U	2700	< 160 U	< 7.2 U	230	66	2.9 J	< 38 U	1.6 J	260	150
Acenaphthylene	ug/kg ug/kg	4.5e+006	1	43 J	1.2 J	44	110	< 70 U	< 7.2 U	28	33 J	17	< 28 U	< 77 U	190	< 160 U	< 7.2 U	53 J	81	< 7.0 U	22 J	2.4 J	48 J	41
Acetophenone	ug/kg	1.2e+007									1					1222								
Anthracene	ug/kg	2.3e+007		< 360 U	6.3 J	330	120	< 70 U	< 7.2 U	50	62 J	90	34 J+	66 J	8400	< 160 U	< 7.2 U	660	320	8.1	44	4.2 J	780 J	500
Atrazine	ug/kg	10000																						-
Benzaldehyde	ug/kg	820000		400.1		4000	252	70.11				4=0	400.1		4 4000	. 100 ! !		4000			440	- 10	4000 1	
Benzo(a)anthracene	ug/kg	21000 2100		130 J 130 J	27 29	1000 1000	250 310	< 70 U < 70 U	5.9 J 6.6 J	46 140	210 200	170 150	180 J+ 180 J+	230	14000 11000	< 160 U < 160 U	2.7 J 2.2 J	1900 1600	900 1100	34 31	110 80	19 23	1900 J 1600 J	2000 1700
Benzo(a)pyrene Benzo(b)fluoranthene	ug/kg ug/kg	21000		130 J	36	1300	340	< 70 U	9.6	280	280	220	260 J+	220 300	12000	< 160 U	3.9 J	2000	1400	37	200	46	1900 J	2100
Benzo(g,h,i)perylene	ug/kg ug/ka	2.3e+006		190 J	27	970	360	< 70 U	5.9 J	64	170	120	190 J+	210	7500	< 160 U	2.6 J	1200	1100	31	110	25	1200 J	1500
Benzo(k)fluoranthene	ug/kg	210000		< 360 U	19	480	140	< 70 U	3.0 J	44	92	63	89 J+	120	5500	< 160 U	< 7.2 U	760	520	16	55	14	770 J	760
bis-(2-chloroethoxy)methane	ug/kg	250000																						1
bis-(2-Chloroethyl)ether	ug/kg	1000																						$\overline{}$
bis-(2-Ethylhexyl)phthalate	ug/kg	160000																						
Butylbenzylphthalate	ug/kg	1.2e+006																						1 1
Caprolactam	ug/kg	4e+007																						
Carbazole	ug/kg	3e+006																						
Chrysene	ug/kg	2.1e+006		140 J	31	1100	280	< 70 U	5.8 J	130	200	150	160 J+	240	12000	< 160 U	3.1 J	1900	1400	32	220	34	1800 J	1900
Dibenzo(a,h)anthracene	ug/kg	2100		< 360 U	6.9 J	240	91	< 70 U	< 7.2 U	23	72 J	34	59 J+	84	2200	< 160 U	< 7.2 U	380	290	7.6	35 J	7.0 J	350 J	340
Dibenzofuran	ug/kg	100000																						
Diethylphthalate	ug/kg	6.6e+007									1							1						
Dimethylphthalate	ug/kg ug/kg	6.6e+007 8.2e+006																						
Di-n-butylphthalate Di-n-octylphthalate	ug/kg ug/kg	820000		1	1	1	†			1														$\overline{}$
Fluoranthene	ug/kg	3e+006		210 J	52	2000	440	< 70 U	9.3	120	370	410	270 J+	350	29000	< 160 U	3.9 J	3200	1700	54	200	31	5000	2900
Fluorene	ug/kg	3e+006		< 360 U	2.2 J	93	25 J	< 70 U	< 7.2 U	5.4 J	32 J	65	< 28 U	< 77 U	2800	< 160 U	< 7.2 U	210	58	2.2 J	24 J	1.8 J	300 J	120
Hexachlorobenzene	ug/kg	960																						lacksquare
Hexachlorobutadiene	ug/kg	5300	1	1	1	1	1	 		1	1							1		1				\longleftarrow
Hexachlorocyclo-pentadiene	ug/kg ug/kg	750 8000	-	1	1	1	 	-		†	1							-		-				\vdash
Hexachloroethane Indeno(1,2,3-cd)pyrene	ug/kg ug/kg	21000		120 J	23	790	300	< 70 U	7.1 J	66	170	110	170 J+	170	7100	< 160 U	2.1 J	1100	900	23	85	20	1100 J	1300
Isophorone	ug/kg ug/kg	2.4e+006	1	1200	1 -3	. 30		- , , , ,		30	1 .,,		1.50+		7.00	- 100 0	2.10		550				1.300	
Naphthalene	ug/kg	17000		< 360 U	3.9 J	30 J	20 J	< 70 U	< 7.2 U	< 7.1 U	< 75 U	11	< 28 U	< 77 U	410	< 160 U	< 7.2 U	47 J	61	1.6 J	67	6.1 J	73	96
Nitrobenzene	ug/kg	22000																		1				\vdash
N-Nitroso-di-n-propylamine	ug/kg	330		ļ	ļ	ļ	ļ			ļ	ļ	ļ					ļ							\vdash
N-Nitrosodiphenylamine	ug/kg	470000		 	 	 		 		<u> </u>	+	+					+	1		 				\vdash
Pentachlorophenol Phenanthrene	ug/kg ug/ka	4000 2.3e+007		79 J	22	950	160	< 70 U	5.7 J	12	170	180	110 J+	200	26000	< 160 U	3.0 J	2400	770	35	260	28	3600	1800
Phenol	ug/kg ug/kg	2.5e+007		193		330	100	` 100	3.7 3	12	170	100	110 57	200	20000	\ 100 U	3.0 3	2400	770	33	200	20	3000	1000
Pyrene	ug/kg	2.3e+006		140 J	41	1600	340	< 70 U	9.8	960	290	290	330 J+	420	20000	< 160 U	3.6 J	3800	1600	62	160	37	2900 J	2900
BaP-TE	ug/kg	2100		169	44.7	1550	492	< 70.0 U	8.90	203	339	235	301	375	16600	< 160 U	3.07	2490	1720	48.2	155	38.7	2450	2590
Total High-molecular-weight PAI				1200	290	10000	2900	< 70 U	63	1900	2100	1700	1900	2300	120000	< 160 U	24	18000	11000	330	1300	260	19000	17000
Total Low-molecular-weight PAF		1	1	160	39	1500	460	< 70 U	5.7	95	300	420	140	270	41000	< 160 U	3.0	3600	1400	50	420	44	5100	2700
Total PAHs (sum 16)	ug/kg	1		1400	330	12000	3300	< 70 U	69	2000	2400	2100	2000	2600	160000	< 160 U	27	21000	12000	380	1700	300	24000	20000

Table 4-2

Surface Soil Results

	Laastian ID	L CHCDD04 4C	CHCDD34 3C	CHCDD34 3M	CHEDDA 30	CHCDD34 FW	CHCDD34 6W	CHCDD33	CHEDDOS	CHEDDO	CHCDD37	CHCDD30	CHCDD44	CHCDD43	CLICDD42 2 I	CLICDD42 2M	CHCDD43 3D	CHCDD42 2T C	TIEDDA2 4EW	CLICDDA2 FAIM	CHCDD44	CLICDDAG	CHCDD40
	Sample ID		SUS213G00N	SUSDP21-3M SUS213M00N	SUS213Q00N	SUS215W00N	SUSDP21-6W SUS216W00N	SUSDP22 SUS2200N	SUS2300N	SUSDP24 SUS2400N	SUSDP37 SUS37F00N	SUSDP39 SUS39F00N	SUSDP41 SUS41F00N		SUSDP43-2J SUS432J00N	SUS432M00N	SUS433P00N	SUSDP43-3T S SUS433T00N S	SUS434SW00N	SUSDP43-5NW SUS435NW00N		SUSDP48 SUS4800N	SUSDP48 SUS4800R
	Depth Samula Data	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	1.5 - 2.5 ft	0 - 1 ft	0 - 1 ft
	Sample Date Type	8/24/2017 N	8/28/2017 N	8/28/2017 N	8/24/2017 N	1/26/2018 N	2/21/2018 N	6/13/2013 N	2/7/2013 N	2/7/2013 N	1/25/2017 N	1/25/2017 N	1/24/2017 N	1/26/2017 N	8/8/2017 N	8/9/2017 N	1/30/2018 N	1/30/2018 N	2/23/2018 N	3/15/2018 N	1/27/2017 N	1/26/2017 N	1/26/2017 FD
Project	_																						
Analyte Unit Criteria	9																						1
Diesel Range Organics (C10-C20) mg/kg 440																							
Oil Range Organics (C20-C36) mg/kg 350000 TPH (C9-C44) mg/kg											189	2000	914	13400							362		
Diesel Range Organics (C10-C20) mg/kg 440								< 18 U	< 18 U	< 97 U	103	2000	J14	13400							302	34	25
Diesel Range Organics (C10-C28) mg/kg 440 Oil Range Organics (C20-C36) mg/kg 350000								69	26.1	240 J												140 200	100 180
Oil Range Organics (C20-C36) mg/kg 350000 Gasoline Range Organics (C6-C10) ug/kg 42000								< 120 U	26 J < 88 UJ	< 110 UJ												< 120 U	< 120 U
1,1,1-Trichloroethane ug/kg 3.6e+006	3							< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
1,1,2,2-Tetrachloroethane ug/kg 2700 1,1,2-Trichloro-1,2,2-trifluoroethane ug/kg 2.8e+006	3							< 3.9 U < 3.9 U	< 4.1 U	< 5.1 U < 5.1 U												< 4.4 U	< 4.7 U < 4.7 U
1,1,2-Trichloroethane ug/kg 630								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
1,1-Dichloroethane ug/kg 16000 1,1-Dichloroethene ug/kg 100000								< 3.9 U < 3.9 U	< 4.1 U	< 5.1 U < 5.1 U												< 4.4 U	< 4.7 U < 4.7 U
1,2,3-Trichlorobenzene ug/kg 93000								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
1,2,4-Trichlorobenzene ug/kg 26000 1,2-Dibromo-3-chloropropane ug/kg 64	_							< 3.9 U < 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
1,2-Dibromo-3-chloropropane ug/kg 64 1,2-Dibromoethane ug/kg 160								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
1,2-Dichlorobenzene ug/kg 930000								< 3.9 U	< 4.1 U	< 5.1 U							· ·					< 4.4 U	< 4.7 U
1,2-Dichloroethane ug/kg 2000 1,2-Dichloropropane ug/kg 6600								< 3.9 U < 3.9 U	< 4.1 UJ < 4.1 U	< 5.1 UJ < 5.1 U												< 4.4 U	< 4.7 U < 4.7 U
1,3-Dichlorobenzene ug/kg 11000								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
1,4-Dichlorobenzene ug/kg 11000 1,4-Dioxane ug/kg 24000								< 3.9 U < 780 U	< 4.1 U	< 5.1 U R											+	< 4.4 U	< 4.7 U
2-Butanone ug/kg 1.9e+007	,							< 3.9 U	< 4.1 U	< 5.1 U												R	R
2-Hexanone ug/kg 130000 4-Methyl-2-pentanone ug/kg 1.4e+007	,							< 3.9 U < 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
Acetone ug/kg 6.7e+007								14 J	< 16 UJ	< 21 UJ												R R	R R
Benzene ug/kg 5100								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
Bromochloromethane ug/kg 63000 Bromodichloromethane ug/kg 1300								< 3.9 U < 3.9 U	< 4.1 U	< 5.1 U < 5.1 U												< 4.4 U	< 4.7 U < 4.7 U
Bromoform ug/kg 86000								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
Bromomethane ug/kg 3000 Carbon Disulfide ug/kg 350000								< 3.9 U < 3.9 U	< 4.1 U < 4.1 UJ	< 5.1 U < 5.1 UJ												R < 4.4 U	R < 4.7 U
Carbon Tetrachloride ug/kg 2900								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
Chlorobenzene ug/kg 130000 Chloroethane ug/kg 5.7e+006								< 3.9 U < 3.9 U	< 4.1 U < 4.1 UJ	< 5.1 U < 5.1 UJ												< 4.4 U	< 4.7 U
Chloroform ug/kg 1400	,							< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
Chloromethane ug/kg 46000 cis-1,2-Dichloroethylene ug/kg 230000								< 3.9 U < 3.9 U	< 4.1 UJ < 4.1 U	< 5.1 UJ < 5.1 U												< 4.4 U	< 4.7 U < 4.7 U
cis-1,3-Dichloropropene ug/kg 8200								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
Cyclohexane ug/kg 2.7e+006 Dibromochloromethane ug/kg 39000	6							< 3.9 U < 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
Dibromochloromethane ug/kg 39000 Dichlorodifluoromethane ug/kg 37000								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U < 4.7 U
Ethylbenzene ug/kg 25000								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
Isopropylbenzene ug/kg 990000 m, p-Xylene ug/kg 240000	+							< 3.9 U < 7.8 U	< 4.1 U	< 5.1 U < 10 U												< 4.4 U	< 4.7 U < 4.7 U
Methyl Acetate ug/kg 1.2e+008								< 3.9 U	< 4.1 U	< 5.1 U												< 22 U	< 23 U
Methyl tert-Butyl Ether (MTBE) ug/kg 210000 Methylcyclohexane ug/kg 2.7e+006								< 3.9 U < 3.9 U	< 4.1 U	< 5.1 U < 5.1 U												< 4.4 U	< 4.7 U
Methylene Chloride ug/kg 320000	, <u> </u>							< 3.9 U	< 4.1 UJ	< 5.1 UJ												< 4.4 U	< 4.7 U
o-Xylene								< 3.9 U < 3.9 U	0.96 J < 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
Styrene ug/kg 3.5e+006 Tetrachloroethylene ug/kg 39000								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
Toluene ug/kg 4.7e+006								< 3.9 U	< 4.1 U													< 4.4 U	< 4.7 U
trans-1,2-Dichloroethene ug/kg 2.3e+006 trans-1,3-Dichloropropene ug/kg 8200	,							< 3.9 U < 3.9 U	< 4.1 U	< 5.1 U < 5.1 U												< 4.4 U	< 4.7 U < 4.7 U
Trichloroethene ug/kg 1900								< 3.9 U	< 4.1 U	< 5.1 U												< 4.4 U	< 4.7 U
Trichlorofluoromethane ug/kg 3.5e+007 Vinyl Chloride ug/kg 1700	<u> </u>							< 3.9 U < 3.9 U	< 4.1 U	< 5.1 U < 5.1 U								-				< 4.4 U	< 4.7 U < 4.7 U
Xylenes (total) ug/kg 250000								< 7.8 U	2.3	< 10 U													
1,1'-Biphenyl ug/kg 20000 1,2,4,5-Tetrachlorobenzene ug/kg 35000										1													\vdash
2,2'-oxybis(1-Chloropropane) ug/kg 4.7e+006																							
2,3,4,6-Tetrachlorophenol ug/kg 2.5e+006										1											Ī		\vdash
2,4,5-Trichlorophenol ug/kg 8.2e+006 2,4,6-Trichlorophenol ug/kg 82000																							
2,4-Dichlorophenol ug/kg 250000											-												$\vdash =$
2,4-Dimethylphenol ug/kg 1.6e+006 2,4-Dinitrophenol ug/kg 160000																							
2,4-Dinitrotoluene ug/kg 7400																							
2,6-Dinitrotoluene ug/kg 1500 2-Chloronaphthalene ug/kg 6e+006										-											+		\vdash
2-Chlorophenol ug/kg 580000																							
2-Methylnaphthalene ug/kg 300000 2-Methylphenol ug/kg 4.1e+006								-		1											Ţ		\vdash
2-Methylphenol ug/kg 4.1e+006 2-Nitroaniline ug/kg 800000																							
2-Nitrophenol ug/kg 2.5e+007					_	-										-						_	1

			Location ID SUSDP21-1C	SUSDP21-3G	SUSDP21-3M	SLISDP21-30	SUSDP21-5W	SUSDP21-6W	SUSDP22	SUSDESS	SUSDP24	SUSDP37	SUSDP39	SUSDP41	SUSDP43	SUSDP43-21	SUSDP43-2M	SUSDP43-3P	SUSDP43-3T	SUSDP43-4SW	SUSDP43-5NW	SUSDP44	SUSDEAS	SUSDP48
			Sample ID SUS211C00N2	SUS213G00N		SUS213Q00N	SUS215W00N	SUS216W00N	SUS2200N		SUS2400N	SUS37F00N	SUS39F00N	SUS41F00N	SUS43F00N	SUS432J00N	SUS432M00N	SUS433P00N	SUS433T00N	SUS434SW00N	SUS435NW00N	SUS44F00N	SUS4800N	
			Depth 0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	1.5 - 2.5 ft	0 - 1 ft	0 - 1 ft
			Sample Date 8/24/2017	8/28/2017	8/28/2017	8/24/2017	1/26/2018	2/21/2018	6/13/2013	2/7/2013	2/7/2013	1/25/2017	1/25/2017	1/24/2017	1/26/2017	8/8/2017	8/9/2017	1/30/2018	1/30/2018	2/23/2018	3/15/2018	1/27/2017	1/26/2017	1/26/2017
			Type N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FD
		Project																					1 '	
		Screening																					1 '	
Analyte	Unit	Criteria																					↓ '	
3,3'-Dichlorobenzidine	ug/kg	5100																					↓ '	
3-Nitroaniline	ug/kg	110000							1														 '	
4,6-Dinitro-2-methylphenol	ug/kg	6600			-				-														├ ──	+
4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	ug/kg	0.00.000																					├──	+
4-Chloroaniline	ug/kg ug/kg	8.2e+006 11000																						+
4-Chlorophenyl-phenylether	ug/kg ug/kg	11000																						+
4-Methylphenol	ug/kg	8.2e+006							+														 	+
4-Nitroaniline	ug/kg	110000																						+
4-Nitrophenol	ug/kg	2.5e+007															İ							
Acenaphthene	ug/kg	4.5e+006	< 68 U	< 370 U	110	< 7.7 U	< 7.0 U	< 35 U	92	< 36 U	99	210	79	52 J	26 J	230	270	10	93 J	15	< 140 U	41	15 J	26 J
Acenaphthylene	ug/kg	4.5e+006	< 68 U	< 370 U	42 J	< 7.7 U	7.8	< 35 U	96	< 36 U	870	370	23 J	51 J	48 J	140	130	26	970	25	< 140 U	7.9 J	11 J	17 J
Acetophenone	ug/kg	1.2e+007																		-				
Anthracene	ug/kg	2.3e+007	< 68 U	< 370 U	360	< 7.7 U	15	< 35 U	300	< 36 U	1000	1100	160	140	93	720	690 J	54	1100	75	< 140 U	200	53	75 J
Atrazine	ug/kg	10000																						
Benzaldehyde	ug/kg	820000																					<u> </u>	
Benzo(a)anthracene	ug/kg	21000	< 68 U	140 J	1800	3.3 J	66	35	770	< 36 U	1800	2600	870	480	340	2000	2200 J	140	2500	180	< 140 U	850	210	310
Benzo(a)pyrene	ug/kg	2100	< 68 U	< 370 U	1600	< 7.7 U	68	37	690	< 36 U	1400 J	1300	470	460	380	1900	2000 J+	130	2500	170	< 140 U	840	190	320
Benzo(b)fluoranthene	ug/kg	21000	< 68 U	690	2100	3.8 J	91	53	770	< 36 U	3200 J	2200	750	640	460	2900	2800 J-	180	5000	300	< 140 U	1000 J-	280	430
Benzo(g,h,i)perylene	ug/kg	2.3e+006	< 68 U	500	1700	3.4 J	70	34 J	590	< 36 U	1400 J	720	350	430	370	1600	1500 J+	120	2200	170	< 140 U	490 J+	160	290
Benzo(k)fluoranthene	ug/kg	210000	< 68 U	150 J	790	< 7.7 U	34	15 J	320	< 36 U	1700 J	610	310	220	300	830	480 J+	100	1300	110	< 140 U	360	70	170
bis-(2-chloroethoxy)methane	ug/kg	250000																					↓ '	
bis-(2-Chloroethyl)ether	ug/kg	1000															-						 	
bis-(2-Ethylhexyl)phthalate	ug/kg	160000			-				-														├ ──	+
Butylbenzylphthalate	ug/kg	1.2e+006																					1 '	
Caprolactam	ug/kg	4e+007							1														 	+
Carbazole	ug/kg ug/kg	3e+007																						+
Chrysene	ug/kg	2.1e+006	< 68 U	200 J	1900	3.8 J	59	38	790	< 36 U	3200	2500	920	530	410	1900	2100 J+	140	2500	210	< 140 U	880 J-	220	330
Dibenzo(a,h)anthracene	ug/kg	2100	< 68 U	< 370 U	450	< 7.7 U	21	27 J	150	< 36 U	400 J	310	120	130	< 70 U	350	280	25	510	53	< 140 U	160	26 J	67 J
Dibenzofuran	ug/kg	100000	7 00 0		700			2, 0	100	1000	4000	0.0	120	100			200		0.0			100		- 0. 0
Diethylphthalate	ug/kg	6.6e+007																						
Dimethylphthalate	ug/kg	6.6e+007																					·	
Di-n-butylphthalate	ug/kg	8.2e+006																						
Di-n-octylphthalate	ug/kg	820000																						
Fluoranthene	ug/kg	3e+006	< 68 U	< 370 U	3500	4.2 J	77	68 J+	1600	8.2 J	10000	5500	2800	820	620	3700	4500	270	3300	370	< 140 U	1300 J-	290	470
Fluorene	ug/kg	3e+006	< 68 U	< 370 U	110	< 7.7 U	< 7.0 U	< 35 U	70	< 36 U	150	390	29 J	48 J	31 J	180	180	7.0 J	130 J	17	< 140 U	44	16 J	23 J
Hexachlorobenzene	ug/kg	960		1			ļ					ļ		ļ	ļ	ļ		ļ	ļ			ļ	 '	
Hexachlorobutadiene	ug/kg	5300		+	1		1	1	+			-		1	 	1	.	1	1		1	1	 '	+
Hexachlorocyclo-pentadiene	ug/kg	750		+	+		1		+					-	-	 	 	<u> </u>			1		 	+
Hexachloroethane	ug/kg	8000	- 00 11	440	4400	. 7 7 1 1	F^	40	FOO	* 20 II	4200 1	700	200	270	200	4500	4200 1	440	2000	400	2 4 4 O L L	440	400	
Indeno(1,2,3-cd)pyrene Isophorone	ug/kg	21000 2.4e+006	< 68 U	440	1400	< 7.7 U	58	42	500	< 36 U	1300 J	780	330	370	280	1500	1300 J+	110	2000	160	< 140 U	440	130	240
Naphthalene	ug/kg ug/kg	2.4e+006 17000	< 68 U	< 370 U	28 J	< 7.7 U	2.9 J	< 35 U	66	< 36 U	52	630	55	59	43 J	140	320	8.4	270	55	< 140 U	22 1	25 J	41 J
Nitrobenzene	ug/kg ug/kg	22000	× 00 U	- 3/0 0	20 J	` 1.1 U	2.9 J	\ 30 U	90	~ JO U	53	630	J3	39	43 J	140	320	0.4	2/0	35	> 140 U	32 J	20 J	413
N-Nitroso-di-n-propylamine	ug/kg ug/ka	330		+	+		<u> </u>									1	 	1	1		†	1		
N-Nitrosodiphenylamine	ug/kg	470000															1						 	
Pentachlorophenol	ug/kg	4000							1							İ	1	İ					<u> </u>	
Phenanthrene	ug/kg ug/ka	2.3e+007	< 68 U	< 370 U	2200	< 7.7 U	36	31 J	630	7.6 J	2700	5700	500	440	320	2400	2600 J	120	890	260	< 140 U	770	180	250
Phenol	ug/kg	2.5e+007	1 00 0	3,00		0		, , <u>, , , , , , , , , , , , , , , , , </u>				3.00		. +0	1 220	_ ,,,,					.400			
Pyrene	ug/kg	2.3e+006	< 68 U	210 J	3500	4.2 J	94	51	1100	7.9 J	4900	3800	1800	680	510	3200	3800	200	3000	240	< 140 U	1100	330	350
	ug/kg	2100	< 68.0 U	129	2590	0.714	111	77.2	1050	< 36.0 U	2450	2180	789	742	491	2900	2920	199	3980	288	< 140 U	1230	279	487
BaP-TE	ug/kg																							
BaP-TE Total High-molecular-weight PAH		2100	< 68 U	2300	19000	23	640	400	7300	16	29000	20000	8700	4800	3700	20000	21000	1400	25000	2000	< 140 U	7400	1900	3000
	s ug/kg	2.00	< 68 U < 68 U	2300 < 370 U	19000 2900	23 < 7.7 U	640 62	400 31	7300 1300	16 7.6	29000 4900	20000 8400	8700 850	4800 790	3700 560	20000 3800	21000 4200	1400 230	25000 3500	2000 450	< 140 U < 140 U	7400 1100	1900 300	3000 430

Table 4-2 Surface Soil Results VOCs, SVOCs, and TPH Fractions Concentrations in Surface Soils Renning Road Facility RVFS Project

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

				011000040	011000040	OUGDDES	OLIODDEO OA	OLIODDEO OA	OLIODDE4	OLIODDE4	01100000	OLIOPPEO	01100000740.05	LOUIDDDOTIC	LOUIDDDOTICOLA	LOUIDDOTAGOD	01100000740 00	OUODDOTIO MIL	0110000000414	L OLIODROPO LIO	OLIOPPOPOL II	Louioppopol	Louispassa IVI
			Location ID Sample ID	SUSDP48 SUS48F00N	SUSDP49 SUS4900N	SUSDP50 SUS5000N	SUSDP50-2A SUS502A00N		SUSDP51 SUS5100N	SUSDP51 SUS51F00N	SUSDP52 SUS5200N	SUSDP53 SUS53F00N			SUSDPCT16-2M SUSCT162M00N			SUSDPCT16-4W SUSCT164W00N	SUSDPGD21-I1 SUSGD21I100N		SUSGD21-J1 SUSGD21J100N	SUSDPGD21-J2 SUSGD21J200N	SUSDPGD21-K1 SUSGD21K100N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date Type	1/26/2017 N	1/26/2017 N	1/26/2017 N	8/8/2017 N	1/30/2018 N	1/26/2017 N	1/26/2017 N	1/26/2017 N	1/31/2017 N	2/22/2018 N	2/22/2018 N	2/22/2018 N	5/31/2018 N	3/15/2018 N	4/6/2018 N	2/20/2018 N	2/20/2018 N	1/24/2018 N	1/24/2018 N	1/24/2018 N
		Project	туре	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN IN	IN	IN	IN	IN	IN .	IN	IN	IN	IN IN
		Screening																					1
Analyte Diesel Range Organics (C10-C20)	Unit	Criteria 440																					
Oil Range Organics (C10-C20)	mg/kg mg/kg	350000																					
TPH (C9-C44)	mg/kg	00000		175					80.3			488	1380	274	199		531						
Diesel Range Organics (C10-C20)	mg/kg	440			< 99 U	2900 J+	3400	20	< 19 U		< 18 U					67 J		36					
Diesel Range Organics (C10-C28) Oil Range Organics (C20-C36)	mg/kg	440 350000			350 460	5200 J+ 2500 J+	3500	110	43 60		< 18 U < 18 U					440		110					
Gasoline Range Organics (C6-C10)	mg/kg ug/kg	42000			< 120 U	< 100 U	3300	110	< 120 U		< 110 U					440		110					
1,1,1-Trichloroethane	ug/kg	3.6e+006			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
1,1,2,2-Tetrachloroethane	ug/kg	2700			< 4.5 U	< 4.9 U			< 4.4 U < 4.4 U		< 4.0 U												+
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg ug/kg	2.8e+006 630			< 4.5 U	< 4.9 U < 4.9 U			< 4.4 U		< 4.0 U												
1,1-Dichloroethane	ug/kg	16000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
1,1-Dichloroethene	ug/kg	100000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ug/kg ug/kg	93000 26000			< 4.5 U	< 4.9 U < 4.9 U			< 4.4 U < 4.4 U		< 4.0 U												
1,2-Dibromo-3-chloropropane	ug/kg ug/kg	64			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
1,2-Dibromoethane	ug/kg	160			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
1,2-Dichlorobenzene	ug/kg	930000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U				1								
1,2-Dichloroethane 1,2-Dichloropropane	ug/kg ug/kg	2000 6600			< 4.5 U	< 4.9 U < 4.9 U		-	< 4.4 U		< 4.0 U				-								
1,3-Dichlorobenzene	ug/kg ug/kg	11000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U				1								
1,4-Dichlorobenzene	ug/kg	11000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
1,4-Dioxane	ug/kg	24000			R	R			R		R												
2-Butanone 2-Hexanone	ug/kg ug/kg	1.9e+007 130000			< 4.5 U	R < 4.9 U			R < 4.4 U		R < 4.0 U												
4-Methyl-2-pentanone	ug/kg	1.4e+007			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Acetone	ug/kg	6.7e+007			12 J+	R			R		R												
Benzene	ug/kg	5100 63000			< 4.5 U < 4.5 U	< 4.9 U < 4.9 U			< 4.4 U < 4.4 U		< 4.0 U												+
Bromochloromethane Bromodichloromethane	ug/kg ug/kg	1300			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Bromoform	ug/kg	86000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Bromomethane	ug/kg	3000			R	R			R		R												
Carbon Disulfide Carbon Tetrachloride	ug/kg ug/kg	350000 2900			< 4.5 U	< 4.9 U < 4.9 U			< 4.4 U < 4.4 U		< 4.0 U												
Chlorobenzene	ug/kg ug/kg	130000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Chloroethane	ug/kg	5.7e+006			R	R			R		R												
Chloroform	ug/kg	1400 46000			< 4.5 U	< 4.9 U < 4.9 U			< 4.4 U < 4.4 U		< 4.0 U												
Chloromethane cis-1,2-Dichloroethylene	ug/kg ug/kg	230000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
cis-1,3-Dichloropropene	ug/kg	8200			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Cyclohexane	ug/kg	2.7e+006 39000			< 4.5 U	< 4.9 U < 4.9 U			< 4.4 U < 4.4 U		< 4.0 U												
Dibromochloromethane Dichlorodifluoromethane	ug/kg ug/kg	37000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Ethylbenzene	ug/kg	25000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Isopropylbenzene	ug/kg	990000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
m, p-Xylene Methyl Acetate	ug/kg ug/kg	240000 1.2e+008			< 4.5 U < 23 U	< 4.9 U < 24 U			< 4.4 U < 22 U		< 4.0 U < 20 U												
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Methylcyclohexane	ug/kg	2.7e+006			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Methylene Chloride	ug/kg	320000			< 4.5 U < 4.5 U	< 4.9 U < 4.9 U			< 4.4 U < 4.4 U		< 4.0 U				 								
o-Xylene Styrene	ug/kg ug/kg	280000 3.5e+006			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U				 	+							
Tetrachloroethylene	ug/kg	39000			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Toluene	ug/kg	4.7e+006			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												——
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ug/kg ug/kg	2.3e+006 8200			< 4.5 U	< 4.9 U < 4.9 U			< 4.4 U < 4.4 U		< 4.0 U				+								
Trichloroethene	ug/kg ug/kg	1900			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Trichlorofluoromethane	ug/kg	3.5e+007			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U		-								-		
Vinyl Chloride	ug/kg	1700			< 4.5 U	< 4.9 U			< 4.4 U		< 4.0 U												
Xylenes (total) 1,1'-Biphenyl	ug/kg ug/kg	250000 20000																					
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																					
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006													1								
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	ug/kg ug/kg	2.5e+006 8.2e+006													+								
2,4,6-Trichlorophenol	ug/kg ug/kg	82000				1									†								
2,4-Dichlorophenol	ug/kg	250000																					
2,4-Dimethylphenol	ug/kg	1.6e+006			ļ <u> </u>	$oxed{\Box}$																	
2,4-Dinitrophenol 2,4-Dinitrotoluene	ug/kg ug/kg	160000 7400					+	+							+	+							
2,6-Dinitrotoluene	ug/kg ug/kg	1500						1							1								
2-Chloronaphthalene	ug/kg	6e+006																					
2-Chlorophenol	ug/kg	580000																					——
2-Methylnaphthalene 2-Methylphenol	ug/kg ug/kg	300000 4.1e+006					+	+							+	+							
2-Nitroaniline	ug/kg ug/kg	800000													<u> </u>								
2-Nitrophenol	ug/kg	2.5e+007																					

				SUSDP48	SUSDP49		SUSDP50-2A	SUSDP50-3A			SUSDP52				SUSDPCT16-2M							SUSDPGD21-J2	
				SUS48F00N	SUS4900N		SUS502A00N	SUS503A00N		SUS51F00N			SUSCT162E00N	SUSCT162I00N	SUSCT162M00N			SUSCT164W00N				SUSGD21J200N	SUSGD21K100N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date Type	1/26/2017 N	1/26/2017 N	1/26/2017 N	8/8/2017 N	1/30/2018 N	1/26/2017 N	1/26/2017 N	1/26/2017 N	1/31/2017 N	2/22/2018 N	2/22/2018 N	2/22/2018 N	5/31/2018 N	3/15/2018 N	4/6/2018 N	2/20/2018 N	2/20/2018 N	1/24/2018 N	1/24/2018 N	1/24/2018 N
		Project	- 7,5-2																				
Analyte	Unit	Screening Criteria																					
3,3'-Dichlorobenzidine	ug/kg	5100																					
3-Nitroaniline	ug/kg	110000																					
4,6-Dinitro-2-methylphenol	ug/kg	6600																					
4-Bromophenyl-phenylether	ug/kg																						
4-Chloro-3-methylphenol	ug/kg	8.2e+006																					
4-Chloroaniline	ug/kg	11000																					
4-Chlorophenyl-phenylether	ug/kg																						
4-Methylphenol	ug/kg	8.2e+006																					
4-Nitroaniline	ug/kg	110000																					
4-Nitrophenol	ug/kg	2.5e+007 4.5e+006		46.1	44	< 6.9 U			241	18 J	< 7.1 U	4.0 J							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Acenaphthene Acenaphthylene	ug/kg ug/kg	4.5e+006 4.5e+006		16 J 18 J	41 17 J	< 6.9 U			3.4 J 2.1 J	16 J	< 7.1 U	69							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Acetophenone	ug/kg ug/kg	1.2e+007	+	10 J	11.3	~ U.S U			2.1 J	103	× 1.10	09	1	 					\ 0.9 U	\ 0.9 U	\ 14 U	\ 0.8 U	× 1.0 U
Anthracene	ug/kg ug/kg	2.3e+007	 	64 J	88	< 6.9 U			10	65	< 7.1 U	49	1						< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Atrazine	ug/kg	10000	†	07.0	- 00	. 0.5 0			10	00	71.10	7.7							` 0.3 0	` 0.0 0	, 14 0	10.00	~ 7.00
Benzaldehyde	ug/kg	820000																					
Benzo(a)anthracene	ug/kg	21000		220	320	62 J+			47	240	< 7.1 U	210							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Benzo(a)pyrene	ug/kg	2100		260	260	30 J+			51	280	< 7.1 U	350							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Benzo(b)fluoranthene	ug/kg	21000		320	370	72 J+			80	360	< 7.1 U	410							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Benzo(g,h,i)perylene	ug/kg	2.3e+006		240	190	33 J+			41	210	< 7.1 U	200							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Benzo(k)fluoranthene	ug/kg	210000		140	140	27 J+			32	140	< 7.1 U	130							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
bis-(2-chloroethoxy)methane	ug/kg	250000																					
bis-(2-Chloroethyl)ether	ug/kg	1000																					
bis-(2-Ethylhexyl)phthalate	ug/kg	160000																					
Butylbenzylphthalate	ug/kg	1.2e+006																					
Caprolactam	ug/kg	4e+007																					
Carbazole	ug/kg	3e+006																					
Chrysene	ug/kg	2.1e+006		260	350	86 J+			49	250	< 7.1 U	220							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Dibenzo(a,h)anthracene	ug/kg	2100		65 J	45	11 J+			13	50	< 7.1 U	70							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Dibenzofuran	ug/kg	100000																					
Diethylphthalate	ug/kg	6.6e+007																					
Dimethylphthalate	ug/kg	6.6e+007	-																				
Di-n-butylphthalate	ug/kg ug/kg	8.2e+006 820000	-								-												
Di-n-octylphthalate Fluoranthene	ug/kg ug/kg	3e+006		360	480	100 J+			56	380	< 7.1 U	150							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Fluorene	ug/kg ug/kg	3e+006	 	17 J	44	< 6.9 U			4.0 J	24 J	< 7.1 U	10 J	1						< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Hexachlorobenzene	ug/kg	960	†		77	0.00			7.00	2-T V		1		İ					0.00	0.00		3.5 5	
Hexachlorobutadiene	ug/kg	5300				İ						1											
Hexachlorocyclo-pentadiene	ug/kg	750																					
Hexachloroethane	ug/kg	8000																					
Indeno(1,2,3-cd)pyrene	ug/kg	21000		190	210	28 J+	·		39	180	< 7.1 U	200							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Isophorone	ug/kg	2.4e+006																					
Naphthalene	ug/kg	17000	<u> </u>	23 J	66	36 J+			5.2 J	24 J	< 7.1 U	13 J		ļ					< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Nitrobenzene	ug/kg	22000	.								<u> </u>	 	ļ							_			
N-Nitroso-di-n-propylamine	ug/kg	330	1									1	1	 			1			1			
N-Nitrosodiphenylamine	ug/kg	470000	 								-	 	1										
Pentachlorophenol	ug/kg ug/kg	4000 2.3e+007	+ +	190	350	< 6.9 U			35	150	< 7.1 U	59	+	-					< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
Phenanthrene Phenol	ug/kg ug/kg	2.5e+007 2.5e+007	+	190	330	<u> > 0.9 U</u>			აე	150	\$ 1.10	29	<u> </u>	 					< 0.9 U	< 0.9 U	< 14 U	< 0.9 U	< 1.0 0
Pyrene	ug/kg ug/kg	2.3e+007 2.3e+006	 	350	530	130 J+			56	320	0.97 J	310	1						< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7.0 U
BaP-TE	ug/kg	2100	 	400	397	57.6			81.0	410	< 7.10 U	504	1	1					< 6.90 U	< 6.90 U	< 14.0 U	< 6.90 U	< 7.00 U
Total High-molecular-weight PAF			†	2400	2900	580			460	2400	0.97	2300	1						< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7 U
Total Low-molecular-weight PAH				330	610	36			60	300	< 7.1 U	200							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7 U
Total PAHs (sum 16)	ug/kg			2700	3500	620			520	2700	0.97	2500							< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	< 7 U
, , , , , , , , , , , , , , , , , , , ,													•		•	•	•	•					

Table 4-2

Surface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Surface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE

			Location ID Sample ID	SUSDPGD21-K1.5 SUSGD21K1.500N		SUSDPGD21-L1 SUSGD21L100N	SUSDPGD21-L2 SUSGD21L200N		SUSDPGD21-M2 SUSGD21M200N	SUSDPGD21-N1 SUSGD21N100N	SUSDPGD21-N2 SUSGD21N200N	SUSDPGD21-P1 SUSGD21P100N		SUSDPGD21-R2 SUSGD21R200N
			Depth Sample Date Type	0 - 1 ft 1/26/2018 N	0 - 1 ft 1/24/2018 N	0 - 1 ft 2/20/2018 N	0 - 1 ft 2/20/2018 N	0 - 1 ft 3/14/2018 N	0 - 1 ft 3/14/2018 N	0 - 1 ft 4/4/2018 N	0 - 1 ft 4/4/2018 N	0 - 1 ft 5/30/2018 N	0 - 1 ft 1/23/2018 N	0 - 1 ft 1/23/2018 N
		Project Screening												
Analyte	Unit	Criteria												
	mg/kg mg/kg	440 350000												+
	mg/kg	330000												
	mg/kg	440												
Diesel Range Organics (C10-C28) Oil Range Organics (C20-C36)	mg/kg	440												1
	mg/kg ug/kg	350000 42000												
1,1,1-Trichloroethane	ug/kg	3.6e+006												
1,1,2,2-Tetrachloroethane	ug/kg	2700												
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg ug/kg	2.8e+006 630												
1,1-Dichloroethane	ug/kg ug/kg	16000												+
1,1-Dichloroethene	ug/kg	100000												
1,2,3-Trichlorobenzene	ug/kg	93000												
1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane	ug/kg ug/kg	26000 64												\vdash
1,2-Dibromoethane	ug/kg ug/kg	160												
1,2-Dichlorobenzene	ug/kg	930000												
1,2-Dichloroethane	ug/kg	2000												
1,2-Dichloropropane 1,3-Dichlorobenzene	ug/kg ug/kg	6600 11000							1					
	ug/kg ug/kg	11000												
1,4-Dioxane	ug/kg	24000												
2-Butanone 2-Hexanone	ug/kg ug/kg	1.9e+007 130000												
	ug/kg ug/kg	1.4e+007												
Acetone	ug/kg	6.7e+007												
	ug/kg	5100												
Bromochloromethane Bromodichloromethane	ug/kg ug/kg	63000 1300												
Bromoform	ug/kg	86000												
Bromomethane	ug/kg	3000												
Carbon Disulfide Carbon Tetrachloride	ug/kg ug/kg	350000 2900												1
Chlorobenzene	ug/kg	130000												
Chloroethane	ug/kg	5.7e+006												
Chloroform Chloromethane	ug/kg ug/kg	1400 46000												+
cis-1,2-Dichloroethylene	ug/kg	230000												
cis-1,3-Dichloropropene	ug/kg	8200												
	ug/kg ug/kg	2.7e+006 39000												
	ug/kg	37000												
Ethylbenzene	ug/kg	25000												
Isopropylbenzene m, p-Xylene	ug/kg ug/kg	990000 240000												
	ug/kg ug/kg	1.2e+008												
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000												
	ug/kg	2.7e+006												\vdash
Methylene Chloride o-Xvlene	ug/kg ug/kg	320000 280000												
Styrene	ug/kg	3.5e+006												
	ug/kg	39000 4.7e+006												\vdash
	ug/kg ug/kg	2.3e+006												
trans-1,3-Dichloropropene	ug/kg	8200												
Trichloroethene Trichlorofluoromethane	ug/kg	1900 3.5e+007												\vdash
	ug/kg ug/kg	3.5e+007 1700												
Xylenes (total)	ug/kg	250000												
	ug/kg	20000												\vdash
1,2,4,5-Tetrachlorobenzene 2,2'-oxybis(1-Chloropropane)	ug/kg ug/kg	35000 4.7e+006												\vdash
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006												
2,4,5-Trichlorophenol	ug/kg	8.2e+006												
2,4,6-Trichlorophenol 2,4-Dichlorophenol	ug/kg ug/kg	82000 250000							1					
2,4-Dimethylphenol	ug/kg ug/kg	1.6e+006												
2,4-Dinitrophenol	ug/kg	160000												
2,4-Dinitrotoluene 2,6-Dinitrotoluene	ug/kg ug/kg	7400 1500												\vdash
	ug/kg ug/kg	6e+006												
2-Chlorophenol	ug/kg	580000												
	ug/kg ug/kg	300000 4.1e+006							1					
2-Nitroaniline	ug/kg	800000												
2-Nitrophenol	ug/kg	2.5e+007												

Table 4-2

Surface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Surface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE

Washington, DC 20019

			Location ID Sample ID Depth Sample Date Type	SUSDPGD21-K1.5 SUSGD21K1.500N 0 - 1 ft 1/26/2018 N	SUSDPGD21-K2 SUSGD21K200N 0 - 1 ft 1/24/2018 N	SUSDPGD21-L1 SUSGD21L100N 0 - 1 ft 2/20/2018 N		SUSDPGD21-M1 SUSGD21M100N 0 - 1 ft 3/14/2018 N	SUSDPGD21-M2 SUSGD21M200N 0 - 1 ft 3/14/2018 N		SUSDPGD21-N2 SUSGD21N200N 0 - 1 ft 4/4/2018 N		SUSDPGD21-R1 SUSGD21R100N 0 - 1 ft 1/23/2018 N	SUSDPGD21-R2 SUSGD21R200N 0 - 1 ft 1/23/2018 N
		Project	,,											
		Screening												
Analyte	Unit	Criteria												
3,3'-Dichlorobenzidine 3-Nitroaniline	ug/kg ug/kg	5100 110000												
4,6-Dinitro-2-methylphenol	ug/kg ug/kg	6600												
4-Bromophenyl-phenylether	ug/kg	0000												
4-Chloro-3-methylphenol	ug/kg	8.2e+006												
4-Chloroaniline	ug/kg	11000												
4-Chlorophenyl-phenylether	ug/kg													
4-Methylphenol	ug/kg	8.2e+006												
4-Nitroaniline	ug/kg	110000												
4-Nitrophenol	ug/kg	2.5e+007												
Acenaphthene	ug/kg	4.5e+006		< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	22 J	< 14 U	< 69 U	< 7.0 U	< 21 U	52 J	< 7.0 U
Acenaphthylene	ug/kg	4.5e+006		< 6.9 U	< 6.9 U	9.7 J	< 6.9 U	100	< 14 U	< 69 U	< 7.0 U	< 21 U	74	< 7.0 U
Acetophenone	ug/kg	1.2e+007												
Anthracene	ug/kg	2.3e+007		< 6.9 U	< 6.9 U	11 J	< 6.9 U	170	< 14 U	< 69 U	< 7.0 U	< 21 U	190	< 7.0 U
Atrazine Benzaldehyde	ug/kg ug/kg	10000 820000												
Benzo(a)anthracene	ug/kg ug/kg	21000		3.7 J	< 6.9 U	38	< 6.9 U	550	< 14 U	< 69 U	< 7.0 U	< 21 U	730	7.2
Benzo(a)pyrene	ug/kg ug/kg	21000		2.9 J	< 6.9 U	49	< 6.9 U	600	< 14 U	< 69 U	< 7.0 U	< 21 U	720	6.9 J
Benzo(b)fluoranthene	ug/kg ug/kg	21000		4.4 J	< 6.9 U	72	< 6.9 U	820	< 14 U	< 69 U	< 7.0 U	< 21 U	840	8.1
Benzo(g,h,i)perylene	ug/kg	2.3e+006		5.1 J	< 6.9 U	58	< 6.9 U	640	< 14 U	< 69 U	< 7.0 U	< 21 U	510	6.1 J
Benzo(k)fluoranthene	ug/kg	210000		< 6.9 U	< 6.9 U	22	< 6.9 U	270	< 14 U	< 69 U	< 7.0 U	< 21 U	350	4.1 J
bis-(2-chloroethoxy)methane	ug/kg	250000		0.0	2.0			•						
bis-(2-Chloroethyl)ether	ug/kg	1000												
bis-(2-Ethylhexyl)phthalate	ug/kg	160000												
Butylbenzylphthalate	ug/kg	1.2e+006												
Caprolactam	ug/kg	4e+007												
Carbazole	ug/kg	3e+006												
Chrysene	ug/kg	2.1e+006		3.9 J	< 6.9 U	38	< 6.9 U	540	< 14 U	< 69 U	< 7.0 U	< 21 U	720	7.0
Dibenzo(a,h)anthracene	ug/kg	2100		< 6.9 U	< 6.9 U	19	< 6.9 U	200	< 14 U	< 69 U	< 7.0 U	< 21 U	150	< 7.0 U
Dibenzofuran	ug/kg	100000										-		
Diethylphthalate	ug/kg	6.6e+007												
Dimethylphthalate Di-n-butylphthalate	ug/kg ug/kg	6.6e+007 8.2e+006												
Di-n-octylphthalate	ug/kg ug/kg	820000												
Fluoranthene	ug/kg ug/kg	3e+006		6.0 J	< 6.9 U	56	< 6.9 U	970	< 14 U	< 69 U	< 7.0 U	< 21 U	1400	12
Fluorene	ug/kg ug/kg	3e+006		< 6.9 U	< 6.9 U	< 14 U	< 6.9 U	29 J	< 14 U	< 69 U	< 7.0 U	< 21 U	53 J	< 7.0 U
Hexachlorobenzene	ug/kg	960		0.00	0.0 0		0.0 0	200			700	2.0		11.00
Hexachlorobutadiene	ua/ka	5300												
Hexachlorocyclo-pentadiene	ug/kg	750												
Hexachloroethane	ug/kg	8000												
Indeno(1,2,3-cd)pyrene	ug/kg	21000		5.9 J	< 6.9 U	55	< 6.9 U	570	< 14 U	< 69 U	< 7.0 U	< 21 U	470	5.3 J
Isophorone	ug/kg	2.4e+006												
Naphthalene	ug/kg	17000		< 6.9 U	< 6.9 U	5.4 J	< 6.9 U	< 71 U	< 14 U	< 69 U	< 7.0 U	< 21 U	26 J	< 7.0 U
Nitrobenzene	ug/kg	22000												
N-Nitroso-di-n-propylamine	ug/kg	330												
N-Nitrosodiphenylamine	ug/kg	470000										 	1	
Pentachlorophenol	ug/kg	4000		541	-0011	47	10011	440	4411	.00.11	.7011	.04.11	200	
Phenanthrene	ug/kg	2.3e+007		5.1 J	< 6.9 U	17	< 6.9 U	440	< 14 U	< 69 U	< 7.0 U	< 21 U	690	6.8 J
Phenol	ug/kg ug/kg	2.5e+007 2.3e+006		4.1 J	< 6.9 U	44	< 6.9 U	660	< 14 U	< 69 U	< 7.0 U	< 21 U	1200	11
Pyrene BaP-TE	ug/kg ug/kg	2.3e+006 2100		4.1 J 4.30	< 6.90 U	44 84.8	< 6.90 U	660 997	< 14 U < 14.0 U	< 69.0 U	< 7.0 U	< 21.0 U	1200 1080	9.01
Total High-molecular-weight PAHs	ug/kg ug/kg	2100		4.30 36	< 6.9 U	450	< 6.9 U	5800	< 14.0 U	< 69.0 U	< 7.00 U	< 21 U	7100	68
Total Low-molecular-weight PAHs	ug/kg ug/kg			5.1	< 6.9 U	430	< 6.9 U	760	< 14 U	< 69 U	< 7 U	< 21 U	1100	6.8
Total PAHs (sum 16)	ug/kg ug/kg			41	< 6.9 U	490	< 6.9 U	6600	< 14 U	< 69 U	< 7 U	< 21 U	8200	75
. 5 Cal 1 7 ti 10 (0 ci 11 10)	agrity		1	71	- 0.0 0	730		5550	- 17 0	- 55 0			, 0200	

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

N = Normal FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable RSL Table, May 2018 Industrial Soil [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be

TPH = Total Petroleum Hydrocarbons

mg/kg = milligrams per kilogram

ug/kg = micrograms per kilogram

													Location ID	SB2	SUS05-1D	SUS05-1F	SUS061C	SUS061D	SUS061E	SUS061G	SUS08-1A	SUS08-1B	SUS08-1B	SUS08-1C
													Sample ID	SBS0200N	SUS05ID00N	SUS05IF00N	SUS061C00N	SUS061D00N	SUS061E00N	SUS061G00N	SUS081A00N	SUS081B00N	SUS081B00N2	SUS081C00N
													Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
													Sample Date	1/25/2017	1/24/2017 N	1/24/2017	3/13/2017 N	3/13/2017 N	3/13/2017	3/13/2017 N	1/24/2017 N	1/24/2017	2/3/2017 N	1/24/2017 N
		1	1		1	ı .			ı	1			Туре	N	N	N	IN .	IN .	N	N N	N	N	N	N N
		Project Screening				Min	Mean	Median		Count	Count C	ount												
Analyte	Unit	Criteria	Method	CAS	Max Detect	Detect	Detect	Detect	Max Location	Detect		otal												
4,4'-DDD	ug/kg	2500	SW8081B LL	72-54-8	1.9	0.11	0.65	0.45	SUSDP19	10		17												
4,4'-DDE	ug/kg ug/kg	9300	SW8081B LL	72-54-6	8.4	0.096	1.6	0.43	SUSDP19	12		17												
4,4'-DDT	ug/kg	8500	SW8081B LL	50-29-3	83	0.090	19	8.2	SUSDP18	8		17												+
Aldrin	ug/kg ug/ka	180	SW8081B LL	309-00-2	5	0.73	1.9	0.49	SUSDP10	3		17												
alpha-BHC	ug/kg ug/ka	360	SW8081B LL	319-84-6	<u> </u>	0.2	1.0	0.43	000DI 10			17												
beta-BHC	ug/kg	1300	SW8081B LL	319-85-7	2.3	0.26	1.3	1.3	SUSDP10	2		17												
cis-Chlordane	ug/kg	7700	SW8081B LL	5103-71-9	3.8	0.063	0.9	0.34	SUSDP08	10		17												
delta-BHC	ug/kg	360	SW8081B LL	319-86-8	7.5	0.65	4.1	4.1	SUSDP10	2		17												
Dieldrin	ug/kg	140	SW8081B LL	60-57-1	9.4	0.49	3.9	4	SUSDP18	7		17												
Endosulfan I	ug/kg	700000	SW8081B LL	959-98-8	1.4	1.1	1.2	1.2	SUSDP08	3		17												
Endosulfan II	ug/kg	700000	SW8081B LL	33213-65-9	15	0.33	4.8	2.7	SUSDP18	5		17												
Endosulfan Sulfate	ug/kg		SW8081B LL	1031-07-8	7.2	0.33	2.6	1.1	SUSDP10	9		17												
Endrin	ug/kg	25000	SW8081B LL	72-20-8	26	0.3	7.4	4.1	SUSDP08	7		17												
Endrin aldehvde	ug/kg ua/ka	25000	SW8081B LL	7421-93-4	0.34	0.34	0.34	0.34	SUSDP11	1		17												
Endrin ketone	ug/kg	25000	SW8081B LL	53494-70-5	12	0.85	5	2.2	SUS25	3		17												
gamma-BHC (Lindane)	ug/kg	2500	SW8081B LL	58-89-9	0.82	0.23	0.53	0.53	SUSDP49	2		17												
Heptachlor	ug/kg	630	SW8081B LL	76-44-8	2.9	0.026	1.5	1.5	SUSDP10	2		17												
Heptachlor Epoxide	ug/kg	330	SW8081B LL	1024-57-3	22	0.3	5.3	1.4	SUSDP49	12		17												
Methoxychlor	ug/kg ua/ka	410000	SW8081B LL	72-43-5	23	0.24	7.9	6.2	SUSDP18	10		17												
Toxaphene	ug/kg	2100	SW8081B LL	8001-35-2	23	0.24	1.5	0.2	0000110	10		17												
trans-Chlordane	ug/kg	7700	SW8081B LL	5103-74-2	15	0.36	5.7	3.3	SUSDP11	6		17												
Aroclor-1016	ug/kg		SW8082A/SW8082A LL	12674-11-2		0.00		0.0	0002111	Ť	1			< 4.4 U	< 5.1 U	< 4.9 U	< 0.94 U	< 8.7 U	< 0.89 U	< 0.97 U	< 4.9 U	< 5.0 U	< 2.4 U	< 5.0 U
7 11 05101 1010	ug/ng		3110002, 10110002, 122	1207 2							1 .	208		0	0		0.010	0 0	0.00	0.07	1.00	0.00	20	0.00
Aroclor-1221	ug/kg		SW8082A/SW8082A LL	11104-28-2							1	200		< 4.4 U	< 5.1 U	< 4.9 U	< 0.94 U	< 8.7 U	< 0.89 U	< 0.97 U	< 4.9 U	< 5.0 U	< 2.4 U	< 5.0 U
Alocioi-1221	ug/kg		3W6062A/3W6062A LL	11104-20-2							1 ' 1			V 4.4 U	< 5.10	× 4.9 U	< 0.94 U	V 0.7 U	< 0.69 U	< 0.97 0	V 4.9 U	< 5.0 0	< 2.4 U	< 5.0 €
	_											208												
Aroclor-1232	ug/kg		SW8082A/SW8082A LL	11141-16-5							1			< 4.4 U	< 5.1 U	< 4.9 U	< 0.94 U	< 8.7 U	< 0.89 U	< 0.97 U	< 4.9 U	< 5.0 U	< 2.4 U	< 5.0 U
												208												
Aroclor-1242	ug/kg		SW8082A/SW8082A LL	53469-21-9	37000	18	3700	310	SUSDP21-1C	14	1			< 4.4 U	< 5.1 U	< 4.9 U	< 0.94 U	< 8.7 U	< 0.89 U	< 0.97 U	< 4.9 U	< 5.0 U	< 2.4 U	< 5.0 U
												208												
Aroclor-1248	ug/kg		SW8082A/SW8082A LL	12672-29-6	8800000	2	230000	270	SUSDP21-3G	49	1			< 4.4 U	< 5.1 U	280 J+	< 0.94 U	< 8.7 U	3.0 J+	< 0.97 U	< 4.9 U	< 5.0 U	< 2.4 U	< 5.0 U
												208												
Aroclor-1254	ug/kg		SW8082A/SW8082A LL	11097-69-1	7600	1.9	560	180	SUSDPCT16-3R	88	+			< 4.4 U	< 5.1 U	480 J+	< 0.94 U	13 J+	2.6 J+	< 0.97 U	110 J+	120 J+	43 J+	19 J+
7 1100101 1201	ug/ng		3110002, 10110002, 122	11001 00 1		1.0	000		000010110011			208		0	0	40001	0.010	1001	2.001	0.07	'''	12001	4001	1001
Aroclor-1260	ua/ka		SW8082A/SW8082A LL	11096-82-5	130000	0.95	1600	110	SUSDP21-3M	193		200		54	< 5.1 U	400 1.	42.1.	24 1.	271.	40	50 L	co I.	20.1.	24 1.
A10Cl01-1200	ug/kg		3W6062A/3W6062A LL	11090-02-3	130000	0.95	1000	110	303DF21-3W	193	1			34	< 5.10	180 J+	42 J+	34 J+	3.7 J+	12	59 J+	60 J+	29 J+	24 J+
	_											208												
Aroclor-1262	ug/kg		SW8082A/SW8082A LL	37324-23-5										< 4.4 U	< 5.1 U	< 4.9 U	< 0.94 U	< 8.7 U	< 0.89 U	< 0.97 U	< 4.9 U	< 5.0 U	< 2.4 U	< 5.0 U
												208												
Aroclor-1268	ug/kg		SW8082A/SW8082A LL	11100-14-4	1400	0.81	110	37	SUSDP43	35				< 4.4 U	< 5.1 U	< 4.9 U	< 0.94 U	< 8.7 U	< 0.89 U	< 0.97 U	< 4.9 U	< 5.0 U	< 2.4 U	< 5.0 U
												208						1						
PCB, Total Aroclors (AECOM Calc)	ug/kg	970	SW8082A/SW8082A LL	TOT-PCB-ARO-C	8800000	0.95	60000	280	SUSDP21-3G	196				54	< 5.1 U	940	42	47	9.3	12	170	180	72	43
, , , , , ,	1 "											208						1						
				1	1					1						1	1		1		1	1		·

			Location ID	SUS08-1D	SUS08-1F	SUS08-1G	SUS08-1H	SUS08-2F	SUS08-2F	SUS08-2H	SUS08-2I	SUS08-2J	SUS08-2J	SUS08-2N	SUS08-20	SUS08-2P	SUS10-1A	SUS10-1B	SUS10-1B	SUS10-1C	SUS10-1D	SUS10-1E	SUS10-1F
			Sample ID	SUS081D00N	SUS081F00N	SUS081G00N	SUS081H00N	SUS082F00N	SUS082F00R	SUS082H00N	SUS082I00N	SUS082J00N	SUS082J00R	SUS082N00N	SUS082000N	SUS082P00N		SUS101B00N	SUS101B00R	SUS101C00N	SUS101D00N	SUS101E00N	SUS101F00N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	1/24/2017	1/24/2017	1/24/2017	1/24/2017	3/22/2017	3/22/2017	3/22/2017	3/22/2017	3/22/2017	3/22/2017	3/22/2017	3/23/2017	3/22/2017	1/27/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/27/2017
			Туре	IN	N	N	N	N	FD	N	N	N	FD	N	N	N	N	N	FD	N	N	N	N
		Project Screening																					
Analyte	Unit	Criteria																					
4,4'-DDD	ug/kg	2500																					
4,4'-DDE	ug/kg	9300																					
4,4'-DDT	ug/kg	8500																					
Aldrin	ug/kg	180																					
alpha-BHC	ug/kg	360																					
beta-BHC	ug/kg	1300																					
cis-Chlordane	ug/kg	7700																					
delta-BHC	ug/kg	360																					
Dieldrin	ug/kg	140																					
Endosulfan I	ug/kg	700000																					
Endosulfan II	ug/kg	700000																					
Endosulfan Sulfate	ug/kg	700000																					
Endrin	ug/kg	25000																					
Endrin aldehyde	ug/kg	25000																					+
Endrin ketone	ug/kg	25000																					+
gamma-BHC (Lindane)	ug/kg	2500																					+
Heptachlor	ug/kg	630 330																					+
Heptachlor Epoxide	ug/kg ug/ka	410000																					+
Methoxychlor	ug/kg ug/kg	2100																					+
Toxaphene trans-Chlordane	ug/kg ug/kg	7700																					+
Aroclor-1016	ug/kg ug/kg	7700		< 5.4 U	< 5.4 U	< 4.8 U	< 51 U	< 11 U	< 10 U	< 10 U	< 12 U	< 10 U	< 10 U	< 10 U	< 9.6 U	< 10 U	< 9.6 U	< 4.7 U	< 9.6 U	< 4.4 U	< 0.97 U	< 0.92 U	< 0.89 U
A10001-1010	ug/kg			V 3.4 0	V 3.4 0	V 4.0 U	V 31 0	V110	V 10 0	< 10 O	< 12 U	< 10 0	V 10 0	V 10 0	V 9.0 O	V 10 0	\ 9.0 U	V 4.7 O	\ 9.0 U	V 4.4 O	V 0.97 O	V 0.92 U	V 0.69 O
Aroclor-1221	ug/kg			< 5.4 U	< 5.4 U	< 4.8 U	< 51 U	< 11 U	< 10 U	< 10 U	< 12 U	< 10 U	< 10 U	< 10 U	< 9.6 U	< 10 U	< 9.6 U	< 4.7 U	< 9.6 U	< 4.4 U	< 0.97 U	< 0.92 U	< 0.89 U
Aroclor-1232	ug/kg			< 5.4 U	< 5.4 U	< 4.8 U	< 51 U	< 11 U	< 10 U	< 10 U	< 12 U	< 10 U	< 10 U	< 10 U	< 9.6 U	< 10 U	< 9.6 U	< 4.7 U	< 9.6 U	< 4.4 U	< 0.97 U	< 0.92 U	< 0.89 U
Aroclor-1242	ug/kg			< 5.4 U	< 5.4 U	< 4.8 U	< 51 U	< 11 U	< 10 U	< 10 U	< 12 U	< 10 U	< 10 U	< 10 U	< 9.6 U	< 10 U	< 9.6 U	< 4.7 U	< 9.6 U	< 4.4 U	< 0.97 U	< 0.92 U	< 0.89 U
Aroclor-1248	ug/kg			< 5.4 U	< 5.4 U	< 4.8 U	< 51 U	< 11 U	< 10 U	100 J+	< 12 U	200 J+	< 10 UJ	< 10 U	270 J+	< 10 U	1600 J	560 J	1100 J	330 J+	< 0.97 U	11 J+	< 0.89 U
Aroclor-1254	ug/kg			1300 J+	< 5.4 U	190 J+	3400 J+	110 J+	95 J+	87 J+	280 J+	320 J+	340 J+	560 J+	120 J+	250 J+	560 J+	350 J+	410 J+	180 J+	< 0.97 U	6.2 J+	24 J+
Aroclor-1260	ug/kg			270 J+	100	45 J+	530 J+	170 J+	130 J+	94 J+	140 J+	170 J+	200 J+	250 J+	66 J+	94 J+	990 J+	840 J+	1100 J+	270 J+	2.1	11 J+	110 J+
Aroclor-1262	ug/kg			< 5.4 U	< 5.4 U	< 4.8 U	< 51 U	< 11 U	< 10 U	< 10 U	< 12 U	< 10 U	< 10 U	< 10 U	< 9.6 U	< 10 U	< 9.6 U	< 4.7 U	< 9.6 U	< 4.4 U	< 0.97 U	< 0.92 U	< 0.89 U
Aroclor-1268	ug/kg			< 5.4 U	< 5.4 U	< 4.8 U	< 51 U	< 11 U	< 10 U	< 10 U	< 12 U	< 10 U	< 10 U	< 10 U	< 9.6 U	< 10 U	93 J	< 4.7 UJ	98 J	< 4.4 U	< 0.97 U	< 0.92 U	< 0.89 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		1600	100	240	3900	280	230	280	420	690	540	810	460	340	3200	1800	2700	780	2.1	28	130

			Location ID Sample ID	SUS10-1G SUS101G00N	SUS10-1H SUS101H00N	SUS10-2A SUS102A00N	SUS10-2B SUS102B00N	SUS10-2D SUS102D00N	SUS10-2P SUS102P00N	SUS12-1B SUS121B00N	SUS12-1D SUS121D00N	SUS12-1F SUS121F00N	SUS12-1H SUS121H00N	SUS181A SUS181A00N	SUS181B SUS181B00N	SUS181C N SUS181C00N	SUS181C SUS181C00R	SUS181D SUS181D00N	SUS181E SUS181E00N	SUS181F SUS181F00N	SUS181G SUS181G00N	SUS181H SUS181H00N	SUS201A SUS201A00N
			Depth	0 - 1 ft 0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft											
			Sample Date	1/27/2017	1/27/2017	3/23/2017	3/23/2017	3/23/2017	3/23/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/27/2017
			Type	N	N	N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N	N
			- 7/-														. –		1				
		Project Screening																					1
Analyte	Unit	Criteria																					1
4,4'-DDD	ug/kg	2500																					i
4,4'-DDE	ug/kg	9300																					i Total
4,4'-DDT	ug/kg	8500																					í .
Aldrin	ug/kg	180																					í
alpha-BHC	ug/kg	360																					í
beta-BHC	ug/kg	1300																					t .
cis-Chlordane	ug/kg	7700																					t .
delta-BHC	ug/kg	360																					t .
Dieldrin	ug/kg	140								-													
Endosulfan I	ug/kg	700000																					<u> </u>
Endosulfan II	ug/kg	700000			ļl				ļ		ļ		ļ	1		1			ļ				+
Endosulfan Sulfate	ug/kg	700000																					
Endrin	ug/kg	25000																					
Endrin aldehyde	ug/kg	25000																					
Endrin ketone	ug/kg	25000																					
gamma-BHC (Lindane)	ug/kg	2500																					
Heptachlor	ug/kg	630																					
Heptachlor Epoxide	ug/kg	330																					
Methoxychlor	ug/kg	410000			-						1			+		+							
Toxaphene	ug/kg	2100			-				-		-			+		+							
trans-Chlordane	ug/kg	7700		- 10II	4 10 II	< 0.011	< 0.011	< 0.011	< 0.411	< 4.0.11	< 0.04 LL	< 0.00 II	-10II	< 0.0711	< 0.00 II	4 O O4 II	< 0.0711	< 0.00 II	< 0.00 II	< 0.04 LL	- 4711	< 0.0011	< 0.0011
Aroclor-1016	ug/kg			< 1.2 U	< 12 U	< 8.8 U	< 8.6 U	< 8.9 U	< 9.4 U	< 1.8 U	< 0.91 U	< 0.93 U	< 1.8 U	< 0.87 U	< 0.90 U	< 0.91 U	< 0.87 U	< 0.92 U	< 0.89 U	< 0.91 U	< 4.7 U	< 0.92 U	< 0.92 U
Aroclor-1221	ug/kg			< 1.2 U	< 12 U	< 8.8 U	< 8.6 U	< 8.9 U	< 9.4 U	< 1.8 U	< 0.91 U	< 0.93 U	< 1.8 U	< 0.87 U	< 0.90 U	< 0.91 U	< 0.87 U	< 0.92 U	< 0.89 U	< 0.91 U	< 4.7 U	< 0.92 U	< 0.92 U
																							1
Aroclor-1232	ug/kg			< 1.2 U	< 12 U	< 8.8 U	< 8.6 U	< 8.9 U	< 9.4 U	< 1.8 U	< 0.91 U	< 0.93 U	< 1.8 U	< 0.87 U	< 0.90 U	< 0.91 U	< 0.87 U	< 0.92 U	< 0.89 U	< 0.91 U	< 4.7 U	< 0.92 U	< 0.92 U
																							1
Aroclor-1242	ug/kg			< 1.2 U	< 12 U	< 8.8 U	< 8.6 U	< 8.9 U	< 9.4 U	< 1.8 U	< 0.91 U	< 0.93 U	< 1.8 U	< 0.87 U	< 0.90 U	< 0.91 U	< 0.87 U	< 0.92 U	< 0.89 U	< 0.91 U	< 4.7 U	< 0.92 U	< 0.92 U
																							
Aroclor-1248	ug/kg			< 1.2 U	< 12 U	< 8.8 U	< 8.6 U	< 8.9 U	< 9.4 U	< 1.8 U	< 0.91 U	< 0.93 U	< 1.8 U	33 J+	< 0.90 U	< 0.91 U	< 0.87 U	< 0.92 U	< 0.89 U	< 0.91 U	< 4.7 U	3.7 J+	< 0.92 U
																							(
Aroclor-1254	ug/kg			11 J+	510 J+	710 J+	310 J+	1000 J+	200 J+	< 1.8 U	< 0.91 U	< 0.93 U	< 1.8 U	< 0.87 U	17 J+	< 0.91 U	< 0.87 U	< 0.92 U	< 0.89 U	< 0.91 U	< 4.7 U	3.2 J+	< 0.92 U
Aroclor-1260	ualka	1		20 J+	420 1:	C20 I.	200 1.	4400 1	240 1.	241.	42.1.	401.	42.1	140.1.	24 1.	< 0.91 U	< 0.87 U	8.2	2.2	521.	470	0.0.1.	< 0.92 U
A10Cl01-1260	ug/kg			20 J+	430 J+	620 J+	360 J+	1100 J+	240 J+	3.4 J+	12 J+	1.8 J+	4.2 J+	140 J+	21 J+	< 0.910	< 0.87 U	8.2	2.2	5.3 J+	470	8.8 J+	< 0.92 0
Aroclor-1262	ug/kg			< 1.2 U	< 12 U	< 8.8 U	< 8.6 U	< 8.9 U	< 9.4 U	< 1.8 U	< 0.91 U	< 0.93 U	< 1.8 U	< 0.87 U	< 0.90 U	< 0.91 U	< 0.87 U	< 0.92 U	< 0.89 U	< 0.91 U	< 4.7 U	< 0.92 U	< 0.92 U
		1			<u> </u>									1		<u> </u>			<u> </u>				1
Aroclor-1268	ug/kg			< 1.2 U	< 12 U	110 J+	64 J+	170 J+	51 J+	0.81 J+	2.4 J+	0.81 J+	2.5 J+	< 0.87 U	< 0.90 U	< 0.91 U	< 0.87 U	< 0.92 U	< 0.89 U	2.6 J+	< 4.7 U	< 0.92 U	< 0.92 U
	1																						
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		31	940	1400	730	2300	490	4.2	14	2.6	6.7	170	38	< 0.91 U	< 0.87 U	8.2	2.2	7.9	470	16	< 0.92 U
																							1

			Location ID	SUS201B	SUS201B	SUS201C	SUS201D	SUS201E	SUS201F	SUS201G	SUS201H	SUS21-1A	SUS21-1B	SUS21-1E	SUS21-1F	SUS21-1G	SUS21-1H	SUS21-2D	SUS21-2E	SUS21-2I	SUS21-2J	SUS21-2L	SUS21-2M
			Sample ID	SUS201B00N	SUS201B00R	SUS201C00N	SUS201D00N	SUS201E00N	SUS201F00N	SUS201G00N	SUS201H00N	SUS211A00N	SUS211B00N	SUS211E00N	SUS211F00N	SUS211G00N	SUS211H00N	SUS212D00N	SUS212E00N	SUS212I00N	SUS212J00N	SUS212L00N	SUS212M00N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	1/27/2017	1/27/2017	1/27/2017	2/2/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/27/2017	3/23/2017	3/23/2017	3/22/2017	3/22/2017	3/22/2017	3/22/2017
			Туре	N	FD	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening	,																				
Analyte	Unit	Criteria	1																				
4,4'-DDD	ug/kg	2500																					
4.4'-DDE	ug/kg	9300							İ						İ		1						
4,4'-DDT	ug/kg	8500																					
Aldrin	ug/kg	180																					
alpha-BHC	ug/kg	360																					
beta-BHC	ug/kg	1300																					
cis-Chlordane	ug/kg	7700																					
delta-BHC	ug/kg	360																					
Dieldrin	ug/kg	140							ļ						ļ		<u> </u>						
Endosulfan I	ug/kg	700000															ļ						
Endosulfan II	ug/kg	700000															ļ						
Endosulfan Sulfate	ug/kg	700000	ļ													1	1						
Endrin	ug/kg	25000															1						
Endrin aldehyde	ug/kg	25000							1						1		+					-	
Endrin ketone	ug/kg	25000															-						
gamma-BHC (Lindane) Heptachlor	ug/kg ug/ka	2500 630							-						-		+						
Heptachlor Epoxide	ug/kg ug/ka	330																					
Methoxychlor	ug/kg ug/ka	410000															+						
Toxaphene	ug/kg ug/ka	2100																					
trans-Chlordane	ug/kg	7700																					
Aroclor-1016	ug/kg	1.00		< 0.93 U	< 0.92 U	< 0.92 U	< 1.1 U	< 1.1 U	< 0.95 U	< 11 U	< 0.95 U	< 9.4 U	< 0.95 U	< 9.4 U	< 4.6 U	< 9.7 U	< 9.1 U	< 9.1 U	< 9.4 U	< 49 U	< 92 U	< 9.2 U	< 11 U
	-33										5.55		0.00										
Aroclor-1221	ug/kg			< 0.93 U	< 0.92 U	< 0.92 U	< 1.1 U	< 1.1 U	< 0.95 U	< 11 U	< 0.95 U	< 9.4 U	< 0.95 U	< 9.4 U	< 4.6 U	< 9.7 U	< 9.1 U	< 9.1 U	< 9.4 U	< 49 U	< 92 U	< 9.2 U	< 11 U
740001 1221	ug/kg			10.000	0.02 0	0.02 0	11.10	1.10	0.000	1110	1 0.00 0	10.40	10.000	- 0.4 0	1 4.0 0	30.70	10.10	10.10	10.40	1400	1020	10.20	1110
Aroclor-1232	ug/kg			< 0.93 U	< 0.92 U	< 0.92 U	< 1.1 U	< 1.1 U	< 0.95 U	< 11 U	< 0.95 U	< 9.4 U	< 0.95 U	< 9.4 U	< 4.6 U	< 9.7 U	< 9.1 U	< 9.1 U	< 9.4 U	< 49 U	< 92 U	< 9.2 U	< 11 U
A10G01-1232	ug/kg			< 0.93 U	< 0.92 U	< 0.92 U	V 1.1 U	< 1.10	< 0.95 0	< 11 U	< 0.95 U	\ 9.4 U	V 0.95 U	₹ 9.4 0	× 4.0 U	< 9.7 U	V 9.1 U	< 9.1 U	< 9.4 U	< 49 U	< 92 U	\ 9.2 U	< 11 0
AI 1010				. 0 00 11		. 0 00 11			.00511	. 44 11	10.05.11	000 1	10.0511	10.411		200	500	10411	. 0 4 11	. 10.11	. 00 11	.0011	- 44 11
Aroclor-1242	ug/kg			< 0.93 U	< 0.92 U	< 0.92 U	< 1.1 U	< 1.1 U	< 0.95 U	< 11 U	< 0.95 U	680 J+	< 0.95 U	< 9.4 U	< 4.6 U	990	500	< 9.1 U	< 9.4 U	< 49 U	< 92 U	< 9.2 U	< 11 U
	-																						
Aroclor-1248	ug/kg			< 0.93 U	< 0.92 U	< 0.92 U	< 1.1 U	< 1.1 U	< 0.95 U	< 11 U	< 0.95 U	< 9.4 U	< 0.95 U	500 J+	86	< 9.7 U	< 9.1 U	< 9.1 U	< 9.4 U	1200 J+	< 92 U	< 9.2 U	1100 J+
Aroclor-1254	ug/kg			1.9 J	< 0.92 U	< 0.92 U	< 1.1 U	5.3 J+	170 J+	< 11 U	< 0.95 U	88 J+	45 J	500 J+	< 4.6 U	< 9.7 U	< 9.1 U	97 J+	1300 J+	< 49 U	< 92 U	< 9.2 U	< 11 U
Aroclor-1260	ug/kg			5.6 J+	4.4 J+	1.1	1.5	17 J+	230 J+	93	< 0.95 U	170 J+	47 J+	510 J+	400	960	460	200 J+	2600 J+	3300 J+	11000	1600 J+	1600 J+
Aroclor-1262	ug/kg			< 0.93 U	< 0.92 U	< 0.92 U	< 1.1 U	< 1.1 U	< 0.95 U	< 11 U	< 0.95 U	< 9.4 U	< 0.95 U	< 9.4 U	< 4.6 U	< 9.7 U	< 9.1 U	< 9.1 U	< 9.4 U	< 49 U	< 92 U	< 9.2 U	< 11 U
					<u> </u>				<u> </u>						<u> </u>		<u> </u>						
Aroclor-1268	ug/kg			1.6 J+	1.2 J+	< 0.92 U	< 1.1 U	< 1.1 U	21 J+	< 11 U	< 0.95 U	< 9.4 U	6.4 J+	< 9.4 U	< 4.6 U	< 9.7 U	< 9.1 U	< 9.1 U	130 J+	< 49 U	< 92 U	< 9.2 U	< 11 U
															1								
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		9.1	5.6	1.1	1.5	22	420	93	< 0.95 U	940	98	1500	490	2000	960	300	4000	4500	11000	1600	2700
` ,									I														

			Location ID		SUS25	SUS44-1A	SUS44-1B	SUS44-1C	SUS44-1E	SUS44-1F	SUS44-1G	SUSDP01	SUSDP01	SUSDP02	SUSDP02		SUSDP04					SUSDP05-1E		
			Sample ID	SUS212N00N	SUS2500N	SUS441A00N	SUS441B00N	SUS441C00N	SUS441E00N	SUS441F00N	SUS441G00N	SUS0100N	SUS0100R	SUS0200N	SUS02F00N	SUS0300N	SUS0400N	SUS04F00N	SUS0500N	SUS05F00N	SUS05IC00N	SUS05IE00N	SUS05IG00N	
			Depth	0 - 1 ft	0.5 - 1 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	0.33 - 1 ft		0.33 - 0.83 ft	0 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date Type	3/22/2017 N	2/7/2013 N	1/27/2017 N	1/27/2017 N	1/25/2017 N	1/25/2017 N	1/25/2017 N	1/25/2017 N	2/4/2013 N	2/4/2013 FD	2/4/2013 N	1/25/2017 N	2/4/2013 N	2/4/2013 N	1/25/2017 N	2/4/2013 N	1/24/2017 N	1/24/2017 N	1/24/2017 N	1/24/2017 N	2/5/2013 N
		Project Screening																						
Analyte	Unit	Criteria																						
4,4'-DDD	ug/kg	2500			0.20 J							0.22 J	0.34 J	< 4.6 U										1
4,4'-DDE	ug/kg	9300			0.33 J							< 0.96 U	< 0.94 U	< 4.6 U										
4,4'-DDT	ug/kg	8500			9.9							< 0.96 U	< 0.94 U	< 4.6 U										
Aldrin	ug/kg	180			0.49							< 0.96 U	< 0.94 U	< 4.6 U										
alpha-BHC	ug/kg	360			< 0.46 U							< 0.96 U	< 0.94 U	< 4.6 U										
beta-BHC	ug/kg	1300			0.26 J							< 0.96 U	< 0.94 U	< 4.6 U										
cis-Chlordane	ug/kg	7700			0.21 J							< 0.96 U	< 0.94 U	< 4.6 U										
delta-BHC	ug/kg	360			0.65 J							< 0.96 U	< 0.94 U	< 4.6 U										
Dieldrin	ug/kg	140			0.79 J							< 0.96 U	< 0.94 U	< 4.6 U										\bot
Endosulfan I	ug/kg	700000			< 0.46 U							< 0.96 U	< 0.94 U	< 4.6 U										
Endosulfan II	ug/kg	700000			0.74 J							< 0.96 U	< 0.94 U	< 4.6 U										
Endosulfan Sulfate	ug/kg	700000			0.79 J							0.20 J	< 0.94 U	< 4.6 U										
Endrin	ug/kg	25000			1.0 J							< 0.96 U	0.30 J	< 4.6 U										
Endrin aldehyde	ug/kg	25000			< 0.46 U							< 0.96 U	< 0.94 U	< 4.6 U										
Endrin ketone	ug/kg	25000			12							0.85 J	< 0.94 U	2.2 J										
gamma-BHC (Lindane)	ug/kg	2500			< 0.46 U							< 0.96 U	< 0.94 U	< 4.6 U										+
Heptachlor	ug/kg	630			< 0.46 U							< 0.96 U	< 0.94 U	< 4.6 U										+
Heptachlor Epoxide	ug/kg	330			0.82							< 0.96 U	< 0.94 U	< 4.6 U										+
Methoxychlor	ug/kg	410000			2.7 J				-			0.26 J	0.24 J	< 9.2 U						-				+
Toxaphene	ug/kg	2100			< 19 U				-			< 38 U	< 38 U	< 180 U						-				+
trans-Chlordane	ug/kg	7700		< 40 LI	0.36 J	< 0.00 II	- 4711	< 0.00 II	< 0.04 II	< 0.07 LI	-1711	< 0.96 U	< 0.94 U	< 4.6 U	< 1 O I I	< 0.011	407H	4 F O I I	- 47 11	< 0.00 11	4 F O I I	< 4.0.11	- 4 C I I	
Aroclor-1016	ug/kg			< 48 U	< 4.6 U	< 0.93 U	< 4.7 U	< 0.92 U	< 0.94 U	< 0.87 U	< 1.7 U	< 9.6 U	< 9.4 U	< 9.2 U	< 1.9 U	< 9.9 U	< 9.7 U	< 5.0 U	< 47 U	< 0.89 U	< 5.2 U	< 4.9 U	< 4.6 U	< 9.4 U
Aroclor-1221	ug/kg			< 48 U	< 4.6 U	< 0.93 U	< 4.7 U	< 0.92 U	< 0.94 U	< 0.87 U	< 1.7 U	< 9.6 U	< 9.4 U	< 9.2 U	< 1.9 U	< 9.9 U	< 9.7 U	< 5.0 U	< 47 U	< 0.89 U	< 5.2 U	< 4.9 U	< 4.6 U	< 9.4 U
Aroclor-1232	ug/kg			< 48 U	< 4.6 U	< 0.93 U	< 4.7 U	< 0.92 U	< 0.94 U	< 0.87 U	< 1.7 U	< 9.6 U	< 9.4 U	< 9.2 U	< 1.9 U	< 9.9 U	< 9.7 U	< 5.0 U	< 47 U	< 0.89 U	< 5.2 U	< 4.9 U	< 4.6 U	< 9.4 U
Aroclor-1242	ug/kg			< 48 U	81	< 0.93 U	< 4.7 U	< 0.92 U	< 0.94 U	< 0.87 U	< 1.7 U	< 9.6 U	< 9.4 U	< 9.2 U	< 1.9 U	< 9.9 U	< 9.7 U	< 5.0 U	< 47 U	< 0.89 U	< 5.2 U	< 4.9 U	< 4.6 U	< 9.4 U
Aroclor-1248	ug/kg			< 48 U	< 4.6 U	52 J+	200 J	< 0.92 U	< 0.94 U	< 0.87 U	< 1.7 U	< 9.6 UJ	< 9.4 UJ	< 9.2 UJ	< 1.9 U	< 9.9 UJ	< 9.7 UJ	< 5.0 U	< 47 U	< 0.89 U	< 5.2 U	< 4.9 U	< 4.6 U	< 9.4 U
Aroclor-1254	ug/kg			< 48 U	< 4.6 U	40 J+	240 J	< 0.92 U	< 0.94 U	19 J+	5.8 J+	< 9.6 UJ	< 9.4 UJ	< 9.2 UJ	< 1.9 U	< 9.9 UJ	< 9.7 UJ	61 J+	5700	230 J+	29 J+	3.8 J+	240 J+	< 9.4 U.
Aroclor-1260	ug/kg			3000	170	67 J+	420 J+	< 0.92 U	19	14 J+	5.8 J+	< 9.6 UJ	< 9.4 UJ	21 J	92	< 9.9 UJ	64 J	140 J+	< 47 U	60 J+	11 J+	4.7 J+	70 J+	1900 J
Aroclor-1262	ug/kg			< 48 U	< 4.6 U	< 0.93 U	< 4.7 U	< 0.92 U	< 0.94 U	< 0.87 U	< 1.7 U	< 9.6 UJ	< 9.4 UJ	< 9.2 UJ	< 1.9 U	< 9.9 UJ	< 9.7 UJ	< 5.0 U	< 47 U	< 0.89 U	< 5.2 U	< 4.9 U	< 4.6 U	< 9.4 U
Aroclor-1268	ug/kg			< 48 U	< 4.6 U	6.5 J+	37 J+	< 0.92 U	< 0.94 U	< 0.87 U	< 1.7 U	< 9.6 UJ	< 9.4 UJ	< 9.2 UJ	< 1.9 U	< 9.9 UJ	< 9.7 UJ	< 5.0 U	< 47 U	< 0.89 U	< 5.2 U	< 4.9 U	< 4.6 U	< 9.4 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		3000	250	170	900	< 0.92 U	19	33	12	< 9.6 U	< 9.4 U	21	92	< 9.9 U	64	200	5700	290	40	8.5	310	1900

			Location ID	SUSDP06	SUSDP07	SUSDP08		SUSDP08-1E		SUSDP08-2G	SUSDP09	SUSDP10		SUSDP10-3F				SUSDP10-4NW	SUSDP11	SUSDP11	SUSDP11-1A		SUSDP11-1H	
			Sample ID	SUS06F00N	SUS0700N	SUS0800N	SUS08F00N	SUS081E00N	SUS081E00R	SUS082G00N	SUS0900N	SUS1000N	SUS10F00N	SUS103F00N	SUS103G00N	SUS103X00N	N SUS103X00R	SUS104NW00N		SUS11F00N	SUS111A00N	SUS111B00N	SUS111H00N	SUS112A00N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	3/13/2017	2/5/2013	2/5/2013	1/24/2017	1/24/2017	1/24/2017	3/22/2017	2/5/2013	2/5/2013	1/27/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	1/30/2018	2/5/2013	1/24/2017	2/22/2018	3/16/2018	3/16/2018	3/16/2018
		1	Туре	N	N	N	N	N	FD	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	N
		Project Screening																						
Analyte	Unit	Criteria																						
4,4'-DDD	ug/kg	2500				< 5.3 U					< 4.4 U	1.0 J							< 0.89 U					
4,4'-DDE	ug/kg	9300				8.4 J					1.1 J	4.4 J							0.90 J					
4,4'-DDT	ug/kg	8500				9.9 J					1.6 J	6.5 J							36					
Aldrin	ug/kg	180				< 5.3 U					< 4.4 U	5.0 J							0.20 J					
alpha-BHC	ug/kg	360				< 5.3 U					< 4.4 U	< 0.93 U							< 0.89 U					
beta-BHC	ug/kg	1300				< 5.3 U					< 4.4 U	2.3 J							< 0.89 U					
cis-Chlordane	ug/kg	7700				3.8 J					< 4.4 U	0.44 J							1.8 J					
delta-BHC	ug/kg	360				< 5.3 U					< 4.4 U	7.5 J							< 0.89 U					<u> </u>
Dieldrin	ug/kg	140	ļļ			4.6 J					< 4.4 U	5.7 J	ļļ		ļ				4.0 J				ļ	
Endosulfan I	ug/kg	700000				1.4 J					< 4.4 U	1.1							< 0.89 U					
Endosulfan II	ug/kg	700000				< 5.3 U					< 4.4 U	5.4 J							2.7 J					
Endosulfan Sulfate	ug/kg	700000				2.7 J					1.1 J	7.2 J							3.9 J					
Endrin	ug/kg	25000				26					< 4.4 U	15 J							4.1 J					
Endrin aldehyde	ug/kg	25000				< 5.3 U					< 4.4 U	< 0.93 U							0.34 J					
Endrin ketone	ug/kg	25000				< 5.3 U					< 4.4 U	< 0.93 U							< 0.89 U					
gamma-BHC (Lindane)	ug/kg	2500				< 5.3 U					< 4.4 U	0.23 J							< 0.89 U					
Heptachlor	ug/kg	630				< 5.3 U					< 4.4 U	2.9 J							< 0.89 U					
Heptachlor Epoxide	ug/kg	330 410000				1.2 J					1.2 J	8.3 J							0.30 J 9.4 J					
Methoxychlor	ug/kg	110000				11 J					3.0 J	16 J < 37 U					+							
Toxaphene	ug/kg	2100				< 210 U													< 35 U					
trans-Chlordane	ug/kg	7700		< 4.7 U	< 9.7 U	12 J	< 25 U	4 C O I I	- F 0 I I	< 10 II	1.7 J	4.8 J	< 10 U	< 21 U	< 0.07.11	< 0.011	404H	< 0.00 II	15 < 8.9 U	< 44 U	< 000 II	< 88 U	< 8.7 UJ	< 8.9 U
Aroclor-1016	ug/kg			\4.7 U	< 9.7 U	< 11 U	\ 25 U	< 6.0 U	< 5.8 U	< 10 U	< 8.9 U	< 9.3 U	V 10 0	\ Z1 U	< 0.97 U	< 8.9 U	< 9.1 U	< 0.99 U	\ 0.9 U	\ 44 U	< 900 U	\ 00 U	< 8.7 03	\ 0.9 U
Aroclor-1221	ug/kg			< 4.7 U	< 9.7 U	< 11 U	< 25 U	< 6.0 U	< 5.8 U	< 10 U	< 8.9 U	< 9.3 U	< 10 U	< 21 U	< 0.97 U	< 8.9 U	< 9.1 U	< 0.99 U	< 8.9 U	< 44 U	< 900 U	< 88 U	< 8.7 UJ	< 8.9 U
Aroclor-1232	ug/kg			< 4.7 U	< 9.7 U	< 11 U	< 25 U	< 6.0 U	< 5.8 U	< 10 U	< 8.9 U	< 9.3 U	< 10 U	< 21 U	< 0.97 U	< 8.9 U	< 9.1 U	< 0.99 U	< 8.9 U	< 44 U	< 900 U	< 88 U	< 8.7 UJ	< 8.9 U
Aroclor-1242	ug/kg			< 4.7 U	< 9.7 U	< 11 U	< 25 U	< 6.0 U	< 5.8 U	< 10 U	< 8.9 U	< 9.3 U	< 10 U	< 21 U	< 0.97 U	< 8.9 U	< 9.1 U	< 0.99 U	< 8.9 U	< 44 U	< 900 U	< 88 U	< 8.7 UJ	< 8.9 U
Aroclor-1248	ug/kg			< 4.7 U	< 9.7 UJ	< 11 UJ	< 25 U	< 6.0 U	< 5.8 U	130 J+	< 8.9 UJ	< 9.3 UJ	< 10 U	920 J+	260 J+	890 J+	690 J+	< 0.99 U	< 8.9 UJ	< 44 U	< 900 U	< 88 U	< 8.7 UJ	< 8.9 U
Aroclor-1254	ug/kg			< 4.7 U	78 J	540 J	2400 J+	1800 J+	1700 J+	110 J+	160 J	400 J	22 J+	1600 J+	200 J+	250 J+	170 J+	< 0.99 U	100 J	< 44 U	< 900 U	< 88 U	< 8.7 U	< 8.9 U
Aroclor-1260	ug/kg			6.1	70 J	300 J	360 J+	360 J+	360 J+	79 J+	67 J	700 J	59 J+	1100 J+	290 J+	65 J+	48 J+	34	510 J	6200	5800	4600	190	550
Aroclor-1262	ug/kg			< 4.7 U	< 9.7 UJ	< 11 UJ	< 25 U	< 6.0 U	< 5.8 U	< 10 U	< 8.9 UJ	< 9.3 UJ	< 10 U	< 21 U	< 0.97 U	< 8.9 U	< 9.1 U	< 0.99 U	< 8.9 UJ	< 44 U	< 900 U	< 88 U	< 8.7 U	< 8.9 U
Aroclor-1268	ug/kg			< 4.7 U	< 9.7 UJ	< 11 UJ	< 25 U	< 6.0 U	< 5.8 U	< 10 U	< 8.9 UJ	< 9.3 UJ	< 10 U	280 J+	76 J+	< 8.9 U	9.9 J+	< 0.99 U	< 8.9 UJ	< 44 U	< 900 U	< 88 U	< 8.7 U	< 8.9 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		6.1	150	840	2800	2200	2100	320	230	1000	81	3900	830	1200	920	34	610	6200	5800	4600	190	550

			Location ID	SUSDP11-2D	SUSDP11-2N	SUSDP12	SUSDP12	SUSDP12-1A	SUSDP12-1A	SUSDP12-1C	SUSDP12-1E	SUSDP12-10	SUSDP13	SUSDP14	SUSDP15	SUSDP15	SUSDP15-10	SUSDP15-1G	SUSDP16	SUSDP17	SUSDP18	SUSDP18	SUSDP19	SUSDP19	SUSDP20
			Sample ID	SUS112D00N	SUS112N00N	SUS1200N	SUS12F00N	SUS121A00N	SUS121A00R	SUS121C00N	SUS121E00N	SUS121G00N	N SUS1300N	SUS1400N	SUS1500N	SUS15F00N	SUS151C00N	SUS151G00N	SUS1600N	SUS1700N	SUS1800N	SUS18F00N	SUS1900N	SUS19F00N	SUS2000N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.17 - 1 ft	0.17 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0.83 - 1 ft	0 - 1 ft	0.42 - 1 ft
			Sample Date	4/5/2018	4/6/2018	2/6/2013	1/26/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	2/5/2013	2/6/2013	2/6/2013	1/30/2017	8/14/2017	8/15/2017	2/6/2013	2/6/2013	2/6/2013	1/26/2017	2/6/2013	1/30/2017	2/7/2013
			Type	N	N	N	N	N	FD	N	N	N	N	Ν	N	N	N	N	N	N	N	N	N	N	N
		Project Screening	9																						
Analyte	Unit	Criteria																							
4,4'-DDD	ug/kg	2500																		0.55 J	< 4.6 U		1.9 J		
4,4'-DDE	ug/kg	9300																		1.5	0.72 J		1.0 J		
4,4'-DDT	ug/kg	8500																		2.0 J	83		0.79 J		
Aldrin	ug/kg	180																		< 0.46 U	< 4.6 U		< 4.7 U		<u> </u>
alpha-BHC	ug/kg	360																		< 0.46 U	< 4.6 U		< 4.7 U		
beta-BHC	ug/kg	1300																		< 0.46 U	< 4.6 U		< 4.7 U		
cis-Chlordane	ug/kg	7700																		0.36 J	< 4.6 U		< 4.7 U		
delta-BHC	ug/kg	360																		< 0.46 U	< 4.6 U		< 4.7 U		
Dieldrin	ug/kg	140	1							1			1		1	.		1	1	0.49 J	9.4 J		2.1 J		+
Endosulfan I	ug/kg	700000	1					-	-	 			-		1	1		ļ	1	< 0.46 U	< 4.6 U	-	< 4.7 U		+
Endosulfan II	ug/kg	700000	+						-	 		1	+		1	 		 	+	0.33 J	15	-	< 4.7 U		+
Endosulfan Sulfate	ug/kg	700000								-										0.46 J	6.3 J		1.1 J		+
Endrin	ug/kg	25000								-										0.46 J	4.9 J		< 4.7 U		+
Endrin aldehyde	ug/kg	25000	-																+	< 0.46 U	< 4.6 U		< 4.7 U < 4.7 U		
Endrin ketone	ug/kg	25000 2500											-							< 0.46 U < 0.46 U	< 4.6 U		< 4.7 U		
gamma-BHC (Lindane) Heptachlor	ug/kg ug/kg	630																		< 0.46 U	< 4.6 U		< 4.7 U		-
Heptachlor Epoxide	ug/kg ug/ka	330																		0.46 U	9.6		1.5 J		-
Methoxychlor	ug/kg ug/ka	410000																		1.4 J	9.6 23 J		1.5 J		-
Toxaphene	ug/kg ug/kg	2100																		< 19 U	< 180 U		< 190 U		+
trans-Chlordane	ug/kg ug/kg	7700																		0.37 J	< 4.6 U		< 4.7 U		+
Aroclor-1016	ug/kg	7700		< 8.8 U	< 0.88 U	< 23 U	< 4.4 U	R	< 1.9 U	< 2.0 U	< 1.8 U	< 1.9 U	< 9.1 U	< 4.9 U	< 4.6 U	< 4.5 U	< 9.1 U	< 100 U	< 4.7 U	< 4.6 U	< 4.6 U	< 0.91 U	< 4.7 U	< 0.91 U	< 47 U
71100101 1010	ug/kg			10.00	10.000	- 20 0	1 4.4 0		1.00	1 2.0 0	1.00	1.00	10.10	14.00	14.00	14.00	- 0.1 0	1000	14.70	14.00	14.00	10.010	14.70	10.010	1470
Aroclor-1221	ug/kg			< 8.8 U	< 0.88 U	< 23 U	< 4.4 U	R	< 1.9 U	< 2.0 U	< 1.8 U	< 1.9 U	< 9.1 U	< 4.9 U	< 4.6 U	< 4.5 U	< 9.1 U	< 100 U	< 4.7 U	< 4.6 U	< 4.6 U	< 0.91 U	< 4.7 U	< 0.91 U	< 47 U
A100101-1221	ug/kg			۷ 0.0 0	۷ 0.00 0	1200	14.40	10	1.50	12.00	1.00	1.50	3.10	14.50	14.00	14.50	3.10	1000	14.70	4.00	1 4.0 0	10.510	14.70	10.510	147 0
A1 4000			-	10011	. 0 00 11	. 00 11			44011	.0011	-4011	44011	10411	. 1011	. 4 0 11	44511	.0411	. 400 ! !	. 4 7 1 1			. 0 04 11	. 4 7 1 1	10.04.11	4711
Aroclor-1232	ug/kg			< 8.8 U	< 0.88 U	< 23 U	< 4.4 U	R	< 1.9 U	< 2.0 U	< 1.8 U	< 1.9 U	< 9.1 U	< 4.9 U	< 4.6 U	< 4.5 U	< 9.1 U	< 100 U	< 4.7 U	< 4.6 U	< 4.6 U	< 0.91 U	< 4.7 U	< 0.91 U	< 47 U
Aroclor-1242	ug/kg			< 8.8 U	< 0.88 U	1100	< 4.4 U	R	< 1.9 U	< 2.0 U	< 1.8 U	< 1.9 U	< 9.1 U	110	82	51 J+	< 9.1 U	< 100 U	< 4.7 U	< 4.6 U	< 4.6 U	< 0.91 U	18	< 0.91 U	4100
Aroclor-1248	ug/kg			< 8.8 U	< 0.88 U	< 23 U	< 4.4 U	R	< 1.9 U	< 2.0 U	< 1.8 U	< 1.9 U	< 9.1 UJ	< 4.9 U	< 4.6 U	< 4.5 U	540 J+	< 100 U	< 4.7 U	< 4.6 U	< 4.6 U	< 0.91 U	< 4.7 U	28 J	< 47 U
Aroclor-1254	ug/kg			< 8.8 U	< 0.88 U	< 23 U	< 4.4 U	< 2.0 U	< 1.9 U	< 2.0 U	< 1.8 U	250 J+	< 9.1 UJ	< 4.9 U	< 4.6 U	71 J	330 J+	< 100 U	< 4.7 U	< 4.6 U	< 4.6 U	< 0.91 U	< 4.7 U	51 J+	< 47 U
Aroclor-1260	ug/kg			730	110	1800	270 J+	240 J	57 J	240	540 J+	320 J+	700 J	180	250	640 J+	390 J+	4800	0.95 J	86	1400	4.0	160	250 J+	970
7.1105161 1200	ug, ng			700		1000	2,001	2400	0,0	2-10	04001	02001	7000	100	200	04001	00001	4000	0.55 0	00	1400	4.0	100	20001	3.0
Aroclor-1262	ua/ka		1	< 8.8 U	< 0.88 U	< 23 U	< 4.4 U	< 2.0 U	< 1.9 U	< 2.0 U	< 1.8 U	< 1.9 U	< 9.1 UJ	< 4.9 U	< 4.6 U	< 4.5 U	< 9.1 U	< 100 U	< 4.7 U	< 4.6 U	< 4.6 U	< 0.91 U	< 4.7 U	< 0.91 U	< 47 U
A100101-1202	ug/kg			` 0.0 ∪	< 0.00 U	~ 23 U	\ 4.4 U	\ 2.0 U	\ 1.8 U	~ 2.0 0	\ 1.0 U	\ 1.8 U	\ 8.1 UJ	\ 4.9 U	\ 4.0 U	\ 4.5 U	\ 9.1 U	\ 100 U	\ 4.1 U	~ 4.0 ∪	\ 4.0 U	\ 0.81 U	\ 4.7 U	~ 0.91 0	\41 U
A == = 1 == 4000			+	.0011		* 00 L/	20.1	00.1	44.1	1001/	400 1	470 1	104111	4.4.0.11	. 4 0 11	14511	10411	. 400 !!	. 4711	. 4 0 11	. 4 0 11	10.0411	. 4 7 1 1	100411	. 47.11
Aroclor-1268	ug/kg			< 8.8 U	< 0.88 U	< 23 U	30 J+	62 J	11 J	< 2.0 U	160 J+	170 J+	< 9.1 UJ	< 4.9 U	< 4.6 U	< 4.5 U	< 9.1 U	< 100 U	< 4.7 U	< 4.6 U	< 4.6 U	< 0.91 U	< 4.7 U	< 0.91 U	< 47 U
	1		<u> </u>					_	_			ļ										_			
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		730	110	2900	300	300	68	240	700	740	700	290	330	760	1300	4800	0.95	86	1400	4.0	180	330	5100
	1						l		1		l	1			1	1							1	l	

			Location ID	SUSDP20	SUSDP21	SUSDP21	SUSDP21-1C	SUSDP21-3G	SUSDP21-3M	SUSDP21-3Q	SUSDP21-5W	SUSDP22	SUSDP23	SUSDP24	SUSDP37	SUSDP39	SUSDP41	SUSDP43	SUSDP43-2J	SUSDP43-2M		SUSDP44-1D	SUSDP44-1H	SUSDP48	SUSDP48
			Sample ID	SUS20F00N	SUS2100N	SUS21F00N	SUS211C00N	SUS213G00N	SUS213M00N	SUS213Q00N	SUS215W00N	SUS2200N	SUS2300N	SUS2400N	SUS37F00N	SUS39F00N	SUS41F00N	SUS43F00N	SUS432J00N	SUS432M00N		SUS441D00N	SUS441H00N	SUS4800N	SUS4800R
			Depth	0 - 1 ft	1 - 1.75 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.5 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	0 - 1 ft	0 - 1 ft
			Sample Date	1/27/2017	2/7/2013	1/27/2017	1/27/2017	8/28/2017	8/28/2017	8/24/2017	1/26/2018	6/13/2013	2/7/2013	2/7/2013	1/25/2017	1/25/2017	1/24/2017	1/26/2017	8/8/2017	8/9/2017	1/27/2017	1/25/2017	1/27/2017	1/26/2017	1/26/2017
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FD
		Project Screening																							
Analyte	Unit	Criteria																							
4,4'-DDD	ug/kg	2500																					İ	< 0.098 U	0.26 J
4,4'-DDE	ug/kg	9300																					İ	0.21 J	0.28 J
4,4'-DDT	ug/kg	8500																						< 0.098 U	< 0.10 U
Aldrin	ua/ka	180																						< 0.098 U	< 0.10 U
alpha-BHC	ug/kg	360																						< 0.098 U	< 0.10 U
beta-BHC	ug/kg	1300																						< 0.098 U	< 0.10 U
cis-Chlordane	ug/kg	7700																						0.13 J	0.31 J
delta-BHC	ug/kg	360																						< 0.098 U	< 0.10 U
Dieldrin	ug/kg	140																						< 0.098 U	< 0.10 U
Endosulfan I	ug/kg	700000																						< 0.098 U	< 0.10 U
Endosulfan II	ug/kg	700000																						< 0.098 U	< 0.10 U
Endosulfan Sulfate	ug/kg	700000																						< 0.098 U	< 0.10 U
Endrin	ug/kg	25000																						< 0.098 U	< 0.10 U
Endrin aldehyde	ug/kg	25000																						< 0.098 U	< 0.10 U
Endrin ketone	ug/kg	25000																						< 0.098 U	< 0.10 U
gamma-BHC (Lindane)	ug/kg	2500																						< 0.098 U	< 0.10 U
Heptachlor	ug/kg	630																						< 0.098 U	< 0.10 U
Heptachlor Epoxide	ug/kg	330																						5.3 J	12 J
Methoxychlor	ug/kg	410000																						< 0.098 U	< 0.10 U
Toxaphene	ug/kg	2100																						< 3.9 U	< 4.1 U
trans-Chlordane	ug/kg	7700		-4011	. 10 11	10011	. 470 11	+ 0000 II	. 000 11	.0011	.00711	- 4 5 11		- 4 0 11	- 4 0 11	-4011		-0711		.4011	-0711	10.0011	. 40 11	< 0.098 U	< 0.10 U
Aroclor-1016	ug/kg			< 1.0 U	< 46 U	< 9.6 U	< 470 U	< 9000 U < 92000 U	< 930 U	< 9.2 U	< 0.87 U	< 4.5 U	< 4.4 U	< 4.8 U	< 1.9 U	< 1.9 U	< 6.8 U	< 8.7 U	< 1.1 U	< 1.0 U	< 8.7 U	< 0.93 U	< 48 U	< 9.8 U	< 10 U
Aroclor-1221	ug/kg			< 1.0 U	< 46 U	< 9.6 U	< 470 U	< 9000 U	< 930 U	< 9.2 U	< 0.87 U	< 4.5 U	< 4.4 U	< 4.8 U	< 1.9 U	< 1.9 U	< 6.8 U	< 8.7 U	< 1.1 U	< 1.0 U	< 8.7 U	< 0.93 U	< 48 U	< 9.8 U	< 10 U
								< 92000 U																	
Aroclor-1232	ug/kg			< 1.0 U	< 46 U	< 9.6 U	< 470 U	< 9000 U < 92000 U	< 930 U	< 9.2 U	< 0.87 U	< 4.5 U	< 4.4 U	< 4.8 U	< 1.9 U	< 1.9 U	< 6.8 U	< 8.7 U	< 1.1 U	< 1.0 U	< 8.7 U	< 0.93 U	< 48 U	< 9.8 U	< 10 U
A I 4040	//			< 1.0 U	6400	< 9.6 U	07000 1		< 930 U	.0011	< 0.87 U	< 4.5 U	< 4.4 U	< 4.8 U	< 1.9 U	< 1.9 U		< 8.7 U	< 1.1 U	44011	< 8.7 U	. 0 00 11	4.40.11	< 9.8 U	< 10 U
Aroclor-1242	ug/kg			< 1.0 0	6400	< 9.0 U	37000 J+	< 9000 U < 92000 U	< 930 0	< 9.2 U	< 0.67 0	< 4.5 U	< 4.4 U	< 4.6 U	< 1.9 0	< 1.9 U	< 6.8 U	< 0.7 U	< 1.10	< 1.0 U	< 6.7 U	< 0.93 U	< 48 U	< 9.6 U	< 10 0
Aroclor-1248	ug/kg			< 1.0 U	< 46 U	100 J+	< 470 U	2500000	< 930 U	< 9.2 U	< 0.87 U	11	< 4.4 U	< 4.8 U	< 1.9 U	< 1.9 U	< 6.8 U	370 J+	< 1.1 U	< 1.0 U	2200 J+	< 0.93 U	4300 J	570 J+	730 J+
								8800000																	
Aroclor-1254	ug/kg			< 1.0 U	< 46 U	56 J+	3800 J+	< 9000 U < 92000 U	< 930 U	46 J+	< 0.87 U	< 4.5 U	< 4.4 U	< 4.8 U	< 1.9 U	87 J+	510 J+	220 J+	< 1.1 U	190 J+	450 J+	< 0.93 U	3600 J	130 J+	150 J+
Aroclor-1260	ug/kg			26	820	360 J+	2200 J+	< 9000 U	130000	20 J+	25	25	8.7	74	6.0 J+	55 J+	260 J+	680 J+	140 J+	170 J+	450 J+	11	5100 J+	82 J+	80 J+
								< 92000 U																	
Aroclor-1262	ug/kg			< 1.0 U	< 46 U	< 9.6 U	< 470 U	< 9000 U	< 930 U	< 9.2 U	< 0.87 U	< 4.5 U	< 4.4 U	< 4.8 U	< 1.9 U	< 1.9 U	< 6.8 U	< 8.7 U	< 1.1 U	< 1.0 U	< 8.7 U	< 0.93 U	< 48 U	< 9.8 U	< 10 U
	_		ļ			ļ	ļ	< 92000 U		ļ						ļ							ļ		
Aroclor-1268	ug/kg			< 1.0 U	< 46 U	< 9.6 U	< 470 U	< 9000 U	< 930 U	< 9.2 U	< 0.87 U	< 4.5 U	< 4.4 U	< 4.8 U	2.2 J+	< 1.9 U	< 6.8 U	1400 J+	140 J+	75 J+	51 J+	< 0.93 U	570 J+	< 9.8 U	< 10 U
								< 92000 U																	
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		26	7200	520	43000	2500000	130000	66	25	36	8.7	74	8.2	140	770	2700	280	440	3200	11	14000	780	960
	1							8800000																	

Part Part			L	Location ID			SUSDP48-2E			SUSDP49-1E	SUSDP50		SUSDP51	SUSDP52	SUSDP53	SUSDP65								
Secretary Secr				Sample ID	SUS48F00N			SUS4900N			SUS5000N	SUS5100N	SUS51F00N	SUS5200N	SUS53F00N	SUS6500N					SUSCT162I00N			
Proping Sections 100																								0 - 1 ft
Head Column Col			Sa		1/26/2017										1/31/2017									6/29/2018
Analysis (Unit of Control of Cont			1	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Analysis (Unit of Control of Cont			Project Screening																					
45-000	Analyte	Unit	,																					
### 6500 1								11.1			0.79.1	0.11.1		< 0.091 U										
ACCOUNT: ACCOUNT:	,	J. J																						
September Company Co	-	J. J									R													†
Part Part	Aldrin	ug/kg	180					< 0.099 U			R	< 0.095 U		< 0.091 U										
Section Sect	alpha-BHC	ug/kg	360					< 0.099 U			< 0.87 U	< 0.095 U		< 0.091 U										
Company Comp	beta-BHC	ug/kg	1300					< 0.099 U			< 0.87 U	< 0.095 U		< 0.091 U										
Deption Signature Signat	cis-Chlordane	ug/kg	7700					1.7 J			0.21 J	0.063 J		< 0.091 U										
Exposure	delta-BHC	ug/kg	360					< 0.099 U			< 0.87 U	< 0.095 U		< 0.091 U										
Endougher Company Co	Dieldrin	ug/kg	140					< 0.099 U			< 0.87 U	< 0.095 U		< 0.091 U										
Embels State Sta	Endosulfan I	ug/kg	700000					1.2 J			< 0.87 U	< 0.095 U		< 0.091 U										
Endin	Endosulfan II	ug/kg	700000					< 0.099 U			R	< 0.095 U		< 0.091 U										
Entire interiors University	Endosulfan Sulfate	ug/kg	700000					< 0.099 U			R	< 0.095 U		< 0.091 U										
Endins (shore) Capital	Endrin	ug/kg	25000					< 0.099 U			R	< 0.095 U		< 0.091 U										
Description Description	Endrin aldehyde										R													
Hepteshfor Solid																								
Heptach/Februde Ug/Ng 330																								
Methoxyclife																								
Totaphene Up/Ng 2100																								
Participation Participatio	,		110000								- 11													
Arodor-1266 Ug/kg		31-1-31									- 00 0													
Aroclor-1221 ug/kg			7700																					
Arcdor-1232 ug/kg	Aroclor-1016	ug/kg			< 20 U	< 9.8 U	< 0.89 U	< 49 U	< 0.89 U	< 1.0 U	< 0.87 U	< 0.95 U	< 0.90 U	< 0.91 U	< 0.92 U	< 9.2 U	< 17 U	< 18 U	< 47 U	< 4.5 U	< 0.89 U	< 4.5 U	< 120 U	< 60 U
Aroclor-1242 ug/kg	Aroclor-1221	ug/kg			< 20 U	< 9.8 U	< 0.89 U	< 49 U	< 0.89 U	< 1.0 U	< 0.87 U	< 0.95 U	< 0.90 U	< 0.91 U	< 0.92 U	< 9.2 U	< 17 U	< 18 U	< 47 U	< 4.5 U	< 0.89 U	< 4.5 U	< 120 U	< 60 U
Aroclor-1248 ug/kg 1500 J+ 760 J+ <0.89 U 2700 J+ <0.89 U <1.0 U <0.87 U 44 J+ 270 J+ <0.91 U <0.92 U <9.2 U 260 240 610 <4.5 U 54 J+ <4.5 U <120 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <	Aroclor-1232	ug/kg			< 20 U	< 9.8 U	< 0.89 U	< 49 U	< 0.89 U	< 1.0 U	< 0.87 U	< 0.95 U	< 0.90 U	< 0.91 U	< 0.92 U	< 9.2 U	< 17 U	< 18 U	< 47 U	< 4.5 U	< 0.89 U	< 4.5 U	< 120 U	< 60 U
Aroclor-1248 ug/kg 1500 J+ 760 J+ <0.89 U 2700 J+ <0.89 U <1.0 U <0.87 U 44 J+ 270 J+ <0.91 U <0.92 U <9.2 U 260 240 610 <4.5 U 54 J+ <4.5 U <120 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <1.0 U <	Aroclor-1242	ua/ka			< 20 11	< 9.811	< 0.8911	< 4911	30	< 1 0 11	< 0.87 []	< 0.95 []	< 0.9011	< 0.9111	55.1±	< 9 2 11	< 17	< 18	< 47	< 4 5 11	< 0.8911	< 4511	< 120 II	< 60 U
Aroclor-1254	71100101 1242	ug/kg			1200	10.00	10.000	1400		1.00	- 0.07 0	10.000	10.000	10.010	0001	- 0.2 0	1110	- 10 0	147 0	14.00	1 0.00 0	14.00	1 120 0	1000
Aroclor-1260	Aroclor-1248	ug/kg			1500 J+	760 J+	< 0.89 U	2700 J+	< 0.89 U	< 1.0 U	< 0.87 U	44 J+	270 J+	< 0.91 U	< 0.92 U	< 9.2 U	260	240	610	< 4.5 U	54 J+	< 4.5 U	< 120 U	< 60 U
Aroclor-1262	Aroclor-1254	ug/kg			300 J+	440 J+	< 0.89 U	480 J+	< 0.89 U	< 1.0 U	< 0.87 U	23 J+	110 J+	< 0.91 U	18 J+	< 9.2 U	< 17 U	< 18 U	< 47 U	< 4.5 U	130 J+	< 4.5 U	< 120 U	< 60 U
Aroclor-1268 ug/kg	Aroclor-1260	ug/kg			190 J+	410 J+	13	270 J+	19	< 1.0 U	130 J+	8.2 J+	42 J+	< 0.91 U	70 J+	340	2100	4200	8000	130	120 J+	320	1600	1300
	Aroclor-1262	ug/kg			< 20 U	< 9.8 U	< 0.89 U	< 49 U	< 0.89 U	< 1.0 U	< 0.87 U	< 0.95 U	< 0.90 U	< 0.91 U	< 0.92 U	< 9.2 U	< 17 U	< 18 U	< 47 U	< 4.5 U	< 0.89 U	< 4.5 U	< 120 U	< 60 U
200 Table and a 100 100 100 100 100 100 100 100 100 1	Aroclor-1268	ug/kg			< 20 U	< 9.8 U	< 0.89 U	< 49 U	< 0.89 U	< 1.0 U	22 J+	1.6 J+	11 J+	< 0.91 U	< 0.92 U	< 9.2 U	< 17 U	< 18 U	< 47 U	< 4.5 U	< 0.89 U	< 4.5 U	< 120 U	< 60 U
PCB, Total Arodolis (AECOM Caic) ug/kg 970 130 320 1600 13 300 320 1600 150 1600 16	PCB, Total Aroclors (AECOM Calc)	ug/kg	970		2000	1600	13	3500	49	< 1 U	150	77	430	< 0.91 U	140	340	2400	4400	8600	130	300	320	1600	1300

													SUSDPGD21-G2							
						SUSCT164W00N			SUSGD21D100N			SUSGD21G100N			SUSGD21H200N		SUSGD21I200N	SUSGD21J100N		
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date Type	5/31/2018 N	3/15/2018 N	4/6/2018 N	7/2/2018 N	5/31/2018 N	5/30/2018 N	5/30/2018 N	5/30/2018 N	4/4/2018 N	4/4/2018 N	3/14/2018 N	3/14/2018 N	2/20/2018 N	2/20/2018 N	1/24/2018 N	1/24/2018 N	1/24/2018 N
		Project Screening																		
Analyte	Unit	Criteria																		
4,4'-DDD	ug/kg	2500																		
4,4'-DDE	ug/kg	9300																		
4,4'-DDT	ug/kg	8500																		
Aldrin	ug/kg	180																		
alpha-BHC	ug/kg	360																		
beta-BHC	ug/kg	1300																		
cis-Chlordane	ug/kg	7700																		
delta-BHC	ug/kg	360																		
Dieldrin	ug/kg	140																		+
Endosulfan I	ug/kg	700000																		
Endosulfan II	ug/kg	700000 700000																		+
Endosulfan Sulfate	ug/kg	25000																		+
Endrin	ug/kg	25000																		+
Endrin aldehyde Endrin ketone	ug/kg ug/kg	25000																		+
gamma-BHC (Lindane)	ug/kg	25000																		+
Heptachlor	ug/kg	630																		+
Heptachlor Epoxide	ug/kg	330																		+
Methoxychlor	ug/kg	410000																		+
Toxaphene	ug/kg	2100																		+
trans-Chlordane	ug/kg	7700																		+
Aroclor-1016	ug/kg			< 93 U	< 9.1 U	< 2.3 U	< 9.6 U	< 50 U	< 86 U	< 8.5 U	< 9.8 U	< 910 U	< 8.4 U	< 8.5 U	< 8.6 U	< 0.85 U	< 0.84 U	< 0.85 U	< 0.86 U	< 0.84 U
Aroclor-1221	ug/kg			< 93 U	< 9.1 U	< 2.3 U	< 9.6 U	< 50 U	< 86 U	< 8.5 U	< 9.8 U	< 910 U	< 8.4 U	< 8.5 U	< 8.6 U	< 0.85 U	< 0.84 U	< 0.85 U	< 0.86 U	< 0.84 U
Aroclor-1232	ug/kg			< 93 U	< 9.1 U	< 2.3 U	< 9.6 U	< 50 U	< 86 U	< 8.5 U	< 9.8 U	< 910 U	< 8.4 U	< 8.5 U	< 8.6 U	< 0.85 U	< 0.84 U	< 0.85 U	< 0.86 U	< 0.84 U
Aroclor-1242	ug/kg			< 93 U	< 9.1 U	< 2.3 U	< 9.6 U	< 50 U	< 86 U	< 8.5 U	< 9.8 U	< 910 U	< 8.4 U	< 8.5 U	< 8.6 U	< 0.85 U	< 0.84 U	< 0.85 U	< 0.86 U	< 0.84 U
Aroclor-1248	ug/kg			< 93 U	< 9.1 U	< 2.3 U	< 9.6 U	< 50 U	< 86 U	< 8.5 U	< 9.8 U	< 910 U	< 8.4 U	< 8.5 U	< 8.6 U	2.3	2.4 J	< 0.85 U	< 0.86 U	< 0.84 U
Aroclor-1254	ug/kg			7600	< 9.1 U	< 2.3 U	< 9.6 U	< 50 U	< 86 U	< 8.5 U	< 9.8 U	< 910 U	< 8.4 U	< 8.5 U	< 8.6 U	< 0.85 U	< 0.84 U	< 0.85 U	< 0.86 U	< 0.84 U
Aroclor-1260	ug/kg			< 93 U	230 J+	66	80	< 50 U	9600	36	99	56000	68	46	16	11	5.9	6.2	7.9	8.8
Aroclor-1262	ug/kg			< 93 U	< 9.1 U	< 2.3 U	< 9.6 U	< 50 U	< 86 U	< 8.5 U	< 9.8 U	< 910 U	< 8.4 U	< 8.5 U	< 8.6 U	< 0.85 U	< 0.84 U	< 0.85 U	< 0.86 U	< 0.84 U
Aroclor-1268	ug/kg			< 93 U	< 9.1 U	< 2.3 U	< 9.6 U	< 50 U	< 86 U	< 8.5 U	< 9.8 U	< 910 U	< 8.4 U	< 8.5 U	< 8.6 U	< 0.85 U	< 0.84 U	< 0.85 U	< 0.86 U	< 0.84 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		7600	230	66	80	< 50 U	9600	36	99	56000	68	46	16	13	8.3	6.2	7.9	8.8

Table 4-3

Surface Soil Results PCBs and Pesticides Concentrations in Surface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDPGD21-K1.5	CLICDDCD34 I/3	CHEDDODALIA	SUSDPGD21-L2	SUSDPGD21-M1	SUSDPGD21-M2	CHCDDCD34 N4	SUSDPGD21-N2	CHCDDCD34 D4	CHCDDCD34 D4	SUSDPGD21-R1	SUSDPGD21-R2	SUSDPGD21-S1	SUSDPGD21-S
											SUSGD21N200N						
				0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Depth		1/24/2018		2/20/2018	3/14/2018	3/14/2018	4/4/2018	4/4/2018	5/30/2018	1/23/2018	-	1/23/2018	1/23/2018	1/24/2018
			Sample Date Type	1/26/2018 N	1/24/2016 N	2/20/2018 N	2/20/2016 N	3/14/2016 N	3/14/2016 N	4/4/2016 N	4/4/2016 N	5/30/2016 N	1/23/2016 N	1/23/2018 FD	N	1/23/2016 N	1/24/2016 N
	1	ı	Туре	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	Fυ	IN	IN	IN
		Project Screening															
A I I-	1.1	, ,															
Analyte	Unit	Criteria															
4,4'-DDD	ug/kg	2500															
4,4'-DDE	ug/kg	9300															
4,4'-DDT	ug/kg	8500															
Aldrin	ug/kg	180															
alpha-BHC	ug/kg	360															
beta-BHC	ug/kg	1300															
cis-Chlordane	ug/kg	7700															
delta-BHC	ug/kg	360															
Dieldrin	ug/kg	140															
Endosulfan I	ug/kg	700000															
Endosulfan II	ug/kg	700000															
Endosulfan Sulfate	ug/kg	700000															
Endrin	ug/kg	25000															
Endrin aldehyde	ug/kg	25000															
Endrin ketone	ug/kg	25000															
gamma-BHC (Lindane)	ug/kg	2500															
Heptachlor	ug/kg	630															
Heptachlor Epoxide	ug/kg	330															
Methoxychlor	ug/kg	410000															
Toxaphene	ug/kg	2100															
trans-Chlordane	ug/kg	7700															
Aroclor-1016	ug/kg			< 0.86 U	< 0.84 U	< 44 U	< 0.86 U	< 8.7 U	< 8.4 U	< 8.6 U	< 8.5 U	< 0.88 U	< 9.2 U	< 9.0 U	< 0.87 U	< 9.2 U	< 0.91 U
Aroclor-1221	ug/kg			< 0.86 U	< 0.84 U	< 44 U	< 0.86 U	< 8.7 U	< 8.4 U	< 8.6 U	< 8.5 U	< 0.88 U	< 9.2 U	< 9.0 U	< 0.87 U	< 9.2 U	< 0.91 U
Aroclor-1232	ug/kg			< 0.86 U	< 0.84 U	< 44 U	< 0.86 U	< 8.7 U	< 8.4 U	< 8.6 U	< 8.5 U	< 0.88 U	< 9.2 U	< 9.0 U	< 0.87 U	< 9.2 U	< 0.91 U
Aroclor-1242	ug/kg			< 0.86 U	< 0.84 U	< 44 U	< 0.86 U	< 8.7 U	< 8.4 U	< 8.6 U	< 8.5 U	< 0.88 U	< 9.2 U	< 9.0 U	< 0.87 U	< 9.2 U	< 0.91 U
Aroclor-1248	ug/kg			< 0.86 U	< 0.84 U	< 44 U	2.7	< 8.7 U	< 8.4 U	< 8.6 U	< 8.5 U	< 0.88 U	29	25	2.0	34	< 0.91 U
A				.0.00.11	+0.0411	. 4411	10.0011	.0711	.0.411	.0011	.0.5.11	.0.00.11	.0011	10011	.0.07.11	10011	.0.04.11
Aroclor-1254	ug/kg			< 0.86 U	< 0.84 U	< 44 U	< 0.86 U	< 8.7 U	< 8.4 U	< 8.6 U	< 8.5 U	< 0.88 U	< 9.2 U	< 9.0 U	< 0.87 U	< 9.2 U	< 0.91 U
Aroclor-1260	ug/kg			13	6.8	4100	11	2300	30	53	61	2.0	41	36	3.0	57	48
Aroclor-1262	ug/kg			< 0.86 U	< 0.84 U	< 44 U	< 0.86 U	< 8.7 U	< 8.4 U	< 8.6 U	< 8.5 U	< 0.88 U	< 9.2 U	< 9.0 U	< 0.87 U	< 9.2 U	< 0.91 U
Aroclor-1268	ug/kg			< 0.86 U	< 0.84 U	< 44 U	< 0.86 U	< 8.7 U	< 8.4 U	< 8.6 U	< 8.5 U	< 0.88 U	< 9.2 U	< 9.0 U	< 0.87 U	< 9.2 U	< 0.91 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		13	6.8	4100	14	2300	30	53	61	2.0	70	61	5.0	91	48

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable RSL Table, May 2018 Industrial Soil [ELCR = 1E-6, HQ=0.1]

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

approximate concentration or the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the
sample and meet quality control criteria. The presence or absence of the analyte cannot be

SUSDP21-3G / SUS213600N: Two values reported due to re-analysis.

												Location ID	SUS08-1A	SUS08-1B	SUS08-1C	SUS08-1D	SUS08-1F	SUS08-1G	SUS08-1H	SUS08-2A	SUS08-2B	SUS08-2F
												Sample ID	SUS081A00N	SUS081B00N2	SUS081C00N	SUS081D00N	SUS081F00N	SUS081G00N	SUS081H00N	SUS082A00N	SUS082B00N	SUS082F00N
												Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
												Sample Date	1/24/2017	2/3/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017	1/24/2017	3/22/2017	3/22/2017	3/22/2017
												Туре	N	N	N	N	N	N	N	N	N	N
		Project																				
		Screening			Max	Min	Mean	Median		Count	Count											
Analyte	Unit	Criteria	Method	CAS	Detect	Detect	Detect	Detect	Max Location	Detect	Total											
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g		SW8290A	67562-39-4	1280	0.417	89.8	18.9	SUS10-2B	68	69		85.9	4.15	4.39	67.3	19.1	8.32	104	4.3	6.88	9.84
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g		SW8290A	35822-46-9	5320	3.71	450	116	SUS10-2B	69	69		395	61.7	62.9	295	71.7	65	478	63.5	95.9	80.3
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g		SW8290A	55673-89-7	113	0.0447	9.5	2.67	SUS10-2B	56	69		10	0.378 J	0.416 J	10.1	5.4	0.941 J	13.3	0.439 J	< 0.452 U	1.01 J
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g		SW8290A	70648-26-9	188	0.204	12.1	4.25	SUS10-2B	62	69		21.1	0.521 JN	0.466 JN	14.8	6.64	1.31 J	17.9	0.409 J	< 0.49 U	1.83 J
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g		SW8290A	39227-28-6	170	0.136	8.88	2.09	SUS10-2B	62	69		18.3	0.367 JN	0.442 JN	13.5	2.39 J	0.763 J	14	0.377 JN	0.591 JN	0.644 JN
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g		SW8290A	57117-44-9	188	0.226	12.4	3.52	SUS10-2B	62	69		19.7	0.532 J	0.491 J	13.9	2.87	1.16 J	16.5	0.389 J	0.548 J	1.27 J
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g		SW8290A	57653-85-7	370	0.174	24.3	5.05	SUS10-2B	64	69		33.9	1.48 J	1.95	25.4	11	2.23	31.3	1.52 J	2.14 J	2.77 JN
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g		SW8290A	72918-21-9	18.1	0.0723	1.92	1.14	SUS10-2B	38	69		2.09 J	< 0.0685 U	< 0.128 U	2.18 J	0.342 JN	0.12 JN	1.58 J	< 0.137 U	< 0.562 U	0.195 J
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g		SW8290A	19408-74-3	306	0.219	17.4	4.16	SUS10-2B	65	69		28.5	1.1 J	1.33	21.4	6.73	1.7	23.5	1.01 J	1.58 J	1.95 J
1,2,3,7,8-PeCDF	pg/g		SW8290A	57117-41-6	99.5	0.194	5.74	1.86	SUS10-2B	51	69		16.2	0.227 JN	0.225 JN	9.92	2.47	0.662	11.5	< 0.151 U	< 0.481 U	0.627 J
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g		SW8290A	40321-76-4	156	0.186	8.4	2.59	SUS10-2B	54	69		16.2	0.406 J	0.432 J	10.6	2.31 J	0.582 JN	12.4	0.186 JN	< 0.607 U	0.566 JN
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g		SW8290A	60851-34-5	223	0.0965	15.4	3.85	SUS10-2B	64	69		23.6	0.925 J	0.886 J	20	3.1	1.98 J	20.2	0.853 J	0.78 JN	2.08 J
2,3,4,7,8-Pentachlorodibenzofuran	pg/g		SW8290A	57117-31-4	226	0.103	18.4	4.59	SUS10-2B	66	69		24.5	1.61 J	1.73 J	17.3	3.1	3.02	18.3	1.81 J	1.81 J	4.17
2,3,7,8-Tetrachlorodibenzofuran	pg/g		SW8290A	51207-31-9	70.3	0.177	6.25	2.31	SUS10-2B	56	69		25	0.408	0.295 J	13.6	1.7	1.04	12.7	0.239 JN	< 0.487 U	1.14
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g	22	SW8290A	1746-01-6	25.5	0.069	1.7	0.793	SUS10-2B	35	69		2.65	0.124 J	0.069 JN	1.84	0.365 JN	0.0906 JN	2	< 0.142 U	< 0.401 U	0.115 J
Octachlorochlorodibenzofuran	pg/g		SW8290A	39001-02-0	2700	0.898	204	36.3	SUS10-1B	68	69		96.4	11.2	13.3	86	58.8	19.6	225	11.9	23	21.2
Octachlorochlorodibenzo-p-dioxin	pg/g		SW8290A	3268-87-9	50300	55.9	4800	2210	SUS10-1B	69	69		4030	1230	2070	3630	806	1540	6770	1450	1840	1860
Total HpCDD	pg/g		SW8290A	37871-00-4	9560	8.62	846	240	SUS10-2B	69	69		760	117	121	577	147	127	1040	132	194	165
Total HpCDF	pg/g		SW8290A	38998-75-3	3110	0.968	243	45.7	SUS10-2B	68	69		172	12.4	14	138	43.6	21.7	252	13.9	23.1	25.9
Total HxCDD	pg/g		SW8290A	34465-46-8	3200	1.76	183	53.2	SUS10-2B	68	69		324	15.8	16.2	277	96.8	21.3	282	15.4	18	28.1
Total HxCDF	pg/g		SW8290A	55684-94-1	2650	0.831	218	47	SUS10-2B	68	69		222	12.7	12.3	165	39.9	22.6	198	10.8	12.8	28.5
Total PeCDD	pg/g		SW8290A	36088-22-9	3080	0.156	202	22.4	SUSDP08	67	69		200	4.75	3.95	149	43.2	7.81	157	2.31	0.441	7.42
Total PeCDF	pg/g		SW8290A	30402-15-4	2280	0.559	218	51.9	SUSDP18	67	69		221	15.3	16.7	166	31	26.8	180	17.5	19.3	38.9
Total TCDD	pg/g		SW8290A	41903-57-5	800	0.411	37.2	10.5	SUS10-2B	60	69		86.9	2.05	1.45	67.6	17.7	4.47	73.1	0.527	0.411	3.99
Total TCDF	pg/g		SW8290A	55722-27-5	4380	2.33	175	40.2	SUSDP18	65	69		225	9.33	9	154	24.5	16.9	151	6.81	6.57	18.4
TCDD TEQ HH	pg/g	22	SW8290A	DFTEQ-HH	484	0.101	28.8	7.45	SUS10-2B	69	69		50.1	2.59	2.91	35.2	8.38	3.84	42.1	2.33	2.69	4.61

Table 4-4 Surface Soil Results

Dioxins and Furans Concentrations in Surface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUS08-2H	SUS08-2I	SUS08-2I	SUS08-2J	SUS08-2N	SUS08-20	SUS08-2P	SUS10-1A	SUS10-1B	SUS10-1B	SUS10-1C	SUS10-1D	SUS10-1E	SUS10-1F	SUS10-1G	SUS10-1H	SUS10-2A
			Sample ID	SUS082H00N	SUS082100N	SUS082I00R	SUS082J00N	SUS082N00N	SUS082000N	SUS082P00N	SUS101A00N	SUS101B00N	SUS101B00R	SUS101C00N	SUS101D00N	SUS101E00N	SUS101F00N	SUS101G00N	SUS101H00N2	SUS102A00N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	3/22/2017	3/22/2017	3/22/2017	3/22/2017	3/22/2017	3/23/2017	3/22/2017	1/27/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/27/2017	1/27/2017	2/3/2017	3/23/2017
			Type	N	N	FD	N	N	N	N	N	N	FD	N	N	N	N	N	N	N
		Project																		
		Screening																		
Analyte	Unit	Criteria																		
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g			7.99	23.4 J	13.6 J	18.7 J	22.9	8.02	9.34	265	654	438	156	1.81 JN	2.69	63	115	428	58.6
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g			64.8	124	99.7	117 J	138	80.9	116	2440	4010	2660	1100	35.9	12.3	378	534	1680	321
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g			0.629 JN	3.21	1.67 J	1.49 JN	2.47 J	0.653 JN	0.821 J	19.6	56.6 J	40.6	10.3	< 0.451 U	< 0.438 U	4.85	8.96	35.4	5.98
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g			1.26 JN	6.92	2.91	3.13 J	4.46	1.04 J	1.19 J	29.4	59.6	37.4	11.9	< 0.351 U	0.407 J	6.94	13.7	35.7	7.35
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g			0.422 JN	3.09	1.53 J	1.93 J	3.24	0.473 J	0.588 J	24.2	12.2	9.76	9.84	< 0.587 U	< 0.513 U	7.71	9.77	44.9	6.62
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g			1.15 J	4.73	2.09 J	2.63 J	3.88	0.929 J	0.896 J	27	27.9	20.2	13.1	0.712 JN	0.83 JN	7.2	11.4	42.4	6.71
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g			1.72 J	6.53	3.9	5.26 J	7.48	2.04 J	3.03	119	108 J	77.3	34.9	< 0.56 U	< 0.551 U	23.6	28	107	17.1
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g			< 0.229 U	0.863 J	< 0.469 U	< 0.353 UJ	0.497 J	0.165 J	0.0793 JN	3.4 JN	7.73 J	4.18	2.27 J	< 0.482 U	< 0.468 U	0.754 J	1.77 J	2.77	0.603 J
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g			0.926 JN	5.56	3.02 JN	4 J	5.92	1.35 J	1.73 J	57.4	31	23.9	30.8	0.674 JN	< 0.57 U	14.8	21.1	89.8	13.1
1,2,3,7,8-PeCDF	pg/g			0.43 J	2.45 JN	1.11 JN	0.913 JN	2.35 J	0.406 J	0.54 J	7.6	7.78	5.21	2.71	< 0.208 U	< 0.239 U	4.01	3.38	18.4	2.61
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g			0.502 J	2.67	1.17 J	1.51 J	2.92	0.249 JN	0.486 J	12.1	8.46	6.52	6.56	< 0.359 U	< 0.441 U	4.42	7.77	27.1	4.8
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g			1.95 J	6.49	3.07	4.25 J	5.36	1.72 J	1.53 J	39.4	56	40.9	25.9	2.05 J	2.77	9.67	15.3	68.8	9.82
2,3,4,7,8-Pentachlorodibenzofuran	pg/g			3.78	7.45	3.78	4.87 J	6.09	3.31	2.81	45.9	84.4	67.1	42.7	3.73	5.45	8.3	17.6	41.4	9.22
2,3,7,8-Tetrachlorodibenzofuran	pg/g			0.758	5.2 J	2.06 JN	1.65 J	6.69	0.485 J	1.25	8.54	5.77	4.48	2.94 JN	0.177 JN	< 0.269 U	1.91	4.94	22.3	2.87
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g	22		< 0.214 U	0.477 JN	< 0.223 U	< 0.461 UJ	0.561	0.0813 JN	0.112 J	1.4	0.688	0.825 JN	0.925 JN	< 0.312 U	< 0.369 U	0.451 J	0.793 JN	2.48	0.715
Octachlorochlorodibenzofuran	pg/g			18.8	38.4	23.2	30.9 J	34.7	19.1	29.3	483	2700	1840	342	2.81 J	1.35 JN	104	226	721	122
Octachlorochlorodibenzo-p-dioxin	pg/g			1540	2440	2210	2630 J	2820	1580	3190	17300 J	50300 J	35200 J	8820	3360	618	2900	7610	10400 J	2190
Total HpCDD	pg/g			135	255	194	240 J	274	159	231	4180	7750	5090	2030	77.8	24.8	750	1030	3160	616
Total HpCDF	pg/g			21.1	51.1	31.4 J	43 J	51	22.3	27.8	717	2610	1760	416	4.12	5.53	151	281	904	143
Total HxCDD	pg/g			18.9	76.5 J	40 J	53.2 J	75	17.5	26.3	601	519	373	308	7.01	2.94	171	222	1030	142
Total HxCDF	pg/g			28.5	61.8 J	32.7 J	42.8 J	51.2	22.1	22	644	1220	834	383	23.5	31.8	135	238	757	123
Total PeCDD	pg/g			5.56	37 J	14.4 J	17.8 J	35.7	3.85	5.48	109	101	77.1	78	0.745	0.596	64.6	80.7	420	60.9
Total PeCDF	pg/g			37.2	59.2	45.8	51.6 J	51.9	29.2	25.9	397	667	520	390	40.3	57.1	79.1	182	480	95
Total TCDD	pg/g			1.48	21.8 J	6.25 J	3.5 J	15.8	3.08	2.87	49.7	41	31	55	< 0.312 U	< 0.369 U	25.3	30.7	122	23.5
Total TCDF	pg/g			20.7	60.2 J	29.5 J	13.9 J	47.4	17.9	18.4	166	193	159	139	14.3	18.9	40.3	88	319	59.5
TCDD TEQ HH	pg/g	22		3.67	11.6	6.01	7.45	11.6	3.53	4.71	90.9	129	91.9	49.0	2.87	2.37	20.1	33.5	109	19.3

Table 4-4 **Surface Soil Results**

Dioxins and Furans Concentrations in Surface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUS10-2B	SUS10-2D	SUS10-2E	SUS10-2F	SUS10-2L	SUS10-2M	SUS10-2N	SUS10-20	SUS10-2P	SUS181A	SUS181B	SUS181C	SUS181D	SUS181E	SUS181F	SUS181G	SUS181H
			Sample ID	SUS102B00N	SUS102D00N	SUS102E00N	SUS102F00N	SUS102L00N	SUS102M00N	SUS102N00N	SUS102000N	SUS102P00N	SUS181A00N	SUS181B00N	SUS181C00N	SUS181D00N	SUS181E00N	SUS181F00N	SUS181G00N	SUS181H00N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	3/23/2017	3/23/2017	3/23/2017	3/22/2017	3/22/2017	3/22/2017	3/22/2017	3/22/2017	3/23/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017	1/25/2017
			Type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																		
		Screening																		
Analyte	Unit	Criteria																		
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g			1280	290	574	0.91 J	18.1 J	17.2 J	19.2 J	6.29	164	0.417 JN	0.784 JN	2.19 JN	33.2	1.72 JN	14.9	2.31 J	41.6
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g			5320 J	1400	2110	48	138 J	111 J	130 J	85.5	789	3.71	6.36	7.18	205	9.61	203	9.09	153
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g			113	25	28.3	< 0.0688 U	1.02 JN	1.64 J	< 0.644 UJ	< 0.442 U	14.4	0.0447 JN	< 0.399 U	< 0.39 U	3.5	< 0.404 U	0.65 J	0.738 J	2.72
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g			188	32	36.6	0.204 JN	1.89 J	2.02 JN	1.77 JN	0.986 J	14.1	< 0.0808 U	< 0.333 U	0.388 JN	5.3	< 0.311 U	0.596 JN	1.18 J	4.04
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g			170	23.1	28.5	0.632 J	2.04 J	1.99 J	1.51 J	0.423 JN	14.5	0.136 J	< 0.683 U	< 0.501 U	2.92	< 0.54 U	< 0.546 U	0.257 J	2.91
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g			188	30.4	53.3	0.226 J	1.91 J	2.11 J	1.46 JN	0.688 JN	14.1	< 0.074 U	< 0.312 U	< 0.385 U	6.29	< 0.29 U	< 0.444 U	0.633 JN	3.8
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g			370	64.2	105	0.82 J	4.53 J	4.7 J	4.03 J	2.11 J	40.8	0.174 JN	< 0.683 U	< 0.517 U	13.3	< 0.603 U	2.83 JN	0.847	8.27
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g			18.1	2.1 J	4.51	< 0.0694 U	< 0.524 UJ	< 0.345 UJ	< 0.564 UJ	< 0.418 U	1.31 J	< 0.101 U	< 0.408 U	< 0.529 U	1.13 JN	< 0.413 U	< 0.589 U	0.0723 JN	0.235 J
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g			306	47.9	79.9	1.4 J	4.71 J	3.92 J	2.81 J	0.904 JN	31.2	0.219 J+	< 0.749 U	< 0.548 U	6.54	< 0.623 U	1.2 J	0.766	5.52
1,2,3,7,8-PeCDF	pg/g			99.5	10.2	9.93	< 0.153 U	< 0.546 UJ	0.814 J	< 0.584 UJ	< 0.256 U	4.23	< 0.0543 U	< 0.341 U	< 0.291 U	1.07 J	< 0.149 U	< 0.388 U	0.996 JN	1.86
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g			156	15.2	20.9	0.298 JN	1.16 JN	1.63 J	0.662 JN	< 0.293 U	8.92	< 0.102 U	< 0.622 U	< 0.434 U	2.5 JN	< 0.491 U	< 0.577 U	< 0.128 U	2.29 J
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g			223	52.1	110	0.267 J	3.5 J	3.29 J	2.02 JN	0.926 J	21.5	0.0965 J	< 0.332 U	< 0.426 U	14.9	< 0.294 U	0.784 J	0.991 J	4.92
2,3,4,7,8-Pentachlorodibenzofuran	pg/g			226	78.2	192	0.445 J	4.88 J	4.03 J	3.97 JN	1.67 JN	19.2	0.103 JN	< 0.336 U	0.685 JN	30.1	0.954 J	1.61 J	2.06 J	5.71
2,3,7,8-Tetrachlorodibenzofuran	pg/g			70.3	10.3	9.18	0.331 J	< 0.98 UJ	1.26 J	< 0.908 UJ	< 0.438 U	4.02	< 0.08 U	< 0.414 U	< 0.346 U	1.4	< 0.21 U	< 0.403 U	0.251 J	1.03
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g	22		25.5	1.89	2.63	0.0825 J	< 0.596 UJ	0.565 JN	< 0.48 UJ	< 0.335 U	1.03	< 0.0963 U	< 0.526 U	< 0.489 U	< 0.404 U	< 0.298 U	< 0.473 U	< 0.0926 U	0.325 J
Octachlorochlorodibenzofuran	pg/g			2330	648	780	1.23 J	36.3 J	36.2 J	34 J	15.6	394	0.898 JN	1.48 JN	4.19 JN	64.4	2.86 JN	43.5	6.12	77.9
Octachlorochlorodibenzo-p-dioxin	pg/g			34600 J	10200 J	16200 J	4200	5240 J	3930 J	3540 J	2190	4900	55.9	97.9	178	1580	242	1500	192	1440
Total HpCDD	pg/g			9560	2550	3780	100	302	226 J	251 J	166	1410	8.62	13.7	16.7	416	21.9	356	20.4	282
Total HpCDF	pg/g			3110	782	1180	1.35	44.1	43.2 J	47.2 J	19	406	0.968	1.63	3.54	91.6	3.13	52.7	5.2	98.2
Total HxCDD	pg/g			3200	454	797	16	57.3	56.3 J	43.6 J	18.6	291	1.76	< 0.703 U	4.14	91.4	5.27	26.2	9.35	64.4
Total HxCDF	pg/g			2650	797	1650	2.55	41.7	36.9 J	33.2 J	15.9	293	0.841	0.831	4.38	200	2.71	16.8	12.3	84.2
Total PeCDD	pg/g			1720	146	215	3.06	18.4	22.4 J	9.84 J	1.26	96.7	0.156	< 0.622 U	2.79	34.9	< 0.491 U	1.13	5.23	30.7
Total PeCDF	pg/g			2210	753	1770	3.71	43.4	42.7 J	45.4 J	21	208	0.559	< 0.338 U	7.96	289	6.89	11.8	16.2	53.6
Total TCDD	pg/g			800	61.3	107	1.83	1.42	7.41 J	< 0.48 U	< 0.335 U	32.7	< 0.0963 U	< 0.526 U	< 0.489 U	13.7	0.866	< 0.473 U	2.32	13
Total TCDF	pg/g			1660	241	466	6.36	9.03	11.6 J	7.39 J	2.46	81.2	< 0.08 U	< 0.414 U	6.66	106	2.33	3.81	6.6	24.7
TCDD TEQ HH	pg/g	22		484	87.5	156	2.65	7.64	7.85	5.78	2.68	41.3	0.152	0.101	0.393	19.7	0.473	3.67	1.33	9.88

Table 4-4 Surface Soil Results

Surface Soil Result

Dioxins and Furans Concentrations in Surface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUS25	SUSDP01	SUSDP01	SUSDP02	SUSDP08	SUSDP08-1E	SUSDP08-1E	SUSDP08-2G	SUSDP08-3I	SUSDP08-3K	SUSDP09	SUSDP10	SUSDP10-3F	SUSDP10-3G	SUSDP10-3X	SUSDP11	SUSDP17	SUSDP18	SUSDP19
			Sample ID	SUS2500N	SUS0100N	SUS0100R	SUS0200N	SUS0800N	SUS081E00N	SUS081E00R	SUS082G00N	SUS083I00N	SUS083K00N	SUS0900N	SUS1000N	SUS103F00N	SUS103G00N	SUS103X00N	SUS1100N	SUS1700N	SUS1800N	SUS1900N
			Depth	0.5 - 1 ft	0.33 - 1 ft	0.33 - 1 ft	0.33 - 0.83 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.5 - 1 ft	0 - 1 ft	0.83 - 1 ft
			Sample Date	2/7/2013	2/4/2013	2/4/2013	2/4/2013	2/5/2013	1/24/2017	1/24/2017	3/22/2017	8/2/2017	8/3/2017	2/5/2013	2/5/2013	8/8/2017	8/8/2017	8/8/2017	2/5/2013	2/6/2013	2/6/2013	2/6/2013
			Туре	N	N	FD	N	N	N	FD	N	N	N	N	N	N	N	N	N	N	N	N
		Project																				
		Screening																				1
Analyte	Unit	Criteria																				
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g			12.2	5.59 J	4.11 J	3.37 J	71.3	65.9	57.9	7.85	12.8	16.7	9.09	73.7	286	117	14.7	75.0	11.2	20.1	49.4
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g			48.4	23.0	17.3	19.5	339	267 J	234	74.6	54.6 J	70.6	56.2	287	1300	690	85.7	279	36.5	52.9	237
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g			1.85 JN	0.803 J	0.450 J	0.512 JN	9.87 JN	8.28	7.07	0.77 J	< 0.543 U	1.5	1.14 JN	6.23	25.8	8.26	< 0.393 U	9.95	0.659 JN	9.06	4.04 J
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g			1.62 J	1.59 J	0.599 J	0.482 JN	12.8	13.8	11.1	1.02 JN	1.18 J	2.29	1.37 J	10.8 JN	38.8	12.4	2.32	17.0	1.32 JN	17.6 J	4.50 J
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g			0.877 JN	1.13 JN	0.838 J	0.428 JN	15.7	9.01	8.55	0.736 J	< 0.611 U	1.93	1.44 JN	3.90 J	21.3	8.92	1.47 J	21.2	0.939 JN	3.82 JN	3.15 J
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g			1.41 JN	0.861 J	0.699 JN	1.48 JN	16.6 JN	12.4	10.7	1.07 J	1.16 JN	2.37	3.03 JN	12.0 JN	30.8	11.2	1.99	25.1 JN	3.52 JN	79.4 JN	6.45 JN
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g			2.44 J	1.76 J	1.37 J	0.937 JN	26.7	17.8	16.9	2.13 JN	2	4.12	2.39 J	12.3	62.8	29.3	4.84	37.9	3.60 J	14.3	8.24
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g			< 0.270 U	< 0.101 U	< 0.0853 U	< 0.132 U	1.31 J	1.43 J	1.24 J	< 0.315 U	< 0.474 U	0.392 J	< 0.112 U	0.451 JN	3.87	1.14 J	0.255 JN	1.57 J	< 0.147 U	0.524 J	0.270 JN
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g			2.76 JN	2.69 J	2.16 J	0.907 J	30.9 J	15.9	14.3	1.81 J	1.53	3.21 JN	2.61 JN	8.99 J	43.3	21.9	2.72	49.4 J	4.12 J	9.19	6.62
1,2,3,7,8-PeCDF	pg/g			< 0.230 U	0.292 JN	0.228 JN	0.194 J	7.19	9.19	6.66	0.368 J	0.51 J	1 J	0.480 J	1.58 J	11.1	3.56	1.58 J	10.5	< 0.204 U	1.61 J	0.966 JN
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g			2.32 JN	1.04 JN	0.738 JN	< 0.163 U	11.0 JN	7.79	7.38	0.37 JN	< 0.516 U	1.74	2.79 JN	14.8 JN	13.2	6.05	1.19 J	25.1 JN	1.50 JN	6.51 JN	5.18 JN
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g			0.801 JN	1.03 JN	0.807 J	0.603 JN	14.3	15.5	13.4	2 J	1.86	3.52	1.74 J	5.17 JN	46.3	17.8	2.73	19.4	1.40 JN	4.95 J	2.40 J
2,3,4,7,8-Pentachlorodibenzofuran	pg/g			0.570 JN	0.460 JN	0.470 J	0.497 J	14.2	13.6	12	2.49	1.54 JN	3.62	1.33 J	4.31 J	61.6	23.1	3.41	19.1	0.877 JN	4.99 JN	2.49 J
2,3,7,8-Tetrachlorodibenzofuran	pg/g			1.11 J	0.643 JN	0.384 JN	0.376 JN	25.9 J	14.8	9.47	0.534	< 0.285 U	2.03	0.793 J	3.24 J	12.3	3.43	2.67	31.2 J	0.591 JN	2.81 JN	2.79 J
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g	22		< 0.341 U	< 0.189 U	< 0.179 U	< 0.193 U	0.983 JN	1.55	1.35	< 0.197 U	< 0.306 U	< 0.218 U	< 0.143 U	0.489 JN	1.77	0.903	0.369	3.27	< 0.279 U	< 0.317 U	< 0.274 U
Octachlorochlorodibenzofuran	pg/g			27.1 J	7.83 J	5.75 J	5.66 J	77.5 J	89.5	72.9	15.9	34.3	30.1	18.5	162	716	242	35.3	48.3	9.63 J	39.2	142
Octachlorochlorodibenzo-p-dioxin	pg/g			487 J	198	147	1200	4200 J	5110	4690	1430	858	911	1140	3380	9950 J	5600	776	1260	300	395	4550 J
Total HpCDD	pg/g			130	44.4	34.3	50.1	702	538	479	149	116	140	111	576	2340	1200	157	524	67.1	118	429
Total HpCDF	pg/g			34.8 JN	11.4 JN	8.71 J	7.87 JN	156 JN	134	119	20.7	31.3	36	26.0 JN	213	819	302	36.9	137	22.8 JN	56.4	162 JN
Total HxCDD	pg/g			32.4 JN	21.5 JN	16.9 JN	10.3 JN	279	181	163	21.5	20.2	45.9	32.7 JN	99.2 JN	438	220	33.8	396 JN	30.8 JN	157 JN	55.1 JN
Total HxCDF	pg/g			34.7 JN	11.7 JN	9.19 JN	27.6 JN	209 JN	145	123	21.4	21.4	35.4	66.5 JN	275 JN	697	264	35.1	276 JN	58.5 JN	815 JN	139 JN
Total PeCDD	pg/g			170 JN	7.85 JN	5.86 JN	26.1 JN	3080 JN	97.2	89.7	4.7	3.77	24.1	152 JN	2200 JN	141	65.4	18.6	1020 JN	10.6 JN	2200 JN	175 JN
Total PeCDF	pg/g			32.7 JN	9.80 JN	7.78 JN	45.1 JN	216 JN	125	110	23.5	16.8	33	107 JN	358 JN	529	211	31	427 JN	121 JN	2280 JN	148 JN
Total TCDD	pg/g			2.37 JN	2.34 JN	1.58 JN	0.827 J	64.7 JN	47	54.9 J	2.91	0.715	7.69	4.16 JN	17.5 JN	57.8	29.1	10.5	132 JN	1.15 JN	24.9 JN	6.56 JN

95.8

25.5

12.9

3.32

2.9

2.19

24.4

6.01

81.3 JN 338 JN

27.0

5.55

237

79.0

84.7

34.5

40.2

5.78

538 JN

58.7

153 JN 4380 JN

22.3

3.89

123 JN

13.7

28.0 JN 5.19 JN 3.71 JN

1.84

2.51

4.37

35.3 JN 202 JN

36.4

1.27

122

28.7

Total TCDF

TCDD TEQ HH

Table 4-4 Surface Soil Results Dioxins and Furans Concentrations in Surface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE

Washington, DC 20019

			,	1	r	1	ī	1	
			Location ID	-	SUSDP48	SUSDP49	SUSDP50	SUSDP51	SUSDP52
			Sample ID		SUS4800R			SUS5100N	SUS5200N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017
			Туре	N	FD	N	N	N	N
		Project							
		Screening							
Analyte	Unit	Criteria							
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g			27.4	35.1	27.1	35.4	1.27 J	< 0.217 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g			120	133	151	115	51.5	28.9
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g			2.26 J	2.5 JN	2.62	1.87 J	< 0.21 U	< 0.268 U
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g			4.53	5.84	4.68	2.2 J	< 0.246 U	< 0.248 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g			2.14 J	1.63 J	2.22 J	1.11 JN	0.877 J	0.97 J
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g			3.52	5.05	3.72	2.72	< 0.217 U	< 0.243 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g			4.45 JN	5.26	5.64	3.53	1.38 J	0.783 JN
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g			0.528 J	< 0.444 U	0.753 J	< 0.974 U	< 0.318 U	< 0.345 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g			4.16	4.28	4.56	2.55	2.49	1.81 JN
1,2,3,7,8-PeCDF	pg/g			1.66 JN	2.33 J	1.47 JN	< 0.536 U	< 0.163 U	< 0.255 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g			1.34 JN	1.46 J	1.59 J	< 0.945 U	< 0.345 U	< 0.367 U
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g			5.56	7.5	6.68	4.17	< 0.234 U	< 0.229 U
2,3,4,7,8-Pentachlorodibenzofuran	pg/g			8.1	10.8	13	5.63	< 0.169 U	< 0.238 U
2,3,7,8-Tetrachlorodibenzofuran	pg/g			2.48	3.13	2.14	0.696	< 0.28 U	< 0.282 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g	22		< 0.422 U	< 0.353 U	< 0.25 U	< 0.516 U	< 0.286 U	< 0.439 U
Octachlorochlorodibenzofuran	pg/g			70.5	71.3	70.4	94	2.81 J	< 0.58 U
Octachlorochlorodibenzo-p-dioxin	pg/g			2670	2690	2660	1220	3560	971
Total HpCDD	pg/g			274	295	374	259	132	68.5
Total HpCDF	pg/g			72.2	81.8	79.6	92.8	2.9	< 0.24 U
Total HxCDD	pg/g			54.7	53.1	57.7	33.1	33.8	29.9
Total HxCDF	pg/g			65.4	90.7	90.6	61.4	1.09	< 0.262 U
Total PeCDD	pg/g			19.5	20.1	19.6	1.81	1.85	1.94
Total PeCDF	pg/g			71.4	95.7	106	48.8	1.15	< 0.247 U
Total TCDD	pg/g			10.5	10.9	8.97	< 0.516 U	1.79	1.4
Total TCDF	pg/g			56.1	67.4	58.2	12.9	< 0.28 U	< 0.282 U
TCDD TEQ HH	pg/g	22		8.88	10.6	11.2	5.30	2.07	0.937

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable

RSL Table, May 2018 Industrial Soil [ELCR = 1E-6, HQ=0.1]

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte
- JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate
- $\label{eq:U} \textbf{U} = \textbf{The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the
- sample and meet quality control criteria. The presence or absence of the analyte cannot be verified

pg/g = picograms per gram

											Location ID	DP01	DP01
											Sample ID	DPS0103N	DPS0110N
											Depth	2.5 - 3.5 ft	9.5 - 10.5 ft
											Sample Date	5/20/2013 9:40:00 AM	5/20/2013 12:10:00 PM
											Туре	N	N
			I	1		Mean	Median	Max	Count	1	Турс	14	
Analyte	Unit	Method	CAS	Max Detect	Min Detect	Detect	Detect	Location	Detect	Count Total			
Antimony	ppm	XRF	7440-36-0	134.96	8.82	25.564	24.97	DP11	105	121		25.2	31.36
Arsenic	ppm	XRF	7440-38-2	147.59	1.46	9.7668	4.755	DP42	118	121		4.55	2.59
Barium	ppm	XRF	7440-39-3	3431.51	81.36	315.214	282.65	DP45	120	121		239.96	321.68
Cadmium	ppm	XRF	7440-43-9	16.71	3.77	10.4	11.19	SUS01	30	121		12.62	11.68
Calcium	ppm	XRF	7440-70-2	95763.73	157.11	9087.351	1738.31	SUS23	119	121		5340.55	1622.37
Chromium	ppm	XRF	7440-47-3	185.17	10.07	48.707	42.37	SUS13	104	121		23.87	15.63
Cobalt	ppm	XRF	7440-48-4	304.84	31.05	102.82	73.425	DP42	18	121		< 32.23	< 36.68
Copper	ppm	XRF	7440-50-8	657.78	11.81	47.174	22.665	DP43	120	121		22.55	18.97
Iron	ppm	XRF	7439-89-6	68225.77	3874.21	18098.39	16579.92	DP42	121	121		10728.02	13343.04
Lead	ppm	XRF	7439-92-1	1599.37	2.77	66.2244	14.95	SUS01	120	121		31.63	7.76
Manganese	ppm	XRF	7439-96-5	731.13	80.35	258.29	239.06	DP45	121	121		240.77	430.65
Mercury	ppm	XRF	7439-97-6	639.98	3	13.517	3.645	DP45	68	121		3.66	3.49
Nickel	ppm	XRF	7440-02-0	447.18	21.88	62.676	55.475	SUS08	120	121		44.3	52.64
Potassium	ppm	XRF	7440-09-7	17718.45	844.46	8364.277	8172.21	DP20	121	121		6969.28	4975.03
Selenium	ppm	XRF	7782-49-2	5.81	0.95	1.67	1.2	DP42	14	121		< 1.01	< 1.02
Silver	ppm	XRF	7440-22-4	9.48	2.3	4.61	4.01	DP17	9	121		< 6.52	< 6.58
Vanadium	ppm	XRF	7440-62-2	1414.89	5.16	94.977	79.52	SUS08	121	121		56.42	49.45
Zinc	ppm	XRF	7440-66-6	2133.8	11.02	82.89	32.63	SUS01	121	121		29.95	25.72

			Location ID	DP01	DP02	DP02	DP03	DP03	DP04
			Sample ID	DPS0115N	DPS0210N	DPS0215N	DPS0310N	DPS0315N	DPS0410N
			Depth	14 - 15 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft
				5/20/2013 12:15:00 PM		5/20/2013 9:49:00 AM		5/21/2013 10:20:00 AM	
			Туре		N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		24.97	27.63	19.97	40	22.81	26.41
Arsenic	ppm	XRF		2.87	3.21	1.88	4.32	4.72	3.47
Barium	ppm	XRF		310.09	277.38	235.56	305.8	274.13	301.81
Cadmium	ppm	XRF		< 9.62	12.93	< 10.13	< 10.85	< 10.29	< 10.58
Calcium	ppm	XRF		1363.25	523.82	405.82	751.26	677.2	1768.93
Chromium	ppm	XRF		26.39	17.58	< 10.8	25.47	15.79	25.33
Cobalt	ppm	XRF		< 25.42	< 35.9	< 31.62	< 45.98	< 40.81	< 48.12
Copper	ppm	XRF		16.54	20.6	15.35	19.72	15.95	22.01
Iron	ppm	XRF		6227.58	13323.43	10333.41	21479.37	16899.92	22990.23
Lead	ppm	XRF		6.19	6.11	4.25	4.7	5.99	7.84
Manganese	ppm	XRF		110.98	233.37	228.02	375.35	288.22	616.54
Mercury	ppm	XRF		3.45	< 2.83	< 2.81	3.29	4.96	4.64
Nickel	ppm	XRF		53.92	44.68	41.37	57.64	52.25	58.87
Potassium	ppm	XRF		9482.19	7089.88	4060.98	6247.82	8499.4	7159.77
Selenium	ppm	XRF		< 0.99	< 1.02	< 0.97	< 1.04	< 1.02	< 1.05
Silver	ppm	XRF		< 6.04	< 6.61	< 6.52	< 6.91	< 6.68	< 6.73
Vanadium	ppm	XRF		62.97	45.57	25.23	50.98	45.57	64.9
Zinc	ppm	XRF		15.29	16.93	12.44	21.14	18.4	26.16

			Location ID	DP04	DP05	DP05	DP05	DP06	DP06
			Sample ID	DPS0415N	DPS0505N	DPS0510N	DPS0515N	DPS0605N	DPS0610N
			Depth	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft
			Sample Date		5/15/2013 10:40:00 AM	5/21/2013 8:35:00 AM	5/21/2013 8:37:00 AM	5/15/2013 3:50:00 PM	5/22/2013 8:10:00 AM
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		23.59	30.84	28.59	29.18	26.53	26.79
Arsenic	ppm	XRF		4.72	2.96	2.62	3.28	6.42	4.02
Barium	ppm	XRF		257.61	265.91	270.57	254.55	338.39	320.52
Cadmium	ppm	XRF		< 10.37	< 10.36	11.15	< 10.37	12.1	< 10.26
Calcium	ppm	XRF		2462.72	377.38	746.65	500.86	1141.61	953.32
Chromium	ppm	XRF		32.03	< 11.61	< 12.37	27.94	46.84	30.34
Cobalt	ppm	XRF		< 40.89	< 33.94	< 35.18	< 35.79	< 46.89	< 41.47
Copper	ppm	XRF		23.32	14.93	17.4	21.07	23.26	21.27
Iron	ppm	XRF		17106.12	11668.74	12831.32	12898.94	21905.46	17476.52
Lead	ppm	XRF		6.99	5.01	5.08	5.25	9.41	7.73
Manganese	ppm	XRF		277.28	180.23	152.9	409.24	297.91	192.7
Mercury	ppm	XRF		< 2.91	3.85	3.57	3.26	3.74	3.45
Nickel	ppm	XRF		52.89	50.77	52.07	48.3	63.69	56.36
Potassium	ppm	XRF		6865.23	5793.55	5584.31	4463.6	12441.5	11224.17
Selenium	ppm	XRF		< 1.03	< 1.03	< 1.01	< 1.02	< 1.06	< 1.06
Silver	ppm	XRF		< 6.42	< 6.71	< 6.44	< 6.37	< 6.7	< 6.54
Vanadium	ppm	XRF		60.63	33.73	55.1	30.8	86.57	80.09
Zinc	ppm	XRF		23.78	11.02	14.78	16.7	35.63	27.01

			Location ID	DP06	DP07	DP07	DP08	DP08	DP09
			Sample ID	DPS0615N	DPS0710N	DPS0715N	DPS0810N	DPS0815N	DPS0905N
			Depth	14.5 - 15.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft
			Sample Date		5/22/2013 9:30:00 AM	5/22/2013 9:35:00 AM		5/23/2013 12:30:00 PM	
			Type		N	N	N	N	N
			71						
Analyte	Unit	Method							
Antimony	ppm	XRF		19.19	25.04	20.77	27.27	< 12.09	18.82
Arsenic	ppm	XRF		4.38	4.62	4.25	7.51	13.08	2.22
Barium	ppm	XRF		235.21	371.52	378.71	426.1	270.83	321.98
Cadmium	ppm	XRF		< 10.56	< 10.43	< 9.84	< 10.57	< 9.05	< 9.89
Calcium	ppm	XRF		275.24	4265.65	1877	6630.27	2243.4	2888.15
Chromium	ppm	XRF		19.02	66.94	47.79	65.6	77.09	34.53
Cobalt	ppm	XRF		< 41.72	< 43.29	40.5	< 49.74	59.27	89.72
Copper	ppm	XRF		16.79	29.15	27.96	33.65	39.21	23.91
Iron	ppm	XRF		18034.63	17826.38	14750.26	22908.67	17210.63	11505.34
Lead	ppm	XRF		5.14	17.19	22.85	25.32	53.55	12.88
Manganese	ppm	XRF		298	278.77	268.36	329.36	159.27	156.6
Mercury	ppm	XRF		< 2.92	3.44	< 2.95	< 3.18	3.2	< 2.91
Nickel	ppm	XRF		57.09	65.84	58.98	81.85	41.53	50.88
Potassium	ppm	XRF		5906.56	15209.39	10346.72	17133.35	11697.3	12537.58
Selenium	ppm	XRF		< 1.03	< 1.07	< 1.05	< 1.13	< 1.02	< 1.06
Silver	ppm	XRF		< 6.71	< 6.62	< 6.21	< 6.61	< 5.77	< 6.36
Vanadium	ppm	XRF		41.9	103.93	98.25	136.32	117.35	90.5
Zinc	ppm	XRF		17.84	48.69	37.5	74.16	72.45	31.05

			Location ID Sample ID		DP09 DPS0915N	DP10 DPS1010N	DP10 DPS1015N	DP11 DPS1110N	DP11 DPS1115N
			Depth Sample Date	9.5 - 10.5 ft	14.5 - 15.5 ft 6/11/2013 9:35:00 AM	9.5 - 10.5 ft 6/10/2013	14.5 - 15.5 ft 6/10/2013	9.5 - 10.5 ft 5/28/2013 11:00:00 AM	14.5 - 15.5 ft
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		< 13.13	26.85	31.75	15.74	134.96	22.06
Arsenic	ppm	XRF		14.47	4.53	4.52	2.49	33.26	2.44
Barium	ppm	XRF		219.22	273.65	257.34	193.74	276.74	274.8
Cadmium	ppm	XRF		< 9.87	< 10.12	11.37	< 9.44	< 9.46	< 9.29
Calcium	ppm	XRF		373.88	278.85	701.8	1738.31	3223	1624.07
Chromium	ppm	XRF		81.58	32.29	< 13.88	38.19	50.91	34.9
Cobalt	ppm	XRF		165.29	< 44.42	< 45.15	< 36.28	< 30.83	< 29.19
Copper	ppm	XRF		49.43	20.79	16.55	19.82	34.07	19.41
Iron	ppm	XRF		61321.32	20385.86	21538.38	14091.66	8907.96	8494.38
Lead	ppm	XRF		13.29	6.04	4.42	4	1253.84	17.85
Manganese	ppm	XRF		124.67	106.92	388.86	326.97	143.65	160
Mercury	ppm	XRF		< 3.42	3.17	< 2.87	< 2.73	3.17	< 2.72
Nickel	ppm	XRF		72.81	53.88	56.5	45.21	57.41	48.82
Potassium	ppm	XRF		16622	6243.86	5723.94	6725.31	11459.09	8802.52
Selenium	ppm	XRF		< 1.2	< 1.04	< 1.03	< 0.98	1.65	< 0.99
Silver	ppm	XRF		< 6.29	< 6.69	< 6.68	< 6.04	< 5.99	< 5.82
Vanadium	ppm	XRF		162	45.18	52.2	43.4	127.03	95.28
Zinc	ppm	XRF		52	15.89	23.6	22.51	40.68	29.34

			Location ID	DP12	DP12	DP12	DP13	DP13	DP13
			Sample ID	DPS1205N	DPS1210N	DPS1215N	DPS1305N	DPS1310N	DPS1310N 060713
			Depth	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	9.5 - 10.5 ft
						6/13/2013 10:40:00 AM		5/29/2013	6/7/2013
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		< 13.07	23.42	19.84	27.02	26.33	30.23
Arsenic	ppm	XRF		20.93	3.7	3.02	7.09	6.41	7.95
Barium	ppm	XRF		283.72	302.27	283.78	318.07	273.87	421.25
Cadmium	ppm	XRF		< 9.77	< 9.55	< 9.2	< 10.12	13.39	< 10.14
Calcium	ppm	XRF		8589.66	985.9	1170.52	3563.35	2353.17	2758.47
Chromium	ppm	XRF		54.26	62.43	51.51	40.06	52	51.24
Cobalt	ppm	XRF		< 40.85	< 33.04	< 29.01	< 34.64	< 31.2	< 46.62
Copper	ppm	XRF		101.25	20.33	21.61	70.6	21.91	35.8
Iron	ppm	XRF		17060.22	11210.54	8475.55	12105.88	9918.05	20897.09
Lead	ppm	XRF		125.43	9.35	8.62	182.02	171.91	37.05
Manganese	ppm	XRF		240.99	142.13	163.86	183.2	167.63	266.99
Mercury	ppm	XRF		5.94	< 2.78	< 2.76	4.92	3	3.13
Nickel	ppm	XRF		70.01	60.47	53.04	52.99	57.44	61
Potassium	ppm	XRF		8860.15	11709.7	9286.09	6334.88	4313.29	15210.91
Selenium	ppm	XRF		< 1.06	< 0.99	<1	< 1.09	< 1.06	< 1.09
Silver	ppm	XRF		< 6.3	< 5.82	< 5.84	< 6.23	< 6.56	< 6.6
Vanadium	ppm	XRF		103.87	99.06	88.37	58.94	43.57	126.13
Zinc	ppm	XRF		142.56	27.42	18.33	116.74	35.29	63.52

			Location ID	DP13	DP14	DP15	DP15	DP16	DP16
			Sample ID	DPS1315N	DPS1403N	DPS1504N	DPS1515N	DPS1605N	DPS1610N
			Depth	14.5 - 15.5 ft	2.5 - 3.5 ft	3.5 - 4.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft
			Sample Date	5/29/2013	5/22/2013 10:10:00 AM	5/21/2013 12:40:00 PM	6/10/2013	5/15/2013 3:00:00 PM	6/10/2013
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		21.33	< 12.29	32.54	21.88	27.85	26.87
Arsenic		XRF		4.93	10.39	8.5	4.62	5.42	3.12
	ppm								
Barium	ppm	XRF		264.62	240.4	352.78	325.12	302.01	253.74
Cadmium	ppm	XRF		< 9.56	< 9.28	< 9.81	< 9.47	10.63	< 10.35
Calcium	ppm	XRF		1070.07	6768.46	2768.87	3075.13	675.44	366
Chromium	ppm	XRF		62.82	74.52	117.59	51.05	40.47	14.26
Cobalt	ppm	XRF		< 39.53	< 39.19	< 42.82	< 33.22	< 40.36	< 39.96
Copper	ppm	XRF		18.84	36.45	39.46	29.69	21.23	16.66
Iron	ppm	XRF		16311.59	15950.22	18082.94	11184.89	16040.18	16360.55
Lead	ppm	XRF		5.23	42.97	31.66	18.22	8.77	5.75
Manganese	ppm	XRF		129.2	232.99	282.66	218.08	209.7	146.12
Mercury	ppm	XRF		< 2.85	< 2.88	< 2.97	3.79	3.13	3.82
Nickel	ppm	XRF		67.19	80.43	65.29	54.14	56.78	48.81
Potassium	ppm	XRF		9795.7	13568.56	12144.11	10309.3	9572.31	5608.29
Selenium	ppm	XRF		1.13	< 1.03	< 1.06	< 1.01	< 1.05	< 1.03
Silver	ppm	XRF		< 6.1	< 5.76	< 6.29	< 6.15	< 6.26	< 6.7
Vanadium	ppm	XRF		107.01	97.67	117.95	102.38	96.7	45.62
Zinc	ppm	XRF		17.8	46.76	44.4	32.63	26.67	12.1

			Location ID	DP16	DP17	DP17	DP17	DP18	DP18
			Sample ID	DPS1615N	DPS1705N	DPS1710N	DPS1715N	DPS1803N	DPS1810N
			Depth	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft
			Sample Date	6/10/2013	5/23/2013 10:30:00 AM		6/11/2013 7:40:00 AM	5/23/2013 9:30:00 AM	6/4/2013 11:00:00 AM
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		21.57	38.58	16.17	41.58	25.55	22.43
Arsenic	ppm	XRF		4.62	3.84	7.36	3.93	2.69	6.13
Barium	ppm	XRF		249.38	302.62	270.5	438.24	304.17	273.24
Cadmium	ppm	XRF		< 10.65	15.46	< 10.86	< 10.73	< 10.49	< 11
Calcium	ppm	XRF		202.21	710.57	270.3	394.87	580.85	408.74
Chromium	ppm	XRF		22.15	31.71	< 17.56	52.63	26.89	22.94
Cobalt	ppm	XRF		< 46.9	< 41.74	< 65.79	44.7	< 33.11	< 54.59
Copper	ppm	XRF		22.11	22.52	21.2	27.14	16.78	21.8
Iron	ppm	XRF		22366.78	17332.43	40773.86	15959.19	11048.22	29130.37
Lead	ppm	XRF		6.91	7.14	7.12	15.5	8.25	7.77
Manganese	ppm	XRF		264.13	227.14	243.61	162.94	389.87	151.37
Mercury	ppm	XRF		< 2.98	3.22	4.27	3.64	3.19	3.27
Nickel	ppm	XRF		52.55	42.29	62.57	66.61	36.95	56.84
Potassium	ppm	XRF		8497.16	9428.03	4657.76	12287.04	7414.51	5238.91
Selenium	ppm	XRF		< 1.04	< 1.05	< 1.13	< 1.08	< 1.01	< 1.11
Silver	ppm	XRF		< 6.84	9.48	< 7.08	< 6.8	< 6.93	< 6.9
Vanadium	ppm	XRF		65.38	50.3	68.17	112.32	44.74	65.22
Zinc	ppm	XRF		19.64	17.34	24.99	34.78	29.26	19.49

			Location ID Sample ID	DPS1818N	DP19 DPS1902N	DP19 DPS1910N	DP19 DPS1915N	DP20 DPS2005N	DP20 DPS2010N
			Depth		1.5 - 2.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft
			Sample Date		5/23/2013 11:45:00 AM	6/5/2013	6/5/2013	5/30/2013	6/12/2013 7:30:00 AM
	1	ı	Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		29.71	46.4	17.89	26.15	21.16	35.88
Arsenic	ppm	XRF		3.49	6.02	21.72	2.04	4.47	6.26
Barium	ppm	XRF		241.64	450.64	344.45	231.63	381.46	330.84
Cadmium	ppm	XRF		< 10.38	< 10.84	< 10.33	< 9.89	< 9.98	16.48
Calcium	ppm	XRF		157.11	15165.16	31131.43	1027.39	726.37	476.15
Chromium	ppm	XRF		< 15.82	53.78	26.8	< 9.82	77.04	62.16
Cobalt	ppm	XRF		< 50.82	< 42.83	< 41.16	< 21.49	< 42.62	< 42.71
Copper	ppm	XRF		18.42	83.22	330.41	11.81	27.2	17.54
Iron	ppm	XRF		27181.5	17576.11	16579.92	4288.06	17709.15	18985.38
Lead	ppm	XRF		3.94	248.59	642.67	7.4	15.42	8.99
Manganese	ppm	XRF		135.29	299.43	398.52	80.35	156.06	172.95
Mercury	ppm	XRF		3.6	3.3	< 3.11	< 2.7	3.78	3.07
Nickel	ppm	XRF		62.14	70.37	51.27	35.83	75.31	56.78
Potassium	ppm	XRF		2837.13	10386.38	10083.06	2263.21	17718.45	6973.66
Selenium	ppm	XRF		< 1.05	< 1.16	< 1.24	< 0.95	< 1.06	< 1.03
Silver	ppm	XRF		< 6.67	< 6.96	< 6.4	< 6.28	< 6.27	< 6.66
Vanadium	ppm	XRF		41.7	91.96	117.33	18.13	154	81.24
Zinc	ppm	XRF		18.43	118.69	527.45	20.91	43.45	21.94

			Location ID	DP20	DP22	DP22	DP22	DP23	DP23
			Sample ID	DPS2018N	DPS2203N	DPS2210N	DPS2215N	DPS2305N	DPS2310N
			Depth	17.5 - 18.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft
			Sample Date				6/12/2013 11:00:00 AM		6/12/2013 9:30:00 AM
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		< 13.35	20.05	< 14.08	< 11.93	21.32	20.12
Arsenic	ppm	XRF		6.54	6.28	7.62	6.12	3.42	3.3
Barium	ppm	XRF		165.44	385.51	248.01	243.2	266.65	355.79
Cadmium	ppm	XRF		< 9.95	< 10.28	< 10.63	< 8.85	13.5	< 9.55
Calcium	ppm	XRF		598.36	22144.49	903.72	1177.22	732.89	489.97
Chromium	ppm	XRF		33.96	46.94	63.68	44.27	28.16	53.91
Cobalt	ppm	XRF		< 55.45	< 40.2	< 68.51	< 28.47	< 32.36	31.05
Copper	ppm	XRF		20.61	92	39.81	23.96	19.17	22.93
Iron	ppm	XRF		32156.3	15773.1	43054.89	7937.78	10628.46	8522.37
Lead	ppm	XRF		5.05	54.38	9.28	10.44	4.17	11.53
Manganese	ppm	XRF		152.4	277.25	166.74	126.42	154.68	132.27
Mercury	ppm	XRF		< 2.95	3.21	< 3.27	< 2.75	< 2.82	< 2.92
Nickel	ppm	XRF		54.04	65	78.95	46.21	41.51	58
Potassium	ppm	XRF		3542.44	8570.24	12551.37	10852.04	7330	12280.02
Selenium	ppm	XRF		< 1.03	< 1.08	< 1.17	< 0.99	< 1.01	< 1.05
Silver	ppm	XRF		< 6.35	< 6.52	< 6.59	< 5.65	< 6.63	< 6.02
Vanadium	ppm	XRF		90.07	79.52	132.78	115.1	53.83	90.18
Zinc	ppm	XRF		14.65	47.18	55.13	26.45	13.71	25.14

			Location ID	DP23	DP24	DP24	DP24	DP36	DP36
			Sample ID	DPS2315N	DPS2405N	DPS2410N	DPS2415N	DPS3605N	DPS3610N
			Depth		4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft
			Sample Date		5/20/2013 2:00:00 PM	6/4/2013	6/4/2013	5/17/2013 1:20:00 PM	5/20/2013 8:40:00 AM
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		20.04	32.56	19.25	23.49	32.16	30.83
Arsenic	ppm	XRF		9.72	4.47	3.6	4.7	3.76	2.51
Barium	ppm	XRF		411.52	296.2	302.46	247.86	288.49	296
Cadmium	ppm	XRF		< 10.74	< 11.04	12.23	< 10.2	10.89	< 10.44
Calcium	ppm	XRF		403.16	977.67	573.27	256.39	1135.94	901.64
Chromium	ppm	XRF		90.48	32.79	34.41	17.8	< 12.34	18.17
Cobalt	ppm	XRF		168.62	< 41.75	< 41.93	< 39.85	< 34.71	< 41.24
Copper	ppm	XRF		35.25	14.99	22.66	15.13	18.54	21.51
Iron	ppm	XRF		40956.64	18445.05	17223.52	16522.21	12195.67	17999.45
Lead	ppm	XRF		15.85	8.65	7.72	4.8	5.26	6.21
Manganese	ppm	XRF		153.12	216.7	179.55	110.17	152.43	434.23
Mercury	ppm	XRF		< 3.19	< 2.9	< 2.98	3.01	4.34	3.07
Nickel	ppm	XRF		63.18	40.95	54.52	59.89	49.39	54.64
Potassium	ppm	XRF		13138.52	9381.68	11205.49	3632.59	5864.3	7562.52
Selenium	ppm	XRF		< 1.15	< 1.05	< 1.06	< 1.02	< 1.02	<1
Silver	ppm	XRF		< 6.64	< 7.17	< 6.7	< 6.67	< 6.67	< 6.76
Vanadium	ppm	XRF		153	70.71	51.76	42.96	50.14	45.04
Zinc	ppm	XRF		30.04	30.4	21.76	12.14	24.57	23.37

			Location ID	DP36	DP37	DP37	DP37	DP38	DP38
			Sample ID	DPS3615N	DPS3703N	DPS3710N	DPS3715N	DPS3805N	DPS3810N
			Depth		2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft
			Sample Date		5/16/2013 10:00:00 AM		5/23/2013 8:38:00 AM	5/16/2013	5/22/2013 11:55:00 AM
			Туре		N	N	N	N	N
			71						
Analyte	Unit	Method							
Antimony	ppm	XRF		22.18	17.72	20.23	38.81	27.73	< 12.83
Arsenic	ppm	XRF		1.46	13.45	2.78	3.4	3.27	3.13
Barium	ppm	XRF		253.06	371.88	251.5	279.06	278.78	212.67
Cadmium	ppm	XRF		< 10.07	< 10.84	< 10.33	< 10.6	14.56	< 9.55
Calcium	ppm	XRF		647.88	9458.44	773.34	674.88	1191.58	1400.29
Chromium	ppm	XRF		< 12.59	108.62	14.31	< 12.12	28.29	59.15
Cobalt	ppm	XRF		< 36.18	< 56.44	< 35.47	< 38.45	< 41.52	< 48.36
Copper	ppm	XRF		14.66	62.74	14.86	16.67	19.82	21.9
Iron	ppm	XRF		13688.29	29995.47	13250.22	15657.85	13715.32	25212.71
Lead	ppm	XRF		7.06	56.2	7.15	2.77	7.58	5.54
Manganese	ppm	XRF		354.44	423.19	195.64	377.98	137.56	509.71
Mercury	ppm	XRF		3.24	5.32	< 2.85	3.89	5.5	< 2.83
Nickel	ppm	XRF		47.12	82.81	47.18	47.12	40.55	52.88
Potassium	ppm	XRF		3648.36	14181.22	6891.56	5261.29	7326.26	7310.84
Selenium	ppm	XRF		< 0.97	< 1.16	< 1.02	< 1.02	< 1.23	< 0.99
Silver	ppm	XRF		< 6.28	< 6.78	< 6.54	< 6.53	7.23	< 5.96
Vanadium	ppm	XRF		35.47	109.58	54.63	42.1	56.02	81.22
Zinc	ppm	XRF		21.78	76.94	18.83	17.95	22.73	53.42

			Location ID	DP38	DP39	DP39	DP39	DP40	DP40
			Sample ID	DPS3815N	DPS3903N	DPS3910N	DPS3915N	DPS4003N	DPS4010N
			Depth	14 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft
					5/17/2013 10:00:00 AM	5/22/2013 12:20:00 PM	5/22/2013 12:25:00 PM	5/20/2013 1:00:00 PM	5/28/2013 7:45:00 AM
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		26.37	37.53	19.3	25.95	16.93	< 12.91
Arsenic	ppm	XRF		4.11	6.72	4.62	3.32	24.3	32.64
Barium	ppm	XRF		264.83	267.01	309.04	343.77	299.22	349.28
Cadmium	ppm	XRF		< 10.73	11.84	< 10.09	< 9.67	< 10.07	< 9.67
Calcium	ppm	XRF		1062.79	< 80.35	8778.33	2361.67	53252.66	2737.19
Chromium	ppm	XRF		23.24	< 17.19	65.39	58.66	83	119.06
Cobalt	ppm	XRF		< 48.92	< 51.26	< 46.71	< 32.25	< 41.32	< 56.9
Copper	ppm	XRF		18.7	15.43	39.68	27.94	289.45	74.84
Iron	ppm	XRF		24362.61	27119.26	20988.05	10472.21	16826.55	31663.43
Lead	ppm	XRF		6.34	24.21	73.46	27.86	64.99	53.77
Manganese	ppm	XRF		358.96	117.18	251	182.52	471.82	239.06
Mercury	ppm	XRF		3.41	3.28	< 3.04	< 2.83	< 2.97	4.05
Nickel	ppm	XRF		57.79	55.51	74.66	60.61	101.47	70.01
Potassium	ppm	XRF		8317.57	4872.69	12018.51	12198.72	9928.62	12995
Selenium	ppm	XRF		< 1.05	< 1.07	< 1.12	< 1.02	< 1.06	1.24
Silver	ppm	XRF		< 6.94	< 7.04	< 6.27	< 6.15	< 6.57	< 6.07
Vanadium	ppm	XRF		50.22	41.28	132.09	96.78	173.91	362.41
Zinc	ppm	XRF		20.68	12.68	69.96	62.58	237.49	571.88

			Location ID	DP40	DP41	DP41	DP41	DP42	DP42
			Sample ID	DPS4015N	DPS4103N	DPS4110N	DPS4115N	DPS4205N	DPS4210N
			Depth	14.5 - 15.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft
			Sample Date		5/22/2013 9:00:00 AM	6/3/2013	6/3/2013	5/21/2013 9:15:00 AM	5/29/2013
			' Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		31.95	25.75	23.77	34.78	26.48	25.14
Arsenic	ppm	XRF		3.85	3.55	4.82	1.97	5.85	147.59
Barium	ppm	XRF		300.75	282.02	337.31	270.7	238.85	444.41
Cadmium	ppm	XRF		< 10.58	< 10.34	< 9.89	< 10.31	< 9.75	< 11.17
Calcium	ppm	XRF		1121.79	83908.03	39185.06	804.42	789.75	16325.85
Chromium	ppm	XRF		29.1	49.08	65.61	< 12.79	28.67	117.4
Cobalt	ppm	XRF		< 41.44	< 38.12	49.54	< 40.18	< 32.72	304.84
Copper	ppm	XRF		19.95	33.71	30.91	16.48	22.19	252.75
Iron	ppm	XRF		18094.86	14423.73	15421.13	16453.67	11172.73	68225.77
Lead	ppm	XRF		6.57	47.43	44.41	5.42	15.29	166.88
Manganese	ppm	XRF		156.98	347.49	310.59	178.86	134.31	388.89
Mercury	ppm	XRF		4.18	< 2.99	< 2.95	4.62	< 2.76	20.96
Nickel	ppm	XRF		53.12	91.45	56.14	46.98	36.27	116.18
Potassium	ppm	XRF		8204.23	9990.85	11317.6	8267.02	8172.21	8971.5
Selenium	ppm	XRF		< 1.01	< 1.06	< 1.04	< 1.02	< 0.99	5.81
Silver	ppm	XRF		< 6.82	< 6.64	< 6.27	< 6.65	< 6.04	< 7.06
Vanadium	ppm	XRF		54.56	177.8	66.89	47.47	50.91	171.26
Zinc	ppm	XRF		20.18	63.14	55.15	20.75	19.95	492.78

Table 4-5
Soil XRF Results
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID Sample ID Depth	DP42 DPS4215N 14.5 - 15.5 ft	DP43 DPS4304N 3.5 - 4.5 ft 5/17/2013 12:30:00 PM	DP43 DPS4310N 9.5 - 10.5 ft 6/7/2013	DP43 DPS4315N 14.5 - 15.5 ft 6/7/2013	DP44 DPS4403N 2.5 - 3.5 ft	DP44 DPS4410N 9.5 - 10.5 ft 6/10/2013
			Sample Date Type	5/29/2013 N	5/17/2013 12:30:00 PM	6///2013 N	6/7/2013 N	5/21/2013 10:50:00 AM N	6/10/2013 N
			Турс		14	14	10	14	14
Analyte	Unit	Method							
Antimony	ppm	XRF		20.81	19.61	20.23	< 10.8	13.54	29.29
Arsenic	ppm	XRF		19.15	15.36	18.98	3.74	14.78	3.72
Barium	ppm	XRF		268.84	387.58	367.97	133.84	341.49	291.54
Cadmium	ppm	XRF		< 9.44	< 10.99	< 10.01	< 8.07	< 10	< 10.5
Calcium	ppm	XRF		3537.61	24421.68	11930.69	4182.07	2907.91	2729.46
Chromium	ppm	XRF		44.28	88	99.39	21.17	72.04	< 14.01
Cobalt	ppm	XRF		< 35.91	< 55.53	83.37	37.11	47.61	< 45.73
Copper	ppm	XRF		41.09	657.78	90.79	35.22	57.26	20.2
Iron	ppm	XRF		13323.05	29204.83	19300.78	11022.21	17312.65	21615.28
Lead	ppm	XRF		61.81	197.05	168.67	26.09	76.9	5.59
Manganese	ppm	XRF		142.8	287.66	280.13	170.45	196.93	450.31
Mercury	ppm	XRF		3.3	< 3.26	3.65	< 2.55	4.8	< 2.95
Nickel	ppm	XRF		53.72	89.88	90.43	21.88	67.07	53.73
Potassium	ppm	XRF		7268.27	10716.97	9666.07	9761.07	9167.82	7090.24
Selenium	ppm	XRF		1.19	< 1.17	1.28	0.95	< 1.07	< 1.04
Silver	ppm	XRF		< 6.02	< 6.84	< 6.39	< 5.04	< 6.43	< 6.83
Vanadium	ppm	XRF		84.61	117.17	125.72	92.58	117.92	54.73
Zinc	ppm	XRF		95.59	170.12	187.82	101.48	50.53	33.32

			Location ID	DP44	DP45	DP45	DP45	DP46	DP46
			Sample ID	DPS4415N	DPS4503N	DPS4510N	DPS4515N	DPS4605N	DPS4610N
			Depth Sample Date	14.5 - 15.5 ft 6/10/2013	2.5 - 3.5 ft 5/23/2013 8:45:00 AM	9.5 - 10.5 ft 6/4/2013 1:00:00 PM	14.5 - 15.5 ft 6/4/2013 1:05:00 PM	4.5 - 5.5 ft 5/22/2013 11:30:00 AM	9.5 - 10.5 ft 6/5/2013
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		31.4	< 502.05	22.5	20.69	31.1	24.4
Arsenic	ppm	XRF		3.5	< 30.82	4.8	5.18	3.01	2.36
Barium	ppm	XRF		257.94	3431.51	251.89	300.49	283.28	277.39
Cadmium	ppm	XRF		< 10.17	< 334.35	< 10.71	< 9.64	< 10.2	11.59
Calcium	ppm	XRF		375.34	< 13.03	377.2	720.13	2526.52	995.12
Chromium	ppm	XRF		19.45	22.31	< 13.96	32.6	< 11.52	19.37
Cobalt	ppm	XRF		< 35.5	< 266.78	< 49.77	39.22	< 33.1	< 21.1
Copper	ppm	XRF		16.92	< 317.43	20.53	25.85	22.05	17.85
Iron	ppm	XRF		13311.91	4112.95	24302.35	8969.24	11003.74	3874.21
Lead	ppm	XRF		3.07	< 28.22	4.86	8.26	24.34	5.91
Manganese	ppm	XRF		237.02	731.13	144.69	207.3	188.9	133.55
Mercury	ppm	XRF		< 2.77	639.98	3.99	< 2.88	3.54	3.26
Nickel	ppm	XRF		42.75	< 517.42	54.14	51.48	49.5	52.1
Potassium	ppm	XRF		5626.63	844.46	3376.4	10371.73	2871.32	5421.08
Selenium	ppm	XRF		< 0.99	< 50.9	< 1.07	< 1.02	< 1.02	1.16
Silver	ppm	XRF		< 6.41	< 209.79	< 6.87	< 5.97	< 6.54	< 6.06
Vanadium	ppm	XRF		41.51	5.16	53.7	101.88	29.98	68.46
Zinc	ppm	XRF		47.28	197.88	18.01	24.26	27.31	19.91

			Location ID	DP46	DP47	DP47	DP47	SUS01	SUS02
			Sample ID	DPS4615N	DPS4702N	DPS4710N	DPS4715N	SUS0100N	SUS0200N
			Depth	14.5 - 15.5 ft	1.5 - 2.5 ft	9.5 - 10.5 ft	14 - 15 ft	0.33 - 1 ft	0.33 - 0.83 ft
			Sample Date	6/5/2013	5/28/2013 9:20:00 AM	6/5/2013	6/5/2013	2/4/2013 10:00:00 AM	2/4/2013 11:25:00 AM
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		20.08	26.36	17.89	28.15	24.09	< 3.74
Arsenic	ppm	XRF		2.58	14.38	5.11	7.8	< 11.16	8.49
Barium	ppm	XRF		265.05	383.41	231.92	240.56	227.27	81.36
Cadmium	ppm	XRF		9.76	< 10.88	< 10.66	< 10.44	16.71	< 2.8
Calcium	ppm	XRF		1113.72	18956.14	1015.06	264.92	5348.92	7306.39
Chromium	ppm	XRF		45.4	58.81	23.03	< 17.89	21.53	63.95
Cobalt	ppm	XRF		< 28.7	< 48.12	< 49.8	< 54.74	< 36.72	137.96
Copper	ppm	XRF		19.37	55.57	16.94	16.53	88.21	43.06
Iron	ppm	XRF		8452.85	22695.37	25308.72	31446.5	14606.34	12551.04
Lead	ppm	XRF		7.3	67.3	7.74	3.45	1599.37	22.91
Manganese	ppm	XRF		108.06	316.76	142.35	112.58	371.4	135.06
Mercury	ppm	XRF		3.08	6.31	< 2.97	< 2.96	< 3.2	< 2.39
Nickel	ppm	XRF		53.68	72.78	55.44	63.46	45.41	45.25
Potassium	ppm	XRF		8047.44	12968.61	4450.98	2270.66	4768.72	4994.39
Selenium	ppm	XRF		< 0.98	< 1.11	< 1.04	< 1.07	< 1.37	1.2
Silver	ppm	XRF		< 5.96	< 6.92	< 6.74	< 6.61	4.01	< 1.77
Vanadium	ppm	XRF		93.79	107.27	57.65	34.18	89.68	67.96
Zinc	ppm	XRF		19.04	83.61	18.58	11.15	2133.8	66.69

			Location ID	SUS03	SUS04	SUS05	SUS06	SUS07	SUS08
			Sample ID	SUS0300N	SUS0400N	SUS0500N	SUS0600N	SUS0700N	SUS0800N
			Depth	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	2/4/2013 1:00:00 PM	2/4/2013 1:50:00 PM	2/4/2013 2:45:00 PM	2/5/2013 9:10:00 AM	2/5/2013 10:00:00 AM	2/5/2013 10:45:00 AM
			Type	N	N	N	N	N	N
	1	1	Туре	IV	IV	IV	IN	IN	IV
Analyte	Unit	Method							
Antimony	ppm	XRF		< 3.9	< 3.85	8.82	< 4.53	9.15	15.87
Arsenic	ppm	XRF		14.96	12.52	23.28	27.18	4.63	18.69
Barium	ppm	XRF		184.55	< 10.98	182.01	344.06	192.83	200.42
Cadmium	ppm	XRF		< 2.94	< 2.91	3.77	< 3.41	7.78	< 3.29
Calcium	ppm	XRF		15581.21	33132.72	7904.37	3975.34	46331.7	50953.48
Chromium	ppm	XRF		97.14	27.35	72.51	71.74	79.88	110.63
Cobalt	ppm	XRF		153.39	< 31	< 33.49	192.6	< 37.46	< 36.86
Copper	ppm	XRF		105.42	30.29	115.27	97.89	20.96	216.1
Iron	ppm	XRF		25181.33	12659.47	14112.28	29281.61	16593.19	17048.45
Lead	ppm	XRF		65.78	47.66	57.37	101.39	54.14	85.45
Manganese	ppm	XRF		167.01	179.56	509.15	193.26	371.2	640.64
Mercury	ppm	XRF		5.3	< 2.4	< 2.5	3.23	3.27	3.07
Nickel	ppm	XRF		37.09	30.65	79.73	61.14	114.99	447.18
Potassium	ppm	XRF		6711.33	6713.66	5256.6	6114.16	7359.59	6034.08
Selenium	ppm	XRF		< 0.95	< 0.88	1.19	< 1.06	< 0.95	1.05
Silver	ppm	XRF		< 1.86	< 1.82	< 2.03	< 2.13	< 2.3	< 2.1
Vanadium	ppm	XRF		139.53	152.67	213.42	131.21	55.67	1414.89
Zinc	ppm	XRF		112.45	61.17	169.8	107.63	71.83	228.73

			Location ID	SUS09	SUS10	SUS11	SUS12	SUS13	SUS14
			Sample ID	SUS0900N	SUS1000N	SUS1100N	SUS1200N	SUS1300N	SUS1400N
			Depth	0 - 1 ft	0.5 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0.17 - 1 ft
			Sample Date	2/5/2013 1:10:00 PM	2/5/2013 11:45:00 AM	2/5/2013 2:00:00 PM	2/6/2013 9:00:00 AM	2/5/2013 2:45:00 PM	2/6/2013 9:50:00 AM
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		11.36	16.36	10.81	13.17	18.47	14.23
Arsenic	ppm	XRF		7.96	25.81	11.11	32.98	31.94	6.61
Barium	ppm	XRF		232.04	313.44	182.75	290.22	354.82	310.34
Cadmium	ppm	XRF		< 3.41	< 3.25	< 3.39	4.59	4.95	< 3.11
Calcium	ppm	XRF		13596.49	32339.45	55750.49	8182.53	9731.16	9058.02
Chromium	ppm	XRF		35.4	48.22	38.51	61.39	185.17	70.73
Cobalt	ppm	XRF		< 38.03	< 39.46	< 33.45	< 45.23	< 51.42	< 37.11
Copper	ppm	XRF		27.15	53.53	51.49	201.66	76.4	34.81
Iron	ppm	XRF		17568.28	18501.64	13710.37	23963.71	30099.13	15461.79
Lead	ppm	XRF		28.44	50.87	71.45	290.85	180.15	49.99
Manganese	ppm	XRF		282.64	303.23	350.57	350.09	391.46	489.56
Mercury	ppm	XRF		4.86	4.07	3.87	< 2.83	5.51	< 2.81
Nickel	ppm	XRF		39.97	60.07	74.88	65.34	228.2	67.25
Potassium	ppm	XRF		9405.55	7682.56	6657.14	7448.23	8627.42	10633.79
Selenium	ppm	XRF		< 0.97	1.29	< 0.92	< 1.07	< 1.07	1.1
Silver	ppm	XRF		2.71	< 2.06	< 2.14	< 2.16	< 2.28	< 1.94
Vanadium	ppm	XRF		67.24	103.27	156.36	107.35	112.6	106.45
Zinc	ppm	XRF		46.93	79.22	158.3	372.68	191.32	54.89

Table 4-5 Soil XRF Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUS15	SUS16	SUS17	SUS18	SUS19	SUS20
				SUS1500N	SUS1600N	SUS1700N	SUS1800N	SUS1900N	SUS2000N
			Sample ID						
			Depth		0.5 - 1 ft	0.5 - 1 ft	0 - 1 ft	0.83 - 1 ft	0.42 - 1 ft
			Sample Date	2/6/2013 10:55:00 AM	2/6/2013 11:45:00 AM	2/6/2013 1:10:00 PM	2/6/2013 1:55:00 PM	2/6/2013 2:35:00 PM	2/7/2013 9:30:00 AM
			Туре	N	N	N	N	N	N
Analyte	Unit	Method							
Antimony	ppm	XRF		15.31	32.69	25.24	22.64	31.88	< 4.49
Arsenic	ppm	XRF		14.78	6.86	10.28	4.16	7.9	89.69
Barium	ppm	XRF		321.31	279.48	325.05	233.28	325.21	423.31
Cadmium	ppm	XRF		< 3.41	5.75	7.63	6.63	11.19	< 3.39
Calcium	ppm	XRF		5765.42	22095.75	3431.13	742.77	14393.72	20237.51
Chromium	ppm	XRF		54.85	21.18	27.13	10.07	38.16	69.52
Cobalt	ppm	XRF		< 43.91	< 33.43	< 37.52	< 31.18	63.48	142.57
Copper	ppm	XRF		49.41	22.67	38.99	14.47	59.86	75.93
Iron	ppm	XRF		22275.65	12822.18	16440.48	11749.55	17691.62	28959.97
Lead	ppm	XRF		58.97	14.61	26.84	32.32	156.7	110.48
Manganese	ppm	XRF		264.65	245.65	245.9	556.73	292.37	250.89
Mercury	ppm	XRF		5.77	< 2.7	5.51	4.42	< 2.69	5.33
Nickel	ppm	XRF		77.03	46.97	46.46	36.37	52.05	72.65
Potassium	ppm	XRF		11340.77	5788.82	6973.05	7534.51	9570.99	6704.98
Selenium	ppm	XRF		< 1.02	< 0.97	< 0.97	< 0.94	< 0.99	3.1
Silver	ppm	XRF		< 2.17	2.3	< 2.19	3.27	2.7	< 2.11
Vanadium	ppm	XRF		92.21	49.73	81.27	62.3	75.47	108.85
Zinc	ppm	XRF		68.35	32.63	42.55	38.31	98.8	63.3

Table 4-5 Soil XRF Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUS21	SUS22	SUS23	SUS24	SUS25
			Sample ID	SUS2100N	SUS2200N	SUS2300N	SUS2400N	SUS2500N
			Depth	1 - 1.75 ft	0.5 - 1 ft	0.5 - 1 ft	0 - 1 ft	0.5 - 1 ft
			Sample Date	2/7/2013 1:40:00 PM	6/13/2013 10:00:00 AM	2/7/2013 10:15:00 AM	2/7/2013 11:50:00 AM	2/7/2013 11:00:00 AM
			Туре	N	N	N	N	N
Analyte	Unit	Method						
Antimony	ppm	XRF		36.21	15.91	30.47	10.06	28.28
Arsenic	ppm	XRF		4.28	4.79	< 1.54	9.94	8.27
Barium	ppm	XRF		323.26	198.75	348.37	150.28	311.07
Cadmium	ppm	XRF		11.18	4.75	8.36	< 3.28	6.45
Calcium	ppm	XRF		66739.81	83088.47	95763.73	5666.84	3303.56
Chromium	ppm	XRF		20.38	24.21	< 3.56	35.31	36.25
Cobalt	ppm	XRF		< 29.31	< 33.23	< 26.48	< 38.77	< 38.19
Copper	ppm	XRF		28.5	20.27	13.27	35.76	28.66
Iron	ppm	XRF		9396.09	13233.16	7925.19	18925.12	17015.42
Lead	ppm	XRF		48.14	43.34	13.08	102.81	22.22
Manganese	ppm	XRF		265.79	295.97	403.12	312.06	301.33
Mercury	ppm	XRF		< 2.78	< 2.69	3.36	< 2.58	4.18
Nickel	ppm	XRF		68.02	53.02	67.6	47.2	62.75
Potassium	ppm	XRF		5115.7	9370.17	13794.07	8346.53	9662.73
Selenium	ppm	XRF		< 1.01	< 0.97	< 0.96	< 0.93	< 0.94
Silver	ppm	XRF		< 2.31	< 2.21	5.43	< 2.13	4.38
Vanadium	ppm	XRF		32.88	51.99	24.92	106.78	62.41
Zinc	ppm	XRF		43.46	59.89	27.91	129.02	39.42

Notes:

Bold values indicate detects.

Sample Type: N = Normal Sample FD = Field Duplicate

ppm = parts per million

Table 4-6
Subsurface Soil Results
Inorganic Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

													Location ID	DP26	DP26	DP26	DP27
													Sample Date	3/28/2013	3/29/2013	3/29/2013	3/26/2013
													Sample ID	DPS2604N	DPS2614N	DPS2630N	DPS2707N
													Depth	3.5 - 4.5 ft	13.5 - 14.5 ft	29.5 - 30.5 ft	6.5 - 7.5 ft
													Type	N	N	N	N
		Project															
		Screening			Max	Min	Mean	Median	Max	Count	Count	Count					
Analyte	Unit	Criteria	Method	CAS	Detect	Detect	Detect	Detect	Location	Detect	Reject	Total					
Aluminum	mg/kg	110000	SW6020A	7429-90-5	10000	150	4500	3900	SUSDP08	75				9700	2200	3600	5900
									SUSDP39			75					
Antimony	mg/kg	47	SW6020A	7440-36-0	1.6	0.007	0.22	0.13	SUSDP19	37	3	75		0.021 J-	0.0070 J	< 0.21 U	0.085 J-
Arsenic	mg/kg	3	SW6020A	7440-38-2	71	0.076	4.3	2.3	DP42	75		75		1.6 J-	1.9 J-	0.26 J-	9.5 J-
Barium	mg/kg	22000	SW6020A	7440-39-3	2400	1.8	77	35	DP42	75		75		43	21	47	59
Beryllium	mg/kg	230	SW6020A	7440-41-7	1.9	0.034	0.49	0.39	SUSDP43	75		75		0.34	0.45	1.1	0.70
Cadmium	mg/kg		SW6020A	7440-43-9	2.6	0.0095	0.26	0.12	DP34	69		75		0.13	0.051 J	0.18	0.39
Calcium	mg/kg	EN	SW6020A	7440-70-2	55000	42	4700	500	SUSDP08	75		75		2800	290	470	6300
Chromium	mg/kg	180000	SW6020A	7440-47-3	37	0.89	13	12	DP40	75		75		14	5.6	14	16
Cobalt	mg/kg		SW6020A	7440-48-4	120	0.27	7.5	4.4	DP28	75		75		4.4	4.5	6.5	6.9
Copper	mg/kg	4700	SW6020A	7440-50-8	290	0.72	26	9.8	DP40	75		75		12	4.3	16	30
Iron	mg/kg	82000	SW6020A	7439-89-6	41000	130	14000	13000	DP33	75		75		13000	10000	32000	19000
Lead	mg/kg	800	SW6020A	7439-92-1	5400	0.5	110	7.3	SUSDP19	75		75		29 J+	4.5 J+	7.7 J+	36 J+
Magnesium	mg/kg	EN	SW6020A	7439-95-4	21000	39	1400	590	TA1E9	74		75		1400	190	540	940
Manganese	mg/kg	2600	SW6020A	7439-96-5	3400	0.86	180	100	DP28	75		75		80	43 J	290 J	150
Nickel	mg/kg	2200	SW6020A	7440-02-0	380	0.46	19	5.6	TA1E9	75		75		5.6	2.5	5.6	18
Potassium	mg/kg	EN	SW6020A	7440-09-7	2200	26	530	470	SUSDP41	75		75		590	220	570	1400
Selenium	mg/kg	580	SW6020A	7782-49-2	9.3	0.085	0.59	0.28	DP34	49		75		0.29 J-	0.19 J	0.42 J	0.89 J-
Silver	mg/kg	580	SW6020A	7440-22-4	0.42	0.0047	0.058	0.027	SUSDP19	59		75		0.032 J	0.013 J	0.022 J	0.086 J
Sodium	mg/kg	EN	SW6020A	7440-23-5	380	14	98	73	DP42	71		75		130	38	50	370
Thallium	mg/kg	1.2	SW6020A	7440-28-0	1.6	0.02	0.13	0.098	DP42	61		75		0.12	0.039 J	0.081 J	0.14
Vanadium	mg/kg	580	SW6020A	7440-62-2	1400	1.2	88	22	TA1G9	75		75		33	13	38	110
Zinc	mg/kg	35000	SW6020A	7440-66-6	690	1.6	53	17	DP42	75		75		22	13	16	72
Mercury	mg/kg	35	SW7471B	7439-97-6	2.2	0.0098	0.13	0.055	DP42	46		75		0.034 J	< 0.035 UJ	0.021 J	0.079

Table 4-6
Subsurface Soil Results
Inorganic Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	DP27	DP27	DP28	DP28	DP28	DP29	DP29	DP29	DP30	DP30	DP31	DP31
			Sample Date	3/26/2013	3/26/2013	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/3/2013	4/3/2013	4/1/2013	4/1/2013
			Sample ID	DPS2722N	DPS2758N	DPS2808N	DPS2821N	DPS2832N	DPS2910N	DPS2930N	DPS2950N	DPS3050N	DPS3028N	DPS3120N	DPS3142N
			Depth	21.5 - 22.5 ft	57.5 - 58.5 ft	7.5 - 8.5 ft	20.5 - 21.5 ft	31 - 33 ft	9 - 11 ft	29 - 31 ft	49 - 51 ft	49 - 51 ft	27 - 29 ft	19.5 - 20.5 ft	41.5 - 42.5 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N
		Project													
		Screening													
Analyte	Unit	Criteria													
Aluminum	mg/kg	110000		5100	1300	2000	820	6000	9200	1100	150	3700	1400	3100	2400
Antimony	mg/kg	47		R	R	< 0.22 U	< 0.22 U	< 0.28 U	< 0.24 U	< 0.23 U	< 0.23 U	< 0.25 U	< 0.23 U	< 0.22 U	< 0.23 U
Arsenic	mg/kg	3		1.9 J-	0.076 J-	1.8 J-	1.3 J-	1.9 J-	2.9 J-	0.35 J-	0.30 J-	2.3 J-	2.0 J-	0.56 J-	0.96 J-
Barium	mg/kg	22000		73	19	9.4	47	59	39	15	2.5	40	19	19	27
Beryllium	mg/kg	230		1.3	0.24	0.36	0.20	1.3	0.65	0.36	0.092 J	1.3	0.28	0.44	0.66
Cadmium	mg/kg	98		0.20	0.067 J	0.059 J	1.1	0.43	0.12	0.065 J	0.0095 J	0.35	0.070 J	0.10 J	0.13
Calcium	mg/kg	EN		610	430	300	1600	460	2000	200	58	370	160	160	220
Chromium	mg/kg	180000		12	4.0	9.8	7.8	21	16	6.1	1.7	15	9.0	12	13
Cobalt	mg/kg	35		10	0.52	7.3	120	19	6.8	3.1	2.5	28	2.5	2.9	11
Copper	mg/kg	4700		9.3	6.1	6.5	4.1	19	13	4.3	1.1	15	4.9	11	8.4
Iron	mg/kg	82000		7400	2100	13000	15000	13000	20000	5200	320	17000	20000	5700	11000
Lead	mg/kg	800		5.0 J+	3.1 J+	2.4 J+	1.1 J+	8.9 J+	42 J+	2.3 J+	0.69 J+	7.3 J+	2.1 J+	4.8 J+	4.2 J+
Magnesium	mg/kg	EN		600	280	220	140	990	1600	160	91	610	140	430	440
Manganese	mg/kg	2600		110	28	140 J	3400 J	130 J	160 J	41 J	2.1 J	140 J	33 J	25 J	75 J
Nickel	mg/kg	2200		10	0.82	3.4	3.5	18	8.6	3.1	3.4	36	3.7	4.0	11
Potassium	mg/kg	EN		320	460	260	110	670	1400	160	32	670	170	350	330
Selenium	mg/kg	580		0.56 J-	0.21 J-	< 0.54 U	< 0.54 U	< 0.71 U	< 0.61 U	< 0.58 U	< 0.56 U	< 0.62 U	< 0.58 U	< 0.54 U	< 0.59 U
Silver	mg/kg	580		0.033 J	0.0098 J	< 0.11 U	< 0.11 U	0.038 J	0.025 J	< 0.12 U	< 0.11 U	0.022 J	< 0.12 U	0.0074 J	0.022 J
Sodium	mg/kg	EN		320	23	< 19 U	42	45	73	40	< 20 U	37	39	36	< 28 U
Thallium	mg/kg	1.2	·	0.093 J	0.037 J	< 0.11 U	< 0.11 U	0.15	0.14	< 0.12 U	< 0.11 U	0.13	< 0.12 U	< 0.11 U	< 0.12 U
Vanadium	mg/kg	580	·	20	13	15	7.0	38	26	10	2.7	28	9.6	24	22
Zinc	mg/kg	35000		21	1.6	12	12	50	35	10	5.0	73	11	8.6	15
Mercury	mg/kg	35		0.024 J	< 0.039 U	0.015 J	< 0.034 UJ	0.024 J	1.0 J	< 0.038 UJ	< 0.036 UJ	0.018 J	< 0.038 UJ	< 0.037 UJ	< 0.039 UJ

Table 4-6
Subsurface Soil Results
Inorganic Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	DP32	DP32	DP32	DP32	DP33	DP33	DP34	DP34	DP34	DP34	DP35
			Sample Date	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/4/2013	4/4/2013	3/13/2013	3/29/2013	3/29/2013	3/29/2013	3/28/2013
			Sample ID	DPS3210N	DPS3210R	DPS3230N	DPS3243N	DPS3315N	DPS3335N	DPS3405N	DPS3418N	DPS3445N	DPS3460N	DPS3515N
			Depth	9.5 - 10.5 ft	9.5 - 10.5 ft	29.5 - 30.5 ft	42.5 - 43.5 ft	14 - 16 ft	34 - 36 ft	4.5 - 5.5 ft	17.5 - 18.5 ft	44.5 - 45.5 ft	59.5 - 60.5 ft	14.5 - 15.5 ft
			Туре	N	FD	N	N	N	N	N	N	N	N	N
		Project												
		Screening												
Analyte	Unit	Criteria												
Aluminum	mg/kg	110000		2200	2400	390	150	3200	2600	1700	2600	5400	8400	5600
Antimony	mg/kg	47		< 0.24 U	< 0.24 U	< 0.22 U	< 0.24 U	< 0.23 U	< 0.31 U	0.022 J-	0.024 J	< 0.22 U	< 0.21 U	R
Arsenic	mg/kg	3		2.6 J-	2.8 J-	0.37 J-	0.73 J-	3.7 J-	5.4 J-	1.5 J-	1.2 J-	0.58 J-	0.93 J-	0.81 J-
Barium	mg/kg	22000		17	11	2.3	1.8	15	24	5.1	30	65	91	21
Beryllium	mg/kg	230		0.40	0.29	0.034 J	0.044 J	0.91	0.77	0.17	0.49	1.1	1.2	0.34
Cadmium	mg/kg	98		0.081 J	0.070 J	< 0.11 U	< 0.12 U	0.12	0.60	0.035 J	0.12	2.2	2.6	0.096 J
Calcium	mg/kg	EN		330	330	77	42	310	320	110	320	380	2000	220
Chromium	mg/kg	180000		11	12	2.3	0.89	22	14	4.8	11	15	11	9.2
Cobalt	mg/kg	35		1.0	1.0	0.27	3.4	4.6	19	1.8	3.9	3.8	2.0	1.2
Copper	mg/kg	4700		8.0	7.3	1.4	0.72	17	11	3.5	10	18	31	4.9
Iron	mg/kg	82000		20000	19000	1700	130	41000	2800	7600	18000	26000	16000	6500
Lead	mg/kg	800		6.7 J+	3.2 J+	0.50 J+	0.50 J+	5.0 J+	5.0 J+	1.5 J+	5.2 J+	7.3 J+	15 J+	5.4 J+
Magnesium	mg/kg	EN		120	120	39	< 18 U	320	400	190	710	480	1600	360
Manganese	mg/kg	2600		13 J	14 J	4.9 J	0.86 J	35 J	14 J	32	180 J	83 J	48 J	9.9
Nickel	mg/kg	2200		1.7	1.7	0.46	2.4	7.0	24	1.3	5.7	4.3	3.0	2.8
Potassium	mg/kg	EN		250	210	51	26	340	290	170	760	470	860	370
Selenium	mg/kg	580		< 0.60 U	< 0.59 U	< 0.54 U	< 0.59 U	< 0.57 U	< 0.77 U	0.15 J-	0.33 J	0.53 J	9.3	0.24 J-
Silver	mg/kg	580		0.0071 J	0.0082 J	< 0.11 U	< 0.12 U	0.0075 J	0.0071 J	0.0058 J	0.074 J	0.037 J	0.013 J	0.017 J
Sodium	mg/kg	EN		68	68	47	< 24 U	76	73	66	70	36	36	110
Thallium	mg/kg	1.2		< 0.12 U	< 0.12 U	< 0.11 U	< 0.12 U	< 0.11 U	< 0.15 U	0.020 J	0.078 J	0.13	0.047 J	0.085 J
Vanadium	mg/kg	580		18	22	5.1	1.2	32	26	9.7	20	32	19	17
Zinc	mg/kg	35000		10	8.7	2.0	11	28	55	7.4	14	14	8.9	9.0
Mercury	mg/kg	35	·	0.016 J	< 0.038 UJ	< 0.034 UJ	< 0.038 UJ	0.019 J	< 0.050 UJ	< 0.039 U	< 0.042 UJ	< 0.040 UJ	< 0.039 UJ	< 0.038 U

Table 4-6
Subsurface Soil Results
Inorganic Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	DP35	DP38	DP40	DP42	DP42	DP47	SUSDP01	SUSDP02	SUSDP04	SUSDP05	SUSDP06
			Sample Date	3/28/2013	5/16/2013	5/20/2013	5/29/2013	5/29/2013	5/28/2013	5/20/2013	5/14/2013	5/15/2013	5/15/2013	5/15/2013
			Sample ID	DPS3534N	DPS3805N	DPS4003N	DPS4210N	DPS4215N	DPS4702N	DPS0110N	DPS0205N	DPS0403N	DPS0505N	DPS0605N
			Depth	33.5 - 34.5 ft	4.5 - 5.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1.5 - 2.5 ft	9.5 - 10.5 ft	4.5 - 5.5 ft	2.5 - 3.5 ft	4.5 - 5.5 ft	4.5 - 5.5 ft
			Type	N	N	N	N	N	N	N	N	N	N	N
		Project												
		Screening												
Analyte	Unit	Criteria												
Aluminum	mg/kg	110000		5100	2300	8000	8600 J+	4400 J+	8200	2600	3700	8500	1900	6000
Antimony	mg/kg	47		0.11 J-	< 0.22 U	< 0.24 U	0.63	0.44	0.13 J	0.015 J	< 0.22 UJ	< 0.24 U	< 0.23 U	< 0.25 U
Arsenic	mg/kg	3		0.20 J-	1.6	14	71 J-	37 J-	7.7	0.93	1.9	4.7	1.8	2.0
Barium	mg/kg	22000		45	7.6	120	2400	140	59	51	17	46	11	18
Beryllium	mg/kg	230		0.85	0.23	0.53	1.1	0.67	0.58	0.36	0.39	0.43	0.19	0.31
Cadmium	mg/kg	98		0.12	0.036 J	0.41	1.1	0.92	0.32	0.061 J	0.063 J	0.21	0.021 J	0.053 J
Calcium	mg/kg	EN		260	320	45000	7300	3700	11000	560	530	3500	110	350
Chromium	mg/kg	180000		15	9.8	37	19	12	23	6.3	6.6	15	6.8	11
Cobalt	mg/kg	35		3.6	4.0	9.0	11	5.4	6.5	4.0	7.9	7.7	2.6	7.8
Copper	mg/kg	4700		13	5.8	290	140	62	30	3.7	5.1	100	5.6	6.9
Iron	mg/kg	82000		17000	11000	14000	25000	11000 J	16000	8200	9200	22000	9000	12000
Lead	mg/kg	800		7.0 J+	2.9	71	280	110	60	4.2	2.9 J+	43	2.2	5.6
Magnesium	mg/kg	EN		750	340	7400	1600	570	2700	290	390	1500	250	670
Manganese	mg/kg	2600		96	65	580	810	110	200	370	230	230	71	190
Nickel	mg/kg	2200		5.5	3.6	59	120	9.6	23	3.4	4.2	12	2.8	5.8
Potassium	mg/kg	EN		710	330	1100	730	430	760	230	400	860	280	610
Selenium	mg/kg	580		0.36 J-	0.085 J	0.45 J	2.6 J-	1.0 J-	0.43 J	< 0.53 U	0.12 J-	0.28 J	0.086 J	0.12 J
Silver	mg/kg	580		0.026 J	< 0.11 U	0.25	0.23	0.063 J	0.073 J	0.0072 J	0.0061 J	0.074 J	0.0047 J	0.0051 J
Sodium	mg/kg	EN		47	14	270	380	270	67	110	110	84	21	80
Thallium	mg/kg	1.2		0.12	0.042 J	0.13	1.6	0.61	0.17	0.037 J	0.053 J	0.12	0.039 J	0.081 J
Vanadium	mg/kg	580		30	13	120	49	25	23	8.6	12	25	11	18
Zinc	mg/kg	35000		13	12	220	690	250	56	20	15	44	8.6	15
Mercury	mg/kg	35		0.029 J	0.017 J	0.093	0.44 J-	2.2	0.10	< 0.035 U	0.015 J	0.084	< 0.035 U	< 0.043 U

Table 4-6
Subsurface Soil Results
Inorganic Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	SUSDP07	SUSDP07	SUSDP07	SUSDP08	SUSDP08	SUSDP08	SUSDP09	SUSDP11	SUSDP11	SUSDP12	SUSDP13
			Sample Date	5/15/2013	5/22/2013	5/22/2013	5/15/2013	5/23/2013	5/23/2013	6/11/2013	5/14/2013	5/28/2013	6/13/2013	5/20/2013
			Sample ID	DPS0705N	DPS0710N	DPS0715N	DPS0803N	DPS0810N	DPS0815N	DPS0910N	DPS1105N	DPS1110N	DPS1210N	DPS1305N
			Depth	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	9.5 - 10.5 ft	4.5 - 5.5 ft
			Type	N	N	N	N	N	N	N	N	N	N	N
		Project												
		Screening												
Analyte	Unit	Criteria												
Aluminum	mg/kg	110000		8200	6800	3400	6700	10000	7200	6700	7400	3000	3500	5200
Antimony	mg/kg	47		< 0.24 U	< 0.23 UJ	< 0.23 U	< 0.23 U	0.019 J	0.050 J	0.17 J	< 0.24 U	0.036 J	0.063 J	0.74 J-
Arsenic	mg/kg	3		2.2	2.3	2.3	2.1	3.4	3.9	2.4	2.8	1.5	1.1	2.9
Barium	mg/kg	22000		34	45	30	66	37	62	63	40	25	22	56
Beryllium	mg/kg	230		0.27	0.36	0.42	0.26	0.24	0.71	0.91	0.63	0.41	0.43	0.40
Cadmium	mg/kg	98		0.068 J	0.089 J	0.061 J	0.18	0.23	0.25	< 0.12 U	0.074 J	0.11 J	< 0.12 U	0.16
Calcium	mg/kg	EN		4500	3700 J	1100	55000	2300	1200	360	510	460	240	1700
Chromium	mg/kg	180000		9.1	13	8.5	15	15	13	19	14	7.0	10	11
Cobalt	mg/kg	35		6.6	6.5	4.7	3.5	2.5	8.3	8.6	3.4	3.9	2.9	6.5
Copper	mg/kg	4700		9.1	9.6	6.2	14	9.1	16	9.3	11	6.9	7.7	25 J+
Iron	mg/kg	82000		20000	16000	19000	8200	13000	16000	31000	19000	8000	8500	11000
Lead	mg/kg	800		12	15	5.8	32	30	36	10	9.3	10	3.8	180
Magnesium	mg/kg	EN		960	860	340	5600	970	670	860	920	250	390	490
Manganese	mg/kg	2600		120	240	360	160	61	230	67	54	76	24	150 J-
Nickel	mg/kg	2200		4.8	7.2	3.7	14	9.6	7.2	11	7.2	3.7	4.2	7.5
Potassium	mg/kg	EN		470	610	300	930	430	530	530	550	270	360	430
Selenium	mg/kg	580		0.22 J	0.17 J-	0.19 J	0.28 J	0.25 J	0.39 J	< 0.61 U	0.27 J	0.27 J	< 0.61 U	0.096 J
Silver	mg/kg	580		0.016 J	0.022 J	0.023 J	0.081 J	0.050 J	0.049 J	0.013 J	0.074 J	0.011 J	0.0085 J	0.21
Sodium	mg/kg	EN		74	73	65	130	160	180	49	87	55	140	130
Thallium	mg/kg	1.2		0.11 J	0.098 J	0.066 J	0.057 J	0.094 J	0.15	0.13	0.11 J	0.066 J	0.070 J	0.10 J
Vanadium	mg/kg	580		18	20	17	25	36	25	31	21	14	17	16
Zinc	mg/kg	35000		15	24	12	32	28	34	27	21	16	15	58 J+
Mercury	mg/kg	35		0.017 J	0.072	0.023 J	0.052	0.032 J	0.086	< 0.039 U	0.029 J	0.037 J	< 0.040 U	0.073 J-

Table 4-6
Subsurface Soil Results
Inorganic Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	SUSDP13	SUSDP16	SUSDP18	SUSDP19	SUSDP19	SUSDP19	SUSDP24	SUSDP24	SUSDP37	SUSDP39	SUSDP41
			Sample Date	5/29/2013	5/15/2013	5/23/2013	5/23/2013	5/23/2013	6/5/2013	6/4/2013	6/4/2013	5/16/2013	5/22/2013	5/22/2013
			Sample ID	DPS1310N	DPS1605N	DPS1803N	DPS1902N	DPS1902R	DPS1910N	DPS2410N	DPS2410R	DPS3703N	DPS3910N	DPS4103N
			Depth	9.5 - 10.5 ft	4.5 - 5.5 ft	2.5 - 3.5 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	9.5 - 10.5 ft	9.5 - 10.5 ft	9.5 - 10.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	2.5 - 3.5 ft
			Туре	N	N	N	N	FD	N	N	FD	N	N	N
		Project	. ,,,, -											
		Screening												
Analyte	Unit	Criteria												
Aluminum	mg/kg	110000		850 J+	5900	3200	5100	4800	3900 J+	2300 J+	2300 J+	9600	10000	7500
Antimony	mg/kg	47		0.46	< 0.23 U	0.021 J	0.29	0.28	1.6	0.017 J	< 0.23 U	< 0.22 U	0.041 J	< 0.24 U
Arsenic	mg/kg	3		0.48 J-	3.0	1.6	2.8	3.0	4.2 J-	1.1 J-	1.2 J-	3.7	2.4	2.8
Barium	mg/kg	22000		7.5	20	27	64	79	580	10	11	67	43	75
Beryllium	mg/kg	230		0.034 J	0.31	0.32	0.31	0.29	0.32	0.22	0.28	0.59	0.33	0.36
Cadmium	mg/kg	98		0.031 J	0.053 J	0.070 J	0.28	0.29	0.88	0.041 J	0.049 J	0.11	0.13	0.22
Calcium	mg/kg	EN		270	330	140	8600	8000	39000	310	330	2700	3000	48000
Chromium	mg/kg	180000		2.4	12	9.0	12	12	23	7.5	10	24	15	21
Cobalt	mg/kg	35		1.1	3.1	4.0	13	12	7.3	3.6	4.0	6.9	2.6	6.7
Copper	mg/kg	4700		2.0	6.6	3.7	82	120	230	5.5	5.6	19	9.8	25
Iron	mg/kg	82000		1900 J	15000	9300	13000	13000	14000	8800 J	9800 J	23000	18000	11000
Lead	mg/kg	800		19	4.6	3.1	290	400	5400	2.5	2.6	27	38	47
Magnesium	mg/kg	EN		71	500	350	1600	1500	1900	520	500	1800	580	9300
Manganese	mg/kg	2600		94	110	230	170	200	400	73	79	200	140	230
Nickel	mg/kg	2200		0.78	3.7	3.5	12	13	18	2.8	3.0	12	4.1	68
Potassium	mg/kg	EN		73	460	250	830	580	680	520	510	1100	670	1200
Selenium	mg/kg	580		< 0.55 UJ	0.17 J	< 0.52 U	0.19 J	0.17 J	< 0.57 UJ	< 0.55 UJ	< 0.57 UJ	0.27 J	0.18 J	0.25 J
Silver	mg/kg	580		< 0.11 U	0.011 J	< 0.10 U	0.11	0.078 J	0.42	< 0.11 U	< 0.11 U	0.031 J	0.012 J	0.12
Sodium	mg/kg	EN		34	61	69	140	140	190	25	28	170	52	140
Thallium	mg/kg	1.2		0.033 J	0.082 J	0.047 J	0.093 J	0.10 J	0.071 J	0.044 J	0.047 J	0.14	0.15	0.098 J
Vanadium	mg/kg	580		2.9	19	12	20	19	36	12	11	29	26	130
Zinc	mg/kg	35000		12	15	17	100	120	560	10	9.6	33	22	49
Mercury	mg/kg	35		< 0.035 U	0.014 J	< 0.035 U	0.065 J-	0.065 J-	0.11	< 0.033 U	< 0.037 U	0.086	0.067	0.091

Table 4-6
Subsurface Soil Results
Inorganic Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	SUSDP41	SUSDP41	SUSDP43	SUSDP43	SUSDP44	TA1E0	TA1E0	TA1E0	TA1E1	TA1E10
			Sample Date	5/24/2013	5/24/2013	5/17/2013	6/7/2013	5/21/2013	8/1/2017	8/1/2017	8/1/2017	7/31/2017	8/8/2017
			Sample ID	DPS41 10N	DPS41 15N	DPS4304N	DPS4310N	DPS4403N	DPSTA1E0001N	DPSTA1E0002N	DPSTA1E0003N	DPSTA1E0101N	DPSTA1E1001N
			Depth	9.5 - 10.5 ft	14.5 - 15.5 ft	3.5 - 4.5 ft	9.5 - 10.5 ft	2.5 - 3.5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	1 - 2 ft
			Туре	N	N	N	N	N	N	N	N	N	N
		Project											
		Screening											
Analyte	Unit	Criteria											
Aluminum	mg/kg	110000		8200	1800	2900	5600 J+	6400	3800	4100	2700	5800	7000
Antimony	mg/kg	47		0.063 J	0.012 J	0.025 J-	0.056 J	0.13 J	< 0.23 U	0.18 J	0.13 J	0.39	0.25 J
Arsenic	mg/kg	3		2.1	0.74	0.39 J-	2.9 J-	6.8	5.6	4.8	3.2	13	3.6
Barium	mg/kg	22000		75	14	25	48	48	34	25	13	91	35
Beryllium	mg/kg	230		0.38	0.17	1.9 J-	0.36	0.45	0.22	0.22	0.22	0.52	0.52
Cadmium	mg/kg	98		0.27	0.027 J	0.26	0.25	0.17	< 0.11 U	0.016 J	0.014 J	0.23	0.036 J
Calcium	mg/kg	EN		39000	190	1500	11000	1100	690	750	430	4700	500
Chromium	mg/kg	180000		22	6.6	13 J-	13	13	11	10	10	20	13
Cobalt	mg/kg	35		5.5	1.1	4.1	4.8	3.3	2.3	3.0	2.0	9.2	5.0
Copper	mg/kg	4700		22	5.2	65 J+	39	23	6.8	7.7	5.8	41	10
Iron	mg/kg	82000		13000	8100	18000	13000	17000	16000	15000	12000	16000	13000
Lead	mg/kg	800		45	2.5	24	150	60	5.0	5.3	3.5 J	53	11
Magnesium	mg/kg	EN		4800	600	560	5100	730	560	590	430	2300	940
Manganese	mg/kg	2600		220	34	53 J	140	110	100	94	55 J	160	89
Nickel	mg/kg	2200		19	3.0	13	15	6.0	5.0	4.7	3.4	62	8.5
Potassium	mg/kg	EN		2200	670	600	500	490	450	520	400	760	750
Selenium	mg/kg	580		0.24 J	< 0.52 U	< 0.60 UJ	0.29 J-	0.48 J	0.44 J	0.50 J	0.27 J	0.77	0.81
Silver	mg/kg	580		0.11 J	< 0.10 U	0.017 J	0.052 J	0.055 J	0.019 J	< 0.11 U	< 0.11 U	0.15	0.027 J
Sodium	mg/kg	EN		220	54	69	88	95	66	130	93	84	150
Thallium	mg/kg	1.2		0.12	0.052 J	0.11 J	0.10 J	0.19	< 0.11 U	0.074 J	0.057 J	0.20	0.13
Vanadium	mg/kg	580		23	8.2	25 J-	24	27	670	630	420	200	21
Zinc	mg/kg	35000		50	10	58 J-	250	28	20	16	11	82	20
Mercury	mg/kg	35		0.059	< 0.035 U	0.11 J-	0.15	0.083	< 0.037 U	< 0.037 U	0.0098 J	0.14	0.038 J

Table 4-6
Subsurface Soil Results
Inorganic Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	TA1E9	TA1G10	TA1G9	TA1G9	TA1H9
			Sample Date	8/3/2017	8/4/2017	8/4/2017	8/4/2017	8/4/2017
				DPSTA1E0901N	DPSTA1G1001N	DPSTA1G0901N	DPSTA1G0902N	DPSTA1H0901N
			Depth	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft
			Type	N	N	N	N	N
		Project	71					
		Screening						
Analyte	Unit	Criteria						
Aluminum	mg/kg	110000		2800	5600	920	1700	5400
Antimony	mg/kg	47		0.49	0.17 J	0.33	0.17 J	0.40
Arsenic	mg/kg	3		12	3.2	8.2	3.4	4.5
Barium	mg/kg	22000		41	58	25	14	40
Beryllium	mg/kg	230		0.51	0.52	0.48	0.29	0.52
Cadmium	mg/kg	98		0.57	0.031 J	< 0.11 U	0.017 J	0.29
Calcium	mg/kg	EN		10000	420	590	480	5200
Chromium	mg/kg	180000		25	13	9.2	7.1	20
Cobalt	mg/kg	35		29	4.4	8.4	2.0	9.1
Copper	mg/kg	4700		59	9.9	19	8.8	19
Iron	mg/kg	82000		19000	11000	8800	10000	12000
Lead	mg/kg	800		91	23	12	6.0	100
Magnesium	mg/kg	EN		21000	660	2300	470	1900
Manganese	mg/kg	2600		490	71	56	52	180
Nickel	mg/kg	2200		380	6.0	130	4.2	140
Potassium	mg/kg	EN		290	590	240	320	620
Selenium	mg/kg	580		0.88	0.70	0.78	0.28 J	0.61
Silver	mg/kg	580		0.24	0.062 J	0.028 J	< 0.10 U	0.071 J
Sodium	mg/kg	EN		98	56 J	95	47 J	67
Thallium	mg/kg	1.2		0.22	0.11 J	0.11	0.044 J	0.12
Vanadium	mg/kg	580		560	17	1400	540	530
Zinc	mg/kg	35000		180	17	34	10	69
Mercury	mg/kg	35		0.14	0.048	0.038	0.018 J	0.058

Subsurface Soil Results
Inorganic Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable

RSL Table, May 2018 Industrial Soil [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

mg/kg = milligrams per kilogram

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

															T							
													Location ID Sample Date	CT16SO9I 8/4/2017	CT16SO9I 8/4/2017	DP26 3/28/2013	DP26 3/29/2013	DP26 3/29/2013	DP27 3/26/2013	DP27 3/26/2013	DP27 3/26/2013	DP28 4/2/2013
													Sample ID	0/4/2017 CT16SO9I03		DPS2604N	DPS2614N	DPS2630N	DPS2707N	DPS2722N	DPS2758N	
													Depth	3 - 4 ft	4 - 5 ft	3.5 - 4.5 ft	13.5 - 14.5 ft	29.5 - 30.5 ft	6.5 - 7.5 ft	21.5 - 22.5 ft	57.5 - 58.5 ft	
													Туре		N	0.5 - 4.5 it	N	N	0.5 - 7.5 it	N	N	N 7.5 - 0.5 it
													. , , , ,	.,					.,,	.,		+
		Project Screening				Min	Mean	Median		Count	Count	Count										
Analyte	Unit	Criteria	Method	CAS	Max Detect	Detect	Detect	Detect	Max Location	Detect	Reject	Total										
Diesel Range Organics (C10-C20)	mg/kg	440	M8015D	C10C20	18600	101	4960	3540	SUSDPCT16-2M	11		11										
Oil Range Organics (C20-C36)	mg/kg	350000	M8015D	C20C36	39900	279	10500	7520	SUSDPCT16-3S	11		11										
Total Petroleum Hydrocarbons (C9-C44)	mg/kg		M8015D	TPH	61000	1.48	3370	364	SUSDPCT16-3S	118		121		9210 J+								
Diesel Range Organics (C10-C20)	mg/kg	440	SW8015C DRO	C10C20	11000	10	1100	140	SUSDPCT16-2M	54		173			550	< 19 U	< 19 U	< 21 U	68	< 24 U	< 20 U	< 18 U
Oil Range Organics (C20-C36)	mg/kg	350000	SW8015C DRO	C20C36	17000	10	1400	170	SB3	98		173			2200	28	33	72	220	56	< 20 U	< 18 U
Gasoline Range Organics (C6-C10)	ug/kg	42000	SW8015C GRO/SW8015D GRO	8006-61-9	38000	60	12000	640	SB3	7		140				< 86 U	< 85 U	< 110 U	< 94 U	< 110 U	< 99 U	< 85 U
1,1,1-Trichloroethane	ug/kg	3.6e+006	SW8260B/SW8260C	71-55-6								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,1,2,2-Tetrachloroethane	ug/kg	2700	SW8260B/SW8260C	79-34-5								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006	SW8260B/SW8260C	76-13-1	ļ ·							67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,1,2-Trichloroethane 1,1-Dichloroethane	ug/kg	630 16000	SW8260B/SW8260C SW8260B/SW8260C	79-00-5 75-34-3	 							67			+	< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,1-Dichloroethene	ug/kg	10000	SW8260B/SW8260C	75-35-4	 							67 67			+	< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,2,3-Trichlorobenzene	ug/kg ug/kg	93000	SW8260B/SW8260C	87-61-6	1	+						67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,2,4-Trichlorobenzene	ug/kg	26000	SW8260B/SW8260C	120-82-1	+ +	+						67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,2-Dibromo-3-chloropropane	ug/kg	64	SW8260B/SW8260C	96-12-8	+ +	+						67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,2-Dibromoethane	ug/kg	160	SW8260B/SW8260C	106-93-4								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,2-Dichlorobenzene	ug/kg	930000	SW8260B/SW8260C	95-50-1								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,2-Dichloroethane	ug/kg	2000	SW8260B/SW8260C	107-06-2								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,2-Dichloropropane	ug/kg	6600	SW8260B/SW8260C	78-87-5								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,3-Dichlorobenzene	ug/kg	11000	SW8260B/SW8260C	541-73-1								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,4-Dichlorobenzene	ug/kg	11000	SW8260B/SW8260C	106-46-7								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
1,4-Dioxane	ug/kg	24000	SW8260B/SW8260C	123-91-1								67				< 870 U	< 860 U	< 990 U	< 930 U	< 880 U	< 850 U	< 990 U
2-Butanone	ug/kg	1.9e+007	SW8260B/SW8260C	78-93-3	12	12	12	12	SUSDP12	1		67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
2-Hexanone	ug/kg	130000	SW8260B/SW8260C	591-78-6								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
4-Methyl-2-pentanone	ug/kg	1.4e+007	SW8260B/SW8260C	108-10-1								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Acetone	ug/kg	6.7e+007	SW8260B/SW8260C	67-64-1	58	5.1	15	9.1	SUSDP12	15		67				< 17 U	< 17 U	< 20 U	< 19 U	8.3 J	< 17 U	< 20 U
Benzene	ug/kg	5100	SW8260B/SW8260C	71-43-2								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Bromochloromethane Bromodichloromethane	ug/kg	63000 1300	SW8260B/SW8260C SW8260B/SW8260C	74-97-5 75-27-4								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Bromoform	ug/kg ug/kg	86000	SW8260B/SW8260C	75-27-4	+							67 67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Bromomethane	ug/kg	3000	SW8260B/SW8260C	74-83-9								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Carbon Disulfide	ug/kg	350000	SW8260B/SW8260C	75-15-0	 							67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Carbon Tetrachloride	ug/kg	2900	SW8260B/SW8260C	56-23-5								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Chlorobenzene	ug/kg	130000	SW8260B/SW8260C	108-90-7	1							67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Chloroethane	ug/kg	5.7e+006	SW8260B/SW8260C	75-00-3								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Chloroform	ug/kg	1400	SW8260B/SW8260C	67-66-3								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Chloromethane	ug/kg	46000	SW8260B/SW8260C	74-87-3								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
cis-1,2-Dichloroethylene	ug/kg	230000	SW8260B/SW8260C	156-59-2								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
cis-1,3-Dichloropropene	ug/kg	8200	SW8260B/SW8260C	10061-01-5								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Cyclohexane	ug/kg	2.7e+006	SW8260B/SW8260C	110-82-7	2.3	2.3	2.3	2.3	SUSDP12	1		67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Dibromochloromethane	ug/kg	39000	SW8260B/SW8260C	124-48-1								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Dichlorodifluoromethane	ug/kg	37000	SW8260B/SW8260C	75-71-8								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Ethylbenzene	ug/kg	25000	SW8260B/SW8260C	100-41-4	0	0.7-	0.77	0	01102222			67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Isopropylbenzene	ug/kg	990000	SW8260B/SW8260C	98-82-8	0.77	0.77	0.77	0.77	SUSDP39	1		67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
m, p-Xylene	ug/kg	240000	SW8260B/SW8260C	XYLMP	4.8	4.8	4.8	4.8	SUSDP39	1		67				< 8.7 U	< 8.6 U	< 9.9 U	< 9.3 U	< 8.8 U	< 8.5 U	< 9.9 U
Methyl Acetate Methyl tert-Butyl Ether (MTBE)	ug/kg ug/kg	1.2e+008 210000	SW8260B/SW8260C SW8260B/SW8260C	79-20-9 1634-04-4	100	100	100	100	DP32	1		67 67			+	< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Methylcyclohexane	ug/kg ug/kg	2.7e+006	SW8260B/SW8260C	108-87-2	6.1	6.1	6.1	6.1	SUSDP12	1		67			+	< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Methylene Chloride	ug/kg	320000	SW8260B/SW8260C	75-09-2	1.2	1.2	1.2	1.2	SUSDP10	1		67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
o-Xylene	ug/kg	280000	SW8260B/SW8260C	95-47-6	3.5	3.5	3.5	3.5	SUSDP39	1		67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Styrene	ug/kg	3.5e+006	SW8260B/SW8260C	100-42-5		2.0	2.0	0.0		<u> </u>		67			+	< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Tetrachloroethylene	ug/kg	39000	SW8260B/SW8260C	127-18-4	4.2	4.2	4.2	4.2	SUSDP39	1		67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Toluene	ug/kg	4.7e+006	SW8260B/SW8260C	108-88-3								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
trans-1,2-Dichloroethene	ug/kg	2.3e+006	SW8260B/SW8260C	156-60-5								67			1	< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
trans-1,3-Dichloropropene	ug/kg	8200	SW8260B/SW8260C	10061-02-6								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Trichloroethene	ug/kg	1900	SW8260B/SW8260C	79-01-6								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Trichlorofluoromethane	ug/kg	3.5e+007	SW8260B/SW8260C	75-69-4								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
Vinyl Chloride	ug/kg	1700	SW8260B/SW8260C	75-01-4								67				< 4.3 U	< 4.3 U	< 5.0 U	< 4.6 U	< 4.4 U	< 4.2 U	< 5.0 U
-	ug/kg	250000	SW8260B/SW8260C	1330-20-7	8.3	8.3	8.3	8.3	SUSDP39	1		67				< 8.7 U	< 8.6 U	< 9.9 U	< 9.3 U	< 8.8 U	< 8.5 U	< 9.9 U

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

													Location ID CT16SO9I	CT16SO9I	DP26	DP26	DP26	DP27	DP27	DP27	DP28
													Location ID CT16SO9I Sample Date 8/4/2017	8/4/2017	3/28/2013	3/29/2013	3/29/2013	3/26/2013	3/26/2013	3/26/2013	4/2/2013
													Sample ID CT16SO9I03		DPS2604N	DPS2614N	DPS2630N	DPS2707N	DPS2722N	DPS2758N	DPS2808N
													Depth 3 - 4 ft	4 - 5 ft	3.5 - 4.5 ft	13.5 - 14.5 ft	29.5 - 30.5 ft	6.5 - 7.5 ft	21.5 - 22.5 ft	57.5 - 58.5 ft	7.5 - 8.5 ft
		1	T	1		T	ı	1	1	1		-	Type N	N	N	N	N	N	N	N	N
						l															
Analyte	Unit	Project Screening Criteria	Method	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count Detect	Count Reject	Count Total									
1,1'-Biphenyl	ug/kg	20000	SW8270D LL	92-52-4	32	30	31	31	DP26	2	Reject	28			32 J	< 37 U	< 41 U	30 J	< 48 U	< 40 U	< 36 U
1,2,4,5-Tetrachlorobenzene	ug/kg	35000	SW8270D LL	95-94-3			<u> </u>		3. 20			28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006	SW8270D LL	108-60-1								28			< 38 U	< 7.6 U	< 8.4 U	< 16 U	< 9.8 U	< 8.1 U	< 7.3 U
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006	SW8270D LL	58-90-2								28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
2,4,5-Trichlorophenol	ug/kg	8.2e+006	SW8270D LL	95-95-4								28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
2,4,6-Trichlorophenol	ug/kg	82000	SW8270D LL	88-06-2								28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
2,4-Dichlorophenol	ug/kg	250000	SW8270D LL	120-83-2								28			< 38 U	< 7.6 U	< 8.4 U	< 16 U	< 9.8 U	< 8.1 U	< 7.3 U
2,4-Dimethylphenol	ug/kg	1.6e+006	SW8270D LL	105-67-9								28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	ug/kg ug/kg	160000 7400	SW8270D LL SW8270D LL	51-28-5 121-14-2								28 28			< 960 U < 190 U	< 190 U < 37 U	< 210 U < 41 U	< 400 U < 78 U	< 250 U < 48 U	< 210 U < 40 U	< 180 U < 36 U
2,4-Dinitrotoluene	ug/kg ug/kg	1500	SW8270D LL	606-20-2						-		28		+	< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
2-Chloronaphthalene	ug/kg	6e+006	SW8270D LL	91-58-7						1		28			< 38 U	< 7.6 U	< 8.4 U	< 16 U	< 9.8 U	< 8.1 U	< 7.3 U
2-Chlorophenol	ug/kg	580000	SW8270D LL	95-57-8						1		28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
2-Methylnaphthalene	ug/kg	300000	SW8270D LL	91-57-6	120	2	55	44	DP27	3		28			44	< 7.6 U	< 8.4 U	120	< 9.8 U	< 8.1 U	< 7.3 U
2-Methylphenol	ug/kg	4.1e+006	SW8270D LL	95-48-7								28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
2-Nitroaniline	ug/kg	800000	SW8270D LL	88-74-4								28			< 960 U	< 190 U	< 210 U	< 400 U	< 250 U	< 210 U	< 180 U
2-Nitrophenol	ug/kg	2.5e+007	SW8270D LL	88-75-5								28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
3,3'-Dichlorobenzidine	ug/kg	5100	SW8270D LL	91-94-1						<u> </u>	1	28			< 190 U	< 37 U	< 41 U	< 78 U	R	< 40 U	< 36 U
3-Nitroaniline	ug/kg	110000	SW8270D LL	99-09-2								28			< 960 U	< 190 U	< 210 U	< 400 U	< 250 U	< 210 U	< 180 U
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	ug/kg	6600	SW8270D LL SW8270D LL	534-52-1 101-55-3								28 28			< 960 U < 190 U	< 190 U < 37 U	< 210 U < 41 U	< 400 U < 78 U	< 250 U < 48 U	< 210 U	< 180 U < 36 U
4-Chloro-3-methylphenol	ug/kg ug/kg	8.2e+006	SW8270D LL	59-50-7								28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
4-Chloroaniline	ug/kg	11000	SW8270D LL	106-47-8								28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
4-Chlorophenyl-phenylether	ug/kg		SW8270D LL	7005-72-3								28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
4-Methylphenol	ug/kg	8.2e+006	SW8270D LL	106-44-5	23	23	23	23	DP27	1		28			< 190 U	< 37 U	< 41 U	23 J	< 48 U	< 40 U	< 36 U
4-Nitroaniline	ug/kg	110000	SW8270D LL	100-01-6								28			< 960 U	< 190 U	< 210 U	< 400 U	< 250 U	< 210 U	< 180 U
4-Nitrophenol	ug/kg	2.5e+007	SW8270D LL	100-02-7								28			< 960 U	< 190 U	< 210 U	< 400 U	< 250 U	< 210 U	< 180 U
Acenaphthene	ug/kg	4.5e+006	SW8270D LL	83-32-9	240000	0.85	2700	110	SUSDP43-3P	302		448			58	< 7.6 U	< 8.4 U	52	< 9.8 U	< 8.1 U	< 7.3 U
Acenaphthylene	ug/kg	4.5e+006	SW8270D LL	208-96-8	9500	0.9	240	57	SUSDP19-4N	284		448			20 J	< 7.6 U	< 8.4 U	23	< 9.8 U	< 8.1 U	< 7.3 U
Actophenone	ug/kg	1.2e+007	SW8270D LL SW8270D LL	98-86-2 120-12-7	3.7 480000	3.7	3.7	3.7	DP34 SUSDP19-6W	240		28			< 190 U	< 37 U < 7.6 U	< 41 U < 8.4 U	< 78 U	< 48 U < 9.8 U	< 40 U	< 36 U
Anthracene Atrazine	ug/kg ug/kg	2.3e+007 10000	SW8270D LL	1912-24-9	460000	1	5100	250	303DF 19-0W	349		448 28			< 190 U	< 37 U	< 41 U	98 < 78 U	< 48 U	< 8.1 U	< 7.3 U < 36 U
Benzaldehyde	ug/kg	820000	SW8270D LL	100-52-7	77	16	29	30	DP27	21		28			< 190 U	18 J	18 J	< 78 UJ	77 J	17 J	28 J
Benzo(a)anthracene	ug/kg	21000	SW8270D LL	56-55-3	720000	1.1	8300	760	SUSDP19-6W	370		448			240	< 7.6 U	< 8.4 U	340	< 9.8 U	< 8.1 U	< 7.3 U
Benzo(a)pyrene	ug/kg	2100	SW8270D LL	50-32-8	640000	1.2	7400	790	SUSDP19-6W	357		448			240	< 7.6 U	< 8.4 U	330	< 9.8 U	< 8.1 U	< 7.3 U
Benzo(b)fluoranthene	ug/kg	21000	SW8270D LL	205-99-2	510000	1.7	7900	1000	SUSDP43-3P	362		448			240	< 7.6 U	< 8.4 U	390	< 9.8 U	< 8.1 U	< 7.3 U
Benzo(g,h,i)perylene	ug/kg	2.3e+006	SW8270D LL	191-24-2	380000	1.3	5200	720	SUSDP19-6W	354		448			170	< 7.6 U	< 8.4 U	260	< 9.8 U	< 8.1 U	< 7.3 U
Benzo(k)fluoranthene	ug/kg	210000	SW8270D LL	207-08-9	570000	1.8	4400	380	SUSDP19-6W	350		448			130	< 7.6 U	< 8.4 U	150	< 9.8 U	< 8.1 U	< 7.3 U
bis-(2-chloroethoxy)methane	ug/kg	250000	SW8270D LL	111-91-1						<u> </u>		28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
bis-(2-Chloroethyl)ether	ug/kg	1000	SW8270D LL	111-44-4	100	G 1	21	20	DD37	22		28			< 38 U	< 7.6 U	< 8.4 U	< 16 U	< 9.8 U	< 8.1 U	< 7.3 U
bis-(2-Ethylhexyl)phthalate Butylbenzylphthalate	ug/kg ug/kg	160000 1.2e+006	SW8270D LL SW8270D LL	117-81-7 85-68-7	120 990	6.1 6.1	31 61	20 16	DP27 DP27	23 22		28 28			< 380 U < 190 U	< 76 U 9.6 J	< 84 U < 41 U	120 J < 78 U	39 J 990 J	30 J 48	7.3 J 8.0 J
Caprolactam	ug/kg	4e+007	SW8270D LL	105-60-2	330	0.1	- 51	10	5, 21			28			< 960 U	< 190 U	< 210 U	< 400 U	< 250 U	< 210 U	< 180 U
Carbazole	ug/kg	3e+006	SW8270D LL	86-74-8	57	4.4	33	37	DP26	3		28			57	< 7.6 U	< 8.4 U	37	< 9.8 U	< 8.1 U	< 7.3 U
Chrysene	ug/kg	2.1e+006	SW8270D LL	218-01-9	620000	1.1	7500	760	SUSDP19-6W	370		448			230	< 7.6 U	< 8.4 U	370	< 9.8 U	< 8.1 U	< 7.3 U
Dibenzo(a,h)anthracene	ug/kg	2100	SW8270D LL	53-70-3	100000	1.9	1500	210	SUSDP19-6W	310		448			55	< 7.6 U	< 8.4 U	62	< 9.8 U	< 8.1 U	< 7.3 U
Dibenzofuran	ug/kg	100000	SW8270D LL	132-64-9	98	5	59	75	DP26	3		28			98 J	< 37 U	< 41 U	75 J	< 48 U	< 40 U	< 36 U
Diethylphthalate	ug/kg	6.6e+007	SW8270D LL	84-66-2	28	4.3	11	10	DP32	16		28			< 190 U	< 37 U	< 41 U	< 78 U	12 J	8.8 J	9.4 J
Dimethylphthalate	ug/kg	6.6e+007	SW8270D LL	131-11-3					555	ļ		28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
Di-n-butylphthalate	ug/kg	8.2e+006	SW8270D LL	84-74-2	5.8	5.5	5.7	5.7	DP34	2		28		-	< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
Di-n-octylphthalate	ug/kg ug/kg	820000 3e+006	SW8270D LL SW8270D LL	117-84-0 206-44-0	1500000	1.2	18000	1400	SUSDP19-6W	382		28		+	< 190 U	< 37 U < 7.6 U	< 41 U < 8.4 U	< 78 U 550	< 48 U < 9.8 U	< 40 U < 8.1 U	< 36 U < 7.3 U
Fluoranthene	ug/kg	36+000	SVVUZ/UD LL	200-44-0	1500000	1.2	10000	1400	SUSDP19-6W SUSDP43-3P	302		448			600	~ 7.0 U	> 0.4 U	550	\ 9.0 U	\ 0.1 U	\ 1.30
Fluorene	ug/kg	3e+006	SW8270D LL	86-73-7	270000	1	2900	110	SUSDP19-6W	305		448			100	< 7.6 U	< 8.4 U	60	< 9.8 U	< 8.1 U	< 7.3 U
Hexachlorobenzene	ug/kg	960	SW8270D LL	118-74-1				1				28			< 38 U	< 7.6 U	< 8.4 U	< 16 U	< 9.8 U	< 8.1 U	< 7.3 U
Hexachlorobutadiene	ug/kg	5300	SW8270D LL	87-68-3						1		28			< 38 U	< 7.6 U	< 8.4 U	< 16 U	< 9.8 U	< 8.1 U	< 7.3 U
Hexachlorocyclo-pentadiene	ug/kg	750	SW8270D LL	77-47-4								28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
Hexachloroethane	ug/kg	8000	SW8270D LL	67-72-1								28			< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
•		•	•		•																

Subsurface Soil Results

													Location ID	CT16SO9I	CT16SO9I	DP26	DP26	DP26	DP27	DP27	DP27	DP28
													Sample Date	8/4/2017	8/4/2017	3/28/2013	3/29/2013	3/29/2013	3/26/2013	3/26/2013	3/26/2013	4/2/2013
													Sample ID	CT16SO9I03N	CT16SO9I04N	DPS2604N	DPS2614N	DPS2630N	DPS2707N	DPS2722N	DPS2758N	DPS2808N
													Depth	3 - 4 ft	4 - 5 ft	3.5 - 4.5 ft	13.5 - 14.5 ft	29.5 - 30.5 ft	6.5 - 7.5 ft	21.5 - 22.5 ft	57.5 - 58.5 ft	7.5 - 8.5 ft
													Туре	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria) Method	CAS	Max Detect	Min	Mean Detect	Median Detect	Max Location	Count Detect	Count Reject	Count Total										
Indeno(1,2,3-cd)pyrene	ug/kg	21000	SW8270D LL	193-39-5	380000	1.2	4900	630	SUSDP19-6W	357	Reject	448				150	< 7.6 U	< 8.4 U	200	< 9.8 U	< 8.1 U	< 7.3 U
Isophorone	ug/kg	2.4e+006	SW8270D LL	78-59-1	300000	1.2	4300	030	303DI 19-0VV	331		28				< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
					100000	0.04	4000	97	011000040.00	070												
Naphthalene	ug/kg	17000	SW8270D LL	91-20-3	130000	0.91	1300	87	SUSDP43-3P	273		448				100	< 7.6 U	< 8.4 U	87	< 9.8 U	< 8.1 U	< 7.3 U
Nitrobenzene	ug/kg	22000	SW8270D LL	98-95-3								28				< 380 U	< 76 U	< 84 U	< 160 U	< 98 U	< 81 U	< 72 U
N-Nitroso-di-n-propylamine	ug/kg	330	SW8270D LL	621-64-7								28				< 38 U	< 7.6 U	< 8.4 U	< 16 U	< 9.8 U	< 8.1 U	< 7.3 U
N-Nitrosodiphenylamine	ug/kg	470000	SW8270D LL	86-30-6								28				< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
Pentachlorophenol	ug/kg	4000	SW8270D LL	87-86-5								28				< 190 U	< 37 U	< 41 U	< 78 U	< 48 U	< 40 U	< 36 U
Phenanthrene	ug/kg	2.3e+007	SW8270D LL	85-01-8	1700000	1.3	16000	750	SUSDP43-3P	372		448				400	< 7.6 U	< 8.4 U	490	< 9.8 U	< 8.1 U	< 7.3 U
Phenol	ug/kg	2.5e+007	SW8270D LL	108-95-2								31				< 38 U	< 7.6 U	< 8.4 U	< 16 U	< 9.8 U	< 8.1 U	< 7.3 U
Pyrene	ug/kg	2.3e+006	SW8270D LL	129-00-0	1200000	0.87	14000	1100	SUSDP19-6W	380		448				340	< 7.6 U	< 8.4 U	530	< 9.8 U	< 8.1 U	< 7.3 U
BaP-TE	ug/kg	2100	SW8270D LL	BAP	898000	0.0034	10400	1130	SUSDP19-6W	373		448				360	< 7.60 U	< 8.40 U	487	< 9.80 U	< 8.10 U	< 7.30 U
Total High-molecular-weight PAHs	ug/kg		SW8270D LL	TOT-PAH-HMW	6500000	2	75000	6900	SUSDP19-6W	384		448				2400	< 7.6 U	< 8.4 U	3200	< 9.8 U	< 8.1 U	< 7.3 U
Total Low-molecular-weight PAHs	ug/kg		SW8270D LL	TOT-PAH-LMW	2700000	0.91	26000	1200	SUSDP43-3P	375		448				780	< 7.6 U	< 8.4 U	810	< 9.8 U	< 8.1 U	< 7.3 U
Total PAHs (sum 16)	ug/kg		SW8270D LL	TOT-PAH	9000000	2	100000	8000	SUSDP19-6W	384		448				3200	< 7.6 U	< 8.4 U	4000	< 9.8 U	< 8.1 U	< 7.3 U

Subsurface Soil Results

											-											
			Location ID	DP28	DP28	DP29	DP29	DP29	DP30	DP30	DP31	DP31	DP32	DP32	DP32	DP32	DP33	DP33	DP34	DP34	DP34	DP34
			Sample Date	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/3/2013	4/3/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/4/2013	4/4/2013	3/13/2013	3/29/2013	3/29/2013	3/29/2013
			Sample ID	DPS2821N	DPS2832N	DPS2910N	DPS2930N	DPS2950N	DPS3050N	DPS3028N	DPS3120N	DPS3142N	DPS3210N	DPS3210R	DPS3230N	DPS3243N	DPS3315N	DPS3335N	DPS3405N	DPS3418N	DPS3445N	DPS3460N
			Depth	20.5 - 21.5 ft	31 - 33 ft	9 - 11 ft	29 - 31 ft	49 - 51 ft	49 - 51 ft	27 - 29 ft	19.5 - 20.5 ft	41.5 - 42.5 ft	9.5 - 10.5 ft	9.5 - 10.5 ft	29.5 - 30.5 ft	42.5 - 43.5 ft	14 - 16 ft	34 - 36 ft	4.5 - 5.5 ft	17.5 - 18.5 ft	44.5 - 45.5 ft	59.5 - 60.5 ft
		_	Туре	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N
		Project Screening																				1
Analyte	Unit	Criteria																				
Diesel Range Organics (C10-C20)	mg/kg	440																				
Oil Range Organics (C20-C36)	mg/kg	350000																				
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	110		40.11	24.11		22.11	40.11	0411	22.11	10.11		00.11	40.11	40.11	00.11	2011	2011	00.11	00.11	00.11	
Diesel Range Organics (C10-C20)	mg/kg	440		< 18 U	< 24 U	12 J	< 20 U	< 19 U	< 21 U	< 20 U	< 19 U	< 20 U	< 20 U	< 19 U	< 19 U	< 20 U	< 20 U	< 26 U	< 20 U	< 22 U	< 20 U	< 45 U
Oil Range Organics (C20-C36)	mg/kg	350000		< 18 U	45	59	< 20 U	< 19 U	16 J	22	< 19 U	< 20 U	< 20 U	< 19 U	< 19 U	21	< 20 U	43	< 20 U	17 J	< 20 U	< 45 U
Gasoline Range Organics (C6-C10) 1,1,1-Trichloroethane	ug/kg ug/kg	42000 3.6e+006		< 110 U < 4.7 U	< 120 U < 6.0 U	< 97 U < 4.7 U	< 100 U < 4.8 U	< 110 U < 5.1 U	< 110 U < 5.4 U	< 100 U < 4.7 U	< 92 U < 4.5 U	< 97 U < 4.4 U	< 91 U < 5.1 U	< 94 U < 4.4 U	< 96 U < 4.4 U	< 170 U < 5.3 U	60 J < 4.9 U	79 J < 6.8 U	< 110 U < 5.4 U	< 100 U < 4.8 U	< 91 U < 4.4 U	< 100 U < 4.1 U
1,1,2,2-Tetrachloroethane	ug/kg ug/kg	2700		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg ug/kg	2.8e+006		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,1,2-Trichloroethane	ug/kg ug/kg	630		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,1-Dichloroethane	ug/kg ug/kg	16000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,1-Dichloroethene	ug/kg	100000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,2,3-Trichlorobenzene	ug/kg	93000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,2,4-Trichlorobenzene	ug/kg	26000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,2-Dibromo-3-chloropropane	ug/kg	64		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,2-Dibromoethane	ug/kg	160		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,2-Dichlorobenzene	ug/kg	930000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,2-Dichloroethane	ug/kg	2000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,2-Dichloropropane	ug/kg	6600		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,3-Dichlorobenzene	ug/kg	11000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,4-Dichlorobenzene	ug/kg	11000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
1,4-Dioxane	ug/kg	24000		< 940 U	< 1200 U	< 930 U	< 960 U	< 1000 U	< 1100 U	< 950 U	< 910 U	< 870 U	< 1000 U	< 880 U	< 880 U	< 1100 U	< 990 U	< 1400 U	< 1100 U	< 960 U	< 880 U	< 810 U
2-Butanone	ug/kg	1.9e+007		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
2-Hexanone	ug/kg	130000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
4-Methyl-2-pentanone	ug/kg	1.4e+007		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Acetone	ug/kg	6.7e+007 5100		5.1 J < 4.7 U	9.1 J < 6.0 U	< 19 U < 4.7 U	5.1 J < 4.8 U	< 20 U < 5.1 U	< 22 U < 5.4 U	16 J < 4.7 U	12 J < 4.5 U	9.9 J < 4.4 U	9.7 J < 5.1 U	< 18 U < 4.4 U	< 18 U < 4.4 U	6.5 J < 5.3 U	< 20 U < 4.9 U	< 27 U < 6.8 U	< 21 U < 5.4 U	< 19 U < 4.8 U	< 18 U < 4.4 U	< 16 U < 4.1 U
Benzene Bromochloromethane	ug/kg ug/kg	63000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Bromodichloromethane	ug/kg ug/kg	1300		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Bromoform	ug/kg ug/kg	86000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Bromomethane	ug/kg	3000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Carbon Disulfide	ug/kg	350000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Carbon Tetrachloride	ug/kg	2900		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Chlorobenzene	ug/kg	130000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Chloroethane	ug/kg	5.7e+006		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Chloroform	ug/kg	1400		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Chloromethane	ug/kg	46000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
cis-1,2-Dichloroethylene	ug/kg	230000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
cis-1,3-Dichloropropene	ug/kg	8200		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Cyclohexane	ug/kg	2.7e+006		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Dibromochloromethane	ug/kg	39000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Dichlorodifluoromethane	ug/kg	37000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Ethylbenzene	ug/kg	25000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Isopropylbenzene	ug/kg	990000 240000		< 4.7 U < 9.4 U	< 6.0 U < 12 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U < 9.5 U	< 4.5 U	< 4.4 U < 8.7 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U < 11 U	< 4.9 U	< 6.8 U	< 5.4 U < 11 U	< 4.8 U	< 4.4 U < 8.8 U	< 4.1 U
m, p-Xylene Methyl Acetate	ug/kg ug/kg	1.2e+008		< 9.4 U	< 6.0 U	< 9.3 U < 4.7 U	< 9.6 U < 4.8 U	< 10 U < 5.1 U	< 11 U < 5.4 U	< 9.5 U	< 9.1 U < 4.5 U	< 4.4 U	< 10 U < 5.1 U	< 8.8 U	< 8.8 U	< 5.3 U	< 9.9 U < 4.9 U	< 14 U < 6.8 U	< 5.4 U	< 9.6 U < 4.8 U	< 4.4 U	< 8.1 U
Methyl tert-Butyl Ether (MTBE)	ug/kg ug/kg	210000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Methylcyclohexane	ug/kg ug/kg	2.7e+006		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Methylene Chloride	ug/kg ug/kg	320000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
o-Xylene	ug/kg ug/kg	280000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Styrene	ug/kg	3.5e+006		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Tetrachloroethylene	ug/kg	39000		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Toluene	ug/kg	4.7e+006		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
trans-1,2-Dichloroethene	ug/kg	2.3e+006		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
trans-1,3-Dichloropropene	ug/kg	8200		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Trichloroethene	ug/kg	1900		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Trichlorofluoromethane	ug/kg	3.5e+007		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Vinyl Chloride	ug/kg	1700		< 4.7 U	< 6.0 U	< 4.7 U	< 4.8 U	< 5.1 U	< 5.4 U	< 4.7 U	< 4.5 U	< 4.4 U	< 5.1 U	< 4.4 U	< 4.4 U	< 5.3 U	< 4.9 U	< 6.8 U	< 5.4 U	< 4.8 U	< 4.4 U	< 4.1 U
Xylenes (total)	ug/kg	250000		< 9.4 U	< 12 U	< 9.3 U	< 9.6 U	< 10 U	< 11 U	< 9.5 U	< 9.1 U	< 8.7 U	< 10 U	< 8.8 U	< 8.8 U	< 11 U	< 9.9 U	< 14 U	< 11 U	< 9.6 U	< 8.8 U	< 8.1 U
	_			_		-				-		_		-	_	_	-	_		_		

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

											igion, DC 20											
			Location ID	DP28	DP28	DP29	DP29	DP29	DP30	DP30	DP31	DP31	DP32	DP32	DP32	DP32	DP33	DP33	DP34	DP34	DP34	DP34
			Sample Date	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/3/2013	4/3/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/4/2013	4/4/2013	3/13/2013	3/29/2013	3/29/2013	3/29/2013
			Sample ID	DPS2821N	DPS2832N	DPS2910N	DPS2930N	DPS2950N	DPS3050N	DPS3028N	DPS3120N	DPS3142N	DPS3210N	DPS3210R	DPS3230N	DPS3243N	DPS3315N	DPS3335N	DPS3405N	DPS3418N	DPS3445N	DPS3460N
			Depth	20.5 - 21.5 ft	31 - 33 ft	9 - 11 ft	29 - 31 ft	49 - 51 ft	49 - 51 ft	27 - 29 ft	19.5 - 20.5 ft	41.5 - 42.5 ft	9.5 - 10.5 ft	9.5 - 10.5 ft	29.5 - 30.5 ft	42.5 - 43.5 ft	14 - 16 ft	34 - 36 ft	4.5 - 5.5 ft	17.5 - 18.5 ft	44.5 - 45.5 ft	59.5 - 60.5 ft
			Туре	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N
		Project Screening																				
Analyte	Unit	Criteria																				
1,1'-Biphenyl	ug/kg	20000		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
1,2,4,5-Tetrachlorobenzene	ug/kg	35000		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006		< 7.3 U	< 9.5 U	< 8.5 U	< 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	ug/kg	2.5e+006 8.2e+006		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U < 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U < 39 U	< 39 U < 39 U	< 37 U	< 39 U	< 39 U	< 51 U < 51 U	< 39 U < 39 U	< 44 U < 44 U	< 39 U < 39 U	< 39 U < 39 U
2,4,6-Trichlorophenol	ug/kg ug/kg	82000		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
2,4-Dichlorophenol	ug/kg	250000		< 7.3 U	< 9.5 U	< 8.5 U	< 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
2,4-Dimethylphenol	ug/kg	1.6e+006		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
2,4-Dinitrophenol	ug/kg	160000		< 190 U	< 240 U	< 210 U	< 200 U	< 200 U	< 220 U	< 200 U	< 190 U	< 210 U	< 200 U	< 200 U	< 190 U	< 200 U	< 200 U	< 260 U	< 200 U	< 230 U	< 200 U	< 200 U
2,4-Dinitrotoluene	ug/kg	7400		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
2,6-Dinitrotoluene	ug/kg	1500		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
2-Chloronaphthalene	ug/kg	6e+006		< 7.3 U < 36 U	< 9.5 U < 47 U	< 8.5 U	< 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U < 41 U	< 8.0 U	< 7.9 U	< 7.5 U < 37 U	< 8.0 U	< 8.0 U	< 10 U < 51 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
2-Chlorophenol 2-Methylnaphthalene	ug/kg ug/kg	580000 300000		< 36 U	< 47 U	< 42 U 2.0 J	< 39 U < 7.9 U	< 38 U	< 42 U < 8.5 U	< 39 U < 7.8 U	< 37 U	< 41 U	< 39 U < 8.0 U	< 39 U	< 37 U	< 39 U	< 39 U	< 10 U	< 39 U < 7.9 U	< 44 U < 8.9 U	< 39 U < 8.0 U	< 39 U
2-Methylphenol	ug/kg	4.1e+006		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
2-Nitroaniline	ug/kg	800000		< 190 U	< 240 U	< 210 U	< 200 U	< 200 U	< 220 U	< 200 U	< 190 U	< 210 U	< 200 U	< 200 U	< 190 U	< 200 U	< 200 U	< 260 U	< 200 U	< 230 U	< 200 U	< 200 U
2-Nitrophenol	ug/kg	2.5e+007		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
3,3'-Dichlorobenzidine	ug/kg	5100		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
3-Nitroaniline	ug/kg	110000		< 190 U	< 240 U	< 210 U	< 200 U	< 200 U	< 220 U	< 200 U	< 190 U	< 210 U	< 200 U	< 200 U	< 190 U	< 200 U	< 200 U	< 260 U	< 200 U	< 230 U	< 200 U	< 200 U
4,6-Dinitro-2-methylphenol	ug/kg	6600		< 190 U	< 240 U	< 210 U	< 200 U	< 200 U	< 220 U	< 200 U	< 190 U	< 210 U	< 200 U	< 200 U	< 190 U	< 200 U	< 200 U	< 260 U	< 200 U	< 230 U	< 200 U	< 200 U
4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	ug/kg ug/kg	8.2e+006		< 36 U	< 47 U	< 42 U	< 39 U < 39 U	< 38 U < 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U < 39 U	< 39 U	< 37 U	< 39 U < 39 U	< 39 U	< 51 U < 51 U	< 39 U	< 44 U < 44 U	< 39 U < 39 U	< 39 U
4-Chloroaniline	ug/kg	11000		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
4-Chlorophenyl-phenylether	ug/kg			< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
4-Methylphenol	ug/kg	8.2e+006		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
4-Nitroaniline	ug/kg	110000		< 190 U	< 240 U	< 210 U	< 200 U	< 200 U	< 220 U	< 200 U	< 190 U	< 210 U	< 200 U	< 200 U	< 190 U	< 200 U	< 200 U	< 260 U	< 200 U	< 230 U	< 200 U	< 200 U
4-Nitrophenol	ug/kg	2.5e+007		< 190 U	< 240 U	< 210 U	< 200 U	< 200 U	< 220 U	< 200 U	< 190 U	< 210 U	< 200 U	< 200 U	< 190 U	< 200 U	< 200 U	< 260 U	< 200 U	< 230 U	< 200 U	< 200 U
Acenaphthene Acenaphthylene	ug/kg ug/kg	4.5e+006 4.5e+006		< 7.3 U	< 9.5 U	8.0 J 2.8 J	3.5 J < 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U < 8.3 U	< 8.0 U	< 7.9 U < 7.9 U	< 7.5 U < 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U < 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Acetophenone	ug/kg	1.2e+007		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	3.7 J	< 39 U	< 39 U
Anthracene	ug/kg	2.3e+007		< 7.3 U	< 9.5 U	24	6.4 J	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Atrazine	ug/kg	10000		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
Benzaldehyde	ug/kg	820000		28 J	38 J	33 J	31 J	30 J	18 J	16 J	30 J	32 J	31 J	< 39 U	29 J	30 J	< 39 U	40 J	30 J	23 J	16 J	< 39 U
Benzo(a)anthracene	ug/kg	21000		< 7.3 U	< 9.5 U	68	6.8 J	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Benzo(a)pyrene Benzo(b)fluoranthene	ug/kg ug/kg	2100 21000		< 7.3 U	< 9.5 U	61 60	5.4 J 6.1 J	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U < 8.3 U	< 8.0 U	< 7.9 U < 7.9 U	< 7.5 U < 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U < 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Benzo(g,h,i)perylene	ug/kg	2.3e+006		< 7.3 U	< 9.5 U	35	2.8 J	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Benzo(k)fluoranthene	ug/kg	210000		< 7.3 U	< 9.5 U	33	2.1 J	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
bis-(2-chloroethoxy)methane	ug/kg	250000		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
bis-(2-Chloroethyl)ether	ug/kg	1000		< 7.3 U	< 9.5 U	< 8.5 U	< 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
bis-(2-Ethylhexyl)phthalate	ug/kg	160000		79	32 J	73 J	61 J	7.3 J	21 J	15 J	6.1 J	48 J	12 J	16 J	7.7 J	32 J	14 J	14 J	28 J	9.5 J	< 79 U	18 J
Butylbenzylphthalate Caprolactam	ug/kg ug/kg	1.2e+006 4e+007		< 36 U	16 J < 240 U	26 J < 210 U	26 J < 200 U	10 J < 200 U	21 J < 220 U	12 J < 200 U	< 37 U < 190 U	30 J < 210 U	9.9 J < 200 U	15 J < 200 U	< 37 U < 190 U	9.8 J < 200 U	20 J < 200 U	20 J < 260 U	18 J < 200 U	7.8 J < 230 U	6.1 J < 200 U	24 J < 200 U
Carbazole	ug/kg ug/kg	3e+007		< 7.3 U	< 9.5 U	4.4 J	< 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Chrysene	ug/kg	2.1e+006		< 7.3 U	< 9.5 U	63	5.8 J	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Dibenzo(a,h)anthracene	ug/kg	2100		< 7.3 U	< 9.5 U	10	< 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Dibenzofuran	ug/kg	100000		< 36 U	< 47 U	5.0 J	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
Diethylphthalate	ug/kg	6.6e+007		13 J	9.4 J	14 J	12 J	5.4 J	9.5 J	8.8 J	4.3 J	< 41 U	28 J	< 39 U	11 J	5.4 J	11 J	11 J	< 39 U	< 44 U	< 39 U	< 39 U
Dimethylphthalate Di-n-butylphthalate	ug/kg ug/kg	6.6e+007 8.2e+006		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U < 51 U	< 39 U	< 44 U 5.5 J	< 39 U < 39 U	< 39 U 5.8 J
Di-n-octylphthalate	ug/kg ug/kg	820000		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
Fluoranthene	ug/kg	3e+006		< 7.3 U	< 9.5 U	110	14	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Fluorene	ug/kg	3e+006		< 7.3 U	< 9.5 U	9.0	3.8 J	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Hexachlorobenzene	ug/kg	960		< 7.3 U	< 9.5 U	< 8.5 U	< 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Hexachlorobutadiene	ug/kg	5300		< 7.3 U	< 9.5 U	< 8.5 U	< 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Hexachlorocyclo-pentadiene	ug/kg	750		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
Hexachloroethane	ug/kg	8000	_	< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U

Subsurface Soil Results

			Location ID	DP28	DP28	DP29	DP29	DP29	DP30	DP30	DP31	DP31	DP32	DP32	DP32	DP32	DP33	DP33	DP34	DP34	DP34	DP34
			Sample Date	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/3/2013	4/3/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/4/2013	4/4/2013	3/13/2013	3/29/2013	3/29/2013	3/29/2013
			Sample ID	DPS2821N	DPS2832N	DPS2910N	DPS2930N	DPS2950N	DPS3050N	DPS3028N	DPS3120N	DPS3142N	DPS3210N	DPS3210R	DPS3230N	DPS3243N	DPS3315N	DPS3335N	DPS3405N	DPS3418N	DPS3445N	DPS3460N
			Depth	20.5 - 21.5 ft	31 - 33 ft	9 - 11 ft	29 - 31 ft	49 - 51 ft	49 - 51 ft	27 - 29 ft	19.5 - 20.5 ft	41.5 - 42.5 ft	9.5 - 10.5 ft	9.5 - 10.5 ft	29.5 - 30.5 ft	42.5 - 43.5 ft	14 - 16 ft	34 - 36 ft	4.5 - 5.5 ft	17.5 - 18.5 ft	44.5 - 45.5 ft	59.5 - 60.5 f
			Туре	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N
		Project Screening																				
Analyte	Unit	Criteria																				
Indeno(1,2,3-cd)pyrene	ug/kg	21000		< 7.3 U	< 9.5 U	30	2.4 J	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Isophorone	ug/kg	2.4e+006		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
Naphthalene	ug/kg	17000		< 7.3 U	< 9.5 U	3.6 J	< 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Nitrobenzene	ug/kg	22000		< 73 U	< 94 U	< 84 U	< 79 U	< 77 U	< 84 U	< 78 U	< 75 U	< 82 U	< 79 U	< 79 U	< 74 U	< 79 U	< 79 U	< 100 U	< 79 U	< 88 U	< 79 U	< 79 U
N-Nitroso-di-n-propylamine	ug/kg	330		< 7.3 U	< 9.5 U	< 8.5 U	< 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
N-Nitrosodiphenylamine	ug/kg	470000		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
Pentachlorophenol	ug/kg	4000		< 36 U	< 47 U	< 42 U	< 39 U	< 38 U	< 42 U	< 39 U	< 37 U	< 41 U	< 39 U	< 39 U	< 37 U	< 39 U	< 39 U	< 51 U	< 39 U	< 44 U	< 39 U	< 39 U
Phenanthrene	ug/kg	2.3e+007		< 7.3 U	< 9.5 U	66	17	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Phenol	ug/kg	2.5e+007		< 7.3 U	< 9.5 U	< 8.5 U	< 7.9 U	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Pyrene	ug/kg	2.3e+006		< 7.3 U	< 9.5 U	100	14	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
BaP-TE	ug/kg	2100		< 7.30 U	< 9.50 U	87.2	6.96	< 7.80 U	< 8.50 U	< 7.80 U	< 7.60 U	< 8.30 U	< 8.00 U	< 7.90 U	< 7.50 U	< 8.00 U	< 8.00 U	< 10.0 U	< 7.90 U	< 8.90 U	< 8.00 U	< 8.00 U
Total High-molecular-weight PAHs	ug/kg			< 7.3 U	< 9.5 U	570	59	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Total Low-molecular-weight PAHs	ug/kg			< 7.3 U	< 9.5 U	110	31	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U
Total PAHs (sum 16)	ug/kg			< 7.3 U	< 9.5 U	680	90	< 7.8 U	< 8.5 U	< 7.8 U	< 7.6 U	< 8.3 U	< 8.0 U	< 7.9 U	< 7.5 U	< 8.0 U	< 8.0 U	< 10 U	< 7.9 U	< 8.9 U	< 8.0 U	< 8.0 U

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

										silligion,												
			Location ID	DP35	DP35	DP36	DP36	DP36	DP36	DP38	DP38	DP38	DP40	DP40	DP40	DP40	DP42	DP42	DP42	DP45	DP45	DP45
			Sample Date	3/28/2013	3/28/2013	5/17/2013	5/20/2013	5/20/2013	6/13/2013	5/16/2013	5/22/2013	5/22/2013	5/20/2013	5/28/2013	5/28/2013	6/10/2013	5/21/2013	5/29/2013	5/29/2013	5/23/2013	6/4/2013	6/4/2013
			Sample ID	DPS3515N	DPS3534N	DPS3605N	DPS3610N	DPS3615N	DPS3610N2	DPS3805N	DPS3810N	DPS3815N	DPS4003N	DPS4010N	DPS4015N	DPS4010N2	DPS4205N	DPS4210N	DPS4215N	DPS4503N	DPS4510N	DPS4515N
			Depth	14.5 - 15.5 ft	33.5 - 34.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
																						ĺ
		Project Screening																				í
Analyte	Unit	Criteria																				
Diesel Range Organics (C10-C20)	mg/kg	440																				
Oil Range Organics (C20-C36)	mg/kg	350000																				
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	440		4 20 11	4 00 11	4 00 11	4011	4 40 11		. 40 11	44011	440.11	44.1	4 20 11	40.11		40	45	74	4 00 11	44011	14011
Diesel Range Organics (C10-C20) Oil Range Organics (C20-C36)	mg/kg mg/kg	440 350000		< 20 U	< 20 U	< 20 U	< 19 U	< 19 U < 19 U		< 18 U	< 19 U	< 18 U 27	14 J 190	< 20 U	< 18 U < 18 U		43 160	45 390	71 370	< 20 U	< 18 U	< 19 U
Gasoline Range Organics (C6-C10)	ug/kg	42000		< 88 U	< 93 U	< 100 UJ	190	< 84 UJ	< 100 U	< 99 UJ	< 84 U	< 97 U	< 100 UJ	< 91 U	< 94 U		< 90 UJ	< 120 U	< 110 U	< 110 U	< 110 U	< 97 U
1,1,1-Trichloroethane	ug/kg	3.6e+006		< 4.2 U	< 4.5 U	1 100 00		104 00	< 5.4 U	1 33 00	1040	1370	1 100 00	1310	1040	< 6.4 U	< 4.4 U	1 120 0	11100	< 5.2 U	< 4.6 U	< 4.8 U
1,1,2,2-Tetrachloroethane	ug/kg	2700		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,1,2-Trichloroethane	ug/kg	630		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,1-Dichloroethane	ug/kg	16000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,1-Dichloroethene	ug/kg	100000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,2,3-Trichlorobenzene	ug/kg	93000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,2,4-Trichlorobenzene	ug/kg	26000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,2-Dibromo-3-chloropropane	ug/kg	64		< 4.2 U	< 4.5 U				< 5.4 U						-	< 6.4 U	< 4.4 U	-		< 5.2 U	< 4.6 U	< 4.8 U
1,2-Dibromoethane	ug/kg	160		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,2-Dichlorobenzene	ug/kg	930000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,2-Dichloroethane	ug/kg	2000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,2-Dichloropropane	ug/kg	6600		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,3-Dichlorobenzene	ug/kg	11000		< 4.2 U	< 4.5 U				< 5.4 U < 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
1,4-Dichlorobenzene 1,4-Dioxane	ug/kg ug/kg	11000 24000		< 830 U	< 910 U				< 1100 U							< 1300 U	< 4.4 U < 880 U			< 1000 U	< 4.6 U < 910 U	< 970 U
2-Butanone	ug/kg ug/kg	1.9e+007		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
2-Hexanone	ug/kg	130000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
4-Methyl-2-pentanone	ug/kg	1.4e+007		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Acetone	ug/kg	6.7e+007		< 17 U	< 18 U				< 21 U							< 25 U	< 18 U			< 21 U	< 18 U	< 19 U
Benzene	ug/kg	5100		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Bromochloromethane	ug/kg	63000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Bromodichloromethane	ug/kg	1300		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Bromoform	ug/kg	86000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Bromomethane	ug/kg	3000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Carbon Disulfide	ug/kg	350000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Carbon Tetrachloride	ug/kg	2900		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Chlorobenzene	ug/kg	130000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Chloroethane Chloroform	ug/kg ug/kg	5.7e+006 1400		< 4.2 U	< 4.5 U				< 5.4 U < 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U < 5.2 U	< 4.6 U	< 4.8 U
Chloromethane	ug/kg ug/kg	46000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
cis-1,2-Dichloroethylene	ug/kg	230000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
cis-1,3-Dichloropropene	ug/kg	8200		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Cyclohexane	ug/kg	2.7e+006		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Dibromochloromethane	ug/kg	39000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Dichlorodifluoromethane	ug/kg	37000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Ethylbenzene	ug/kg	25000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Isopropylbenzene	ug/kg	990000		< 4.2 U	< 4.5 U			· · · · · · · · · · · · · · · · · · ·	< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
m, p-Xylene	ug/kg	240000		< 8.3 U	< 9.1 U				< 11 U							< 13 U	< 8.8 U			< 10 U	< 9.1 U	< 9.7 U
Methyl Acetate	ug/kg	1.2e+008		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Methylogo Chlorido	ug/kg	2.7e+006		< 4.2 U	< 4.5 U				< 5.4 U					1		< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Methylene Chloride	ug/kg	320000 280000		< 4.2 U	< 4.5 U				< 5.4 U < 5.4 U		1			+		< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
o-Xylene Styrene	ug/kg ug/kg	3.5e+006		< 4.2 U	< 4.5 U				< 5.4 U			-		-		< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Tetrachloroethylene	ug/kg ug/kg	39000		< 4.2 U	< 4.5 U				< 5.4 U		 	1		1		< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Toluene	ug/kg ug/kg	4.7e+006		< 4.2 U	< 4.5 U				< 5.4 U					1		< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
trans-1,2-Dichloroethene	ug/kg	2.3e+006		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
trans-1,3-Dichloropropene	ug/kg	8200		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Trichloroethene	ug/kg	1900		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Trichlorofluoromethane	ug/kg	3.5e+007		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Vinyl Chloride	ug/kg	1700		< 4.2 U	< 4.5 U				< 5.4 U							< 6.4 U	< 4.4 U			< 5.2 U	< 4.6 U	< 4.8 U
Xylenes (total)	ug/kg	250000		< 8.3 U	< 9.1 U				< 11 U							< 13 U	< 8.8 U			< 10 U	< 9.1 U	< 9.7 U

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	DP35	DP35	DP36	DP36	DP36	DP36	DP38	DP38	DP38	DP40	DP40	DP40	DP40	DP42	DP42	DP42	DP45	DP45	DP45
			Sample Date	3/28/2013	3/28/2013	5/17/2013	5/20/2013	5/20/2013	6/13/2013	5/16/2013	5/22/2013	5/22/2013	5/20/2013	5/28/2013	5/28/2013	6/10/2013	5/21/2013	5/29/2013	5/29/2013	5/23/2013	6/4/2013	6/4/2013
			Sample ID	DPS3515N	DPS3534N	DPS3605N	DPS3610N	DPS3615N	DPS3610N2	DPS3805N	DPS3810N	DPS3815N	DPS4003N	DPS4010N	DPS4015N	DPS4010N2	DPS4205N	DPS4210N	DPS4215N	DPS4503N	DPS4510N	DPS4515N
			Depth	14.5 - 15.5 ft	33.5 - 34.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 f
	<u> </u>	_	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																				Í
Analyte	Unit	Criteria																				Í
,1'-Biphenyl	ug/kg	20000		< 39 U	< 41 U																	ſ
,2,4,5-Tetrachlorobenzene	ug/kg	35000		< 39 U	< 41 U																	i
,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006		< 7.9 U	< 8.3 U																	i
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006		< 39 U	< 41 U																	1
2,4,5-Trichlorophenol	ug/kg	8.2e+006		< 39 U	< 41 U																	ĺ
2,4,6-Trichlorophenol	ug/kg	82000		< 39 U	< 41 U																	
,4-Dichlorophenol	ug/kg	250000		< 7.9 U	< 8.3 U																	
2,4-Dimethylphenol	ug/kg	1.6e+006		< 39 U	< 41 U																	
2,4-Dinitrophenol	ug/kg	160000		< 200 U	< 210 U																	
2,4-Dinitrotoluene	ug/kg	7400		< 39 U	< 41 U																	
2,6-Dinitrotoluene	ug/kg	1500		< 39 U	< 41 U																	
2-Chloronaphthalene	ug/kg	6e+006		< 7.9 U	< 8.3 U						1			1		1						
2-Chlorophenol	ug/kg	580000		< 39 U	< 41 U																	1
2-Methylnaphthalene	ug/kg	300000		< 7.9 U	< 8.3 U																	
2-Methylphenol	ug/kg	4.1e+006 800000		< 39 U < 200 U	< 41 U < 210 U					 		 		1		 				 		
2-Nitroaniline 2-Nitrophenol	ug/kg ug/kg	2.5e+007		< 39 U	< 41 U						1			 								
3,3'-Dichlorobenzidine	ug/kg ug/kg	5100		< 39 U	< 41 U						1			 								
3-Nitroaniline	ug/kg	110000		< 200 U	< 210 U																	
4,6-Dinitro-2-methylphenol	ug/kg	6600		< 200 U	< 210 U					1		1								1		
4-Bromophenyl-phenylether	ug/kg	0000		< 39 U	< 41 U					1		1								1		
4-Chloro-3-methylphenol	ug/kg	8.2e+006		< 39 U	< 41 U																	
4-Chloroaniline	ug/kg	11000		< 39 U	< 41 U																	
4-Chlorophenyl-phenylether	ug/kg			< 39 U	< 41 U																	
4-Methylphenol	ug/kg	8.2e+006		< 39 U	< 41 U																	(
4-Nitroaniline	ug/kg	110000		< 200 U	< 210 U																	ĺ
4-Nitrophenol	ug/kg	2.5e+007		< 200 U	< 210 U																	i
Acenaphthene	ug/kg	4.5e+006		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		30	26 J	58	25 J	20 J	< 7.2 U		25 J	55	38 J			i
Acenaphthylene	ug/kg	4.5e+006		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		24	36 J	67	31 J	< 39 U	< 7.2 U		9.7 J	43	< 44 U			1
Acetophenone	ug/kg	1.2e+007		< 39 U	< 41 U																	1
Anthracene	ug/kg	2.3e+007		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		94	120	240	66	51	< 7.2 U		36 J	100	62			
Atrazine	ug/kg	10000		< 39 U	< 41 U																	<u> </u>
Benzaldehyde	ug/kg	820000		< 39 U	< 41 U																	<u> </u>
Benzo(a)anthracene	ug/kg	21000		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		210	380	710	280	120	< 7.2 U		88	580	340			
Benzo(a)pyrene	ug/kg	2100		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		200	350	610	330	150	< 7.2 U		61	1200	390			
Benzo(b)fluoranthene	ug/kg	21000		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		210	320	610	320	160	< 7.2 U		110	640	380			
Benzo(g,h,i)perylene	ug/kg	2.3e+006		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		120	220	410	290	150	< 7.2 U		67	1100	310			
Benzo(k)fluoranthene	ug/kg	210000		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		92	160	270	120	58	< 7.2 U		35 J	210	160			
bis-(2-chloroethoxy)methane	ug/kg	250000		< 39 U < 7.9 U	< 41 U < 8.3 U					 		 		1		 				 		
pis-(2-Chloroethyl)ether pis-(2-Ethylhexyl)phthalate	ug/kg ug/kg	1000 160000		< 7.9 U	< 8.3 U																	
Butylbenzylphthalate	ug/kg ug/kg	1.2e+006		8.1 J	9.7 J						1					1						
Caprolactam	ug/kg	4e+007		< 200 U	< 210 U					<u> </u>	1	<u> </u>		1		1				<u> </u>		
Carbazole	ug/kg	3e+006		< 7.9 U	< 8.3 U						1			 								ſ
Chrysene	ug/kg	2.1e+006		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		210	360	680	290	150	< 7.2 U		220	620	380			1
Dibenzo(a,h)anthracene	ug/kg	2100		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		27	68	100	72	44	< 7.2 U		26 J	450	73			
Dibenzofuran	ug/kg	100000		< 39 U	< 41 U						1		_				1.		-			ĺ
Diethylphthalate	ug/kg	6.6e+007		< 39 U	< 41 U						1											i
Dimethylphthalate	ug/kg	6.6e+007		< 39 U	< 41 U																	i
)i-n-butylphthalate	ug/kg	8.2e+006		< 39 U	< 41 U					İ		İ								İ		ĺ
Di-n-octylphthalate	ug/kg	820000		< 39 U	< 41 U																	l
Fluoranthene	ug/kg	3e+006		< 7.9 U	< 8.3 U	3.7 J	< 7.5 U	< 7.5 U		500	770	1400	500	250	< 7.2 U		220	760	510			
Fluorene	ug/kg	3e+006		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		48	45	95	19 J	22 J	< 7.2 U		55	61	36 J			
Hexachlorobenzene	ug/kg	960		< 7.9 U	< 8.3 U					<u> </u>	1	T		 								Í
Hexachlorobutadiene	ug/kg	5300		< 7.9 U	< 8.3 U																	ĺ
Hexachlorocyclo-pentadiene	ug/kg	750		< 39 U	< 41 U																	i
Hexachloroethane	ug/kg	8000		< 39 U	< 41 U					1	İ	1	İ	1						1		i

Subsurface Soil Results

			Location ID	DP35	DP35	DP36	DP36	DP36	DP36	DP38	DP38	DP38	DP40	DP40	DP40	DP40	DP42	DP42	DP42	DP45	DP45	DP45
			Sample Date	3/28/2013	3/28/2013	5/17/2013	5/20/2013	5/20/2013	6/13/2013	5/16/2013	5/22/2013	5/22/2013	5/20/2013	5/28/2013	5/28/2013	6/10/2013	5/21/2013	5/29/2013	5/29/2013	5/23/2013	6/4/2013	6/4/2013
			Sample ID	DPS3515N	DPS3534N	DPS3605N	DPS3610N	DPS3615N	DPS3610N2	DPS3805N	DPS3810N	DPS3815N	DPS4003N	DPS4010N	DPS4015N	DPS4010N2	DPS4205N	DPS4210N	DPS4215N	DPS4503N	DPS4510N	DPS4515N
			Depth	14.5 - 15.5 ft	33.5 - 34.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																				
Indeno(1,2,3-cd)pyrene	ug/kg	21000		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		110	200	340	230	110	< 7.2 U		48	580	250			
Isophorone	ug/kg	2.4e+006		< 39 U	< 41 U																	
Naphthalene	ug/kg	17000		< 7.9 U	< 8.3 U	< 8.1 U	< 7.5 U	< 7.5 U		4.6 J	< 37 U	< 35 U	68	43	< 7.2 U		100	100	61			
Nitrobenzene	ug/kg	22000		< 79 U	< 82 U																	
N-Nitroso-di-n-propylamine	ug/kg	330		< 7.9 U	< 8.3 U																	
N-Nitrosodiphenylamine	ug/kg	470000		< 39 U	< 41 U																	
Pentachlorophenol	ug/kg	4000		< 39 U	< 41 U																	
Phenanthrene	ug/kg	2.3e+007		< 7.9 U	< 8.3 U	2.9 J	< 7.5 U	< 7.5 U		420	490	970	210	200	< 7.2 U		320	440	230			
Phenol	ug/kg	2.5e+007		< 7.9 U	< 8.3 U																	
Pyrene	ug/kg	2.3e+006		< 7.9 U	< 8.3 U	2.5 J	< 7.5 U	< 7.5 U		390	650	1200	400	170	< 7.2 U		160	570	380			
BaP-TE	ug/kg	2100		< 7.90 U	< 8.30 U	< 8.10 U	< 7.50 U	< 7.50 U		281	510	879	486	234	< 7.20 U		112	1830	562			
Total High-molecular-weight PAHs	ug/kg			< 7.9 U	< 8.3 U	6.2	< 7.5 U	< 7.5 U		2100	3500	6300	2800	1400	< 7.2 U		1000	6700	3200			
Total Low-molecular-weight PAHs	ug/kg			< 7.9 U	< 8.3 U	2.9	< 7.5 U	< 7.5 U		620	720	1400	420	340	< 7.2 U		550	800	430			
Total PAHs (sum 16)	ug/kg			< 7.9 U	< 8.3 U	9.1	< 7.5 U	< 7.5 U		2700	4200	7800	3300	1700	< 7.2 U		1600	7500	3600			

Subsurface Soil Results

										J)II, DC 20013										
			Location ID	DP46	DP46	DP46	DP47	DP47	DP47	SB2	SB2	SB2	SB2	SB3	SBS0303N-North	SUSDP01	SUSDP01	SUSDP01	SUSDP01	SUSDP02	SUSDP02
			Sample Date	5/22/2013	6/5/2013	6/5/2013	5/28/2013	6/5/2013	6/5/2013	1/25/2017	1/25/2017	1/26/2017	1/26/2017	3/13/2013	2/15/2017	5/20/2013	5/20/2013	5/20/2013	6/13/2013	5/14/2013	5/20/2013
			Sample ID	DPS4605N	DPS4610N	DPS4615N	DPS4702N	DPS4710N	DPS4715N	SBS0201N	SBS0202-05N	SBS0205-10N	SBS0210-15N	SBS0303N	SB50303N-NORTH	DPS0103N	DPS0110N	DPS0115N	DPS0110N2	DPS0205N	DPS0210N
			Depth	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1.5 - 2.5 ft	9.5 - 10.5 ft	14 - 15 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	2.5 - 3.5 ft	3 - 3.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14 - 15 ft	9.5 - 10.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																			
Analyte	Unit	Criteria																			
Diesel Range Organics (C10-C20)	mg/kg	440																			
Oil Range Organics (C20-C36)	mg/kg	350000																			
Total Petroleum Hydrocarbons (C9-C44)	mg/kg									18.6	13.1	11.6	19.0								
Diesel Range Organics (C10-C20)	mg/kg	440		< 87 U	< 19 U	< 20 U	19	10 J	< 19 U					4700	3000	< 18 U	< 18 U	< 20 U		< 19 U	< 18 U
Oil Range Organics (C20-C36)	mg/kg	350000		140	< 19 U	< 20 U	150	< 18 U	< 19 U					17000	11000	64	12 J	< 20 U		< 19 U	< 18 U
Gasoline Range Organics (C6-C10)	ug/kg	42000		< 94 U	< 89 U	< 87 U	< 98 U	22000	< 100 U					38000		< 89 UJ	< 87 UJ	< 83 UJ	44411	< 94 UJ	
1,1,1-Trichloroethane	ug/kg	3.6e+006 2700			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
1,1,2-Trichloro-1,2,2-trilluoroethane	ug/kg	630			< 4.2 U			< 4.7 U	< 4.5 U					-					< 4.4 U		
1,1-Dichloroethane	ug/kg ug/kg	16000			< 4.2 U			< 4.7 U	< 4.5 U			+	+	+					< 4.4 U		
1,1-Dichloroethene	ug/kg	10000			< 4.2 U			< 4.7 U	< 4.5 U				+	+					< 4.4 U		
1.2.3-Trichlorobenzene	ug/kg	93000			< 4.2 U			< 4.7 U	< 4.5 U			+	+	+		-			< 4.4 U		
1,2,4-Trichlorobenzene	ug/kg	26000			< 4.2 U			< 4.7 U	< 4.5 U				1	1					< 4.4 U		
1,2-Dibromo-3-chloropropane	ug/kg	64			< 4.2 U			< 4.7 U	< 4.5 U				+						< 4.4 U		
1,2-Dibromoethane	ug/kg	160			< 4.2 U			< 4.7 U	< 4.5 U				1	1					< 4.4 U		
1,2-Dichlorobenzene	ug/kg	930000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
1,2-Dichloroethane	ug/kg	2000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
1,2-Dichloropropane	ug/kg	6600			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
1,3-Dichlorobenzene	ug/kg	11000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
1,4-Dichlorobenzene	ug/kg	11000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
1,4-Dioxane	ug/kg	24000			< 840 U			< 950 U	< 890 U										< 880 U		
2-Butanone	ug/kg	1.9e+007			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
2-Hexanone	ug/kg	130000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
4-Methyl-2-pentanone	ug/kg	1.4e+007			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Acetone	ug/kg	6.7e+007			7.5 J			7.5 J	< 18 U										< 18 U		<u> </u>
Benzene	ug/kg	5100			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Bromochloromethane	ug/kg	63000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		<u> </u>
Bromodichloromethane	ug/kg	1300			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Bromoform	ug/kg	86000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Bromomethane	ug/kg	3000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Carbon Disulfide Carbon Tetrachloride	ug/kg	350000 2900			< 4.2 U			< 4.7 U	< 4.5 U					-					< 4.4 U		
	ug/kg ug/kg	130000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Chlorobenzene Chloroethane	ug/kg ug/kg	5.7e+006			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Chloroform	ug/kg	1400			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Chloromethane	ug/kg	46000			< 4.2 U			< 4.7 U	< 4.5 U					+					< 4.4 U		
cis-1.2-Dichloroethylene	ug/kg	230000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
cis-1,3-Dichloropropene	ug/kg	8200			< 4.2 U			< 4.7 U	< 4.5 U				1						< 4.4 U		
Cyclohexane	ug/kg	2.7e+006			< 4.2 U			< 4.7 U	< 4.5 U				1						< 4.4 U		
Dibromochloromethane	ug/kg	39000			< 4.2 U			< 4.7 U	< 4.5 U									1	< 4.4 U		
Dichlorodifluoromethane	ug/kg	37000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Ethylbenzene	ug/kg	25000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Isopropylbenzene	ug/kg	990000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
m, p-Xylene	ug/kg	240000			< 8.4 U			< 9.5 U	< 8.9 U										< 8.8 U		
Methyl Acetate	ug/kg	1.2e+008			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000			< 4.2 U			< 4.7 U	< 4.5 U						<u> </u>				< 4.4 U		
Methylcyclohexane	ug/kg	2.7e+006			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		
Methylene Chloride	ug/kg	320000			< 4.2 U			< 4.7 U	< 4.5 U			<u> </u>	1					<u> </u>	< 4.4 U		<u> </u>
-Xylene	ug/kg	280000			< 4.2 U			< 4.7 U	< 4.5 U				1	<u> </u>					< 4.4 U		
Styrene	ug/kg	3.5e+006			< 4.2 U			< 4.7 U	< 4.5 U				ļ						< 4.4 U		
Tetrachloroethylene	ug/kg	39000			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		1
Toluene	ug/kg	4.7e+006			< 4.2 U			< 4.7 U	< 4.5 U										< 4.4 U		1
trans-1,2-Dichloroethene	ug/kg	2.3e+006			< 4.2 U			< 4.7 U	< 4.5 U				+	<u> </u>					< 4.4 U		
trans-1,3-Dichloropropene	ug/kg	8200			< 4.2 U			< 4.7 U	< 4.5 U				+	<u> </u>					< 4.4 U		<u> </u>
Trichloroethene	ug/kg	1900			< 4.2 U			< 4.7 U	< 4.5 U			1	+	1				 	< 4.4 U		
Trichlorofluoromethane	ug/kg	3.5e+007			< 4.2 U			< 4.7 U	< 4.5 U				+						< 4.4 U		
/inyl Chloride	ug/kg	1700			< 4.2 U			< 4.7 U	< 4.5 U				1	1		-		-	< 4.4 U		
(ylenes (total)	ug/kg	250000			< 8.4 U			< 9.5 U	< 8.9 U	I							I	I	< 8.8 U	l	1

Subsurface Soil Results

			Location ID		DP46	DP46	DP47	DP47	DP47	SB2	SB2	SB2	SB2	SB3	SBS0303N-North	SUSDP01	SUSDP01	SUSDP01	SUSDP01	SUSDP02	SUSDP02
			Sample Date Sample ID	5/22/2013 DPS4605N	6/5/2013 DPS4610N	6/5/2013 DPS4615N	5/28/2013 DPS4702N	6/5/2013 DPS4710N	6/5/2013 DPS4715N	1/25/2017 SBS0201N	1/25/2017 SBS0202-05N	1/26/2017 SBS0205-10N	1/26/2017 SBS0210-15N	3/13/2013 SBS0303N	2/15/2017 SB50303N-NORTH	5/20/2013 DPS0103N	5/20/2013 DPS0110N	5/20/2013 DPS0115N	6/13/2013 DPS0110N2	5/14/2013 DPS0205N	5/20/2013 DPS0210N
			Depth	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1.5 - 2.5 ft	9.5 - 10.5 ft	14 - 15 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	2.5 - 3.5 ft	3 - 3.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14 - 15 ft	9.5 - 10.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
																					1
		Project Screening																			i
Analyte	Unit	Criteria																			
1,1'-Biphenyl	ug/kg	20000																	1		
1,2,4,5-Tetrachlorobenzene 2,2'-oxybis(1-Chloropropane)	ug/kg ug/kg	35000 4.7e+006																			
2,3,4,6-Tetrachlorophenol	ug/kg ug/kg	2.5e+006																	+		
2,4,5-Trichlorophenol	ug/kg	8.2e+006																			
2,4,6-Trichlorophenol	ug/kg	82000																			
2,4-Dichlorophenol	ug/kg	250000																			
2,4-Dimethylphenol	ug/kg	1.6e+006																			
2,4-Dinitrophenol	ug/kg	160000																			
2,4-Dinitrotoluene	ug/kg	7400																			i
2,6-Dinitrotoluene	ug/kg	1500																			
2-Chloronaphthalene	ug/kg	6e+006																			
2-Chlorophenol	ug/kg	580000																			
2-Methylnaphthalene	ug/kg	300000																			
2-Methylphenol	ug/kg	4.1e+006 800000																			
2-Nitroaniline 2-Nitrophenol	ug/kg ug/kg	2.5e+007																	-		
3,3'-Dichlorobenzidine	ug/kg ug/kg	5100																	+		
3-Nitroaniline	ug/kg	110000																			
4,6-Dinitro-2-methylphenol	ug/kg	6600																			
4-Bromophenyl-phenylether	ug/kg																				
4-Chloro-3-methylphenol	ug/kg	8.2e+006																			
4-Chloroaniline	ug/kg	11000																			
4-Chlorophenyl-phenylether	ug/kg																				
4-Methylphenol	ug/kg	8.2e+006																			
4-Nitroaniline	ug/kg	110000																			
4-Nitrophenol	ug/kg	2.5e+007																			
Acenaphthene	ug/kg	4.5e+006								6.0 J	91	2.7 J	16	< 150 U							
Acetaphanana	ug/kg	4.5e+006 1.2e+007								3.9 J	1.8 J	0.93 J	2.7 J	< 150 U							
Acetophenone Anthracene	ug/kg ug/kg	2.3e+007								7.0 J	160	4.9 J	35	< 150 U							
Atrazine	ug/kg	10000								7.00	100	4.5 0	33	1000							
Benzaldehyde	ug/kg	820000																			
Benzo(a)anthracene	ug/kg	21000								47	280	28	140	79 J							
Benzo(a)pyrene	ug/kg	2100								44	200	30	130	< 150 U							
Benzo(b)fluoranthene	ug/kg	21000								58	260	33	170	< 150 U							
Benzo(g,h,i)perylene	ug/kg	2.3e+006								42	100	19	80	< 150 U							
Benzo(k)fluoranthene	ug/kg	210000								20	120	15	66	< 150 U							
bis-(2-chloroethoxy)methane	ug/kg	250000																			
bis-(2-Chloroethyl)ether	ug/kg	1000	ļ																		
bis-(2-Ethylhexyl)phthalate	ug/kg	160000																			
Butylbenzylphthalate Caprolactam	ug/kg	1.2e+006 4e+007							 												
Caprolactam Carbazole	ug/kg ug/kg	3e+007	 						-										-		
Chrysene	ug/kg ug/kg	2.1e+006							 	62	250	30	150	160							
Dibenzo(a,h)anthracene	ug/kg	2100								11	29	5.8 J	25	< 150 U					 		
Dibenzofuran	ug/kg	100000							†										1		
Diethylphthalate	ug/kg	6.6e+007																			
Dimethylphthalate	ug/kg	6.6e+007			İ				İ												
Di-n-butylphthalate	ug/kg	8.2e+006																			
Di-n-octylphthalate	ug/kg	820000												-							
Fluoranthene	ug/kg	3e+006								120	650 J-	50	270	< 150 U							
Fluorene	ug/kg	3e+006								3.9 J	80	1.9 J	12	150					 		
Hexachlorobenzene	ug/kg	960							<u> </u>												
Hexachlorobutadiene	ug/kg	5300																			
Hexachlorocyclo-pentadiene	ug/kg	750																			
Hexachloroethane	ug/kg	8000												_							

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	DP46	DP46	DP46	DP47	DP47	DP47	SB2	SB2	SB2	SB2	SB3	SBS0303N-North	SUSDP01	SUSDP01	SUSDP01	SUSDP01	SUSDP02	SUSDP02
			Sample Date	5/22/2013	6/5/2013	6/5/2013	5/28/2013	6/5/2013	6/5/2013	1/25/2017	1/25/2017	1/26/2017	1/26/2017	3/13/2013	2/15/2017	5/20/2013	5/20/2013	5/20/2013	6/13/2013	5/14/2013	5/20/2013
				DPS4605N	DPS4610N	DPS4615N	DPS4702N		DPS4715N	SBS0201N	SBS0202-05N	SBS0205-10N	SBS0210-15N	SBS0303N	SB50303N-NORTH	DPS0103N	DPS0110N	DPS0115N		DPS0205N	DPS0210N
			Depth	4.5 - 5.5 ft	9.5 - 10.5 ft		1.5 - 2.5 ft		14 - 15 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	2.5 - 3.5 ft	3 - 3.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14 - 15 ft	9.5 - 10.5 ft		
			Type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																			1
Analyte	Unit	Criteria																			1
Indeno(1,2,3-cd)pyrene	ug/kg	21000								33	100	17	74	< 150 U							
Isophorone	ug/kg	2.4e+006																			
Naphthalene	ug/kg	17000								7.5	18	1.6 J	2.3 J	310							
Nitrobenzene	ug/kg	22000																			
N-Nitroso-di-n-propylamine	ug/kg	330																			
N-Nitrosodiphenylamine	ug/kg	470000																			
Pentachlorophenol	ug/kg	4000																			
Phenanthrene	ug/kg	2.3e+007								95	770 J-	26	150	490							
Phenol	ug/kg	2.5e+007																			
Pyrene	ug/kg	2.3e+006								86	480 J-	48	240	220							
BaP-TE	ug/kg	2100								69.1	294	43.8	194	8.06							
Total High-molecular-weight PAHs	ug/kg									520	2500	280	1300	460							
Total Low-molecular-weight PAHs	ug/kg									120	1100	38	220	950							
Total PAHs (sum 16)	ug/kg									650	3600	310	1600	1400							

Subsurface Soil Results

				ı	1		1	1	1	1	1		1		1		1			1	•
			Location ID	SUSDP02	SUSDP02	SUSDP02	SUSDP02	SUSDP02	SUSDP03	SUSDP03	SUSDP03	SUSDP03	SUSDP03	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04-1A
			Sample Date	5/20/2013 DPS0215N	6/13/2013	6/13/2013	1/25/2017	1/25/2017	5/14/2013 DPS0305N	5/21/2013	5/21/2013	5/21/2013	6/11/2013	5/15/2013	5/20/2013	5/20/2013	1/25/2017 DPS04F01N	1/25/2017	1/25/2017	1/27/2017	8/1/2017 DPS041A02N
			Sample ID Depth	14.5 - 15.5 ft	DPS0210N2 9.5 - 10.5 ft	DPS0215N2 14.5 - 15.5 ft	DPS02F01N 1 - 2 ft	DPS02F02-05N 2 - 5 ft	4.5 - 5.5 ft	DPS0310N 9.5 - 10.5 ft	DPS0310R 9.5 - 10.5 ft	DPS0315N 14.5 - 15.5 ft	DPS0310N2 9.5 - 10.5 ft	DPS0403N 2.5 - 3.5 ft	DPS0410N 9.5 - 10.5 ft	DPS0415N 14.5 - 15.5 ft	1 - 2 ft	DPS04F01R 1 - 2 ft	DPS04F02-05N 2 - 5 ft	DPS04F05-10N 5 - 10 ft	2 - 3 ft
			Туре	14.5 - 15.5 IL N	9.5 - 10.5 It	N N	N N	N N	4.5 - 5.5 it	9.5 - 10.5 it	9.5 - 10.5 it	14.5 - 15.5 It N	9.5 - 10.5 it	2.5 - 3.5 it N	9.5 - 10.5 It	N N	N N	FD	2-51t N	5-10 It N	2-31t N
		T	Турс		IN .	11	14	11	11	IN .	10			IN .			- 1	1.5	14		14
		Project Screening																			
Analyte	Unit	Criteria																			
Diesel Range Organics (C10-C20)	mg/kg	440																			
Oil Range Organics (C20-C36)	mg/kg	350000																			
Total Petroleum Hydrocarbons (C9-C44)	mg/kg						183	35.3									669	445	574	334	
Diesel Range Organics (C10-C20)	mg/kg	440		< 19 U					< 19 U	< 19 U	< 18 U	< 18 U		66	< 18 U	< 18 U					
Oil Range Organics (C20-C36)	mg/kg	350000		< 19 U					< 19 U	19	< 18 U	< 18 U		200	< 18 U	26					
Gasoline Range Organics (C6-C10)	ug/kg	42000			< 83 U	< 110 U			< 87 UJ	< 98 UJ	< 88 UJ	< 98 UJ		< 90 UJ	< 92 UJ	< 92 UJ					
1,1,1-Trichloroethane	ug/kg	3.6e+006			< 4.8 U								< 4.4 U	< 4.3 U							
1,1,2,2-Tetrachloroethane	ug/kg	2700			< 4.8 U								< 4.4 U	< 4.3 U							
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006			< 4.8 U								< 4.4 U	< 4.3 U							
1,1,2-Trichloroethane	ug/kg	630			< 4.8 U								< 4.4 U	< 4.3 U							
1,1-Dichloroethane	ug/kg	16000			< 4.8 U								< 4.4 U	< 4.3 U							
1,1-Dichloroethene	ug/kg	100000			< 4.8 U								< 4.4 U	< 4.3 U							
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ug/kg	93000 26000			< 4.8 U			1					< 4.4 U	< 4.3 U			1	-			1
	ug/kg	26000			< 4.8 U		1	1					< 4.4 U	< 4.3 U				1			
1,2-Dibromo-3-chloropropane 1.2-Dibromoethane	ug/kg ug/kg	160			< 4.8 U								< 4.4 U	< 4.3 U				-	1		
1,2-Dipromoetriane 1,2-Dichlorobenzene	ug/kg ug/kg	930000			< 4.8 U		1	1					< 4.4 U	< 4.3 U					1		
1,2-Dichloroethane	ug/kg	2000			< 4.8 U								< 4.4 U	< 4.3 U							
1,2-Dichloropropane	ug/kg	6600			< 4.8 U								< 4.4 U	< 4.3 U							
1,3-Dichlorobenzene	ug/kg	11000			< 4.8 U								< 4.4 U	< 4.3 U							
1,4-Dichlorobenzene	ug/kg	11000			< 4.8 U				1				< 4.4 U	< 4.3 U							
1,4-Dioxane	ug/kg	24000			< 960 U								< 880 U	< 860 U							
2-Butanone	ug/kg	1.9e+007			< 4.8 U								< 4.4 U	< 4.3 U							
2-Hexanone	ug/kg	130000			< 4.8 U								< 4.4 U	< 4.3 U							
4-Methyl-2-pentanone	ug/kg	1.4e+007			< 4.8 U								< 4.4 U	< 4.3 U							
Acetone	ug/kg	6.7e+007			< 19 U								< 18 U	< 17 U							
Benzene	ug/kg	5100			< 4.8 U								< 4.4 U	< 4.3 U							
Bromochloromethane	ug/kg	63000			< 4.8 U								< 4.4 U	< 4.3 U							
Bromodichloromethane	ug/kg	1300			< 4.8 U								< 4.4 U	< 4.3 U							
Bromoform	ug/kg	86000			< 4.8 U								< 4.4 U	< 4.3 U							
Bromomethane	ug/kg	3000			< 4.8 U								< 4.4 U	< 4.3 U							
Carbon Disulfide	ug/kg	350000			< 4.8 U				1				< 4.4 U	< 4.3 U							
Carbon Tetrachloride	ug/kg	2900			< 4.8 U				1				< 4.4 U	< 4.3 U							
Chlorobenzene Chloroethane	ug/kg ug/kg	130000 5.7e+006			< 4.8 U				-				< 4.4 U	< 4.3 U							
Chloroform	ug/kg ug/kg	1400			< 4.8 U				+				< 4.4 U	< 4.3 U				1			
Chloromethane	ug/kg	46000			< 4.8 U								< 4.4 U	< 4.3 U							
cis-1,2-Dichloroethylene	ug/kg	230000			< 4.8 U								< 4.4 U	< 4.3 U							
cis-1,3-Dichloropropene	ug/kg	8200			< 4.8 U								< 4.4 U	< 4.3 U							
Cyclohexane	ug/kg	2.7e+006			< 4.8 U		1						< 4.4 U	< 4.3 U			1		1		1
Dibromochloromethane	ug/kg	39000			< 4.8 U								< 4.4 U	< 4.3 U							
Dichlorodifluoromethane	ug/kg	37000			< 4.8 U								< 4.4 U	< 4.3 U							
Ethylbenzene	ug/kg	25000			< 4.8 U								< 4.4 U	< 4.3 U							
Isopropylbenzene	ug/kg	990000			< 4.8 U								< 4.4 U	< 4.3 U							
m, p-Xylene	ug/kg	240000			< 9.6 U								< 8.8 U	< 8.6 U							
Methyl Acetate	ug/kg	1.2e+008			< 4.8 U								< 4.4 U	< 4.3 U							ļ
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000			< 4.8 U								< 4.4 U	< 4.3 U							ļ
Methylcyclohexane	ug/kg	2.7e+006			< 4.8 U								< 4.4 U	< 4.3 U							
Methylene Chloride	ug/kg	320000			< 4.8 U		 						< 4.4 U	< 4.3 U			1	-	1		
o-Xylene Styrene	ug/kg	280000 3.5e+006			< 4.8 U		1	1					< 4.4 U	< 4.3 U				1			
Tetrachloroethylene	ug/kg ug/kg	3.5e+006 39000			< 4.8 U								< 4.4 U	< 4.3 U			-	-			-
Toluene	ug/kg ug/kg	4.7e+006			< 4.8 U		 						< 4.4 U	< 4.3 U			1	-	-		
trans-1,2-Dichloroethene	ug/kg ug/kg	2.3e+006			< 4.8 U		1	1					< 4.4 U	< 4.3 U					1		
trans-1,3-Dichloropropene	ug/kg	8200			< 4.8 U			1					< 4.4 U	< 4.3 U			1				
Trichloroethene	ug/kg	1900			< 4.8 U		 						< 4.4 U	< 4.3 U			1				
Trichlorofluoromethane	ug/kg	3.5e+007			< 4.8 U								< 4.4 U	< 4.3 U					1		1
Vinyl Chloride	ug/kg	1700			< 4.8 U								< 4.4 U	< 4.3 U							İ
Xylenes (total)	ug/kg	250000			< 9.6 U								< 8.8 U	< 8.6 U							
/	5.9			·			1	1	1	1	1						1	1	1	1	1

Subsurface Soil Results

			Location ID	SUSDP02	SUSDP02	SUSDP02	SUSDP02	SUSDP02	SUSDP03	SUSDP03	SUSDP03	SUSDP03	SUSDP03	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04-1A
			Sample Date	5/20/2013	6/13/2013	6/13/2013	1/25/2017	1/25/2017	5/14/2013	5/21/2013	5/21/2013	5/21/2013	6/11/2013	5/15/2013	5/20/2013	5/20/2013	1/25/2017	1/25/2017	1/25/2017	1/27/2017	8/1/2017
			Sample ID	DPS0215N	DPS0210N2	DPS0215N2	DPS02F01N	DPS02F02-05N	DPS0305N	DPS0310N	DPS0310R	DPS0315N	DPS0310N2		DPS0410N	DPS0415N	DPS04F01N	DPS04F01R	DPS04F02-05N	DPS04F05-10N	
			Depth	14.5 - 15.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	2 - 3 ft
			Туре	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	FD	N	N	N
		Project Screening																			
Analyte	Unit	Criteria																			
,1'-Biphenyl	ug/kg	20000																			
,2,4,5-Tetrachlorobenzene	ug/kg	35000																			
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																			ļ
2,3,4,6-Tetrachlorophenol	ug/kg ug/kg	2.5e+006 8.2e+006																			-
2,4,6-Trichlorophenol	ug/kg	82000																			
2,4-Dichlorophenol	ug/kg	250000																			
2,4-Dimethylphenol	ug/kg	1.6e+006																			
2,4-Dinitrophenol	ug/kg	160000																			
2,4-Dinitrotoluene	ug/kg	7400																			
2,6-Dinitrotoluene	ug/kg	1500																			
2-Chloronaphthalene 2-Chlorophenol	ug/kg ug/kg	6e+006 580000																			
2-Methylnaphthalene	ug/kg	300000																			
2-Methylphenol	ug/kg	4.1e+006			+																
2-Nitroaniline	ug/kg	800000											1					1			
2-Nitrophenol	ug/kg	2.5e+007																			
3,3'-Dichlorobenzidine	ug/kg	5100																			
3-Nitroaniline	ug/kg	110000																			
4,6-Dinitro-2-methylphenol	ug/kg	6600																			
4-Bromophenyl-phenylether	ug/kg	0.0.000																			
4-Chloro-3-methylphenol	ug/kg	8.2e+006 11000																			
4-Chloroaniline 4-Chlorophenyl-phenylether	ug/kg ug/kg	11000																			
4-Methylphenol	ug/kg	8.2e+006																			
4-Nitroaniline	ug/kg	110000																			
4-Nitrophenol	ug/kg	2.5e+007																			
Acenaphthene	ug/kg	4.5e+006					25	< 8.1 U						3300	< 7.1 U	7.0 J	50 J	68 J	85		100
Acenaphthylene	ug/kg	4.5e+006					23	< 8.1 U						54	< 7.1 U	< 7.1 U	50 J	31 J	29 J		24
Acetophenone	ug/kg	1.2e+007																			
Anthracene	ug/kg	2.3e+007					66	5.1 J						4400	1.0 J	11	150	210	170		210
Atrazine	ug/kg	10000																			_
Benzaldehyde	ug/kg	820000 21000					290	16						3400	F F 1	20	500	690	290		620
Benzo(a)anthracene Benzo(a)pyrene	ug/kg ug/kg	21000					290	13						2600	5.5 J < 7.1 U	29 30	590 430	680 510	230		500
Benzo(b)fluoranthene	ug/kg	21000					390	20						1800	6.8 J	31	560	640	300		630
Benzo(g,h,i)perylene	ug/kg	2.3e+006					310	14						1000	< 7.1 U	21	410	480	220		360
Benzo(k)fluoranthene	ug/kg	210000					130	8.5						850	1.9 J	12	190	270	110		210
bis-(2-chloroethoxy)methane	ug/kg	250000																			
bis-(2-Chloroethyl)ether	ug/kg	1000																			
bis-(2-Ethylhexyl)phthalate	ug/kg	160000																			
Butylbenzylphthalate	ug/kg	1.2e+006																			<u> </u>
Caprolactam	ug/kg	4e+007																			
Carbazole Chrysene	ug/kg ug/kg	3e+006 2.1e+006			+		310	26					-	3300	6.3 J	37	560	640	380		650
Dibenzo(a,h)anthracene	ug/kg	2100			+		76	5.9 J						250	< 7.1 U	6.2 J	100 J	140	64 J		130
Dibenzofuran	ug/kg	100000						5.5 5							0	J J		1			
Diethylphthalate	ug/kg	6.6e+007																			
Dimethylphthalate	ug/kg	6.6e+007																			
Di-n-butylphthalate	ug/kg	8.2e+006																	· · · · · · · · · · · · · · · · · · ·		
Di-n-octylphthalate	ug/kg	820000																			<u> </u>
Fluoranthene	ug/kg	3e+006					550	30						6400	10	57	1000	1200	560		1200
Fluorene	ug/kg	3e+006					17	< 8.1 U						2500	< 7.1 U	7.1	42 J	55 J	75		110
Hexachlorobenzene	ug/kg	960			+		11	- 5.1 0						2300	. 710	7.1	74.0	333	,,		110
Hexachlorobutadiene	ug/kg	5300																			
Hexachlorocyclo-pentadiene	ug/kg	750			1																
Hexachloroethane	ug/kg	8000											1					1			

Subsurface Soil Results

			Location ID	SUSDP02	SUSDP02	SUSDP02	SUSDP02	SUSDP02	SUSDP03	SUSDP03	SUSDP03	SUSDP03	SUSDP03	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04-1A
			Sample Date	5/20/2013	6/13/2013	6/13/2013	1/25/2017	1/25/2017	5/14/2013	5/21/2013	5/21/2013	5/21/2013	6/11/2013	5/15/2013	5/20/2013	5/20/2013	1/25/2017	1/25/2017	1/25/2017	1/27/2017	8/1/2017
			Sample ID	DPS0215N	DPS0210N2	DPS0215N2	DPS02F01N	DPS02F02-05N	DPS0305N	DPS0310N	DPS0310R	DPS0315N	DPS0310N2	DPS0403N	DPS0410N	DPS0415N	DPS04F01N	DPS04F01R	DPS04F02-05N	DPS04F05-10N	DPS041A02N
			Depth	14.5 - 15.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	2 - 3 ft
			Туре	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	FD	N	N	N
Analyte	Unit	Project Screening Criteria																			
Indeno(1,2,3-cd)pyrene	ug/kg	21000					250	11						820	< 7.1 U	18	350	400	180		340
Isophorone	ug/kg	2.4e+006																			
Naphthalene	ug/kg	17000					13 J	9.9						180	< 7.1 U	8.3	34 J	26 J	120		70
Nitrobenzene	ug/kg	22000																			
N-Nitroso-di-n-propylamine	ug/kg	330																			
N-Nitrosodiphenylamine	ug/kg	470000																			
Pentachlorophenol	ug/kg	4000																			
Phenanthrene	ug/kg	2.3e+007					220	26						13000	7.3	42	570	710	490		710
Phenol	ug/kg	2.5e+007																			
Pyrene	ug/kg	2.3e+006					390	23						9700	8.2	46	890	1000	430		630
BaP-TE	ug/kg	2100					461	23.7						3460	1.26	44.2	682	825	372		792
Total High-molecular-weight PAHs	ug/kg						3000	170						30000	39	290	5100	6000	2800		5300
Total Low-molecular-weight PAHs	ug/kg						360	41						23000	8.3	75	900	1100	970		1200
Total PAHs (sum 16)	ug/kg					_	3400	210			_			54000	47	360	6000	7100	3700		6500

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Renning Road, NF

			Location ID	SUSDP04-1A	SUSDP04-1C	SUSDP04-1C	SUSDP04-1E	SUSDP04-1E	SUSDP04-1G	SUSDP04-1G	SUSDP05	SUSDP05	SUSDP05	SUSDP05	SUSDP05	SUSDP05	SUSDP05-1C	SUSDP05-1E	SUSDP05-1G	SUSDP05-1G
			Sample Date	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	5/15/2013	5/21/2013	5/21/2013	6/12/2013	1/24/2017	1/24/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017
			Sample ID	DPS041A03N	DPS041C02N	DPS041C03N	DPS041E02N	DPS041E03N	DPS041G02N	DPS041G03N	DPS0505N	DPS0510N	DPS0515N	DPS0505N2	DPS05F01N	DPS05F02-05N	DPS051C01N	DPS051E01N	DPS051G01N	DPS051G02N
			Depth	3 - 4 ft	2 - 3 ft	3 - 4 ft	2 - 3 ft	3 - 4 ft	2 - 3 ft	3 - 4 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	1 - 2 ft	2 - 5 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft
	1	1 1	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																		
Analyte	Unit	Criteria																		
Diesel Range Organics (C10-C20)	mg/kg	440																		+
Oil Range Organics (C20-C36)	mg/kg	350000																		1
Total Petroleum Hydrocarbons (C9-C44)	mg/kg														371	14.1				
Diesel Range Organics (C10-C20)	mg/kg	440									< 19 U	< 18 U	< 18 U							
Oil Range Organics (C20-C36)	mg/kg	350000									< 19 U	< 18 U	< 18 U							
Gasoline Range Organics (C6-C10)	ug/kg	42000									< 110 UJ	< 100 UJ	< 94 UJ							
1,1,1-Trichloroethane	ug/kg	3.6e+006 2700												< 4.5 U						
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg ug/kg	2.8e+006						-						< 4.5 U						+
1,1,2-Trichloroethane	ug/kg	630												< 4.5 U						+
1,1-Dichloroethane	ug/kg	16000												< 4.5 U						1
1,1-Dichloroethene	ug/kg	100000												< 4.5 U						†
1,2,3-Trichlorobenzene	ug/kg	93000												< 4.5 U						1
1,2,4-Trichlorobenzene	ug/kg	26000												< 4.5 U						
1,2-Dibromo-3-chloropropane	ug/kg	64												< 4.5 U						
1,2-Dibromoethane	ug/kg	160												< 4.5 U						
1,2-Dichlorobenzene	ug/kg	930000					ļ			ļ				< 4.5 U						
1,2-Dichloroethane	ug/kg	2000												< 4.5 U						
1,2-Dichloropropane	ug/kg	6600												< 4.5 U						
1,3-Dichlorobenzene	ug/kg	11000												< 4.5 U						
1,4-Dichlorobenzene 1,4-Dioxane	ug/kg ug/kg	11000 24000						-						< 4.5 U < 910 U						+
2-Butanone	ug/kg ug/kg	1.9e+007												< 4.5 U						+
2-Hexanone	ug/kg	130000												< 4.5 U						+
4-Methyl-2-pentanone	ug/kg	1.4e+007												< 4.5 U						<u> </u>
Acetone	ug/kg	6.7e+007												< 18 U						1
Benzene	ug/kg	5100												< 4.5 U						
Bromochloromethane	ug/kg	63000												< 4.5 U						
Bromodichloromethane	ug/kg	1300												< 4.5 U						
Bromoform	ug/kg	86000												< 4.5 U						
Bromomethane	ug/kg	3000												< 4.5 U						
Carbon Disulfide	ug/kg	350000								1				< 4.5 U						
Carbon Tetrachloride	ug/kg	2900 130000												< 4.5 U						
Chlorobenzene Chloroethane	ug/kg ug/kg	5.7e+006												< 4.5 U						-
Chloroform	ug/kg	1400												< 4.5 U						+
Chloromethane	ug/kg	46000												< 4.5 U						+
cis-1,2-Dichloroethylene	ug/kg	230000												< 4.5 U						1
cis-1,3-Dichloropropene	ug/kg	8200												< 4.5 U				İ		
Cyclohexane	ug/kg	2.7e+006												< 4.5 U						1
Dibromochloromethane	ug/kg	39000												< 4.5 U						
Dichlorodifluoromethane	ug/kg	37000												< 4.5 U						
Ethylbenzene	ug/kg	25000												< 4.5 U						
Isopropylbenzene	ug/kg	990000												< 4.5 U			ļ	ļ		
m, p-Xylene	ug/kg	240000					ļ			ļ				< 9.1 U			ļ	ļ		
Methyl certage Methyl test Butyl Ether (MTRE)	ug/kg	1.2e+008			-		1	-		1	ļ			< 4.5 U		1	 	 		
Methyl tert-Butyl Ether (MTBE) Methylcyclohexane	ug/kg ug/kg	210000 2.7e+006			+		 	+		 				< 4.5 U	1		 	1		
Methylene Chloride	ug/kg ug/kg	320000					+			+	-			< 4.5 U	-		 	1		+
o-Xylene	ug/kg	280000					 	1		 				< 4.5 U			+	+		+
Styrene	ug/kg	3.5e+006												< 4.5 U						<u> </u>
Tetrachloroethylene	ug/kg	39000					1			1				< 4.5 U			1	1		
Toluene	ug/kg	4.7e+006												< 4.5 U						
trans-1,2-Dichloroethene	ug/kg	2.3e+006												< 4.5 U						
trans-1,3-Dichloropropene	ug/kg	8200												< 4.5 U						
Trichloroethene	ug/kg	1900												< 4.5 U						
Trichlorofluoromethane	ug/kg	3.5e+007					ļ			ļ				< 4.5 U			ļ	ļ		
Vinyl Chloride	ug/kg	1700					ļ	1						< 4.5 U			ļ	1		
Xylenes (total)	ug/kg	250000					1			1				< 9.1 U	1		1	1		<u></u>

Subsurface Soil Results

					T			,		1	1	ı		ı	1	1	T	T		
			Location ID	SUSDP04-1A	SUSDP04-1C	SUSDP04-1C	SUSDP04-1E	SUSDP04-1E	SUSDP04-1G	SUSDP04-1G	SUSDP05	SUSDP05	SUSDP05	SUSDP05	SUSDP05	SUSDP05	SUSDP05-1C	SUSDP05-1E	SUSDP05-1G	SUSDP05-1G
			Sample Date Sample ID	8/1/2017 DPS041A03N	8/1/2017 DPS041C02N	8/1/2017 DPS041C03N	8/1/2017 DPS041E02N	8/1/2017 DPS041E03N	8/1/2017 DPS041G02N	8/1/2017 DPS041G03N	5/15/2013 DPS0505N	5/21/2013 DPS0510N	5/21/2013 DPS0515N	6/12/2013 DPS0505N2	1/24/2017 DPS05F01N	1/24/2017 DPS05F02-05N	7/31/2017 DPS051C01N	7/31/2017 DPS051E01N	7/31/2017 DPS051G01N	7/31/2017 DPS051G02N
			Depth	3 - 4 ft	2 - 3 ft	3 - 4 ft	2 - 3 ft	3 - 4 ft	2 - 3 ft	3 - 4 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	1 - 2 ft	2 - 5 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
			,																	i
		Project Screening																		i
Analyte	Unit	Criteria																		
1,1'-Biphenyl	ug/kg	20000																		
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																		
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	ug/kg ug/kg	2.5e+006 8.2e+006																		
2,4,6-Trichlorophenol	ug/kg	82000																		
2,4-Dichlorophenol	ug/kg	250000																		
2,4-Dimethylphenol	ug/kg	1.6e+006																		1
2,4-Dinitrophenol	ug/kg	160000																		
2,4-Dinitrotoluene	ug/kg	7400																		i
2,6-Dinitrotoluene	ug/kg	1500																		<u> </u>
2-Chloronaphthalene	ug/kg	6e+006							· · · · · · · · · · · · · · · · · · ·										·	
2-Chlorophenol	ug/kg	580000																		
2-Methylnaphthalene	ug/kg	300000						1												
2-Methylphenol	ug/kg	4.1e+006																		
2-Nitroaniline	ug/kg	800000						-												
2-Nitrophenol	ug/kg	2.5e+007						1												
3,3'-Dichlorobenzidine	ug/kg	5100																		<u> </u>
3-Nitroaniline 4,6-Dinitro-2-methylphenol	ug/kg	110000 6600																		
4-Bromophenyl-phenylether	ug/kg ug/kg	0000																		
4-Chloro-3-methylphenol	ug/kg ug/kg	8.2e+006																		
4-Chloroaniline	ug/kg	11000																		
4-Chlorophenyl-phenylether	ug/kg	11000																		
4-Methylphenol	ug/kg	8.2e+006																		[
4-Nitroaniline	ug/kg	110000																		1
4-Nitrophenol	ug/kg	2.5e+007																		i
Acenaphthene	ug/kg	4.5e+006		61	36	14	27	27	73	110					1400	< 7.2 U	44	8.9	320	25
Acenaphthylene	ug/kg	4.5e+006		8.9	10	2.8 J	6.5 J	11	29	24					< 290 U	< 7.2 U	26	7.1 J	170	5.2 J
Acetophenone	ug/kg	1.2e+007																		<u> </u>
Anthracene	ug/kg	2.3e+007		91	46	14	23	110	140	220					4500	1.5 J	110	22	740	78
Atrazine	ug/kg	10000																		
Benzaldehyde	ug/kg	820000																		
Benzo(a)anthracene	ug/kg	21000		170	130	54	71	150	330	430					39000	13	540	140	2300	630
Benzo(a)pyrene	ug/kg	2100		140	90	40	47	110	310	360					34000	6.4 J	560	130	2400	590
Benzo(b)fluoranthene	ug/kg	21000 2.3e+006		190 120	210 110	85 40	120 75	200 120	430 250	450 290					45000 24000	8.8 5.4 J	840 500	160 120	2900 2300	750 510
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ug/kg ug/kg	210000		47	49	16	22	47	110	180					16000	5.9 J	250	65	1100	280
bis-(2-chloroethoxy)methane	ug/kg	250000								.50					10000	0.00	250			
bis-(2-Chloroethyl)ether	ug/kg	1000						1							1					
bis-(2-Ethylhexyl)phthalate	ug/kg	160000						1								1				í
Butylbenzylphthalate	ug/kg	1.2e+006																		1
Caprolactam	ug/kg	4e+007									İ				İ					1
Carbazole	ug/kg	3e+006																		<u> </u>
Chrysene	ug/kg	2.1e+006		290	570	200	370	310	380	540					45000	13	760	160	2600	770
Dibenzo(a,h)anthracene	ug/kg	2100		33	50	18	29	42	79	90					7400	< 7.2 U	140	34	620	160
Dibenzofuran	ug/kg	100000																		
Diethylphthalate	ug/kg	6.6e+007													ļ					
Dimethylphthalate	ug/kg	6.6e+007						1												
Di-n-butylphthalate	ug/kg	8.2e+006 820000						 												
Di-n-octylphthalate Fluoranthene	ug/kg ug/kg	3e+006		360	400	160	220	310	640	990					91000	20	950	270	4900	1200
Fluoranthene	ug/kg	36 +000		300	400	100	220	310	040	330					31000	20	930	2/0	4500	1200
Fluorene	ug/kg	3e+006		71	53	23	45	47	74	140					1000	< 7.2 U	37	6.8 J	290	18
Hexachlorobenzene	ug/kg	960			33	25	70	7,	,,	170					1000	. 7.20	5,	0.00	230	
Hexachlorobutadiene	ug/kg	5300						1							1					í
Hexachlorocyclo-pentadiene	ug/kg	750																		
Hexachloroethane	ug/kg	8000				1									1	İ				
		1						1			•	1		•	•		1	•		

Subsurface Soil Results

			Location ID	SUSDP04-1A	SUSDP04-1C	SUSDP04-1C	SUSDP04-1E	SUSDP04-1E	SUSDP04-1G	SUSDP04-1G	SUSDP05	SUSDP05	SUSDP05	SUSDP05	SUSDP05	SUSDP05	SUSDP05-1C	SUSDP05-1E	SUSDP05-1G	SUSDP05-1G
			Sample Date	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	5/15/2013	5/21/2013	5/21/2013	6/12/2013	1/24/2017	1/24/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017
			Sample ID	DPS041A03N	DPS041C02N	DPS041C03N	DPS041E02N	DPS041E03N	DPS041G02N	DPS041G03N	DPS0505N	DPS0510N	DPS0515N	DPS0505N2	DPS05F01N	DPS05F02-05N	DPS051C01N	DPS051E01N	DPS051G01N	DPS051G02N
			Depth	3 - 4 ft	2 - 3 ft	3 - 4 ft	2 - 3 ft	3 - 4 ft	2 - 3 ft	3 - 4 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	1 - 2 ft	2 - 5 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000		96	69	29	38	85	230	250	1				21000	3.6 J	430	110	1900	450
Isophorone	ug/kg	2.4e+006																		1
Naphthalene	ug/kg	17000		96	72	21	98	110	93	150					130 J	< 7.2 U	66	3.7 J	190	12
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007		440	730	270	420	400	440	760					28000	6.8 J	560	99	2600	470
Phenol	ug/kg	2.5e+007																		
Pyrene	ug/kg	2.3e+006		320	230	100	130	210	520	760					52000	14	970	170	3000	990
BaP-TE	ug/kg	2100		219	182	75.2	99.5	196	489	565					52100	9.01	884	206	3740	937
Total High-molecular-weight PAHs	ug/kg			1800	1900	740	1100	1600	3300	4300					370000	90	5900	1400	24000	6300
Total Low-molecular-weight PAHs	ug/kg			770	950	340	620	710	850	1400					35000	8.3	840	150	4300	610
Total PAHs (sum 16)	ug/kg			2500	2900	1100	1700	2300	4100	5700					410000	98	6800	1500	28000	6900

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road. NE

					1					1	1		1	1	1		1	ı		1	
			Location ID	SUSDP05-2M	SUSDP06	SUSDP06	SUSDP06	SUSDP06	SUSDP06	SUSDP07	SUSDP07	SUSDP07	SUSDP07	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP09
			Sample Date	2/1/2018	5/15/2013	5/22/2013	5/22/2013	3/13/2017	3/13/2017	5/15/2013	5/22/2013	5/22/2013	6/12/2013 DDC0715N3	5/15/2013	5/23/2013	5/23/2013	1/24/2017	1/24/2017	1/24/2017	1/24/2017	5/17/2013
			Sample ID	DPS052M01N	DPS0605N	DPS0610N	DPS0615N	DPS06F01N	DPS06F02-05N	DPS0705N	DPS0710N	DPS0715N	DPS0715N2 14.5 - 15.5 ft	DPS0803N	DPS0810N 9.5 - 10.5 ft	DPS0815N 14.5 - 15.5 ft	DPS08F01N	DPS08F02-05N	DPS08F05-10N 5 - 10 ft	DPS08F10-15N	
			Depth Type	1 - 2 ft N	4.5 - 5.5 ft N	9.5 - 10.5 ft N	14.5 - 15.5 ft N	1 - 2 ft N	2 - 5 ft N	4.5 - 5.5 ft N	9.5 - 10.5 ft N	14.5 - 15.5 ft N	14.5 - 15.5 IL N	2.5 - 3.5 ft N	9.5 - 10.5 IL N	14.5 - 15.5 IL N	1 - 2 ft N	2 - 5 ft N	5 - 10 IL N	10 - 15 ft N	4.5 - 5.5 ft N
		İ	туре	IN .	IN	IN	IN	11	IN	IN	IN	IN .	IN .	IN	IN	IN .	IN	14	IN	IN	+
		Project Screening																			
Analyte	Unit	Criteria																			
Diesel Range Organics (C10-C20)	mg/kg	440																			1
Oil Range Organics (C20-C36)	mg/kg	350000																			1
Total Petroleum Hydrocarbons (C9-C44)	mg/kg							14.8	10.4								428	370	1860	114	
Diesel Range Organics (C10-C20)	mg/kg	440			< 20 U	< 19 U	< 18 U			< 20 U	36 J	< 20 U		< 100 U	190	< 21 U					< 20 U
Oil Range Organics (C20-C36)	mg/kg	350000			< 20 U	< 19 U	< 18 U			13 J	230	< 20 U		340	500	38					17 J
	ug/kg	42000			< 100 UJ	< 95 U	< 100 U			< 93 UJ	< 84 U	< 90 U		< 81 UJ	< 82 U	< 94 U					< 100 UJ
1,1,1-Trichloroethane	ug/kg	3.6e+006											< 4.7 U								
1,1,2,2-Tetrachloroethane	ug/kg	2700											< 4.7 U								
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006											< 4.7 U								
1,1,2-Trichloroethane	ug/kg	630											< 4.7 U								
1,1-Dichloroethane	ug/kg	16000											< 4.7 U								
1,1-Dichloroethene	ug/kg	100000			+								< 4.7 U			 			 		+
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ug/kg	93000 26000	-		+								< 4.7 U			 			 		+
1,2,4-1 richioropenzene 1,2-Dibromo-3-chloropropane	ug/kg	64			+								< 4.7 U			-			-		+
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ug/kg ug/kg	160	+		+								< 4.7 U			+			+		+
1,2-Dichlorobenzene	ug/kg ug/kg	930000			+								< 4.7 U			 			 		+
1,2-Dichloroethane	ug/kg	2000			+								< 4.7 U			 			 		+
1,2-Dichloropropane	ug/kg	6600											< 4.7 U								+
1,3-Dichlorobenzene	ug/kg	11000											< 4.7 U								+
1,4-Dichlorobenzene	ug/kg	11000											< 4.7 U								+
1,4-Dioxane	ug/kg	24000											< 940 U								+
2-Butanone	ug/kg	1.9e+007											< 4.7 U								1
2-Hexanone	ug/kg	130000											< 4.7 U								
4-Methyl-2-pentanone	ug/kg	1.4e+007											< 4.7 U								
Acetone	ug/kg	6.7e+007											21								
Benzene	ug/kg	5100											< 4.7 U								
Bromochloromethane	ug/kg	63000											< 4.7 U								
Bromodichloromethane	ug/kg	1300											< 4.7 U								
Bromoform	ug/kg	86000											< 4.7 U								
Bromomethane	ug/kg	3000											< 4.7 U								
Carbon Disulfide	ug/kg	350000 2900											< 4.7 U			1					
Carbon Tetrachloride	ug/kg												< 4.7 U								
Chlorobenzene Chloroethane	ug/kg ug/kg	130000 5.7e+006											< 4.7 U								+
Chloroform	ug/kg	1400											< 4.7 U								+
Chloromethane	ug/kg	46000											< 4.7 U								+
cis-1,2-Dichloroethylene	ug/kg	230000											< 4.7 U								+
cis-1,3-Dichloropropene	ug/kg	8200											< 4.7 U								+
Cyclohexane	ug/kg	2.7e+006			1								< 4.7 U			1			1		+
Dibromochloromethane	ug/kg	39000			1								< 4.7 U								†
Dichlorodifluoromethane	ug/kg	37000											< 4.7 U								1
Ethylbenzene	ug/kg	25000											< 4.7 U								
Isopropylbenzene	ug/kg	990000											< 4.7 U								<u> </u>
m, p-Xylene	ug/kg	240000											< 9.4 U								
Methyl Acetate	ug/kg	1.2e+008											< 4.7 U								
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000											< 4.7 U			1			1		4
Methylcyclohexane	ug/kg	2.7e+006			1								< 4.7 U								
Methylene Chloride	ug/kg	320000			1								< 4.7 U			-			-		
o-Xylene	ug/kg	280000											< 4.7 U			1			1		+
Styrene	ug/kg	3.5e+006			+								< 4.7 U			 			 		+
Tetrachloroethylene	ug/kg	39000	-		+								< 4.7 U			 			 		+
Toluene trans-1,2-Dichloroethene	ug/kg ug/kg	4.7e+006 2.3e+006			+								< 4.7 U			-			-		+
trans-1,3-Dichloropropene	ug/kg ug/kg	8200	+		+								< 4.7 U			1			1		+
Trichloroethene	ug/kg ug/kg	1900	+		+								< 4.7 U			1			1		+
	ug/kg ug/kg	3.5e+007			+								< 4.7 U			 			 		+
THEHOLOHOOLOHIEMANE		3.00.001			1								< 4.7 U	-		-	 	-	 	 	+
Trichlorofluoromethane Vinyl Chloride	ug/kg	1700	ļ			l l			1				< 4.7 U								

Subsurface Soil Results

			Location ID	SUSDP05-2M	SUSDP06	SUSDP06	SUSDP06	SUSDP06	SUSDP06	SUSDP07	SUSDP07	SUSDP07	SUSDP07	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP09
			Sample Date	2/1/2018	5/15/2013	5/22/2013	5/22/2013	3/13/2017	3/13/2017	5/15/2013	5/22/2013	5/22/2013	6/12/2013	5/15/2013	5/23/2013	5/23/2013	1/24/2017	1/24/2017	1/24/2017	1/24/2017	5/17/2013
			Sample ID	DPS052M01N	DPS0605N	DPS0610N	DPS0615N	DPS06F01N	DPS06F02-05N	DPS0705N	DPS0710N	DPS0715N	DPS0715N2	DPS0803N	DPS0810N	DPS0815N	DPS08F01N	DPS08F02-05N	DPS08F05-10N	DPS08F10-15N	DPS0905N
			Depth Type	1 - 2 ft N	4.5 - 5.5 ft N	9.5 - 10.5 ft N	14.5 - 15.5 ft N	1 - 2 ft N	2 - 5 ft N	4.5 - 5.5 ft N	9.5 - 10.5 ft N	14.5 - 15.5 ft N	14.5 - 15.5 ft N	2.5 - 3.5 ft N	9.5 - 10.5 ft N	14.5 - 15.5 ft N	1 - 2 ft N	2 - 5 ft N	5 - 10 ft N	10 - 15 ft N	4.5 - 5.5 ft N
		T	туре	IN	IN	IN	11	IN	IN	IN	IN	14	14	IN	IN	IN .	IN	IN	14	IN IN	IN
		Project Screening																			
Analyte	Unit	Criteria																			
	ug/kg	20000																			
	ug/kg	35000																			
	ug/kg	4.7e+006																			
	ug/kg	2.5e+006 8.2e+006																			
	ug/kg ug/kg	82000																			
•	ug/kg ug/kg	250000																			
·	ug/kg	1.6e+006																			
	ug/kg	160000																			
	ug/kg	7400																			
	ug/kg	1500																			
2-Chloronaphthalene	ug/kg	6e+006																			
	ug/kg	580000																			
	ug/kg	300000											ļ								
	ug/kg	4.1e+006																			
	ug/kg	800000											1				1		1		
	ug/kg ug/kg	2.5e+007 5100											 	-							
	ug/kg ug/kg	110000																			
	ug/kg	6600																			
	ug/kg	0000																			
	ug/kg	8.2e+006																			
	ug/kg	11000																			
	ug/kg																				
4-Methylphenol	ug/kg	8.2e+006																			
	ug/kg	110000																			
	ug/kg	2.5e+007																			
Acenaphthene	ug/kg	4.5e+006		87	< 8.2 U	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	1.4 J	35 J	< 16 U		80	38	7.7 J	86	85 J	1000	85	
	ug/kg	4.5e+006 1.2e+007		23 J	< 8.2 U	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	2.3 J	< 38 U	< 16 U		47 J	30 J	5.2 J	48	22 J	74 J	53 J	
	ug/kg ug/kg	2.3e+007		250	< 8.2 U	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	3.9 J	66	< 16 U		160	72	20	260	180	3700	280	
	ug/kg	10000		230	1 0.2 0	17.00	17.20	17.00	17.00	3.5 0	- 00	1100		100	12		200	100	3700	200	
	ug/kg	820000																			
	ug/kg	21000		1200 J	1.4 J	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	21	190	< 16 U		710	150	80	740	410	3400	910	
	ug/kg	2100		1100 J	< 8.2 U	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	22	210	< 16 U		640	170	99	550	260	2500	1200	
Benzo(b)fluoranthene	ug/kg	21000		1500 J-	1.7 J	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	22	190	< 16 U		660	170	91	660	360	2300	1000	
Benzo(g,h,i)perylene	ug/kg	2.3e+006		880 J-	< 8.2 U	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	16	130	< 16 U		400	140	71	460	210	1100	1100	
	ug/kg	210000		430 J	< 8.2 U	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	12	79	< 16 U		310	58	37	260	98 J	660	230	
	ug/kg	250000																			
	ug/kg	1000											1								
	ug/kg	160000 1.2e+006											 	-							
	ug/kg ug/kg	4e+007											 								
	ug/kg ug/kg	3e+006											 				+		+		
	ug/kg	2.1e+006		1400 J	2.3 J	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	23	190	< 16 U	<u> </u>	740	170	86	720	340	3100	920	
	ug/kg	2100		200 J+	< 8.2 U	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	2.9 J	40	< 16 U		95	34 J	17	130	66 J	360	200	
	ug/kg	100000																			
Diethylphthalate	ug/kg	6.6e+007																			
	ug/kg	6.6e+007																			
	ug/kg	8.2e+006																			
	ug/kg	820000			46.	47011	.7011	47011	46.		000	44011		4500	000	4=-	4500	050	5000	4455	
Fluoranthene	ug/kg	3e+006		2000 J-	1.2 J	< 7.8 U	< 7.2 U	< 7.6 U	1.8 J	39	360	< 16 U		1500	330	170	1500	950	5600	1100	
Fluorene	ug/kg	3e+006		73	< 8.2 U	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	1.5 J	31 J	< 16 U		41 J	30 J	6.9 J	92	68 J	770	88	
	ug/kg	960																			
	ug/kg	5300		-																	
	ug/kg	750											1								
Hexachloroethane	ug/kg	8000																			

Subsurface Soil Results

			Location ID	SUSDP05-2M	SUSDP06	SUSDP06	SUSDP06	SUSDP06	SUSDP06	SUSDP07	SUSDP07	SUSDP07	SUSDP07	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP08	SUSDP09
			Sample Date	2/1/2018	5/15/2013	5/22/2013	5/22/2013	3/13/2017	3/13/2017	5/15/2013	5/22/2013	5/22/2013	6/12/2013	5/15/2013	5/23/2013	5/23/2013	1/24/2017	1/24/2017	1/24/2017	1/24/2017	5/17/2013
			Sample ID	DPS052M01N	DPS0605N	DPS0610N	DPS0615N	DPS06F01N	DPS06F02-05N	DPS0705N	DPS0710N	DPS0715N	DPS0715N2	DPS0803N	DPS0810N	DPS0815N	DPS08F01N	DPS08F02-05N	DPS08F05-10N	DPS08F10-15N	DPS0905N
			Depth	1 - 2 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	4.5 - 5.5 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																			
Indeno(1,2,3-cd)pyrene	ug/kg	21000		700	< 8.2 U	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	14	110	< 16 U		350	120	60	390	170	980	730	
Isophorone	ug/kg	2.4e+006																			T .
Naphthalene	ug/kg	17000		110	< 8.2 U	< 7.8 U	< 7.2 U	< 7.6 U	< 7.3 U	2.6 J	< 38 U	< 16 U		54 J	23 J	9.4	53	43 J	40 J	100	
Nitrobenzene	ug/kg	22000																			T .
N-Nitroso-di-n-propylamine	ug/kg	330																			
N-Nitrosodiphenylamine	ug/kg	470000																			
Pentachlorophenol	ug/kg	4000																			
Phenanthrene	ug/kg	2.3e+007		1500 J	1.6 J	< 7.8 U	< 7.2 U	< 7.6 U	1.9 J	15	210	< 16 U		600	120	74	930	620	5800	970	
Phenol	ug/kg	2.5e+007																			
Pyrene	ug/kg	2.3e+006		2100 J	1.4 J	< 7.8 U	< 7.2 U	< 7.6 U	1.6 J	35	310	< 16 U		1500	270	120	1300	690	7200	1300	
BaP-TE	ug/kg	2100		1650	0.312	< 7.80 U	< 7.20 U	< 7.60 U	< 7.30 U	30.7	300	< 16.0 U		911	249	140	862	421	3540	1670	
Total High-molecular-weight PAHs	ug/kg			12000	8.0	< 7.8 U	< 7.2 U	< 7.6 U	3.4	210	1800	< 16 U		6900	1600	830	6700	3600	27000	8700	
Total Low-molecular-weight PAHs	ug/kg			2000	1.6	< 7.8 U	< 7.2 U	< 7.6 U	1.9	27	340	< 16 U		980	310	120	1500	1000	11000	1600	
Total PAHs (sum 16)	ug/kg			14000	9.6	< 7.8 U	< 7.2 U	< 7.6 U	5.3	230	2200	< 16 U		7900	1900	950	8200	4600	39000	10000	

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID SUSDP09	SUSDP09	SUSDP10	SUSDP10	SUSDP10	SUSDP10	SUSDP10	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11-1A	SUSDP11-1A	SUSDP11-1A	SUSDP11-1A	SUSDP11-1A
			Sample Date 6/11/2013	6/11/2013	5/15/2013	6/10/2013	6/10/2013	1/27/2017	1/27/2017	5/14/2013	5/28/2013	5/28/2013	1/25/2017	1/25/2017	1/25/2017	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018
			Sample ID DPS0910N	DPS0915N	DPS1005N	DPS1010N	DPS1015N	DPS10F01N	DPS10F02-05N	DPS1105N	DPS1110N	DPS1115N	DPS11F01N	DPS11F02-05N	DPS11F05-10N	DPS111A01N	DPS111A02N	DPS111A03N	DPS111A04N	DPS111A05N
			Depth 9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft
		1 1	Type N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
A I I -	1.1-14	Project Screening																		
Analyte Diesel Range Organics (C10-C20)	Unit mg/kg	Criteria 440			-				<u> </u>	-									7450	3540
Oil Range Organics (C20-C36)	mg/kg	350000														+			20000	9200
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	330000						188	24.1				38300	15500	11.8	27900	17800	21400	30400	14200
Diesel Range Organics (C10-C20)	mg/kg	440	< 21 U	< 18 U	< 19 U	< 19 U	< 20 U	100	24.1	< 20 U	< 21 U	36	30300	10000	11.0	27300	17000	21400	30400	3900
Oil Range Organics (C20-C36)	mg/kg	350000	< 21 U	< 18 U	< 19 U	< 19 U	< 20 U			< 20 U	21	200								11000
Gasoline Range Organics (C6-C10)	ug/kg	42000	< 110 U	< 120 U	< 82 UJ	< 100 U	< 98 U			< 83 UJ	< 87 U	< 86 U								1.000
1,1,1-Trichloroethane	ug/kg	3.6e+006		< 5.5 U			< 4.6 U				< 4.0 U									
1,1,2,2-Tetrachloroethane	ug/kg	2700		< 5.5 U			< 4.6 U				< 4.0 U									
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006		< 5.5 U			< 4.6 U				< 4.0 U									
1,1,2-Trichloroethane	ug/kg	630		< 5.5 U			< 4.6 U				< 4.0 U									
1,1-Dichloroethane	ug/kg	16000		< 5.5 U			< 4.6 U				< 4.0 U									
1,1-Dichloroethene	ug/kg	100000		< 5.5 U			< 4.6 U				< 4.0 U									
1,2,3-Trichlorobenzene	ug/kg	93000		< 5.5 U			< 4.6 U				< 4.0 U									
1,2,4-Trichlorobenzene	ug/kg	26000		< 5.5 U			< 4.6 U				< 4.0 U									
1,2-Dibromo-3-chloropropane	ug/kg	64		< 5.5 U			< 4.6 U				< 4.0 U									
1,2-Dibromoethane	ug/kg	160		< 5.5 U			< 4.6 U				< 4.0 U					1				
1,2-Dichlorobenzene	ug/kg	930000		< 5.5 U			< 4.6 U				< 4.0 U									
1,2-Dichloroethane	ug/kg	2000		< 5.5 U			< 4.6 U				< 4.0 U									
1,2-Dichloropropane	ug/kg	6600		< 5.5 U			< 4.6 U				< 4.0 U									
1,3-Dichlorobenzene	ug/kg	11000		< 5.5 U			< 4.6 U				< 4.0 U									
1,4-Dichlorobenzene	ug/kg	11000		< 5.5 U			< 4.6 U				< 4.0 U									
1,4-Dioxane	ug/kg	24000		< 1100 U			< 910 U				< 810 U									
2-Butanone	ug/kg	1.9e+007		< 5.5 U			< 4.6 U				< 4.0 U									
2-Hexanone	ug/kg	130000		< 5.5 U			< 4.6 U				< 4.0 U									ļ
4-Methyl-2-pentanone Acetone	ug/kg ug/kg	1.4e+007 6.7e+007		< 5.5 U			< 4.6 U				< 4.0 U									
Benzene	ug/kg ug/kg	5100		< 5.5 U			< 4.6 U				< 4.0 U									
Bromochloromethane	ug/kg	63000		< 5.5 U			< 4.6 U				< 4.0 U					+				
Bromodichloromethane	ug/kg	1300		< 5.5 U			< 4.6 U				< 4.0 U									
Bromoform	ug/kg	86000		< 5.5 U			< 4.6 U				< 4.0 U									
Bromomethane	ug/kg	3000		< 5.5 U			< 4.6 U				< 4.0 U									
Carbon Disulfide	ug/kg	350000		< 5.5 U			< 4.6 U				< 4.0 U									
Carbon Tetrachloride	ug/kg	2900		< 5.5 U			< 4.6 U				< 4.0 U									
Chlorobenzene	ug/kg	130000		< 5.5 U			< 4.6 U				< 4.0 U									
Chloroethane	ug/kg	5.7e+006		< 5.5 U			< 4.6 U				< 4.0 U									
Chloroform	ug/kg	1400		< 5.5 U			< 4.6 U				< 4.0 U									
Chloromethane	ug/kg	46000		< 5.5 U			< 4.6 U				< 4.0 U									
cis-1,2-Dichloroethylene	ug/kg	230000		< 5.5 U			< 4.6 U				< 4.0 U									
cis-1,3-Dichloropropene	ug/kg	8200		< 5.5 U			< 4.6 U				< 4.0 U					1				<u> </u>
Cyclohexane	ug/kg	2.7e+006		< 5.5 U			< 4.6 U				< 4.0 U									
Dibromochloromethane	ug/kg	39000		< 5.5 U			< 4.6 U				< 4.0 U					_				
Dichlorodifluoromethane	ug/kg	37000		< 5.5 U			< 4.6 U				< 4.0 U					-				
Ethylbenzene	ug/kg	25000		< 5.5 U	1		< 4.6 U			1	< 4.0 U					 				
Isopropylbenzene	ug/kg	990000 240000		< 5.5 U	-		< 4.6 U < 9.1 U	-		-	< 4.0 U < 8.1 U					 				
m, p-Xylene Methyl Acetate	ug/kg ug/kg	1.2e+008		< 5.5 U			< 9.1 U	-			< 4.0 U					 				
Methyl tert-Butyl Ether (MTBE)	ug/kg ug/kg	210000		< 5.5 U	-		< 4.6 U	-		-	< 4.0 U					+				
Methylcyclohexane	ug/kg ug/kg	2.7e+006		< 5.5 U			< 4.6 U				< 4.0 U					 				
Methylene Chloride	ug/kg	320000		< 5.5 U			1.2 J	-			< 4.0 U					<u> </u>				
o-Xylene	ug/kg	280000		< 5.5 U			< 4.6 U				< 4.0 U									
Styrene	ug/kg	3.5e+006		< 5.5 U			< 4.6 U				< 4.0 U					†				†
Tetrachloroethylene	ug/kg	39000		< 5.5 U			< 4.6 U				< 4.0 U									
Toluene	ug/kg	4.7e+006		< 5.5 U			< 4.6 U				< 4.0 U									
trans-1,2-Dichloroethene	ug/kg	2.3e+006		< 5.5 U			< 4.6 U				< 4.0 U									
trans-1,3-Dichloropropene	ug/kg	8200		< 5.5 U			< 4.6 U				< 4.0 U									
Trichloroethene	ug/kg	1900		< 5.5 U			< 4.6 U				< 4.0 U									<u> </u>
Trichlorofluoromethane	ug/kg	3.5e+007		< 5.5 U			< 4.6 U				< 4.0 U									
Vinyl Chloride	ug/kg	1700		< 5.5 U			< 4.6 U				< 4.0 U									
Xylenes (total)	ug/kg	250000		< 11 U			< 9.1 U				< 8.1 U									

Subsurface Soil Results

					1		1		ı	_	1	1	ı	1		1	ı	1			
			Location ID		SUSDP09	SUSDP10	SUSDP10	SUSDP10	SUSDP10	SUSDP10	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11-1A	SUSDP11-1A	SUSDP11-1A	SUSDP11-1A	
			Sample Date Sample ID	6/11/2013 DPS0910N	6/11/2013 DPS0915N	5/15/2013 DPS1005N	6/10/2013 DPS1010N	6/10/2013 DPS1015N	1/27/2017 DPS10F01N	1/27/2017 DPS10F02-05N	5/14/2013 DPS1105N	5/28/2013 DPS1110N	5/28/2013 DPS1115N	1/25/2017 DPS11F01N	1/25/2017 DPS11F02-05N	1/25/2017 DPS11F05-10N	2/22/2018 DPS111A01N	2/22/2018 DPS111A02N	2/22/2018 DPS111A03N	2/22/2018 DPS111A04N	2/22/2018 DPS111A05
				9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft
		_	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
A b - 4 -	1.1:4	Project Screening																			
Analyte 1,1'-Biphenyl	Unit ug/kg	Criteria 20000																			
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																			
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																			
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																			
2,4,5-Trichlorophenol	ug/kg	8.2e+006																			
2,4,6-Trichlorophenol	ug/kg	82000																			
2,4-Dichlorophenol	ug/kg	250000																			ļ
2,4-Dimethylphenol	ug/kg	1.6e+006																			ļ
2,4-Dinitrophenol	ug/kg	160000																			<u> </u>
2,4-Dinitrotoluene 2,6-Dinitrotoluene	ug/kg ug/kg	7400 1500																			ļ
2-Chloronaphthalene	ug/kg	6e+006	1							+								 			
2-Chlorophenol	ug/kg	580000															1				<u> </u>
2-Methylnaphthalene	ug/kg	300000																			
2-Methylphenol	ug/kg	4.1e+006																			
2-Nitroaniline	ug/kg	800000																			
2-Nitrophenol	ug/kg	2.5e+007																			
3,3'-Dichlorobenzidine	ug/kg	5100																			<u> </u>
3-Nitroaniline	ug/kg	110000																			↓
4,6-Dinitro-2-methylphenol	ug/kg	6600																			
4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	ug/kg ug/kg	8.2e+006																			
4-Chloroaniline	ug/kg	11000																			
4-Chlorophenyl-phenylether	ug/kg	1.000																			†
4-Methylphenol	ug/kg	8.2e+006																			
4-Nitroaniline	ug/kg	110000																			
4-Nitrophenol	ug/kg	2.5e+007																			
Acenaphthene	ug/kg	4.5e+006							17 J	6.4 J				< 700 U	< 240 U						
Acenaphthylene	ug/kg	4.5e+006							6.9 J	1.6 J				< 700 U	< 240 U						
Acetophenone	ug/kg	1.2e+007							07.1	40				. 700 11	. 040 11						↓
Anthracene Atrazine	ug/kg ug/kg	2.3e+007 10000							37 J	43				< 700 U	< 240 U						
Benzaldehyde	ug/kg	820000																			
Benzo(a)anthracene	ug/kg	21000							650	140				< 700 U	120 J						
Benzo(a)pyrene	ug/kg	2100							690	130				< 700 U	< 240 U						
Benzo(b)fluoranthene	ug/kg	21000							950	160				< 700 U	< 240 U						
Benzo(g,h,i)perylene	ug/kg	2.3e+006							570	100				< 700 U	< 240 U						
Benzo(k)fluoranthene	ug/kg	210000							370	61				< 700 U	< 240 U						
bis-(2-chloroethoxy)methane	ug/kg	250000															ļ				
bis-(2-Chloroethyl)ether	ug/kg	1000								-								1			
bis-(2-Ethylhexyl)phthalate Butylbenzylphthalate	ug/kg ug/kg	160000 1.2e+006								-							-	-			
Butylbenzylphthalate Caprolactam	ug/kg ug/kg	4e+007	+					+		+							-				
Carbazole	ug/kg	3e+007								<u> </u>							<u> </u>	 			-
Chrysene	ug/kg	2.1e+006							740	130				< 700 U	170 J		1	1			
Dibenzo(a,h)anthracene	ug/kg	2100							180	23				< 700 U	< 240 U						
Dibenzofuran	ug/kg	100000																			
Diethylphthalate	ug/kg	6.6e+007																			
Dimethylphthalate	ug/kg	6.6e+007																			
Di-n-butylphthalate	ug/kg	8.2e+006									1							ļ			1
Di-n-octylphthalate	ug/kg	820000							050	050				F00 !	000			1			1
Fluoranthene	ug/kg	3e+006							650	250				580 J	260			1			
Fluorene	ug/kg	3e+006							10 J	6.6 J				< 700 U	< 240 U		-	 			1
Hexachlorobenzene	ug/kg	960	 						100	0.03				- 1000	- 240 0	 	 	 			
Hexachlorobutadiene	ug/kg	5300	+														<u> </u>	 			
Hexachlorocyclo-pentadiene	ug/kg	750	+													1		1			
Hexachloroethane	ug/kg	8000					1									1	1	1			1

Subsurface Soil Results

			Location ID	SUSDP09	SUSDP09	SUSDP10	SUSDP10	SUSDP10	SUSDP10	SUSDP10	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11-1A	SUSDP11-1A	SUSDP11-1A	SUSDP11-1A	SUSDP11-1A
			Sample Date	6/11/2013	6/11/2013	5/15/2013	6/10/2013	6/10/2013	1/27/2017	1/27/2017	5/14/2013	5/28/2013	5/28/2013	1/25/2017	1/25/2017	1/25/2017	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018
			Sample ID	DPS0910N	DPS0915N	DPS1005N	DPS1010N	DPS1015N	DPS10F01N	DPS10F02-05N	DPS1105N	DPS1110N	DPS1115N	DPS11F01N	DPS11F02-05N	DPS11F05-10N	DPS111A01N	DPS111A02N	DPS111A03N	DPS111A04N	DPS111A05N
			Depth	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																			
Indeno(1,2,3-cd)pyrene		21000							480	92				< 700 U	< 240 U						
	ug/kg								460	92				< 700 0	< 240 U						
Isophorone	ug/kg	2.4e+006																			
Naphthalene	ug/kg	17000							38 J	5.8 J				170 J	240						1
Nitrobenzene	ug/kg	22000																			ı l
N-Nitroso-di-n-propylamine	ug/kg	330																			1
N-Nitrosodiphenylamine	ug/kg	470000																			i
Pentachlorophenol	ug/kg	4000																			
Phenanthrene	ug/kg	2.3e+007							230	170				500 J	370						
Phenol	ug/kg	2.5e+007																			i
Pyrene	ug/kg	2.3e+006							780	300				580 J	190 J						i
BaP-TE	ug/kg	2100							1080	193				< 700 U	12.2						
Total High-molecular-weight PAHs	ug/kg								6100	1400				1200	740						
Total Low-molecular-weight PAHs	ug/kg								340	230				670	610						
Total PAHs (sum 16)	ug/kg								6400	1600				1800	1400						

Subsurface Soil Results

									,,										
		Location ID	SUSDP11-1A	SUSDP11-1B	SUSDP11-1B	SUSDP11-1B	SUSDP11-1R	SUSDP11-1B	SUSDP11-1H	SUSDP11-1H	SUSDP11-1H	SUSDP11-1H	SUSDP11-1H	SUSDP11-1H	SUSDP11-2A	SUSDP11-2A	SUSDP11-2A	SUSDP11-2A	SUSDP11-2A
																			3/16/2018
		Sample ID	DPS111A06N	DPS111B01N	DPS111B02N	DPS111B03N	DPS111B04N	DPS111B05N	DPS111H01N	DPS111H02N	DPS111H03N	DPS111H04N	DPS111H05N			DPS112A02N	DPS112A03N	DPS112A04N	
		Depth	6 - 7 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft
		Туре	N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N
	Project Screening																		
	350000				404	40.5	420	40.0		400	2.47	00.0	245	700		400	55.0	20.5	24.0
	440		260		421	19.5	139	10.8		192	347	80.0	245	780		493	55.0	22.5	31.0
																			-
			700	340					330						3700				-
	2.8e+006																		
	630																		
ug/kg	16000																		
ug/kg	100000																		
ug/kg	93000																		
ug/kg	26000																		
							ļ								ļ				
							 						-		ļ				
_																			
																			-
																			-
																			
	1.4e+007																		
ug/kg	6.7e+007																		
ug/kg	5100																		
ug/kg	63000																		
ug/kg																			
																			-
																			+
																			
ug/kg	8200																		
ug/kg	2.7e+006																		
ug/kg	39000																		
ug/kg	37000																		
ug/kg																			
ug/kg							ļ								ļ				ļ
							ļ						ļ		ļ				<u> </u>
							1						1		1				
							-						-		-				+
							1					<u> </u>	1		1				+
							 					+	1		1				+
	3.5e+006						1						1		1				1
	39000						İ						İ		İ				
ug/kg	4.7e+006																		
ug/kg	2.3e+006																		
ug/kg	8200																		
ug/kg	1900		· ·			-				-									
	3.5e+007																		
							ļ								ļ				
ug/kg	250000						1						1		1				
	ug/kg ug/kg	Unit Criteria mg/kg 440 mg/kg 350000 mg/kg mg/kg 440 mg/kg 350000 mg/kg 440 mg/kg 350000 ug/kg 42000 ug/kg 42000 ug/kg 2.8e+006 ug/kg 16000 ug/kg 16000 ug/kg 93000 ug/kg 93000 ug/kg 64 ug/kg 160 ug/kg 6600 ug/kg 930000 ug/kg 100000 ug/kg 110000 ug/kg 110000 ug/kg 110000 ug/kg 6600 ug/kg 110000 ug/kg 110000 ug/kg 11000	Depth Type	Sample Date Sample ID Depth G - 7 ft	Sample Date Sample Date DPS111A06N DPS111B01N DPS111A06N DPS111B01N Type N	Sample Date Sample Date Sample Date Sample ID Debth	Sample Date Sample Date Sample Delt DPS111A00N DPS111B0N DPS111B0N C - 7 ft N	Sample Date	Location D SUSDP11-16 SUSDP11-16 SUSDP11-18 SUSDP11-18 Sumple Date Sum	Location:10 SUSSP11-16 SUSSP11-18 SUS			Losen to Subprise	Leader Supplication Supplicati	Legacy Description Descr		Page Page		Company Comp

Subsurface Soil Results

			1 " 15	011000044.44	011000044.40	011000044.40	011000044.40	011000044.40	011000044 40	011000044 411	011000044 411	011000044 411	011000044 411	01105544 411	011000044 411	011000044.04	011000044.04	011000044.04	011000044.04	T OLIODDA4 O
			Location ID Sample Date	SUSDP11-1A 3/28/2018	3/16/2018	SUSDP11-1B 3/16/2018	SUSDP11-1B 3/16/2018	SUSDP11-1B 3/16/2018	SUSDP11-1B 3/16/2018	SUSDP11-1H 3/16/2018	SUSDP11-1H 3/16/2018	SUSDP11-1H 3/16/2018	SUSDP11-1H 3/16/2018	SUSDP11-1H 3/16/2018	SUSDP11-1H 3/16/2018	SUSDP11-2A 3/16/2018	SUSDP11-2A 3/16/2018	SUSDP11-2A 3/16/2018	SUSDP11-2A 3/16/2018	SUSDP11-2A 3/16/2018
				DPS111A06N		DPS111B02N		DPS111B04N	3/10/2016 DPS111B05N	DPS111H01N	DPS111H02N	DPS111H03N		DPS111H05N			DPS112A02N	DPS112A03N	DPS112A04N	
			Depth	6 - 7 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N
		Project Screening																		
Analyte	Unit	Criteria																		<u> </u>
1,1'-Biphenyl	ug/kg	20000 35000																		<u> </u>
1,2,4,5-Tetrachlorobenzene 2,2'-oxybis(1-Chloropropane)	ug/kg ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		
2,4,5-Trichlorophenol	ug/kg	8.2e+006																		
2,4,6-Trichlorophenol	ug/kg	82000																		
2,4-Dichlorophenol	ug/kg	250000																		
2,4-Dimethylphenol	ug/kg	1.6e+006																		
2,4-Dinitrophenol	ug/kg	160000																		
2,4-Dinitrotoluene	ug/kg	7400																		
2,6-Dinitrotoluene	ug/kg	1500																		<u> </u>
2-Chloronaphthalene	ug/kg	6e+006											-							
2-Chlorophenol 2-Methylnaphthalene	ug/kg ug/kg	580000 300000	+				-	-					-		-	-	-		-	
2-Methylphenol	ug/kg ug/kg	4.1e+006					-	 					-		-	 	 		-	
2-Nitroaniline	ug/kg	800000	+				1	 					<u> </u>		1	 	 		<u> </u>	+
2-Nitrophenol	ug/kg	2.5e+007																		
3,3'-Dichlorobenzidine	ug/kg	5100					1	1					1		1	1	1		1	
3-Nitroaniline	ug/kg	110000																		
4,6-Dinitro-2-methylphenol	ug/kg	6600																		
4-Bromophenyl-phenylether	ug/kg																			
4-Chloro-3-methylphenol	ug/kg	8.2e+006																		
4-Chloroaniline	ug/kg	11000																		<u> </u>
4-Chlorophenyl-phenylether	ug/kg	0.0000																		
4-Methylphenol 4-Nitroaniline	ug/kg ug/kg	8.2e+006 110000																		
4-Nitrophenol	ug/kg	2.5e+007																		
Acenaphthene	ug/kg	4.5e+006																		
Acenaphthylene	ug/kg	4.5e+006																		
Acetophenone	ug/kg	1.2e+007																		
Anthracene	ug/kg	2.3e+007																		
Atrazine	ug/kg	10000																		
Benzaldehyde	ug/kg	820000																		
Benzo(a)anthracene	ug/kg	21000																		<u> </u>
Benzo(a)pyrene	ug/kg	2100											-							
Benzo(b)fluoranthene	ug/kg ug/kg	21000 2.3e+006																		
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ug/kg	210000	+																+	
bis-(2-chloroethoxy)methane	ug/kg	250000						1					1			1			1	
bis-(2-Chloroethyl)ether	ug/kg	1000	+				1	1					1		1	1	1		1	
bis-(2-Ethylhexyl)phthalate	ug/kg	160000																		
Butylbenzylphthalate	ug/kg	1.2e+006																		
Caprolactam	ug/kg	4e+007																		
Carbazole	ug/kg	3e+006																		
Chrysene	ug/kg	2.1e+006					ļ	ļ							ļ	ļ	ļ			_
Dibenzo(a,h)anthracene	ug/kg	2100	-				1	 					1		1	1	1		1	
Dibenzofuran Diethylphthalate	ug/kg ug/kg	100000 6.6e+007	+				1	1					 		1	1	1		 	
Dimethylphthalate	ug/kg ug/kg	6.6e+007					1	 					 		1	 	1		 	
Di-n-butylphthalate	ug/kg	8.2e+006	+				1	 					<u> </u>		1	 	 		<u> </u>	+
Di-n-octylphthalate	ug/kg	820000																		
Fluoranthene	ug/kg	3e+006					1	1					1		1	1	1		1	
		1					1	1							1	1	1			
Fluorene	ug/kg	3e+006	İ																	
Hexachlorobenzene	ug/kg	960																		
Hexachlorobutadiene	ug/kg	5300	-							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-	-				-	-	
Hexachlorocyclo-pentadiene	ug/kg	750																		<u> </u>
Hexachloroethane	ug/kg	8000		· <u> </u>																

Subsurface Soil Results

			Location ID	SUSDP11-1A	SUSDP11-1B	SUSDP11-1B	SUSDP11-1B	SUSDP11-1B	SUSDP11-1B	SUSDP11-1H	SUSDP11-1H	SUSDP11-1H	SUSDP11-1H	SUSDP11-1H	SUSDP11-1H	SUSDP11-2A	SUSDP11-2A	SUSDP11-2A	SUSDP11-2A	SUSDP11-2A
			Sample Date	3/28/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018
			Sample ID	DPS111A06N	DPS111B01N	DPS111B02N	DPS111B03N	DPS111B04N	DPS111B05N	DPS111H01N	DPS111H02N	DPS111H03N	DPS111H04N	DPS111H05N	DPS111H01R	DPS112A01N	DPS112A02N	DPS112A03N	DPS112A04N	DPS112A05N
			Depth	6 - 7 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000																		
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000																		
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007																		
Phenol	ug/kg	2.5e+007																		
Pyrene	ug/kg	2.3e+006																		
BaP-TE	ug/kg	2100																		
Total High-molecular-weight PAHs	ug/kg																			
Total Low-molecular-weight PAHs	ug/kg																			
Total PAHs (sum 16)	ug/kg																			

Subsurface Soil Results

			Location ID	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A
			Sample Date	6/13/2013	6/13/2013	6/13/2013	1/26/2017	1/26/2017	1/30/2017	1/30/2017	1/30/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017
			Sample ID	DPS1205N	DPS1210N	DPS1215N	DPS12F01N	DPS12F02-05N	DPS12F05-10N	DPS12F10-15N	DPS12F15N	DPS121A01N	DPS121A01R	DPS121A02N	DPS121A03N	DPS121A04N	DPS121A10N	DPS121A11N	DPS121A12N	DPS121A13N
			Depth	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	14.5 - 15.5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	10 - 11 ft	11 - 12 ft	12 - 13 ft	13 - 14 ft
		, , , , , , , , , , , , , , , , , , , 	Туре	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	N
		Project Screening																		
Analyte	Unit	Criteria																		
Diesel Range Organics (C10-C20)	mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	440		. 070 11	·	. 00 11	250	2050	947	1340	108									
Diesel Range Organics (C10-C20)	mg/kg	440		< 370 U	75 J	< 22 U														
Oil Range Organics (C20-C36)	mg/kg	350000		2500	1400	130														
Gasoline Range Organics (C6-C10)	ug/kg	42000 3.6e+006		< 100 U	640	310 < 5.0 U														
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/kg ug/kg	2700				< 5.0 U														
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg ug/kg	2.8e+006				< 5.0 U														
1,1,2-Trichloroethane	ug/kg ug/kg	630				< 5.0 U														
1,1-Dichloroethane	ug/kg	16000				< 5.0 U														
1,1-Dichloroethene	ug/kg	100000				< 5.0 U														
1.2.3-Trichlorobenzene	ug/kg	93000				< 5.0 U						 	<u> </u>		 	 				
1,2,4-Trichlorobenzene	ug/kg	26000				< 5.0 U						 	 		1	1				
1,2-Dibromo-3-chloropropane	ug/kg	64				< 5.0 U						 			1	1				
1,2-Dibromoethane	ug/kg	160				< 5.0 U						1	1		1	1				<u> </u>
1,2-Dichlorobenzene	ug/kg	930000				< 5.0 U						1	†		1	1				
1,2-Dichloroethane	ug/kg	2000				< 5.0 U						1	1		1	1				—
1,2-Dichloropropane	ug/kg	6600				< 5.0 U														
1,3-Dichlorobenzene	ug/kg	11000				< 5.0 U														
1,4-Dichlorobenzene	ug/kg	11000				< 5.0 U														
1,4-Dioxane	ug/kg	24000				< 990 U														
2-Butanone	ug/kg	1.9e+007				12														
2-Hexanone	ug/kg	130000				< 5.0 U														
4-Methyl-2-pentanone	ug/kg	1.4e+007				< 5.0 U														
Acetone	ug/kg	6.7e+007				58														
Benzene	ug/kg	5100				< 5.0 U														
Bromochloromethane	ug/kg	63000				< 5.0 U														
Bromodichloromethane	ug/kg	1300				< 5.0 U														
Bromoform	ug/kg	86000				< 5.0 U														
Bromomethane	ug/kg	3000				< 5.0 U														
Carbon Disulfide	ug/kg	350000				< 5.0 U														
Carbon Tetrachloride	ug/kg	2900				< 5.0 U														
Chlorobenzene	ug/kg	130000				< 5.0 U														
Chloroethane	ug/kg	5.7e+006				< 5.0 U														
Chloroform	ug/kg	1400				< 5.0 U														
Chloromethane	ug/kg	46000				< 5.0 U														
cis-1,2-Dichloroethylene	ug/kg	230000				< 5.0 U														
cis-1,3-Dichloropropene	ug/kg	8200				< 5.0 U														
Cyclohexane	ug/kg	2.7e+006				2.3 J						ļ	1		ļ	ļ				
Dibromochloromethane	ug/kg	39000				< 5.0 U						ļ	ļ		1	1				
Dichlorodifluoromethane	ug/kg	37000				< 5.0 U						ļ	ļ		ļ	ļ				
Ethylbenzene	ug/kg	25000				< 5.0 U						ļ								
Isopropylbenzene	ug/kg	990000				< 5.0 U									ļ	ļ				
m, p-Xylene	ug/kg	240000				< 9.9 U						ļ								
Methyl Acetate	ug/kg	1.2e+008				< 5.0 U									ļ	ļ				
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000				< 5.0 U						 	1		1	1				
Methylogo Chlorida	ug/kg	2.7e+006				6.1						1	1		1	1				
Methylene Chloride	ug/kg	320000				< 5.0 U						 	1		 	 				
o-Xylene Styrono	ug/kg	280000				< 5.0 U						1	 		1	1				
Styrene	ug/kg	3.5e+006				< 5.0 U						 	 		 	 				
Tetrachloroethylene	ug/kg	39000				< 5.0 U						 	 		 	 				
Toluene	ug/kg	4.7e+006				< 5.0 U						1	1		1	1				1
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ug/kg	2.3e+006 8200				< 5.0 U						1	 		1	1				
	ug/kg											 	 		 	 				
Trichloroethene Trichlorofluoromethane	ug/kg	1900 3.5e+007				< 5.0 U						1	 		1	1				
Vinyl Chloride	ug/kg	3.5e+007 1700				< 5.0 U						1	 		1	1				
-	ug/kg											1	 		1	1				
Xylenes (total)	ug/kg	250000				< 9.9 U						İ			İ	l]]	

Subsurface Soil Results

			Location ID		SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1
			Sample Date		6/13/2013	6/13/2013	1/26/2017	1/26/2017	1/30/2017	1/30/2017	1/30/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017
			Sample ID		DPS1210N 9.5 - 10.5 ft	DPS1215N 14.5 - 15.5 ft	DPS12F01N	DPS12F02-05N	DPS12F05-10N 5 - 10 ft	DPS12F10-15N 10 - 15 ft	DPS12F15N 14.5 - 15.5 ft	DPS121A01N 1 - 2 ft		DPS121A02N	DPS121A03N 3 - 4 ft	DPS121A04N 4 - 5 ft	DPS121A10N 10 - 11 ft	DPS121A11N 11 - 12 ft	DPS121A12N 12 - 13 ft	DPS121A13 13 - 14 ft
			Depth Type	4.5 - 5.5 ft N	9.5 - 10.5 IL N	14.5 - 15.5 IL N	1 - 2 ft N	2 - 5 ft N	5 - 10 IL N	10 - 15 It N	14.5 - 15.5 IL N	1 - 2 IL N	1 - 2 ft FD	2 - 3 ft N	3 - 4 II	4 - 5 IL	N N	N N	12 - 13 IL N	13 - 14 IL N
			Турс	14	1,	IN .	- 14	14	14			14	1.5	IN .	14	14	14	14	1	14
		Project Screening																		
Analyte	Unit	Criteria																		
1,1'-Biphenyl	ug/kg	20000																		
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																		
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ug/kg	8.2e+006 82000																<u> </u>	<u> </u>	+
2,4-Dichlorophenol	ug/kg ug/kg	250000			+													 	 	+
2,4-Dimethylphenol	ug/kg	1.6e+006			1													 	<u> </u>	
2,4-Dinitrophenol	ug/kg	160000																		
2,4-Dinitrotoluene	ug/kg	7400																		
2,6-Dinitrotoluene	ug/kg	1500																		
2-Chloronaphthalene	ug/kg	6e+006																		
2-Chlorophenol	ug/kg	580000					_													
2-Methylnaphthalene	ug/kg	300000																		
2-Methylphenol	ug/kg	4.1e+006		ļ								ļ								
2-Nitrophanal	ug/kg	800000								1		 						 	 	
2-Nitrophenol 3,3'-Dichlorobenzidine	ug/kg	2.5e+007 5100								1		1						 	 	
3-Nitroaniline	ug/kg ug/kg	110000																<u> </u>	 	
4,6-Dinitro-2-methylphenol	ug/kg	6600																		+
4-Bromophenyl-phenylether	ug/kg	3000																	 	
4-Chloro-3-methylphenol	ug/kg	8.2e+006			1															
4-Chloroaniline	ug/kg	11000																		
4-Chlorophenyl-phenylether	ug/kg																			
4-Methylphenol	ug/kg	8.2e+006																		
4-Nitroaniline	ug/kg	110000																		
4-Nitrophenol	ug/kg	2.5e+007																		ļ
Acenaphthene	ug/kg	4.5e+006		170	9.3 J	4.8 J	6.1 J	3100	330	510	130	5400 J	91000 J	860	130	90	940	19	< 8.5 U	< 8.6 U
Acetaphone	ug/kg	4.5e+006 1.2e+007		140	8.7 J	7.4 J	5.3 J	130 J	38 J	43 J	16	< 680 U	930 J	< 860 U	48 J	42	80	4.1 J	< 8.5 U	< 8.6 U
Acetophenone Anthracene	ug/kg ug/kg	2.3e+007		590	19 J	13 J	14	6000	670	1400	260	8900 J	150000 J	2200	330	460	1700	22	< 8.5 U	< 8.6 U
Atrazine	ug/kg	10000		330	130	13.0		0000	070	1400	200	03000	1300000	2200	330	400	1700		10.00	1 0.0 0
Benzaldehyde	ug/kg	820000		1	1														 	
Benzo(a)anthracene	ug/kg	21000		1300	48	45	60	100000	1400	3400	660	20000 J	200000 J	3600	1100	1000	4700	72	5.9 J	< 8.6 U
Benzo(a)pyrene	ug/kg	2100		1100	46	41 J	45	100000	1300	3000	570	18000 J	160000 J	3200	940	830	3800	68	5.2 J	< 8.6 U
Benzo(b)fluoranthene	ug/kg	21000		1300	46	39 J	84	120000	1600	3500	590	22000 J	190000 J	4400	1300	1100	4800	86	7.3 J	< 8.6 U
Benzo(g,h,i)perylene	ug/kg	2.3e+006		820	39 J	35 J	40	59000	1200	1800	420	13000 J	120000 J	2700	840	740	3100	56	3.9 J	< 8.6 U
Benzo(k)fluoranthene	ug/kg	210000		560	19 J	26 J	21	52000	610	1200	230	6700 J	71000 J	970	360	380	1900	31	< 8.5 U	< 8.6 U
bis-(2-chloroethoxy)methane	ug/kg	250000								ļ		ļ								
bis-(2-Chloroethyl)ether	ug/kg	1000								1		1							 	
bis-(2-Ethylhexyl)phthalate Butylbenzylphthalate	ug/kg ug/kg	160000 1.2e+006								-		 						 	 	
Caprolactam	ug/kg	4e+007		<u> </u>	 					1		 						 	 	
Carbazole	ug/kg	3e+006										1						 	 	
Chrysene	ug/kg	2.1e+006		1400	50	50	98	97000	1300	3100	660	17000 J	180000 J	3400	1000	920	4800	74	5.4 J	< 8.6 U
Dibenzo(a,h)anthracene	ug/kg	2100		200	10 J	< 44 U	12	16000	320	500	120	< 680 U	< 1700 U	< 860 U	250	230	990	18	< 8.5 U	< 8.6 U
Dibenzofuran	ug/kg	100000																		
Diethylphthalate	ug/kg	6.6e+007																		
Dimethylphthalate	ug/kg	6.6e+007																<u> </u>	<u> </u>	
Di-n-butylphthalate	ug/kg	8.2e+006										 								
Di-n-octylphthalate	ug/kg	820000		2000	00	02	04	440000	2022	6400	020	46000 !	E40000 !	0200	2200	2222	0000	140		- 0 G I I
Fluoranthene	ug/kg	3e+006		2900	99	83	94	110000	2900	6100	930	46000 J	540000 J	9300	2200	2300	9900	140	8.6	< 8.6 U
		201006	1	470	9.8 J	8.5 J	9.3	1600	310	500	110	4000 J	75000 J	1100	120	110	1100	21	< 8.5 U	< 8.6 U
IFluorene	II/V/Va						. J.J	1 1000	310	300	1 110	4000 J	7 3000 J	1100	120	110	1100	41	~ 0.0 U	\ 0.0 U
Fluorene Hexachlorobenzene	ug/kg ug/kg	3e+006 960		170	3.00	0.00														
Hexachlorobenzene	ug/kg	960		170	3.5 0	0.00														
				170	3.5 0	0.00														

Subsurface Soil Results

			Location ID	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A
			Sample Date		6/13/2013	6/13/2013	1/26/2017	1/26/2017	1/30/2017	1/30/2017	1/30/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017
				DPS1205N	DPS1210N	DPS1215N	DPS12F01N			DPS12F10-15N	DPS12F15N	DPS121A01N				DPS121A04N	DPS121A10N	DPS121A11N		DPS121A13N
			Depth	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	14.5 - 15.5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	10 - 11 ft	11 - 12 ft	12 - 13 ft	13 - 14 ft
			·	4.5 - 5.5 It	9.5 - 10.5 It	14.5 - 15.5 It	1-211	2-5 it	3 - 10 IL	10 - 13 10	14.5 - 15.5 1	1 - 2 IL		2 - 3 IL	3-4 IL	4-31t	10 - 11 IL	11 - 12 IL	12 - 15 IL	15 - 14 IL
		1	Туре	IN .	IN	IN	IN	IN IN	IN .	IN .	IN	IN .	FD	IN	IN	IN .	IN .	IN	IN .	IN .
		D : 10 :																		,
Analyte	Unit	Project Screening Criteria																		,
Indeno(1,2,3-cd)pyrene	ug/kg	21000		700	33 J	29 J	32	59000	1000	1700	370	12000 J	110000 J	2400	770	690	2900	52	3.4 J	< 8.6 U
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000		100	6.7 J	3.8 J	26	1600	350	69 J	24	1100 J	30000 J	430 J	99	38	220	13	< 8.5 U	< 8.6 U
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		1
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		1
Phenanthrene	ug/kg	2.3e+007		1700	52 J	31 J	120	22000	2700	4800	910	33000 J	500000 J	7400	1200	1500	6300	78	6.4 J	< 8.6 U
Phenol	ug/kg	2.5e+007																		1
Pyrene	ug/kg	2.3e+006		2000	70 J	65	73	100000	2500	5200	1000	38000 J	390000 J	6200	1500	1400	7600	110	9.3	< 8.6 U
BaP-TE	ug/kg	2100		1640	68.9	52.6	74.9	145000	2030	4380	855	23500	211000	4250	1510	1340	6050	107	6.87	< 8.60 U
Total High-molecular-weight PAHs	ug/kg			12000	460	410	560	810000	14000	30000	5600	190000	2000000	36000	10000	9600	44000	710	49	< 8.6 U
Total Low-molecular-weight PAHs	ug/kg			2900	110	69	180	34000	4400	7300	1500	52000	850000	12000	1900	2200	10000	160	6.4	< 8.6 U
Total PAHs (sum 16)	ug/kg			15000	570	480	740	850000	19000	37000	7000	250000	2800000	48000	12000	12000	55000	860	55	< 8.6 U

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

					T	T							I							T
			Location ID		SUSDP12-1C		SUSDP12-1C				SUSDP12-1C		SUSDP12-1E	SUSDP12-1E		SUSDP12-1E			SUSDP12-1E	SUSDP12-1E
			Sample Date	8/23/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/23/2017	8/23/2017	8/23/2017	8/11/2017	8/11/2017	8/11/2017	8/11/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017
			Sample ID		DPS121C01N	DPS121C02N	DPS121C03N	DPS121C04N	DPS121C05N	DPS121C10N	DPS121C11N	DPS121E01N	DPS121E02N	DPS121E03N	DPS121E04N	DPS121E10N	DPS121E11N	DPS121E12N	DPS121E13N	DPS121E14N
			Depth	14 - 15 ft N	1 - 2 ft	2 - 3 ft	3 - 4 ft N	4 - 5 ft N	5 - 6 ft N	10 - 11 ft N	11 - 12 ft	1 - 2 ft N	2 - 3 ft N	3 - 4 ft N	4 - 5 ft N	10 - 11 ft	11 - 12 ft	12 - 13 ft	13 - 14 ft N	14 - 15 ft N
			Туре	IN .	N	N	IN .	IN	IN	IN .	N	IN	IN	IN	IN	N	N	N	IN	IN
		Project Screening																		
Analyte	Unit	Criteria																		
Diesel Range Organics (C10-C20)	mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		
	mg/kg																			
Diesel Range Organics (C10-C20)	mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		
Gasoline Range Organics (C6-C10)	ug/kg	42000																		
1,1,1-Trichloroethane	ug/kg	3.6e+006																		
1,1,2,2-Tetrachloroethane	ug/kg	2700																		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006																		
1,1,2-Trichloroethane	ug/kg	630																		
1,1-Dichloroethane	ug/kg	16000																		
1,1-Dichloroethene	ug/kg	100000																		
1,2,3-Trichlorobenzene	ug/kg	93000				ļ														
1,2,4-Trichlorobenzene	ug/kg	26000				ļ														
1,2-Dibromo-3-chloropropane	ug/kg	64																		
1,2-Dibromoethane	ug/kg	160																		
1,2-Dichlorobenzene	ug/kg	930000																		\vdash
1,2-Dichloroethane	ug/kg	2000 6600																		
1,2-Dichloropropane	ug/kg	11000																		
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/kg	11000																		
1,4-Dioxane	ug/kg ug/kg	24000																		\vdash
2-Butanone	ug/kg	1.9e+007																		-
2-Hexanone	ug/kg	130000																		
4-Methyl-2-pentanone	ug/kg	1.4e+007																		
Acetone	ug/kg	6.7e+007																		
Benzene	ug/kg	5100																		
Bromochloromethane	ug/kg	63000																		
Bromodichloromethane	ug/kg	1300																		
Bromoform	ug/kg	86000																		
Bromomethane	ug/kg	3000																		
Carbon Disulfide	ug/kg	350000																		
Carbon Tetrachloride	ug/kg	2900																		
Chlorobenzene	ug/kg	130000																		
Chloroethane	ug/kg	5.7e+006																		
Chloroform	ug/kg	1400																		
Chloromethane	ug/kg	46000																		\vdash
cis-1,2-Dichloroethylene	ug/kg	230000 8200																		
cis-1,3-Dichloropropene Cyclohexane	ug/kg ug/kg	2.7e+006			-	-							-							
Dibromochloromethane	ug/kg ug/kg	39000			1	 		1												
Dichlorodifluoromethane	ug/kg	37000			<u> </u>	 		 												
	ug/kg	25000			1															
	ug/kg	990000			İ	1														
	ug/kg	240000																		
Methyl Acetate	ug/kg	1.2e+008																		
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000																		
Methylcyclohexane	ug/kg	2.7e+006																		
Methylene Chloride	ug/kg	320000																		
o-Xylene	ug/kg	280000														-				
Styrene	ug/kg	3.5e+006																		
Tetrachloroethylene	ug/kg	39000																		
Toluene	ug/kg	4.7e+006				ļ		<u> </u>												
trans-1,2-Dichloroethene	ug/kg	2.3e+006				ļ														
trans-1,3-Dichloropropene	ug/kg	8200				ļ														
	ug/kg	1900			1															
	ug/kg	3.5e+007				-														\vdash
	ug/kg	1700				1		-												
Xylenes (total)	ug/kg	250000		<u> </u>	1	1														

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP12-1A	SUSDP12-1C	SUSDP12-1C	SUSDP12-1C	SUSDP12-1C	SUSDP12-1C	SUSDP12-1C	SUSDP12-1C	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E
			Sample Date	8/23/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/23/2017	8/23/2017	8/23/2017	8/11/2017	8/11/2017	8/11/2017	8/11/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017
			Sample ID	DPS121A14N	DPS121C01N	DPS121C02N	DPS121C03N	DPS121C04N	DPS121C05N	DPS121C10N	DPS121C11N	DPS121E01N	DPS121E02N	DPS121E03N	DPS121E04N	DPS121E10N	DPS121E11N	DPS121E12N	DPS121E13N	DPS121E14N
			Depth	14 - 15 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	10 - 11 ft	11 - 12 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	10 - 11 ft	11 - 12 ft	12 - 13 ft	13 - 14 ft	14 - 15 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																		
Analyte	Unit	Criteria																		
1,1'-Biphenyl	ug/kg	20000																		
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																		
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		
2,4,5-Trichlorophenol	ug/kg	8.2e+006																		<u> </u>
2,4,6-Trichlorophenol	ug/kg	82000																		
2,4-Dichlorophenol	ug/kg	250000																		
2,4-Dimethylphenol 2,4-Dinitrophenol	ug/kg	1.6e+006 160000																		
2,4-Dinitroprienoi	ug/kg ug/kg	7400																		-
2,6-Dinitrotoluene	ug/kg	1500																		
2-Chloronaphthalene	ug/kg	6e+006			 					 			 	 	 	 				
2-Chlorophenol	ug/kg	580000								†			1	1	1	1				†
2-Methylnaphthalene	ug/kg	300000											İ	İ						
2-Methylphenol	ug/kg	4.1e+006																		
2-Nitroaniline	ug/kg	800000																		
2-Nitrophenol	ug/kg	2.5e+007																		
3,3'-Dichlorobenzidine	ug/kg	5100																		
3-Nitroaniline	ug/kg	110000																		
4,6-Dinitro-2-methylphenol	ug/kg	6600																		
4-Bromophenyl-phenylether	ug/kg																			
4-Chloro-3-methylphenol	ug/kg	8.2e+006																		
4-Chloroaniline	ug/kg	11000																		
4-Chlorophenyl-phenylether 4-Methylphenol	ug/kg ug/kg	8.2e+006																		<u> </u>
4-Nitroaniline	ug/kg	110000								+					+	+				
4-Nitrophenol	ug/kg	2.5e+007																		
Acenaphthene	ug/kg	4.5e+006		< 8.7 U	8.2	120	1100	4500	58	44	8.7	12	< 8.1 U	< 8.4 U	< 8.8 U	< 7.7 U	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Acenaphthylene	ug/kg	4.5e+006		< 8.7 U	4.3 J	20	< 340 U	380 J	44	97	15	16	< 8.1 U	< 8.4 U	< 8.8 U	< 7.7 U	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Acetophenone	ug/kg	1.2e+007																		
Anthracene	ug/kg	2.3e+007		< 8.7 U	17	260	2400	9200	130	170	32	41	6.5 J	< 8.4 U	< 8.8 U	3.3 J	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Atrazine	ug/kg	10000																		
Benzaldehyde	ug/kg	820000																		
Benzo(a)anthracene	ug/kg	21000		< 8.7 U	64	790	5400	17000	520	430	110	150	21	< 8.4 U	3.6 J	4.4 J	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Benzo(a)pyrene	ug/kg	2100		< 8.7 U	60	750	4700	15000	450	450	120	140	20	< 8.4 U	< 8.8 U	3.2 J	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Benzo(b)fluoranthene	ug/kg	21000		< 8.7 U	81	920	5800	19000	610	610	170	260	31	< 8.4 U	< 8.8 U	< 7.7 U	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Benzo(g,h,i)perylene	ug/kg	2.3e+006		< 8.7 U	50	590	3400	11000	410	430	110	140	18	< 8.4 U	< 8.8 U	< 7.7 U	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Benzo(k)fluoranthene	ug/kg	210000		< 8.7 U	20	330	2100	6200	230	190	40	70	12	< 8.4 U	< 8.8 U	3.0 J	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
bis-(2-chloroethoxy)methane	ug/kg	250000 1000											1	1	 	 				
bis-(2-Chloroethyl)ether bis-(2-Ethylhexyl)phthalate	ug/kg	160000								-			-	-	-	-				
Butylbenzylphthalate	ug/kg ug/kg	1.2e+006								 			 	 	1	1			1	
Caprolactam	ug/kg	4e+007								 			+	+	 	 				
Carbazole	ug/kg	3e+006			 					 			 	 	 	 				
Chrysene	ug/kg	2.1e+006		< 8.7 U	77	840	5100	17000	510	530	130	190	24	3.4 J	4.2 J	3.3 J	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Dibenzo(a,h)anthracene	ug/kg	2100		< 8.7 U	17	160	1000	3100	< 29 U	110	27	47	6.1 J	< 8.4 U	< 8.8 U	< 7.7 U	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Dibenzofuran	ug/kg	100000																		
Diethylphthalate	ug/kg	6.6e+007																		
Dimethylphthalate	ug/kg	6.6e+007																		
Di-n-butylphthalate	ug/kg	8.2e+006		· · · · · · · · · · · · · · · · · · ·																
Di-n-octylphthalate	ug/kg	820000																		
Fluoranthene	ug/kg	3e+006		< 8.7 U	110	1500	12000	38000	1100	920	210	310	43	4.8 J	8.0 J	9.6	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
5.																		0		
Fluorene	ug/kg	3e+006		< 8.7 U	8.2	110	1200	5700	51	83	13	11	< 8.1 U	< 8.4 U	< 8.8 U	< 7.7 U	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Hexachlorobenzene	ug/kg	960											 	 	1	1			-	
Hexachlorocyclo pentadiene	ug/kg	5300 750								 		1	 	1	 	 			+	
Hexachlorocyclo-pentadiene	ug/kg	1 30							1			1			Ì	Ì	1			1

Subsurface Soil Results

			Location ID	SUSDP12-1A	SUSDP12-1C	SUSDP12-1C	SUSDP12-1C	SUSDP12-1C	SUSDP12-1C	SUSDP12-1C	SUSDP12-1C	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E	SUSDP12-1E
			Sample Date	8/23/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/23/2017	8/23/2017	8/23/2017	8/11/2017	8/11/2017	8/11/2017	8/11/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017
			Sample ID	DPS121A14N	DPS121C01N	DPS121C02N	DPS121C03N	DPS121C04N	DPS121C05N	DPS121C10N	DPS121C11N	DPS121E01N	DPS121E02N	DPS121E03N	DPS121E04N	DPS121E10N	DPS121E11N	DPS121E12N	DPS121E13N	DPS121E14N
			Depth	14 - 15 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	10 - 11 ft	11 - 12 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	10 - 11 ft	11 - 12 ft	12 - 13 ft	13 - 14 ft	14 - 15 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
																				<u> </u>
		Project Screening																		i
Analyte	Unit	Criteria																		<u>i</u>
Indeno(1,2,3-cd)pyrene	ug/kg	21000		< 8.7 U	41	510	3200	10000	350	410	100	130	18	< 8.4 U	< 8.8 U	< 7.7 U	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Isophorone	ug/kg	2.4e+006																		1
Naphthalene	ug/kg	17000		< 8.7 U	10	40	310 J	1100	84	260	22	78	3.9 J	< 8.4 U	< 8.8 U	< 7.7 U	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007		< 8.7 U	79	950	8700	31000	480	500	110	170	21	3.5 J	6.7 J	9.1	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
Phenol	ug/kg	2.5e+007																		
Pyrene	ug/kg	2.3e+006		< 8.7 U	90	1200	8300	27000	710	560	170	210	33	< 8.4 U	6.3 J	7.1 J	< 7.9 U	< 8.2 U	< 8.1 U	< 8.0 U
BaP-TE	ug/kg	2100		< 8.70 U	95.9	1140	7170	22800	601	707	186	242	33.2	0.00340	0.364	3.67	< 7.90 U	< 8.20 U	< 8.10 U	< 8.00 U
Total High-molecular-weight PAHs	ug/kg			< 8.7 U	610	7600	51000	160000	4900	4600	1200	1600	230	8.2	22	31	< 7.9 U	< 8.2 U	< 8.1 U	< 8 U
Total Low-molecular-weight PAHs	ug/kg			< 8.7 U	130	1500	14000	52000	850	1200	200	330	31	3.5	6.7	12	< 7.9 U	< 8.2 U	< 8.1 U	< 8 U
Total PAHs (sum 16)	ug/kg			< 8.7 U	740	9100	65000	220000	5700	5800	1400	2000	260	12	29	43	< 7.9 U	< 8.2 U	< 8.1 U	< 8 U

Subsurface Soil Results

										.OII, DC 2001	•									
			Location ID	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-2K	SUSDP12-3A	SUSDP12-3A	SUSDP12-3A	SUSDP13	SUSDP13	SUSDP13
			Sample Date	8/11/2017	8/11/2017	8/11/2017	8/11/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	1/30/2018	2/1/2018	2/1/2018	3/28/2018	5/20/2013	5/29/2013	5/29/2013
			·	DPS121G01N	DPS121G02N	DPS121G03N	DPS121G04N	DPS121G10N	DPS121G11N	DPS121G11R	DPS121G12N	DPS121G13N	DPS121G14N	DPS122K01N	DPS123A01N	DPS123A02N	DPS123A10N	DPS1305N	DPS1310N	DPS1315N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	10 - 11 ft	11 - 12 ft	11 - 12 ft	12 - 13 ft	13 - 14 ft	14 - 15 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	10 - 11 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 f
			Type	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N
																				i
		Project Screening																		i
Analyte	Unit	Criteria																		ı
Diesel Range Organics (C10-C20)	mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		
Total Petroleum Hydrocarbons (C9-C44)	mg/kg																			
Diesel Range Organics (C10-C20)	mg/kg	440																< 19 U	< 18 U	< 22 U
Oil Range Organics (C20-C36)	mg/kg	350000						1									1	38	48	< 22 U
Gasoline Range Organics (C6-C10) 1,1,1-Trichloroethane	ug/kg	42000 3.6e+006																< 88 UJ	< 100 U < 4.9 U	< 90 U
1,1,2,2-Tetrachloroethane	ug/kg ug/kg	2700																	< 4.9 U	
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006						+									+		< 4.9 U	
1,1,2-Trichloroethane	ug/kg	630																	< 4.9 U	
1,1-Dichloroethane	ug/kg	16000																	< 4.9 U	i
1,1-Dichloroethene	ug/kg	100000				1		1		1							1		< 4.9 U	
1,2,3-Trichlorobenzene	ug/kg	93000				1		1		1							1		< 4.9 U	
1,2,4-Trichlorobenzene	ug/kg	26000																	< 4.9 U	1
1,2-Dibromo-3-chloropropane	ug/kg	64																	< 4.9 U	
1,2-Dibromoethane	ug/kg	160																	< 4.9 U	
1,2-Dichlorobenzene	ug/kg	930000																	< 4.9 U	
1,2-Dichloroethane	ug/kg	2000																	< 4.9 U	
1,2-Dichloropropane	ug/kg	6600																	< 4.9 U	
1,3-Dichlorobenzene	ug/kg	11000																	< 4.9 U	
1,4-Dichlorobenzene	ug/kg	11000																	< 4.9 U	
1,4-Dioxane	ug/kg	24000																	< 980 U	
2-Butanone	ug/kg	1.9e+007																	< 4.9 U	-
2-Hexanone	ug/kg	130000 1.4e+007																	< 4.9 U < 4.9 U	
4-Methyl-2-pentanone Acetone	ug/kg ug/kg	6.7e+007																	< 4.9 U	
Benzene	ug/kg ug/kg	5100						+									+		< 4.9 U	
Bromochloromethane	ug/kg	63000																	< 4.9 U	
Bromodichloromethane	ug/kg	1300																	< 4.9 U	i
Bromoform	ug/kg	86000																	< 4.9 U	
Bromomethane	ug/kg	3000																	< 4.9 U	i
Carbon Disulfide	ug/kg	350000																	< 4.9 U	i
Carbon Tetrachloride	ug/kg	2900																	< 4.9 U	
Chlorobenzene	ug/kg	130000																	< 4.9 U	
Chloroethane	ug/kg	5.7e+006																	< 4.9 U	
Chloroform	ug/kg	1400																	< 4.9 U	
Chloromethane	ug/kg	46000																	< 4.9 U	
cis-1,2-Dichloroethylene cis-1,3-Dichloropropene	ug/kg	230000 8200				1		 		1						1	 	1	< 4.9 U < 4.9 U	
Cyclohexane	ug/kg	2.7e+006				1		1		1							 		< 4.9 U	1
Dibromochloromethane	ug/kg ug/kg	39000				 		1		 							1		< 4.9 U	
Dichlorodifluoromethane	ug/kg	37000				+		 		+							 		< 4.9 U	
Ethylbenzene	ug/kg	25000				1		1		1							1		< 4.9 U	
Isopropylbenzene	ug/kg	990000				1		1		1							1		< 4.9 U	
m, p-Xylene	ug/kg	240000																	< 9.8 U	
Methyl Acetate	ug/kg	1.2e+008																İ	< 4.9 U	
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000								<u> </u>									< 4.9 U	
Methylcyclohexane	ug/kg	2.7e+006																	< 4.9 U	
Methylene Chloride	ug/kg	320000																	< 4.9 U	
o-Xylene	ug/kg	280000																	< 4.9 U	
Styrene	ug/kg	3.5e+006								ļ									< 4.9 U	<u> </u>
Tetrachloroethylene	ug/kg	39000				ļ		1		ļ							1		< 4.9 U	
Toluene	ug/kg	4.7e+006								ļ									< 4.9 U	
trans-1,2-Dichloroethene	ug/kg	2.3e+006				ļ		-		 							-		< 4.9 U	
trans-1,3-Dichloropropene	ug/kg	8200						-		ļ						-	-		< 4.9 U	
Trichloroethene Trichlorofluoromethene	ug/kg	1900				1		 		1							 		< 4.9 U	
Trichlorofluoromethane	ug/kg	3.5e+007			1	1		 		1						1	 	 	< 4.9 U < 4.9 U	
Vinyl Chloride	ug/kg	1700 250000			1	1		 		1						1	 	 		
Xylenes (total)	ug/kg	∠50000				1	l			l	l .			l	l			1	< 9.8 U	

Subsurface Soil Results

			Location ID	SUSDP12-1G		SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G		SUSDP12-3A	SUSDP12-3A	SUSDP12-3A	SUSDP13	SUSDP13	SUSDP13
			Sample Date	8/11/2017	8/11/2017	8/11/2017	8/11/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	1/30/2018	2/1/2018	2/1/2018	3/28/2018	5/20/2013	5/29/2013	5/29/2013
			Sample ID	DPS121G01N	DPS121G02N	DPS121G03N	DPS121G04N	DPS121G10N	DPS121G11N	DPS121G11R	DPS121G12N	DPS121G13N	DPS121G14N	DPS122K01N	DPS123A01N	DPS123A02N	DPS123A10N	DPS1305N	DPS1310N	DPS1315N
			Depth	1 - 2 ft	2 - 3 ft N	3 - 4 ft N	4 - 5 ft N	10 - 11 ft N	11 - 12 ft N	11 - 12 ft FD	12 - 13 ft N	13 - 14 ft N	14 - 15 ft N	1 - 2 ft N	1 - 2 ft N	2 - 3 ft N	10 - 11 ft N	4.5 - 5.5 ft N	9.5 - 10.5 ft N	14.5 - 15.5
			Туре	N	IN	IN	IN	IN	IN	FD	IN	IN	IN	IN	IN	IN	IN	IN	IN	N
		Project Screening																		1
Analyte	Unit	Criteria																		1
1,1'-Biphenyl	ug/kg	20000																		
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																		
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		
2,4,5-Trichlorophenol	ug/kg	8.2e+006																		1
2,4,6-Trichlorophenol	ug/kg	82000																		—
2,4-Dichlorophenol 2,4-Dimethylphenol	ug/kg ug/kg	250000 1.6e+006																		
2,4-Dinitrophenol	ug/kg	160000																		
2,4-Dinitrotoluene	ug/kg	7400																		<u> </u>
2,6-Dinitrotoluene	ug/kg	1500																		
2-Chloronaphthalene	ug/kg	6e+006																		
2-Chlorophenol	ug/kg	580000																		
2-Methylnaphthalene	ug/kg	300000																		
2-Methylphenol	ug/kg	4.1e+006																		
2-Nitroaniline	ug/kg	800000												ļ	ļ		ļ			
2-Nitrophenol	ug/kg	2.5e+007																		
3,3'-Dichlorobenzidine	ug/kg	5100																		
3-Nitroaniline 4,6-Dinitro-2-methylphenol	ug/kg	110000 6600																		
4-Bromophenyl-phenylether	ug/kg ug/kg	0000																		
4-Chloro-3-methylphenol	ug/kg	8.2e+006																		—
4-Chloroaniline	ug/kg	11000																		
4-Chlorophenyl-phenylether	ug/kg																			
4-Methylphenol	ug/kg	8.2e+006																		
4-Nitroaniline	ug/kg	110000																		
4-Nitrophenol	ug/kg	2.5e+007																		<u></u>
Acenaphthene	ug/kg	4.5e+006		13000	300	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	6.3 J	60	< 79 U	22			└
Acenaphthylene	ug/kg	4.5e+006		430 J	47	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	35	22	< 79 U	22			
Actorphenone	ug/kg ug/kg	1.2e+007 2.3e+007		28000	640	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	68	150	43 J	87			
Anthracene Atrazine	ug/kg	10000		28000	040	< 1.7 0	< 8.5 U	× 9.1 U	\ 9.0 U	\ 0.4 U	\ 0.9 U	\ 0.3 U	\ 6.0 O	00	150	43 3	67			
Benzaldehyde	ug/kg	820000																		—
Benzo(a)anthracene	ug/kg	21000		54000	1200	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	86	530	85	250			
Benzo(a)pyrene	ug/kg	2100		45000	960	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	210	470	150	230			
Benzo(b)fluoranthene	ug/kg	21000		51000	1100	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	390	390	130	240			
Benzo(g,h,i)perylene	ug/kg	2.3e+006		36000	880	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	270	330	300	130			
Benzo(k)fluoranthene	ug/kg	210000		24000	460	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	100	470	39 J	120			L
bis-(2-chloroethoxy)methane	ug/kg	250000																		
bis-(2-Chloroethyl)ether	ug/kg	1000			1						-			1	1	1	 			
bis-(2-Ethylhexyl)phthalate	ug/kg	160000			-						-			1	1	 	1			
Butylbenzylphthalate Caprolactam	ug/kg ug/kg	1.2e+006 4e+007	 		-						-			 	 	-	 			
Carbazole	ug/kg	3e+007	 		1									1	1	 	 	1		
Chrysene	ug/kg	2.1e+006		51000	1100	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	130	550	120	230			
Dibenzo(a,h)anthracene	ug/kg	2100		9800	240	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	58	97	210	36			
Dibenzofuran	ug/kg	100000																		
Diethylphthalate	ug/kg	6.6e+007																		
Dimethylphthalate	ug/kg	6.6e+007																		
Di-n-butylphthalate	ug/kg	8.2e+006												ļ	ļ		ļ			
Di-n-octylphthalate	ug/kg	820000		45			105	20411	400		.00		400							
Fluoranthene	ug/kg	3e+006		150000	3100	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	160	1300	150	520			1
Eluorene	ua/ka	304006		0000	260	e 7 7 1 1	< 8.5 U	< 9.1 U	< 9.011	< Q 4 I I	< 9 O I I	~ Q 2 I I	< 8 O I I	22	64	20 1	20	1		
Fluorene Hexachlorobenzene	ug/kg	3e+006 960	 	9800	260	< 7.7 U	> 0.5 U	<u> </u>	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	22	64	28 J	28			
Hexachlorobutadiene	ug/kg ug/kg	5300			 									 	 	 	 			
Hexachlorocyclo-pentadiene	ug/kg	750												1	1	1	1			
	-9'9		1					1		1	1			1	1		1	1		

Subsurface Soil Results

			Location ID	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP12-2K	SUSDP12-3A	SUSDP12-3A	SUSDP12-3A	SUSDP13	SUSDP13	SUSDP13
			Sample Date		8/11/2017	8/11/2017	8/11/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	8/23/2017	1/30/2018	2/1/2018	2/1/2018	3/28/2018	5/20/2013	5/29/2013	5/29/2013
			'			DPS121G03N	DPS121G04N				DPS121G12N				DPS123A01N		DPS123A10N	DPS1305N	DPS1310N	DPS1315N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	10 - 11 ft	11 - 12 ft	11 - 12 ft	12 - 13 ft	13 - 14 ft	14 - 15 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	10 - 11 ft		9.5 - 10.5 ft	14.5 - 15.5 ft
			Type	N	N N	N	N	N	N N	FD	N N	N	N	N N	N N	N	N	N	N	N N
																				·
		Project Screening																		1
Analyte	Unit	Criteria																		ı
Indeno(1,2,3-cd)pyrene	ug/kg	21000		33000	780	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	180	300	170	120			i
Isophorone	ug/kg	2.4e+006																		1
Naphthalene	ug/kg	17000		3800	60	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	41	100	< 79 U	13			
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		1
Pentachlorophenol	ug/kg	4000																		i
Phenanthrene	ug/kg	2.3e+007		110000	2400	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	140	850	120	300			
Phenol	ug/kg	2.5e+007																		i
Pyrene	ug/kg	2.3e+006		110000	2100	< 7.7 U	< 8.5 U	< 9.1 U	< 9.0 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8.0 U	94	810	110	450			
BaP-TE	ug/kg	2100		68900	1510	< 7.70 U	< 8.50 U	< 9.10 U	< 9.00 U	< 8.40 U	< 8.90 U	< 8.30 U	< 8.00 U	335	694	399	328			1
Total High-molecular-weight PAHs	ug/kg			560000	12000	< 7.7 U	< 8.5 U	< 9.1 U	< 9 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8 U	1700	5200	1500	2300			
Total Low-molecular-weight PAHs	ug/kg			170000	3700	< 7.7 U	< 8.5 U	< 9.1 U	< 9 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8 U	310	1200	190	470			
Total PAHs (sum 16)	ug/kg			730000	16000	< 7.7 U	< 8.5 U	< 9.1 U	< 9 U	< 8.4 U	< 8.9 U	< 8.3 U	< 8 U	2000	6500	1700	2800			1

Subsurface Soil Results

3400 Bennii	ng Road, N	ı
Washingto	n, DC 2001	9

										asinington,										
			Location ID	SUSDP14	SUSDP14	SUSDP14	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15-1C	SUSDP15-1C	SUSDP15-1C	SUSDP15-1C	SUSDP15-1C	SUSDP15-1G
			Sample Date	5/22/2013	6/6/2013	6/6/2013	5/21/2013	6/6/2013	6/10/2013	1/30/2017	1/30/2017	2/2/2017	2/2/2017	2/2/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/30/2017
			Sample ID	DPS1403N	DPS1410N	DPS1415N	DPS1504N	DPS1510N	DPS1515N	DPS15F01N	DPS15F02-05N	DPS15F05-10N	DPS15F10-15N	DPS15F15N	DPS151C05N	DPS151C06N	DPS151C07N	DPS151C08N	DPS151C09N	DPS151G05N
			Depth	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	3.5 - 4.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	14.5 - 15.5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft	8 - 9 ft	9 - 10 ft	5 - 6 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
																				1
Applied	Limit	Project Screening Criteria																		1
Analyte Diesel Range Organics (C10-C20)	Unit mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		
Total Petroleum Hydrocarbons (C9-C44)	mg/kg									1500	685	1110	11500	4.31						
Diesel Range Organics (C10-C20)	mg/kg	440		23	< 21 U	< 21 U	210	280	140											
Oil Range Organics (C20-C36)	mg/kg	350000		160	< 21 U	< 21 U	670	750	320											
Gasoline Range Organics (C6-C10)	ug/kg	42000		< 92 U	< 93 UJ	< 98 UJ	< 94 UJ	< 96 UJ	< 94 UJ											
1,1,1-Trichloroethane	ug/kg	3.6e+006			< 4.8 U		< 5.9 U	< 4.9 U												1
1,1,2,2-Tetrachloroethane	ug/kg	2700			< 4.8 U		< 5.9 U	< 4.9 U												
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006			< 4.8 U		< 5.9 U	< 4.9 U												├
1,1,2-Trichloroethane	ug/kg	630 16000			< 4.8 U		< 5.9 U < 5.9 U	< 4.9 U < 4.9 U												
1,1-Dichloroethane 1,1-Dichloroethene	ug/kg ug/kg	10000			< 4.8 U		< 5.9 U	< 4.9 U												
1,2,3-Trichlorobenzene	ug/kg ug/kg	93000			< 4.8 U		< 5.9 U	< 4.9 U					 			 	1			
1,2,4-Trichlorobenzene	ug/kg	26000			< 4.8 U		< 5.9 U	< 4.9 U												
1,2-Dibromo-3-chloropropane	ug/kg	64			< 4.8 U		< 5.9 U	< 4.9 U					1			1	1			
1,2-Dibromoethane	ug/kg	160			< 4.8 U		< 5.9 U	< 4.9 U												
1,2-Dichlorobenzene	ug/kg	930000			< 4.8 U		< 5.9 U	< 4.9 U								<u> </u>				
1,2-Dichloroethane	ug/kg	2000			< 4.8 U		< 5.9 U	< 4.9 U												
1,2-Dichloropropane	ug/kg	6600			< 4.8 U		< 5.9 U	< 4.9 U												<u> </u>
1,3-Dichlorobenzene	ug/kg	11000			< 4.8 U		< 5.9 U	< 4.9 U												
1,4-Dichlorobenzene	ug/kg	11000			< 4.8 U		< 5.9 U	< 4.9 U												
1,4-Dioxane	ug/kg	24000			< 960 U		< 1200 U	< 990 U												
2-Butanone 2-Hexanone	ug/kg ug/kg	1.9e+007 130000			< 4.8 U < 4.8 U		< 5.9 U	< 4.9 U < 4.9 U												
4-Methyl-2-pentanone	ug/kg ug/kg	1.4e+007			< 4.8 U		< 5.9 U	< 4.9 U												
Acetone	ug/kg	6.7e+007			< 19 U		45	< 20 U												
Benzene	ug/kg	5100			< 4.8 U		< 5.9 U	< 4.9 U												
Bromochloromethane	ug/kg	63000			< 4.8 U		< 5.9 U	< 4.9 U												
Bromodichloromethane	ug/kg	1300			< 4.8 U		< 5.9 U	< 4.9 U												1
Bromoform	ug/kg	86000			< 4.8 U		< 5.9 U	< 4.9 U												ĺ .
Bromomethane	ug/kg	3000			< 4.8 U		< 5.9 U	< 4.9 U												<u> </u>
Carbon Disulfide	ug/kg	350000			< 4.8 U		< 5.9 U	< 4.9 U												
Carbon Tetrachloride	ug/kg	2900			< 4.8 U		< 5.9 U	< 4.9 U												
Chlorobenzene	ug/kg	130000			< 4.8 U		< 5.9 U	< 4.9 U												
Chloroethane Chloroform	ug/kg ug/kg	5.7e+006 1400			< 4.8 U		< 5.9 U < 5.9 U	< 4.9 U < 4.9 U												
Chloromethane	ug/kg ug/kg	46000			< 4.8 U		< 5.9 U	< 4.9 U												
cis-1,2-Dichloroethylene	ug/kg ug/kg	230000			< 4.8 U		< 5.9 U	< 4.9 U												
cis-1,3-Dichloropropene	ug/kg	8200			< 4.8 U		< 5.9 U	< 4.9 U								1	1			
Cyclohexane	ug/kg	2.7e+006			< 4.8 U		< 5.9 U	< 4.9 U					1			1	1			
Dibromochloromethane	ug/kg	39000			< 4.8 U		< 5.9 U	< 4.9 U												
Dichlorodifluoromethane	ug/kg	37000			< 4.8 U		< 5.9 U	< 4.9 U												
Ethylbenzene	ug/kg	25000			< 4.8 U		< 5.9 U	< 4.9 U												
Isopropylbenzene	ug/kg	990000			< 4.8 U		< 5.9 U	< 4.9 U												
m, p-Xylene	ug/kg	240000			< 9.6 U		< 12 U	< 9.9 U								ļ	ļ			
Methyl Acetate	ug/kg	1.2e+008			< 4.8 U		< 5.9 U	< 4.9 U								ļ	ļ			
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000			< 4.8 U		< 5.9 U	< 4.9 U					1			1	1			
Methylcyclohexane Methylene Chloride	ug/kg ug/kg	2.7e+006 320000			< 4.8 U < 4.8 U		< 5.9 U < 8.8 U	< 4.9 U < 4.9 U					1	1		1	1			
p-Xylene	ug/kg ug/kg	280000			< 4.8 U		< 5.9 U	< 4.9 U					 	+		 	1			1
Styrene	ug/kg ug/kg	3.5e+006			< 4.8 U		< 5.9 U	< 4.9 U						+		 	1			
Tetrachloroethylene	ug/kg	39000			< 4.8 U		< 5.9 U	< 4.9 U												
Toluene	ug/kg	4.7e+006			< 4.8 U		< 5.9 U	< 4.9 U					1			1	1			
trans-1,2-Dichloroethene	ug/kg	2.3e+006			< 4.8 U		< 5.9 U	< 4.9 U												
trans-1,3-Dichloropropene	ug/kg	8200			< 4.8 U		< 5.9 U	< 4.9 U												ĺ
Trichloroethene	ug/kg	1900			< 4.8 U		< 5.9 U	< 4.9 U												Ĺ
Trichlorofluoromethane	ug/kg	3.5e+007			< 4.8 U		< 5.9 U	< 4.9 U												
Vinyl Chloride	ug/kg	1700			< 4.8 U		< 5.9 U	< 4.9 U						<u> </u>						
Xylenes (total)	ug/kg	250000			< 9.6 U		< 12 U	< 9.9 U					l]	1			

Subsurface Soil Results

			Location ID	SUSDP14	SUSDP14	SUSDP14	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15-1C	SUSDP15-1C	SUSDP15-1C	SUSDP15-1C	SUSDP15-1C	SUSDP15-1G
			Sample Date		6/6/2013	6/6/2013	5/21/2013	6/6/2013	6/10/2013	1/30/2017	1/30/2017	2/2/2017	2/2/2017	2/2/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/30/2017
			•	DPS1403N	DPS1410N	DPS1415N	DPS1504N	DPS1510N	DPS1515N	DPS15F01N	DPS15F02-05N	DPS15F05-10N	DPS15F10-15N	DPS15F15N	DPS151C05N	DPS151C06N		DPS151C08N	DPS151C09N	DPS151G05N
			Depth	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	3.5 - 4.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	14.5 - 15.5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft	8 - 9 ft	9 - 10 ft	5 - 6 ft
		1 1	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																		
Analyte	Unit	Criteria																		
1,1'-Biphenyl	ug/kg	20000																		
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																		
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		
2,4,5-Trichlorophenol	ug/kg	8.2e+006																		
2,4,6-Trichlorophenol	ug/kg	82000																		
2,4-Dichlorophenol	ug/kg	250000																		
2,4-Dimethylphenol	ug/kg	1.6e+006																		
2,4-Dinitrophenol	ug/kg	160000																		
2,4-Dinitrotoluene 2,6-Dinitrotoluene	ug/kg ug/kg	7400 1500															<u> </u>			
2-Chloronaphthalene	ug/kg ug/kg	6e+006											 			+	 			
2-Chlorophenol	ug/kg	580000														 	 			
2-Methylnaphthalene	ug/kg	300000											1			<u> </u>				
2-Methylphenol	ug/kg	4.1e+006											1			1				
2-Nitroaniline	ug/kg	800000																		
2-Nitrophenol	ug/kg	2.5e+007																		
3,3'-Dichlorobenzidine	ug/kg	5100																		
3-Nitroaniline	ug/kg	110000																		
4,6-Dinitro-2-methylphenol	ug/kg	6600																		
4-Bromophenyl-phenylether	ug/kg																			
4-Chloro-3-methylphenol	ug/kg	8.2e+006																		
4-Chloroaniline	ug/kg	11000																		
4-Chlorophenyl-phenylether	ug/kg	0.0-+000																		
4-Methylphenol 4-Nitroaniline	ug/kg ug/kg	8.2e+006 110000																		
4-Nitrophenol	ug/kg	2.5e+007																		
Acenaphthene	ug/kg	4.5e+006								19 J	10 J	2000	69		22	21	51	10	2.8 J	< 8.2 U
Acenaphthylene	ug/kg	4.5e+006								24 J	14 J	130	130		14	12	47	5.6 J	4.2 J	< 8.2 U
Acetophenone	ug/kg	1.2e+007								-	-									
Anthracene	ug/kg	2.3e+007								56	34 J	10000	120		51	45	91	31	10	12
Atrazine	ug/kg	10000																		
Benzaldehyde	ug/kg	820000																		
Benzo(a)anthracene	ug/kg	21000								140	98	35000	440		140	100	560	87	31	37
Benzo(a)pyrene	ug/kg	2100								110	83	16000	360		120	89	660	74	29	33
Benzo(b)fluoranthene	ug/kg	21000								230	120	35000	440		170	130	780	95	44	59
Benzo(g,h,i)perylene	ug/kg	2.3e+006								110	67	8400	230		110	92	480	64	32	31
Benzo(k)fluoranthene	ug/kg	210000								63	46	7100	180		42	46	260	35	13	18
bis-(2-chloroethoxy)methane	ug/kg	250000 1000											1			1				
bis-(2-Chloroethyl)ether bis-(2-Ethylhexyl)phthalate	ug/kg	1000											 			 	+			
Butylbenzylphthalate	ug/kg ug/kg	1.2e+006											 			 	 			
Caprolactam	ug/kg	4e+007											1			 	1			
Carbazole	ug/kg	3e+006											 			 	<u> </u>			
Chrysene	ug/kg	2.1e+006								210	98	32000	570		160	140	650	99	41	49
Dibenzo(a,h)anthracene	ug/kg	2100								32 J	17 J	2900	71		35	30	160	18	8.8	< 8.2 U
Dibenzofuran	ug/kg	100000																		
Diethylphthalate	ug/kg	6.6e+007																		
Dimethylphthalate	ug/kg	6.6e+007																		
Di-n-butylphthalate	ug/kg	8.2e+006													-				· · · · · · · · · · · · · · · · · · ·	
Di-n-octylphthalate	ug/kg	820000																		
Fluoranthene	ug/kg	3e+006								250	160	61000	980		340	260	660	200	64	78
													ļ							
Fluorene	ug/kg	3e+006								44	14 J	2200	180		29	31	45	6.7 J	3.6 J	9.9
Hexachlorobenzene	ug/kg	960															ļ			
Hexachlorobutadiene	ug/kg ug/kg	5300											1			1				
Hexachlorocyclo-pentadiene	rua/Ka	750	i l	I	1							l	1	i l		1	1	1		I

Subsurface Soil Results

			Location ID	SUSDP14	SUSDP14	SUSDP14	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15-1C	SUSDP15-1C	SUSDP15-1C	SUSDP15-1C	SUSDP15-1C	SUSDP15-1G
			Sample Date	_	6/6/2013	6/6/2013	5/21/2013	6/6/2013	6/10/2013	1/30/2017	1/30/2017	2/2/2017	2/2/2017	2/2/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/30/2017
				DPS1403N	DPS1410N	DPS1415N	DPS1504N	DPS1510N	DPS1515N	DPS15F01N				DPS15F15N	DPS151C05N		DPS151C07N			DPS151G05N
			Sample ID																	
			Depth	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	3.5 - 4.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	14.5 - 15.5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft	8 - 9 ft	9 - 10 ft	5 - 6 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
1																				
		Project Screening																		
Analyte	Unit	Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000								89	59	7800	210		94	79	430	56	27	27
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000								91	38 J	680	47		37	60	58	17	14	16
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007								260	120	34000	720		170	190	190	160	48	56
Phenol	ug/kg	2.5e+007																		1
Pyrene	ug/kg	2.3e+006								250	130	49000	670		220	180	470	130	45	56
BaP-TE	ug/kg	2100								189	128	26800	542		196	151	1000	116	48.2	45.5
Total High-molecular-weight PAHs	ug/kg									1500	880	250000	4200		1400	1100	5100	860	330	390
Total Low-molecular-weight PAHs	ug/kg	1					1			490	230	49000	1300		320	360	480	230	83	94
Total PAHs (sum 16)	ug/kg						1			2000	1100	300000	5400		1800	1500	5600	1100	420	480

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP15-1G	SUSDP15-1G	SUSDP15-1G	CUCDD15 10	SUSDP16	SUSDP16	SUSDP16	SUSDP16	SUSDP17	SUSDP17	CHCDD17	SUSDP18	SUSDP18	SUSDP18	CHCDD40	SUSDP18	SUSDP19	SUSDP19
			Sample Date	8/30/2017	8/30/2017	8/30/2017	SUSDP15-1G 8/30/2017	5/15/2013	6/10/2013	6/10/2013	6/10/2013	5/23/2013	6/11/2013	SUSDP17 6/11/2013	5/23/2013	6/4/2013	6/4/2013	SUSDP18 1/26/2017	1/26/2017	5/23/2013	5/23/2013
			Sample ID	DPS151G06N	DPS151G07N	DPS151G08N	DPS151G09N	DPS1605N	DPS1610N	DPS1615N	DPS1615R	DPS1705N	DPS1710N	DPS1715N	DPS1803N	DPS1810N	DPS1818N	DPS18F01N	DPS18F02-05N	DPS1902N	DPS1902R
			Depth	6 - 7 ft	7 - 8 ft	8 - 9 ft	9 - 10 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	17.5 - 18.5 ft	1 - 2 ft	2 - 5 ft	1.5 - 2.5 ft	1.5 - 2.5 ft
			Туре	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	FD
																					· '
		Project Screening																			'
Analyte Diesel Range Organics (C10-C20)	Unit	Criteria 440																			 '
Oil Range Organics (C20-C36)	mg/kg mg/kg	350000																			
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	000000																10.8	< 2.57 U		
Diesel Range Organics (C10-C20)	mg/kg	440						< 20 U	< 19 U	< 18 U	< 19 U	< 19 U	< 18 U	< 18 U	< 18 U	< 19 U	< 19 U			< 96 U	< 93 U
Oil Range Organics (C20-C36)	mg/kg	350000						< 20 U	< 19 U	< 18 U	81	< 19 U	< 18 U	< 18 U	< 18 U	11 J	< 19 U			390	430
Gasoline Range Organics (C6-C10)	ug/kg	42000						< 90 UJ	< 95 U	< 100 U	< 97 U	< 99 U	< 100 U	< 83 U	< 98 U	< 100 U	< 96 U			< 95 U	< 97 U
1,1,1-Trichloroethane	ug/kg	3.6e+006								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
1,1,2,2-Tetrachloroethane	ug/kg	2700								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg ug/kg	2.8e+006 630								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
1,1-Dichloroethane	ug/kg ug/kg	16000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
1,1-Dichloroethene	ug/kg	100000								< 4.3 U	< 4.9 U	 	< 4.7 U		< 4.6 U	<u> </u>	< 4.7 U			< 4.8 U	< 4.6 U
1,2,3-Trichlorobenzene	ug/kg	93000					1			< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
1,2,4-Trichlorobenzene	ug/kg	26000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
1,2-Dibromo-3-chloropropane	ug/kg	64								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
1,2-Dibromoethane	ug/kg	160								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
1,2-Dichlorobenzene	ug/kg	930000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
1,2-Dichloroethane	ug/kg	2000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
1,2-Dichloropropane 1,3-Dichlorobenzene	ug/kg ug/kg	6600 11000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
1,4-Dichlorobenzene	ug/kg ug/kg	11000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U	+	< 4.7 U			< 4.8 U	< 4.6 U
1,4-Dioxane	ug/kg	24000								< 860 U	< 970 U		< 950 U		< 910 U		< 940 U			< 960 U	< 930 U
2-Butanone	ug/kg	1.9e+007								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
2-Hexanone	ug/kg	130000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
4-Methyl-2-pentanone	ug/kg	1.4e+007								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Acetone	ug/kg	6.7e+007								< 17 U	< 19 U		< 19 U		< 18 U		< 19 U			< 19 U	< 19 U
Benzene	ug/kg	5100								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Bromochloromethane Bromodichloromethane	ug/kg	63000 1300								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Bromodichloromethane Bromoform	ug/kg ug/kg	86000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Bromomethane	ug/kg	3000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Carbon Disulfide	ug/kg	350000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Carbon Tetrachloride	ug/kg	2900								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Chlorobenzene	ug/kg	130000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Chloroethane	ug/kg	5.7e+006								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Chloroform	ug/kg	1400								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Chloromethane cis-1,2-Dichloroethylene	ug/kg ug/kg	46000 230000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
cis-1,3-Dichloropropene	ug/kg	8200								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Cyclohexane	ug/kg	2.7e+006								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Dibromochloromethane	ug/kg	39000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Dichlorodifluoromethane	ug/kg	37000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Ethylbenzene	ug/kg	25000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Isopropylbenzene	ug/kg	990000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
m, p-Xylene	ug/kg	240000								< 8.6 U	< 9.7 U		< 9.5 U		< 9.1 U		< 9.4 U			< 9.6 U	< 9.3 U
Methyl Acetate Methyl tert-Butyl Ether (MTBE)	ug/kg ug/kg	1.2e+008 210000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Methylcyclohexane	ug/kg ug/kg	2.7e+006					1			< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U	1	< 4.7 U			< 4.8 U	< 4.6 U
Methylene Chloride	ug/kg	320000								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
o-Xylene	ug/kg	280000					İ			< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Styrene	ug/kg	3.5e+006								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Tetrachloroethylene	ug/kg	39000						-		< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Toluene	ug/kg	4.7e+006								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
trans-1,2-Dichloroethene	ug/kg	2.3e+006								< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U	1		< 4.8 U	< 4.6 U
trans-1,3-Dichloropropene	ug/kg	8200					1			< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U	1		< 4.8 U	< 4.6 U
Trichloroethene Trichlorofluoromethane	ug/kg ug/kg	1900 3.5e+007					1			< 4.3 U	< 4.9 U	1	< 4.7 U		< 4.6 U	1	< 4.7 U	1		< 4.8 U	< 4.6 U
Vinyl Chloride	ug/kg ug/kg	3.5e+007 1700			1		1			< 4.3 U	< 4.9 U		< 4.7 U		< 4.6 U		< 4.7 U			< 4.8 U	< 4.6 U
Xylenes (total)	ug/kg	250000								< 8.6 U	< 9.7 U	<u> </u>	< 9.5 U		< 9.1 U	<u> </u>	< 9.4 U			< 9.6 U	< 9.3 U
	~a/\\a	200000			ı	<u> </u>	1		l	. 5.5 6	0.7 0	<u> </u>	0.00		0.10	I	- 0.7 0	1	<u> </u>	0.00	0.00

Subsurface Soil Results

										•											
			Location ID	SUSDP15-1G		SUSDP15-1G	SUSDP15-1G	SUSDP16	SUSDP16	SUSDP16	SUSDP16	SUSDP17	SUSDP17	SUSDP17	SUSDP18	SUSDP18	SUSDP18	SUSDP18	SUSDP18	SUSDP19	SUSDP19
			Sample Date	8/30/2017	8/30/2017	8/30/2017	8/30/2017	5/15/2013	6/10/2013	6/10/2013 DDC4645N	6/10/2013	5/23/2013	6/11/2013	6/11/2013	5/23/2013	6/4/2013	6/4/2013	1/26/2017	1/26/2017	5/23/2013	5/23/2013
			Sample ID	DPS151G06N 6 - 7 ft		DPS151G08N	DPS151G09N 9 - 10 ft	DPS1605N	DPS1610N	DPS1615N	DPS1615R	DPS1705N	DPS1710N	DPS1715N	DPS1803N	DPS1810N	DPS1818N	DPS18F01N	DPS18F02-05N	DPS1902N	DPS1902R
			Depth Type	6-7π N	7 - 8 ft N	8 - 9 ft N	9 - 10 ft N	4.5 - 5.5 ft N	9.5 - 10.5 ft N	14.5 - 15.5 ft N	14.5 - 15.5 ft FD	4.5 - 5.5 ft N	9.5 - 10.5 ft N	14 - 15 ft N	2.5 - 3.5 ft N	9.5 - 10.5 ft N	17.5 - 18.5 ft N	1 - 2 ft N	2 - 5 ft N	1.5 - 2.5 ft N	1.5 - 2.5 ft FD
			Турс		1	14	14		i i	1	1.5	14	14	- 14	18	14		14	IN .	11	
		Project Screening																			Í
Analyte	Unit	Criteria																			1
1,1'-Biphenyl	ug/kg	20000																			<u> </u>
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																			
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																			
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																			
2,4,5-Trichlorophenol	ug/kg	8.2e+006																			
2,4,6-Trichlorophenol	ug/kg	82000																			
2,4-Dichlorophenol	ug/kg	250000																			
2,4-Dimethylphenol	ug/kg	1.6e+006																			
2,4-Dinitrophenol 2,4-Dinitrotoluene	ug/kg ug/kg	160000 7400																			
2,6-Dinitrotoluene	ug/kg ug/kg	1500																			1
2-Chloronaphthalene	ug/kg ug/kg	6e+006			+					 			+								1
2-Chlorophenol	ug/kg ug/kg	580000								+											ſ
2-Methylnaphthalene	ug/kg	300000								 		<u> </u>									1
2-Methylphenol	ug/kg	4.1e+006																			ĺ
2-Nitroaniline	ug/kg	800000								1											ĺ
2-Nitrophenol	ug/kg	2.5e+007																			i
3,3'-Dichlorobenzidine	ug/kg	5100																			i
3-Nitroaniline	ug/kg	110000																			i
4,6-Dinitro-2-methylphenol	ug/kg	6600																			i
4-Bromophenyl-phenylether	ug/kg																				i
4-Chloro-3-methylphenol	ug/kg	8.2e+006																			ĺ
4-Chloroaniline	ug/kg	11000																			1
4-Chlorophenyl-phenylether	ug/kg																				i
4-Methylphenol	ug/kg	8.2e+006																			i
4-Nitroaniline	ug/kg	110000																			<u> </u>
4-Nitrophenol	ug/kg	2.5e+007																			<u> </u>
Acenaphthene	ug/kg	4.5e+006		51	13	3.8 J	9.3											5.4 J	< 7.1 U	210 J	220
Acenaphthylene	ug/kg	4.5e+006		< 7.7 U	14	4.9 J	3.6 J											5.9 J	< 7.1 U	77	67
Acetophenone	ug/kg	1.2e+007																			
Anthracene	ug/kg	2.3e+007		88	48	13	21											15	< 7.1 U	560 J	560
Atrazine	ug/kg	10000																			
Benzaldehyde	ug/kg	820000		470	400		70											04	20.1	4000 1	4000
Benzo(a)anthracene	ug/kg	21000		170	160	55	72											81	2.9 J	1900 J	1900
Benzo(a)pyrene Benzo(b)fluoranthene	ug/kg ug/kg	2100 21000		130 190	130 210	52 77	63 90						-					78 100	1.2 J 2.7 J	2300 J 2200 J	2100 2200
· ,	ug/kg ug/kg	2.3e+006		100	120	42	54						-					63	< 7.1 U	1800 J	1600
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ug/kg ug/kg	210000		63	79	21	29		 	 								49	< 7.1 U	950 J	680
bis-(2-chloroethoxy)methane	ug/kg	250000		- 55						 			†					70	- 7.10	5500	
bis-(2-Chloroethyl)ether	ug/kg	1000								 		<u> </u>									ſ
bis-(2-Ethylhexyl)phthalate	ug/kg	160000								1											
Butylbenzylphthalate	ug/kg	1.2e+006								1											i
Caprolactam	ug/kg	4e+007																			i
Carbazole	ug/kg	3e+006							İ			İ									1
Chrysene	ug/kg	2.1e+006		160	170	58	68											88	2.2 J	1900 J	1900
Dibenzo(a,h)anthracene	ug/kg	2100		31	40	13	< 8.0 U											18	< 7.1 U	500 J	440
Dibenzofuran	ug/kg	100000		· · · · · · · · · · · · · · · · · · ·		·											·				
Diethylphthalate	ug/kg	6.6e+007																			
Dimethylphthalate	ug/kg	6.6e+007																			
Di-n-butylphthalate	ug/kg	8.2e+006								ļ											
Di-n-octylphthalate	ug/kg	820000								ļ											
Fluoranthene	ug/kg	3e+006		430	410	110	140											160	5.2 J	4400	4300
Fluorene	ug/kg	3e+006		42	18	4.0 J	8.1											3.5 J	< 7.1 U	200 J	190
Hexachlorobenzene	ug/kg ug/kg	960		72	10	4.00	0.1			 			+					3.33	- 7.10	200 3	130
Hexachlorobutadiene	ug/kg	5300								 			†								ſ
Hexachlorocyclo-pentadiene	ug/kg	750																			1
Hexachloroethane	ug/kg	8000								1											1
·-	33		1		1				1	1		1	1		1	L				1	

Subsurface Soil Results

			Location ID	SUSDP15-1G	SUSDP15-1G	SUSDP15-1G	SUSDP15-1G	SUSDP16	SUSDP16	SUSDP16	SUSDP16	SUSDP17	SUSDP17	SUSDP17	SUSDP18	SUSDP18	SUSDP18	SUSDP18	SUSDP18	SUSDP19	SUSDP19
			Sample Date		8/30/2017	8/30/2017	8/30/2017	5/15/2013	6/10/2013	6/10/2013	6/10/2013	5/23/2013	6/11/2013	6/11/2013	5/23/2013	6/4/2013	6/4/2013	1/26/2017	1/26/2017	5/23/2013	
			Sample ID	DPS151G06N	DPS151G07N	DPS151G08N	DPS151G09N	DPS1605N	DPS1610N	DPS1615N	DPS1615R	DPS1705N	DPS1710N	DPS1715N	DPS1803N	DPS1810N	DPS1818N	DPS18F01N	DPS18F02-05N	DPS1902N	
			Depth	6 - 7 ft	7 - 8 ft	8 - 9 ft	9 - 10 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	17.5 - 18.5 ft	1 - 2 ft	2 - 5 ft	1.5 - 2.5 ft	1.5 - 2.5 f
			Туре	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	FD
Analyte	Unit	Project Screening Criteria																			
Indeno(1,2,3-cd)pyrene	ug/kg	21000		93	110	39	52											57	< 7.1 U	1500 J	1400
Isophorone	ug/kg	2.4e+006																			
Naphthalene	ug/kg	17000		30	38	11	9.0											4.4 J	< 7.1 U	90	88
Nitrobenzene	ug/kg	22000																			
N-Nitroso-di-n-propylamine	ug/kg	330																			
N-Nitrosodiphenylamine	ug/kg	470000																			
Pentachlorophenol	ug/kg	4000																			
Phenanthrene	ug/kg	2.3e+007		330	230	57	89											70	1.3 J	1800 J	1900
Phenol	ug/kg	2.5e+007																			
Pyrene	ug/kg	2.3e+006		280	250	77	110											120	3.4 J	2500 J	2600
BaP-TE	ug/kg	2100		207	219	82.4	84.8											120	1.76	3370	3100
Total High-molecular-weight PAHs	ug/kg			1600	1700	540	680											810	18	20000	19000
Total Low-molecular-weight PAHs	ug/kg			540	360	94	140											100	1.3	2900	3000
Total PAHs (sum 16)	ug/kg			2200	2000	640	820											920	19	23000	22000

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

										g.c, _ c _ c										
			Location ID	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19-1A	SUSDP19-1A	SUSDP19-1A	SUSDP19-1B	SUSDP19-1B			SUSDP19-1C		SUSDP19-10
			Sample Date	6/5/2013	6/5/2013	6/5/2013	1/30/2017	1/30/2017	2/8/2017	2/8/2017	2/1/2017	2/8/2017	2/8/2017	2/1/2017	2/8/2017	2/8/2017	1/27/2017	1/27/2017	2/8/2017	2/8/2017
			Sample ID	DPS1910N	DPS1915N	DPS1915R	DPS19F01N	DPS19F02-05N		DPS19F10-15N		DPS191A10N	DPS191A15N	DPS191B02N	DPS191B10N		SUS191C02N	SUS191C02R		DPS191C15I
			Depth	9.5 - 10.5 ft	14.5 - 15.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	2 - 3 ft	10 - 11 ft	15 - 16 ft	2 - 3 ft	10 - 11 ft	15 - 16 ft	2 - 3 ft	2 - 3 ft	10 - 11 ft	15 - 16 ft
		1	Туре	N	N	FD	N	N	N	N	N	N	N	N	N	N	N	FD	N	N
		Project Screening																		
Analyte	Unit	Criteria																		
Diesel Range Organics (C10-C20)	mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		
Total Petroleum Hydrocarbons (C9-C44)	mg/kg						730	947	5010	35.3										
Diesel Range Organics (C10-C20)	mg/kg	440		< 380 U	< 19 U	< 20 U														
Oil Range Organics (C20-C36)	mg/kg	350000		2600	11 J	< 20 U														
Gasoline Range Organics (C6-C10)	ug/kg	42000		< 130 U	< 96 U	< 100 U														
1,1,1-Trichloroethane	ug/kg	3.6e+006																		
1,1,2,2-Tetrachloroethane	ug/kg	2700																		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006																		
1,1,2-Trichloroethane	ug/kg	630 16000																		
1,1-Dichloroethane 1,1-Dichloroethene	ug/kg	10000																		
1,2,3-Trichlorobenzene	ug/kg ug/kg	93000					1	1	1	 	 			 			+			
1,2,4-Trichlorobenzene	ug/kg ug/kg	26000							 					 			+		+	
1,2-Dibromo-3-chloropropane	ug/kg	64																		
1,2-Dibromoethane	ug/kg	160						1	1		1			1						
1,2-Dichlorobenzene	ug/kg	930000																		
1,2-Dichloroethane	ug/kg	2000																		-
1,2-Dichloropropane	ug/kg	6600																		
1,3-Dichlorobenzene	ug/kg	11000																		
1,4-Dichlorobenzene	ug/kg	11000																		
1,4-Dioxane	ug/kg	24000																		
2-Butanone	ug/kg	1.9e+007																		
2-Hexanone	ug/kg	130000																		
4-Methyl-2-pentanone	ug/kg	1.4e+007																		
Acetone	ug/kg	6.7e+007 5100																		
Benzene Bromochloromethane	ug/kg ug/kg	63000																		
Bromodichloromethane	ug/kg ug/kg	1300																		
Bromoform	ug/kg	86000																		
Bromomethane	ug/kg	3000																		
Carbon Disulfide	ug/kg	350000																		
Carbon Tetrachloride	ug/kg	2900																		-
Chlorobenzene	ug/kg	130000																		
Chloroethane	ug/kg	5.7e+006																		
Chloroform	ug/kg	1400																		
Chloromethane	ug/kg	46000																		
cis-1,2-Dichloroethylene	ug/kg	230000																		
cis-1,3-Dichloropropene	ug/kg	8200												ļ						
Cyclohexane	ug/kg	2.7e+006							1	1	1			1			1			
Dibromochloromethane Dichlorodifluoromethane	ug/kg ug/kg	39000 37000							 		1			1			-			
Ethylbenzene	ug/kg ug/kg	25000							 	+	1			1			+		+	
Isopropylbenzene	ug/kg ug/kg	990000						+	 		+			+						
m, p-Xylene	ug/kg	240000																		
Methyl Acetate	ug/kg	1.2e+008						1	1		1			1			1			
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000									İ			İ						
Methylcyclohexane	ug/kg	2.7e+006																		
Methylene Chloride	ug/kg	320000																		
o-Xylene	ug/kg	280000																		
Styrene	ug/kg	3.5e+006				•														
Tetrachloroethylene	ug/kg	39000																		
Toluene	ug/kg	4.7e+006																		
trans-1,2-Dichloroethene	ug/kg	2.3e+006												ļ						
trans-1,3-Dichloropropene	ug/kg	8200					ļ							ļ						
Trichloroethene	ug/kg	1900						-	-		-			ļ						
Trichlorofluoromethane	ug/kg	3.5e+007						1	1	1	1			1			1			
Vinyl Chloride	ug/kg	1700						1	 		1			1						
Xylenes (total)	ug/kg	250000						1			1]	1						

Subsurface Soil Results

				SDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19-1A	SUSDP19-1A	SUSDP19-1A	SUSDP19-1B				SUSDP19-1C	SUSDP19-1C	SUSDP19-1C
				5/2013	6/5/2013	6/5/2013	1/30/2017	1/30/2017	2/8/2017	2/8/2017	2/1/2017	2/8/2017	2/8/2017	2/1/2017	2/8/2017	2/8/2017 DDC101B15N	1/27/2017	1/27/2017	2/8/2017	2/8/2017
		36		S1910N - 10.5 ft	DPS1915N 14.5 - 15.5 ft	DPS1915R 14.5 - 15.5 ft	DPS19F01N 1 - 2 ft	DPS19F02-05N 2 - 5 ft	DPS19F05-10N 5 - 10 ft	DPS19F10-15N 10 - 15 ft	DPS191A02N 2 - 3 ft	DPS191A10N 10 - 11 ft	DPS191A15N 15 - 16 ft	DPS191B02N 2 - 3 ft	DPS191B10N 10 - 11 ft	DPS191B15N 15 - 16 ft	SUS191C02N 2 - 3 ft	SUS191C02R 2 - 3 ft	DPS191C10N 10 - 11 ft	DPS191C15N 15 - 16 ft
			_	N	N	FD	N	N	N	N	N	N	N	N	N	N	N	FD	N	N
	Project Scre																			1
Analyte	Unit Criteria																			
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	ug/kg 20000 ug/kg 35000																			
2,2'-oxybis(1-Chloropropane)	ug/kg 4.7e+00																			†
2,3,4,6-Tetrachlorophenol	ug/kg 2.5e+0																			
2,4,5-Trichlorophenol	ug/kg 8.2e+0	06																		
2,4,6-Trichlorophenol	ug/kg 82000)																		
2,4-Dichlorophenol	ug/kg 25000																			
2,4-Dimethylphenol	ug/kg 1.6e+00																			
2,4-Dinitrophenol	ug/kg 16000																			
2,4-Dinitrotoluene	ug/kg 7400																			1
2,6-Dinitrotoluene	ug/kg 1500																			
2-Chloronaphthalene	ug/kg 6e+00 ug/kg 58000																			
2-Chlorophenol	ug/kg 58000 ug/kg 30000																			
2-Methylnaphthalene 2-Methylphenol	ug/kg 30000 ug/kg 4.1e+00			+					+		1	 	1	 	<u> </u>	<u> </u>	 	1	1	
2-Nitroaniline	ug/kg 80000			+							 	 	 	 			 		 	
2-Nitrophenol	ug/kg 2.5e+0			+													1			
3,3'-Dichlorobenzidine	ug/kg 5100																			
3-Nitroaniline	ug/kg 11000																			
4,6-Dinitro-2-methylphenol	ug/kg 6600	1																		
4-Bromophenyl-phenylether	ug/kg																			
4-Chloro-3-methylphenol	ug/kg 8.2e+0	06																		
4-Chloroaniline	ug/kg 11000)																		
4-Chlorophenyl-phenylether	ug/kg																			L
4-Methylphenol	ug/kg 8.2e+0																			
4-Nitroaniline	ug/kg 11000																			
4-Nitrophenol	ug/kg 2.5e+00 ug/kg 4.5e+00		3.	200	< 7.411	< 7.7 U	250	150	4500	< 7.4 U	24.1	< 8.0 U	< 8.5 U	24 1	3.2 J	< 9.211	14 J	20.1	< 7.9 U	< 9.011
Acenaphthene Acenaphthylene	ug/kg 4.5e+00 ug/kg 4.5e+00			1500 U	< 7.4 U < 7.4 U	< 7.7 U	78	380	1500 230 J	0.90 J	34 J 94	< 8.0 U	< 8.5 U	34 J 32 J	1.4 J	< 8.2 U	42	20 J 56	< 7.9 U	< 8.0 U
Acetophenone	ug/kg 1.2e+0		- 1	1300 0	17.40	V1.10	70	300	230 3	0.900	34	V 0.0 O	\ 0.5 O	32 3	1.43	V 0.2 0	42	30	17.90	V 0.0 0
Anthracene	ug/kg 2.3e+0		6	100	< 7.4 U	< 7.7 U	770	700	3600	1.8 J	180	< 8.0 U	< 8.5 U	120	11	< 8.2 U	61	70	3.9 J	< 8.0 U
Atrazine	ug/kg 10000												0.00			0.2				
Benzaldehyde	ug/kg 82000																			
Benzo(a)anthracene	ug/kg 21000)	15	5000	< 7.4 U	1.1 J	3200	2500	12000	5.8 J	1200	1.7 J	< 8.5 U	830	39	< 8.2 U	300 J	350 J	12	< 8.0 U
Benzo(a)pyrene	ug/kg 2100	1	14	4000	< 7.4 U	< 7.7 U	2800	2500	12000	6.8 J	1300	< 8.0 U	< 8.5 U	860	33	< 8.2 U	340 J	410 J	9.4	< 8.0 U
Benzo(b)fluoranthene	ug/kg 21000)	16	6000	< 7.4 U	< 7.7 U	3400	3100	15000	11	1700	< 8.0 U	< 8.5 U	1100	37	< 8.2 U	420 J	500 J	14	< 8.0 U
Benzo(g,h,i)perylene	ug/kg 2.3e+0	06		1000	< 7.4 U	< 7.7 U	2200	2000	11000	6.6 J	1100	< 8.0 U	< 8.5 U	670	25	< 8.2 U	280 J+	290 J+	8.1	< 8.0 U
Benzo(k)fluoranthene	ug/kg 21000		6:	300	< 7.4 U	< 7.7 U	1500	1200	3600	2.9 J	500	< 8.0 U	< 8.5 U	350	19	< 8.2 U	170 J	200 J	4.5 J	< 8.0 U
bis-(2-chloroethoxy)methane	ug/kg 25000																			
bis-(2-Chloroethyl)ether	ug/kg 1000																			↓
bis-(2-Ethylhexyl)phthalate	ug/kg 16000			-					-		 	1	 	1					 	
Butylbenzylphthalate	ug/kg 1.2e+00			-							1	 	1	 			1		1	
Caprolactam Carbazole	ug/kg 4e+00 ug/kg 3e+00			-							1	 	1	 			 		1	
Chrysene	ug/kg 3e+00 ug/kg 2.1e+00		15	5000	< 7.4 U	1.3 J	3000	2400	12000	8.7	1200	1.6 J	< 8.5 U	870	39	< 8.2 U	320 J	410 J	12	< 8.0 U
Dibenzo(a,h)anthracene	ug/kg 2100			2400	< 7.4 U	< 7.7 U	580	570	2500	< 7.4 U	270	< 8.0 U	< 8.5 U	210	7.3 J	< 8.2 U	67	81	3.1 J	< 8.0 U
Dibenzofuran	ug/kg 10000					0						3.00	5.00		1.00	3.2 3	, ,,	— "	5.10	5.0 0
Diethylphthalate	ug/kg 6.6e+0										İ		İ						İ	
Dimethylphthalate	ug/kg 6.6e+0																			
Di-n-butylphthalate	ug/kg 8.2e+00	06											<u> </u>						<u> </u>	
Di-n-octylphthalate	ug/kg 82000							-												
luoranthene	ug/kg 3e+00	6	30	0000	1.4 J	1.6 J	6000	4100	19000	9.9	1500	1.7 J	< 8.5 U	1100	63	< 8.2 U	440 J	530 J	22	< 8.0 U
Fluorene	ug/kg 3e+00	6	31	3200	< 7.4 U	< 7.7 U	300	190	1500	< 7.4 U	35 J	< 8.0 U	< 8.5 U	26 J	3.3 J	< 8.2 U	12 J	15 J	< 7.9 U	< 8.0 U
Hexachlorobenzene	ug/kg 960		3.		5	0	300		1000	5	1 3	5.5 5	5.5 5		0.00	0.20	1.20		0	5.5 0
Hexachlorobutadiene	ug/kg 5300										1	1	1	1			İ		1	
Hexachlorocyclo-pentadiene	ug/kg 750		1								İ								İ	
Hexachloroethane	ug/kg 8000	· -							Ì		1		1	Ì	1	1		1	1	

Subsurface Soil Results

			Location ID	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19-1A	SUSDP19-1A	SUSDP19-1A	SUSDP19-1B	SUSDP19-1B	SUSDP19-1B	SUSDP19-1C	SUSDP19-1C	SUSDP19-1C	SUSDP19-1C
			Sample Date		6/5/2013	6/5/2013	1/30/2017	1/30/2017	2/8/2017	2/8/2017	2/1/2017	2/8/2017	2/8/2017	2/1/2017	2/8/2017	2/8/2017	1/27/2017	1/27/2017	2/8/2017	2/8/2017
			Sample ID	DPS1910N	DPS1915N	DPS1915R	DPS19F01N	DPS19F02-05N	DPS19F05-10N	DPS19F10-15N	DPS191A02N	DPS191A10N	DPS191A15N	DPS191B02N	DPS191B10N	DPS191B15N	SUS191C02N		DPS191C10N	
			Depth	9.5 - 10.5 ft		14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	2 - 3 ft	10 - 11 ft	15 - 16 ft	2 - 3 ft	10 - 11 ft	15 - 16 ft	2 - 3 ft	2 - 3 ft	10 - 11 ft	15 - 16 ft
			Type	N	N	FD	N	N	N	N	N	N	N	N	N	N	N	FD	N	N
Analyte	Unit	Project Screening Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000		8900	< 7.4 U	< 7.7 U	2000	1700	8200	6.0 J	900	< 8.0 U	< 8.5 U	590	21	< 8.2 U	230 J+	260 J+	7.1 J	< 8.0 U
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000		1100 J	< 7.4 U	< 7.7 U	88	80	370 J	< 7.4 U	28 J	< 8.0 U	< 8.5 U	20 J	2.5 J	< 8.2 U	15 J	17 J	< 7.9 U	< 8.0 U
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007		23000	1.5 J	1.7 J	3100	2200	12000	5.0 J	570	< 8.0 U	< 8.5 U	470	34	< 8.2 U	190 J	240 J	12	< 8.0 U
Phenol	ug/kg	2.5e+007															< 190 U	< 190 U		
Pyrene	ug/kg	2.3e+006		28000	1.2 J	1.8 J	5000	3500	17000	7.8	1800	1.7 J	< 8.5 U	1300	53	< 8.2 U	440 J	580 J	15	< 8.0 U
BaP-TE	ug/kg	2100		20500	< 7.40 U	0.111	4260	3810	18100	9.12	1960	0.172	< 8.50 U	1330	50.2	< 8.20 U	504	604	15.9	< 8.00 U
Total High-molecular-weight PAHs	ug/kg			150000	2.6	5.8	30000	24000	110000	65	11000	6.7	< 8.5 U	7900	340	< 8.2 U	3000	3600	110	< 8 U
Total Low-molecular-weight PAHs	ug/kg			37000	1.5	1.7	4600	3700	19000	7.7	940	< 8 U	< 8.5 U	700	55	< 8.2 U	330	420	16	< 8 U
Total PAHs (sum 16)	ug/kg			180000	4.1	7.5	34000	27000	130000	73	12000	6.7	< 8.5 U	8600	390	< 8.2 U	3300	4000	120	< 8 U

Subsurface Soil Results

										ion, DC 2001	. •									
			Location ID	SUSDP19-1D	SUSDP19-1D	SUSDP19-1D	SUSDP19-1D	SUSDP19-1D	SUSDP19-1D	SUSDP19-1F	SUSDP19-1F	SUSDP19-1F	SUSDP19-1F	SUSDP19-1G	SUSDP19-1G	SUSDP19-1G	SUSDP19-1H	SUSDP19-1H	SUSDP19-1H	SUSDP19-2D
			Sample Date	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	2/1/2017	2/8/2017	2/8/2017	2/1/2017	2/8/2017	2/8/2017	8/17/2017
			Sample ID	DPS191D01N	DPS191D01R	DPS191D02N	DPS191D03N	DPS191D04N	DPS191D05N	DPS191F01N	DPS191F02N	DPS191F03N	DPS191F04N	DPS191G02N	DPS191G10N	DPS191G15N	DPS191H02N	DPS191H10N	DPS191H15N	DPS192D01N
			Depth	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	2 - 3 ft	10 - 11 ft	15 - 16 ft	2 - 3 ft	10 - 11 ft	15 - 16 ft	1 - 2 ft
			Туре	N	FD	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
A 1. d -	1.1	Project Screening																		
Analyte Diesel Range Organics (C10-C20)	Unit	Criteria 440																		
Oil Range Organics (C20-C36)	mg/kg mg/kg	350000																		
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	000000																		+
Diesel Range Organics (C10-C20)	mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		1
Gasoline Range Organics (C6-C10)	ug/kg	42000																		
1,1,1-Trichloroethane	ug/kg	3.6e+006																		
1,1,2,2-Tetrachloroethane	ug/kg	2700																		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006																		
1,1,2-Trichloroethane	ug/kg	630																		
1,1-Dichloroethane	ug/kg	16000			1							1								
1,1-Dichloroethene 1,2,3-Trichlorobenzene	ug/kg ug/kg	100000 93000																		+
1,2,4-Trichlorobenzene	ug/kg	26000			+							+								+
1,2-Dibromo-3-chloropropane	ug/kg	64																		+
1,2-Dibromoethane	ug/kg	160																		1
1,2-Dichlorobenzene	ug/kg	930000																		†
1,2-Dichloroethane	ug/kg	2000																		
1,2-Dichloropropane	ug/kg	6600																		
1,3-Dichlorobenzene	ug/kg	11000																		
1,4-Dichlorobenzene	ug/kg	11000																		
1,4-Dioxane	ug/kg	24000																		
2-Butanone	ug/kg	1.9e+007																		
2-Hexanone	ug/kg	130000													-					
4-Methyl-2-pentanone Acetone	ug/kg ug/kg	1.4e+007 6.7e+007																		
Benzene	ug/kg ug/kg	5100																		
Bromochloromethane	ug/kg	63000																		+
Bromodichloromethane	ug/kg	1300																		
Bromoform	ug/kg	86000																		
Bromomethane	ug/kg	3000																		
Carbon Disulfide	ug/kg	350000																		
Carbon Tetrachloride	ug/kg	2900																		
Chlorobenzene	ug/kg	130000																		
Chloroethane	ug/kg	5.7e+006																		
Chloroform	ug/kg	1400													-					
Chloromethane cis-1,2-Dichloroethylene	ug/kg ug/kg	46000 230000																		-
cis-1,3-Dichloropropene	ug/kg	8200			+							+								+
Cyclohexane	ug/kg	2.7e+006																		+
Dibromochloromethane	ug/kg	39000																		+
Dichlorodifluoromethane	ug/kg	37000			1				1	1	1	1			1					
Ethylbenzene	ug/kg	25000							İ	İ										
Isopropylbenzene	ug/kg	990000																		
m, p-Xylene	ug/kg	240000																		
Methyl Acetate	ug/kg	1.2e+008																		
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000																		
Methylcyclohexane	ug/kg	2.7e+006																		
Methylene Chloride	ug/kg	320000								ļ	ļ									
o-Xylene Styrono	ug/kg	280000			1				1	1	 	1			1					
Styrene Tetrachloroethylene	ug/kg ug/kg	3.5e+006 39000			-				-	-	-	-			-					+
Toluene	ug/kg ug/kg	4.7e+006			 				1	 	 	 			 					+
trans-1,2-Dichloroethene	ug/kg	2.3e+006			 				+	+	+	 			 					+
trans-1,3-Dichloropropene	ug/kg	8200			1					1	1	1			1					†
Trichloroethene	ug/kg	1900																		<u> </u>
Trichlorofluoromethane	ug/kg	3.5e+007							İ	İ	İ									
Vinyl Chloride	ug/kg	1700																		
Xylenes (total)	ug/kg	250000	i																	
	_																			

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE

3400 Benning Road, NE Washington, DC 20019

									J.	.OII, DC 2001										
			Location ID		SUSDP19-1D					SUSDP19-1F			SUSDP19-1F	SUSDP19-1G		SUSDP19-1G			SUSDP19-1H	
			Sample Date	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	2/1/2017	2/8/2017	2/8/2017	2/1/2017	2/8/2017	2/8/2017	8/17/2017
			Sample ID Depth	DPS191D01N 1 - 2 ft	DPS191D01R 1 - 2 ft	DPS191D02N 2 - 3 ft	DPS191D03N 3 - 4 ft	DPS191D04N 4 - 5 ft	DPS191D05N 5 - 6 ft	DPS191F01N 1 - 2 ft	DPS191F02N 2 - 3 ft	DPS191F03N 3 - 4 ft	DPS191F04N 4 - 5 ft	DPS191G02N 2 - 3 ft	DPS191G10N 10 - 11 ft	DPS191G15N 15 - 16 ft	DPS191H02N 2 - 3 ft	DPS191H10N 10 - 11 ft	DPS191H15N 15 - 16 ft	DPS192D01N 1 - 2 ft
			Туре	N N	FD	2-31t N	N N	4-51t N	N N	N N	2-31t N	3-4 II	4 - 5 it	N N	N N	N N	2-31t N	N N	N N	N N
			.,,,,																	1
		Project Screening																		
Analyte	Unit	Criteria																		
1,1'-Biphenyl	ug/kg	20000 35000																		
1,2,4,5-Tetrachlorobenzene 2,2'-oxybis(1-Chloropropane)	ug/kg ug/kg	4.7e+006																		+
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		+
2,4,5-Trichlorophenol	ug/kg	8.2e+006																		+
2,4,6-Trichlorophenol	ug/kg	82000																		+
2,4-Dichlorophenol	ug/kg	250000																		1
2,4-Dimethylphenol	ug/kg	1.6e+006																		
2,4-Dinitrophenol	ug/kg	160000																		
2,4-Dinitrotoluene	ug/kg	7400																		
2,6-Dinitrotoluene	ug/kg	1500																		
2-Chloronaphthalene	ug/kg	6e+006																		
2-Chlorophenol	ug/kg	580000			-		ļ				ļ	ļ				ļ				
2-Methylnaphthalene	ug/kg	300000			1		 		1		 	 			1	 				+
2-Methylphenol 2-Nitroaniline	ug/kg ug/kg	4.1e+006 800000			 		1		1		1	1			1	1				+
2-Nitrophenol	ug/kg	2.5e+007																		+
3,3'-Dichlorobenzidine	ug/kg	5100																		+
3-Nitroaniline	ug/kg	110000																		+
4,6-Dinitro-2-methylphenol	ug/kg	6600																		+
4-Bromophenyl-phenylether	ug/kg																			+
4-Chloro-3-methylphenol	ug/kg	8.2e+006																		1
4-Chloroaniline	ug/kg	11000																		
4-Chlorophenyl-phenylether	ug/kg																			
4-Methylphenol	ug/kg	8.2e+006																		
4-Nitroaniline	ug/kg	110000																		<u> </u>
4-Nitrophenol	ug/kg	2.5e+007																		
Acenaphthene	ug/kg	4.5e+006		460 180 J	550	660	750	500	380 J	54 J 57 J	100 90	100 J	340 J	5700 350 J	13	< 8.4 U	430	44	< 7.7 U	430 J
Acetaphanana	ug/kg ug/kg	4.5e+006 1.2e+007		180 J	650	350 J	490	160	< 820 U	5/ J	90	74 J	1900	350 J	2.4 J	< 8.4 U	69 J	15 J	< 1.1 U	380 J
Acetophenone Anthracene	ug/kg	2.3e+007		1300 J+	2000 J+	1900	3400	1500	1200	170	390	280	2500	19000	27	< 8.4 U	1600	110	< 7.7 U	1800
Atrazine	ug/kg	10000		1300 37	2000 37	1300	3400	1300	1200	170	330	200	2300	13000	21	\ 0.4 U	1000	110	V1.10	1000
Benzaldehyde	ug/kg	820000																		+
Benzo(a)anthracene	ug/kg	21000		3400	5200	5200	8100	2900	3400	440	1300	1000	7000	29000	64	< 8.4 U	6000	270	< 7.7 U	5200
Benzo(a)pyrene	ug/kg	2100		2900 J	5100 J	4500	9000	2900	3500	450	1300	940	7500	21000	54	< 8.4 U	5500	200	< 7.7 U	4300
Benzo(b)fluoranthene	ug/kg	21000		3700	5800	5500	9800	2700	3600	510	1800	1000	9000	25000	64	< 8.4 U	7000	290	< 7.7 U	5500
Benzo(g,h,i)perylene	ug/kg	2.3e+006		2300 J	4800 J	4200	8500	2500	3200	430	1300	850	7500	12000	37	< 8.4 U	3900	150	< 7.7 U	3200
Benzo(k)fluoranthene	ug/kg	210000		1300 J	2300 J	1800	2900	1500	1600	230	560	510	2400	12000	26	< 8.4 U	2800	84	< 7.7 U	2500
bis-(2-chloroethoxy)methane	ug/kg	250000																		
bis-(2-Chloroethyl)ether	ug/kg	1000																		
bis-(2-Ethylhexyl)phthalate	ug/kg	160000																		
Butylbenzylphthalate	ug/kg	1.2e+006																		
Carbonala	ug/kg	4e+007																		
Carbazole Chrysene	ug/kg ug/kg	3e+006 2.1e+006	+	3200	5300	5000	8000	2700	3400	480	1400	1200	6900	25000	58	< 8.4 U	5500	260	< 7.7 U	4900
Dibenzo(a,h)anthracene	ug/kg ug/kg	2.104000	+	640 J+	1400 J+	1400	2100	690	1000	130	360	280	1800	4300	13	< 8.4 U	1100	42	< 7.7 U	< 590 U
Dibenzofuran	ug/kg	100000		U 10 UT	. 400 04	1400	2.00	1 333	1000				1000	1000	.,	. 5.4 0			.,,,,	
Diethylphthalate	ug/kg	6.6e+007	+		†		1		†		1	1			†	1				1
Dimethylphthalate	ug/kg	6.6e+007																		
Di-n-butylphthalate	ug/kg	8.2e+006																		
Di-n-octylphthalate	ug/kg	820000																		
Fluoranthene	ug/kg	3e+006		7000	11000	10000	16000	6200	6400	860	2700	1900	12000	63000	130	1.5 J	12000	520	1.4 J	10000
Fluorene	ug/kg	3e+006		520 J+	600 J+	710	1100	610	490 J	50 J	89	120 J	500 J	9000	15	< 8.4 U	430	45	< 7.7 U	650
Hexachlorobenzene	ug/kg	960																		
Hexachlorobutadiene	ug/kg	5300					ļ				ļ	ļ				ļ				
Hexachlorocyclo-pentadiene	ug/kg	750			ļ		ļ		ļ		ļ	ļ			ļ	ļ				
Hexachloroethane	ug/kg	8000																		

Subsurface Soil Results

			Location ID	SUSDP19-1D	SUSDP19-1D	SUSDP19-1D	SUSDP19-1D	SUSDP19-1D	SUSDP19-1D	SUSDP19-1F	SUSDP19-1F	SUSDP19-1F	SUSDP19-1F	SUSDP19-1G	SUSDP19-1G	SUSDP19-1G	SUSDP19-1H	SUSDP19-1H	SUSDP19-1H	SUSDP19-2D
			Sample Date	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	8/22/2017	2/1/2017	2/8/2017	2/8/2017	2/1/2017	2/8/2017	2/8/2017	8/17/2017
			Sample ID	DPS191D01N	DPS191D01R	DPS191D02N	DPS191D03N	DPS191D04N	DPS191D05N	DPS191F01N	DPS191F02N	DPS191F03N	DPS191F04N	DPS191G02N	DPS191G10N	DPS191G15N	DPS191H02N	DPS191H10N	DPS191H15N	DPS192D01N
			Depth	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	2 - 3 ft	10 - 11 ft	15 - 16 ft	2 - 3 ft	10 - 11 ft	15 - 16 ft	1 - 2 ft
			Туре	N	FD	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																		
Analyte	Unit	Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000		2100 J	4400 J	3800	7800	2400	2900	370	1200	750	7000	12000	36	< 8.4 U	3500	120	< 7.7 U	3000
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000		120 J	< 380 U	170 J	440 J	270	< 820 U	43 J	64	< 190 U	< 760 U	1200	6.1 J	< 8.4 U	88	13 J	< 7.7 U	< 590 U
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007		4600	6300	6000	6500	3700	3400	370	1300	1200	4100	65000	74	< 8.4 U	6500	360	< 7.7 U	6400
Phenol	ug/kg	2.5e+007																		
Pyrene	ug/kg	2.3e+006		4900	7700	7200	12000	4200	4500	630	1900	1500	8900	45000	89	1.1 J	9700	350	1.2 J	7400
BaP-TE	ug/kg	2100		4480	8070	7370	13700	4410	5510	715	2100	1500	11600	32000	83.7	< 8.40 U	8280	311	< 7.70 U	5700
Total High-molecular-weight PAHs	ug/kg			31000	53000	49000	84000	29000	34000	4500	14000	9900	70000	250000	570	2.6	57000	2300	2.6	46000
Total Low-molecular-weight PAHs	ug/kg			7200	10000	9800	13000	6700	5500	740	2000	1800	9300	100000	140	< 8.4 U	9100	590	< 7.7 U	9700
Total PAHs (sum 16)	ug/kg			39000	63000	58000	97000	35000	39000	5300	16000	12000	79000	350000	710	2.6	66000	2900	2.6	56000

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

									•	, _ 0 _ 00 . 0										
			Location ID	SUSDP19-2D	SUSDP19-2D	SUSDP19-2D	SUSDP19-2D	SUSDP19-2M	SUSDP19-2M	SUSDP19-2M	SUSDP19-2M	SUSDP19-2M	SUSDP19-2N	SUSDP19-20	SUSDP19-20	SUSDP19-20	SUSDP19-20	SUSDP19-20	SUSDP19-2O	SUSDP19-2O
			Sample Date	8/17/2017	8/17/2017	8/17/2017	8/17/2017	3/23/2017	8/16/2017	8/16/2017	8/16/2017	8/16/2017	3/23/2017	3/23/2017	8/23/2017	8/23/2017	8/23/2017	3/28/2018	3/28/2018	3/28/2018
			Sample ID	DPS192D02N	DPS192D03N	DPS192D04N	DPS192D05N	SUS192M02N	DPS192M03N	DPS192M03R	DPS192M04N	DPS192M05N	SUS192N02N	SUS192002N	DPS192O03N	DPS192O04N	DPS192O05N	DPS192O06N	DPS192O07N	DPS192O10N
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	2 - 3 ft	3 - 4 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	2 - 3 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft	10 - 11 ft
	1	, ,	Туре	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N
																				1
A 1. d -	Unit	Project Screening																		, ,
Analyte Diesel Range Organics (C10-C20)	mg/kg	Criteria 440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	000000																		
Diesel Range Organics (C10-C20)	mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		
Gasoline Range Organics (C6-C10)	ug/kg	42000																		i
1,1,1-Trichloroethane	ug/kg	3.6e+006																		
1,1,2,2-Tetrachloroethane	ug/kg	2700																		,
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006																		
1,1,2-Trichloroethane	ug/kg	630																		
1,1-Dichloroethane	ug/kg	16000																		
1,1-Dichloroethene	ug/kg	100000																		ļ
1,2,3-Trichlorobenzene	ug/kg	93000 26000										1	1							
1,2,4-Trichlorobenzene	ug/kg	64											1			+	1			
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ug/kg ug/kg	160										1	1							
1,2-Dichlorobenzene	ug/kg ug/kg	930000										+	+							
1,2-Dichloroethane	ug/kg	2000																		
1,2-Dichloropropane	ug/kg	6600																		
1,3-Dichlorobenzene	ug/kg	11000																		i
1,4-Dichlorobenzene	ug/kg	11000																		
1,4-Dioxane	ug/kg	24000																		
2-Butanone	ug/kg	1.9e+007																		
2-Hexanone	ug/kg	130000																		
4-Methyl-2-pentanone	ug/kg	1.4e+007																		
Acetone	ug/kg	6.7e+007																		<u>_</u>
Benzene	ug/kg	5100																		
Bromochloromethane Bromodichloromethane	ug/kg ug/kg	63000 1300																		
Bromoform	ug/kg ug/kg	86000																		
Bromomethane	ug/kg	3000																		
Carbon Disulfide	ug/kg	350000																		
Carbon Tetrachloride	ug/kg	2900																		i
Chlorobenzene	ug/kg	130000																		i
Chloroethane	ug/kg	5.7e+006																		
Chloroform	ug/kg	1400																		
Chloromethane	ug/kg	46000																		
cis-1,2-Dichloroethylene	ug/kg	230000																		
cis-1,3-Dichloropropene	ug/kg	8200																		<u>_</u>
Cyclohexane Dibromochloromethane	ug/kg	2.7e+006 39000											-							
Dibromochloromethane Dichlorodifluoromethane	ug/kg ug/kg	39000										1	1			-				
Ethylbenzene	ug/kg ug/kg	25000							+			1	1			+	<u> </u>			
Isopropylbenzene	ug/kg	990000																		
m, p-Xylene	ug/kg	240000										1	1							í
Methyl Acetate	ug/kg	1.2e+008										1	1							,
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000																		
Methylcyclohexane	ug/kg	2.7e+006																		
Methylene Chloride	ug/kg	320000																		
o-Xylene	ug/kg	280000								-									-	
Styrene	ug/kg	3.5e+006																		
Tetrachloroethylene	ug/kg	39000																		<u> </u>
Toluene	ug/kg	4.7e+006											1							ļJ
trans-1,2-Dichloroethene	ug/kg	2.3e+006											-							<u></u>
trans-1,3-Dichloropropene	ug/kg	8200										1	1			-				
Trichloroethene Trichlorofluoromethane	ug/kg ug/kg	1900 3.5e+007											1			+	1			
Vinyl Chloride	ug/kg ug/kg	3.5e+007 1700										1	1			+	+			
Xylenes (total)	ug/kg ug/kg	250000										1	 			1				
, 1, 100 (1014)	ug/Ng	200000			Ì				ĺ.	Ì		1	1	Ì		1	1	I		

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Loostian ID	CLICDD40 OD	CHEDD40 OD	CLICDD40 0D	CHCDD40 0D	CHCDD40 084	CHCDD40 0N4	CLICDD40 084	CHCDD40 084	CHCDD40 084	CHEDDAO ON	CLICDD40 00	CHEDDAD 20	CHEDDAD 20	CLICDD40 20	CLICDD40 00	6116DD40 00	CHCDD40 00
			Location ID Sample Date	SUSDP19-2D 8/17/2017	SUSDP19-2D 8/17/2017	SUSDP19-2D 8/17/2017	SUSDP19-2D 8/17/2017	SUSDP19-2M 3/23/2017	SUSDP19-2M 8/16/2017	SUSDP19-2M 8/16/2017	SUSDP19-2M 8/16/2017	SUSDP19-2M 8/16/2017	SUSDP19-2N 3/23/2017	SUSDP19-20 3/23/2017	SUSDP19-20 8/23/2017	SUSDP19-20 8/23/2017	SUSDP19-20 8/23/2017	SUSDP19-20 3/28/2018	SUSDP19-20 3/28/2018	SUSDP19-2O 3/28/2018
			Sample ID	DPS192D02N	DPS192D03N		DPS192D05N	SUS192M02N	DPS192M03N	DPS192M03R	DPS192M04N	DPS192M05N	SUS192N02N	SUS192002N	DPS192003N		DPS192O05N	DPS192006N	DPS192007N	
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	2 - 3 ft	3 - 4 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	2 - 3 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft	10 - 11 ft
			Туре	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																		
1,1'-Biphenyl	ug/kg	20000																		
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																		
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		
2,4,5-Trichlorophenol	ug/kg	8.2e+006																		
2,4,6-Trichlorophenol	ug/kg	82000																		
2,4-Dichlorophenol	ug/kg	250000																		
2,4-Dimethylphenol	ug/kg	1.6e+006																		
2,4-Dinitrophenol	ug/kg	160000																		
2,4-Dinitrotoluene	ug/kg	7400 1500																		
2,6-Dinitrotoluene 2-Chloronaphthalene	ug/kg ug/kg	6e+006																		
2-Chlorophenol	ug/kg	580000												 	 					
2-Methylnaphthalene	ug/kg	300000																		†
2-Methylphenol	ug/kg	4.1e+006												1	1	1				
2-Nitroaniline	ug/kg	800000																		
2-Nitrophenol	ug/kg	2.5e+007																		
3,3'-Dichlorobenzidine	ug/kg	5100																		
3-Nitroaniline	ug/kg	110000																		
4,6-Dinitro-2-methylphenol	ug/kg	6600																		
4-Bromophenyl-phenylether	ug/kg	0.0.000																		<u> </u>
4-Chloro-3-methylphenol	ug/kg	8.2e+006																		
4-Chlorophenyl phenylether	ug/kg	11000																		<u> </u>
4-Chlorophenyl-phenylether 4-Methylphenol	ug/kg ug/kg	8.2e+006																		
4-Nitroaniline	ug/kg	110000																		<u> </u>
4-Nitrophenol	ug/kg	2.5e+007																		
Acenaphthene	ug/kg	4.5e+006		< 1700 U	< 1100 U	260	44 J	330	1000 J-	570 J-	11000	1100	< 350 U	2700	430	2100	910	500	1500	2800
Acenaphthylene	ug/kg	4.5e+006		850 J	< 1100 U	< 150 U	30 J	110 J	< 610 U	< 600 U	420 J	240 J	< 350 U	240 J	88 J	370 J	550 J	1500	1100	34 J
Acetophenone	ug/kg	1.2e+007																		
Anthracene	ug/kg	2.3e+007		1800	520 J	660	160	1100	2900 J-	1900 J-	24000	3300	< 350 U	7100	1200	8200	3800	2100	5100	4700
Atrazine	ug/kg	10000																		
Benzaldehyde	ug/kg	820000																		
Benzo(a)anthracene	ug/kg	21000		8200	3000	3100	1100	3400	7800	5500	36000	7600	91 J	19000	3800	17000	9100	8000	14000	6800
Benzo(h)fluoranthono	ug/kg	2100 21000		7700	2900	2800	1100	3000	6600	4800	28000	6600	80 J	16000	3800	13000	7900	8900	14000	5500
Benzo(b)fluoranthene Benzo(g,h,i)perylene	ug/kg	2.3e+006		9700 5700	4100 2500	3500 2500	1400 1100	4100 2700	8100 4800	6500 3500	33000 22000	7900 6000	97 J 110 J	20000 13000	4200 4200	17000 12000	9300 8300	11000 7600	16000 11000	6400 2800
Benzo(k)fluoranthene	ug/kg ug/kg	210000		4000	1300	1500	540	1100	3300 J	1800 J	14000	2900	< 350 U	7100	1800	5600	3600	4600	5900	2300
bis-(2-chloroethoxy)methane	ug/kg	250000		4000	1000	1000	0.40		55500	.0000	14000	2300	- 550 0	7.00	.500	5500		7000	5500	2000
bis-(2-Chloroethyl)ether	ug/kg	1000												1	1	1				
bis-(2-Ethylhexyl)phthalate	ug/kg	160000												İ	İ					
Butylbenzylphthalate	ug/kg	1.2e+006																		
Caprolactam	ug/kg	4e+007																		
Carbazole	ug/kg	3e+006																		
Chrysene	ug/kg	2.1e+006		8300	2900	3200	1100	3100	7800	5400	34000	7700	71 J	18000	3700	16000	8500	7400	12000	7100
Dibenzo(a,h)anthracene	ug/kg	2100		< 1700 U	< 1100 U	910	340	630	1400 J-	< 600 UJ	6600	1900	< 350 U	3400	810	3600	2400	1600	2500	870
Dibenzofuran Diathylphtholote	ug/kg	100000							-			-		1	1	1				
Diethylphthalate Dimethylphthalate	ug/kg	6.6e+007												1	1	1				
Dimethylphthalate Di-n-butylphthalate	ug/kg	6.6e+007 8.2e+006							-					-	-	-				
Di-n-octylphthalate	ug/kg ug/kg	820000										+		 	 	1				
Fluoranthene	ug/kg	3e+006		16000	5300	6400	2100	6600	17000	12000	99000	17000	110 J	36000	6800	38000	19000	12000	23000	16000
	-5.19				3000	3.55					33330									
Fluorene	ug/kg	3e+006		< 1700 U	< 1100 U	310	43 J	410	1300 J-	770 J-	14000	1300	< 350 U	3100	380	2500	1200	830	1600	3600
Hexachlorobenzene	ug/kg	960																		
Hexachlorobutadiene	ug/kg	5300																		
Hexachlorocyclo-pentadiene	ug/kg	750																		
Hexachloroethane	ug/kg	8000																		

Subsurface Soil Results

			Location ID	SUSDP19-2D	SUSDP19-2D	SUSDP19-2D	SUSDP19-2D	SUSDP19-2M	SUSDP19-2M	SUSDP19-2M	SUSDP19-2M	SUSDP19-2M	SUSDP19-2N	SUSDP19-20	SUSDP19-20	SUSDP19-20	SUSDP19-20	SUSDP19-20	SUSDP19-20	SUSDP19-20
			Sample Date	8/17/2017	8/17/2017	8/17/2017	8/17/2017	3/23/2017	8/16/2017	8/16/2017	8/16/2017	8/16/2017	3/23/2017	3/23/2017	8/23/2017	8/23/2017	8/23/2017	3/28/2018	3/28/2018	3/28/2018
			Sample ID	DPS192D02N	DPS192D03N	DPS192D04N	DPS192D05N	SUS192M02N	DPS192M03N	DPS192M03R	DPS192M04N	DPS192M05N	SUS192N02N	SUS192002N	DPS192O03N	DPS192O04N	DPS192005N	DPS192O06N	DPS192O07N	DPS192O10N
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	2 - 3 ft	3 - 4 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	2 - 3 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft	10 - 11 ft
			Туре	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000		5300	2300	2400	990	2300	4300	3300	22000	5300	90 J	11000	3500	11000	6800	6700	9700	2800
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000		< 1700 U	< 1100 U	< 150 U	< 73 U	310	< 610 U	< 600 U	1700	260 J	< 350 U	1200	180 J	< 700 U	430 J	300	590	1000
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007		5600	2000	3100	640	3500	10000	6500	99000	11000	< 350 U	21000	4400	25000	11000	4100	12000	22000
Phenol	ug/kg	2.5e+007																		
Pyrene	ug/kg	2.3e+006		11000	3800	4200	1400	4900	11000	8100	62000	12000	95 J	27000	7700	27000	14000	11000	19000	14000
BaP-TE	ug/kg	2100		10100	3860	4630	1800	4620	10100	6350	43900	10600	108	24500	5780	21200	12900	13100	20500	8000
Total High-molecular-weight PAHs	ug/kg			76000	28000	31000	11000	32000	72000	51000	360000	75000	740	170000	40000	160000	89000	79000	130000	65000
Total Low-molecular-weight PAHs	ug/kg			8300	2500	4300	920	5800	15000	9700	150000	17000	< 350 U	35000	6700	38000	18000	9300	22000	34000
Total PAHs (sum 16)	ug/kg			84000	31000	35000	12000	38000	87000	61000	510000	92000	740	210000	47000	200000	110000	88000	150000	99000

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

									_	J.O, 2 0 20.										
			Location ID	SUSDP19-20	SUSDP19-2P	SUSDP19-2P	SUSDP19-2P	SUSDP19-2P	SUSDP19-3F	SUSDP19-3F	SUSDP19-3F	SUSDP19-3F	SUSDP19-3F	SUSDP19-3S	SUSDP19-3S	SUSDP19-3S	SUSDP19-3S	SUSDP19-3S	SUSDP19-3S	SUSDP19-3V
			Sample Date	3/28/2018	3/23/2017	8/17/2017	8/17/2017	8/17/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017
			Sample ID		SUS192P02N	DPS192P03N	DPS192P04N	DPS192P05N	DPS193F01N	DPS193F02N	DPS193F03N	DPS193F04N	DPS193F05N	DPS193S01N	DPS193S01R	DPS193S02N	DPS193S03N	DPS193S04N	DPS193S05N	DPS193V01N
			Depth	11 - 12 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft
		1	Туре	N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N
		Project Screening																		
Analyte	Unit	Criteria																		
Diesel Range Organics (C10-C20)	mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		
Total Petroleum Hydrocarbons (C9-C44)	mg/kg																			
Diesel Range Organics (C10-C20)	mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		
Gasoline Range Organics (C6-C10)	ug/kg	42000																		<u> </u>
1,1,1-Trichloroethane	ug/kg	3.6e+006																		
1,1,2,2-Tetrachloroethane	ug/kg	2700																		ļ
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	ug/kg	2.8e+006 630																		<u> </u>
1,1-Dichloroethane	ug/kg ug/kg	16000																		1
1,1-Dichloroethene	ug/kg	100000																		
1,2,3-Trichlorobenzene	ug/kg	93000										1								
1,2,4-Trichlorobenzene	ug/kg	26000										İ								
1,2-Dibromo-3-chloropropane	ug/kg	64																		
1,2-Dibromoethane	ug/kg	160																		
1,2-Dichlorobenzene	ug/kg	930000																		
1,2-Dichloroethane	ug/kg	2000																		<u> </u>
1,2-Dichloropropane	ug/kg	6600																		
1,3-Dichlorobenzene	ug/kg	11000																		
1,4-Dichlorobenzene 1,4-Dioxane	ug/kg	11000 24000																		
2-Butanone	ug/kg ug/kg	1.9e+007																		
2-Hexanone	ug/kg	130000																		
4-Methyl-2-pentanone	ug/kg	1.4e+007																		
Acetone	ug/kg	6.7e+007																		
Benzene	ug/kg	5100																		
Bromochloromethane	ug/kg	63000																		
Bromodichloromethane	ug/kg	1300																		
Bromoform	ug/kg	86000																		
Bromomethane	ug/kg	3000																		
Carbon Disulfide	ug/kg	350000																		
Carbon Tetrachloride	ug/kg	2900 130000																		
Chlorobenzene Chloroethane	ug/kg ug/kg	5.7e+006																		
Chloroform	ug/kg	1400																		
Chloromethane	ug/kg	46000																		
cis-1,2-Dichloroethylene	ug/kg	230000																		
cis-1,3-Dichloropropene	ug/kg	8200																		
Cyclohexane	ug/kg	2.7e+006																		
Dibromochloromethane	ug/kg	39000																		
Dichlorodifluoromethane	ug/kg	37000																		<u> </u>
Ethylbenzene	ug/kg	25000																		
Isopropylbenzene	ug/kg	990000																		
m, p-Xylene Methyl Acetate	ug/kg ug/kg	240000 1.2e+008																		
Methyl tert-Butyl Ether (MTBE)	ug/kg ug/kg	210000																		
Methylicyclohexane	ug/kg	2.7e+006																		
Methylene Chloride	ug/kg	320000																		-
p-Xylene	ug/kg	280000										1								
Styrene	ug/kg	3.5e+006										İ								
Tetrachloroethylene	ug/kg	39000																		
Toluene	ug/kg	4.7e+006																		
trans-1,2-Dichloroethene	ug/kg	2.3e+006																		
trans-1,3-Dichloropropene	ug/kg	8200																		<u> </u>
Trichloroethene	ug/kg	1900										ļ								
Trichlorofluoromethane	ug/kg	3.5e+007										ļ								
Vinyl Chloride	ug/kg	1700										 								
Xylenes (total)	ug/kg	250000										1								1

Subsurface Soil Results

			Location ID	SUSDP19-20	SUSDP19-2P	SUSDP19-2P	SUSDP19-2P	SUSDP19-2P	SUSDP19-3F	SUSDP19-3F	SUSDP19-3F	SUSDP19-3F	SUSDP19-3F	SUSDP19-3S	SUSDP19-3S	SUSDP19-3S	SUSDP19-3S	SUSDP19-3S	SUSDP19-3S	SUSDP19-3\
			Sample Date	3/28/2018	3/23/2017	8/17/2017	8/17/2017	8/17/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017
			Sample ID	DPS192O11N	SUS192P02N	DPS192P03N	DPS192P04N	DPS192P05N	DPS193F01N	DPS193F02N	DPS193F03N	DPS193F04N	DPS193F05N	DPS193S01N	DPS193S01R	DPS193S02N	DPS193S03N	DPS193S04N	DPS193S05N	DPS193V01N
			Depth	11 - 12 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft
		1	Туре	N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N
		Project Screening																		
Analyte	Unit	Criteria																		
1,1'-Biphenyl	ug/kg	20000																		
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																		
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		
2,4,5-Trichlorophenol	ug/kg	8.2e+006																		
2,4,6-Trichlorophenol	ug/kg	82000																		
2,4-Dichlorophenol	ug/kg	250000																		
2,4-Dimethylphenol	ug/kg	1.6e+006																		
2,4-Dinitrophenol 2,4-Dinitrotoluene	ug/kg	160000 7400																		
2,6-Dinitrotoluene	ug/kg ug/kg	1500																		
2-Chloronaphthalene	ug/kg	6e+006			+							1								
2-Chlorophenol	ug/kg	580000										1								
2-Methylnaphthalene	ug/kg	300000										İ								
2-Methylphenol	ug/kg	4.1e+006																		
2-Nitroaniline	ug/kg	800000																		
2-Nitrophenol	ug/kg	2.5e+007																		
3,3'-Dichlorobenzidine	ug/kg	5100																		
3-Nitroaniline	ug/kg	110000																		
4,6-Dinitro-2-methylphenol	ug/kg	6600																		
4-Bromophenyl-phenylether	ug/kg	0.0 .000																		
4-Chloro-3-methylphenol	ug/kg	8.2e+006																		
4-Chlorophopyl phopylethor	ug/kg	11000																		
4-Chlorophenyl-phenylether 4-Methylphenol	ug/kg ug/kg	8.2e+006																		
4-Nitroaniline	ug/kg	110000																		
4-Nitrophenol	ug/kg	2.5e+007																		
Acenaphthene	ug/kg	4.5e+006		< 7.7 U	720	< 730 U	290 J	< 1500 U	< 740 U	12 J	9.3	4.5 J	< 300 U	53	29	300 J	< 1200 U	420 J	520 J	420
Acenaphthylene	ug/kg	4.5e+006		< 7.7 U	210 J	< 730 U	< 760 U	< 1500 U	< 740 U	14 J	12	12	< 300 U	28	30	200 J	< 1200 U	590	490 J	250
Acetophenone	ug/kg	1.2e+007																		
Anthracene	ug/kg	2.3e+007		2.9 J+	2500	760	1000	< 1500 U	430 J	48	36	26	110 J	230	140	810	770 J	1700	2200	1800
Atrazine	ug/kg	10000																		
Benzaldehyde	ug/kg	820000																		
Benzo(a)anthracene	ug/kg	21000		5.3 J+	7000	3200	3500	1200 J	1600	220	160	100	210 J	730 J-	440 J-	2900	1800	6100	5800	4400
Benzo(a)pyrene	ug/kg	2100		3.7 J+	5800	3500	3200	1200 J	1400	220	150	95	160 J	670 J-	450 J-	2800	1800	5300	5100	4000
Benzo(b)fluoranthene	ug/kg	21000		5.8 J+	6900	4200	3800	1200 J	1900	250	180	110	180 J	810 J	500 J	3400	2100	7000	6200	4700
Benzo(g,h,i)perylene	ug/kg	2.3e+006		3.7 J+	4500	3200	3200	1200 J	1500	210	140	100	260 J	590	460	2900	1600	4400	4600	3700
Benzo(k)fluoranthene	ug/kg	210000 250000		2.3 J+	2700	1400	1600	< 1500 U	590 J	97	53	46	< 300 U	280	220	1100	710 J	2400	2300	1600
bis-(2-chloroethoxy)methane bis-(2-Chloroethyl)ether	ug/kg ug/kg	1000										 								
bis-(2-Ethylhexyl)phthalate	ug/kg	160000										+								
Butylbenzylphthalate	ug/kg	1.2e+006																		
Caprolactam	ug/kg	4e+007										1								
Carbazole	ug/kg	3e+006										İ								
Chrysene	ug/kg	2.1e+006		4.9 J+	6600	3300	3700	1200 J	1700	220	160	110	190 J	740 J-	460 J-	2900	2000	5600	5200	4200
Dibenzo(a,h)anthracene	ug/kg	2100		< 7.7 U	1300	< 730 U	880	< 1500 U	400 J	55	35	27	< 300 U	150 J+	120 J+	740	< 1200 U	< 590 U	1300	890
Dibenzofuran	ug/kg	100000																		
Diethylphthalate	ug/kg	6.6e+007						-		-										
Dimethylphthalate	ug/kg	6.6e+007																		
Di-n-hutvlnhthalate	ug/kg	8.2e+006										ļ								
	ug/kg	820000			1		ļ													
Di-n-octylphthalate		3e+006		7.8 J+	14000	6100	7900	2200	3000	410	270	220	430	1600 J	880 J	5500	3600	13000	13000	10000
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene	ug/kg	00.000							i l		1	1		1			1	1		1
Di-n-octylphthalate Fluoranthene				4.5.1		. 700	. 700	4.4500 ***	. 740				4 000 11				4 4000 11	F :		
Di-n-octylphthalate Fluoranthene Fluorene	ug/kg	3e+006		1.8 J+	690	< 730 U	< 760 U	< 1500 U	< 740 U	11 J	8.8	4.5 J	< 300 U	49	30	280 J	< 1200 U	580 J	760	380
Di-n-octylphthalate Fluoranthene Fluorene Hexachlorobenzene	ug/kg ug/kg	3e+006 960		1.8 J+	690	< 730 U	< 760 U	< 1500 U	< 740 U	11 J	8.8	4.5 J	< 300 U	49	30	280 J	< 1200 U	580 J	760	380
Di-n-octylphthalate Fluoranthene Fluorene	ug/kg	3e+006		1.8 J+	690	< 730 U	< 760 U	< 1500 U	< 740 U	11 J	8.8	4.5 J	< 300 U	49	30	280 J	< 1200 U	580 J	760	380

Subsurface Soil Results

			Location ID	SUSDP10.20	SUSDP19-2P	SLISDD10 2D	SUSDP19-2P	SUSDP19-2P	SUSDP19-3F	SUSDP19-3F	SUSDP19-3F	SUSDP19-3F	SUSDP19-3F	SUSDP19-3S	SUSDP19-3S	SLISDD10.3S	SUSDP19-3S	SUSDD10.3S	SUSDP19-3S	SUSDP19-3V
			Sample Date	3/28/2018	3/23/2017	8/17/2017	8/17/2017	8/17/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/24/2017
			'				DPS192P04N			DPS193F02N	DPS193F03N	DPS193F04N	DPS193F05N							
			Sample ID		SUS192P02N			DPS192P05N	DPS193F01N					DPS193S01N		DPS193S02N		DPS193S04N		
			Depth	11 - 12 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft
		,	Туре	N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000		3.1 J+	3900	2500	2800	980 J	1200	180	120	86	150 J	520 J+	390 J+	2400	1500	4200	3900	3200
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000		< 7.7 U	130 J	< 730 U	< 760 U	< 1500 U	< 740 U	6.4 J	4.5 J	3.4 J	< 300 U	20	17 J	< 370 U	< 1200 U	< 590 U	240 J	150
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007		9.1 J+	8200	2500	4000	910 J	1600	150	120	82	330	660 J	290 J	2000	2000	5900	6500	4700
Phenol	ug/kg	2.5e+007																		
Pyrene	ug/kg	2.3e+006		11 J+	11000	5200	5400	1700	2200	320	210	150	290 J	1200 J	700 J	4100	2500	9100	8800	7500
BaP-TE	ug/kg	2100		5.15	8910	4510	5110	1540	2280	341	232	152	214	1030	706	4420	2350	7060	8020	6140
Total High-molecular-weight PAHs	ug/kg			48	64000	33000	36000	11000	15000	2200	1500	1000	1900	7300	4600	29000	18000	57000	56000	44000
Total Low-molecular-weight PAHs	ug/kg			14	12000	3300	5300	910	2000	240	190	130	440	1000	540	3600	2800	9200	11000	7700
Total PAHs (sum 16)	ug/kg			61	76000	36000	41000	12000	18000	2400	1700	1200	2300	8300	5200	32000	20000	66000	67000	52000

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

									,, _ 0 0										
			Location ID SUSDP19-3V	SUSDP19-3V	SUSDP19-3V	SUSDP19-3V	SUSDP19-3X	SUSDP19-3X	SUSDP19-3X	SUSDP19-3X	SUSDP19-3X	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N
			Sample Date 8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	1/26/2018	1/26/2018	1/26/2018	1/26/2018	1/26/2018	1/26/2018	3/28/2018	3/28/2018
			Sample ID DPS193V02N		DPS193V04N		DPS193X01N	DPS193X02N	DPS193X03N	DPS193X04N	DPS193X05N	DPS194N01N	DPS194N02N	DPS194N02R	DPS194N03N	DPS194N04N	DPS194N05N	DPS194N06N	DPS194N07N
			Depth 2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft
			Type N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N
		D : 10 :																	
Analyte	Unit	Project Screening Criteria																	
Diesel Range Organics (C10-C20)	mg/kg	440																	
Oil Range Organics (C20-C36)	mg/kg	350000																	
Total Petroleum Hydrocarbons (C9-C44)	mg/kg																		
Diesel Range Organics (C10-C20)	mg/kg	440																	
Oil Range Organics (C20-C36)	mg/kg	350000																	
Gasoline Range Organics (C6-C10)	ug/kg	42000																	
1,1,1-Trichloroethane	ug/kg	3.6e+006																	
1,1,2,2-Tetrachloroethane	ug/kg	2700																	
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006				1		ļ											1
1,1,2-Trichloroethane 1,1-Dichloroethane	ug/kg ug/kg	630 16000																	
1,1-Dichloroethene	ug/kg ug/kg	10000																	-
1.2.3-Trichlorobenzene	ug/kg	93000																	
1,2,4-Trichlorobenzene	ug/kg	26000			1		1												
1,2-Dibromo-3-chloropropane	ug/kg	64				1		1					1	1			1		
1,2-Dibromoethane	ug/kg	160												İ			İ		
1,2-Dichlorobenzene	ug/kg	930000																	
1,2-Dichloroethane	ug/kg	2000																	
1,2-Dichloropropane	ug/kg	6600																	
1,3-Dichlorobenzene	ug/kg	11000																	
1,4-Dichlorobenzene	ug/kg	11000																	
1,4-Dioxane	ug/kg	24000																	
2-Butanone	ug/kg	1.9e+007																	ļ
2-Hexanone	ug/kg	130000 1.4e+007																	1
4-Methyl-2-pentanone Acetone	ug/kg ug/kg	6.7e+007																	
Benzene	ug/kg	5100																	
Bromochloromethane	ug/kg	63000																	1
Bromodichloromethane	ug/kg	1300																	
Bromoform	ug/kg	86000																	
Bromomethane	ug/kg	3000																	
Carbon Disulfide	ug/kg	350000																	
Carbon Tetrachloride	ug/kg	2900																	
Chlorobenzene	ug/kg	130000																	
Chloroethane	ug/kg	5.7e+006																	
Chloroform	ug/kg	1400																	
Chloromethane	ug/kg	46000																	ļ
cis-1,2-Dichloroethylene	ug/kg	230000 8200																	1
cis-1,3-Dichloropropene Cyclohexane	ug/kg ug/kg	2.7e+006			-	-	1	-					-	-			-		
Dibromochloromethane	ug/kg ug/kg	39000				 		 					 	1			1		
Dichlorodifluoromethane	ug/kg	37000				1		1					1	1			1		†
Ethylbenzene	ug/kg	25000			1	†	1	†					†	1			1		
Isopropylbenzene	ug/kg	990000												İ			İ		
m, p-Xylene	ug/kg	240000																	
Methyl Acetate	ug/kg	1.2e+008																	
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000																	
Methylcyclohexane	ug/kg	2.7e+006																	
Methylene Chloride	ug/kg	320000																	<u> </u>
p-Xylene	ug/kg	280000					ļ												<u> </u>
Styrene	ug/kg	3.5e+006				1		1					1	 			1		<u> </u>
Tetrachloroethylene	ug/kg	39000				1		1					1	1			1		
Toluene trans-1,2-Dichloroethene	ug/kg ug/kg	4.7e+006 2.3e+006			-	 	 	 					1	1			1		<u> </u>
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ug/kg ug/kg	8200				+	 	+					+	1			1		
Trichloroethene	ug/kg ug/kg	1900			 	1	 	1					1	 			 		
Trichlorofluoromethane	ug/kg	3.5e+007			<u> </u>	 	 	 					 	 					
Vinyl Chloride	ug/kg	1700				1		1					1	1			1		
Xylenes (total)	ug/kg	250000				1	İ	1					1	1			1		
· ' '	, 5 5			1		1		1					1		1	1		1	

Subsurface Soil Results

			Location ID	SUSDP19-3V	SUSDP19-3V	SUSDP19-3V	SUSDP19-3V	SUSDP19-3X	SUSDP19-3X	SUSDP19-3X	SUSDP19-3X	SUSDP19-3X	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N
			Sample Date	8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	1/26/2018	1/26/2018	1/26/2018	1/26/2018	1/26/2018	1/26/2018	3/28/2018	3/28/2018
				DPS193V02N	DPS193V03N	DPS193V04N		DPS193X01N	DPS193X02N	DPS193X03N	DPS193X04N	DPS193X05N	DPS194N01N	DPS194N02N	DPS194N02R	DPS194N03N	DPS194N04N	DPS194N05N	DPS194N06N	
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N
	11.7	Project Screening																		
Analyte	Unit	Criteria																		
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	ug/kg ug/kg	20000 35000																		
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		+
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		+
2,4,5-Trichlorophenol	ug/kg	8.2e+006																		
2,4,6-Trichlorophenol	ug/kg	82000																		+
2,4-Dichlorophenol	ug/kg	250000																		
2,4-Dimethylphenol	ug/kg	1.6e+006																		
2,4-Dinitrophenol	ug/kg	160000																		
2,4-Dinitrotoluene	ug/kg	7400																		
2,6-Dinitrotoluene	ug/kg	1500																		
2-Chloronaphthalene	ug/kg	6e+006																		
2-Chlorophenol	ug/kg	580000																		
2-Methylnaphthalene	ug/kg	300000																		
2-Methylphenol	ug/kg	4.1e+006																		
2-Nitroaniline 2-Nitrophenol	ug/kg ug/kg	800000 2.5e+007					1												1	+
3,3'-Dichlorobenzidine	ug/kg	5100																		
3-Nitroaniline	ug/kg	110000																		+
4,6-Dinitro-2-methylphenol	ug/kg	6600																		+
4-Bromophenyl-phenylether	ug/kg	5555																		+
4-Chloro-3-methylphenol	ug/kg	8.2e+006																		
4-Chloroaniline	ug/kg	11000																		
4-Chlorophenyl-phenylether	ug/kg																			
4-Methylphenol	ug/kg	8.2e+006																		
4-Nitroaniline	ug/kg	110000																		
4-Nitrophenol	ug/kg	2.5e+007																		
Acenaphthene	ug/kg	4.5e+006		590	800 J	810	430 J	980	3200	2400	< 1700 U	< 710 U	30	1300 J	2200 J	13000	2600	2600	380	3500
Acenaphthylene	ug/kg	4.5e+006		450	710 J	740	440 J	170	600 J	1100	< 1700 U	250 J	7.7	130	140	9500	460	670	60 J	240 J
Acetophenone	ug/kg	1.2e+007																		
Anthracene	ug/kg	2.3e+007		2600	2600	2700	1300	3600	6300	7900	1600 J	550 J	82	2800 J	5200 J	17000	6100	6300	590	8100
Atrazine	ug/kg	10000 820000																		
Benzaldehyde	ug/kg ug/kg	21000		8100	6800	6100	2500	6600	14000	13000	2900	1400	350	6300 J	12000 J	39000	15000	14000	3900	26000
Benzo(a)anthracene Benzo(a)pyrene	ug/kg ug/kg	2100		7800	6800	5200	2400	5600	13000	11000	2500	1700	280	5700 J	9800 J	37000	14000	14000	3700	23000
Benzo(b)fluoranthene	ug/kg	21000		9100	6800	6700	3000	6500	15000	13000	3100	2000	410	8000	12000	57000	16000	19000	5200	31000
Benzo(g,h,i)perylene	ug/kg	2.3e+006		7000	6800	5100	3000	4700	11000	10000	3000	2400	240	5000	8300	45000	12000	14000	3300	17000
Benzo(k)fluoranthene	ug/kg	210000		3500	3600	2400	920	2000	6000	5600	970 J	710	110	1900 J	5600 J	15000	6900	4100	2300	11000
bis-(2-chloroethoxy)methane	ug/kg	250000																		
bis-(2-Chloroethyl)ether	ug/kg	1000																		
bis-(2-Ethylhexyl)phthalate	ug/kg	160000																		
Butylbenzylphthalate	ug/kg	1.2e+006																		
Caprolactam	ug/kg	4e+007		-																
Carbazole	ug/kg	3e+006																		
Chrysene	ug/kg	2.1e+006		8000	7000	5800	2400	6500	14000	12000	2900	1700	310	5800 J	11000 J	33000	13000	12000	4700	29000
Dibenzo(a,h)anthracene	ug/kg	2100		1800	1800	< 580 U	< 730 U	1300	2800	2600	860 J	680 J	70	1600	2600	12000	3800	3000	1000	4700
Dibenzofuran	ug/kg	100000																		
Diethylphthalate	ug/kg	6.6e+007 6.6e+007																	1	+
Dimethylphthalate	ug/kg	6.6e+007 8.2e+006																		
Di-n-butylphthalate Di-n-octylphthalate	ug/kg ug/kg	8.2e+006 820000					1												-	+
Fluoranthene	ug/kg	3e+006		17000	13000	14000	6200	13000	31000	29000	6600	2200	540	12000 J	24000 J	63000	25000	23000	11000	55000
i idoranti lono	ug/kg	30.000		17000	13000	14000	0200	13000	31000	25000	0000	2200	J40	12000 3	24000 J	03000	23000	23000	11000	33000
Fluorene	ug/kg	3e+006		580	1000 J	1200	720 J	1100	2600	3300	690 J	< 710 U	25	1100 J	2200 J	33000	2000	2800	210	4000
Hexachlorobenzene	ug/kg	960			10000	.200	1.200	1.00	2000	5556	0000	. 10 0		1.500		55500	2000	2300	2.10	1300
Hexachlorobutadiene	ug/kg	5300																		<u> </u>
Hexachlorocyclo-pentadiene	ug/kg	750																		
Hexachloroethane	ug/kg	8000					1												†	

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP19-3V	SUSDP19-3V	SUSDP19-3V	SUSDP19-3V	SUSDP19-3X	SUSDP19-3X	SUSDP19-3X	SUSDP19-3X	SUSDP19-3X	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N	SUSDP19-4N
			Sample Date	8/24/2017	8/24/2017	8/24/2017	8/24/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	8/18/2017	1/26/2018	1/26/2018	1/26/2018	1/26/2018	1/26/2018	1/26/2018	3/28/2018	3/28/2018
			Sample ID	DPS193V02N	DPS193V03N	DPS193V04N	DPS193V05N	DPS193X01N	DPS193X02N	DPS193X03N	DPS193X04N	DPS193X05N	DPS194N01N	DPS194N02N	DPS194N02R	DPS194N03N	DPS194N04N	DPS194N05N	DPS194N06N	DPS194N07N
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000		6300	5900	4400	2500	3900	9900	8900	2300	2000	210	4200 J	7400 J	43000	12000	12000	2900	16000
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000		150 J	< 1700 U	< 580 U	440 J	150	< 760 U	700 J	< 1700 U	< 710 U	11	280	340	16000	7900	2500	590	1800
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007		6600	6900	7500	3600	9000	21000	24000	5100	1600	310	11000 J	24000 J	68000	21000	19000	2100	34000
Phenol	ug/kg	2.5e+007																		
Pyrene	ug/kg	2.3e+006		13000	9500	11000	4400	11000	23000	21000	5000	1600	540	12000	17000	72000	25000	24000	7700	43000
BaP-TE	ug/kg	2100		12000	10600	6950	3210	8630	19800	17200	4200	2930	448	9170	15600	63100	22200	21600	5930	35100
Total High-molecular-weight PAHs	ug/kg			82000	68000	61000	27000	61000	140000	130000	30000	16000	3100	63000	110000	420000	140000	140000	46000	260000
Total Low-molecular-weight PAHs	ug/kg			11000	12000	13000	6900	15000	34000	39000	7400	2400	470	17000	34000	160000	40000	34000	3900	52000
Total PAHs (sum 16)	ug/kg			93000	80000	74000	34000	76000	170000	170000	38000	19000	3500	79000	140000	570000	180000	170000	50000	310000

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP19-4N	SUSDP19-4N	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4W	SUSDP19-4W	SUSDP19-4W	SUSDP19-4W
			Sample Date	3/28/2018	3/28/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	3/28/2018	3/28/2018	3/28/2018	3/28/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018
			Sample ID	DPS194N10N	DPS194N11N	DPS194NW01N	DPS194NW02N	DPS194NW03N	DPS194NW04N	DPS194NW05N	DPS194NW06N	DPS194NW07N	DPS194NW10N	DPS194NW11N		DPS194W01R	DPS194W02N	DPS194W03N
			Depth	10 - 11 ft	11 - 12 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft	10 - 11 ft	11 - 12 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	FD	N	N
		Project Screening																
Analyte Diesel Range Organics (C10-C20)	Unit	Criteria 440																
Oil Range Organics (C20-C36)	mg/kg mg/kg	350000																
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	000000																
Diesel Range Organics (C10-C20)	mg/kg	440																1
Oil Range Organics (C20-C36)	mg/kg	350000																
Gasoline Range Organics (C6-C10)	ug/kg	42000																
1,1,1-Trichloroethane	ug/kg	3.6e+006																
1,1,2,2-Tetrachloroethane	ug/kg	2700																<u> </u>
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	ug/kg	2.8e+006 630																<u> </u>
1,1-Dichloroethane	ug/kg ug/kg	16000																
1,1-Dichloroethene	ug/kg	100000																
1,2,3-Trichlorobenzene	ug/kg	93000					1					1					1	
1,2,4-Trichlorobenzene	ug/kg	26000																
1,2-Dibromo-3-chloropropane	ug/kg	64																
1,2-Dibromoethane	ug/kg	160																
1,2-Dichlorobenzene	ug/kg	930000																<u> </u>
1,2-Dichloroethane	ug/kg	2000																<u> </u>
1,2-Dichloropropane	ug/kg	6600 11000																<u> </u>
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/kg ug/kg	11000																
1,4-Dioxane	ug/kg	24000																
2-Butanone	ug/kg	1.9e+007																-
2-Hexanone	ug/kg	130000																+
4-Methyl-2-pentanone	ug/kg	1.4e+007																
Acetone	ug/kg	6.7e+007																
Benzene	ug/kg	5100																
Bromochloromethane	ug/kg	63000																<u> </u>
Bromodichloromethane Bromoform	ug/kg ug/kg	1300 86000																
Bromomethane	ug/kg	3000																
Carbon Disulfide	ug/kg	350000																-
Carbon Tetrachloride	ug/kg	2900																+
Chlorobenzene	ug/kg	130000																
Chloroethane	ug/kg	5.7e+006																
Chloroform	ug/kg	1400																
Chloromethane	ug/kg	46000																
cis-1,2-Dichloroethylene	ug/kg	230000																<u> </u>
cis-1,3-Dichloropropene Cyclohexane	ug/kg ug/kg	8200 2.7e+006					 				<u> </u>	 	+		+	+	 	
Dibromochloromethane	ug/kg ug/kg	39000					1					1	+				1	\vdash
Dichlorodifluoromethane	ug/kg	37000															<u> </u>	
Ethylbenzene	ug/kg	25000															1	
Isopropylbenzene	ug/kg	990000																
m, p-Xylene	ug/kg	240000																
Methyl Acetate	ug/kg	1.2e+008																<u> </u>
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000																
Methylcyclohexane Methylene Chloride	ug/kg ug/kg	2.7e+006 320000					1					1	-				1	──
o-Xylene	ug/kg ug/kg	280000					-					-					-	
Styrene	ug/kg	3.5e+006											+			+		
Tetrachloroethylene	ug/kg	39000					1					1					1	
Toluene	ug/kg	4.7e+006					1					1					1	
trans-1,2-Dichloroethene	ug/kg	2.3e+006																
trans-1,3-Dichloropropene	ug/kg	8200		· 														
Trichloroethene	ug/kg	1900																
Trichlorofluoromethane	ug/kg	3.5e+007					ļ					ļ					ļ	 '
Vinyl Chloride	ug/kg	1700					ļ					1	-			-	1	
Xylenes (total)	ug/kg	250000				<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>. </u>

Subsurface Soil Results

			Location ID	SUSDP19-4N		SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4W	SUSDP19-4W	SUSDP19-4W	SUSDP19-4W
			Sample Date	3/28/2018	3/28/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	3/28/2018	3/28/2018	3/28/2018	3/28/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018
				DPS194N10N		DPS194NW01N		DPS194NW03N	DPS194NW04N	DPS194NW05N	DPS194NW06N	DPS194NW07N		DPS194NW11N	DPS194W01N	DPS194W01R	DPS194W02N	DPS194W03N
			Depth	10 - 11 ft	11 - 12 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft	10 - 11 ft	11 - 12 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft
	1	1 1	Туре	N	N	N	N	N	N	N	N	N	N	N	N	FD	N	N
		D : 10 :																
Analyte	Unit	Project Screening Criteria																
1,1'-Biphenyl	ug/kg	20000																
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																
2,4,5-Trichlorophenol	ug/kg	8.2e+006																
2,4,6-Trichlorophenol	ug/kg	82000																
2,4-Dichlorophenol	ug/kg	250000																
2,4-Dimethylphenol	ug/kg	1.6e+006																
2,4-Dinitrophenol	ug/kg	160000																
2,4-Dinitrotoluene	ug/kg	7400																
2,6-Dinitrotoluene	ug/kg	1500																
2-Chloronaphthalene	ug/kg	6e+006																
2-Chlorophenol	ug/kg	580000																
2-Methylnaphthalene	ug/kg	300000																
2-Methylphenol	ug/kg	4.1e+006																
2-Nitroaniline	ug/kg	800000			_													
2-Nitrophenol	ug/kg	2.5e+007																
3,3'-Dichlorobenzidine	ug/kg	5100																
3-Nitroaniline	ug/kg	110000																
4,6-Dinitro-2-methylphenol	ug/kg	6600																
4-Bromophenyl-phenylether	ug/kg																	
4-Chloro-3-methylphenol	ug/kg	8.2e+006																
4-Chloroaniline	ug/kg	11000																
4-Chlorophenyl-phenylether	ug/kg																	
4-Methylphenol	ug/kg	8.2e+006																
4-Nitroaniline	ug/kg	110000																
4-Nitrophenol	ug/kg	2.5e+007																
Acenaphthene	ug/kg	4.5e+006		31	< 7.7 U	490	280	< 360 U	1500 J	1600	420	2000	570	< 8.7 U	86	170	530	530 J
Acenaphthylene	ug/kg	4.5e+006		22	< 7.7 U	110	140 J	< 360 U	5400	740 J	< 400 U	290 J	380	< 8.7 U	65	62	450	< 350 U
Acetophenone	ug/kg	1.2e+007																
Anthracene	ug/kg	2.3e+007		95	< 7.7 U	2000	850	250 J	7500	6200	1100	7900	1000	< 8.7 U	190 J	560 J	2100	1900 J
Atrazine	ug/kg	10000																
Benzaldehyde	ug/kg	820000																
Benzo(a)anthracene	ug/kg	21000		410	< 7.7 U	3500	2300	720	15000	15000	2300	27000	2300	5.1 J	560 J	1300 J	6700	4700
Benzo(a)pyrene	ug/kg	2100		410	< 7.7 U	2600	2100	660	14000	16000	2300	30000	2300	4.5 J	530 J	1100 J	6600	4100
Benzo(b)fluoranthene	ug/kg	21000		510	< 7.7 U	4200	3400	880	22000	21000	2300	32000	2200	6.3 J	800 J	1700 J	8100	5500
Benzo(g,h,i)perylene	ug/kg	2.3e+006		300	< 7.7 U	1900	2100	720	12000	13000	1700	20000	2000	3.9 J	460	760	5700	2500 J
Benzo(k)fluoranthene	ug/kg	210000		140	< 7.7 U	850	700	280 J	2800	4300	1100	15000	1500	2.6 J	250	370	3700	1800 J
bis-(2-chloroethoxy)methane	ug/kg	250000						-										
bis-(2-Chloroethyl)ether	ug/kg	1000						1										
bis-(2-Ethylhexyl)phthalate	ug/kg	160000					<u> </u>	1					-					
Butylbenzylphthalate Caprelactam	ug/kg	1.2e+006					<u> </u>	1					-					
Carbazole	ug/kg	4e+007 3e+006						-										
Carbazole	ug/kg	2.1e+006		430	< 7.7 U	3000	2000	560	13000	13000	2200	28000	2600	5.5 J	540 J	1200 J	6000	4100
Chrysene Dibenzo(a,h)anthracene	ug/kg ug/kg	2.1000		430 58	< 7.7 U	440	2000 530	320 J	4400	3000	360 J	6700	450	5.5 J < 8.7 U	100	1200 J 160	1300	790 J+
Dibenzo(a,n)antinacene Dibenzofuran	ug/kg	100000	-	30	` 1.1 0	440	330	320 3	4400	3000	300 3	0700	430	~ U.1 U	100	100	1300	130 34
Diethylphthalate	ug/kg ug/kg	6.6e+007						1										
Dimethylphthalate	ug/kg	6.6e+007					+	 					1				1	
Di-n-butylphthalate	ug/kg	8.2e+006					+	 								<u> </u>		
Di-n-octylphthalate	ug/kg	820000					+	 					+			<u> </u>		
Fluoranthene	ug/kg	3e+006		730	< 7.7 U	8600	4900	1400	33000	33000	5000	44000	4500	11	1200 J	3100 J	12000	10000
	39,119	55.000		. 50	5	0000	-300	1.700	55500	55500	3300	4,300	4500		.2000	0.000	.2300	.000
	ug/kg	3e+006		35	< 7.7 U	770	290	< 360 U	4200	2100	460	3100	530	< 8.7 U	55	160	460	630 J
IFILIORENE	~9' \\9				0		230	2000	7200	2.00	700	0.00		5.7 0		.00	750	550 0
Fluorene Hexachlorobenzene	ya/ka	960																
Hexachlorobenzene	ug/kg ug/kg	960 5300																
	ug/kg ug/kg ug/kg	960 5300 750																

Subsurface Soil Results

			Location ID	SUSDP19-4N	SUSDP19-4N	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4NW	SUSDP19-4W	SUSDP19-4W	SUSDP19-4W	SUSDP19-4W
			Sample Date		3/28/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	3/28/2018	3/28/2018	3/28/2018	3/28/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018
			Sample ID	DPS194N10N	DPS194N11N	DPS194NW01N	DPS194NW02N	DPS194NW03N	DPS194NW04N	DPS194NW05N	DPS194NW06N	DPS194NW07N	DPS194NW10N	DPS194NW11N	DPS194W01N	DPS194W01R	DPS194W02N	DPS194W03N
			Depth	10 - 11 ft	11 - 12 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	6 - 7 ft	7 - 8 ft	10 - 11 ft	11 - 12 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	FD	N	N
		Project Screening																
Analyte	Unit	Criteria																
Indeno(1,2,3-cd)pyrene	ug/kg	21000		260	< 7.7 U	1700	1700	690	11000	12000	1500	19000	1600	3.2 J	410 J	710 J	4900	2400 J
Isophorone	ug/kg	2.4e+006																
Naphthalene	ug/kg	17000		15	< 7.7 U	230	220	< 360 U	< 2800 U	1200	140 J	750	250	< 8.7 U	67	58	150 J	140 J
Nitrobenzene	ug/kg	22000																
N-Nitroso-di-n-propylamine	ug/kg	330																
N-Nitrosodiphenylamine	ug/kg	470000																
Pentachlorophenol	ug/kg	4000																
Phenanthrene	ug/kg	2.3e+007		360	< 7.7 U	5400	2400	670	17000	14000	3200	21000	3100	6.5 J	430 J	1900 J	5900	7100
Phenol	ug/kg	2.5e+007																
Pyrene	ug/kg	2.3e+006		670	2.0 J+	5100	3300	970	26000	25000	4600	37000	4300	9.9	890 J	2000 J	9500	7100
BaP-TE	ug/kg	2100		588	< 7.70 U	3990	3380	1210	23200	23900	3280	44700	3380	5.99	810	1640	9910	6170
Total High-molecular-weight PAHs	ug/kg			3900	2.0	32000	23000	7200	150000	160000	23000	260000	24000	52	5700	12000	65000	43000
Total Low-molecular-weight PAHs	ug/kg			560	< 7.7 U	9000	4200	920	36000	26000	5300	35000	5800	6.5	890	2900	9600	10000
Total PAHs (sum 16)	ug/kg			4500	2.0	41000	27000	8100	190000	180000	29000	290000	30000	59	6600	15000	74000	53000

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

					I			I		I	I		T = = =	I	I	T	T	I	T
			Location ID Sample Date	SUSDP19-4W 2/1/2018	SUSDP19-4W 2/1/2018	SUSDP19-5N 2/21/2018	SUSDP19-5N 2/21/2018	SUSDP19-5N 2/21/2018	SUSDP19-5N 2/21/2018	SUSDP19-5N 2/21/2018	SUSDP19-5NW 2/21/2018	SUSDP19-5NW 2/21/2018	SUSDP19-5NW 2/21/2018	SUSDP19-5NW 2/21/2018	SUSDP19-5NW 2/21/2018	SUSDP19-5W 2/21/2018	SUSDP19-5W 2/21/2018	SUSDP19-5W 2/21/2018	SUSDP19-5W 2/21/2018
			Sample ID	2/1/2016 DPS194W04N	DPS194W05N	DPS195N01N	DPS195N02N	DPS195N03N	DPS195N04N	DPS195N05N		DPS195NW02N	DPS195NW03N	DPS195NW04N	DPS195NW05N	DPS195W01N	DPS195W02N	DPS195W03N	DPS195W04N
			Depth	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
			,,																
		Project Screening																	
Analyte	Unit	Criteria																	
Diesel Range Organics (C10-C20)	mg/kg	440																	
Oil Range Organics (C20-C36)	mg/kg	350000																	
Total Petroleum Hydrocarbons (C9-C44)	mg/kg																		
Diesel Range Organics (C10-C20)	mg/kg	440																	
Oil Range Organics (C20-C36)	mg/kg	350000																	
Gasoline Range Organics (C6-C10) 1,1,1-Trichloroethane	ug/kg	42000 3.6e+006																	
1,1,2,2-Tetrachloroethane	ug/kg ug/kg	2700																	
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006																	+
1,1,2-Trichloroethane	ug/kg	630																	
1,1-Dichloroethane	ug/kg	16000																	
1,1-Dichloroethene	ug/kg	100000																	
1,2,3-Trichlorobenzene	ug/kg	93000																	
1,2,4-Trichlorobenzene	ug/kg	26000																	
1,2-Dibromo-3-chloropropane	ug/kg	64						-											
1,2-Dibromoethane	ug/kg	160	\Box																
1,2-Dichlorobenzene	ug/kg	930000																	
1,2-Dichloroethane	ug/kg	2000																	
1,2-Dichloropropane	ug/kg	6600																	
1,3-Dichlorobenzene	ug/kg	11000																	
1,4-Dichlorobenzene 1,4-Dioxane	ug/kg ug/kg	11000 24000																	
2-Butanone	ug/kg ug/kg	1.9e+007																	
2-Hexanone	ug/kg	130000																	+
4-Methyl-2-pentanone	ug/kg	1.4e+007																	
Acetone	ug/kg	6.7e+007																	
Benzene	ug/kg	5100																	
Bromochloromethane	ug/kg	63000																	
Bromodichloromethane	ug/kg	1300																	
Bromoform	ug/kg	86000																	
Bromomethane	ug/kg	3000																	
Carbon Disulfide	ug/kg	350000																	
Carbon Tetrachloride	ug/kg	2900																	
Chlorobenzene Chloroethane	ug/kg	130000 5.7e+006																	
Chloroform	ug/kg ug/kg	1400																	
Chloromethane	ug/kg	46000																	+
cis-1,2-Dichloroethylene	ug/kg	230000																	
cis-1,3-Dichloropropene	ug/kg	8200								1						1			
Cyclohexane	ug/kg	2.7e+006								İ									
Dibromochloromethane	ug/kg	39000																	
Dichlorodifluoromethane	ug/kg	37000																	
Ethylbenzene	ug/kg	25000						-											
Isopropylbenzene	ug/kg	990000	\Box																
m, p-Xylene	ug/kg	240000														ļ			
Methyl Acetate	ug/kg	1.2e+008																	<u> </u>
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000																	
Methylcyclohexane Methylene Chloride	ug/kg	2.7e+006 320000								1			-			1	-		+
o-Xylene	ug/kg ug/kg	280000								-									+
Styrene	ug/kg ug/kg	3.5e+006	+							 						1	+		+
Tetrachloroethylene	ug/kg	39000	1													 	+		
Toluene	ug/kg	4.7e+006																	+
trans-1,2-Dichloroethene	ug/kg	2.3e+006								1						1			
trans-1,3-Dichloropropene	ug/kg	8200								İ									
Trichloroethene	ug/kg	1900																	
Trichlorofluoromethane	ug/kg	3.5e+007																	
Vinyl Chloride	ug/kg	1700																	
Xylenes (total)	ug/kg	250000																	

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP19-4W	SUSDP19-4W	SUSDP19-5N	SUSDP19-5N	SUSDP19-5N	SUSDP19-5N	SUSDP19-5N	SUSDP19-5NW	SUSDP19-5NW	SUSDP19-5NW	SUSDP19-5NW	SUSDP19-5NW	SUSDP19-5W	SUSDP19-5W	SUSDP19-5W	SUSDP19-5W
			Sample Date	2/1/2018	2/1/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018
			Sample ID	DPS194W04N	DPS194W05N	DPS195N01N	DPS195N02N	DPS195N03N	DPS195N04N	DPS195N05N	DPS195NW01N	DPS195NW02N	DPS195NW03N	DPS195NW04N	DPS195NW05N	DPS195W01N	DPS195W02N	DPS195W03N	DPS195W04N
			Depth	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft
		1	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																	1
Analyte	Unit	Criteria																	<u> </u>
1,1'-Biphenyl	ug/kg	20000																	
1,2,4,5-Tetrachlorobenzene	ug/kg	35000 4.7e+006																	
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol	ug/kg ug/kg	2.5e+006																	
2,4,5-Trichlorophenol	ug/kg	8.2e+006																	
2,4,6-Trichlorophenol	ug/kg	82000																	
2,4-Dichlorophenol	ug/kg	250000																	
2,4-Dimethylphenol	ug/kg	1.6e+006																	
2,4-Dinitrophenol	ug/kg	160000																	
2,4-Dinitrotoluene	ug/kg	7400																	
2,6-Dinitrotoluene	ug/kg	1500																	
2-Chloropaphthalene	ug/kg	6e+006													1	-	1	-	
2-Chlorophenol	ug/kg	580000													1	-	1	-	
2-Methylphenol	ug/kg	300000 4.1e+006													-		-		
2-Methylphenol 2-Nitroaniline	ug/kg ug/kg	800000													1		+		
2-Nitrophenol	ug/kg	2.5e+007													 	+	 	+	
3,3'-Dichlorobenzidine	ug/kg	5100													1	+	 	+	—
3-Nitroaniline	ug/kg	110000																	
4,6-Dinitro-2-methylphenol	ug/kg	6600																	
4-Bromophenyl-phenylether	ug/kg																		
4-Chloro-3-methylphenol	ug/kg	8.2e+006																	
4-Chloroaniline	ug/kg	11000																	
4-Chlorophenyl-phenylether	ug/kg																		
4-Methylphenol	ug/kg	8.2e+006																	
4-Nitroaniline	ug/kg	110000																	
4-Nitrophenol	ug/kg	2.5e+007																	
Acenaphthene	ug/kg	4.5e+006		< 750 U	7.4	210	5.4 J	750	1200	230	440	190	1100	< 1300 U	170 J	140 J+	220	4300	38
Acenaphthylene	ug/kg	4.5e+006		370 J	6.9 J	280	11	450	270	100 J	140 J	50 J	130	670 J	190	45 J+	39	350 J	5.9 J
Actophenone	ug/kg	1.2e+007		950	24	970	24	3600	2000	4400	1400	940	4900	1200 J	940	440 1.	990	45000	140
Anthracene Atrazine	ug/kg ug/kg	2.3e+007 10000		850	31	870	21	3600	3800	1100	1400	810	4800	1200 3	810	410 J+	880	15000	140
Benzaldehyde	ug/kg	820000																	
Benzo(a)anthracene	ug/kg	21000		2100	100	2500	130	7000	11000	2800	4300	4000	12000	3000	2100	1300 J+	1600	31000	420
Benzo(a)pyrene	ug/kg	2100		1900	110	2200	120	5700	9000	2400	4100	3300	10000	3200	2100	1100 J+	1300	25000	330
Benzo(b)fluoranthene	ug/kg	21000		2600	140	3100	170	7500	12000	3200	5500	4300	14000	4000	3000	1600 J+	1900	31000	450
Benzo(g,h,i)perylene	ug/kg	2.3e+006		1900	94	1800	86	4300	6600	2100	3900	3400	9300	4000	2500	940 J+	1100	20000	290
Benzo(k)fluoranthene	ug/kg	210000		850	48	1100	50	2900	4900	1100	1900	1800	2900	1300	590	460 J+	530	14000	130
bis-(2-chloroethoxy)methane	ug/kg	250000																	
bis-(2-Chloroethyl)ether	ug/kg	1000																	
bis-(2-Ethylhexyl)phthalate	ug/kg	160000																	L
Butylbenzylphthalate	ug/kg	1.2e+006																	
Caprolactam	ug/kg	4e+007																	 _
Carbazole	ug/kg	3e+006					4.6-				40		425				4.5		
Chrysene	ug/kg	2.1e+006		1800	97	2300	110	5700	9300	2500	4000	3400	10000	2700	2000	1200 J+	1400	26000	380
Dibenzo(a,h)anthracene	ug/kg	2100		730 J	22	580	26	1200	1600	510	940	740	2300	1500	670	210 J+	300	5300	73
Dibenzofuran Diethylphthalate	ug/kg ug/kg	100000 6.6e+007															-		
Dimethylphthalate	ug/kg	6.6e+007													1		+		
Di-n-butylphthalate	ug/kg	8.2e+006													 	+	 	+	
Di-n-octylphthalate	ug/kg	820000															1		_
Fluoranthene	ug/kg	3e+006		4100	190	5300	200	16000	23000	6100	8000	5200	25000	5900	3900	2000 J+	2900	64000	630
Fluorene	ug/kg	3e+006		< 750 U	9.8	150 J	5.6 J	1100	1300	170	360	150	1300	< 1300 U	180 J	140 J+	300	5000	45
Hexachlorobenzene	ug/kg	960		- 750 0	3.0	130 0	5.5 5	1.00	1500	170	550	130	1300	- 1300 0	130 3	140 04	300	3000	
Hexachlorobutadiene	ug/kg	5300																	
Hexachlorocyclo-pentadiene	ug/kg	750													1		1		
Hexachloroethane	ug/kg	8000									1	1			1		1		

Subsurface Soil Results

			Location ID	SUSDP19-4W	SUSDP19-4W	SUSDP19-5N	SUSDP19-5N	SUSDP19-5N	SUSDP19-5N	SUSDP19-5N	SUSDP19-5NW	SUSDP19-5NW	SUSDP19-5NW	SUSDP19-5NW	SUSDP19-5NW	SUSDP19-5W	SUSDP19-5W	SUSDP19-5W	SUSDP19-5W
			Sample Date	2/1/2018	2/1/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018	2/21/2018
			Sample ID	DPS194W04N	DPS194W05N	DPS195N01N	DPS195N02N	DPS195N03N	DPS195N04N	DPS195N05N	DPS195NW01N	DPS195NW02N	DPS195NW03N	DPS195NW04N	DPS195NW05N	DPS195W01N	DPS195W02N	DPS195W03N	DPS195W04N
			Depth	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft
			Type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																	
Indeno(1,2,3-cd)pyrene	ug/kg	21000		1800	83	1800	82	3900	6000	1800	3200	2700	7600	3700	2100	790 J+	990	17000	240
Isophorone	ug/kg	2.4e+006																	
Naphthalene	ug/kg	17000		< 750 U	8.5	< 190 U	4.0 J	200 J	430	63 J	110 J	160	190	< 1300 U	180 J	87 J+	100	970	21
Nitrobenzene	ug/kg	22000																	
N-Nitroso-di-n-propylamine	ug/kg	330																	
N-Nitrosodiphenylamine	ug/kg	470000																	
Pentachlorophenol	ug/kg	4000																	
Phenanthrene	ug/kg	2.3e+007		2700	120	2000	74	12000	14000	4200	4700	2700	16000	3400	2200	1700 J+	2900	54000	540
Phenol	ug/kg	2.5e+007																	
Pyrene	ug/kg	2.3e+006		3000	140	3900	160	10000	14000	4100	8900	6400	18000	3800	3000	2300 J+	3400	68000	730
BaP-TE	ug/kg	2100		3290	165	3530	185	8770	13600	3700	6360	5160	15700	5790	3500	1680	2060	38400	516
Total High-molecular-weight PAHs	ug/kg			21000	1000	25000	1100	64000	97000	27000	45000	35000	110000	33000	22000	12000	15000	300000	3700
Total Low-molecular-weight PAHs	ug/kg			3900	180	3500	120	18000	21000	5900	7200	4100	24000	5300	3700	2500	4400	80000	790
Total PAHs (sum 16)	ug/kg			25000	1200	28000	1300	82000	120000	32000	52000	39000	130000	38000	26000	14000	20000	380000	4500

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

								1											
			Location ID	SUSDP19-6N	SUSDP19-6N	SUSDP19-6N			SUSDP19-6NW	SUSDP19-6NW	SUSDP19-6NW	SUSDP19-6NW	SUSDP19-6W	SUSDP19-6W	SUSDP19-6W	SUSDP19-7N	SUSDP19-7N	SUSDP19-7N	SUSDP19-7N
			Sample Date Sample ID	3/15/2018 DPS196N01N	3/15/2018 DPS196N02N	3/15/2018 DPS196N03N	3/15/2018 DPS196N04N	3/15/2018 DPS196NW01N	3/15/2018 DPS196NW02N	3/16/2018 DPS196NW03N	3/16/2018 DPS196NW04N	3/16/2018 DPS196NW05N	3/16/2018 DPS196W01N	3/16/2018 DPS196W02N	3/16/2018 DPS196W03N	4/5/2018 DPS197N01N	4/5/2018 DPS197N02N	4/5/2018 DPS197N02R	4/5/2018 DPS197N03N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	2 - 3 ft	3 - 4 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FD	N
																			ĺ
A 1. d -	1.1-24	Project Screening																	1
Analyte Diesel Range Organics (C10-C20)	Unit mg/kg	Criteria 440																	
Oil Range Organics (C20-C36)	mg/kg	350000																	
Total Petroleum Hydrocarbons (C9-C44)	mg/kg																		
Diesel Range Organics (C10-C20)	mg/kg	440																	ſ
Oil Range Organics (C20-C36)	mg/kg	350000																	
Gasoline Range Organics (C6-C10)	ug/kg	42000																	
1,1,1-Trichloroethane	ug/kg	3.6e+006																	
1,1,2,2-Tetrachloroethane	ug/kg	2700																	
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	ug/kg ug/kg	2.8e+006 630																	
1,1-Dichloroethane	ug/kg	16000																	—
1,1-Dichloroethene	ug/kg	100000									<u> </u>		<u> </u>						
1,2,3-Trichlorobenzene	ug/kg	93000																	1
1,2,4-Trichlorobenzene	ug/kg	26000																	
1,2-Dibromo-3-chloropropane	ug/kg	64																	
1,2-Dibromoethane	ug/kg	160																	
1,2-Dichlorobenzene	ug/kg	930000 2000						-			-		-						
1,2-Dichloroethane 1,2-Dichloropropane	ug/kg ug/kg	6600																	
1,3-Dichlorobenzene	ug/kg ug/kg	11000																	
1,4-Dichlorobenzene	ug/kg	11000																	—
1,4-Dioxane	ug/kg	24000																	
2-Butanone	ug/kg	1.9e+007																	ſ
2-Hexanone	ug/kg	130000																	
4-Methyl-2-pentanone	ug/kg	1.4e+007																	L
Acetone	ug/kg	6.7e+007																	
Benzene	ug/kg	5100																	
Bromochloromethane Bromodichloromethane	ug/kg ug/kg	63000 1300																	
Bromoform	ug/kg ug/kg	86000																	
Bromomethane	ug/kg	3000																	
Carbon Disulfide	ug/kg	350000																	
Carbon Tetrachloride	ug/kg	2900																	ſ
Chlorobenzene	ug/kg	130000																	
Chloroethane	ug/kg	5.7e+006																	
Chloroform	ug/kg	1400																	
Chloromethane	ug/kg	46000																	
cis-1,2-Dichloroethylene cis-1,3-Dichloropropene	ug/kg ug/kg	230000 8200						-			1		1						
Cyclohexane	ug/kg ug/kg	2.7e+006						+											<u> </u>
Dibromochloromethane	ug/kg	39000									1		1						
Dichlorodifluoromethane	ug/kg	37000																	1
Ethylbenzene	ug/kg	25000																	
Isopropylbenzene	ug/kg	990000																	
m, p-Xylene	ug/kg	240000																	
Methyl Acetate	ug/kg	1.2e+008						-			-		1						
Methyl tert-Butyl Ether (MTBE) Methylcyclohexane	ug/kg ug/kg	210000 2.7e+006						+			 		 					 	
Methylene Chloride	ug/kg ug/kg	320000						+			 		 		1			1	
p-Xylene	ug/kg	280000																	
Styrene	ug/kg	3.5e+006													1				
Tetrachloroethylene	ug/kg	39000																	ĺ
Toluene	ug/kg	4.7e+006																	
trans-1,2-Dichloroethene	ug/kg	2.3e+006																	
trans-1,3-Dichloropropene	ug/kg	8200																	
Trichloroethene	ug/kg	1900																	
Trichlorofluoromethane	ug/kg	3.5e+007						-			1		1						
Vinyl Chloride	ug/kg	1700 250000									1		1						
Xylenes (total)	ug/kg	230000								I		I			1				

Subsurface Soil Results

			Location ID	SUSDP19-6N	SUSDP19-6N	SUSDP19-6N	SUSDP19-6N	SUSDP19-6NW	SUSDP19-6NW	SUSDP19-6NW	SUSDP19-6NW	SUSDP19-6NW	SUSDP19-6W	SUSDP19-6W	SUSDP19-6W	SUSDP19-7N	SUSDP19-7N	SUSDP19-7N	SUSDP19-7N
				3/15/2018	3/15/2018	3/15/2018	3/15/2018	3/15/2018	3/15/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018
			Sample ID	DPS196N01N	DPS196N02N	DPS196N03N	DPS196N04N	DPS196NW01N	DPS196NW02N	DPS196NW03N	DPS196NW04N	DPS196NW05N	DPS196W01N	DPS196W02N	DPS196W03N	DPS197N01N	DPS197N02N	DPS197N02R	DPS197N03N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	2 - 3 ft	3 - 4 ft
	1	, t	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FD	N
		Project Screening																	
Analyte	Unit	Criteria																	
1,1'-Biphenyl	ug/kg	20000																	
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																	
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																	
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																	<u> </u>
2,4,5-Trichlorophenol	ug/kg	8.2e+006																	
2,4,6-Trichlorophenol	ug/kg	82000																	
2,4-Dichlorophenol	ug/kg	250000 1.6e+006																	<u> </u>
2,4-Dimethylphenol 2,4-Dinitrophenol	ug/kg ug/kg	160000																	
2,4-Dinitrotoluene	ug/kg	7400																	
2,6-Dinitrotoluene	ug/kg	1500																	
2-Chloronaphthalene	ug/kg	6e+006	+																
2-Chlorophenol	ug/kg	580000	+		1									1				1	
2-Methylnaphthalene	ug/kg	300000																	
2-Methylphenol	ug/kg	4.1e+006																	
2-Nitroaniline	ug/kg	800000																	
2-Nitrophenol	ug/kg	2.5e+007																	
3,3'-Dichlorobenzidine	ug/kg	5100																	
3-Nitroaniline	ug/kg	110000																	<u> </u>
4,6-Dinitro-2-methylphenol	ug/kg	6600																	<u> </u>
4-Bromophenyl-phenylether	ug/kg	0.0000																	
4-Chloro-3-methylphenol	ug/kg	8.2e+006			1														
4-Chloroaniline 4-Chlorophenyl-phenylether	ug/kg	11000																	<u> </u>
4-Methylphenol	ug/kg ug/kg	8.2e+006																	
4-Nitroaniline	ug/kg	110000																	
4-Nitrophenol	ug/kg	2.5e+007																	
Acenaphthene	ug/kg	4.5e+006		< 310 U	810	460	< 8.7 U	160 J	700	67	13000	5400	2600	230000	56000	11000	66 J	81 J	210 J
Acenaphthylene	ug/kg	4.5e+006		160 J	110 J	100 J	< 8.7 U	< 390 U	270 J	6.3 J	350 J	120 J	300	7500 J	2700 J	160 J	< 200 U	< 230 U	< 230 U
Acetophenone	ug/kg	1.2e+007																	
Anthracene	ug/kg	2.3e+007		180 J	3000	1300	7.4 J	370 J	2700	170	27000	9600	3900	480000	150000	16000	200	240	800 J-
Atrazine	ug/kg	10000																	
Benzaldehyde	ug/kg	820000																	
Benzo(a)anthracene	ug/kg	21000		670	5900	5200	9.3	700	16000	390	46000	16000	5900	720000	240000	24000	830	940	2400
Benzo(a)pyrene	ug/kg	2100		760	5200	4700	8.1 J	570	14000	310	46000	14000	5500	640000	200000	19000	760	860	2200
Benzo(b)fluoranthene	ug/kg	21000		920	6400	6000	9.5	700	19000	320	36000	17000	5400	420000	200000	23000	1100	1200	2800
Benzo(g,h,i)perylene	ug/kg	2.3e+006		700	4500	3900	8.3 J	470	12000	210	16000	8400	3500	380000	120000	13000	680	780	1700
Benzo(k)fluoranthene	ug/kg	210000		320	2800	2300	4.9 J	330 J	8200	210	17000	6400	3200	570000	120000	8600	430	440	1100
bis-(2-chloroethoxy)methane	ug/kg	250000 1000			 									1				1	
bis-(2-Chloroethyl)ether bis-(2-Ethylhexyl)phthalate	ug/kg ug/kg	160000			-									-				-	
Butylbenzylphthalate	ug/kg	1.2e+006	+		1		1	+		1				1				 	
Caprolactam	ug/kg	4e+007	-		 		1	1						1				1	
Carbazole	ug/kg	3e+006			 			+										 	
Chrysene	ug/kg	2.1e+006	+	680	5500	5200	8.5 J	700	16000	320	39000	14000	5400	620000	210000	20000	860	1000	2300 J-
Dibenzo(a,h)anthracene	ug/kg	2100	+	200 J	1200	1200	< 8.7 U	110 J	3200	61	5300	2800 J-	1000	100000	39000	3700	170 J	250	480
Dibenzofuran	ug/kg	100000																	
Diethylphthalate	ug/kg	6.6e+007																	
Dimethylphthalate	ug/kg	6.6e+007																	
Di-n-butylphthalate	ug/kg	8.2e+006											-						
Di-n-octylphthalate	ug/kg	820000																	
Fluoranthene	ug/kg	3e+006		1200	14000	11000	20	1800	31000	740	120000	37000	14000	1500000	480000	59000	1400	1400	4400
		0.100		. 04011	44						486								
Fluorene	ug/kg	3e+006		< 310 U	1100	410	3.0 J	130 J	580	78	15000	6600	2900	270000	87000	8400	51 J	59 J	210 J-
Hexachlorobenzene	ug/kg	960			1			-						1	1			 	
Hexachlorocyclo pentadiene	ug/kg	5300 750			 	1		-								1		1	
Hexachlorocyclo-pentadiene Hexachloroethane	ug/kg ug/kg	8000			1	1	1	-		1				 	 	1		 	

Subsurface Soil Results

			Location ID	SUSDP19-6N	SUSDP19-6N	SUSDP19-6N	SUSDP19-6N	SUSDP19-6NW	SUSDP19-6NW	SUSDP19-6NW	SUSDP19-6NW	SUSDP19-6NW	SUSDP19-6W	SUSDP19-6W	SUSDP19-6W	SUSDP19-7N	SUSDP19-7N	SUSDP19-7N	SUSDP19-7N
			Sample Date	3/15/2018	3/15/2018	3/15/2018	3/15/2018	3/15/2018	3/15/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018
			Sample ID	DPS196N01N	DPS196N02N	DPS196N03N	DPS196N04N	DPS196NW01N	DPS196NW02N	DPS196NW03N	DPS196NW04N	DPS196NW05N	DPS196W01N	DPS196W02N	DPS196W03N	DPS197N01N	DPS197N02N	DPS197N02R	DPS197N03N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	2 - 3 ft	3 - 4 ft
			Type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FD	N
		Project Screening	, ,																
Analyte	Unit	Criteria																	i l
Indeno(1,2,3-cd)pyrene	ug/kg	21000		580	3900	3600	6.6 J	440	11000	200	20000	8000	3200	380000	120000	12000	560	710	1400
Isophorone	ug/kg	2.4e+006																	
Naphthalene	ug/kg	17000		< 310 U	230 J	71 J	< 8.7 U	< 390 U	150 J	19	2800	2000 J-	2100	100000	11000	5200	< 200 U	57 J	87 J
Nitrobenzene	ug/kg	22000																	
N-Nitroso-di-n-propylamine	ug/kg	330																	
N-Nitrosodiphenylamine	ug/kg	470000																	
Pentachlorophenol	ug/kg	4000																	
Phenanthrene	ug/kg	2.3e+007		460	12000	5600	20	710	9500	570	74000	34000	13000	1400000	420000	86000	790	960	2600 J-
Phenol	ug/kg	2.5e+007																	
Pyrene	ug/kg	2.3e+006		910	9200	7000	17	1200	25000	610	69000	26000	10000	1200000	360000	56000	1600	1700	4500
BaP-TE	ug/kg	2100		1180	8050	7410	10.7	868	21900	464	61700	21000	7990	898000	296000	28700	1180	1400	3350
Total High-molecular-weight PAHs	ug/kg			6900	59000	50000	92	7000	160000	3400	410000	150000	57000	6500000	2100000	240000	8400	9300	23000
Total Low-molecular-weight PAHs	ug/kg			800	17000	7900	30	1400	14000	910	130000	58000	25000	2500000	730000	130000	1100	1400	3900
Total PAHs (sum 16)	ug/kg			7700	76000	58000	120	8400	170000	4300	550000	210000	82000	9000000	2800000	370000	9500	11000	27000

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDP19-7N	SUSDP19-7NW	SUSDP19-7NW	SUSDP19-7NW	SUSDP19-7NW	SUSDP19-7W	SUSDP19-7W	SUSDP19-7W	SUSDP19-7W	SUSDP19-7W	SUSDP20	SUSDP20	SUSDP20	SUSDP20	SUSDP20	SUSDP20
			Sample Date	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	5/30/2013	6/12/2013	6/12/2013	1/27/2017	1/27/2017	1/30/2017
			Sample ID	DPS197N04N	DPS197NW01N	DPS197NW02N	DPS197NW03N	DPS197NW04N	DPS197W01N	DPS197W02N	DPS197W03N	DPS197W04N	DPS197W05N	DPS2005N	DPS2010N	DPS2018N	DPS20F01N	DPS20F02-05N	DPS20F15N
			Depth	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	17.5 - 18.5 ft	1 - 2 ft	2 - 5 ft	14.5 - 15.5 ft
	1	 	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																	1
Analyte	Unit	Criteria																	1
Diesel Range Organics (C10-C20)	mg/kg	440																	
Oil Range Organics (C20-C36)	mg/kg	350000																	
Total Petroleum Hydrocarbons (C9-C44)	mg/kg																7.84	4.66	< 2.22 U
Diesel Range Organics (C10-C20)	mg/kg	440												< 21 U	< 19 U	< 20 U			
Oil Range Organics (C20-C36)	mg/kg	350000												< 21 U	28	< 20 U			
Gasoline Range Organics (C6-C10)	ug/kg	42000												< 96 U	< 110 U	< 90 U			├
1,1,1-Trichloroethane	ug/kg	3.6e+006 2700												< 4.7 U					
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006												< 4.7 U					
1,1,2-Trichloroethane	ug/kg ug/kg	630												< 4.7 U					
1,1-Dichloroethane	ug/kg	16000												< 4.7 U					
1,1-Dichloroethene	ug/kg	100000												< 4.7 U					
1,2,3-Trichlorobenzene	ug/kg	93000												< 4.7 U					
1,2,4-Trichlorobenzene	ug/kg	26000						1				1		< 4.7 U					
1,2-Dibromo-3-chloropropane	ug/kg	64												< 4.7 U					
1,2-Dibromoethane	ug/kg	160												< 4.7 U			İ		
1,2-Dichlorobenzene	ug/kg	930000												< 4.7 U					
1,2-Dichloroethane	ug/kg	2000												< 4.7 U					
1,2-Dichloropropane	ug/kg	6600												< 4.7 U					
1,3-Dichlorobenzene	ug/kg	11000												< 4.7 U					
1,4-Dichlorobenzene	ug/kg	11000												< 4.7 U					
1,4-Dioxane	ug/kg	24000												< 950 U					
2-Butanone	ug/kg	1.9e+007												< 4.7 U					
2-Hexanone	ug/kg	130000												< 4.7 U					
4-Methyl-2-pentanone	ug/kg	1.4e+007 6.7e+007												< 4.7 U < 19 U					
Acetone Benzene	ug/kg ug/kg	5100												< 4.7 U					
Bromochloromethane	ug/kg ug/kg	63000												< 4.7 U					
Bromodichloromethane	ug/kg	1300												< 4.7 U					
Bromoform	ug/kg	86000												< 4.7 U					
Bromomethane	ug/kg	3000												< 4.7 U					
Carbon Disulfide	ug/kg	350000												< 4.7 U					
Carbon Tetrachloride	ug/kg	2900												< 4.7 U					
Chlorobenzene	ug/kg	130000												< 4.7 U					
Chloroethane	ug/kg	5.7e+006												< 4.7 U					
Chloroform	ug/kg	1400												< 4.7 U					
Chloromethane	ug/kg	46000												< 4.7 U					
cis-1,2-Dichloroethylene	ug/kg	230000												< 4.7 U					
cis-1,3-Dichloropropene	ug/kg	8200						ļ				ļ		< 4.7 U					
Cyclohexane	ug/kg	2.7e+006												< 4.7 U	ļ				
Dibromochloromethane	ug/kg	39000						1	1	1	-	1	-	< 4.7 U	1				+
Dichlorodifluoromethane Ethylbonzono	ug/kg	37000						 				 		< 4.7 U					
Ethylbenzene Isopropylbenzene	ug/kg	25000 990000						1		1	-	 	-	< 4.7 U	 		1		
Isopropylbenzene m, p-Xylene	ug/kg ug/kg	240000						+		-		+		< 4.7 U	 				
Methyl Acetate	ug/kg	1.2e+008						 			+	 	+	< 4.7 U	 				
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000						 			+	 	+	< 4.7 U	 				—
Methylcyclohexane	ug/kg	2.7e+006						1				1		< 4.7 U	1				
Methylene Chloride	ug/kg	320000						1				1		< 4.7 U					
o-Xylene	ug/kg	280000												< 4.7 U					
Styrene	ug/kg	3.5e+006												< 4.7 U			İ		
Tetrachloroethylene	ug/kg	39000												< 4.7 U					
Toluene	ug/kg	4.7e+006												< 4.7 U					
trans-1,2-Dichloroethene	ug/kg	2.3e+006												< 4.7 U					
trans-1,3-Dichloropropene	ug/kg	8200												< 4.7 U					
Trichloroethene	ug/kg	1900												< 4.7 U				·	
Trichlorofluoromethane	ug/kg	3.5e+007										ļ		< 4.7 U					
Vinyl Chloride	ug/kg	1700												< 4.7 U					
Xylenes (total)	ug/kg	250000			1									< 9.5 U			1		<u></u>

Subsurface Soil Results

			Location ID	SUSDP19-7N	SUSDP19-7NW	SUSDP19-7NW	SUSDP19-7NW	SUSDP19-7NW	SUSDP19-7W	SUSDP19-7W	SUSDP19-7W	SUSDP19-7W	SUSDP19-7W	SUSDP20	SUSDP20	SUSDP20	SUSDP20	SUSDP20	SUSDP20
			Sample Date	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	5/30/2013	6/12/2013	6/12/2013	1/27/2017	1/27/2017	1/30/2017
			Sample ID			DPS197NW02N	DPS197NW03N	DPS197NW04N	DPS197W01N	DPS197W02N	DPS197W03N	DPS197W04N	DPS197W05N	DPS2005N	DPS2010N	DPS2018N	DPS20F01N	DPS20F02-05N	
			Depth	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	17.5 - 18.5 ft	1 - 2 ft	2 - 5 ft	14.5 - 15.5 ft
	1	1	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																	
Analyte	Unit	Criteria																	
1,1'-Biphenyl	ug/kg	20000																	
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																	<u> </u>
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																	
2,3,4,6-Tetrachlorophenol 2.4.5-Trichlorophenol	ug/kg	2.5e+006																	+
2,4,5-1 richlorophenol	ug/kg	8.2e+006 82000																	+
2,4-Dichlorophenol	ug/kg ug/kg	250000																	+
2,4-Dimethylphenol	ug/kg	1.6e+006																	+
2,4-Dinitrophenol	ug/kg	160000																	+
2,4-Dinitrotoluene	ug/kg	7400																	†
2,6-Dinitrotoluene	ug/kg	1500																	
2-Chloronaphthalene	ug/kg	6e+006																	
2-Chlorophenol	ug/kg	580000		· · · · · ·			· 					-							
2-Methylnaphthalene	ug/kg	300000																	
2-Methylphenol	ug/kg	4.1e+006																	
2-Nitroaniline	ug/kg	800000											-						
2-Nitrophenol	ug/kg	2.5e+007											-						
3,3'-Dichlorobenzidine	ug/kg	5100																	
3-Nitroaniline 4,6-Dinitro-2-methylphenol	ug/kg	110000 6600																	+
4-Bromophenyl-phenylether	ug/kg ug/kg	0000																	+
4-Chloro-3-methylphenol	ug/kg	8.2e+006																	+
4-Chloroaniline	ug/kg	11000																	+
4-Chlorophenyl-phenylether	ug/kg	11000																	+
4-Methylphenol	ug/kg	8.2e+006																	+
4-Nitroaniline	ug/kg	110000																	
4-Nitrophenol	ug/kg	2.5e+007																	
Acenaphthene	ug/kg	4.5e+006		18 J	61	< 200 U	40 J	1200	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U	< 7.6 U				0.98 J	< 8.7 U	
Acenaphthylene	ug/kg	4.5e+006		38	18	< 200 U	49 J	130	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U	< 7.6 U				< 8.1 U	< 8.7 U	
Acetophenone	ug/kg	1.2e+007																	
Anthracene	ug/kg	2.3e+007		74	140	120 J	130	4100	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U	< 7.6 U				2.5 J	1.1 J	
Atrazine	ug/kg	10000																	
Benzaldehyde	ug/kg	820000		340	640	260	430	6500	< 7.011	< 7.0 U	~ 7 F I I	< 7.011	- 7 G L L				44	9.0	
Benzo(a)anthracene Benzo(a)pyrene	ug/kg ug/kg	21000 2100		340	610 490	240	390	5400	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U < 7.9 U	< 7.6 U				14 15	7.9 J	+
Benzo(a)pyrene Benzo(b)fluoranthene	ug/kg	21000		360	810	230	530	6200	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U	< 7.6 U				19	12	+
Benzo(g,h,i)perylene	ug/kg	2.3e+006		250	460	300	340	3700	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U	< 7.6 U				11	6.7 J	+
Benzo(k)fluoranthene	ug/kg	210000		170	250	120 J	150	2200	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U	< 7.6 U				7.4 J	4.7 J	+
bis-(2-chloroethoxy)methane	ug/kg	250000				3			15			1.5 5	T						†
bis-(2-Chloroethyl)ether	ug/kg	1000											1						†
bis-(2-Ethylhexyl)phthalate	ug/kg	160000																	1
Butylbenzylphthalate	ug/kg	1.2e+006																	
Caprolactam	ug/kg	4e+007																-	
Carbazole	ug/kg	3e+006																	
Chrysene	ug/kg	2.1e+006		340	720	230	410	5300	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U	< 7.6 U				16	9.8	
Dibenzo(a,h)anthracene	ug/kg	2100		64	150	< 200 U	< 78 U	1000	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U	< 7.6 U	1			2.1 J	2.0 J	
Dibenzofuran	ug/kg	100000						1	1				1						+
Diethylphthalate Dimethylphthalate	ug/kg	6.6e+007 6.6e+007											1						+
Dimethylphthalate Di-n-butylphthalate	ug/kg ug/kg	8.2e+006											-						+
Di-n-octylphthalate	ug/kg	820000											1						+
Fluoranthene	ug/kg	3e+006		550	1200	440	810	15000	< 7.0 U	< 7.0 U	< 7.5 U	2.3 J	< 7.6 U				22	12	+
	-3,9			550	00		2.0		1.5 5				1.00						
Fluorene	ug/kg	3e+006		19 J	53	41 J	35 J	1400	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U	< 7.6 U				< 8.1 U	< 8.7 U	1
Hexachlorobenzene	ug/kg	960																	1
Hexachlorobutadiene	ug/kg	5300																	
Hexachlorocyclo-pentadiene	ug/kg	750																	
Hexachloroethane	ug/kg	8000																	

Subsurface Soil Results

		•	Location ID	SUSDP19-7N	SUSDP19-7NW	SUSDP19-7NW	SUSDP19-7NW	SUSDP19-7NW	SUSDP19-7W	SUSDP19-7W	SUSDP19-7W	SUSDP19-7W	SUSDP19-7W	SUSDP20	SUSDP20	SUSDP20	SUSDP20	SUSDP20	SUSDP20
			Sample Date	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	4/5/2018	5/30/2013	6/12/2013	6/12/2013	1/27/2017	1/27/2017	1/30/2017
			Sample ID	DPS197N04N	DPS197NW01N	DPS197NW02N	DPS197NW03N	DPS197NW04N	DPS197W01N	DPS197W02N	DPS197W03N	DPS197W04N	DPS197W05N	DPS2005N	DPS2010N	DPS2018N	DPS20F01N	DPS20F02-05N	DPS20F15N
			Depth	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	17.5 - 18.5 ft	1 - 2 ft	2 - 5 ft	14.5 - 15.5 1
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																	
Indeno(1,2,3-cd)pyrene	ug/kg	21000		210	390	210	290	3400	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U	< 7.6 U				10	6.1 J	
Isophorone	ug/kg	2.4e+006																	
Naphthalene	ug/kg	17000		11 J	150	< 200 U	22 J	500	< 7.0 U	< 7.0 U	< 7.5 U	< 7.9 U	< 7.6 U				< 8.1 U	< 8.7 U	
Nitrobenzene	ug/kg	22000																	
N-Nitroso-di-n-propylamine	ug/kg	330																	
N-Nitrosodiphenylamine	ug/kg	470000																	
Pentachlorophenol	ug/kg	4000																	
Phenanthrene	ug/kg	2.3e+007		240	970	240	450	13000	< 7.0 U	< 7.0 U	< 7.5 U	2.5 J	< 7.6 U				13	4.7 J	
Phenol	ug/kg	2.5e+007																	
Pyrene	ug/kg	2.3e+006		530	950	470	800	14000	< 7.0 U	< 7.0 U	< 7.5 U	2.0 J	< 7.6 U				26	15	
BaP-TE	ug/kg	2100		477	824	311	517	8040	< 7.00 U	< 7.00 U	< 7.50 U	< 7.90 U	< 7.60 U				21.5	12.7	[
Total High-molecular-weight PAHs	ug/kg			3100	6000	2500	4200	63000	< 7 U	< 7 U	< 7.5 U	4.3	< 7.6 U				140	85	
Total Low-molecular-weight PAHs	ug/kg			400	1400	400	730	20000	< 7 U	< 7 U	< 7.5 U	2.5	< 7.6 U				16	5.8	
Total PAHs (sum 16)	ug/kg			3500	7400	2900	4900	83000	< 7 U	< 7 U	< 7.5 U	6.8	< 7.6 U				160	91	1

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

										, _ 0 _ 00 .0										
			Location ID	SUSDP21	SUSDP21	SUSDP21	SUSDP21-1C	SUSDP21-3A	SUSDP21-3M	SUSDP21-3M	SUSDP21-3M	SUSDP21-3M	SUSDP21-3T	SUSDP21-3T	SUSDP21-3V	SUSDP21-5W	SUSDP21-5W	SUSDP21-6W	SUSDP21-6W	SUSDP22
			Sample Date	1/27/2017	1/27/2017	2/2/2017	8/24/2017	8/25/2017	8/28/2017	8/28/2017	8/28/2017	8/28/2017	8/25/2017	8/25/2017	8/25/2017	1/26/2018	1/26/2018	2/21/2018	2/21/2018	5/22/2013
			Sample ID	DPS21F01N	DPS21F02-05N	DPS21F05-10N	DPS211C01N	DPS213A01N	DPS213M01N	DPS213M02N	DPS213M03N	DPS213M04N	DPS213T01N	DPS213T02N	DPS213V01N	DPS215W01N	DPS215W02N	DPS216W01N	DPS216W01R	DPS2203N
			Depth	1 - 2 ft	2 - 5 ft	5 - 10 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2.5 - 3.5 ft
	ı	<u> </u>	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FD	N
A	11.7	Project Screening																		
Analyte	Unit	Criteria						1												-
Diesel Range Organics (C10-C20)	mg/kg	440 350000																		-
Oil Range Organics (C20-C36) Total Petroleum Hydrocarbons (C9-C44)	mg/kg	330000		739	981	357														+
Diesel Range Organics (C10-C20)	mg/kg mg/kg	440		739	901	337		+												< 190 U
Oil Range Organics (C20-C36)	mg/kg	350000																		870
Gasoline Range Organics (C6-C10)	ug/kg	42000																		< 120 U
1,1,1-Trichloroethane	ug/kg	3.6e+006																		
1,1,2,2-Tetrachloroethane	ug/kg	2700																		1
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006																		1
1,1,2-Trichloroethane	ug/kg	630																		
1,1-Dichloroethane	ug/kg	16000																		
1,1-Dichloroethene	ug/kg	100000		-																
1,2,3-Trichlorobenzene	ug/kg	93000												<u> </u>						
1,2,4-Trichlorobenzene	ug/kg	26000					ļ	1	ļ	1		ļ	1	<u> </u>	1			1		
1,2-Dibromo-3-chloropropane	ug/kg	64					ļ							<u> </u>				ļ		
1,2-Dibromoethane	ug/kg	160					 	-	-			-	-	-	-			1		
1,2-Dichlorobenzene	ug/kg	930000					 	-	-			-	-	-	-			1		
1,2-Dichloroethane	ug/kg	2000																		
1,2-Dichloropropane 1,3-Dichlorobenzene	ug/kg ug/kg	6600 11000																		
1,4-Dichlorobenzene	ug/kg ug/kg	11000																		
1,4-Dioxane	ug/kg	24000																		+
2-Butanone	ug/kg	1.9e+007																		+
2-Hexanone	ug/kg	130000																		+
4-Methyl-2-pentanone	ug/kg	1.4e+007																		+
Acetone	ug/kg	6.7e+007																		1
Benzene	ug/kg	5100																		1
Bromochloromethane	ug/kg	63000																		
Bromodichloromethane	ug/kg	1300																		
Bromoform	ug/kg	86000																		
Bromomethane	ug/kg	3000																		<u> </u>
Carbon Disulfide	ug/kg	350000																		
Carbon Tetrachloride	ug/kg	2900																		
Chlorobenzene	ug/kg	130000																		
Chloroethane Chloroform	ug/kg ug/kg	5.7e+006 1400																		+
Chloromethane	ug/kg	46000						+												+
cis-1,2-Dichloroethylene	ug/kg	230000																		+
cis-1,3-Dichloropropene	ug/kg	8200					1	1	1	1		1	1	1						+
Cyclohexane	ug/kg	2.7e+006			1		1	1	1	1	1	1	1	İ		1				†
Dibromochloromethane	ug/kg	39000																		1
Dichlorodifluoromethane	ug/kg	37000																		
Ethylbenzene	ug/kg	25000																		
Isopropylbenzene	ug/kg	990000																		
m, p-Xylene	ug/kg	240000																		
Methyl Acetate	ug/kg	1.2e+008												<u> </u>						
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000					ļ						ļ	<u> </u>				1	1	
Methylcyclohexane	ug/kg	2.7e+006					ļ	-						1	-			-		
Methylene Chloride	ug/kg	320000					1	 	 	1	1	 	1	1						+
o-Xylene Styrene	ug/kg	280000 3.5e+006					1	 	 			 	 	 					+	+
Styrene Tetrachloroethylene	ug/kg ug/kg	3.5e+006 39000					-	-	-	1		-	-	 	1				-	+
Toluene	ug/kg ug/kg	4.7e+006			-		 	+	+	1	-	+	+	 	+			+		+
trans-1,2-Dichloroethene	ug/kg ug/kg	2.3e+006					+	 	 	+	1	 	 	1	1			1		+
trans-1,3-Dichloropropene	ug/kg	8200					 	 	 			 	 	 						+
Trichloroethene	ug/kg	1900												1						+
Trichlorofluoromethane	ug/kg	3.5e+007					1	1	1	1	1	1	1	İ				1	1	†
Vinyl Chloride	ug/kg	1700																		1
Xylenes (total)	ug/kg	250000													1					

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP21	SUSDP21	SUSDP21	SUSDP21-1C	SUSDP21-3A	SUSDP21-3M	SUSDP21-3M	SUSDP21-3M	SUSDP21-3M	SUSDP21-3T	SUSDP21-3T	SUSDP21-3V	SUSDP21-5W	SUSDP21-5W	SUSDP21-6W	SUSDP21-6W	SUSDP2
			Sample Date	1/27/2017	1/27/2017	2/2/2017	8/24/2017	8/25/2017	8/28/2017	8/28/2017	8/28/2017	8/28/2017	8/25/2017	8/25/2017	8/25/2017	1/26/2018	1/26/2018	2/21/2018	2/21/2018	5/22/201
			Sample ID	DPS21F01N	DPS21F02-05N	DPS21F05-10N	DPS211C01N	DPS213A01N	DPS213M01N	DPS213M02N	DPS213M03N	DPS213M04N	DPS213T01N	DPS213T02N			DPS215W02N	DPS216W01N		DPS2203
			Depth	1 - 2 ft	2 - 5 ft	5 - 10 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2.5 - 3.5
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FD	N
Analyte	Unit	Project Screening Criteria																		
,1'-Biphenyl	ug/kg	20000			+															
,2,4,5-Tetrachlorobenzene	ug/kg	35000																		
,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		
2,4,5-Trichlorophenol	ug/kg	8.2e+006																		
2,4,6-Trichlorophenol	ug/kg	82000																		
2,4-Dichlorophenol	ug/kg	250000																		
2,4-Dimethylphenol	ug/kg	1.6e+006																		
2,4-Dinitrophenol	ug/kg	160000																		
2,4-Dinitrotoluene	ug/kg	7400																		
2,6-Dinitrotoluene	ug/kg	1500											1	1	1	1	1	1	1	1
2-Chloronaphthalene 2-Chlorophenol	ug/kg ug/kg	6e+006 580000											-	 	-					
2-Methylnaphthalene	ug/kg	300000											1	1	1	1	1	1	1	1
2-Methylphenol	ug/kg	4.1e+006											†	 	 			+	1	+
2-Nitroaniline	ug/kg	800000												1					1	
2-Nitrophenol	ug/kg	2.5e+007											1	İ		1	1		1	
3,3'-Dichlorobenzidine	ug/kg	5100																		
3-Nitroaniline	ug/kg	110000																		
l,6-Dinitro-2-methylphenol	ug/kg	6600																		
-Bromophenyl-phenylether	ug/kg																			
-Chloro-3-methylphenol	ug/kg	8.2e+006																		
l-Chloroaniline	ug/kg	11000																		
1-Chlorophenyl-phenylether	ug/kg																			
l-Methylphenol	ug/kg	8.2e+006																		
4-Nitroaniline	ug/kg	110000																		
1-Nitrophenol	ug/kg	2.5e+007		200	110	02	< 1100 II	120	900	4500	990	260	240	150	44.1	220	< 7F0 LL	240 1	50 I	
Acenaphthene Acenaphthylene	ug/kg ug/kg	4.5e+006 4.5e+006		380 48	110 160	83 46	< 1100 U < 1100 U	120 43 J	890 150 J	1500 340	880 150 J	260 360	340 55	150 32 J	4.1 J 5.2 J	230 210	< 750 U < 750 U	240 J 75 J	56 J 55 J	
Acetophenone	ug/kg	1.2e+007		40	100	40	V 1100 0	433	130 3	340	130 3	300	33	32.0	3.2 3	210	1730 0	733	333	
Anthracene	ug/kg	2.3e+007		700	560	190	< 1100 U	340	2500	4000	2500	1100	1200	470	15	880	< 750 U	930 J	270 J	
Atrazine	ug/kg	10000		700	000	100	111000	040	2000	4000	2000	1100	1200	4.0		555	17000	3000	2.00	
Benzaldehyde	ug/kg	820000																		
Benzo(a)anthracene	ug/kg	21000		2000	3700	560	< 1100 U	850	6600	12000	8200	3400	4000	1600	98	3700	< 750 U	1800	1100	
Benzo(a)pyrene	ug/kg	2100		1900	3600	490	< 1100 U	780	5600	11000	8100	2700	3500	1500	98	3300	< 750 U	1400	970	
Benzo(b)fluoranthene	ug/kg	21000		2100	4200	750	< 1100 U	1000	7200	13000	9900	3500	4400	1900	120	4900	< 750 U	1900	1400	
Benzo(g,h,i)perylene	ug/kg	2.3e+006		1200	1900	470	< 1100 U	730	5000	8500	6700	1600	3000	1100	84	3200	< 750 U	1300	870	
Benzo(k)fluoranthene	ug/kg	210000		810	1700	220	< 1100 U	430	2400	5500	3300	1200	1500	650	52	1500	< 750 U	720	470	
pis-(2-chloroethoxy)methane	ug/kg	250000																		
ois-(2-Chloroethyl)ether	ug/kg	1000												<u> </u>						
ois-(2-Ethylhexyl)phthalate	ug/kg	160000												ļ					-	
Butylbenzylphthalate	ug/kg	1.2e+006											-	-		-			1	
Caprolactam	ug/kg	4e+007											1	1		 	1			
Carbazole	ug/kg	3e+006 2.1e+006		1900	3400	600	< 1100 U	940	6600	11000	7700	2800	3900	1600	110	3300	< 750 U	1600 1	950 J	
Chrysene Dibenzo(a,h)anthracene	ug/kg ug/kg	2.16+006		350	460	600 150	< 1100 U	190	1400	11000 1700	1500	520	670	240	22	750	< 750 U	1600 J 350	220	
Dibenzofuran	ug/kg	100000		550	700	150	· 1100 U	130	1700	1700	1300	520	570	240		7.50	- 750 0	330	220	+
Diethylphthalate	ug/kg	6.6e+007												1						
Dimethylphthalate	ug/kg	6.6e+007												1	1				1	1
Di-n-butylphthalate	ug/kg	8.2e+006											1	İ		1	1			
Di-n-octylphthalate	ug/kg	820000																		1
luoranthene	ug/kg	3e+006		3700	5000	1100	440 J	2200	14000	25000	18000	6000	7500	3500	190	5900	< 750 U	4000 J	2100 J	
													1			1				
luorene	ug/kg	3e+006		230	87	57	< 1100 U	110	730	1300	680	280	260	120	3.7 J	210	< 750 U	280 J	63 J	
lexachlorobenzene	ug/kg	960												<u> </u>	1					1
lexachlorobutadiene lexachlorocyclo-pentadiene	ug/kg	5300 750											_	ļ		ļ			-	-
	ug/kg	750					1		i	1	l .	I	1	1	1	1	i	1	1	1

Subsurface Soil Results

			Location ID	SUSDP21	CLICDD34	CHCDD34	SUSDP21-1C	SUSDP21-3A	SUSDP21-3M	SUSDP21-3M	CHCDD34 3M	SUSDP21-3M	SUSDP21-3T	SUSDP21-3T	CHCDD34 3V	CHCDD31 EW	SUSDP21-5W	CHCDD31 6W	SUSDP21-6W	SUSDP22
					SUSDP21	SUSDP21					SUSDP21-3M				SUSDP21-3V					
			Sample Date		1/27/2017	2/2/2017	8/24/2017	8/25/2017	8/28/2017	8/28/2017	8/28/2017	8/28/2017	8/25/2017	8/25/2017	8/25/2017	1/26/2018	1/26/2018	2/21/2018	2/21/2018	5/22/2013
			Sample ID	_	DPS21F02-05N	DPS21F05-10N	DPS211C01N		DPS213M01N	DPS213M02N	DPS213M03N	DPS213M04N	DPS213T01N	DPS213T02N	DPS213V01N		DPS215W02N	DPS216W01N		DPS2203N
			Depth	1 - 2 ft	2 - 5 ft	5 - 10 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2.5 - 3.5 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	FD	N
Analyte	Unit	Project Screening Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000		1200	1800	450	< 1100 U	650	4300	7200	5900	1500	2700	950	76	2800	< 750 U	1200	740	
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000		230	28 J	99	< 1100 U	81	160 J	240 J	110 J	130 J	90	38 J	< 7.1 U	78	< 750 U	93 J	< 74 U	
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007		2400	1400	830	< 1100 U	1500	10000	16000	9900	3500	4900	1700	55	3600	< 750 U	3200 J	940 J	
Phenol	ug/kg	2.5e+007																		
Pyrene	ug/kg	2.3e+006		3100	4000	840	< 1100 U	1400	13000	19000	14000	5100	6500	2600	130	5900	< 750 U	2700 J	1400 J	
BaP-TE	ug/kg	2100		2790	5050	819	< 1100 U	1230	8840	16000	12000	4070	5300	2190	150	5210	< 750 U	2250	1520	
Total High-molecular-weight PAHs	ug/kg			18000	30000	5600	440	9200	66000	110000	83000	28000	38000	16000	980	35000	< 750 U	17000	10000	
Total Low-molecular-weight PAHs	ug/kg			4000	2300	1300	< 1100 U	2200	14000	23000	14000	5600	6800	2500	83	5200	< 750 U	4800	1400	
Total PAHs (sum 16)	ug/kg			22000	32000	6900	440	11000	81000	140000	98000	34000	45000	18000	1100	40000	< 750 U	22000	12000	

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

										g	i, DC 20019											
			Location ID	SUSDP22	SUSDP22	SUSDP23	SUSDP23	SUSDP23	SUSDP24	SUSDP24	SUSDP24	SUSDP24	SUSDP24	SUSDP37	SUSDP37	SUSDP37	SUSDP37	SUSDP37	SUSDP37	SUSDP39	SUSDP39	SUSDP39
			Sample Date	6/12/2013	6/12/2013	5/28/2013	6/12/2013	6/12/2013	5/20/2013	5/20/2013	6/4/2013	6/4/2013	6/4/2013	5/16/2013	5/23/2013	5/23/2013	6/10/2013	1/25/2017	1/25/2017	5/17/2013	5/22/2013	5/22/2013
			Sample ID		DPS2215N	DPS2305N	DPS2310N	DPS2315N	DPS2405N	DPS2405R	DPS2410N	DPS2415N	DPS2410R	DPS3703N	DPS3710N	DPS3715N	DPS3710N2		DPS37F02-05N	DPS3903N	DPS3910N	DPS3915N
			Depth	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	1 - 2 ft	2 - 5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft
			Type	N	N	N	N	N	N	FD	N	N	FD	N	N	N	N	N	N	N	N	N
			71																			-
		Project Screening																				
Analyte	Unit	Criteria																				
Diesel Range Organics (C10-C20)	mg/kg	440																				
Oil Range Organics (C20-C36)	mg/kg	350000																				
Total Petroleum Hydrocarbons (C9-C44)	mg/kg																	1550	68.2			
Diesel Range Organics (C10-C20)	mg/kg	440		< 20 U	< 21 U	< 18 U	< 20 U	< 21 U	< 18 U	< 18 U	< 18 U	< 19 U	< 19 U	15 J	< 18 U	< 18 U				320	27	< 20 U
Oil Range Organics (C20-C36)	mg/kg	350000		< 20 U	33	< 18 U	< 20 U	< 21 U	11 J	< 18 U	< 18 U	< 19 U	< 19 U	180	< 18 U	< 18 U				1700	180	28
Gasoline Range Organics (C6-C10)	ug/kg	42000		< 94 U	< 98 U	< 100 U	< 86 U	< 89 U	< 90 UJ	< 89 UJ	< 100 U	< 93 U	< 100 U	< 90 UJ	< 100 U	< 110 U	. 4 4 11			25000	< 83 U	< 77 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/kg	3.6e+006 2700		< 5.0 U < 5.0 U			< 4.4 U		< 5.9 U < 5.9 U	< 5.5 U < 5.5 U							< 4.4 U			< 4.4 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg ug/kg	2.8e+006		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
1,1,2-Trichloroethane	ug/kg	630		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
1,1-Dichloroethane	ug/kg	16000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
1,1-Dichloroethene	ug/kg	100000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
1,2,3-Trichlorobenzene	ug/kg	93000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
1,2,4-Trichlorobenzene	ug/kg	26000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
1,2-Dibromo-3-chloropropane	ug/kg	64		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
1,2-Dibromoethane	ug/kg	160		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
1,2-Dichlorobenzene	ug/kg	930000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
1,2-Dichloroethane	ug/kg	2000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
1,2-Dichloropropane	ug/kg	6600		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U			1				< 4.4 U			< 4.4 U		
1,3-Dichlorobenzene	ug/kg	11000 11000		< 5.0 U			< 4.4 U		< 5.9 U < 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
1,4-Dioxane	ug/kg ug/kg	24000		< 5.0 U < 1000 U			< 890 U		< 1200 U	< 5.5 U < 1100 U							< 890 U			< 880 U		
2-Butanone	ug/kg	1.9e+007		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
2-Hexanone	ug/kg	130000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
4-Methyl-2-pentanone	ug/kg	1.4e+007		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Acetone	ug/kg	6.7e+007		< 20 U			< 18 U		< 24 U	< 22 U							< 18 U			< 18 U		
Benzene	ug/kg	5100		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Bromochloromethane	ug/kg	63000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Bromodichloromethane	ug/kg	1300		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Bromoform	ug/kg	86000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Bromomethane	ug/kg	3000 350000		< 5.0 U < 5.0 U			< 4.4 U		< 5.9 U < 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Carbon Disulfide Carbon Tetrachloride	ug/kg ug/kg	2900		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U < 5.5 U			+				< 4.4 U			< 4.4 U		
Chlorobenzene	ug/kg	130000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Chloroethane	ug/kg	5.7e+006		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Chloroform	ug/kg	1400		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Chloromethane	ug/kg	46000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
cis-1,2-Dichloroethylene	ug/kg	230000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
cis-1,3-Dichloropropene	ug/kg	8200		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Cyclohexane	ug/kg	2.7e+006		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Dibromochloromethane	ug/kg	39000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Dichlorodifluoromethane	ug/kg	37000 25000		< 5.0 U < 5.0 U			< 4.4 U		< 5.9 U < 5.9 U	< 5.5 U < 5.5 U							< 4.4 U			< 4.4 U		
Ethylbenzene Isopropylbenzene	ug/kg ug/kg	990000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U			-				< 4.4 U	-		< 4.4 ∪ 0.77 J		
m, p-Xylene	ug/kg ug/kg	240000		< 10 U			< 8.9 U		< 12 U	< 11 U							< 8.9 U			4.8 J		
Methyl Acetate	ug/kg	1.2e+008		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Methylcyclohexane	ug/kg	2.7e+006		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		-
Methylene Chloride	ug/kg	320000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
o-Xylene	ug/kg	280000		< 5.0 U			< 4.4 U	_	< 5.9 U	< 5.5 U							< 4.4 U			3.5 J	-	
Styrene	ug/kg	3.5e+006		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
Tetrachloroethylene	ug/kg	39000		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			4.2 J		
Toluene	ug/kg	4.7e+006		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
trans-1,2-Dichloroethene	ug/kg	2.3e+006 8200		< 5.0 U < 5.0 U			< 4.4 U		< 5.9 U < 5.9 U	< 5.5 U							< 4.4 U			< 4.4 U		
trans-1,3-Dichloropropene Trichloroethene	ug/kg	1900		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U < 5.5 U			-				< 4.4 U			< 4.4 U		
Trichlorofluoromethane	ug/kg ug/kg	3.5e+007		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U							< 4.4 U	1		< 4.4 U		
Vinyl Chloride	ug/kg	1700		< 5.0 U			< 4.4 U		< 5.9 U	< 5.5 U			<u> </u>				< 4.4 U			< 4.4 U		
Xylenes (total)	ug/kg	250000		< 10 U			< 8.9 U		< 12 U	< 11 U							< 8.9 U			8.3		
/	1 3. 3												1	1				1				

Benning Road Facilty RI Report

Subsurface Soil Results

			Location ID	SUSDP22	SUSDP22	SUSDP23	SUSDP23	SUSDP23	SUSDP24	SUSDP24	SUSDP24	SUSDP24	SUSDP24	SUSDP37	SUSDP37	SUSDP37	SUSDP37	SUSDP37	SUSDP37	SUSDP39	SUSDP39	SUSDP39
			Sample Date	6/12/2013	6/12/2013	5/28/2013	6/12/2013	6/12/2013	5/20/2013	5/20/2013	6/4/2013	6/4/2013	6/4/2013	5/16/2013	5/23/2013	5/23/2013	6/10/2013	1/25/2017	1/25/2017	5/17/2013	5/22/2013	5/22/2013
			Sample ID	DPS2210N	DPS2215N	DPS2305N	DPS2310N	DPS2315N	DPS2405N	DPS2405R	DPS2410N	DPS2415N	DPS2410R	DPS3703N	DPS3710N	DPS3715N	DPS3710N2		DPS37F02-05N	DPS3903N	DPS3910N	DPS3915N
			Depth	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	1 - 2 ft	2 - 5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft
	1	<u> </u>	Туре	N	N	N	N	N	N	FD	N	N	FD	N	N	N	N	N	N	N	N	N
Analida	Unit	Project Screening																				
Analyte 1,1'-Biphenyl		Criteria 20000											-	-								
1,2,4,5-Tetrachlorobenzene	ug/kg ug/kg	35000																				
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																				
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006											+									
2,4,5-Trichlorophenol	ug/kg	8.2e+006																				
2,4,6-Trichlorophenol	ug/kg	82000																				
2,4-Dichlorophenol	ug/kg	250000																				
2,4-Dimethylphenol	ug/kg	1.6e+006																				
2,4-Dinitrophenol	ug/kg	160000																				
2,4-Dinitrotoluene	ug/kg	7400											1									
2,6-Dinitrotoluene	ug/kg	1500																				
2-Chloronaphthalene	ug/kg	6e+006											1	İ					1			
2-Chlorophenol	ug/kg	580000											1									
2-Methylnaphthalene	ug/kg	300000																				
2-Methylphenol	ug/kg	4.1e+006																				
2-Nitroaniline	ug/kg	800000																				
2-Nitrophenol	ug/kg	2.5e+007																				
3,3'-Dichlorobenzidine	ug/kg	5100																				
3-Nitroaniline	ug/kg	110000																				
4,6-Dinitro-2-methylphenol	ug/kg	6600																				
4-Bromophenyl-phenylether	ug/kg																					
4-Chloro-3-methylphenol	ug/kg	8.2e+006																				
4-Chloroaniline	ug/kg	11000																				
4-Chlorophenyl-phenylether	ug/kg																					
4-Methylphenol	ug/kg	8.2e+006																				
4-Nitroaniline	ug/kg	110000																				
4-Nitrophenol	ug/kg	2.5e+007																				
Acenaphthene	ug/kg	4.5e+006							< 7.3 U	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	8.7 J	< 7.2 U	< 7.0 U		< 190 U	8.0	83	75	< 7.9 U
Acenaphthylene	ug/kg	4.5e+006							< 7.3 U	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	19 J	< 7.2 U	< 7.0 U		56 J	9.8	27	220	< 7.9 U
Acetophenone	ug/kg	1.2e+007																				
Anthracene	ug/kg	2.3e+007							< 7.3 U	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	33 J	< 7.2 U	< 7.0 U		90 J	25	67	430	2.5 J
Atrazine	ug/kg	10000																				
Benzaldehyde	ug/kg	820000							7011	7011	7011				7.011	7011						
Benzo(a)anthracene	ug/kg	21000							< 7.3 U	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	170	< 7.2 U	< 7.0 U		210	81	150	1300	9.4
Benzo(a)pyrene	ug/kg	2100							< 7.3 U	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	180	< 7.2 U	< 7.0 U		190	66	< 7.6 U	1400	9.9
Benzo(b)fluoranthene	ug/kg	21000							4.0 J	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	130	< 7.2 U	< 7.0 U		220	99	46	1300	11
Benzo(g,h,i)perylene	ug/kg	2.3e+006							< 7.3 U	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	140	< 7.2 U	< 7.0 U		200	64	< 7.6 U	980	7.2 J
Benzo(k)fluoranthene	ug/kg	210000 250000							< 7.3 U	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	130	< 7.2 U	< 7.0 U		86 J	27	71	560	3.4 J
bis-(2-chloroethoxy)methane	ug/kg ug/kg	1000											+	1				-	-			
bis-(2-Chloroethyl)ether bis-(2-Ethylhexyl)phthalate		160000											+	+				-	-			
Butylbenzylphthalate	ug/kg ug/kg	1.2e+006											+	1					 			
Caprolactam	ug/kg	4e+007											+	+					 			
Carbazole	ug/kg	3e+006											+					-	 			
Chrysene	ug/kg	2.1e+006							< 7.3 U	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	190	< 7.2 U	< 7.0 U		260	91	140	1300	9.8
Dibenzo(a,h)anthracene	ug/kg	2100							< 7.3 U	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	49	< 7.2 U	< 7.0 U		< 190 U	17	< 7.6 U	290	< 7.9 U
Dibenzofuran	ug/kg	100000									20	0	1.00	1				.000	· · ·			
Diethylphthalate		6.6e+007											1	1								
טוכוו ואוטוכו ומומנכ													1	1								
Dimethylphthalate	ug/kg	6.6e+007							1				1					1	1			
Dimethylphthalate	ug/kg ug/kg												•	•								
Dimethylphthalate Di-n-butylphthalate	ug/kg ug/kg ug/kg	6.6e+007																				
Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate	ug/kg ug/kg	6.6e+007 8.2e+006							7.5	10	1.3 J	< 7.4 U	< 7.5 U	260	< 7.2 U	< 7.0 U		380	150	550	3000	18
Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate Fluoranthene	ug/kg ug/kg ug/kg ug/kg	6.6e+007 8.2e+006 820000							7.5	10 < 7.3 U	1.3 J < 7.2 U	< 7.4 U	< 7.5 U	260 9.4 J	< 7.2 U	< 7.0 U		380 38 J	150 9.4	550 65	3000	18 < 7.9 U
Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorene	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	6.6e+007 8.2e+006 820000 3e+006																				
Dimethylphthalate	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	6.6e+007 8.2e+006 820000 3e+006																				
Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorene Hexachlorobenzene	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	6.6e+007 8.2e+006 820000 3e+006 3e+006 960																				

Subsurface Soil Results

· ·			Location ID	SUSDP22	SUSDP22	SUSDP23	SUSDP23	SUSDP23	SUSDP24	SUSDP24	SUSDP24	SUSDP24	SUSDP24	SUSDP37	SUSDP37	SUSDP37	SUSDP37	SUSDP37	SUSDP37	SUSDP39	SUSDP39	SUSDP39
			Sample Date	6/12/2013	6/12/2013	5/28/2013	6/12/2013	6/12/2013	5/20/2013	5/20/2013	6/4/2013	6/4/2013	6/4/2013	5/16/2013	5/23/2013	5/23/2013	6/10/2013	1/25/2017	1/25/2017	5/17/2013	5/22/2013	5/22/2013
			Sample ID	DPS2210N	DPS2215N	DPS2305N	DPS2310N	DPS2315N	DPS2405N	DPS2405R	DPS2410N	DPS2415N	DPS2410R	DPS3703N	DPS3710N	DPS3715N	DPS3710N2	DPS37F01N	DPS37F02-05N	DPS3903N	DPS3910N	DPS3915N
			Depth	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	1 - 2 ft	2 - 5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft
			Туре	N	N	N	N	N	N	FD	N	N	FD	N	N	N	N	N	N	N	N	N
		Project Screening																				
Analyte	Unit	Criteria																				
Indeno(1,2,3-cd)pyrene	ug/kg	21000							< 7.3 U	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	110	< 7.2 U	< 7.0 U		120 J	54	< 7.6 U	870	6.6 J
Isophorone	ug/kg	2.4e+006																				
Naphthalene	ug/kg	17000							< 7.3 U	< 7.3 U	< 7.2 U	< 7.4 U	< 7.5 U	12 J	< 7.2 U	< 7.0 U		100 J	26	410	61	< 7.9 U
Nitrobenzene	ug/kg	22000																				
N-Nitroso-di-n-propylamine	ug/kg	330																				
N-Nitrosodiphenylamine	ug/kg	470000																				
Pentachlorophenol	ug/kg	4000																				
Phenanthrene	ug/kg	2.3e+007							< 7.3 U	7.1 J	1.4 J	< 7.4 U	< 7.5 U	130	< 7.2 U	< 7.0 U		270	82	270	1300	11
Phenol	ug/kg	2.5e+007																				
Pyrene	ug/kg	2.3e+006							5.2 J	6.2 J	0.87 J	< 7.4 U	< 7.5 U	250	< 7.2 U	< 7.0 U		330	110	370	1900	12
BaP-TE	ug/kg	2100							0.400	< 7.30 U	< 7.20 U	< 7.40 U	< 7.50 U	271	< 7.20 U	< 7.00 U		246	107	20.5	2040	12.6
Total High-molecular-weight PAHs	ug/kg								17	16	2.2	< 7.4 U	< 7.5 U	1600	< 7.2 U	< 7.0 U		2000	760	1300	13000	87
Total Low-molecular-weight PAHs	ug/kg								< 7.3 U	7.1	1.4	< 7.4 U	< 7.5 U	210	< 7.2 U	< 7.0 U		550	160	920	2200	14
Total PAHs (sum 16)	ug/kg								17	23	3.6	< 7.4 U	< 7.5 U	1800	< 7.2 U	< 7.0 U		2600	920	2200	15000	100

Subsurface Soil Results

										iton, DC 200										
			Location ID	SUSDP39	SUSDP39	SUSDP39	SUSDP39	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP43	SUSDP43	SUSDP43	SUSDP43	SUSDP43	SUSDP43
			Sample Date	1/25/2017	1/25/2017	1/26/2017	1/26/2017	5/22/2013	5/24/2013	5/24/2013	1/24/2017	1/24/2017	1/24/2017	1/24/2017	5/17/2013	6/7/2013	6/7/2013	1/26/2017	1/26/2017	1/30/2017
			Sample ID	DPS39F01N	DPS39F02-05N	DPS39F05-10N	DPS39F10-15N	DPS4103N	DPS41 10N	DPS41 15N	DPS41F01N	DPS41F02-05N	DPS41F05-10N	DPS41F10-15N	DPS4304N	DPS4310N	DPS4315N	DPS43F01N	DPS43F02-05N	DPS43F05-10N
			Depth	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	3.5 - 4.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
																				1
		Project Screening																		1
Analyte	Unit	Criteria																		
Diesel Range Organics (C10-C20)	mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000		3500	4270	4.72	< 0 FO II				472	647	407	44.5				604	Ecc	220
Total Petroleum Hydrocarbons (C9-C44) Diesel Range Organics (C10-C20)	mg/kg	440		3590	1270	4.72	< 2.52 U	< 200 U	160	< 18 U	473	617	487	14.5	< 20 U	< 20 U	150 J	691	566	330
Oil Range Organics (C20-C36)	mg/kg mg/kg	350000						550	370	< 18 U					22	18 J	770 J			
Gasoline Range Organics (C6-C10)	ug/kg	42000						< 110 U	< 150 U	< 100 U					< 92 UJ	< 96 UJ	< 100 UJ			
1,1,1-Trichloroethane	ug/kg	3.6e+006						11100	1 100 0	1 100 0					102.00	< 4.5 U	1 100 00			
1,1,2,2-Tetrachloroethane	ug/kg	2700														< 4.5 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006														< 4.5 U				
1,1,2-Trichloroethane	ug/kg	630														< 4.5 U				
1,1-Dichloroethane	ug/kg	16000														< 4.5 U				
1,1-Dichloroethene	ug/kg	100000														< 4.5 U				
1,2,3-Trichlorobenzene	ug/kg	93000														< 4.5 U				
1,2,4-Trichlorobenzene	ug/kg	26000														< 4.5 U				
1,2-Dibromo-3-chloropropane	ug/kg	64														< 4.5 U				
1,2-Dibromoethane	ug/kg	160														< 4.5 U				<u> </u>
1,2-Dichlorobenzene	ug/kg	930000														< 4.5 U				
1,2-Dichloroethane	ug/kg	2000														< 4.5 U				
1,2-Dichloropropane	ug/kg	6600														< 4.5 U				
1,3-Dichlorobenzene	ug/kg	11000														< 4.5 U				
1,4-Dichlorobenzene	ug/kg	11000														< 4.5 U				
1,4-Dioxane	ug/kg	24000														< 890 U				
2-Butanone 2-Hexanone	ug/kg ug/kg	1.9e+007 130000														< 4.5 U				
4-Methyl-2-pentanone	ug/kg ug/kg	1.4e+007														< 4.5 U				
Acetone	ug/kg	6.7e+007														< 18 U				
Benzene	ug/kg	5100														< 4.5 U				
Bromochloromethane	ug/kg	63000														< 4.5 U				
Bromodichloromethane	ug/kg	1300														< 4.5 U				
Bromoform	ug/kg	86000														< 4.5 U				
Bromomethane	ug/kg	3000														< 4.5 U				
Carbon Disulfide	ug/kg	350000														< 4.5 U				
Carbon Tetrachloride	ug/kg	2900														< 4.5 U				
Chlorobenzene	ug/kg	130000														< 4.5 U				
Chloroethane	ug/kg	5.7e+006														< 4.5 U				
Chloroform	ug/kg	1400														< 4.5 U				
Chloromethane	ug/kg	46000														< 4.5 U				
cis-1,2-Dichloroethylene	ug/kg	230000														< 4.5 U				├
cis-1,3-Dichloropropene	ug/kg	8200												1		< 4.5 U				
Cyclohexane Dibromochloromethane	ug/kg	2.7e+006 39000						 						1		< 4.5 U		 		—
Dichlorodifluoromethane	ug/kg ug/kg	37000														< 4.5 U		 		
Ethylbenzene	ug/kg ug/kg	25000												-		< 4.5 U		1		
Isopropylbenzene	ug/kg ug/kg	990000												+		< 4.5 U				
m, p-Xylene	ug/kg	240000														< 8.9 U				
Methyl Acetate	ug/kg	1.2e+008														< 4.5 U				
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000														< 4.5 U				
Methylcyclohexane	ug/kg	2.7e+006														< 4.5 U				
Methylene Chloride	ug/kg	320000						İ								< 4.5 U				
o-Xylene	ug/kg	280000														< 4.5 U				
Styrene	ug/kg	3.5e+006														< 4.5 U				
Tetrachloroethylene	ug/kg	39000														< 4.5 U				
Toluene	ug/kg	4.7e+006														< 4.5 U				
trans-1,2-Dichloroethene	ug/kg	2.3e+006														< 4.5 U				<u> </u>
trans-1,3-Dichloropropene	ug/kg	8200														< 4.5 U				
Trichloroethene	ug/kg	1900														< 4.5 U				
Trichlorofluoromethane	ug/kg	3.5e+007														< 4.5 U		ļ		
Vinyl Chloride	ug/kg	1700														< 4.5 U				
Xylenes (total)	ug/kg	250000						L								< 8.9 U				

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDP39	SUSDP39	SUSDP39	SUSDP39	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP43	SUSDP43	SUSDP43	SUSDP43	SUSDP43	SUSDP43
			Sample Date	1/25/2017	1/25/2017	1/26/2017	1/26/2017	5/22/2013	5/24/2013	5/24/2013	1/24/2017	1/24/2017	1/24/2017	1/24/2017	5/17/2013	6/7/2013	6/7/2013	1/26/2017	1/26/2017	1/30/2017
			Sample ID	DPS39F01N	DPS39F02-05N	DPS39F05-10N	DPS39F10-15N	DPS4103N	DPS41 10N	DPS41 15N	DPS41F01N	DPS41F02-05N	DPS41F05-10N	DPS41F10-15N	DPS4304N	DPS4310N	DPS4315N	DPS43F01N	DPS43F02-05N	DPS43F05-10N
			Depth	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	3.5 - 4.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft
	<u> </u>	T 1	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																		
Analyte	Unit	Criteria																		
1,1'-Biphenyl	ug/kg	20000																		
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																		
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ug/kg ug/kg	8.2e+006 82000																		
2,4-Dichlorophenol	ug/kg	250000																		+
2,4-Dimethylphenol	ug/kg	1.6e+006																		
2,4-Dinitrophenol	ug/kg	160000																		
2,4-Dinitrotoluene	ug/kg	7400																		
2,6-Dinitrotoluene	ug/kg	1500																		
2-Chloronaphthalene	ug/kg	6e+006			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·												· · · · · · · · · · · · · · · · · · ·	
2-Chlorophenol	ug/kg	580000																		
2-Methylnaphthalene	ug/kg	300000																		ļ
2-Methylphenol	ug/kg	4.1e+006	-			1								-						<u> </u>
2-Nitroaniline	ug/kg	800000	+			-												-		
2-Nitrophenol 3,3'-Dichlorobenzidine	ug/kg ug/kg	2.5e+007 5100				-												-		+
3-Nitroaniline	ug/kg	110000																		+
4,6-Dinitro-2-methylphenol	ug/kg	6600																		
4-Bromophenyl-phenylether	ug/kg																			
4-Chloro-3-methylphenol	ug/kg	8.2e+006																		
4-Chloroaniline	ug/kg	11000																		
4-Chlorophenyl-phenylether	ug/kg																			
4-Methylphenol	ug/kg	8.2e+006																		
4-Nitroaniline	ug/kg	110000																		
4-Nitrophenol	ug/kg	2.5e+007		44411	.7411	0.0	40411	440	222	47011	54.1	450	040	201				400	2000	C4
Acenaphthene Acenaphthylene	ug/kg ug/kg	4.5e+006 4.5e+006		< 14 U	< 7.1 U	9.8 1.0 J	< 9.1 U < 9.1 U	110 88	220 50	< 7.2 U	54 J 110	150 55 J	210 90	2.0 J 1.2 J				120 45 J	2900 180	64 18 J
Acetophenone	ug/kg	1.2e+007		140	V 7.1 O	1.0 3	V 9.1 O	- 00	30	17.20	110	333	30	1.2 0				433	100	100
Anthracene	ug/kg	2.3e+007		150	< 7.1 U	24	< 9.1 U	310	340	< 7.2 U	230	430	480	4.7 J				360	4900	150
Atrazine	ug/kg	10000																		
Benzaldehyde	ug/kg	820000																		
Benzo(a)anthracene	ug/kg	21000		260	5.1 J	57	1.5 J	1100	570	< 7.2 U	890	1100	780	19				1100	7000	350
Benzo(a)pyrene	ug/kg	2100		1300	9.0	51	< 9.1 U	990	530	< 7.2 U	680	720	580	12				950	6500	350
Benzo(b)fluoranthene	ug/kg	21000		2300	13	63	< 9.1 U	890	540	< 7.2 U	880	920	750	17				1400	7800	420
Benzo(g,h,i)perylene	ug/kg	2.3e+006		1000	8.3	29 J	< 9.1 U	720	400	< 7.2 U	570	530	450	11				640	4100	250
Benzo(k)fluoranthene	ug/kg	210000 250000		< 14 U	3.1 J	23	< 9.1 U	470	200	< 7.2 U	260	380	280	6.9 J				440	2900	170
bis-(2-chloroethoxy)methane bis-(2-Chloroethyl)ether	ug/kg ug/kg	1000				-												-		
bis-(2-Ethylhexyl)phthalate	ug/kg	160000				1								1				 		+
Butylbenzylphthalate	ug/kg	1.2e+006																		+
Caprolactam	ug/kg	4e+007																		
Carbazole	ug/kg	3e+006																		
Chrysene	ug/kg	2.1e+006		640	7.2	55	1.1 J	1100	580	< 7.2 U	830	1100	720	18				1100	6400	360
Dibenzo(a,h)anthracene	ug/kg	2100		310	< 7.1 U	8.1 J	< 9.1 U	180	99	< 7.2 U	160	160	140	< 7.2 U				160	1100	59
Dibenzofuran	ug/kg	100000																ļ		<u> </u>
Diethylphthalate	ug/kg	6.6e+007	-			1								-						<u> </u>
Dimethylphthalate Di-n-butylphthalate	ug/kg ug/kg	6.6e+007 8.2e+006	+			-												-		
Di-n-octylphthalate	ug/kg ug/kg	820000	+			1						1		 						+
Fluoranthene	ug/kg	3e+006	+	600	12	120	1.2 J	2100	1500	< 7.2 U	1600	2400	2000	33				2000	16000	660
	-3/118	000				1.20				0	. 300									
Fluorene	ug/kg	3e+006		27	< 7.1 U	9.4	< 9.1 U	89	170	< 7.2 U	56 J	190	260	2.0 J				120	2500	57
Hexachlorobenzene	ug/kg	960																		
Hexachlorobutadiene	ug/kg	5300																		
Hexachlorocyclo-pentadiene	ug/kg	750																		
Hexachloroethane	ug/kg	8000										<u> </u>								

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDP39	SUSDP39	SUSDP39	SUSDP39	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP43	SUSDP43	SUSDP43	SUSDP43	SUSDP43	SUSDP43
			Sample Date	1/25/2017	1/25/2017	1/26/2017	1/26/2017	5/22/2013	5/24/2013	5/24/2013	1/24/2017	1/24/2017	1/24/2017	1/24/2017	5/17/2013	6/7/2013	6/7/2013	1/26/2017	1/26/2017	1/30/2017
			Sample ID	DPS39F01N	DPS39F02-05N	DPS39F05-10N	DPS39F10-15N	DPS4103N	DPS41 10N	DPS41 15N	DPS41F01N	DPS41F02-05N	DPS41F05-10N	DPS41F10-15N	DPS4304N	DPS4310N	DPS4315N	DPS43F01N	DPS43F02-05N	DPS43F05-10N
			Depth	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	3.5 - 4.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
			,																	
		Project Screening																		
Analyte	Unit	Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000		1000	6.5 J	28	< 9.1 U	630	340	< 7.2 U	460	460	390	9.9				630	3600	240
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000		27	< 7.1 U	3.2 J	0.91 J	89	280	< 7.2 U	48 J	80	180	2.0 J				150	830	63
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007		270	< 7.1 U	81	< 9.1 U	1000	1700	< 7.2 U	830	1500	2000	18				1300	16000	560
Phenol	ug/kg	2.5e+007																		
Pyrene	ug/kg	2.3e+006		1300	32	100	< 9.1 U	1700	1100	< 7.2 U	1400	1600	1400	28				1700	13000	690
BaP-TE	ug/kg	2100		1970	11.5	74.2	0.151	1440	777	< 7.20 U	1070	1130	916	16.7				1430	9480	512
Total High-molecular-weight PAHs	ug/kg			8700	96	530	3.8	9900	5900	< 7.2 U	7700	9400	7500	150				10000	68000	3500
Total Low-molecular-weight PAHs	ug/kg		1	470	< 7.1 U	130	0.91	1700	2800	< 7.2 U	1300	2400	3200	30				2100	27000	910
Total PAHs (sum 16)	ug/kg			9200	96	660	4.7	12000	8600	< 7.2 U	9100	12000	11000	180				12000	96000	4500

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

					T			1		T	T	T		T	T	T	T	T		T
			Location ID	SUSDP43	SUSDP43-2J	SUSDP43-2J	SUSDP43-2J	SUSDP43-2J	SUSDP43-2M		SUSDP43-2M	SUSDP43-2M		SUSDP43-3A	SUSDP43-3A	SUSDP43-3A	SUSDP43-3P	SUSDP43-3P	SUSDP43-3T	
			Sample Date	1/30/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	1/30/2018	1/30/2018	1/30/2018	2/23/2018
			Sample ID	DPS43F10-15N	DPS432J01N	DPS432J02N	DPS432J03N	DPS432J04N	DPS432M01N		DPS432M03N	DPS432M04N		DPS433A02N	DPS433A03N	DPS433A04N	DPS433P01N	DPS433P02N	DPS433T01N	
			Depth	10 - 15 ft	1 - 2 ft N	2 - 3 ft N	3 - 4 ft N	4 - 5 ft N	1 - 2 ft N	2 - 3 ft N	3 - 4 ft N	4 - 5 ft N	1 - 2 ft N	2 - 3 ft N	3 - 4 ft N	4 - 5 ft N	1 - 2 ft N	2 - 3 ft N	1 - 2 ft N	1 - 2 ft N
			Туре	N	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN
		Project Screening																		
Analyte	Unit	Criteria																		
Diesel Range Organics (C10-C20)	mg/kg	440																		
Oil Range Organics (C20-C36)	mg/kg	350000																		†
Total Petroleum Hydrocarbons (C9-C44)	mg/kg			258																
Diesel Range Organics (C10-C20)	mg/kg	440											360							
Oil Range Organics (C20-C36)	mg/kg	350000											1100							
Gasoline Range Organics (C6-C10)	ug/kg	42000																		
1,1,1-Trichloroethane	ug/kg	3.6e+006																		
1,1,2,2-Tetrachloroethane	ug/kg	2700																		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006																		
1,1,2-Trichloroethane	ug/kg	630																		
1,1-Dichloroethane	ug/kg	16000																		
1,1-Dichloroethene	ug/kg	100000										ļ	ļ							<u> </u>
1,2,3-Trichlorobenzene	ug/kg	93000																-		
1,2,4-Trichlorobenzene	ug/kg	26000																-		
1,2-Dibromo-3-chloropropane	ug/kg	64																		_
1,2-Dibromoethane	ug/kg	160										 	 						1	<u> </u>
1,2-Dichlorobenzene	ug/kg	930000											1							<u> </u>
1,2-Dichloroethane	ug/kg	2000 6600																		1
1,2-Dichloropropane 1,3-Dichlorobenzene	ug/kg	11000								<u> </u>							-	-		
1,4-Dichlorobenzene	ug/kg	11000								<u> </u>							-	-		
1,4-Dioxane	ug/kg ug/kg	24000																		1
2-Butanone	ug/kg	1.9e+007																		
2-Hexanone	ug/kg	130000																		
4-Methyl-2-pentanone	ug/kg	1.4e+007																		1
Acetone	ug/kg	6.7e+007																		
Benzene	ug/kg	5100																		
Bromochloromethane	ug/kg	63000																		
Bromodichloromethane	ug/kg	1300																		
Bromoform	ug/kg	86000																		
Bromomethane	ug/kg	3000																		
Carbon Disulfide	ug/kg	350000																		
Carbon Tetrachloride	ug/kg	2900																		
Chlorobenzene	ug/kg	130000																		
Chloroethane	ug/kg	5.7e+006																		
Chloroform	ug/kg	1400																		
Chloromethane	ug/kg	46000																		
cis-1,2-Dichloroethylene	ug/kg	230000																		
cis-1,3-Dichloropropene	ug/kg	8200										ļ	_					-	_	
Cyclohexane	ug/kg	2.7e+006										1	1					1	1	
Dibromochloromethane Dichlorodifluoromethane	ug/kg	39000 37000										 	 				-	1	 	<u> </u>
Dichlorodifluoromethane Ethylpenzene	ug/kg	25000										 	 	1			+		 	
Ethylbenzene Isopropylbenzene	ug/kg ug/kg	990000										-	-					1	-	
m, p-Xylene	ug/kg ug/kg	240000								<u> </u>		 	 					1	 	+
Methyl Acetate	ug/kg	1.2e+008										 	 					1	 	+
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000										<u> </u>	 	<u> </u>	1		1		 	†
Methylcyclohexane	ug/kg	2.7e+006								1			<u> </u>					1	1	†
Methylene Chloride	ug/kg	320000										1	1						<u> </u>	
o-Xylene	ug/kg	280000																1		
Styrene	ug/kg	3.5e+006																		
Tetrachloroethylene	ug/kg	39000																		
Toluene	ug/kg	4.7e+006																		
trans-1,2-Dichloroethene	ug/kg	2.3e+006																		
trans-1,3-Dichloropropene	ug/kg	8200																		
Trichloroethene	ug/kg	1900																		
Trichlorofluoromethane	ug/kg	3.5e+007		· 			· · · · · · · · · · · · · · · · · · ·													
Vinyl Chloride	ug/kg	1700																		
Xylenes (total)	ug/kg	250000																		

Subsurface Soil Results

			Location ID	SUSDP43	SUSDP43-2J	SUSDP43-2J	SUSDP43-2.I	SUSDP43-2J	SUSDP43-2M	SUSDP43-2M	SUSDP43-2M	SUSDP43-2M	SUSDP43-3A	SUSDP43-3A	SUSDP43-3A	SUSDP43-3A	SUSDP43-3P	SUSDP43-3P	SUSDP43-3T	SUSDP43-4NW
			Sample Date	1/30/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	1/30/2018	1/30/2018	1/30/2018	2/23/2018
			Sample ID	DPS43F10-15N	DPS432J01N	DPS432J02N	DPS432J03N	DPS432J04N	DPS432M01N	DPS432M02N	DPS432M03N	DPS432M04N	DPS433A01N	DPS433A02N	DPS433A03N	DPS433A04N	DPS433P01N	DPS433P02N	DPS433T01N	
			Depth	10 - 15 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																		
Analyte	Unit	Criteria 20000																		<u> </u>
,1'-Biphenyl ,2,4,5-Tetrachlorobenzene	ug/kg ug/kg	35000																		+
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		
2,4,5-Trichlorophenol	ug/kg	8.2e+006																		
2,4,6-Trichlorophenol	ug/kg	82000																		
2,4-Dichlorophenol	ug/kg	250000																		
2,4-Dimethylphenol	ug/kg	1.6e+006																		
2,4-Dinitrophenol	ug/kg	160000																		
2,4-Dinitrotoluene	ug/kg	7400																		
2,6-Dinitrotoluene	ug/kg	1500																		<u> </u>
2-Chloronaphthalene	ug/kg	6e+006								1						 	1		1	
2-Chlorophenol	ug/kg ug/kg	580000 300000														-	 	 	-	+
2-Methylnaphthalene 2-Methylphenol	ug/kg ug/kg	4.1e+006								 		1				 	+	+	 	+
2-Nitroaniline	ug/kg ug/kg	800000								1		1				 	1	1	1	+
2-Nitrophenol	ug/kg	2.5e+007															1	1		
3,3'-Dichlorobenzidine	ug/kg	5100								1		1				1	1	1	†	
3-Nitroaniline	ug/kg	110000																		
1,6-Dinitro-2-methylphenol	ug/kg	6600																		
1-Bromophenyl-phenylether	ug/kg																			
1-Chloro-3-methylphenol	ug/kg	8.2e+006																		
1-Chloroaniline	ug/kg	11000																		
4-Chlorophenyl-phenylether	ug/kg																			
1-Methylphenol	ug/kg	8.2e+006																		
4-Nitroaniline	ug/kg	110000																		<u> </u>
4-Nitrophenol	ug/kg	2.5e+007		32 J	2200	42	271	461	1200	42	15	< 8.2 U	14	5.4 J	48	32	240000	120 1	68	860
Acenaphthene Acenaphthylene	ug/kg ug/kg	4.5e+006 4.5e+006		29 J	2200 220	42 22	2.7 J 6.2 J	4.6 J 5.4 J	1200 84 J	12 13	15	< 8.2 U	8.5	< 8.2 U	7.3 J	11	< 11000 U	130 J 120 J	250	140
Acetophenone	ug/kg	1.2e+007		293	220	22	0.23	3.4 3	04.0	13	13	V 0.2 0	0.5	V 0.2 U	7.50	- ''	× 11000 0	120 3	230	140
Anthracene	ug/kg	2.3e+007		110	5200	160	8.4	17	3600	40	59	3.1 J	34	9.8	63	67	440000	440	540	2100
Atrazine	ug/kg	10000																		
Benzaldehyde	ug/kg	820000																		
Benzo(a)anthracene	ug/kg	21000		430	15000	670	49	73	11000	200	130	17	110	23	61	130	530000	2100	1100	5200
Benzo(a)pyrene	ug/kg	2100		440	13000	630	47	76	9700	200	110	21	96	23	50	120	420000	2100	1100	4300
Benzo(b)fluoranthene	ug/kg	21000		530	14000	730	53	89	14000	230	140	21	140	33	78	180	510000	2700	1900	6500
Benzo(g,h,i)perylene	ug/kg	2.3e+006		350	10000	640	45	74	6300	160	88	18	76	15	37	84	260000	1800	1500	3000
Benzo(k)fluoranthene	ug/kg	210000		200	6100	300	31	40	4200	82	40	9.0	52	13	31	73	200000	1100	590	1800
ois-(2-chloroethoxy)methane	ug/kg	250000															<u> </u>	1		
ois-(2-Chloroethyl)ether	ug/kg	1000								<u> </u>						ļ	1	1		
bis-(2-Ethylhexyl)phthalate	ug/kg	160000								1						1	1	1	 	<u></u>
Butylbenzylphthalate	ug/kg	1.2e+006 4e+007								-						-	 	-	-	
Caprolactam Carbazole	ug/kg ug/kg	3e+007								 		1				 	 	 	+	+
Chrysene	ug/kg	2.1e+006		440	14000	690	53	78	10000	200	120	17	150	33	86	190	450000	2000	1100	4700
Dibenzo(a,h)anthracene	ug/kg	2100		100	2300	150	12	18	1200	44	21	5.3 J	20	< 8.2 U	< 8.0 U	25	62000	500	390	840
Dibenzofuran	ug/kg	100000					_	_		1		1	-			1			1	1
Diethylphthalate	ug/kg	6.6e+007																		
Dimethylphthalate	ug/kg	6.6e+007																		
Di-n-butylphthalate	ug/kg	8.2e+006																		
Di-n-octylphthalate	ug/kg	820000		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·				<u> </u>							
Fluoranthene	ug/kg	3e+006		700	30000	1500	85	150	19000	350	290	26	290	47	190	300	1500000	3700	2100	10000
										ļ						ļ				
luorene	ug/kg	3e+006		35 J	1700	34	< 8.1 U	5.5 J	1000	11	17	< 8.2 U	24	5.7 J	71	45	220000	120 J	74	660
lexachlorobenzene	ug/kg	960								-						 	-		-	1
Hexachlorobutadiene	ug/kg	5300								 		1				1	1	1	1	
lexachlorocyclo-pentadiene	ug/kg ug/kg	750 8000			ļ					1		1				1	 	 		

Subsurface Soil Results

			Location ID	SUSDP43	SUSDP43-2J	SUSDP43-2J	SUSDP43-2J	SUSDP43-2J	SUSDP43-2M	SUSDP43-2M	SUSDP43-2M	SUSDP43-2M	SUSDP43-3A	SUSDP43-3A	SUSDP43-3A	SUSDP43-3A	SUSDP43-3P	SUSDP43-3P	SUSDP43-3T	SUSDP43-4NW
			Sample Date	1/30/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	1/30/2018	1/30/2018	1/30/2018	2/23/2018
			Sample ID	DPS43F10-15N	DPS432J01N	DPS432J02N	DPS432J03N	DPS432J04N	DPS432M01N	DPS432M02N	DPS432M03N	DPS432M04N	DPS433A01N	DPS433A02N	DPS433A03N	DPS433A04N	DPS433P01N	DPS433P02N	DPS433T01N	DPS434NW01N
			Depth	10 - 15 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft
			Type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000		320	9100	520	41	63	5500	150	82	16	67	14	35	80	260000	1500	1100	2700
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000		30 J	460	8.4	< 8.1 U	< 7.8 U	410	9.1	3.9 J	< 8.2 U	48	14	45	58	130000	< 320 U	92	360
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007		360	20000	620	33	73	13000	130	190	7.8 J	150	33	170	180	1700000	1700	1000	7900
Phenol	ug/kg	2.5e+007																		
Pyrene	ug/kg	2.3e+006		720	28000	1100	66	110	19000	270	200	21	200	36	130	220	980000	3300	1500	6900
BaP-TE	ug/kg	2100		670	19200	976	73.7	117	14000	303	167	31.8	148	30.2	67.8	185	614000	3240	1910	6600
Total High-molecular-weight PAHs	ug/kg			4200	140000	6900	480	770	100000	1900	1200	170	1200	240	700	1400	5200000	21000	12000	46000
Total Low-molecular-weight PAHs	ug/kg			600	30000	890	50	110	19000	220	300	11	280	68	400	390	2700000	2500	2000	12000
Total PAHs (sum 16)	ug/kg			4800	170000	7800	530	880	120000	2100	1500	180	1500	300	1100	1800	7900000	23000	14000	58000

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

			1 ti 1D	CLICDDA2 ANIM	CLICDD42 4CW	CLICDD42 4CW	CHCDD42 FNW	CHCDD44	CHCDD44	CHCDD44	CHCDD44	CHCDD44	CHCDD44	CHCDD44	CHCDD40	CHCDD40	CLICDDAG	CLICDD40	CUCDDAO
			Location ID Sample Date	SUSDP43-4NW 2/23/2018	SUSDP43-4SW 2/23/2018	SUSDP43-4SW 2/23/2018	SUSDP43-5NW 3/15/2018	SUSDP44 5/21/2013	SUSDP44 6/10/2013	SUSDP44 6/10/2013	SUSDP44 1/27/2017	SUSDP44 1/27/2017	SUSDP44 1/27/2017	SUSDP44 1/27/2017	SUSDP48 1/26/2017	SUSDP48 1/26/2017	SUSDP48 1/26/2017	SUSDP48 1/26/2017	SUSDP48 1/27/2017
			Sample ID		DPS434SW01N	DPS434SW02N	DPS435NW01N	DPS4403N	DPS4410N	DPS4415N			DPS44F02-05N	DPS44F02-05R	DPS48F01N	DPS48F01R	DPS48F02-05N	DPS48F02-05R	DPS48F05-10N
			Depth	2 - 3 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	2.5 - 3.5 ft	3.5 - 5 ft	3.5 - 5 ft	1 - 2 ft	1 - 2 ft	2 - 5 ft	2 - 5 ft	5 - 10 ft
			Туре	N	N	N	N	N	N	N	N	FD	N	FD	N	FD	N	FD	N
																			1
A 11		Project Screening																	İ
Analyte	Unit	Criteria																	
Diesel Range Organics (C10-C20) Oil Range Organics (C20-C36)	mg/kg	350000							-										
Total Petroleum Hydrocarbons (C9-C44)	mg/kg mg/kg	330000									2000	1520	56.8 J	16.6 J	23.9	26.8	199	254	303
Diesel Range Organics (C10-C20)	mg/kg	440						67 J	< 18 U	< 21 U	2000	1320	30.00	10.00	25.5	20.0	133	254	303
Oil Range Organics (C20-C36)	mg/kg	350000						770	< 18 U	< 21 U									
Gasoline Range Organics (C6-C10)	ug/kg	42000						< 87 UJ	< 96 U	< 91 U									ĺ
1,1,1-Trichloroethane	ug/kg	3.6e+006						< 4.2 U											Í
1,1,2,2-Tetrachloroethane	ug/kg	2700						< 4.2 U											ĺ
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006						< 4.2 U											
1,1,2-Trichloroethane	ug/kg	630						< 4.2 U											ļ
1,1-Dichloroethane	ug/kg	16000	ļ					< 4.2 U											
1,1-Dichloroethene 1.2.3-Trichlorobenzene	ug/kg	100000	1					< 4.2 U											
1,2,3- I richlorobenzene 1,2,4-Trichlorobenzene	ug/kg ug/kg	93000 26000	 					< 4.2 U											<u> </u>
1,2-Dibromo-3-chloropropane	ug/kg ug/kg	64	+					< 4.2 U											
1,2-Dibromoethane	ug/kg ug/kg	160	<u> </u>					< 4.2 U											
1,2-Dishorhocthand	ug/kg	930000						< 4.2 U											
1,2-Dichloroethane	ug/kg	2000						< 4.2 U											
1,2-Dichloropropane	ug/kg	6600						< 4.2 U											ĺ
1,3-Dichlorobenzene	ug/kg	11000						< 4.2 U											ĺ
1,4-Dichlorobenzene	ug/kg	11000						< 4.2 U											
1,4-Dioxane	ug/kg	24000						< 830 U											
2-Butanone	ug/kg	1.9e+007						< 4.2 U											<u> </u>
2-Hexanone	ug/kg	130000						< 4.2 U											!
4-Methyl-2-pentanone	ug/kg	1.4e+007						< 4.2 U											
Acetone	ug/kg	6.7e+007	1					7.8 J < 4.2 U											
Benzene	ug/kg	5100 63000						< 4.2 U											
Bromochloromethane Bromodichloromethane	ug/kg ug/kg	1300						< 4.2 U											
Bromoform	ug/kg	86000						< 4.2 U											
Bromomethane	ug/kg	3000						< 4.2 U											
Carbon Disulfide	ug/kg	350000						< 4.2 U											
Carbon Tetrachloride	ug/kg	2900						< 4.2 U											ĺ
Chlorobenzene	ug/kg	130000						< 4.2 U											ĺ
Chloroethane	ug/kg	5.7e+006						< 4.2 U											1
Chloroform	ug/kg	1400						< 4.2 U											l
Chloromethane	ug/kg	46000						< 4.2 U											<u> </u>
cis-1,2-Dichloroethylene	ug/kg	230000						< 4.2 U											
cis-1,3-Dichloropropene	ug/kg	8200						< 4.2 U											
Cyclohexane	ug/kg	2.7e+006	1					< 4.2 U < 4.2 U											
Dibromochloromethane Dichlorodifluoromethane	ug/kg ug/kg	39000 37000	-					< 4.2 U											<u> </u>
Ethylbenzene	ug/kg ug/kg	25000	 					< 4.2 U											
Isopropylbenzene	ug/kg ug/kg	990000	 					< 4.2 U											
m, p-Xylene	ug/kg	240000	1					< 8.3 U			1			1					
Methyl Acetate	ug/kg	1.2e+008	1					< 4.2 U						1					1
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000						< 4.2 U											ĺ
Methylcyclohexane	ug/kg	2.7e+006						< 4.2 U											1
Methylene Chloride	ug/kg	320000						< 4.2 U											
o-Xylene	ug/kg	280000						< 4.2 U											
Styrene	ug/kg	3.5e+006						< 4.2 U							1				<u> </u>
Tetrachloroethylene	ug/kg	39000						< 4.2 U			ļ								!
Toluene	ug/kg	4.7e+006	ļ					< 4.2 U											
trans-1,2-Dichloroethene	ug/kg	2.3e+006	-					< 4.2 U			-								
trans-1,3-Dichloropropene	ug/kg	8200	1					< 4.2 U			1			1	1				
Trichloroethene Trichlorofluoromethane	ug/kg	1900 3.5e+007	 					< 4.2 U			 				1				
Vinyl Chloride	ug/kg ug/kg	3.5e+007 1700	 					< 4.2 U			-								
Xylenes (total)	ug/kg ug/kg	250000	+					< 8.3 U			+			1					
Tyronos (total)	uy/ky	250000	1					~ U.J U			1		l .	1	1			Ī	1

Benning Road Facilty RI Report

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP43-4NW	SUSDP43-4SW	SUSDP43-4SW	SUSDP43-5NW	SUSDP44	SUSDP44	SUSDP44	SUSDP44	SUSDP44	SUSDP44	SUSDP44	SUSDP48	SUSDP48	SUSDP48	SUSDP48	SUSDP48
			Sample Date	2/23/2018	2/23/2018	2/23/2018	3/15/2018	5/21/2013	6/10/2013	6/10/2013	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/27/2017
			Sample ID	DPS434NW02N	DPS434SW01N	DPS434SW02N		DPS4403N	DPS4410N	DPS4415N	DPS44F01N	DPS44F01R	DPS44F02-05N	DPS44F02-05R		DPS48F01R	DPS48F02-05N	DPS48F02-05R	DPS48F05-10N
			Depth Type	2 - 3 ft N	1 - 2 ft N	2 - 3 ft N	1 - 2 ft N	2.5 - 3.5 ft N	9.5 - 10.5 ft N	14.5 - 15.5 ft N	2.5 - 3.5 ft N	2.5 - 3.5 ft FD	3.5 - 5 ft N	3.5 - 5 ft FD	1 - 2 ft N	1 - 2 ft FD	2 - 5 ft N	2 - 5 ft FD	5 - 10 ft N
			туре	IN	IN	IN	IN	IN	IN	IN	IN	FD	IN	FD	IN	FD	IN	FD	IN
		Project Screening																	
Analyte	Unit	Criteria																	
,1'-Biphenyl	ug/kg	20000																	
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																	
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol	ug/kg	4.7e+006 2.5e+006																	
2,4,5-Trichlorophenol	ug/kg ug/kg	8.2e+006																	1
2,4,6-Trichlorophenol	ug/kg	82000																	+
2,4-Dichlorophenol	ug/kg	250000																	
2,4-Dimethylphenol	ug/kg	1.6e+006																	
2,4-Dinitrophenol	ug/kg	160000																	
2,4-Dinitrotoluene	ug/kg	7400																	
2,6-Dinitrotoluene	ug/kg	1500																	
2-Chloronaphthalene	ug/kg	6e+006								-			<u> </u>						
2-Chlorophenol	ug/kg	580000																	
2-Methylnaphthalene	ug/kg	300000																	1
2-Methylphenol	ug/kg	4.1e+006																	
2-Nitroaniline	ug/kg	800000																-	
2-Nitrophenol	ug/kg	2.5e+007																-	
3,3'-Dichlorobenzidine 3-Nitroaniline	ug/kg	5100 110000																	
4,6-Dinitro-2-methylphenol	ug/kg ug/kg	6600																	
4-Bromophenyl-phenylether	ug/kg	0000																	
4-Chloro-3-methylphenol	ug/kg	8.2e+006																	
4-Chloroaniline	ug/kg	11000																	
4-Chlorophenyl-phenylether	ug/kg																		
4-Methylphenol	ug/kg	8.2e+006																	
4-Nitroaniline	ug/kg	110000																	
4-Nitrophenol	ug/kg	2.5e+007																	
Acenaphthene	ug/kg	4.5e+006		28	150	31	< 7.6 U				110	120	0.87 J	0.85 J	< 8.1 U	< 7.4 U	60	30 J	24 J
Acenaphthylene	ug/kg	4.5e+006		4.8 J	150	160	< 7.6 U				17 J	22 J	0.99 J	< 7.7 U	< 8.1 U	< 7.4 U	40	24 J	26 J
Acetophenone	ug/kg	1.2e+007																	<u> </u>
Anthracene	ug/kg	2.3e+007		15	1300	190	2.4 J				210	240	1.9 J	2.8 J	4.4 J	< 7.4 U	170	110	97
Atrazine	ug/kg	10000																	
Benzaldehyde	ug/kg	820000		22	770	000					4400	4000		4=		001	500		
Benzo(a)anthracene	ug/kg	21000		26	770 750	260	8.7				1100 1100	1200	8.2	17	37 J	2.0 J	560	390	270
Benzo(a)pyrene Benzo(b)fluoranthene	ug/kg ug/kg	2100 21000		24 39	1400	280 480	9.3 12				1500	1200 1800	9.3 16	18 27	24 J 37 J	< 7.4 U	580 750	420 540	260 400
Benzo(g,h,i)perylene	ug/kg	2.3e+006		18	630	340	7.7				720	850	7.6 J	14	17 J	1.3 J	380	270	210
Benzo(k)fluoranthene	ug/kg	210000		10	390	130	5.8 J				500	580	5.1 J	9.4	20 J	1.8 J	330	240	120
bis-(2-chloroethoxy)methane	ug/kg	250000		.0		.50	5.00						5.10	Ţ.··					1.20
bis-(2-Chloroethyl)ether	ug/kg	1000															1		
bis-(2-Ethylhexyl)phthalate	ug/kg	160000															İ		
Butylbenzylphthalate	ug/kg	1.2e+006						İ											
Caprolactam	ug/kg	4e+007																	
Carbazole	ug/kg	3e+006																	
Chrysene	ug/kg	2.1e+006		27	890	300	8.9				1200	1400	12	19	37 J	2.5 J	620	420	290
Dibenzo(a,h)anthracene	ug/kg	2100		8.3	180	80	< 7.6 U				180	200	1.9 J	4.6 J	3.6 J	< 7.4 U	110	83	50
Dibenzofuran	ug/kg	100000																	<u> </u>
Diethylphthalate	ug/kg	6.6e+007																	
Dimethylphthalate	ug/kg	6.6e+007																	1
Di-n-butylphthalate	ug/kg	8.2e+006													1		1	1	1
Di-n-octylphthalate	ug/kg	820000		64	2400	400	40				4600	2000	44	22	EC.	251	1000	700	470
Fluoranthene	ug/kg	3e+006		64	2400	430	16				1600	2000	11	23	56 J	3.5 J	1000	720	470
Fluorene	ug/kg	3e+006		8.5	140	37	< 7.6 U				120	130	1.5 J	1.0 J	< 8.1 U	< 7.4 U	54	25 J	34 J
Hexachlorobenzene	ug/kg ug/kg	960		0.0	140	31	` 1.00				120	130	1.0 J	1.0 J	- 0.1 0	- 1.4 U	34	20 0	34 J
Hexachlorobutadiene	ug/kg	5300															+		
Hexachlorocyclo-pentadiene	ug/kg	750													1			1	
Hexachloroethane	ug/kg	8000					1	†											

Benning Road Facilty RI Report

Subsurface Soil Results

			Location ID	SUSDP43-4NW	SUSDP43-4SW	SUSDP43-4SW	SUSDP43-5NW	SUSDP44	SUSDP44	SUSDP44	SUSDP44	SUSDP44	SUSDP44	SUSDP44	SUSDP48	SUSDP48	SUSDP48	SUSDP48	SUSDP48
			Sample Date	2/23/2018	2/23/2018	2/23/2018	3/15/2018	5/21/2013	6/10/2013	6/10/2013	1/27/2017	1/27/2017	1/27/2017	1/27/2017	1/26/2017	1/26/2017	1/26/2017	1/26/2017	1/27/2017
			Sample ID	DPS434NW02N	DPS434SW01N	DPS434SW02N	DPS435NW01N	DPS4403N	DPS4410N	DPS4415N	DPS44F01N	DPS44F01R	DPS44F02-05N	DPS44F02-05R	DPS48F01N	DPS48F01R	DPS48F02-05N	DPS48F02-05R	DPS48F05-10N
			Depth	2 - 3 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	2.5 - 3.5 ft	3.5 - 5 ft	3.5 - 5 ft	1 - 2 ft	1 - 2 ft	2 - 5 ft	2 - 5 ft	5 - 10 ft
			Туре	N	N	N	N	N	N	N	N	FD	N	FD	N	FD	N	FD	N
		Project Screening																	
Analyte	Unit	Criteria																	
Indeno(1,2,3-cd)pyrene	ug/kg	21000		20	580	270	9.4				630	760	7.3 J	13	17 J	1.2 J	340	230	200
Isophorone	ug/kg	2.4e+006																	
Naphthalene	ug/kg	17000		7.0 J	270	190	1.8 J				160	160	1.9 J	1.7 J	< 8.1 U	< 7.4 U	83	52	93
Nitrobenzene	ug/kg	22000																	
N-Nitroso-di-n-propylamine	ug/kg	330																	
N-Nitrosodiphenylamine	ug/kg	470000																	
Pentachlorophenol	ug/kg	4000																	
Phenanthrene	ug/kg	2.3e+007		50	880	370	10				930	1100	9.3	13	17 J	2.7 J	600	390	310
Phenol	ug/kg	2.5e+007												< 38 U					
Pyrene	ug/kg	2.3e+006		48	650	320	13				1100	1300	8.8	22	53 J	2.9 J	940	660	490
BaP-TE	ug/kg	2100		40.9	1210	463	12.4				1610	1780	14.4	28.4	36.9	0.711	859	622	398
Total High-molecular-weight PAHs	ug/kg			280	8600	2900	91				9600	11000	87	170	300	19	5600	4000	2800
Total Low-molecular-weight PAHs	ug/kg			110	2900	980	14				1500	1800	16	19	21	2.7	1000	630	580
Total PAHs (sum 16)	ug/kg			400	12000	3900	110				11000	13000	100	190	320	22	6600	4600	3300

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			1 (1 15	011000040	01100004045	01100004045	OLIOPPEO	OLIOPPEO	OLIODDEO	OLIOPPEO OA	OLIODDEO OA	OLIODDEO OA	OLIOP DE4	011000054	QUODDE	OLIOP DE 4	OLIOPPEO	OLIOPPEO	OLIOPPEO	OLIODDEO.
			Location ID Sample Date	SUSDP48 1/27/2017	SUSDP49-1E 8/11/2017	SUSDP49-1E 8/11/2017	SUSDP50 8/10/2017	SUSDP50 8/10/2017	SUSDP50 8/10/2017	SUSDP50-2A 8/8/2017	SUSDP50-2A 8/15/2017	SUSDP50-3A 1/30/2018	SUSDP51 1/26/2017	SUSDP51 1/26/2017	SUSDP51 1/27/2017	SUSDP51 1/27/2017	SUSDP53 1/31/2017	SUSDP53 1/31/2017	SUSDP53 2/2/2017	SUSDP53 2/2/2017
			Sample ID	DPS48F10-15N	DPS491E03N	DPS491E04N	DPS5001N	DPS5001R	DPS5002N	DPS502A02N	DPS502A01N	DPS503A01N	DPS51F01N	DPS51F02-05N	DPS51F05-10N	DPS51F10-15N	DPS53F01N	DPS53F02-05N	DPS53F05-10N	DPS53F10-15N
			Depth	10 - 15 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft
			Туре	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																		1 '
Analyte	Unit	Criteria																		
Diesel Range Organics (C10-C20) Oil Range Organics (C20-C36)	mg/kg mg/kg	350000																		
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	330000		257									66.2	41.8	33.8	19.6	186	1.48 J	11.2	7.38
	mg/kg	440		251			5000	7900	98	< 20 U	700	470	00.2	41.0	33.0	15.0	100	1.400	11.2	7.50
Oil Range Organics (C20-C36)	mg/kg	350000					5200 J	9400 J	91	38	2000	360								
Gasoline Range Organics (C6-C10)	ug/kg	42000																		
1,1,1-Trichloroethane	ug/kg	3.6e+006																		
1,1,2,2-Tetrachloroethane	ug/kg	2700																		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006																		ļ
1,1,2-Trichloroethane	ug/kg	630																		
1,1-Dichloroethane 1,1-Dichloroethene	ug/kg ug/kg	16000 100000			-	 												-		
1.2.3-Trichlorobenzene	ug/kg ug/kg	93000			<u> </u>	 														
1,2,4-Trichlorobenzene	ug/kg ug/kg	26000																		
1,2-Dibromo-3-chloropropane	ug/kg	64			1	1												1		
1,2-Dibromoethane	ug/kg	160			<u> </u>	<u></u>				<u></u>								<u> </u>		
1,2-Dichlorobenzene	ug/kg	930000																		
1,2-Dichloroethane	ug/kg	2000																		
1,2-Dichloropropane	ug/kg	6600																		ļ
1,3-Dichlorobenzene	ug/kg	11000																		
1,4-Dichlorobenzene 1,4-Dioxane	ug/kg ug/kg	11000 24000																		
	ug/kg ug/kg	1.9e+007																		
2-Hexanone	ug/kg	130000																		
4-Methyl-2-pentanone	ug/kg	1.4e+007																		
Acetone	ug/kg	6.7e+007																		
Benzene	ug/kg	5100																		
Bromochloromethane	ug/kg	63000																		
Bromodichloromethane	ug/kg	1300																		
Bromoform	ug/kg	86000																		
Bromomethane Carbon Disulfide	ug/kg ug/kg	3000 350000																		
Carbon Tetrachloride	ug/kg ug/kg	2900																		
Chlorobenzene	ug/kg	130000																		
Chloroethane	ug/kg	5.7e+006																		
Chloroform	ug/kg	1400																		
Chloromethane	ug/kg	46000																		
cis-1,2-Dichloroethylene	ug/kg	230000																		
cis-1,3-Dichloropropene	ug/kg	8200			1	-												-		
Cyclohexane Dibromochloromethane	ug/kg	2.7e+006 39000			 	1												 		
Dibromochloromethane Dichlorodifluoromethane	ug/kg ug/kg	37000			1	1		 										1		
Ethylbenzene	ug/kg ug/kg	25000			1															
	ug/kg	990000			1	1												1		
m, p-Xylene	ug/kg	240000																		
	ug/kg	1.2e+008																		
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000																		
	ug/kg	2.7e+006				ļ														 '
	ug/kg	320000			1	1												-		
	ug/kg ug/kg	280000 3.5e+006			-	-		-										-		
	ug/kg ug/kg	39000			 	1												 		
	ug/kg ug/kg	4.7e+006			<u> </u>	1														
	ug/kg	2.3e+006			1	1		<u> </u>										1		
	ug/kg	8200																		[
Trichloroethene	ug/kg	1900																		
Trichlorofluoromethane	ug/kg	3.5e+007					_							·					· · · · · · · · · · · · · · · · · · ·	
	ug/kg	1700			<u> </u>															
Xylenes (total)	ug/kg	250000			1	I	1	1		1					İ	İ	1			1

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP48	SUSDP49-1E	SUSDP49-1E	SUSDP50	SUSDP50	SUSDP50	SUSDP50-2A	SUSDP50-2A	SUSDP50-3A	SUSDP51	SUSDP51	SUSDP51	SUSDP51	SUSDP53	SUSDP53	SUSDP53	SUSDP53
			Sample Date	1/27/2017	8/11/2017	8/11/2017	8/10/2017	8/10/2017	8/10/2017	8/8/2017	8/15/2017	1/30/2018	1/26/2017	1/26/2017	1/27/2017	1/27/2017	1/31/2017	1/31/2017	2/2/2017	2/2/2017
			Sample ID	DPS48F10-15N		DPS491E04N		DPS5001R	DPS5002N	DPS502A02N	DPS502A01N	DPS503A01N	DPS51F01N	DPS51F02-05N	DPS51F05-10N	DPS51F10-15N		DPS53F02-05N	DPS53F05-10N	
			Depth	10 - 15 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft
		1 1	Туре	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																		
Analyte	Unit	Criteria																		
1,1'-Biphenyl	ug/kg	20000																		1
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																		
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																		
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																		
2,4,5-Trichlorophenol	ug/kg ug/kg	8.2e+006 82000																		
2,4,6-Trichlorophenol 2,4-Dichlorophenol	ug/kg	250000							1								1			+
2,4-Dimethylphenol	ug/kg	1.6e+006																		+
2,4-Dinitrophenol	ug/kg	160000																		<u> </u>
2,4-Dinitrotoluene	ug/kg	7400																		1
2,6-Dinitrotoluene	ug/kg	1500																		
2-Chloronaphthalene	ug/kg	6e+006																		
2-Chlorophenol	ug/kg	580000																		
2-Methylnaphthalene	ug/kg	300000																		
2-Methylphenol	ug/kg	4.1e+006													-	-				+
2-Nitroaniline 2-Nitrophenol	ug/kg ug/kg	800000 2.5e+007					-								-					+
3,3'-Dichlorobenzidine	ug/kg	5100			<u> </u>										 	+		1		+
3-Nitroaniline	ug/kg	110000														+				+
4,6-Dinitro-2-methylphenol	ug/kg	6600																		+
4-Bromophenyl-phenylether	ug/kg																			<u> </u>
4-Chloro-3-methylphenol	ug/kg	8.2e+006																		1
4-Chloroaniline	ug/kg	11000																		
4-Chlorophenyl-phenylether	ug/kg																			
4-Methylphenol	ug/kg	8.2e+006																		
4-Nitroaniline	ug/kg	110000																		
4-Nitrophenol	ug/kg	2.5e+007		38 J	0.0	< 7.411	< 200 11		27				42	261	< 7.411	< 7.F.I.I	0.00 1	- 0 1 1 1	1.6 J	471
Acenaphthene Acenaphthylene	ug/kg ug/kg	4.5e+006 4.5e+006		36 J	9.0 10	< 7.4 U	< 300 U		27 190				13 16	2.6 J 2.8 J	< 7.4 U	< 7.5 U	0.89 J < 7.5 U	< 8.1 U	3.7 J	1.7 J 2.4 J
Acetophenone	ug/kg	1.2e+007		340	10	17.40	1 000 0		150				10	2.00	17.40	17.50	17.50	10.10	3.7 0	2.40
Anthracene	ug/kg	2.3e+007		140	32	3.5 J	< 300 U		90				48	6.3 J	< 7.4 U	< 7.5 U	2.5 J	< 8.1 U	2.3 J	2.0 J
Atrazine	ug/kg	10000											-							
Benzaldehyde	ug/kg	820000																		1
Benzo(a)anthracene	ug/kg	21000		430	81	14	130 J		380				150	22	< 7.4 U	< 7.5 U	11	1.1 J	1.8 J	1.7 J
Benzo(a)pyrene	ug/kg	2100		410	42	9.2	140 J		480				140	21	< 7.4 U	< 7.5 U	11	< 8.1 U	< 8.1 U	< 9.1 U
Benzo(b)fluoranthene	ug/kg	21000		470	110	26	350		450				210	27	< 7.4 U	< 7.5 U	16	< 8.1 U	< 8.1 U	1.9 J
Benzo(g,h,i)perylene	ug/kg	2.3e+006		330	40	9.9	< 300 U		440				89	14	< 7.4 U	< 7.5 U	9.3	< 8.1 U	< 8.1 U	< 9.1 U
Benzo(k)fluoranthene	ug/kg	210000		200	35	4.6 J	< 300 U		130				83	12	< 7.4 U	< 7.5 U	4.6 J	< 8.1 U	< 8.1 U	< 9.1 U
bis-(2-chloroethoxy)methane bis-(2-Chloroethyl)ether	ug/kg ug/kg	250000 1000					-								-					+
bis-(2-Ethylhexyl)phthalate	ug/kg	160000													 	+				+
Butylbenzylphthalate	ug/kg	1.2e+006																		+
Caprolactam	ug/kg	4e+007													1					1
Carbazole	ug/kg	3e+006																		1
Chrysene	ug/kg	2.1e+006		430	180	33	280 J		350				170	24	< 7.4 U	< 7.5 U	13	< 8.1 U	2.8 J	2.0 J
Dibenzo(a,h)anthracene	ug/kg	2100		73	16	4.1 J	< 300 U		53		· · · · · · · · · · · · · · · · · · ·		23	4.3 J	< 7.4 U	< 7.5 U	2.1 J	< 8.1 U	< 8.1 U	< 9.1 U
Dibenzofuran	ug/kg	100000																		
Diethylphthalate	ug/kg	6.6e+007																		
Dimethylphthalate	ug/kg	6.6e+007			1										1	1				
Di-n-butylphthalate	ug/kg	8.2e+006 820000					-								-					+
Di-n-octylphthalate Fluoranthene	ug/kg ug/kg	3e+006		710	260	29	320		770				250	40	< 7.4 U	< 7.5 U	12	1.3 J	3.2 J	1.9 J
i idolalitiono	ug/kg	30,1000		710	200	29	320		110				230	+0	7.40	77.00	12	1.3 3	J.2 J	1.93
Fluorene	ug/kg	3e+006		49	9.3	< 7.4 U	< 300 U		25				20	3.2 J	< 7.4 U	< 7.5 U	< 7.5 U	< 8.1 U	< 8.1 U	< 9.1 U
Hexachlorobenzene	ug/kg	960			1									5.20	1	1.00		55	0	
Hexachlorobutadiene	ug/kg	5300																		
Hexachlorocyclo-pentadiene	ug/kg	750					İ													1
Hexachloroethane	ug/kg	8000							İ											

Subsurface Soil Results

			Location ID	SUSDP48	SUSDP49-1E	SUSDP49-1E	SUSDP50	SUSDP50	SUSDP50	SUSDP50-2A	SUSDP50-2A	SUSDP50-3A	SUSDP51	SUSDP51	SUSDP51	SUSDP51	SUSDP53	SUSDP53	SUSDP53	SUSDP53
			Sample Date	1/27/2017	8/11/2017	8/11/2017	8/10/2017	8/10/2017	8/10/2017	8/8/2017	8/15/2017	1/30/2018	1/26/2017	1/26/2017	1/27/2017	1/27/2017	1/31/2017	1/31/2017	2/2/2017	2/2/2017
			Sample ID	DPS48F10-15N	DPS491E03N	DPS491E04N	DPS5001N	DPS5001R	DPS5002N	DPS502A02N	DPS502A01N	DPS503A01N	DPS51F01N	DPS51F02-05N	DPS51F05-10N	DPS51F10-15N	DPS53F01N	DPS53F02-05N	DPS53F05-10N	DPS53F10-15N
			Depth	10 - 15 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft
			Туре	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																		
Indeno(1,2,3-cd)pyrene	ug/kg	21000		300	38	8.6	150 J		300				81	14	< 7.4 U	< 7.5 U	7.4 J	< 8.1 U	< 8.1 U	< 9.1 U
Isophorone	ug/kg	2.4e+006																		
Naphthalene	ug/kg	17000		35 J	56	14	< 300 U		170				15	3.5 J	< 7.4 U	< 7.5 U	1.3 J	< 8.1 U	1.8 J	1.8 J
Nitrobenzene	ug/kg	22000																		
N-Nitroso-di-n-propylamine	ug/kg	330																		
N-Nitrosodiphenylamine	ug/kg	470000																		
Pentachlorophenol	ug/kg	4000																		
Phenanthrene	ug/kg	2.3e+007		430	330	39	300		210				110	17	< 7.4 U	< 7.5 U	9.2	1.6 J	< 8.1 U	< 9.1 U
Phenol	ug/kg	2.5e+007																		
Pyrene	ug/kg	2.3e+006		770	170	22	480		1100				220	33	< 7.4 U	< 7.5 U	19	1.5 J	2.8 J	2.1 J
BaP-TE	ug/kg	2100		605	81.4	18.2	203		648				208	31.7	< 7.40 U	< 7.50 U	16.6	0.110	0.183	0.362
Total High-molecular-weight PAHs	ug/kg			4100	970	160	1900		4500				1400	210	< 7.4 U	< 7.5 U	110	3.9	11	9.6
Total Low-molecular-weight PAHs	ug/kg			730	450	57	300		710				220	35	< 7.4 U	< 7.5 U	14	1.6	9.4	7.9
Total PAHs (sum 16)	ug/kg			4800	1400	220	2200		5200				1600	250	< 7.4 U	< 7.5 U	120	5.5	20	18

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road. NE

									g, _									
			Location ID	SUSDP64	SUSDPCT16-1C	SUSDPCT16-1C	SUSDPCT16-1C	SUSDPCT16-1E	SUSDPCT16-1E	SUSDPCT16-1G	SUSDPCT16-1G	SUSDPCT16-1G	SUSDPCT16-1G	SUSDPCT16-2E	SUSDPCT16-2E	SUSDPCT16-2E	SUSDPCT16-2E	SUSDPCT16-2I
			Sample Date	8/10/2017	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018
			•	DPS6401N	DPCT161C02N	DPCT161C03N	DPCT161C04N	DPCT161E01N	DPCT161E02N	DPCT161G01N	DPCT161G02N	DPCT161G03N	DPCT161G04N		DPSCT162E02N	DPSCT162E03N		
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft
	1	1	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																
Analyte	Unit	Criteria																
Diesel Range Organics (C10-C20)	mg/kg	440								4480							283	532
Oil Range Organics (C20-C36)	mg/kg	350000								7520							1240	279
Total Petroleum Hydrocarbons (C9-C44)	mg/kg				4220	2820		1490	130	13600	2360			1320	1610	1520	2110	836
Diesel Range Organics (C10-C20)	mg/kg	440		70			99			6900		440	140				50 J	530
Oil Range Organics (C20-C36)	mg/kg	350000		150			300			11000		1100	800				370	340
Gasoline Range Organics (C6-C10)	ug/kg	42000																
1,1,1-Trichloroethane	ug/kg	3.6e+006																
1,1,2,2-Tetrachloroethane	ug/kg	2700																
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006															-	
1,1,2-Trichloroethane 1,1-Dichloroethane	ug/kg ug/kg	630 16000																
1,1-Dichloroethene	ug/kg ug/kg	10000															_	
1,2,3-Trichlorobenzene	ug/kg ug/kg	93000																
1,2,4-Trichlorobenzene	ug/kg	26000															†	
1,2-Dibromo-3-chloropropane	ug/kg	64															†	
1,2-Dibromoethane	ug/kg	160							1								1	
1,2-Dichlorobenzene	ug/kg	930000																
1,2-Dichloroethane	ug/kg	2000																
1,2-Dichloropropane	ug/kg	6600																
1,3-Dichlorobenzene	ug/kg	11000																
1,4-Dichlorobenzene	ug/kg	11000																
1,4-Dioxane	ug/kg	24000																
2-Butanone	ug/kg	1.9e+007																
2-Hexanone	ug/kg	130000 1.4e+007																
4-Methyl-2-pentanone Acetone	ug/kg ug/kg	6.7e+007															_	
Benzene	ug/kg ug/kg	5100															+	
Bromochloromethane	ug/kg	63000																
Bromodichloromethane	ug/kg	1300																
Bromoform	ug/kg	86000																
Bromomethane	ug/kg	3000																
Carbon Disulfide	ug/kg	350000																
Carbon Tetrachloride	ug/kg	2900																
Chlorobenzene	ug/kg	130000																
Chloroethane	ug/kg	5.7e+006																
Chloroform	ug/kg	1400																
Chloromethane	ug/kg	46000 230000																
cis-1,2-Dichloroethylene cis-1,3-Dichloropropene	ug/kg ug/kg	8200																
Cyclohexane	ug/kg ug/kg	2.7e+006	-			+			 		+	+	+				+	
Dibromochloromethane	ug/kg ug/kg	39000				+					+		+				†	
Dichlorodifluoromethane	ug/kg	37000															†	
Ethylbenzene	ug/kg	25000							1								1	
Isopropylbenzene	ug/kg	990000															1	
m, p-Xylene	ug/kg	240000																
Methyl Acetate	ug/kg	1.2e+008																
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000																
Methylcyclohexane	ug/kg	2.7e+006																
Methylene Chloride	ug/kg	320000																
p-Xylene	ug/kg	280000															_	
Styrene	ug/kg	3.5e+006			1	-			1		-	1	-				1	-
Tetrachloroethylene	ug/kg	39000				-			1		-		-				1	
Toluene irans-1,2-Dichloroethene	ug/kg	4.7e+006 2.3e+006			-	-			 		-	1	-				+	
trans-1,2-Dichloroethene	ug/kg ug/kg	8200			1				+								+	
Trichloroethene	ug/kg ug/kg	1900			1	+			1		+	 	 	1			+	1
Trichlorofluoromethane	ug/kg ug/kg	3.5e+007							 				+				†	
Vinyl Chloride	ug/kg	1700							1								†	
Xylenes (total)	ug/kg	250000			1				1								1	
. , ,						i					i	1	i					

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

								,	wasnington, D	0 200.0								
			Location ID	SUSDP64	SUSDPCT16-1C	SUSDPCT16-1C	SUSDPCT16-1C	SUSDPCT16-1E	SUSDPCT16-1E	SUSDPCT16-1G	SUSDPCT16-1G	SUSDPCT16-1G	SUSDPCT16-1G	SUSDPCT16-2E	SUSDPCT16-2E	SUSDPCT16-2E	SUSDPCT16-2E	SUSDPCT16-2I
			Sample Date	8/10/2017	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018
			Sample ID	DPS6401N	DPCT161C02N	DPCT161C03N	DPCT161C04N	DPCT161E01N	DPCT161E02N	DPCT161G01N	DPCT161G02N	DPCT161G03N	DPCT161G04N	DPSCT162E01N	DPSCT162E02N	DPSCT162E03N	DPSCT162E04N	DPSCT162I01N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
																		·
		Project Screening																i
Analyte	Unit	Criteria																
1,1'-Biphenyl	ug/kg	20000																<u> </u>
1,2,4,5-Tetrachlorobenzene	ug/kg	35000																<u> </u>
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006																
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006																
2,4,5-Trichlorophenol	ug/kg	8.2e+006																
2,4,6-Trichlorophenol	ug/kg	82000																
2,4-Dichlorophenol	ug/kg	250000																
2,4-Dimethylphenol	ug/kg	1.6e+006																
2,4-Dinitrophenol	ug/kg	160000 7400																
2,4-Dinitrotoluene 2,6-Dinitrotoluene	ug/kg	1500																
2-Chloronaphthalene	ug/kg ug/kg	6e+006																
2-Chlorophenol	ug/kg ug/kg	580000										1						
2-Methylnaphthalene	ug/kg	300000																
2-Methylphenol	ug/kg	4.1e+006																
2-Nitroaniline	ug/kg	800000																
2-Nitrophenol	ug/kg	2.5e+007																
3,3'-Dichlorobenzidine	ug/kg	5100																
3-Nitroaniline	ug/kg	110000																
4,6-Dinitro-2-methylphenol	ug/kg	6600																
4-Bromophenyl-phenylether	ug/kg																	i
4-Chloro-3-methylphenol	ug/kg	8.2e+006																i
4-Chloroaniline	ug/kg	11000																<u> </u>
4-Chlorophenyl-phenylether	ug/kg																	ı
4-Methylphenol	ug/kg	8.2e+006																
4-Nitroaniline	ug/kg	110000																i
4-Nitrophenol	ug/kg	2.5e+007																İ
Acenaphthene	ug/kg	4.5e+006																<u> </u>
Acenaphthylene	ug/kg	4.5e+006																
Acetophenone	ug/kg	1.2e+007																
Anthracene	ug/kg	2.3e+007																
Atrazine	ug/kg	10000																
Benzaldehyde	ug/kg	820000																
Benzo(a)anthracene	ug/kg	21000																
Benzo(a)pyrene	ug/kg	2100 21000																
Benzo(b)fluoranthene Benzo(g,h,i)perylene	ug/kg ug/kg	2.3e+006																
Benzo(k)fluoranthene	ug/kg ug/kg	210000																
bis-(2-chloroethoxy)methane	ug/kg	250000																
bis-(2-Chloroethyl)ether	ug/kg	1000																
bis-(2-Ethylhexyl)phthalate	ug/kg	160000																
Butylbenzylphthalate	ug/kg	1.2e+006																
Caprolactam	ug/kg	4e+007																
Carbazole	ug/kg	3e+006																1
Chrysene	ug/kg	2.1e+006																ı
Dibenzo(a,h)anthracene	ug/kg	2100																ı
Dibenzofuran	ug/kg	100000																<u> </u>
Diethylphthalate	ug/kg	6.6e+007																
Dimethylphthalate	ug/kg	6.6e+007																
Di-n-butylphthalate	ug/kg	8.2e+006								·								
Di-n-octylphthalate	ug/kg	820000																
Fluoranthene	ug/kg	3e+006																ı
																		
Fluorene	ug/kg	3e+006																
Hexachlorobenzene	ug/kg	960																
Hexachlorobutadiene	ug/kg	5300																
Hexachlorocyclo-pentadiene	ug/kg	750																
Hexachloroethane	ug/kg	8000										l						

Subsurface Soil Results

			Location ID	SUSDP64	SUSDPCT16-1C	SUSDPCT16-1C	SUSDPCT16-1C	SUSDPCT16-1E	SUSDPCT16-1E	SUSDPCT16-1G	SUSDPCT16-1G	SUSDPCT16-1G	SUSDPCT16-1G	SUSDPCT16-2E	SUSDPCT16-2E	SUSDPCT16-2E	SUSDPCT16-2E	SUSDPCT16-2I
			Sample Date	8/10/2017	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/1/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018
			Sample ID	DPS6401N	DPCT161C02N	DPCT161C03N	DPCT161C04N	DPCT161E01N	DPCT161E02N	DPCT161G01N	DPCT161G02N	DPCT161G03N	DPCT161G04N	DPSCT162E01N	DPSCT162E02N	DPSCT162E03N	DPSCT162E04N	DPSCT162I01N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																1
Analyte	Unit	Criteria																<u> </u>
Indeno(1,2,3-cd)pyrene	ug/kg	21000																
Isophorone	ug/kg	2.4e+006																1
Naphthalene	ug/kg	17000																1
Nitrobenzene	ug/kg	22000																1
N-Nitroso-di-n-propylamine	ug/kg	330																
N-Nitrosodiphenylamine	ug/kg	470000																
Pentachlorophenol	ug/kg	4000																
Phenanthrene	ug/kg	2.3e+007																
Phenol	ug/kg	2.5e+007																1
Pyrene	ug/kg	2.3e+006																
BaP-TE	ug/kg	2100																1
Total High-molecular-weight PAHs	ug/kg																	
Total Low-molecular-weight PAHs	ug/kg																	
Total PAHs (sum 16)	ug/kg																	

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

									iligion, DC 200									
			Location ID S	SUSDPCT16-2I	SUSDPCT16-2I	SUSDPCT16-2I	SUSDPCT16-2M	SUSDPCT16-2M	SUSDPCT16-2M	SUSDPCT16-2M	SUSDPCT16-3R	SUSDPCT16-3R	SUSDPCT16-3R	SUSDPCT16-3R	SUSDPCT16-3R	SUSDPCT16-3S	SUSDPCT16-3S	SUSDPCT16-3S
			Sample Date	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	5/31/2018	5/31/2018	5/31/2018	5/31/2018	5/31/2018	3/15/2018	3/15/2018	3/15/2018
				DPSCT162I02N	DPSCT162I03N		DPSCT162M01N	DPSCT162M02N	DPSCT162M03N	DPSCT162M04N						DPSCT163S01N	DPSCT163S02N	
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft
			Туре	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N
		Project Screening																
Analyte	Unit	Criteria																
Diesel Range Organics (C10-C20)	mg/kg	440					18600	7110									11700	
Oil Range Organics (C20-C36)	mg/kg	350000					25100	8610									39900	
Total Petroleum Hydrocarbons (C9-C44)	mg/kg			181	27.6	178	45600	16200	6340	3290						274	61000	177
Diesel Range Organics (C10-C20)	mg/kg	440						11000	5700	1600	15 J	260	89	62	110 J-		3600	
Oil Range Organics (C20-C36)	mg/kg	350000 42000						14000	6700	1900	37	150	65	51	560		13000	
Gasoline Range Organics (C6-C10) 1,1,1-Trichloroethane	ug/kg ug/kg	3.6e+006																ļ
1,1,2,2-Tetrachloroethane	ug/kg ug/kg	2700																
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006																
1,1,2-Trichloroethane	ug/kg	630																-
1,1-Dichloroethane	ug/kg	16000																
1,1-Dichloroethene	ug/kg	100000																
1,2,3-Trichlorobenzene	ug/kg	93000																
1,2,4-Trichlorobenzene	ug/kg	26000																
1,2-Dibromo-3-chloropropane	ug/kg	64					-			-								
1,2-Dibromoethane	ug/kg	160																
1,2-Dichlorobenzene	ug/kg	930000																
1,2-Dichloroethane	ug/kg	2000																<u> </u>
1,2-Dichloropropane	ug/kg	6600																<u> </u>
1,3-Dichlorobenzene	ug/kg	11000																 !
1,4-Dichlorobenzene	ug/kg	11000																
1,4-Dioxane 2-Butanone	ug/kg ug/kg	24000 1.9e+007																ļ
2-Hexanone	ug/kg ug/kg	130000																
4-Methyl-2-pentanone	ug/kg	1.4e+007																
Acetone	ug/kg	6.7e+007																
Benzene	ug/kg	5100																
Bromochloromethane	ug/kg	63000																
Bromodichloromethane	ug/kg	1300																
Bromoform	ug/kg	86000																
Bromomethane	ug/kg	3000																
Carbon Disulfide	ug/kg	350000																<u> </u>
Carbon Tetrachloride	ug/kg	2900																<u> </u>
Chlorobenzene	ug/kg	130000																 !
Chloroform	ug/kg	5.7e+006																
Chloroform Chloromethane	ug/kg ug/kg	1400 46000																
cis-1,2-Dichloroethylene	ug/kg ug/kg	230000																
cis-1,3-Dichloropropene	ug/kg ug/kg	8200						1				 					 	
Cyclohexane	ug/kg	2.7e+006																
Dibromochloromethane	ug/kg	39000						1				1					1	
Dichlorodifluoromethane	ug/kg	37000																
Ethylbenzene	ug/kg	25000																
Isopropylbenzene	ug/kg	990000					-			-								
m, p-Xylene	ug/kg	240000																
Methyl Acetate	ug/kg	1.2e+008																
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000																 '
Methylcyclohexane	ug/kg	2.7e+006																<u> </u> '
Methylene Chloride	ug/kg	320000				-		1				1					1	
o-Xylene Styrene	ug/kg ug/kg	280000 3.5e+006						1				1					 	
Tetrachloroethylene	ug/kg ug/kg	39000	+					-				1					1	+
Toluene	ug/kg ug/kg	4.7e+006	+			1		+				+					+	+
trans-1,2-Dichloroethene	ug/kg ug/kg	2.3e+006						1				 					 	
trans-1,3-Dichloropropene	ug/kg	8200						1				1					1	
Trichloroethene	ug/kg	1900						<u> </u>				<u> </u>					<u> </u>	† ·
Trichlorofluoromethane	ug/kg	3.5e+007																
Vinyl Chloride	ug/kg	1700																
Xylenes (total)	ug/kg	250000																
	•																	

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID S	SUSDPCT16-2I	SUSDPCT16-2I	SUSDPCT16-2I	SUSDPCT16-2M	SUSDPCT16-2M	SUSDPCT16-2M	SUSDPCT16-2M	SUSDPCT16-3R	SUSDPCT16-3R	SUSDPCT16-3R	SUSDPCT16-3R	SUSDPCT16-3R	SUSDPCT16-3S	SUSDPCT16-3S	SUSDPCT16-3S
			Sample Date	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	5/31/2018	5/31/2018	5/31/2018	5/31/2018	5/31/2018	3/15/2018	3/15/2018	3/15/2018
			Sample ID [DPSCT162I02N	DPSCT162I03N	DPSCT162I04N	DPSCT162M01N	DPSCT162M02N	DPSCT162M03N	DPSCT162M04N	DPSCT163R01N	DPSCT163R02N	DPSCT163R03N	DPSCT163R03R	DPSCT163R04N	DPSCT163S01N	DPSCT163S02N	DPSCT163S03N
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft
			Туре	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N
		Project Screening																
Analyte	Unit	Criteria																
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	ug/kg	20000																
2,2'-oxybis(1-Chloropropane)	ug/kg	35000 4.7e+006																
2,3,4,6-Tetrachlorophenol	ug/kg ug/kg	2.5e+006																
2,4,5-Trichlorophenol	ug/kg	8.2e+006																
2,4,6-Trichlorophenol	ug/kg	82000																
2,4-Dichlorophenol	ug/kg	250000																
2,4-Dimethylphenol	ug/kg	1.6e+006																
2,4-Dinitrophenol	ug/kg	160000																
2,4-Dinitrotoluene	ug/kg	7400																
2,6-Dinitrotoluene	ug/kg	1500																
2-Chloronaphthalene	ug/kg	6e+006																
2-Chlorophenol	ug/kg	580000																
2-Methylnaphthalene	ug/kg	300000																
2-Methylphenol	ug/kg	4.1e+006																
2-Nitroaniline	ug/kg	800000																
2-Nitrophenol	ug/kg	2.5e+007														ļ		
3,3'-Dichlorobenzidine	ug/kg	5100																
3-Nitroaniline	ug/kg	110000																
4,6-Dinitro-2-methylphenol	ug/kg	6600																
4-Bromophenyl-phenylether	ug/kg	8.2e+006																
4-Chloro-3-methylphenol 4-Chloroaniline	ug/kg ug/kg	11000																
4-Chlorophenyl-phenylether	ug/kg	11000																
4-Methylphenol	ug/kg	8.2e+006																
4-Nitroaniline	ug/kg	110000																
4-Nitrophenol	ug/kg	2.5e+007																
Acenaphthene	ug/kg	4.5e+006																
Acenaphthylene	ug/kg	4.5e+006																
Acetophenone	ug/kg	1.2e+007																
Anthracene	ug/kg	2.3e+007																
Atrazine	ug/kg	10000																
Benzaldehyde	ug/kg	820000																
Benzo(a)anthracene	ug/kg	21000																
Benzo(a)pyrene	ug/kg	2100																
Benzo(b)fluoranthene	ug/kg	21000																
Benzo(g,h,i)perylene	ug/kg	2.3e+006																
Benzo(k)fluoranthene	ug/kg	210000						ļ							-	-	1	
bis-(2-chloroethoxy)methane	ug/kg	250000				-						-		-	1	1	1	1
bis-(2-Chloroethyl)ether	ug/kg	1000 160000						-				-		-	1	 	 	1
bis-(2-Ethylhexyl)phthalate Butylbenzylphthalate	ug/kg ug/kg	1.2e+006																
Caprolactam	ug/kg	4e+007	+			-						+			1	+	1	
Carbazole	ug/kg	3e+007	+			1						1		 	1	1	1	
Chrysene	ug/kg	2.1e+006														 	<u> </u>	
Dibenzo(a,h)anthracene	ug/kg	2100										+			1	 	<u> </u>	
Dibenzofuran	ug/kg	100000	+									<u> </u>			1	1		
Diethylphthalate	ug/kg	6.6e+007																
Dimethylphthalate	ug/kg	6.6e+007																
Di-n-butylphthalate	ug/kg	8.2e+006																
Di-n-octylphthalate	ug/kg	820000																
Fluoranthene	ug/kg	3e+006		_														
		1															<u> </u>	
Fluorene	ug/kg	3e+006						ļ							ļ	ļ		
Hexachlorobenzene	ug/kg	960													-	-	-	
Hexachlorobutadiene	ug/kg	5300				-						-		-	1	1	1	1
Hexachlorocyclo-pentadiene	ug/kg	750				1		1			1	1		1	1	1	1	1
Hexachloroethane	ug/kg	8000				l		l .								1		

Subsurface Soil Results

			Location ID	CLICDDCT16 OL	CLICDDCT46 OL	CLICDDCT46 OL	CUEDDCT16 2M	SUSDPCT16-2M	CLICDDCT16 2M	CHEDDOT16 2M	CLICDDCT46 2D	CHEDDOT16 2D	CLICDDCT46 2D	CLICDDCT16 2D	CLICDDCT16 2D	CLICDDCT16 2C	CLICDDCT46 3C	CLICDDCT16 3C
			Sample Date		2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	5/31/2018	5/31/2018	5/31/2018	5/31/2018	5/31/2018	3/15/2018	3/15/2018	3/15/2018
			Sample ID	DPSCT162I02N				DPSCT162M02N			DPSCT163R01N							
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft
			Туре	N	N	N	N	N	N	N	N	N	N	FD	N	N	N	N
		Project Screening																
Analyte	Unit	Criteria																
Indeno(1,2,3-cd)pyrene	ug/kg	21000																
Isophorone	ug/kg	2.4e+006																
Naphthalene	ug/kg	17000																
Nitrobenzene	ug/kg	22000																
N-Nitroso-di-n-propylamine	ug/kg	330																
N-Nitrosodiphenylamine	ug/kg	470000																
Pentachlorophenol	ug/kg	4000																
Phenanthrene	ug/kg	2.3e+007																
Phenol	ug/kg	2.5e+007																
Pyrene	ug/kg	2.3e+006																
BaP-TE	ug/kg	2100																
Total High-molecular-weight PAHs	ug/kg																	
Total Low-molecular-weight PAHs	ug/kg																	
Total PAHs (sum 16)	ug/kg																	

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

				SUSDPCT16-3S	SUSDPCT16-4W		SUSDPCT16-4W		SUSDPGD21-G1	SUSDPGD21-G1	SUSDPGD21-I1	SUSDPGD21-I1	SUSDPGD21-I1	SUSDPGD21-I1	SUSDPGD21-I2		
			Sample Date	3/15/2018	4/6/2018	4/6/2018 DPSCT164W03N	4/6/2018	4/4/2018 DPSGD21G101N	4/4/2018 DPSGD21G102N	4/4/2018 DPSGD21G103N	2/20/2018 DPSGD21I101N	2/20/2018 DPSGD21I101R	2/20/2018 DPSGD21I102N	2/20/2018 DPSGD21I103N	2/20/2018 DPSGD21I201N	2/20/2018 DPSGD21I202N	1/24/2018 DPSGD21J101N
			Sample ID Depth	4 - 5 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft
			Type	N	N	N	N N	N	N	N	N N	FD	N N	N	N	N	N
			,,														
		Project Screening															
Analyte	Unit	Criteria															
Diesel Range Organics (C10-C20)	mg/kg	440															
Oil Range Organics (C20-C36)	mg/kg	350000		400													
Total Petroleum Hydrocarbons (C9-C44) Diesel Range Organics (C10-C20)	mg/kg mg/kg	440	-	408	18 J	< 21 U	< 21 U										
Oil Range Organics (C20-C36)	mg/kg	350000			85	10 J	28										
Gasoline Range Organics (C6-C10)	ug/kg	42000				100											†
1,1,1-Trichloroethane	ug/kg	3.6e+006															
1,1,2,2-Tetrachloroethane	ug/kg	2700															
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006															
1,1,2-Trichloroethane	ug/kg	630															
1,1-Dichloroethane	ug/kg	16000															
1,1-Dichloroethene	ug/kg	100000															1
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ug/kg	93000 26000					1		1	1		1		1		-	+
1,2,4-1 richioropenzene 1,2-Dibromo-3-chloropropane	ug/kg ug/kg	64					-		-	1		-		-			+
1,2-Dibromoethane	ug/kg	160															
1,2-Dichlorobenzene	ug/kg	930000															<u> </u>
1,2-Dichloroethane	ug/kg	2000															
1,2-Dichloropropane	ug/kg	6600															
1,3-Dichlorobenzene	ug/kg	11000															
1,4-Dichlorobenzene	ug/kg	11000															
1,4-Dioxane	ug/kg	24000															
2-Butanone	ug/kg	1.9e+007															
2-Hexanone	ug/kg	130000	-														<u> </u>
4-Methyl-2-pentanone Acetone	ug/kg ug/kg	1.4e+007 6.7e+007	-														
Benzene	ug/kg	5100															
Bromochloromethane	ug/kg	63000															†
Bromodichloromethane	ug/kg	1300															
Bromoform	ug/kg	86000															
Bromomethane	ug/kg	3000															
Carbon Disulfide	ug/kg	350000															
Carbon Tetrachloride	ug/kg	2900															
Chlorobenzene	ug/kg	130000															
Chloroform	ug/kg	5.7e+006 1400															
Chloroform Chloromethane	ug/kg ug/kg	46000	-														
cis-1,2-Dichloroethylene	ug/kg	230000															
cis-1,3-Dichloropropene	ug/kg	8200															†
Cyclohexane	ug/kg	2.7e+006															
Dibromochloromethane	ug/kg	39000															
Dichlorodifluoromethane	ug/kg	37000															
Ethylbenzene	ug/kg	25000															
Isopropylbenzene	ug/kg	990000															_
m, p-Xylene	ug/kg	240000															1
Methyl Acetate Methyl tert-Butyl Ether (MTBE)	ug/kg ug/kg	1.2e+008 210000					1		1	1		1		1		-	+
Methylcyclohexane	ug/kg ug/kg	2.7e+006	+														1
Methylene Chloride	ug/kg ug/kg	320000					1		1	1		1		1		1	+
p-Xylene	ug/kg	280000															†
Styrene	ug/kg	3.5e+006							1	1							
Tetrachloroethylene	ug/kg	39000															
Toluene	ug/kg	4.7e+006															
trans-1,2-Dichloroethene	ug/kg	2.3e+006															
trans-1,3-Dichloropropene	ug/kg	8200															
Trichloroethene	ug/kg	1900															
Trichlorofluoromethane	ug/kg	3.5e+007															<u> </u>
Vinyl Chloride	ug/kg	1700															1
Xylenes (total)	ug/kg	250000						İ							1		1

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

					•	T	T	•	•	1	•	1		1	1	•	•
				SUSDPCT16-3S		SUSDPCT16-4W	SUSDPCT16-4W	SUSDPGD21-G1	SUSDPGD21-G1	SUSDPGD21-G1	SUSDPGD21-I1	SUSDPGD21-I1	SUSDPGD21-I1	SUSDPGD21-I1	SUSDPGD21-I2	SUSDPGD21-I2	
			Sample Date	3/15/2018	4/6/2018 DPSCT164W02N	4/6/2018 DPSCT164W03N	4/6/2018 DPSCT164W04N	4/4/2018 DPSGD21G101N	4/4/2018 DPSGD21G102N	4/4/2018 DPSGD21G103N	2/20/2018 DPSGD21I101N	2/20/2018 DPSGD21I101R	2/20/2018 DPSGD21I102N	2/20/2018 DPSGD21I103N	2/20/2018 DPSGD21I201N	2/20/2018 DPSGD21I202N	1/24/2018 DPSGD21J101N
			Sample ID [Depth	4 - 5 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft
			Туре	N	N	N	N	N	N N	N	N	FD	N	N	N	N	N
			.,,,,														
		Project Screening															
Analyte	Unit	Criteria															
1,1'-Biphenyl	ug/kg	20000															
1,2,4,5-Tetrachlorobenzene	ug/kg	35000															
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol	ug/kg ug/kg	4.7e+006 2.5e+006															
2,4,5-Trichlorophenol	ug/kg	8.2e+006															
2,4,6-Trichlorophenol	ug/kg	82000															
2,4-Dichlorophenol	ug/kg	250000															
2,4-Dimethylphenol	ug/kg	1.6e+006															
2,4-Dinitrophenol	ug/kg	160000															
2,4-Dinitrotoluene	ug/kg	7400															
2,6-Dinitrotoluene	ug/kg	1500															
2-Chloronaphthalene	ug/kg	6e+006		· 													
2-Chlorophenol	ug/kg	580000															
2-Methylnaphthalene	ug/kg	300000															ļ
2-Methylphenol	ug/kg	4.1e+006															
2-Nitroaniline	ug/kg	800000			-			1	-		-					1	1
2-Nitrophenol	ug/kg	2.5e+007 5100									-					 	
3,3'-Dichlorobenzidine 3-Nitroaniline	ug/kg	110000															
4,6-Dinitro-2-methylphenol	ug/kg ug/kg	6600															
4-Bromophenyl-phenylether	ug/kg	0000															
4-Chloro-3-methylphenol	ug/kg	8.2e+006															
4-Chloroaniline	ug/kg	11000															
4-Chlorophenyl-phenylether	ug/kg																
4-Methylphenol	ug/kg	8.2e+006															
4-Nitroaniline	ug/kg	110000															
4-Nitrophenol	ug/kg	2.5e+007															
Acenaphthene	ug/kg	4.5e+006						520	100 J	5.3 J	120 J	< 370 U	380	37	32 J	< 36 U	55 J
Acenaphthylene	ug/kg	4.5e+006						160 J	420	26	< 370 U	< 370 U	< 190 U	22	98	22 J	140
Acetophenone	ug/kg	1.2e+007															
Anthracene	ug/kg	2.3e+007						730	350	25	430	240 J	1400	120	140	51	350
Atrazine	ug/kg	10000															
Benzaldehyde	ug/kg	820000						4000	050		4400	000	0700		400	400	4400.1
Benzo(a)anthracene	ug/kg	21000						1800	950	72	1100 1000	680 630	2700 2200	330	400	180	1400 J
Benzo(a)pyrene Benzo(b)fluoranthene	ug/kg ug/kg	2100 21000						1500 2000	1200 1400	88 130	1300	840	3000	280 370	420 620	200 240	1600 J 2200 J
Benzo(g,h,i)perylene	ug/kg	2.3e+006						1300	1100	130	990	590	1400	240	380	240	1700
Benzo(k)fluoranthene	ug/kg	210000						830	630	43	500	340 J	1300	100	160	100	800
bis-(2-chloroethoxy)methane	ug/kg	250000							000			0400	1000	100	100	100	000
bis-(2-Chloroethyl)ether	ug/kg	1000															
bis-(2-Ethylhexyl)phthalate	ug/kg	160000														1	1
Butylbenzylphthalate	ug/kg	1.2e+006															
Caprolactam	ug/kg	4e+007															
Carbazole	ug/kg	3e+006															
Chrysene	ug/kg	2.1e+006						1900	990	150	940	610	2400	290	350	180	1400 J
Dibenzo(a,h)anthracene	ug/kg	2100						< 190 U	260	28	470	370	380	62	130	59	360
Dibenzofuran	ug/kg	100000															ļ
Diethylphthalate	ug/kg	6.6e+007															
Dimethylphthalate	ug/kg	6.6e+007															
Di-n-butylphthalate	ug/kg	8.2e+006			-			1	-		-					1	1
Di-n-octylphthalate	ug/kg	820000			-			4000	4600	400	4800	4200	CEOO	ECO	900	220	2000 1
Fluoranthene	ug/kg	3e+006						4000	1600	130	1800	1300	6500	560	820	330	2200 J
Fluorene	ug/kg	3e+006			1			650	110 J	< 15 U	140 J	< 370 U	390	37	34 J	< 36 U	70 J
Hexachlorobenzene	ug/kg	960			1			000	1103	- 100	140 3	- 0100	330	31	34 0	- 30 0	703
Hexachlorobutadiene	ug/kg	5300			<u> </u>			<u> </u>	<u> </u>		+						1
Hexachlorocyclo-pentadiene	ug/kg	750			†			†	†		<u> </u>					1	1
Hexachloroethane	ug/kg	8000			†			†	†		1					<u>†</u>	<u>†</u>
	פיי יפר	-000			I	1	1	I	I	ı	1	I .		I .	I .	1	I

Subsurface Soil Results

			Location ID	SUSDPCT16-3S	SUSDPCT16-4W	SUSDPCT16-4W	SUSDPCT16-4W	SUSDPGD21-G1	SUSDPGD21-G1	SUSDPGD21-G1	SUSDPGD21-I1	SUSDPGD21-I1	SUSDPGD21-I1	SUSDPGD21-I1	SUSDPGD21-I2	SUSDPGD21-I2	SUSDPGD21-J1
			Sample Date	3/15/2018	4/6/2018	4/6/2018	4/6/2018	4/4/2018	4/4/2018	4/4/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	1/24/2018
			Sample ID	DPSCT163S04N	DPSCT164W02N	DPSCT164W03N	DPSCT164W04N	DPSGD21G101N	DPSGD21G102N	DPSGD21G103N	DPSGD21I101N	DPSGD21I101R	DPSGD21I102N	DPSGD21I103N	DPSGD21I201N	DPSGD21I202N	DPSGD21J101N
			Depth	4 - 5 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft
		_	Туре	N	N	N	N	N	N	N	N	FD	N	N	N	N	N
Analyte	Unit	Project Screening Criteria															
Indeno(1,2,3-cd)pyrene	ug/kg	21000						1000	800	88	960	670	1400	210	350	190	1400
Isophorone	ug/kg	2.4e+006															
Naphthalene	ug/kg	17000						320	130 J	20	< 370 U	< 370 U	110 J	9.4	21 J	< 36 U	89
Nitrobenzene	ug/kg	22000															
N-Nitroso-di-n-propylamine	ug/kg	330															
N-Nitrosodiphenylamine	ug/kg	470000															
Pentachlorophenol	ug/kg	4000															
Phenanthrene	ug/kg	2.3e+007						2800	980	62	1500 J	660 J	5300	500	380	120	1200 J
Phenol	ug/kg	2.5e+007															
Pyrene	ug/kg	2.3e+006						3300	1500	120	1800 J	860 J	4900	620	540	240	1900 J
BaP-TE	ug/kg	2100						1990	1780	146	1810	1220	3310	434	689	321	2470
Total High-molecular-weight PAHs	ug/kg							18000	10000	980	11000	6900	26000	3100	4200	2000	15000
Total Low-molecular-weight PAHs	ug/kg							5200	2100	140	2200	900	7600	730	710	190	1900
Total PAHs (sum 16)	ug/kg							23000	13000	1100	13000	7800	34000	3800	4900	2200	17000

Subsurface Soil Results

									ington, DC 2001	. •							
			Location ID	SUSDPGD21-J1	SUSDPGD21-J1	SUSDPGD21-J1	SUSDBCD21 I1	SUSDPGD21-J1	SUSDPGD21-J2	SUSDECT21 12	SUSDPGD21-J2	SUSDBCD21 K1	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1.5
			Sample Date	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/26/2018
					DPSGD21J102N			DPSGD21J105N		DPSGD21J202N		DPSGD21K101N	DPSGD21K102N	DPSGD21K103N			DPSGD21K1.501N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft
			Туре	FD	N	N	N N	N	N	N	N	N	N	N	N	N	N
		1	Туре	10	IN	IN	IN	IV	IN	IN	IN	IN	IN	IN	IN .	IN	IN
		Project Screening															
Analyte	Unit	Criteria															
Diesel Range Organics (C10-C20)	mg/kg	440															
Oil Range Organics (C20-C36)	mg/kg	350000															
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	555555															
Diesel Range Organics (C10-C20)	mg/kg	440															
Oil Range Organics (C20-C36)	mg/kg	350000															
Gasoline Range Organics (C6-C10)	ug/kg	42000															
1,1,1-Trichloroethane	ug/kg	3.6e+006															
1,1,2,2-Tetrachloroethane	ug/kg	2700															
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006															
1,1,2-Trichloroethane	ug/kg	630															
1,1-Dichloroethane	ug/kg	16000															
1,1-Dichloroethene	ug/kg	100000															
1,2,3-Trichlorobenzene	ug/kg	93000															
1,2,4-Trichlorobenzene	ug/kg	26000				1										1	
1,2-Dibromo-3-chloropropane	ug/kg	64															
1,2-Dibromoethane	ug/kg	160	+			1			1			1				1	
1,2-Dichlorobenzene	ug/kg	930000															
1,2-Dichloroethane	ug/kg	2000															
1,2-Dichloropropane	ug/kg	6600															
1,3-Dichlorobenzene	ug/kg	11000															
1,4-Dichlorobenzene	ug/kg	11000															
1,4-Dioxane	ug/kg	24000															
2-Butanone	ug/kg	1.9e+007															
2-Hexanone	ug/kg	130000															
4-Methyl-2-pentanone	ug/kg	1.4e+007															
Acetone	ug/kg	6.7e+007															
Benzene	ug/kg	5100															
Bromochloromethane	ug/kg	63000															
Bromodichloromethane	ug/kg	1300															
Bromoform	ug/kg	86000															
Bromomethane	ug/kg	3000															
Carbon Disulfide	ug/kg	350000															
Carbon Tetrachloride	ug/kg	2900															
Chlorobenzene	ug/kg	130000															
Chloroethane	ug/kg	5.7e+006															
Chloroform	ug/kg	1400															
Chloromethane	ug/kg	46000															
cis-1,2-Dichloroethylene	ug/kg	230000															
cis-1,3-Dichloropropene	ug/kg	8200															
Cyclohexane	ug/kg	2.7e+006				ļ										ļ	
Dibromochloromethane	ug/kg	39000															
Dichlorodifluoromethane	ug/kg	37000							1							ļ	
Ethylbenzene	ug/kg	25000				ļ										ļ	
Isopropylbenzene	ug/kg	990000															
m, p-Xylene	ug/kg	240000															
Methyl Acetate	ug/kg	1.2e+008															
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000							1								
Methylcyclohexane	ug/kg	2.7e+006															
Methylene Chloride	ug/kg	320000							-								
o-Xylene	ug/kg	280000				-										1	
Styrene	ug/kg	3.5e+006															
Tetrachloroethylene	ug/kg	39000															
Toluene	ug/kg	4.7e+006							-								
trans-1,2-Dichloroethene	ug/kg	2.3e+006				-			1							1	
trans-1,3-Dichloropropene	ug/kg	8200							-								
Trichloroethene	ug/kg	1900				1										1	
Trichlorofluoromethane	ug/kg	3.5e+007				1					1					1	
Vinyl Chloride	ug/kg	1700				1										1	
Xylenes (total)	ug/kg	250000				<u> </u>			1	l	<u> </u>	İ				1	

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDPGD21-J1	SUSDPGD21-J1	SUSDPGD21-J1	SUSDPGD21-J1	SUSDPGD21-J1	SUSDPGD21-J2	SUSDPGD21-J2	SUSDPGD21-J2	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1.5
			Sample Date	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/26/2018
			·	DPSGD21J101R	DPSGD21J102N	DPSGD21J103N		DPSGD21J105N	DPSGD21J201N		DPSGD21J203N						DPSGD21K1.501N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft
			Туре	FD	N	N	N	N	N	N	N	N	N	N	N	N	N
A 1. 4 -	1.1	Project Screening															
Analyte	Unit	Criteria 20000															
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	ug/kg ug/kg	35000															
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006															
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006															
2,4,5-Trichlorophenol	ug/kg	8.2e+006															
2,4,6-Trichlorophenol	ug/kg	82000															
2,4-Dichlorophenol	ug/kg	250000															
2,4-Dimethylphenol	ug/kg	1.6e+006															
2,4-Dinitrophenol	ug/kg	160000															
2,4-Dinitrotoluene	ug/kg	7400															
2,6-Dinitrotoluene	ug/kg	1500															
2-Chloronaphthalene	ug/kg	6e+006															
2-Chlorophenol	ug/kg	580000								1	1		ļ	1	1	ļ	
2-Methylnaphthalene	ug/kg	300000 4.1e+006								1	1		1	1	1	1	
2-Methylphenol 2-Nitroaniline	ug/kg ug/kg	4.1e+006 800000								 	 		 	 	 	-	
2-Nitrophenol	ug/kg ug/kg	2.5e+007								1	1		1	1	1	1	
3,3'-Dichlorobenzidine	ug/kg ug/kg	5100															
3-Nitroaniline	ug/kg	110000															
4,6-Dinitro-2-methylphenol	ug/kg	6600															
4-Bromophenyl-phenylether	ug/kg																
4-Chloro-3-methylphenol	ug/kg	8.2e+006															
4-Chloroaniline	ug/kg	11000															
4-Chlorophenyl-phenylether	ug/kg																
4-Methylphenol	ug/kg	8.2e+006															
4-Nitroaniline	ug/kg	110000															
4-Nitrophenol	ug/kg	2.5e+007															
Acenaphthene	ug/kg	4.5e+006		< 150 U	2000 J+	< 3900 U	< 7.8 U	< 7.7 U	< 72 U	< 55 U	< 170 U	130 J	< 190 U	340	130	< 7.3 U	48
Acenaphthylene	ug/kg	4.5e+006		120 J	< 730 U	< 3900 U	< 7.8 U	< 7.7 U	36 J	< 55 U	< 170 U	390	71 J	490	210	< 7.3 U	44
Acetophenone	ug/kg	1.2e+007 2.3e+007		220	6100	2200	~ 7 O I I	< 7.7.1.I	95	42.1	470	740	160 1	1400	770	< 7.211	200
Anthracene Atrazine	ug/kg ug/kg	10000		220	6100	2300 J	< 7.8 U	< 7.7 U	95	43 J	170	740	160 J	1400	770	< 7.3 U	200
Benzaldehyde	ug/kg	820000															
Benzo(a)anthracene	ug/kg	21000		810 J	12000	6500	8.0	< 7.7 U	370	130	700	2900	540	3900	3500	3.9 J	880
Benzo(a)pyrene	ug/kg	2100		940 J	9000	4400	7.3 J	< 7.7 U	360	110	680	3100	520	3400	3100	3.5 J	820
Benzo(b)fluoranthene	ug/kg	21000		1200 J	12000	7000	8.7	< 7.7 U	440	170	950	4700	710	4000	3700	5.9 J	1200
Benzo(g,h,i)perylene	ug/kg	2.3e+006		1100	6400	4400	8.4	< 7.7 U	330	130	580	3100	460	2600	2500	< 7.3 U	650
Benzo(k)fluoranthene	ug/kg	210000		510	4200	2300 J	5.6 J	< 7.7 U	180	62	450	1600	210	1700	1700	< 7.3 U	350
bis-(2-chloroethoxy)methane	ug/kg	250000															
bis-(2-Chloroethyl)ether	ug/kg	1000															
bis-(2-Ethylhexyl)phthalate	ug/kg	160000															
Butylbenzylphthalate	ug/kg	1.2e+006															
Caprolactam	ug/kg	4e+007															
Carbazole	ug/kg	3e+006			400			. 7		45-							
Chrysene	ug/kg	2.1e+006		760 J	10000	6000	7.1 J	< 7.7 U	340	130	650	3100	520	3600	3400	2.9 J	830
Dibenzo(a,h)anthracene	ug/kg	2100		300	1700 J+	< 3900 U	6.2 J	< 7.7 U	110	54 J	190	790	190	880	580	< 7.3 U	200
Dibenzofuran Diethylphthalate	ug/kg ug/kg	100000 6.6e+007															
Dietriyiphthalate Dimethylphthalate	ug/kg ug/kg	6.6e+007								1	-		-	-	-	-	
Di-n-butylphthalate	ug/kg ug/kg	8.2e+006								 	 		 	 	 	+	
Di-n-octylphthalate	ug/kg	820000															
Fluoranthene	ug/kg	3e+006		1100 J	21000	15000	16	3.6 J	660	280	1400	5100	1100	7800	5900	5.3 J	1200
	-3,9	227000					.*					3.00					. 200
Fluorene	ug/kg	3e+006		< 150 U	1900 J+	< 3900 U	< 7.8 U	< 7.7 U	< 72 U	< 55 U	< 170 U	120 J	< 190 U	350	130	< 7.3 U	46
Hexachlorobenzene	ug/kg	960															
Hexachlorobutadiene	ug/kg	5300															
Hexachlorocyclo-pentadiene	ug/kg	750															
Hexachloroethane	ug/kg	8000															

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDPGD21-J1	SUSDPGD21-J1	SUSDPGD21-J1	SUSDPGD21-J1	SUSDPGD21-J1	SUSDPGD21-J2	SUSDPGD21-J2	SUSDPGD21-J2	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1.5
			Sample Date	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/24/2018	1/26/2018
			Sample ID	DPSGD21J101R	DPSGD21J102N	DPSGD21J103N	DPSGD21J104N	DPSGD21J105N	DPSGD21J201N	DPSGD21J202N	DPSGD21J203N	DPSGD21K101N	DPSGD21K102N	DPSGD21K103N	DPSGD21K104N	DPSGD21K105N	DPSGD21K1.501N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft
			Туре	FD	N	N	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria															
Indeno(1,2,3-cd)pyrene	ug/kg	21000		970	6100	5200	11	5.0 J	300	120	560	2800	480	2300	2100	5.6 J	700
Isophorone	ug/kg	2.4e+006															
Naphthalene	ug/kg	17000		110 J	600 J	< 3900 U	< 7.8 U	< 7.7 U	< 72 U	< 55 U	< 170 U	160 J	< 190 U	210	230	< 7.3 U	32 J
Nitrobenzene	ug/kg	22000															
N-Nitroso-di-n-propylamine	ug/kg	330															
N-Nitrosodiphenylamine	ug/kg	470000															
Pentachlorophenol	ug/kg	4000															
Phenanthrene	ug/kg	2.3e+007		480 J	24000	12000	8.7	< 7.7 U	280	160	650	1800	460	6000	2400	4.3 J	690
Phenol	ug/kg	2.5e+007															
Pyrene	ug/kg	2.3e+006		980 J	23000	11000	11	< 7.7 U	470	210	930	3800	740	5300	4500	4.3 J	1100
BaP-TE	ug/kg	2100		1540	13800	6300	16.3	0.500	583	207	1100	4950	886	5320	4630	5.04	1300
Total High-molecular-weight PAHs	ug/kg			8700	110000	62000	89	8.6	3600	1400	7100	31000	5500	35000	31000	31	7900
Total Low-molecular-weight PAHs	ug/kg			930	35000	14000	8.7	< 7.7 U	410	200	820	3300	690	8800	3900	4.3	1100
Total PAHs (sum 16)	ug/kg			9600	140000	76000	98	8.6	4000	1600	7900	34000	6200	44000	35000	36	9000

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

								I					T				T
			Location ID	SUSDPGD21-K1.5	SUSDPGD21-K1.5	SUSDPGD21-K1.5			SUSDPGD21-L1	SUSDPGD21-L1	SUSDPGD21-L1	SUSDPGD21-L1	SUSDPGD21-L2		SUSDPGD21-L2		
			Sample Date	1/26/2018	1/26/2018	1/26/2018	1/24/2018	1/24/2018	2/20/2018	2/20/2018	2/20/2018 DPSGD21L103N	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018
			Sample ID		DPSGD21K1.503N 3 - 4 ft	DPSGD21K1.504N			DPSGD21L101N	DPSGD21L102N		DPSGD21L104N		DPSGD21L201R	DPSGD21L202N		
			Depth Type	2 - 3 ft N	3 - 4 IL N	4 - 5 ft N	1 - 2 ft N	2 - 3 ft N	1 - 2 ft N	2 - 3 ft N	3 - 4 ft N	4 - 5 ft N	1 - 2 ft N	1 - 2 ft FD	2 - 3 ft N	3 - 4 ft N	4 - 5 ft N
		l i	туре	IN	IN	IN IN	IN	IN	IN	IN	14	IN .	IN	10	IN	IN	IN
		Project Screening															
Analyte	Unit	Criteria															
,	mg/kg	440															
, , , , , , , , , , , , , , , , , , ,	mg/kg	350000															
	mg/kg																
	mg/kg	440															
Oil Range Organics (C20-C36)	mg/kg	350000															
Gasoline Range Organics (C6-C10)	ug/kg	42000															
	ug/kg	3.6e+006															
	ug/kg	2700															
	ug/kg	2.8e+006															
	ug/kg	630															
	ug/kg	16000															
	ug/kg	100000															
	ug/kg	93000															
	ug/kg	26000											-			-	-
	ug/kg	64														-	
	ug/kg	160 930000														-	
· ·	ug/kg	2000															
	ug/kg	6600															
	ug/kg ug/kg	11000															
		11000															
	ug/kg ug/kg	24000															
	ug/kg ug/kg	1.9e+007															
	ug/kg ug/kg	130000															
	ug/kg ug/kg	1.4e+007															
	ug/kg ug/kg	6.7e+007															
	ug/kg	5100															
	ug/kg	63000															
	ug/kg	1300															
	ug/kg	86000															
	ug/kg	3000															
Carbon Disulfide	ug/kg	350000															
Carbon Tetrachloride u	ug/kg	2900															
Chlorobenzene L	ug/kg	130000															
Chloroethane u	ug/kg	5.7e+006															
Chloroform	ug/kg	1400															
	ug/kg	46000			<u> </u>												
	ug/kg	230000															
	ug/kg	8200															
	ug/kg	2.7e+006															
	ug/kg	39000															
	ug/kg	37000															
	ug/kg	25000															
	ug/kg	990000											-			-	1
	ug/kg	240000											1			-	-
	ug/kg	1.2e+008											-			-	
	ug/kg ug/kg	210000 2.7e+006															-
	ug/kg ug/kg	320000															-
	ug/kg ug/kg	280000											+			+	+
	ug/kg ug/kg	3.5e+006											1			1	1
	ug/kg ug/kg	39000															
	ug/kg ug/kg	4.7e+006											1			1	1
	ug/kg ug/kg	2.3e+006															<u> </u>
	ug/kg ug/kg	8200															<u> </u>
a.a,o Diomoroproporio	ug/kg ug/kg	1900											1			+	
Trichloroethene						<u> </u>		<u> </u>		1			1			1	.
					· · · · · · · · · · · · · · · · · · ·												
Trichlorofluoromethane u	ug/kg ug/kg ug/kg	3.5e+007 1700															

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDPGD21-K1.5	SUSDPGD21-K1.5	SUSDPGD21-K1.5	SUSDPGD21-K2	SUSDPGD21-K2	SUSDPGD21-L1	SUSDPGD21-L1	SUSDPGD21-L1	SUSDPGD21-L1	SUSDPGD21-L2	SUSDPGD21-L2	SUSDPGD21-L2	SUSDPGD21-L2	SUSDPGD21-L
			Sample Date	1/26/2018	1/26/2018	1/26/2018	1/24/2018	1/24/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018
			Sample ID	DPSGD21K1.502N	DPSGD21K1.503N	DPSGD21K1.504N	DPSGD21K201N	DPSGD21K202N	DPSGD21L101N	DPSGD21L102N	DPSGD21L103N	DPSGD21L104N	DPSGD21L201N	DPSGD21L201R	DPSGD21L202N	DPSGD21L203N	DPSGD21L204
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft
	1	, ,	Туре	N	N	N	N	N	N	N	N	N	N	FD	N	N	N
Analyte	Unit	Project Screening Criteria															
,1'-Biphenyl	ug/kg	20000															
1,2,4,5-Tetrachlorobenzene	ug/kg	35000															
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006															
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006															
2,4,5-Trichlorophenol	ug/kg	8.2e+006															
2,4,6-Trichlorophenol	ug/kg	82000															
2,4-Dichlorophenol	ug/kg	250000															
2,4-Dimethylphenol	ug/kg	1.6e+006															
2,4-Dinitrophenol	ug/kg	160000															
2,4-Dinitrotoluene	ug/kg	7400															
2,6-Dinitrotoluene	ug/kg	1500														-	
2-Chloronaphthalene 2-Chlorophenol	ug/kg ug/kg	6e+006 580000											-			-	
2-Cniorophenoi 2-Methylnaphthalene	ug/kg ug/kg	300000														+	
2-Methylphenol	ug/kg ug/kg	4.1e+006											+			+	
2-Nitroaniline	ug/kg	800000											1			<u> </u>	
2-Nitrophenol	ug/kg	2.5e+007														<u> </u>	
3,3'-Dichlorobenzidine	ug/kg	5100															
3-Nitroaniline	ug/kg	110000															
1,6-Dinitro-2-methylphenol	ug/kg	6600															
1-Bromophenyl-phenylether	ug/kg																
1-Chloro-3-methylphenol	ug/kg	8.2e+006															
1-Chloroaniline	ug/kg	11000															
1-Chlorophenyl-phenylether	ug/kg																
1-Methylphenol	ug/kg	8.2e+006															
4-Nitroaniline	ug/kg	110000															
4-Nitrophenol	ug/kg	2.5e+007		242	4000	440		07.1		200	. 0000 11	. 0000 11		47.1		0.50	. 0000 11
Acenaphtheles	ug/kg	4.5e+006 4.5e+006		210 52 J	1600 430	140 130	33 J 50 J	67 J 70 J	550 350	220 130	< 3800 U < 3800 U	< 2300 U < 2300 U	89 53 J	47 J 68	73 J 120 J	950 660 J	< 3800 U < 3800 U
Acenaphthylene Acetophenone	ug/kg ug/kg	1.2e+007		52 J	430	130	20.0	703	330	130	< 3000 0	< 2300 0	55.0	00	120 3	900 3	< 3000 0
Anthracene	ug/kg	2.3e+007		790	7600	540	220	240	1800	820	< 3800 U	< 2300 U	320	200	390	5000	< 3800 U
Atrazine	ug/kg	10000		730	7000	340	220	240	1000	020	1 3000 0	1 2 3 0 0 0	320	200	330	3000	1 3000 0
Benzaldehyde	ug/kg	820000															
Benzo(a)anthracene	ug/kg	21000		2500	19000	1900	1000	580	5300	2600	< 3800 U	< 2300 U	1100	750	1200	9200	< 3800 U
Benzo(a)pyrene	ug/kg	2100		2000	15000	1100	910	560	4600	2300	< 3800 U	< 2300 U	950	700	1200	6500	< 3800 U
Benzo(b)fluoranthene	ug/kg	21000		2500	18000	1700	1300	880	6300	3400	< 3800 U	< 2300 U	1500	1000	1500	10000	< 3800 U
Benzo(g,h,i)perylene	ug/kg	2.3e+006		1500	9900	920	1100	560	4000	2000	< 3800 U	< 2300 U	820	670	960	3900	< 3800 U
Benzo(k)fluoranthene	ug/kg	210000		870	6600	480	420	170	2500	850	< 3800 U	< 2300 U	380	360	540	2400	< 3800 U
ois-(2-chloroethoxy)methane	ug/kg	250000															
pis-(2-Chloroethyl)ether	ug/kg	1000															
pis-(2-Ethylhexyl)phthalate	ug/kg	160000															
Butylbenzylphthalate	ug/kg	1.2e+006															
Caprolactam	ug/kg	4e+007											-			-	
Carbazole	ug/kg	3e+006		2000	47000	4600	000	Enn	4000	2200	< 2000 II	~ 2200 II	000	700	4400	9400	< 3000 II
Chrysene Dibenzo(a,h)anthracene	ug/kg	2.1e+006 2100		2000 350	17000 2100	1600 290	900 260	580 140	4900 980	2300 480	< 3800 U < 3800 U	< 2300 U < 2300 U	990 200	720 160	1100 290	8100 1100	< 3800 U < 3800 U
Dibenzo(a,n)anınracene Dibenzofuran	ug/kg ug/kg	100000		330	2100	290	200	140	300	400	> 3000 U	~ 2300 U	200	100	230	1100	~ 3000 U
Diethylphthalate	ug/kg	6.6e+007														+	
Dimethylphthalate	ug/kg	6.6e+007											1			<u> </u>	
Di-n-butylphthalate	ug/kg	8.2e+006														<u> </u>	
Di-n-octylphthalate	ug/kg	820000															
Fluoranthene	ug/kg	3e+006		4200	38000	2600	1600	1400	13000	6000	< 3800 U	< 2300 U	2500	1500	2500	25000	< 3800 U
luorene	ug/kg	3e+006		190	910	130	36 J	52 J	590	200	< 3800 U	< 2300 U	82	47 J	76 J	900	< 3800 U
lexachlorobenzene	ug/kg	960															
	- "	F200			-												
lexachlorobutadiene	ug/kg ug/kg	5300 750															

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDPGD21-K1.5	SUSDPGD21-K1.5	SUSDPGD21-K1.5	SUSDPGD21-K2	SUSDPGD21-K2	SUSDPGD21-L1	SUSDPGD21-L1	SUSDPGD21-L1	SUSDPGD21-L1	SUSDPGD21-L2	SUSDPGD21-L2	SUSDPGD21-L2	SUSDPGD21-L2	SUSDPGD21-L2
			Sample Date	1/26/2018	1/26/2018	1/26/2018	1/24/2018	1/24/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018
			Sample ID	DPSGD21K1.502N	DPSGD21K1.503N	DPSGD21K1.504N	DPSGD21K201N	DPSGD21K202N	DPSGD21L101N	DPSGD21L102N	DPSGD21L103N	DPSGD21L104N	DPSGD21L201N	DPSGD21L201R	DPSGD21L202N	DPSGD21L203N	DPSGD21L204N
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft
			Туре	N	N	N	N	N	N	N	N	N	N	FD	N	N	N
Analyte	Unit	Project Screening Criteria															
Indeno(1,2,3-cd)pyrene	ug/kg	21000		1400	9000	830	1000	470	3600	1700	< 3800 U	< 2300 U	710	590	870	3900	< 3800 U
Isophorone	ug/kg	2.4e+006															
Naphthalene	ug/kg	17000		63 J	430	110	< 73 U	33 J	120	46 J	< 3800 U	< 2300 U	< 78 U	< 61 U	62 J	< 770 U	< 3800 U
Nitrobenzene	ug/kg	22000															
N-Nitroso-di-n-propylamine	ug/kg	330															
N-Nitrosodiphenylamine	ug/kg	470000															
Pentachlorophenol	ug/kg	4000															
Phenanthrene	ug/kg	2.3e+007		3000	33000	2300	590	590	7400	3100	< 3800 U	< 2300 U	1300 J	650 J	1400	23000	< 3800 U
Phenol	ug/kg	2.5e+007															
Pyrene	ug/kg	2.3e+006		5100	28000	2500	1200	950	7600	3800	< 3800 U	< 2300 U	1600	1000	1800	16000	< 3800 U
BaP-TE	ug/kg	2100		3000	21800	1840	1510	895	7130	3560	< 3800 U	< 2300 U	1490	1100	1850	9940	< 3800 U
Total High-molecular-weight PAHs	ug/kg			22000	160000	14000	9700	6300	53000	25000	< 3800 U	< 2300 U	11000	7500	12000	86000	< 3800 U
Total Low-molecular-weight PAHs	ug/kg			4300	44000	3400	930	1100	11000	4500	< 3800 U	< 2300 U	1800	1000	2100	31000	< 3800 U
Total PAHs (sum 16)	ug/kg			27000	210000	17000	11000	7300	64000	30000	< 3800 U	< 2300 U	13000	8500	14000	120000	< 3800 U

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDPGD21-M1	SUSDPGD21-M1	SUSDPGD21-M1	SUSDPGD21-M1	SUSDPGD21-M1	SUSDPGD21-M2	SUSDPGD21-M2	SUSDPGD21-M2	SUSDPGD21-M2	SUSDPGD21-M2	SUSDPGD21-N1	SUSDPGD21-N1	SUSDPGD21-N1
			Sample Date	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	4/4/2018	4/4/2018	4/4/2018
			Sample ID	DPSGD21M101N	DPSGD21M101R	DPSGD21M102N	DPSGD21M103N	DPSGD21M104N	DPSGD21M201N	DPSGD21M201R	DPSGD21M202N	DPSGD21M203N	DPSGD21M204N	DPSGD21N101N	DPSGD21N102N	
			Depth	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft
			Туре	N	FD	N	N	N	N	FD	N	N	N	N	N	N
		Project Screening														
Analyte	Unit	Criteria														
Diesel Range Organics (C10-C20)	mg/kg	440														
Oil Range Organics (C20-C36) Total Petroleum Hydrocarbons (C9-C44)	mg/kg	350000														
Diesel Range Organics (C10-C20)	mg/kg mg/kg	440														
Oil Range Organics (C20-C36)	mg/kg	350000														+
Gasoline Range Organics (C6-C10)	ug/kg	42000														
1,1,1-Trichloroethane	ug/kg	3.6e+006														
1,1,2,2-Tetrachloroethane	ug/kg	2700														
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006														
1,1,2-Trichloroethane 1,1-Dichloroethane	ug/kg ug/kg	630 16000														
1,1-Dichloroethene	ug/kg ug/kg	10000														
1,2,3-Trichlorobenzene	ug/kg ug/kg	93000														
1,2,4-Trichlorobenzene	ug/kg	26000														
1,2-Dibromo-3-chloropropane	ug/kg	64														
1,2-Dibromoethane	ug/kg	160														
1,2-Dichlorobenzene	ug/kg	930000														
1,2-Dichloroethane	ug/kg	2000 6600														
1,2-Dichloropropane 1,3-Dichlorobenzene	ug/kg ug/kg	11000														
	ug/kg ug/kg	11000														
1,4-Dioxane	ug/kg	24000														
2-Butanone	ug/kg	1.9e+007														
2-Hexanone	ug/kg	130000														
4-Methyl-2-pentanone	ug/kg	1.4e+007														
Acetone	ug/kg	6.7e+007														
	ug/kg	5100														
Bromochloromethane Bromodichloromethane	ug/kg ug/kg	63000 1300														
Bromoform	ug/kg	86000														
Bromomethane	ug/kg	3000														
Carbon Disulfide	ug/kg	350000														
Carbon Tetrachloride	ug/kg	2900														
Chlorobenzene	ug/kg	130000														
Chloroform	ug/kg	5.7e+006														
Chloroform Chloromethane	ug/kg ug/kg	1400 46000														
cis-1,2-Dichloroethylene	ug/kg	230000														
cis-1,3-Dichloropropene	ug/kg	8200														
Cyclohexane	ug/kg	2.7e+006														
	ug/kg	39000														
Dichlorodifluoromethane	ug/kg	37000														
Ethylbenzene	ug/kg	25000														
Isopropylbenzene m, p-Xylene	ug/kg ug/kg	990000 240000														
Methyl Acetate	ug/kg ug/kg	1.2e+008														
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000														
Methylcyclohexane	ug/kg	2.7e+006														
	ug/kg	320000														
o-Xylene	ug/kg	280000														
Styrene	ug/kg	3.5e+006														
Tetrachloroethylene Toluene	ug/kg	39000 4.7e+006														
trans-1,2-Dichloroethene	ug/kg ug/kg	2.3e+006														
trans-1,3-Dichloropropene	ug/kg	8200														
Trichloroethene	ug/kg	1900														
Trichlorofluoromethane	ug/kg	3.5e+007														
Vinyl Chloride	ug/kg	1700														
Xylenes (total)	ug/kg	250000														

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

				0110000001111	Lauannana	Laviannana	Lauannanattu	0110000001111	01100000011110	L OUIDEDEDE A MO	01100000011110	0110550501110	Lauannana	Laucanana	Lauannanauuu	Laucanana
			Location ID Sample Date	SUSDPGD21-M1 3/14/2018	SUSDPGD21-M1 3/14/2018	SUSDPGD21-M1 3/14/2018	SUSDPGD21-M1 3/14/2018	SUSDPGD21-M1 3/14/2018	SUSDPGD21-M2 3/14/2018	SUSDPGD21-M2 3/14/2018	SUSDPGD21-M2 3/14/2018	SUSDPGD21-M2 3/14/2018	SUSDPGD21-M2 3/14/2018	SUSDPGD21-N1 4/4/2018	SUSDPGD21-N1 4/4/2018	SUSDPGD21-N1 4/4/2018
			Sample ID		DPSGD21M101R	DPSGD21M102N	DPSGD21M103N	DPSGD21M104N	DPSGD21M201N	DPSGD21M201R	DPSGD21M202N	DPSGD21M203N	DPSGD21M204N	DPSGD21N101N	DPSGD21N102N	DPSGD21N103N
			Depth	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft
			Туре	N	FD	N	N	N	N	FD	N	N	N	N	N	N
			1													
		Project Screening														
Analyte	Unit	Criteria														
1,1'-Biphenyl	ug/kg	20000														
1,2,4,5-Tetrachlorobenzene	ug/kg	35000 4.7e+006														
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol	ug/kg ug/kg	2.5e+006														
2,4,5-Trichlorophenol	ug/kg	8.2e+006														
2,4,6-Trichlorophenol	ug/kg	82000														
2,4-Dichlorophenol	ug/kg	250000														
2,4-Dimethylphenol	ug/kg	1.6e+006														
2,4-Dinitrophenol	ug/kg	160000														
2,4-Dinitrotoluene	ug/kg	7400														
2,6-Dinitrotoluene	ug/kg	1500														
2-Chloronaphthalene	ug/kg	6e+006														
2-Chlorophenol	ug/kg	580000														
2-Methylnaphthalene	ug/kg	300000														
2-Methylphenol	ug/kg	4.1e+006														
	ug/kg	800000	1													
2-Nitrophenol 3,3'-Dichlorobenzidine	ug/kg	2.5e+007 5100														
3-Nitroaniline	ug/kg	110000														
4,6-Dinitro-2-methylphenol	ug/kg ug/kg	6600														
4-Bromophenyl-phenylether	ug/kg ug/kg	0000														
4-Chloro-3-methylphenol	ug/kg	8.2e+006														
	ug/kg	11000														
4-Chlorophenyl-phenylether	ug/kg															
4-Methylphenol	ug/kg	8.2e+006														
4-Nitroaniline	ug/kg	110000														
4-Nitrophenol	ug/kg	2.5e+007														
Acenaphthene	ug/kg	4.5e+006		1300 J	4200 J	420 J	< 5900 U	< 3000 U	290 J	< 750 U	260 J	< 75 U	< 370 U	200 J	590	85 J
Acenaphthylene	ug/kg	4.5e+006		340 J	470	100 J	< 5900 U	< 3000 U	120 J	< 750 U	< 720 U	< 75 U	210 J	210 J	110 J	140 J
Acetophenone	ug/kg	1.2e+007														
Anthracene	ug/kg	2.3e+007		4500 J	15000 J	1500 J	< 5900 U	< 3000 U	890	600 J	770 J-	19 J	220 J	430	2600	320
Atrazine	ug/kg	10000														
Benzaldehyde	ug/kg	820000		40000 1	00000 1	4000	2000 1	. 0000 11	2000	2000	0.400	70.1	040		40000	4400
Benzo(a)anthracene	ug/kg	21000		12000 J	23000 J	4900	2600 J 2100 J	< 3000 U < 3000 U	2800 2500	2200 2000	3400	70 J 76	910 1000	890	12000	1400 1400
Benzo(a)pyrene Benzo(b)fluoranthene	ug/kg ug/kg	2100 21000		9800 J 13000 J	18000 J 23000 J	3900 5900	3200 J	< 3000 U	3000	2400	2700 J- 3800	99	1200	720 1100	9700 12000	1900
Benzo(g,h,i)perylene	ug/kg ug/kg	2.3e+006		8100 J	14000 J	3300	2200 J	< 3000 U	2000	1500	2200 J-	76	960	590	7200	1200
Benzo(k)fluoranthene	ug/kg ug/kg	210000		5700	8200	2100 J	< 5900 U	< 3000 U	1300	1100	1500 J-	33 J	480	380	5200	660
bis-(2-chloroethoxy)methane	ug/kg ug/kg	250000		0.00	0200	1.000	5555 6	0000 0	1000	1100	.000 0-		700		0200	
bis-(2-Chloroethyl)ether	ug/kg	1000														
bis-(2-Ethylhexyl)phthalate	ug/kg	160000														
Butylbenzylphthalate	ug/kg	1.2e+006														
Caprolactam	ug/kg	4e+007														
Carbazole	ug/kg	3e+006														
Chrysene	ug/kg	2.1e+006		11000 J	20000 J	4800	2500 J	< 3000 U	2800	1900	3000	77	900	810	11000	1400
Dibenzo(a,h)anthracene	ug/kg	2100		2700	4200	900 J+	3400 J	< 3000 U	540	< 750 U	660 J-	< 75 U	270 J	140 J	2000	330
Dibenzofuran	ug/kg	100000	<u> </u>													
Diethylphthalate	ug/kg	6.6e+007														
D: 0 1 1 0 1 1	ug/kg	6.6e+007														
	/1	8.2e+006														
Di-n-butylphthalate	ug/kg	000000				i	l								I	2000
Di-n-butylphthalate Di-n-octylphthalate	ug/kg	820000		20000 1	E4000 1	42000	E200 !	~ 3000 II				440	4.400	4000	22022	
Di-n-butylphthalate Di-n-octylphthalate		820000 3e+006		28000 J	51000 J	12000	5300 J	< 3000 U	5700	4200	6500	110	1400	1900	22000	2300
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene	ug/kg ug/kg	3e+006														
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorene	ug/kg ug/kg ug/kg	3e+006 3e+006		28000 J 1500 J	51000 J 4800 J	12000 430 J	5300 J < 5900 U	< 3000 U	5700 280 J	4200 < 750 U	6500 230 J	110 < 75 U	1400 < 370 U	1900	22000 520	2300 88 J
Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene	ug/kg ug/kg ug/kg ug/kg	3e+006 3e+006 960														
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene Fluorene	ug/kg ug/kg ug/kg	3e+006 3e+006														

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDPGD21-M1	SUSDPGD21-M1	SUSDPGD21-M1	SUSDPGD21-M1	SUSDPGD21-M1	SUSDPGD21-M2	SUSDPGD21-M2	SUSDPGD21-M2	SUSDPGD21-M2	SUSDPGD21-M2	SUSDPGD21-N1	SUSDPGD21-N1	SUSDPGD21-N1
			Sample Date	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	4/4/2018	4/4/2018	4/4/2018
			Sample ID	DPSGD21M101N	DPSGD21M101R	DPSGD21M102N	DPSGD21M103N	DPSGD21M104N	DPSGD21M201N	DPSGD21M201R	DPSGD21M202N	DPSGD21M203N	DPSGD21M204N	DPSGD21N101N	DPSGD21N102N	DPSGD21N103N
			Depth	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft
			Туре	N	FD	N	N	N	N	FD	N	N	N	N	N	N
		Project Screening														
Analyte	Unit	Criteria														
Indeno(1,2,3-cd)pyrene	ug/kg	21000		7600 J	13000 J	3100	4300 J	< 3000 U	1800	1500	1900 J-	83	790	510	6300	1000
Isophorone	ug/kg	2.4e+006														
Naphthalene	ug/kg	17000		150 J	970 J	< 380 U	< 5900 U	< 3000 U	< 380 U	< 750 U	< 720 U	< 75 U	< 370 U	880	170 J	66 J
Nitrobenzene	ug/kg	22000														
N-Nitroso-di-n-propylamine	ug/kg	330														
N-Nitrosodiphenylamine	ug/kg	470000														
Pentachlorophenol	ug/kg	4000														
Phenanthrene	ug/kg	2.3e+007		18000 J	48000 J	6400	3300 J	< 3000 U	3300	2000	3500	46 J	530	1200	11000	910
Phenol	ug/kg	2.5e+007														
Pyrene	ug/kg	2.3e+006		18000 J	35000 J	7200	3500 J	< 3000 U	4000	2900	4700	99	1200	1900	20000	2500
BaP-TE	ug/kg	2100		15800	28200	6220	6510	< 3000 U	3820	2620	4290	102	1570	1110	14800	2170
Total High-molecular-weight PAHs	ug/kg			120000	210000	48000	29000	< 3000 U	26000	20000	30000	720	9100	8900	110000	14000
Total Low-molecular-weight PAHs	ug/kg			26000	73000	8900	3300	< 3000 U	4900	3000	4800	65	960	3200	15000	1600
Total PAHs (sum 16)	ug/kg			140000	280000	57000	32000	< 3000 U	31000	22000	35000	790	10000	12000	120000	16000

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			1 -		T	I	T	Taurana	T	T	I		T = = = = = = = = = = = = = = = =	I		I	T
				SUSDPGD21-N2		SUSDPGD21-N2	SUSDPGD21-P1		SUSDPGD21-P1	SUSDPGD21-R1	SUSDPGD21-R1	SUSDPGD21-R1	SUSDPGD21-R2		SUSDPGD21-R2	SUSDPGD21-S1	
			Sample Date	4/4/2018	4/4/2018 DPSGD21N201R	4/4/2018	5/30/2018	5/30/2018	5/30/2018 DPSGD21P102N	1/23/2018 DPSGD21R101N	1/23/2018 DPSGD21R102N	1/23/2018 DPSGD21R103N	1/23/2018 DPSGD21R201N	1/23/2018 DPSGD21R202N	1/23/2018 DPSGD21R203N	1/23/2018 DPSGD21S101N	1/23/2018 DPSGD21S102N
				1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 DPSGD21P101R 1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft
			Depth Type	1 - 2 II N	FD	2 - 3 IL N	N 1-211	FD	2-311 N	N 1-211	2-311 N	3 - 4 II N	1 - 2 IL N	2-311 N	3 - 4 II N	1 - 2 II	2-31t N
		1	Туре	IN	10	IN	IN IN	10	IN	IN .	IN	IN	IN	IN	IN	IN	IN .
		Project Screening															
Analyte	Unit	Criteria															
Diesel Range Organics (C10-C20)	mg/kg	440															
Oil Range Organics (C20-C36)	mg/kg	350000															
Total Petroleum Hydrocarbons (C9-C44)	mg/kg																
Diesel Range Organics (C10-C20)	mg/kg	440															
Oil Range Organics (C20-C36)	mg/kg	350000															
Gasoline Range Organics (C6-C10)	ug/kg	42000															
1,1,1-Trichloroethane	ug/kg	3.6e+006															
1,1,2,2-Tetrachloroethane	ug/kg	2700															
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	2.8e+006															
1,1,2-Trichloroethane	ug/kg	630															
1,1-Dichloroethane	ug/kg	16000															
1,1-Dichloroethene	ug/kg	100000								1							
1,2,3-Trichlorobenzene	ug/kg	93000 26000	-		-			+		1							
1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane	ug/kg	26000	-		-			+		1							
1,2-Dibromo-3-cnioropropane 1,2-Dibromoethane	ug/kg ug/kg	160								-							
1,2-Dichlorobenzene	ug/kg ug/kg	930000			+		+			 							
1,2-Dichloroethane	ug/kg ug/kg	2000			1					1							
1,2-Dichloropropane	ug/kg	6600															
1,3-Dichlorobenzene	ug/kg	11000															
1,4-Dichlorobenzene	ug/kg	11000															
1,4-Dioxane	ug/kg	24000															
2-Butanone	ug/kg	1.9e+007															
2-Hexanone	ug/kg	130000															
4-Methyl-2-pentanone	ug/kg	1.4e+007															
Acetone	ug/kg	6.7e+007															
Benzene	ug/kg	5100															
Bromochloromethane	ug/kg	63000															
Bromodichloromethane	ug/kg	1300															
Bromoform	ug/kg	86000															
Bromomethane	ug/kg	3000															
Carbon Disulfide	ug/kg	350000															
Carbon Tetrachloride	ug/kg	2900															
Chlorobenzene	ug/kg	130000															
Chloreform	ug/kg	5.7e+006 1400															
Chloroform Chloromethane	ug/kg ug/kg	46000															
cis-1,2-Dichloroethylene	ug/kg ug/kg	230000															
cis-1,3-Dichloropropene	ug/kg ug/kg	8200			+					+							+
Cyclohexane	ug/kg	2.7e+006			<u> </u>			+		 							
Dibromochloromethane	ug/kg	39000															
Dichlorodifluoromethane	ug/kg	37000								1							
Ethylbenzene	ug/kg	25000															
Isopropylbenzene	ug/kg	990000															
m, p-Xylene	ug/kg	240000															
Methyl Acetate	ug/kg	1.2e+008															
Methyl tert-Butyl Ether (MTBE)	ug/kg	210000															
Methylcyclohexane	ug/kg	2.7e+006															
Methylene Chloride	ug/kg	320000															
o-Xylene	ug/kg	280000															
Styrene	ug/kg	3.5e+006															
Tetrachloroethylene	ug/kg	39000															
Toluene	ug/kg	4.7e+006															
trans-1,2-Dichloroethene	ug/kg	2.3e+006								-							-
trans-1,3-Dichloropropene	ug/kg	8200															
Trichloroethene	ug/kg	1900			-					ļ							
Trichlorofluoromethane	ug/kg	3.5e+007			-					1							
Vinyl Chloride	ug/kg	1700			-		<u> </u>			 							
Xylenes (total)	ug/kg	250000			L	l .	I		İ	I	l .		l .	<u> </u>		l	L

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

				SUSDPGD21-N2	SUSDPGD21-N2	SUSDPGD21-N2	SUSDPGD21-P1	SUSDPGD21-P1	SUSDPGD21-P1	SUSDPGD21-R1	SUSDPGD21-R1	SUSDPGD21-R1	SUSDPGD21-R2	SUSDPGD21-R2	SUSDPGD21-R2	SUSDPGD21-S1	
			Sample Date Sample ID	4/4/2018 DPSGD21N201N	4/4/2018 DPSGD21N201R	4/4/2018 DPSGD21N202N	5/30/2018 DPSGD21P101N	5/30/2018 DPSGD21P101R	5/30/2018 DPSGD21P102N	1/23/2018 DPSGD21R101N	1/23/2018 DPSGD21R102N	1/23/2018 DPSGD21R103N	1/23/2018 DPSGD21R201N	1/23/2018 DPSGD21R202N	1/23/2018 DPSGD21R203N	1/23/2018 DPSGD21S101N	1/23/2018 DPSGD21S102N
			Depth	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft
			Туре	N	FD	N	N	FD	N	N	N N	N	N	N	N	N	N
			.,,,,														
		Project Screening															
Analyte	Unit	Criteria															
1,1'-Biphenyl	ug/kg	20000															
1,2,4,5-Tetrachlorobenzene	ug/kg	35000															
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006															1
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	ug/kg ug/kg	2.5e+006 8.2e+006															
2,4,6-Trichlorophenol	ug/kg	82000															+
2,4-Dichlorophenol	ug/kg	250000															+
2,4-Dimethylphenol	ug/kg	1.6e+006															1
2,4-Dinitrophenol	ug/kg	160000															†
2,4-Dinitrotoluene	ug/kg	7400															
2,6-Dinitrotoluene	ug/kg	1500															
2-Chloronaphthalene	ug/kg	6e+006		·													
2-Chlorophenol	ug/kg	580000		·													
2-Methylnaphthalene	ug/kg	300000															
2-Methylphenol	ug/kg	4.1e+006															1
2-Nitrophonel	ug/kg	800000					1	1	1		-		1		1	1	+
2-Nitrophenol 3,3'-Dichlorobenzidine	ug/kg ug/kg	2.5e+007 5100					1	1	1		-		1		1	1	+
3-Nitroaniline	ug/kg ug/kg	110000															+
4,6-Dinitro-2-methylphenol	ug/kg	6600															+
4-Bromophenyl-phenylether	ug/kg	0000															+
4-Chloro-3-methylphenol	ug/kg	8.2e+006															+
4-Chloroaniline	ug/kg	11000															1
4-Chlorophenyl-phenylether	ug/kg																
4-Methylphenol	ug/kg	8.2e+006															
4-Nitroaniline	ug/kg	110000															
4-Nitrophenol	ug/kg	2.5e+007															
Acenaphthene	ug/kg	4.5e+006		< 75 U	< 300 U	1000	100 J	140 J	< 1100 U	690	290 J	21 J	26 J	< 150 U	29 J	< 300 U	< 310 U
Acenaphthylene	ug/kg	4.5e+006		49 J	< 300 U	93 J	94 J	200	< 1100 U	100	230 J	66	40 J	< 150 U	110	< 300 U	< 310 U
Acetophenone	ug/kg	1.2e+007															
Anthracene	ug/kg	2.3e+007		150	93 J	3000	160 J	310	< 1100 U	1800	1000	90	93	100 J	200	180 J	< 310 U
Atrazine	ug/kg	10000 820000															+
Benzaldehyde Benzo(a)anthracene	ug/kg ug/kg	21000		300	280 J	10000	500 J	970 J	460 J	4700	3400	370	470	530	1100	610	340
Benzo(a)pyrene	ug/kg	2100		310	290 J	8100	410	790	420 J	3500	2800	420	500	530	1100	520	310
Benzo(b)fluoranthene	ug/kg	21000		370	310	11000	560 J	1000 J	440 J	4500	3300	530	550	650	1200	640	380
Benzo(g,h,i)perylene	ug/kg	2.3e+006		300	280 J	6200	410	800	450 J	2300	2100	360	440	460	850	380	250 J
Benzo(k)fluoranthene	ug/kg	210000		180	130 J	5100	290	600	< 1100 U	1800	1700	230	260	240	560	320	210 J
bis-(2-chloroethoxy)methane	ug/kg	250000															
bis-(2-Chloroethyl)ether	ug/kg	1000															1
bis-(2-Ethylhexyl)phthalate	ug/kg	160000															
Butylbenzylphthalate	ug/kg	1.2e+006															
Caprolactam	ug/kg	4e+007															
Carbazole	ug/kg	3e+006										-	<u> </u>				
Chrysene	ug/kg	2.1e+006		300	250 J	9500	540 J	1000 J	500 J	4300	3200	450	470	530	1100	550	330
Dibenzo(a,h)anthracene	ug/kg	2100		87	< 300 U	1800	110 J	180 J	< 1100 U	740	580	95	110	130 J	240	< 300 U	< 310 U
Dibenzofuran Diethylphthalate	ug/kg ug/kg	100000 6.6e+007					1	1	1		-		1		1	1	+
Diethylphthalate Dimethylphthalate	ug/kg ug/kg	6.6e+007 6.6e+007					-	-	-				-		-	-	+
Di-n-butylphthalate	ug/kg ug/kg	8.2e+006					1	1	1		1		1		1	1	+
Di-n-octylphthalate	ug/kg	820000					 	 	 		<u> </u>		 		 	1	+
Fluoranthene	ug/kg	3e+006		510	390	21000	990 J	1700 J	710 J	10000	6700	640	790	920	1800	1200	630
Fluorene	ug/kg	3e+006		26 J	< 300 U	1100	120 J	210	< 1100 U	710	360	22 J	26 J	< 150 U	35 J	< 300 U	< 310 U
Hexachlorobenzene	ug/kg	960															
Hexachlorobutadiene	ug/kg	5300									<u></u>						
Hexachlorocyclo-pentadiene	ug/kg	750															
Hexachloroethane	ug/kg	8000		·													

Subsurface Soil Results

VOCs, SVOCs, and TPH Fractions Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDPGD21-N2	SUSDPGD21-N2	SUSDPGD21-N2	SUSDPGD21-P1	SUSDPGD21-P1	SUSDPGD21-P1	SUSDPGD21-R1	SUSDPGD21-R1	SUSDPGD21-R1	SUSDPGD21-R2	SUSDPGD21-R2	SUSDPGD21-R2	SUSDPGD21-S1	SUSDPGD21-S1
			Sample Date	4/4/2018	4/4/2018	4/4/2018	5/30/2018	5/30/2018	5/30/2018	1/23/2018	1/23/2018	1/23/2018	1/23/2018	1/23/2018	1/23/2018	1/23/2018	1/23/2018
			Sample ID	DPSGD21N201N	DPSGD21N201R	DPSGD21N202N	DPSGD21P101N	DPSGD21P101R	DPSGD21P102N	DPSGD21R101N	DPSGD21R102N	DPSGD21R103N	DPSGD21R201N	DPSGD21R202N	DPSGD21R203N	DPSGD21S101N	DPSGD21S102N
			Depth	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft
			Туре	N	FD	N	N	FD	N	N	N	N	N	N	N	N	N
		Project Screening															
Analyte	Unit	Criteria															
Indeno(1,2,3-cd)pyrene	ug/kg	21000		250	230 J	5600	360	710	320 J	2200	1900	320	360	380	740	340	200 J
Isophorone	ug/kg	2.4e+006															
Naphthalene	ug/kg	17000		< 75 U	< 300 U	< 300 U	640 J	1100 J	< 1100 U	57 J	< 300 U	80	< 75 U	< 150 U	34 J	< 300 U	< 310 U
Nitrobenzene	ug/kg	22000															
N-Nitroso-di-n-propylamine	ug/kg	330															
N-Nitrosodiphenylamine	ug/kg	470000															
Pentachlorophenol	ug/kg	4000															
Phenanthrene	ug/kg	2.3e+007		270	230 J	14000	620 J	1200 J	540 J	8000	4300	370	300	360	560	720	250 J
Phenol	ug/kg	2.5e+007															
Pyrene	ug/kg	2.3e+006		470	370	17000	820 J	1500 J	730 J	7400	5800	580	750	810	1500	990	520
BaP-TE	ug/kg	2100		491	374	12600	665	1250	543	5400	4260	640	751	819	1650	683	404
Total High-molecular-weight PAHs	ug/kg			3100	2500	95000	5000	9300	4000	41000	31000	4000	4700	5200	10000	5600	3200
Total Low-molecular-weight PAHs	ug/kg			500	320	19000	1700	3200	540	11000	6200	650	490	460	970	900	250
Total PAHs (sum 16)	ug/kg			3600	2900	110000	6700	12000	4600	53000	38000	4600	5200	5600	11000	6500	3400

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable

RSL Table, May 2018 Industrial Soil [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be

verified.

mg/kg = milligrams per kilogram

ug/kg = micrograms per kilogram

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

												Location ID	CT16SO9G	CT16SO9H	CT16SO9H	CT16SO9I	CT16SO9I	DP26	DP26	DP26	DP27	DP27
												Sample Date	3/1/2017	8/4/2017	8/4/2017	8/4/2017	8/4/2017	3/28/2013	3/29/2013	3/29/2013	3/26/2013	3/26/2013
												Sample ID	CT16S09G-12	CT16S09H01N	CT16SO9H02N	CT16SO9I01N	CT16SO9I02N	DPS2604N	DPS2614N	DPS2630N	DPS2707N	DPS2722N
												Depth	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3.5 - 4.5 ft	13.5 - 14.5 ft	29.5 - 30.5 ft	6.5 - 7.5 ft	21.5 - 22.5 ft
												Type	N	N	N	N	N	N	N	N	N	N
		Project										- 7/	<u>``</u>									
Analyte	Unit	Screening Criteria	Method	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count Detect	Count Count Reject Total											
4,4'-DDD	ug/kg	2500	SW8081B LL	72-54-8	2.3	0.017	1.1	1.6	SUSDP19	5	12											
4,4'-DDE	ug/kg	9300	SW8081B LL	72-55-9	58	0.018	12	0.029	SUSDP08	5	12											
4,4'-DDT	ug/kg	8500	SW8081B LL	50-29-3	12	0.018	3.4	0.085	SUSDP19	9	12											
Aldrin	ug/kg	180	SW8081B LL	309-00-2	1.6	0.034	0.98	1.3	SUSDP08	3	12											
alpha-BHC	ug/kg	360	SW8081B LL	319-84-6							12											
beta-BHC	ug/kg	1300	SW8081B LL	319-85-7	1.2	1.2	1.2	1.2	SUSDP19	1	12											
cis-Chlordane	ug/kg	7700	SW8081B LL	5103-71-9	6.5	6.5	6.5	6.5	SUSDP08	1	12											
delta-BHC	ug/kg	360	SW8081B LL	319-86-8	2	0.49	1	0.63	SUSDP19	3	12											
Dieldrin	ug/kg	140	SW8081B LL	60-57-1	3.5	0.028	1.4	1.1	SUSDP19	4	12											
Endosulfan I	ug/kg	700000	SW8081B LL	959-98-8	0.023	0.023	0.023	0.023	SUSDP24	1	12											
Endosulfan II	ug/kg	700000	SW8081B LL	33213-65-9	2.1	0.02	1	1	SUSDP19	4	12											
Endosulfan Sulfate	ug/kg	700000	SW8081B LL	1031-07-8	2.1	0.018	0.66	0.074	SUSDP08	9	12											
Endrin	ug/kg	25000	SW8081B LL	72-20-8	15	0.03	2.4	0.099	SUSDP08	9	12											
Endrin aldehyde	ug/kg	25000	SW8081B LL	7421-93-4	2.2	0.031	0.86	0.4	SUSDP19	5	12											
Endrin ketone	ug/kg	25000	SW8081B LL	53494-70-5	0.05	0.024	0.037	0.037	SUSDP17	2	12											
gamma-BHC (Lindane)	ug/kg	2500	SW8081B LL	58-89-9	2.9	0.023	0.65	0.044	SUSDP19	8	12											
Heptachlor	ug/kg	630	SW8081B LL	76-44-8	1.2	0.52	0.86	0.86	SUSDP19	2	12											
Heptachlor Epoxide	ug/kg	330	SW8081B LL	1024-57-3	1.5	0.025	0.67	0.48	SUSDP08	3	12											
Methoxychlor	ug/kg	410000	SW8081B LL	72-43-5	36	0.046	18	18	SUSDP19	4	12											
Toxaphene	ug/kg	2100	SW8081B LL	8001-35-2							12											
trans-Chlordane	ug/kg	7700	SW8081B LL	5103-74-2	15	0.02	3.6	1.3	SUSDP08	5	12											
Aroclor-1016	ug/kg		SW8082A/SW8082A LL	12674-11-2	54	14	34	34	SUSDP08	2	425		< 21 U	< 45 U	< 9.1 U	< 50 U	< 92 U	< 4.7 U	< 4.7 U	< 5.2 U	< 4.9 U	< 6.1 U
Aroclor-1221	ug/kg		SW8082A/SW8082A LL	11104-28-2							425		< 21 U	< 45 U	< 9.1 U	< 50 U	< 92 U	< 4.7 U	< 4.7 U	< 5.2 U	< 4.9 U	< 6.1 U
Aroclor-1232	ug/kg		SW8082A/SW8082A LL	11141-16-5							425		< 21 U	< 45 U	< 9.1 U	< 50 U	< 92 U	< 4.7 U	< 4.7 U	< 5.2 U	< 4.9 U	< 6.1 U
Aroclor-1242	ug/kg		SW8082A/SW8082A LL	53469-21-9	10000	9.6	780	130	SUSDP21-1C	21	425		< 21 U	< 45 U	< 9.1 U	< 50 U	< 92 U	< 4.7 U	< 4.7 U	< 5.2 U	< 4.9 U	< 6.1 U
Aroclor-1248	ug/kg		SW8082A/SW8082A LL	12672-29-6	6900	1	400	110	SUSDP21-3M	85	1 425		< 21 U	< 45 U	< 9.1 U	< 50 U	< 92 U	< 4.7 U	< 4.7 U	< 5.2 U	170	< 6.1 U
Aroclor-1254	ug/kg		SW8082A/SW8082A LL	11097-69-1	4800	0.65	210	81	SUSDP21-1C	95	1 425		< 21 U	< 45 U	< 9.1 U	< 50 U	< 92 U	< 4.7 U	< 4.7 U	< 5.2 U	< 4.9 U	< 6.1 U
Aroclor-1260	ug/kg		SW8082A/SW8082A LL	11096-82-5	450000	0.59	4400	150	SUSDPGD21-G1	277	425		2900	2500	480	2800	540	< 4.7 U	< 4.7 U	< 5.2 U	180	< 6.1 U
Aroclor-1262	ug/kg		SW8082A/SW8082A LL	37324-23-5							425		< 21 U	< 45 U	< 9.1 U	< 50 U	< 92 U	< 4.7 U	< 4.7 U	< 5.2 U	< 4.9 U	< 6.1 U
Aroclor-1268	ug/kg		SW8082A/SW8082A LL	11100-14-4	300	0.41	35	19	SUSDP12	44	425		< 21 U	< 45 U	< 9.1 U	< 50 U	< 92 U	< 4.7 U	< 4.7 U	< 5.2 U	< 4.9 U	< 6.1 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970	SW8082A/SW8082A LL	TOT-PCB-ARO-C	450000	0.83	4400	230	SUSDPGD21-G1	291	425		2900	2500	480	2800	540	< 4.7 U	< 4.7 U	< 5.2 U	350	< 6.1 U

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	DP27	DP28	DP28	DP28	DP29	DP29	DP29	DP30	DP30	DP31	DP31	DP32	DP32	DP32	DP32	DP33	DP33	DP34	DP34	DP34
			Sample Date	3/26/2013	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/2/2013	4/3/2013	4/3/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/1/2013	4/4/2013	4/4/2013	3/13/2013	3/29/2013	3/29/2013
			Sample ID	DPS2758N	DPS2808N	DPS2821N	DPS2832N	DPS2910N	DPS2930N	DPS2950N	DPS3050N	DPS3028N	DPS3120N	DPS3142N	DPS3210N	DPS3210R	DPS3230N	DPS3243N	DPS3315N	DPS3335N	DPS3405N	DPS3418N	DPS3445N
			Depth	57.5 - 58.5 ft	7.5 - 8.5 ft	20.5 - 21.5 ft	31 - 33 ft	9 - 11 ft	29 - 31 ft	49 - 51 ft	49 - 51 ft	27 - 29 ft	19.5 - 20.5 ft	41.5 - 42.5 ft		9.5 - 10.5 ft	29.5 - 30.5 ft	42.5 - 43.5 ft	14 - 16 ft	34 - 36 ft	4.5 - 5.5 ft	17.5 - 18.5 ft	44.5 - 45.5 ft
			Type	N	7.5 - 0.5 It	20.5 - 21.5 It	N N	N N	N N	N	N N	N	N	N	0.5 - 10.5 It	FD	N N	N	N	N	N N	N	N
		Droinet	турс	- IV	- 11	14	14	IN .	14	14		14	- '\	IN .	- 11	1.5		14	14	- 1	IN .		''
		Project Screening																					1
Analyte	Unit	Criteria																					1
4,4'-DDD	ug/kg	2500																					
4,4'-DDE	ug/kg	9300																					
4,4'-DDT	ug/kg	8500																					
Aldrin	ug/kg	180																					
alpha-BHC	ug/kg	360																					
beta-BHC	ug/kg	1300																					
cis-Chlordane	ug/kg	7700																					
delta-BHC	ug/kg	360																					
Dieldrin	ug/kg	140																					
Endosulfan I	ug/kg	700000																					
Endosulfan II	ug/kg	700000																					
Endosulfan Sulfate	ug/kg	700000																					
Endrin	ug/kg	25000																					
Endrin aldehyde	ug/kg	25000																					
Endrin ketone	ug/kg	25000																					
gamma-BHC (Lindane)	ug/kg	2500																					
Heptachlor	ug/kg	630																					
Heptachlor Epoxide	ug/kg	330																					
Methoxychlor	ug/kg	410000																					
Toxaphene	ug/kg	2100																					
trans-Chlordane	ug/kg	7700																					
Aroclor-1016	ug/kg			< 1.0 U	< 0.90 U	< 0.92 U	< 1.2 U	< 1.0 U	< 0.98 U	< 0.96 U	< 1.1 U	< 0.98 U	< 0.94 U	< 1.0 U	< 0.99 U	< 0.98 U	< 0.93 U	< 1.0 U	< 0.98 U	< 1.3 U	< 0.98 U	< 5.5 U	< 4.9 U
Aroclor-1221	ug/kg			< 1.0 U	< 0.90 U	< 0.92 U	< 1.2 U	< 1.0 U	< 0.98 U	< 0.96 U	< 1.1 U	< 0.98 U	< 0.94 U	< 1.0 U	< 0.99 U	< 0.98 U	< 0.93 U	< 1.0 U	< 0.98 U	< 1.3 U	< 0.98 U	< 5.5 U	< 4.9 U
Aroclor-1232	ug/kg			< 1.0 U	< 0.90 U	< 0.92 U	< 1.2 U	< 1.0 U	< 0.98 U	< 0.96 U	< 1.1 U	< 0.98 U	< 0.94 U	< 1.0 U	< 0.99 U	< 0.98 U	< 0.93 U	< 1.0 U	< 0.98 U	< 1.3 U	< 0.98 U	< 5.5 U	< 4.9 U
Aroclor-1242	ug/kg			< 1.0 U	< 0.90 U	< 0.92 U	< 1.2 U	< 1.0 U	< 0.98 U	< 0.96 U	< 1.1 U	< 0.98 U	< 0.94 U	< 1.0 U	< 0.99 U	< 0.98 U	< 0.93 U	< 1.0 U	< 0.98 U	< 1.3 U	< 0.98 U	< 5.5 U	< 4.9 U
Aroclor-1248	ug/kg			< 1.0 U	< 0.90 U	< 0.92 U	< 1.2 U	< 1.0 U	< 0.98 U	< 0.96 U	< 1.1 U	< 0.98 U	< 0.94 U	< 1.0 U	< 0.99 U	< 0.98 U	< 0.93 U	< 1.0 U	< 0.98 U	< 1.3 U	< 0.98 U	< 5.5 U	< 4.9 U
Aroclor-1254	ug/kg			< 1.0 U	< 0.90 U	< 0.92 U	< 1.2 U	< 1.0 U	< 0.98 U	< 0.96 U	< 1.1 U	< 0.98 U	< 0.94 U	< 1.0 U	< 0.99 U	< 0.98 U	< 0.93 U	< 1.0 U	< 0.98 U	< 1.3 U	< 0.98 U	< 5.5 U	< 4.9 U
Aroclor-1260	ug/kg			< 1.0 U	< 0.90 U	< 0.92 U	< 1.2 U	< 1.0 U	< 0.98 U	< 0.96 U	< 1.1 U	< 0.98 U	< 0.94 U	< 1.0 U	< 0.99 U	< 0.98 U	< 0.93 U	< 1.0 U	< 0.98 U	< 1.3 U	< 0.98 U	< 5.5 U	< 4.9 U
Aroclor-1262	ug/kg			< 1.0 U	< 0.90 U	< 0.92 U	< 1.2 U	< 1.0 U	< 0.98 U	< 0.96 U	< 1.1 U	< 0.98 U	< 0.94 U	< 1.0 U	< 0.99 U	< 0.98 U	< 0.93 U	< 1.0 U	< 0.98 U	< 1.3 U	< 0.98 U	< 5.5 U	< 4.9 U
Aroclor-1268	ug/kg			< 1.0 U	< 0.90 U	< 0.92 U	< 1.2 U	< 1.0 U	< 0.98 U	< 0.96 U	< 1.1 U	< 0.98 U	< 0.94 U	< 1.0 U	< 0.99 U	< 0.98 U	< 0.93 U	< 1.0 U	< 0.98 U	< 1.3 U	< 0.98 U	< 5.5 U	< 4.9 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		< 1.0 U	< 0.90 U	< 0.92 U	< 1.2 U	< 1.0 U	< 0.98 U	< 0.96 U	< 1.1 U	< 0.98 U	< 0.94 U	< 1.0 U	< 0.99 U	< 0.98 U	< 0.93 U	< 1.0 U	< 0.98 U	< 1.3 U	< 0.98 U	< 5.5 U	< 4.9 U

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	DP34	DP35	DP35	DP36	DP36	DP36	DP38	DP38	DP38	DP40	DP40	DP40	DP42	DP42	DP42	DP45	DP45	DP45	DP46	DP46
			Sample Date	3/29/2013	3/28/2013	3/28/2013	5/17/2013	5/20/2013	5/20/2013	5/16/2013	5/22/2013	5/22/2013	5/20/2013	5/28/2013	5/28/2013	5/21/2013	5/29/2013	5/29/2013	5/23/2013	6/4/2013	6/4/2013	5/22/2013	6/5/2013
			Sample ID	DPS3460N	DPS3515N	DPS3534N	DPS3605N	DPS3610N	DPS3615N	DPS3805N	DPS3810N	DPS3815N	DPS4003N	DPS4010N	DPS4015N	DPS4205N	DPS4210N	DPS4215N	DPS4503N	DPS4510N	DPS4515N	DPS4605N	DPS4610N
			Depth	59.5 - 60.5 ft	14.5 - 15.5 ft	33.5 - 34.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft
			Type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																					
		Screening																					
Analyte	Unit	Criteria																					
4,4'-DDD	ug/kg	2500																					
4,4'-DDE	ug/kg	9300																					
4,4'-DDT	ug/kg	8500																					
Aldrin	ug/kg	180																					
alpha-BHC	ug/kg	360																					
beta-BHC	ug/kg	1300												_									
cis-Chlordane	ug/kg	7700												_									
delta-BHC	ug/kg	360																					
Dieldrin	ug/kg	140																					
Endosulfan I	ug/kg	700000																					
Endosulfan II	ug/kg	700000																					
Endosulfan Sulfate	ug/kg	700000																					
Endrin	ug/kg	25000																					
Endrin aldehyde	ug/kg	25000																					
Endrin ketone	ug/kg	25000																					
gamma-BHC (Lindane)	ug/kg	2500																					
Heptachlor	ug/kg	630																					
Heptachlor Epoxide	ug/kg	330																					
Methoxychlor	ug/kg	410000																					
Toxaphene	ug/kg	2100																					
trans-Chlordane	ug/kg	7700																					
Aroclor-1016	ug/kg			< 5.0 U	< 4.9 U	< 5.1 U	< 1.0 U	< 4.7 U	< 4.7 U	< 0.92 U	< 4.7 U	< 4.4 U	14	< 4.9 U	< 4.5 U	< 4.7 U	< 5.4 U	< 5.3 U	< 4.9 U	< 4.4 U	< 4.7 U	< 4.3 U	< 4.8 U
Aroclor-1221	ug/kg			< 5.0 U	< 4.9 U	< 5.1 U	< 1.0 U	< 4.7 U	< 4.7 U	< 0.92 U	< 4.7 U	< 4.4 U	< 5.0 U	< 4.9 U	< 4.5 U	< 4.7 U	< 5.4 U	< 5.3 U	< 4.9 U	< 4.4 U	< 4.7 U	< 4.3 U	< 4.8 U
Aroclor-1232	ug/kg			< 5.0 U	< 4.9 U	< 5.1 U	< 1.0 U	< 4.7 U	< 4.7 U	< 0.92 U	< 4.7 U	< 4.4 U	< 5.0 U	< 4.9 U	< 4.5 U	< 4.7 U	< 5.4 U	< 5.3 U	< 4.9 U	< 4.4 U	< 4.7 U	< 4.3 U	< 4.8 U
Aroclor-1242	ug/kg			< 5.0 U	< 4.9 U	< 5.1 U	< 1.0 U	< 4.7 U	< 4.7 U	< 0.92 U	< 4.7 U	< 4.4 U	< 5.0 U	< 4.9 U	< 4.5 U	< 4.7 U	< 5.4 U	< 5.3 U	< 4.9 U	< 4.4 U	< 4.7 U	< 4.3 U	< 4.8 U
Aroclor-1248	ug/kg			< 5.0 U	< 4.9 U	< 5.1 U	< 1.0 U	< 4.7 U	< 4.7 U	< 0.92 U	< 4.7 U	< 4.4 U	< 5.0 U	3.6 J	< 4.5 U	< 4.7 U	< 5.4 U	< 5.3 U	< 4.9 U	< 4.4 U	< 4.7 U	< 4.3 U	< 4.8 U
Aroclor-1254	ug/kg			< 5.0 U	< 4.9 U	< 5.1 U	< 1.0 U	< 4.7 U	< 4.7 U	< 0.92 U	< 4.7 U	< 4.4 U	170	< 4.9 U	< 4.5 U	< 4.7 U	40 J	160 J	< 4.9 U	< 4.4 U	< 4.7 U	< 4.3 U	< 4.8 U
Aroclor-1260	ug/kg			< 5.0 U	< 4.9 U	< 5.1 U	< 1.0 U	< 4.7 U	< 4.7 U	< 0.92 U	5.2	1.9 J	< 5.0 U	10 J	< 4.5 U	23	24 J	50 J	2.5 J	< 4.4 U	< 4.7 U	1.5 J	< 4.8 U
Aroclor-1262	ug/kg			< 5.0 U	< 4.9 U	< 5.1 U	< 1.0 U	< 4.7 U	< 4.7 U	< 0.92 U	< 4.7 U	< 4.4 U	< 5.0 U	< 4.9 U	< 4.5 U	< 4.7 U	< 5.4 U	< 5.3 U	< 4.9 U	< 4.4 U	< 4.7 U	< 4.3 U	< 4.8 U
Aroclor-1268	ug/kg			< 5.0 U	< 4.9 U	< 5.1 U	< 1.0 U	< 4.7 U	< 4.7 U	< 0.92 U	< 4.7 U	< 4.4 U	< 5.0 U	< 4.9 U	< 4.5 U	< 4.7 U	< 5.4 U	< 5.3 U	< 4.9 U	< 4.4 U	< 4.7 U	< 4.3 U	< 4.8 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		< 5.0 U	< 4.9 U	< 5.1 U	< 1.0 U	< 4.7 U	< 4.7 U	< 0.92 U	5.2	1.9	180	14	< 4.5 U	23	64	210	2.5	< 4.4 U	< 4.7 U	1.5	< 4.8 U

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	DP46	DP47	DP47	DP47	SB2	SB2	SB2	SB2	SBS0303N-North	SUSDP01	SUSDP01	SUSDP01	SUSDP02	SUSDP02	SUSDP02	SUSDP02	SUSDP02	SUSDP03	SUSDP03
			Sample Date	6/5/2013	5/28/2013	6/5/2013	6/5/2013	1/25/2017	1/25/2017	1/26/2017	1/26/2017	2/15/2017	5/20/2013	5/20/2013	5/20/2013	5/14/2013	5/20/2013	5/20/2013	1/25/2017	1/25/2017	5/14/2013	5/21/2013
			Sample ID	DPS4615N	DPS4702N	DPS4710N	DPS4715N	SBS0201N	SBS0202-05N	SBS0205-10N	SBS0210-15N	SB50303N-NORTH	DPS0103N	DPS0110N	DPS0115N	DPS0205N	DPS0210N	DPS0215N	DPS02F01N	DPS02F02-05N	DPS0305N	DPS0310N
			Depth	14.5 - 15.5 ft	1.5 - 2.5 ft	9.5 - 10.5 ft	14 - 15 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	3 - 3.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14 - 15 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft
			Type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																				
		Screening																				
Analyte	Unit	Criteria																				
4,4'-DDD	ug/kg	2500											< 0.91 U			< 0.095 U						
4,4'-DDE	ug/kg	9300											< 0.91 U			< 0.095 U						
4,4'-DDT	ug/kg	8500											< 0.91 U			0.070 J						
Aldrin	ug/kg	180											< 0.91 U			< 0.095 U						
alpha-BHC	ug/kg	360											< 0.91 U			< 0.095 U						
beta-BHC	ug/kg	1300											< 0.91 U			< 0.095 U						
cis-Chlordane	ug/kg	7700											< 0.91 U			< 0.095 U						
delta-BHC	ug/kg	360											< 0.91 U			< 0.095 U						
Dieldrin	ug/kg	140											< 0.91 U			< 0.095 U						
Endosulfan I	ug/kg	700000											< 0.91 U			< 0.095 U						
Endosulfan II	ug/kg	700000											< 0.91 U			< 0.095 U						
Endosulfan Sulfate	ug/kg	700000											< 0.91 U			0.074 J						
Endrin	ug/kg	25000											< 0.91 U			0.042 J						
Endrin aldehyde	ug/kg	25000											< 0.91 U			0.031 J						
Endrin ketone	ug/kg	25000											< 0.91 U			< 0.095 U						
gamma-BHC (Lindane)	ug/kg	2500											< 0.91 U			0.053 J						
Heptachlor	ug/kg	630											< 0.91 U			< 0.095 U						
Heptachlor Epoxide	ug/kg	330											< 0.91 U			< 0.095 U						
Methoxychlor	ug/kg	410000											< 1.8 U			< 0.19 U						
Toxaphene	ug/kg	2100											< 36 U			< 3.8 U						
trans-Chlordane	ug/kg	7700											< 0.91 U			< 0.095 U						
Aroclor-1016	ug/kg			< 4.9 U	< 4.5 U	< 4.6 U	< 4.9 U	< 0.89 U	< 0.85 U	< 0.90 U	< 1.0 U	< 18 U	< 4.5 U	< 4.5 U	< 4.9 U	< 0.95 U	< 4.5 U	< 4.8 U	< 1.8 U	< 1.0 U	< 0.96 U	< 4.6 U
Aroclor-1221	ug/kg			< 4.9 U	< 4.5 U	< 4.6 U	< 4.9 U	< 0.89 U	< 0.85 U	< 0.90 U	< 1.0 U	< 18 U	< 4.5 U	< 4.5 U	< 4.9 U	< 0.95 U	< 4.5 U	< 4.8 U	< 1.8 U	< 1.0 U	< 0.96 U	< 4.6 U
Aroclor-1232	ug/kg			< 4.9 U	< 4.5 U	< 4.6 U	< 4.9 U	< 0.89 U	< 0.85 U	< 0.90 U	< 1.0 U	< 18 U	< 4.5 U	< 4.5 U	< 4.9 U	< 0.95 U	< 4.5 U	< 4.8 U	< 1.8 U	< 1.0 U	< 0.96 U	< 4.6 U
Aroclor-1242	ug/kg			< 4.9 U	< 4.5 U	< 4.6 U	< 4.9 U	< 0.89 U	< 0.85 U	< 0.90 U	< 1.0 U	< 18 U	< 4.5 U	< 4.5 U	< 4.9 U	< 0.95 U	< 4.5 U	< 4.8 U	< 1.8 U	< 1.0 U	< 0.96 U	< 4.6 U
Aroclor-1248	ug/kg			< 4.9 U	< 4.5 U	< 4.6 U	< 4.9 U	< 0.89 U	< 0.85 U	< 0.90 U	< 1.0 U	< 18 U	< 4.5 U	< 4.5 U	< 4.9 U	< 0.95 U	< 4.5 U	< 4.8 U	< 1.8 U	< 1.0 U	< 0.96 U	< 4.6 U
Aroclor-1254	ug/kg			< 4.9 U	< 4.5 U	< 4.6 U	< 4.9 U	< 0.89 U	< 0.85 U	< 0.90 U	< 1.0 U	< 18 U	< 4.5 U	< 4.5 U	< 4.9 U	< 0.95 U	< 4.5 U	< 4.8 U	< 1.8 U	< 1.0 U	< 0.96 U	< 4.6 U
Aroclor-1260	ug/kg			< 4.9 U	340	< 4.6 U	< 4.9 U	< 0.89 U	0.83 J	< 0.90 U	< 1.0 U	1300	< 4.5 U	< 4.5 U	< 4.9 U	< 0.95 U	< 4.5 U	< 4.8 U	86	2.7	0.91 J	< 4.6 U
Aroclor-1262	ug/kg			< 4.9 U	< 4.5 U	< 4.6 U	< 4.9 U	< 0.89 U	< 0.85 U	< 0.90 U	< 1.0 U	< 18 U	< 4.5 U	< 4.5 U	< 4.9 U	< 0.95 U	< 4.5 U	< 4.8 U	< 1.8 U	< 1.0 U	< 0.96 U	< 4.6 U
Aroclor-1268	ug/kg			< 4.9 U	< 4.5 U	< 4.6 U	< 4.9 U	< 0.89 U	< 0.85 U	< 0.90 U	< 1.0 U	< 18 U	< 4.5 U	< 4.5 U	< 4.9 U	< 0.95 U	< 4.5 U	< 4.8 U	< 1.8 U	< 1.0 U	< 0.96 U	< 4.6 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		< 4.9 U	340	< 4.6 U	< 4.9 U	< 0.89 U	0.83	< 0.9 U	< 1 U	1300	< 4.5 U	< 4.5 U	< 4.9 U	< 0.95 U	< 4.5 U	< 4.8 U	86	2.7	0.91	< 4.6 U

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDP03	SUSDP03	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04	SUSDP04-1A	SUSDP04-1A	SUSDP04-1A	SUSDP04-1C	SUSDP04-1C	SUSDP04-1C	SUSDP04-1E	SUSDP04-1E	SUSDP04-1E
		:	Sample Date	5/21/2013	5/21/2013	5/15/2013	5/20/2013	5/20/2013	1/25/2017	1/25/2017	1/25/2017	1/27/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017	8/1/2017
			Sample ID	DPS0310R	DPS0315N	DPS0403N	DPS0410N	DPS0415N	DPS04F01N	DPS04F01R	DPS04F02-05N	DPS04F10-15N	DPS041A02N	DPS041A03N	DPS041A04N	DPS041C02N	DPS041C03N	DPS041C04N	DPS041E02N	DPS041E03N	DPS041E04N
			Depth	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	1 - 2 ft	2 - 5 ft	10 - 15 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft
			Type	FD	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N	N
		Project																			
		Screening																			
Analyte	Unit	Criteria																			
4,4'-DDD	ug/kg	2500																			
4,4'-DDE	ug/kg	9300																			
4,4'-DDT	ug/kg	8500																			
Aldrin	ug/kg	180																			
alpha-BHC	ug/kg	360																			
beta-BHC	ug/kg	1300																			
cis-Chlordane	ug/kg	7700																			
delta-BHC	ug/kg	360																			
Dieldrin	ug/kg	140																			
Endosulfan I	ug/kg	700000																			
Endosulfan II	ug/kg	700000																			
Endosulfan Sulfate	ug/kg	700000																			
Endrin	ug/kg	25000																			
Endrin aldehyde	ug/kg	25000																			
Endrin ketone	ug/kg	25000																			
gamma-BHC (Lindane)	ug/kg	2500																			
Heptachlor	ug/kg	630																			
Heptachlor Epoxide	ug/kg	330																			
Methoxychlor	ug/kg	410000																			
Toxaphene	ug/kg	2100																			
trans-Chlordane	ug/kg	7700																			
Aroclor-1016	ug/kg			< 4.4 U	< 4.5 U	< 0.99 U	< 4.5 U	< 4.4 U	< 5.8 U	< 5.0 U	< 23 U	< 0.88 U	< 9.1 U	< 9.2 U	< 9.7 U	< 8.7 U	< 8.8 U	< 9.3 U	< 44 U	< 9.2 U	< 8.8 U
Aroclor-1221	ug/kg			< 4.4 U	< 4.5 U	< 0.99 U	< 4.5 U	< 4.4 U	< 5.8 U	< 5.0 U	< 23 U	< 0.88 U	< 9.1 U	< 9.2 U	< 9.7 U	< 8.7 U	< 8.8 U	< 9.3 U	< 44 U	< 9.2 U	< 8.8 U
Aroclor-1232	ug/kg			< 4.4 U	< 4.5 U	< 0.99 U	< 4.5 U	< 4.4 U	< 5.8 U	< 5.0 U	< 23 U	< 0.88 U	< 9.1 U	< 9.2 U	< 9.7 U	< 8.7 U	< 8.8 U	< 9.3 U	< 44 U	< 9.2 U	< 8.8 U
Aroclor-1242	ug/kg			< 4.4 U	< 4.5 U	< 0.99 U	< 4.5 U	< 4.4 U	< 5.8 U	< 5.0 U	1600 J+	< 0.88 U	< 9.1 U	450 J+	63 J+	< 8.7 U	< 8.8 U	11 J+	1100 J+	76 J+	9.6 J+
Aroclor-1248	ug/kg			< 4.4 U	< 4.5 U	< 0.99 U	< 4.5 U	< 4.4 U	120 J+	150 J+	< 23 U	< 0.88 U	9.9 J+	< 9.2 U	< 9.7 U	< 8.7 U	< 8.8 U	< 9.3 U	< 44 U	< 9.2 U	< 8.8 U
Aroclor-1254	ug/kg			< 4.4 U	< 4.5 U	< 0.99 U	< 4.5 U	< 4.4 U	93 J+	83 J+	910 J+	< 0.88 U	11 J+	320 J+	44 J+	37 J+	25 J+	6.1 J+	1800 J+	110 J+	9.6 J+
Aroclor-1260	ug/kg			< 4.4 U	< 4.5 U	< 0.99 U	< 4.5 U	< 4.4 U	87 J+	81 J+	2300 J+	< 0.88 U	23 J+	340 J+	43 J+	29 J+	11 J+	< 9.3 U	4000 J+	200 J+	11 J+
Aroclor-1262	ug/kg			< 4.4 U	< 4.5 U	< 0.99 U	< 4.5 U	< 4.4 U	< 5.8 U	< 5.0 U	< 23 U	< 0.88 U	< 9.1 U	< 9.2 U	< 9.7 U	< 8.7 U	< 8.8 U	< 9.3 U	< 44 U	< 9.2 U	< 8.8 U
Aroclor-1268	ug/kg			< 4.4 U	< 4.5 U	< 0.99 U	< 4.5 U	< 4.4 U	< 5.8 U	< 5.0 U	< 23 U	< 0.88 U	< 9.1 U	< 9.2 U	< 9.7 U	< 8.7 U	< 8.8 U	< 9.3 U	< 44 U	< 9.2 U	< 8.8 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		< 4.4 U	< 4.5 U	< 0.99 U	< 4.5 U	< 4.4 U	300	310	4800	< 0.88 U	44	1100	150	66	36	17	6900	390	30

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDP04-1G	SUSDP04-1G	SUSDP04-1G	SUSDP04-1G	SUSDP04-2I	SUSDP05	SUSDP05	SUSDP05	SUSDP05	SUSDP05	SUSDP06	SUSDP06	SUSDP06	SUSDP06	SUSDP06	SUSDP07	SUSDP07	SUSDP07	SUSDP08
			Sample Date	8/1/2017	8/1/2017	8/1/2017	8/1/2017	2/1/2018	5/15/2013	5/21/2013	5/21/2013	1/24/2017	1/24/2017	5/15/2013	5/22/2013	5/22/2013	3/13/2017	3/13/2017	5/15/2013	5/22/2013	5/22/2013	5/15/2013
			Sample ID	DPS041G02N	DPS041G03N	DPS041G04N	DPS041G05N	DPS042I02N	DPS0505N	DPS0510N	DPS0515N	DPS05F01N	DPS05F02-05N	DPS0605N	DPS0610N	DPS0615N	DPS06F01N	DPS06F02-05N	DPS0705N	DPS0710N	DPS0715N	DPS0803N
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	2 - 3 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																				
		Screening																				
Analyte	Unit	Criteria																				
4,4'-DDD	ug/kg	2500																				1.6 J
4,4'-DDE	ug/kg	9300																				58
4,4'-DDT	ug/kg	8500																				10 J
Aldrin	ug/kg	180																				1.6
alpha-BHC	ug/kg	360																				< 1.0 U
beta-BHC	ug/kg	1300																				< 1.0 U
cis-Chlordane	ug/kg	7700																				6.5
delta-BHC	ug/kg	360																				0.63 J
Dieldrin	ug/kg	140																				< 1.0 U
Endosulfan I	ug/kg	700000																				< 1.0 U
Endosulfan II	ug/kg	700000																				0.79 J
Endosulfan Sulfate	ug/kg	700000																				2.1 J
Endrin	ug/kg	25000																				15
Endrin aldehyde	ug/kg	25000																				1.6
Endrin ketone	ug/kg	25000																				< 1.0 U
gamma-BHC (Lindane)	ug/kg	2500																				0.72 J
Heptachlor	ug/kg	630																				0.52 J
Heptachlor Epoxide	ug/kg	330																				1.5 J
Methoxychlor	ug/kg	410000																				14 J
Toxaphene	ug/kg	2100																				< 40 U
trans-Chlordane	ug/kg	7700																				15
Aroclor-1016	ug/kg			< 2.6 U	< 2.4 U	< 2.8 U	< 1.0 U	< 0.90 U	< 0.96 U	< 4.4 U	< 4.5 U	< 4.5 U	< 4.5 U	< 1.0 U	< 4.9 U	< 4.6 U	< 4.8 U	< 4.4 U	< 1.0 U	< 4.8 U	< 5.0 U	54
Aroclor-1221	ug/kg			< 2.6 U	< 2.4 U	< 2.8 U	< 1.0 U	< 0.90 U	< 0.96 U	< 4.4 U	< 4.5 U	< 4.5 U	< 4.5 U	< 1.0 U	< 4.9 U	< 4.6 U	< 4.8 U	< 4.4 U	< 1.0 U	< 4.8 U	< 5.0 U	< 10 U
Aroclor-1232	ug/kg			< 2.6 U	< 2.4 U	< 2.8 U	< 1.0 U	< 0.90 U	< 0.96 U	< 4.4 U	< 4.5 U	< 4.5 U	< 4.5 U	< 1.0 U	< 4.9 U	< 4.6 U	< 4.8 U	< 4.4 U	< 1.0 U	< 4.8 U	< 5.0 U	< 10 U
Aroclor-1242	ug/kg			< 2.6 U	< 2.4 U	< 2.8 U	94 J+	38	< 0.96 U	< 4.4 U	< 4.5 U	< 4.5 U	< 4.5 U	< 1.0 U	< 4.9 U	< 4.6 U	< 4.8 U	< 4.4 U	< 1.0 U	< 4.8 U	< 5.0 U	< 10 U
Aroclor-1248	ug/kg			< 2.6 U	270	530	< 1.0 U	< 0.90 U	< 0.96 U	< 4.4 U	< 4.5 U	< 4.5 U	< 4.5 U	< 1.0 U	< 4.9 U	< 4.6 U	< 4.8 U	< 4.4 U	< 1.0 U	< 4.8 U	< 5.0 U	< 10 U
Aroclor-1254	ug/kg			< 2.6 U	< 2.4 U	< 2.8 U	59 J+	< 0.90 U	3.3	19	190	13 J+	48 J+	< 1.0 U	< 4.9 U	< 4.6 U	< 4.8 U	< 4.4 U	< 1.0 U	< 4.8 U	< 5.0 U	360
Aroclor-1260	ug/kg			33	250	850	130 J+	110	< 0.96 U	< 4.4 U	< 4.5 U	55 J+	16 J+	5.0 J	< 4.9 U	12	< 4.8 U	< 4.4 U	1.2	< 4.8 U	< 5.0 U	< 10 U
Aroclor-1262	ug/kg	†		< 2.6 U	< 2.4 U	< 2.8 U	< 1.0 U	< 0.90 U	< 0.96 U	< 4.4 U	< 4.5 U	< 4.5 U	< 4.5 U	< 1.0 U	< 4.9 U	< 4.6 U	< 4.8 U	< 4.4 U	< 1.0 U	< 4.8 U	< 5.0 U	< 10 U
Aroclor-1268	ug/kg			< 2.6 U	< 2.4 U	< 2.8 U	< 1.0 U	< 0.90 U	< 0.96 U	< 4.4 U	< 4.5 U	< 4.5 U	< 4.5 U	7.8 J	< 4.9 U	< 4.6 U	< 4.8 U	< 4.4 U	< 1.0 U	< 4.8 U	< 5.0 U	< 10 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		33	520	1400	280	150	3.3	19	190	68	64	13	< 4.9 U	12	< 4.8 U	< 4.4 U	1.2	< 4.8 U	< 5.0 U	410

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			l ti ID	CLICDDOO	SUSDP08	CHCDDOO	SUSDP08	CHCDDOO	CHCDDOO	SUSDP08-1E	SUSDP08-1E	SUSDP09	CHCDDOO	CHCDD00	SUSDP10	SUSDP10	SUSDP10	SUSDP10	SUSDP10	SUSDP10-3F	SUSDP10-3X
			Location ID	SUSDP08		SUSDP08		SUSDP08	SUSDP08				SUSDP09	SUSDP09							
			Sample Date	5/23/2013	5/23/2013	1/24/2017	1/24/2017	1/24/2017	1/24/2017	8/2/2017	8/2/2017	5/17/2013	6/11/2013	6/11/2013	5/15/2013	6/10/2013	6/10/2013	1/27/2017	1/27/2017	8/8/2017	8/8/2017
			Sample ID	DPS0810N	DPS0815N	DPS08F01N	DPS08F02-05N	DPS08F05-10N	DPS08F10-15N	DPS081E01N	DPS081E01R	DPS0905N	DPS0910N	DPS0915N	DPS1005N	DPS1010N	DPS1015N	DPS10F01N	DPS10F02-05N	DPS103F01N	DPS103X01N
			Depth -	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	1 - 2 ft	1 - 2 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	1 - 2 ft	1 - 2 ft
	1		Туре	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N	N
		Project																			
Analyte	Unit	Screening Criteria																			
4,4'-DDD	ug/kg	2500										< 0.51 U			< 0.47 UJ						
4,4'-DDE	ug/kg	9300										0.27 J			< 0.47 UJ						
4,4'-DDT	ug/kg	8500										< 0.51 U			< 0.47 U						
Aldrin	ug/kg	180										< 0.51 U			< 0.47 UJ						
alpha-BHC	ug/kg	360										< 0.51 U			< 0.47 UJ						
beta-BHC	ug/kg	1300										< 0.51 U			< 0.47 UJ						
cis-Chlordane	ug/kg	7700										< 0.51 U			< 0.47 U						
delta-BHC	ug/kg	360										< 0.51 U			< 0.47 U						
Dieldrin	ug/kg	140										< 0.51 U			< 0.47 UJ						
Endosulfan I	ug/kg	700000										< 0.51 U			< 0.47 UJ						
Endosulfan II	ug/kg	700000										< 0.51 U			< 0.47 UJ						
Endosulfan Sulfate	ug/kg	700000										0.054 J			0.054 J						
Endrin	ug/kg	25000										0.099 J			< 0.47 U						
Endrin aldehyde	ug/kg	25000										< 0.51 U			0.091 J						
Endrin ketone	ug/kg	25000										< 0.51 U			< 0.47 UJ						
gamma-BHC (Lindane)	ug/kg	2500										< 0.51 U			< 0.47 UJ						
Heptachlor	ug/kg	630										< 0.51 U			< 0.47 U						
Heptachlor Epoxide	ug/kg	330										< 0.51 U			< 0.47 UJ						
Methoxychlor	ug/kg	410000										< 1.0 U			< 0.94 U						
Toxaphene	ug/kg	2100										< 20 U			< 19 U						
trans-Chlordane	ug/kg	7700										< 0.51 U			< 0.47 U						
Aroclor-1016	ug/kg			< 4.9 U	< 5.2 U	< 5.4 U	< 4.8 U	< 4.9 U	< 5.1 U	< 2.9 U	< 3.2 U	< 5.1 U	< 5.1 U	< 4.5 U	< 4.7 U	< 4.6 U	< 4.9 U	< 11 U	< 0.95 U	< 4.5 U	< 9.1 U
Aroclor-1221	ug/kg			< 4.9 U	< 5.2 U	< 5.4 U	< 4.8 U	< 4.9 U	< 5.1 U	< 2.9 U	< 3.2 U	< 5.1 U	< 5.1 U	< 4.5 U	< 4.7 U	< 4.6 U	< 4.9 U	< 11 U	< 0.95 U	< 4.5 U	< 9.1 U
Aroclor-1232	ug/kg			< 4.9 U	< 5.2 U	< 5.4 U	< 4.8 U	< 4.9 U	< 5.1 U	< 2.9 U	< 3.2 U	< 5.1 U	< 5.1 U	< 4.5 U	< 4.7 U	< 4.6 U	< 4.9 U	< 11 U	< 0.95 U	< 4.5 U	< 9.1 U
Aroclor-1242	ug/kg			< 4.9 U	< 5.2 U	< 5.4 U	< 4.8 U	< 4.9 U	< 5.1 U	< 2.9 U	< 3.2 U	< 5.1 U	< 5.1 U	< 4.5 U	< 4.7 U	< 4.6 U	< 4.9 U	< 11 U	< 0.95 U	< 4.5 U	< 9.1 U
Aroclor-1248	ug/kg			79 J	< 5.2 U	480 J+	50 J+	< 4.9 U	< 5.1 U	< 2.9 U	< 3.2 U	< 5.1 U	< 5.1 U	< 4.5 U	< 4.7 U	< 4.6 U	4.0 J	< 11 U	< 0.95 U	95 J+	1700 J+
Aroclor-1254	ug/kg			< 4.9 U	< 5.2 U	370 J+	30 J+	< 4.9 U	< 5.1 U	400 J	< 3.2 UJ	< 5.1 U	< 5.1 U	< 4.5 U	< 4.7 U	< 4.6 U	< 4.9 U	< 11 U	< 0.95 U	120 J+	310 J+
Aroclor-1260	ug/kg			65 J	< 5.2 U	120 J+	23 J+	140 J+	< 5.1 U	200 J+	130	< 5.1 U	< 5.1 U	< 4.5 U	< 4.7 U	< 4.6 U	5.9	9.4 J	< 0.95 U	93 J+	170 J+
Aroclor-1262	ug/kg			< 4.9 U	< 5.2 U	< 5.4 U	< 4.8 U	< 4.9 U	< 5.1 U	< 2.9 U	< 3.2 U	< 5.1 U	< 5.1 U	< 4.5 U	< 4.7 U	< 4.6 U	< 4.9 U	< 11 U	< 0.95 U	< 4.5 U	< 9.1 U
Aroclor-1268	ug/kg			< 4.9 U	< 5.2 U	< 5.4 U	< 4.8 U	< 4.9 U	< 5.1 U	< 2.9 U	< 3.2 U	< 5.1 U	< 5.1 U	< 4.5 U	< 4.7 U	< 4.6 U	< 4.9 U	< 11 U	< 0.95 U	16 J+	< 9.1 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970	_	140	< 5.2 U	970	100	140	< 5.1 U	600	130	< 5.1 U	< 5.1 U	< 4.5 U	< 4.7 U	< 4.6 U	9.9	9.4	< 0.95 U	320	2200

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

											1										,
			Location ID	SUSDP10-3X	SUSDP10-3X	SUSDP10-3X	SUSDP10-4E	SUSDP10-4NW	SUSDP10-4NW	SUSDP10-4NW	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11	SUSDP11-1A	SUSDP11-1A	SUSDP11-1A	SUSDP11-1A	SUSDP11-1A
			Sample Date	8/8/2017	8/8/2017	8/8/2017	2/1/2018	1/30/2018	1/30/2018	1/30/2018	5/14/2013	5/28/2013	5/28/2013	1/25/2017	1/25/2017	1/25/2017	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018
			Sample ID	DPS103X02N	DPS103X03N	DPS103X04N	DPS104E01N	DPS104NW01N	DPS104NW02N	DPS104NW03N	DPS1105N	DPS1110N	DPS1115N	DPS11F01N	DPS11F02-05N	DPS11F05-10N	DPS111A01N	DPS111A02N	DPS111A03N	DPS111A04N	DPS111A05N
			Depth	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																			
		Screening																			
Analyte	Unit	Criteria																			
	ug/kg	2500									0.085 J										
	ug/kg	9300									0.018 J										
	ug/kg	8500									0.085 J										
	ug/kg	180									0.034 J										
	ug/kg	360									< 0.099 U										
	ug/kg	1300									< 0.099 U										
	ug/kg	7700									< 0.099 U										
	ug/kg	360									< 0.099 U										
	ug/kg	140									0.036 J										
	ug/kg	700000									< 0.099 U										
	ug/kg	700000									< 0.099 U										
	ug/kg	700000									0.076 J										
	ug/kg	25000									0.18										
·	ug/kg	25000									< 0.099 U										
	ug/kg	25000									< 0.099 U										
gamma-BHC (Lindane)	ug/kg	2500									0.035 J										
Heptachlor	ug/kg	630									< 0.099 U										
Heptachlor Epoxide	ug/kg	330									< 0.099 U										
Methoxychlor	ug/kg	410000									< 0.20 U										
Toxaphene	ug/kg	2100									< 4.0 U										
trans-Chlordane	ug/kg	7700									< 0.099 U										
Aroclor-1016	ug/kg			< 9.9 U	< 10 U	< 10 U	< 0.95 U	< 0.93 U	< 0.93 U	< 0.93 U	< 0.99 U	< 5.2 U	< 4.8 U	< 430 U	< 5.0 U	< 1.0 U	< 930 U	< 940 U	< 1000 U	< 1200 U	< 97 U
Aroclor-1221	ug/kg			< 9.9 U	< 10 U	< 10 U	< 0.95 U	< 0.93 U	< 0.93 U	< 0.93 U	< 0.99 U	< 5.2 U	< 4.8 U	< 430 U	< 5.0 U	< 1.0 U	< 930 U	< 940 U	< 1000 U	< 1200 U	< 97 U
Aroclor-1232	ug/kg			< 9.9 U	< 10 U	< 10 U	< 0.95 U	< 0.93 U	< 0.93 U	< 0.93 U	< 0.99 U	< 5.2 U	< 4.8 U	< 430 U	< 5.0 U	< 1.0 U	< 930 U	< 940 U	< 1000 U	< 1200 U	< 97 U
Aroclor-1242	ug/kg			< 9.9 U	< 10 U	< 10 U	< 0.95 U	< 0.93 U	< 0.93 U	< 0.93 U	< 0.99 U	< 5.2 U	< 4.8 U	< 430 U	< 5.0 U	< 1.0 U	< 930 U	< 940 U	< 1000 U	< 1200 U	< 97 U
Aroclor-1248	ug/kg			1300	600 J	330 J+	1.0 J+	< 0.93 U	< 0.93 U	< 0.93 U	< 0.99 U	< 5.2 U	< 4.8 U	< 430 U	< 5.0 U	< 1.0 U	< 930 U	< 940 U	< 1000 U	< 1200 U	< 97 U
Aroclor-1254	ug/kg			< 9.9 U	600 J+	89 J+	0.65 J+	69 J+	49 J+	< 0.93 U	< 0.99 U	< 5.2 U	< 4.8 U	< 430 U	< 5.0 U	< 1.0 U	< 930 U	< 940 U	< 1000 U	< 1200 U	< 97 U
Aroclor-1260	ug/kg			570	720 J+	110 J+	0.59 J+	99 J+	51 J+	12	1.9	< 5.2 U	3.5 J	11000	1400	< 1.0 U	10000	7600	9100	14000	5500
Aroclor-1262	ug/kg			< 9.9 U	< 10 U	< 10 U	< 0.95 U	< 0.93 U	< 0.93 U	< 0.93 U	< 0.99 U	< 5.2 U	< 4.8 U	< 430 U	< 5.0 U	< 1.0 U	< 930 U	< 940 U	< 1000 U	< 1200 U	< 97 U
Aroclor-1268	ug/kg			< 9.9 U	< 10 U	< 10 U	< 0.95 U	< 0.93 U	< 0.93 U	< 0.93 U	< 0.99 U	< 5.2 U	< 4.8 U	< 430 U	< 5.0 U	< 1.0 U	< 930 U	< 940 U	< 1000 U	< 1200 U	< 97 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		1900	1900	530	2.2	170	100	12	1.9	< 5.2 U	3.5	11000	1400	< 1 U	10000	7600	9100	14000	5500

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDP11-1A	SUSDP11-1B	SUSDP11-1B	SUSDP11-1B	SUSDP11-1B	SUSDP11-1B	SUSDP11-1H	SUSDP11-1H	SUSDP11-1H	SUSDP11-1H	SUSDP11-1H	SUSDP11-2A	SUSDP11-2A	SUSDP11-2A	SUSDP11-2A	SUSDP11-2A	SUSDP11-2D	SUSDP11-2N
			Sample Date	3/28/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	3/16/2018	4/5/2018	4/6/2018
			Sample ID	DPS111A06N	DPS111B01N	DPS111B02N	DPS111B03N	DPS111B04N	DPS111B05N	DPS111H01N	DPS111H02N	DPS111H03N	DPS111H04N	DPS111H05N	DPS112A01N	DPS112A02N	DPS112A03N	DPS112A04N	DPS112A05N	DPS112D01N	DPS112N01N
			Depth	6 - 7 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	1 - 2 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project Screening																			
Analyte	Unit	Criteria																			
4,4'-DDD	ug/kg	2500																			
4,4'-DDE	ug/kg	9300																			
4,4'-DDT	ug/kg	8500																			
Aldrin	ug/kg	180																			
alpha-BHC	ug/kg	360																			
beta-BHC	ug/kg	1300																			
cis-Chlordane	ug/kg	7700																			
delta-BHC	ug/kg	360																			
Dieldrin	ug/kg	140																			
Endosulfan I	ug/kg	700000																			
Endosulfan II	ug/kg	700000																			
Endosulfan Sulfate	ug/kg	700000																			
Endrin	ug/kg	25000																			
Endrin aldehyde	ug/kg	25000																			
Endrin ketone	ug/kg	25000																			
gamma-BHC (Lindane)	ug/kg	2500																			
Heptachlor	ug/kg	630																			
Heptachlor Epoxide	ug/kg	330																			
Methoxychlor	ug/kg	410000																			
Toxaphene	ug/kg	2100																			
trans-Chlordane	ug/kg	7700																			
Aroclor-1016	ug/kg			< 8.7 U	< 9.0 U	< 9.0 U	< 0.86 U	< 9.0 U	< 8.6 U	< 92 U	< 9.5 U	< 9.3 U	< 0.92 U	< 9.7 U	< 9.4 U	< 9.0 U	< 9.1 U	< 8.8 U	< 9.1 U	< 9.5 U	< 9.7 U
Aroclor-1221	ug/kg			< 8.7 U	< 9.0 U	< 9.0 U	< 0.86 U	< 9.0 U	< 8.6 U	< 92 U	< 9.5 U	< 9.3 U	< 0.92 U	< 9.7 U	< 9.4 U	< 9.0 U	< 9.1 U	< 8.8 U	< 9.1 U	< 9.5 U	< 9.7 U
Aroclor-1232	ug/kg			< 8.7 U	< 9.0 U	< 9.0 U	< 0.86 U	< 9.0 U	< 8.6 U	< 92 U	< 9.5 U	< 9.3 U	< 0.92 U	< 9.7 U	< 9.4 U	< 9.0 U	< 9.1 U	< 8.8 U	< 9.1 U	< 9.5 U	< 9.7 U
Aroclor-1242	ug/kg			< 8.7 U	< 9.0 U	< 9.0 U	< 0.86 U	< 9.0 U	< 8.6 U	< 92 U	< 9.5 U	< 9.3 U	< 0.92 U	< 9.7 U	< 9.4 U	< 9.0 U	< 9.1 U	< 8.8 U	< 9.1 U	< 9.5 U	< 9.7 U
Aroclor-1248	ug/kg			< 8.7 U	< 9.0 U	< 9.0 U	< 0.86 U	< 9.0 U	< 8.6 U	< 92 U	< 9.5 U	< 9.3 U	< 0.92 U	< 9.7 U	< 9.4 U	< 9.0 U	< 9.1 U	< 8.8 U	< 9.1 U	< 9.5 U	< 9.7 U
Aroclor-1254	ug/kg			< 8.7 U	< 9.0 U	< 9.0 U	< 0.86 U	< 9.0 U	< 8.6 U	< 92 U	< 9.5 U	< 9.3 U	< 0.92 U	< 9.7 U	< 9.4 U	< 9.0 U	< 9.1 U	< 8.8 U	< 9.1 U	< 9.5 U	< 9.7 U
Aroclor-1260	ug/kg			370	2000	1300	5.5	640	24	5700	1500	150	19	96	2700 J+	650	44	53	71	940 J+	760
Aroclor-1262	ug/kg			< 8.7 U	< 9.0 U	< 9.0 U	< 0.86 U	< 9.0 U	< 8.6 U	< 92 U	< 9.5 U	< 9.3 U	< 0.92 U	< 9.7 U	< 9.4 U	< 9.0 U	< 9.1 U	< 8.8 U	< 9.1 U	< 9.5 U	< 9.7 U
Aroclor-1268	ug/kg			< 8.7 U	< 9.0 U	< 9.0 U	< 0.86 U	< 9.0 U	< 8.6 U	< 92 U	< 9.5 U	< 9.3 U	< 0.92 U	< 9.7 U	< 9.4 U	< 9.0 U	< 9.1 U	< 8.8 U	< 9.1 U	< 9.5 U	< 9.7 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		370	2000	1300	5.5	640	24	5700	1500	150	19	96	2700	650	44	53	71	940	760

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

				1			Т			1	T	1	1	1	T	I	T	Т	T	1	
			Location I	_		SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12	SUSDP12-1A	SUSDP12-1A	SUSDP12-1A		SUSDP12-1C					SUSDP12-1E
			Sample Da		6/13/2013	6/13/2013	6/13/2013	1/26/2017	1/26/2017	1/30/2017	1/30/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	8/11/2017	8/11/2017
			Sample I		DPS1205N	DPS1210N	DPS1215N	DPS12F01N	DPS12F02-05N	DPS12F05-10N		DPS121A01N	DPS121A02N	DPS121A03N	DPS121A04N	DPS121C01N	DPS121C02N	DPS121C03N	DPS121C04N	DPS121E02N	DPS121E03N
			Dep	th 2 - 3 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	2 - 3 ft	3 - 4 ft
	1		Тур	oe N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																			'
	11.70	Screening																			'
Analyte 4,4'-DDD	Unit ug/kg	Criteria 2500																			 '
4,4'-DDE	ug/kg ug/kg	9300			+																<u>-</u>
4,4'-DDT	ug/kg ug/kg	8500			+																 '
Aldrin	ug/kg	180			+																ļ
		360			+																<u>-</u>
alpha-BHC beta-BHC	ug/kg ug/kg	1300																			
cis-Chlordane	ug/kg ug/kg	7700																			 '
delta-BHC	ug/kg ug/kg	360																			 '
Dieldrin		140																			 '
Endosulfan I	ug/kg	700000																			-
Endosulfan II	ug/kg	700000																			<u> </u>
Endosulfan Sulfate	ug/kg	700000																			 '
	ug/kg																				<u> </u>
Endrin	ug/kg	25000				1		1													<u> </u>
Endrin aldehyde	ug/kg	25000 25000																			<u> </u>
Endrin ketone gamma-BHC (Lindane)	ug/kg	25000																			-
, ,	ug/kg					1		1													ļ
Heptachlor	ug/kg	630 330				1		1													<u> </u>
Heptachlor Epoxide	ug/kg	410000																			-
Methoxychlor	ug/kg																				-
Toxaphene trans Chlordone	ug/kg	2100																			<u> </u>
trans-Chlordane Aroclor-1016	ug/kg	7700		< 19 U	< 4.6 U	< 5.1 U	< 5.4 U	< 0.95 U	< 4.5 U	< 9.2 U	< 1.1 U	< 11 U	< 1.1 U	< 1.0 U	< 0.94 U	< 9.3 U	< 0.97 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Aroclor-1016 Aroclor-1221	ug/kg ug/kg	+		< 19 U	< 4.6 U	< 5.1 U	< 5.4 U	< 0.95 U	< 4.5 U	< 9.2 U	< 1.1 U	< 11 U	< 1.1 U	< 1.0 U	< 0.94 U	< 9.3 U	< 0.97 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Aroclor-1232		-		< 19 U	< 4.6 U	< 5.1 U	< 5.4 U	< 0.95 U	< 4.5 U	< 9.2 U	< 1.1 U	< 11 U	< 1.1 U	< 1.0 U	< 0.94 U	< 9.3 U	< 0.97 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Aroclor-1242	ug/kg ug/kg	-		< 19 U	< 4.6 U	< 5.1 U	< 5.4 U	< 0.95 U	< 4.5 U	< 9.2 U	< 1.1 U	< 11 U	< 1.1 U	< 1.0 U	< 0.94 U	< 9.3 U	< 0.97 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Aroclor-1248	ug/kg ug/kg			< 19 U	99 J	< 5.1 U	< 5.4 U	< 0.95 U	< 4.5 U	< 9.2 U	< 1.1 U	< 11 U	< 1.1 U	< 1.0 U	< 0.94 U	< 9.3 U	< 0.97 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Aroclor-1254		-		< 19 U	< 4.6 U	< 5.1 U	< 5.4 U	< 0.95 U	< 4.5 U	21 J+	5.3 J+	< 11 U	< 1.1 U	0.87 J	< 0.94 U	< 9.3 U	< 0.97 U	< 1.0 U	3.1 J+	< 1.0 U	< 1.0 U
Aroclor-1260	ug/kg ug/kg	-		1200 J+	290 J	< 5.1 U	< 5.4 U	70.95 U	750 J+	140 J+	9.9 J+	54	< 1.1 U	< 1.0 U	< 0.94 U	< 9.3 U	5.7 J+	44 J+	5.0 J+	9.2 J+	0.86 J
Aroclor-1262		-		< 19 U	< 4.6 U	< 5.1 U	< 5.4 U	< 0.95 U	< 4.5 U	< 9.2 U	9.9 J+ < 1.1 U	< 11 U	< 1.1 U	< 1.0 U	< 0.94 U	< 9.3 U	5.7 J+ < 0.97 U	< 1.0 U	< 1.0 U	9.2 J+ < 1.0 U	< 1.0 U
Aroclor-1268	ug/kg			< 19 U	< 4.6 U	< 5.1 U	< 5.4 U	25 J+	300 J+	56 J+	3.3 J+	< 11 U	< 1.1 U	< 1.0 U	< 0.94 U	< 9.3 U	0.68 J+	21 J+	1.6 J+	1.2 J+	< 1.0 U
	ug/kg	070										_						_			
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		1200	390	< 5.1 U	< 5.4 U	95	1100	220	19	54	< 1.1 U	0.87	< 0.94 U	< 9.3 U	6.4	65	9.7	10	0.86

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

<u>-</u>					1	1	1		1	•			_			1		T		1	
		Loc	ation ID	SUSDP12-1E	SUSDP12-1G	SUSDP12-1G	SUSDP12-1G	SUSDP13	SUSDP13	SUSDP13	SUSDP14	SUSDP14	SUSDP14	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15	SUSDP15-1C
		Samp	le Date	8/11/2017	8/11/2017	8/11/2017	8/11/2017	5/20/2013	5/29/2013	5/29/2013	5/22/2013	6/6/2013	6/6/2013	5/21/2013	6/6/2013	6/10/2013	1/30/2017	1/30/2017	2/2/2017	2/2/2017	8/14/2017
		Sai	mple ID	DPS121E04N	DPS121G02N	DPS121G03N	DPS121G04N	DPS1305N	DPS1310N	DPS1315N	DPS1403N	DPS1410N	DPS1415N	DPS1504N	DPS1510N	DPS1515N	DPS15F01N	DPS15F02-05N	DPS15F05-10N	DPS15F10-15N	DPS151C01N
			Depth	4 - 5 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	3.5 - 4.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	1 - 2 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																			
		Screening																			
Analyte 4,4'-DDD	Unit ug/kg	Criteria 2500																			-
4,4'-DDE		9300																			-
4,4'-DDT	ug/kg ug/kg	8500																			-
Aldrin	ug/kg ug/kg	180																			-
alpha-BHC	ug/kg	360																			-
beta-BHC	ug/kg ug/kg	1300																			-
cis-Chlordane	ug/kg	7700																			
delta-BHC	ug/kg	360																			-
Dieldrin	ug/kg	140																			
Endosulfan I	ug/kg	700000																			-
Endosulfan II	ug/kg	700000															+				
Endosulfan Sulfate	ug/kg	700000																			
Endrin	ug/kg	25000															+				
Endrin aldehyde	ug/kg	25000																			+
Endrin ketone	ug/kg	25000																			
gamma-BHC (Lindane)	ug/kg	2500																			+
Heptachlor	ug/kg	630																			+
Heptachlor Epoxide	ug/kg	330																			1
Methoxychlor	ug/kg	410000																			
Toxaphene	ug/kg	2100																			+
trans-Chlordane	ug/kg	7700																			+
Aroclor-1016	ug/kg			< 1.1 U	< 0.92 U	< 0.99 U	< 1.0 U	< 4.8 U	< 4.6 U	< 5.3 U	< 5.1 U	< 5.2 U	< 5.1 U	< 4.9 U	< 5.2 U	< 5.3 U	< 9.2 U	< 0.97 U	< 1.0 U	< 1.1 U	< 9.3 U
Aroclor-1221	ug/kg			< 1.1 U	< 0.92 U	< 0.99 U	< 1.0 U	< 4.8 U	< 4.6 U	< 5.3 U	< 5.1 U	< 5.2 U	< 5.1 U	< 4.9 U	< 5.2 U	< 5.3 U	< 9.2 U	< 0.97 U	< 1.0 U	< 1.1 U	< 9.3 U
Aroclor-1232	ug/kg			< 1.1 U	< 0.92 U	< 0.99 U	< 1.0 U	< 4.8 U	< 4.6 U	< 5.3 U	< 5.1 U	< 5.2 U	< 5.1 U	< 4.9 U	< 5.2 U	< 5.3 U	< 9.2 U	< 0.97 U	< 1.0 U	< 1.1 U	< 9.3 U
Aroclor-1242	ug/kg			< 1.1 U	< 0.92 U	< 0.99 U	< 1.0 U	< 4.8 U	< 4.6 U	< 5.3 U	< 5.1 U	< 5.2 U	< 5.1 U	< 4.9 U	< 5.2 U	< 5.3 U	150 J+	< 0.97 U	< 1.0 U	< 1.1 U	< 9.3 U
Aroclor-1248	ug/kg		İ	< 1.1 U	< 0.92 U	< 0.99 U	41 J+	< 4.8 U	9.4	< 5.3 U	180 J	< 5.2 U	< 5.1 U	170 J	420 J	96	< 9.2 U	< 0.97 U	< 1.0 U	< 1.1 U	170 J+
Aroclor-1254	ug/kg			< 1.1 U	2.9 J+	< 0.99 U	83 J+	< 4.8 U	< 4.6 U	< 5.3 U	< 5.1 U	< 5.2 U	< 5.1 U	< 4.9 U	< 5.2 U	< 5.3 U	190 J	40 J+	< 1.0 U	< 1.1 U	230 J+
Aroclor-1260	ug/kg			< 1.1 U	1.6 J+	< 0.99 U	310 J+	4.1 J	3.6 J	< 5.3 U	530 J	< 5.2 U	< 5.1 U	400 J	720 J	280	940 J+	300 J+	160	< 1.1 U	510 J+
Aroclor-1262	ug/kg			< 1.1 U	< 0.92 U	< 0.99 U	< 1.0 U	< 4.8 U	< 4.6 U	< 5.3 U	< 5.1 U	< 5.2 U	< 5.1 U	< 4.9 U	< 5.2 U	< 5.3 U	< 9.2 U	< 0.97 U	< 1.0 U	< 1.1 U	< 9.3 U
Aroclor-1268	ug/kg			< 1.1 U	0.41 J+	< 0.99 U	< 1.0 U	< 4.8 U	< 4.6 U	< 5.3 U	< 5.1 U	< 5.2 U	< 5.1 U	< 4.9 U	< 5.2 U	< 5.3 U	< 9.2 U	< 0.97 U	< 1.0 U	< 1.1 U	< 9.3 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		< 1.1 U	4.9	< 0.99 U	430	4.1	13	< 5.3 U	710	< 5.2 U	< 5.1 U	570	1100	380	1300	300	160	< 1.1 U	910

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP15-1C	CUCDD15 10	SUSDP15-1C	SUSDP15-1C	SUSDP15-1C	SUSDP15-1G	SUSDP15-1G	SUSDP15-1G	SUSDP16	SUSDP16	SUSDP16	SUSDP16	SUSDP17	SUSDP17	SUSDP17	SUSDP18	SUSDP18	SUSDP18	SUSDP18
			Sample Date		8/14/2017	8/14/2017	8/22/2017	8/22/2017	8/15/2017 DDC454C04N	8/30/2017	8/30/2017	5/15/2013	6/10/2013	6/10/2013 DDC4645N	6/10/2013 DDC4645D	5/23/2013	6/11/2013	6/11/2013 DDC4745N	5/23/2013	6/4/2013	6/4/2013	1/26/2017
			Sample ID	DPS151C01R	DPS151C02N	DPS151C03N	DPS151C09N	DPS151C10N	DPS151G01N	DPS151G09N	DPS151G10N	DPS1605N	DPS1610N	DPS1615N	DPS1615R	DPS1705N	DPS1710N	DPS1715N	DPS1803N	DPS1810N	DPS1818N	DPS18F01N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	9 - 10 ft	10 - 11 ft	1 - 2 ft	9 - 10 ft	10 - 11 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	14.5 - 15.5 ft FD	4.5 - 5.5 ft	9.5 - 10.5 ft	14 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	17.5 - 18.5 ft	1 - 2 ft
		T	Туре	FD	N	N	IN	N	N	N	N	N	IN .	IN	FD	IN	IN	IN .	N	IN	N	- IN
		Project Screening																				
Analyte	Unit	Criteria																				
4,4'-DDD	ug/kg	2500														< 0.092 U			< 0.089 U			
4,4'-DDE	ug/kg	9300														< 0.092 U			< 0.089 U			
4,4'-DDT	ug/kg	8500														0.052 J			0.12			+
Aldrin	ug/kg	180														< 0.092 U			< 0.089 U			
alpha-BHC	ug/kg	360														< 0.092 U			< 0.089 U			+
beta-BHC	ug/kg	1300														< 0.092 U			< 0.089 U			
cis-Chlordane	ug/kg	7700														< 0.092 U			< 0.089 U			
delta-BHC	ug/kg	360														< 0.092 U			< 0.089 U			
Dieldrin	ug/kg	140														< 0.092 U			0.028 J			
Endosulfan I	ug/kg	700000														< 0.092 U			< 0.089 U			
Endosulfan II	ug/kg	700000														< 0.092 U			0.020 J			
Endosulfan Sulfate	ug/kg	700000														0.018 J			0.037 J			
Endrin	ug/kg	25000														0.036 J			< 0.089 U			
Endrin aldehyde	ug/kg	25000														< 0.092 U			< 0.089 U			1
Endrin ketone	ug/kg	25000														0.050 J			< 0.089 U			
gamma-BHC (Lindane)	ug/kg	2500														< 0.092 U			0.023 J			
Heptachlor	ug/kg	630														< 0.092 U			< 0.089 U			1
Heptachlor Epoxide	ug/kg	330														< 0.092 U			0.025 J			
Methoxychlor	ug/kg	410000														< 0.18 U			0.046 J			
Toxaphene	ug/kg	2100														< 3.7 U			< 3.6 U			
trans-Chlordane	ug/kg	7700														0.020 J			0.023 J			
Aroclor-1016	ug/kg			< 9.7 U	< 9.9 U	< 9.6 U	< 9.7 U	< 9.7 U	< 0.95 U	< 9.9 U	< 9.7 U	< 0.97 U	< 4.7 U	< 4.5 U	< 4.6 U	< 4.6 U	< 4.5 U	< 4.7 U	< 4.4 U	< 4.7 U	< 4.7 U	< 0.90 U
Aroclor-1221	ug/kg			< 9.7 U	< 9.9 U	< 9.6 U	< 9.7 U	< 9.7 U	< 0.95 U	< 9.9 U	< 9.7 U	< 0.97 U	< 4.7 U	< 4.5 U	< 4.6 U	< 4.6 U	< 4.5 U	< 4.7 U	< 4.4 U	< 4.7 U	< 4.7 U	< 0.90 U
Aroclor-1232	ug/kg			< 9.7 U	< 9.9 U	< 9.6 U	< 9.7 U	< 9.7 U	< 0.95 U	< 9.9 U	< 9.7 U	< 0.97 U	< 4.7 U	< 4.5 U	< 4.6 U	< 4.6 U	< 4.5 U	< 4.7 U	< 4.4 U	< 4.7 U	< 4.7 U	< 0.90 U
Aroclor-1242	ug/kg			< 9.7 U	< 9.9 U	150 J+	< 9.7 U	< 9.7 U	< 0.95 U	< 9.9 U	< 9.7 U	< 0.97 U	< 4.7 U	< 4.5 U	< 4.6 U	< 4.6 U	< 4.5 U	< 4.7 U	< 4.4 U	< 4.7 U	< 4.7 U	< 0.90 U
Aroclor-1248	ug/kg			160 J+	180 J+	< 9.6 U	< 9.7 U	< 9.7 U	53 J+	< 9.9 U	< 9.7 U	< 0.97 U	< 4.7 U	< 4.5 U	< 4.6 U	< 4.6 U	< 4.5 U	< 4.7 U	< 4.4 U	< 4.7 U	< 4.7 U	< 0.90 U
Aroclor-1254	ug/kg			310 J+	320 J+	150 J+	< 9.7 U	< 9.7 U	97 J+	< 9.9 U	46 J+	< 0.97 U	< 4.7 U	< 4.5 U	< 4.6 U	< 4.6 U	< 4.5 U	< 4.7 U	< 4.4 U	< 4.7 U	< 4.7 U	< 0.90 U
Aroclor-1260	ug/kg			550 J+	710 J+	210 J+	180	< 9.7 U	210 J+	< 9.9 U	50 J+	< 0.97 U	< 4.7 U	< 4.5 U	< 4.6 U	< 4.6 U	< 4.5 U	< 4.7 U	4.6	< 4.7 U	< 4.7 U	150
Aroclor-1262	ug/kg			< 9.7 U	< 9.9 U	< 9.6 U	< 9.7 U	< 9.7 U	< 0.95 U	< 9.9 U	< 9.7 U	< 0.97 U	< 4.7 U	< 4.5 U	< 4.6 U	< 4.6 U	< 4.5 U	< 4.7 U	< 4.4 U	< 4.7 U	< 4.7 U	< 0.90 U
Aroclor-1268	ug/kg			< 9.7 U	< 9.9 U	< 9.6 U	< 9.7 U	< 9.7 U	< 0.95 U	< 9.9 U	29 J+	< 0.97 U	< 4.7 U	< 4.5 U	< 4.6 U	< 4.6 U	< 4.5 U	< 4.7 U	< 4.4 U	< 4.7 U	< 4.7 U	< 0.90 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		1000	1200	510	180	< 9.7 U	360	< 9.9 U	130	< 0.97 U	< 4.7 U	< 4.5 U	< 4.6 U	< 4.6 U	< 4.5 U	< 4.7 U	4.6	< 4.7 U	< 4.7 U	150

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDP18	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP19	SUSDP20	SUSDP20	SUSDP20	SUSDP20	SUSDP20	SUSDP21	SUSDP21	SUSDP21
			Sample Date	1/26/2017	5/23/2013	5/23/2013	6/5/2013	6/5/2013	6/5/2013	1/30/2017	1/30/2017	2/8/2017	2/8/2017	5/30/2013	6/12/2013	6/12/2013	1/27/2017	1/27/2017	1/27/2017	1/27/2017	2/2/2017
			Sample ID	DPS18F02-05N	DPS1902N	DPS1902R	DPS1910N	DPS1915N	DPS1915R	DPS19F01N	DPS19F02-05N	DPS19F05-10N	DPS19F10-15N	DPS2005N	DPS2010N	DPS2018N	DPS20F01N	DPS20F02-05N	DPS21F01N	DPS21F02-05N	DPS21F05-10N
			Depth	2 - 5 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	17.5 - 18.5 ft	1 - 2 ft	2 - 5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft
			Туре	2-31t N	N N	FD	9.5 - 10.5 It	N N	FD	N N	N N	N N	N	4.5 - 5.5 It	9.5 - 10.5 It	17.5 - 10.5 It	N N	N N	N N	N N	N N
		Project	. , , , ,		.,			.,		.,	.,	.,		,,							1
		Screening																			1
Analyte	Unit	Criteria																			!
4,4'-DDD	ug/kg	2500			2.3 J	1.6 J															
4,4'-DDE	ug/kg	9300			< 0.96 U	< 0.92 U															
4,4'-DDT	ug/kg	8500			12 J	7.8 J															
Aldrin	ug/kg	180			1.3 J	< 0.92 U															
alpha-BHC	ug/kg	360			< 0.96 U	< 0.92 U															
beta-BHC	ug/kg	1300			1.2 J	< 0.92 U															
cis-Chlordane	ug/kg	7700			< 0.96 U	< 0.92 U															
delta-BHC	ug/kg	360			2.0 J	0.49 J															
Dieldrin	ug/kg	140			3.5 J	2.2 J															
Endosulfan I	ug/kg	700000			< 0.96 U	< 0.92 U															
Endosulfan II	ug/kg	700000			2.1 J	1.2 J															
Endosulfan Sulfate	ug/kg	700000			1.9 J	1.6 J															
Endrin	ug/kg	25000			3.9 J	2.5 J															
Endrin aldehyde	ug/kg	25000			2.2 J	0.40 J															
Endrin ketone	ug/kg	25000			< 0.96 U	< 0.92 U															
gamma-BHC (Lindane)	ug/kg	2500			2.9 J	1.4 J															
Heptachlor	ug/kg	630			1.2 J	< 0.92 U															
Heptachlor Epoxide	ug/kg	330			0.48 J	< 0.92 U															
Methoxychlor	ug/kg	410000			36 J	21 J															
Toxaphene	ug/kg	2100			< 38 U	< 37 U															
trans-Chlordane	ug/kg	7700			1.5 J	1.3 J															
Aroclor-1016	ug/kg			< 0.89 U	< 4.8 U	< 4.7 U	< 9.5 U	< 4.7 U	< 4.9 U	< 0.92 U	< 0.92 U	< 10 U	< 4.6 UJ	< 5.2 U	< 4.8 U	< 4.8 U	< 0.98 U	< 1.1 U	< 9.8 U	< 9.2 U	< 1.1 U
Aroclor-1221	ug/kg			< 0.89 U	< 4.8 U	< 4.7 U	< 9.5 U	< 4.7 U	< 4.9 U	< 0.92 U	< 0.92 U	< 10 U	< 4.6 UJ	< 5.2 U	< 4.8 U	< 4.8 U	< 0.98 U	< 1.1 U	< 9.8 U	< 9.2 U	< 1.1 U
Aroclor-1232	ug/kg			< 0.89 U	< 4.8 U	< 4.7 U	< 9.5 U	< 4.7 U	< 4.9 U	< 0.92 U	< 0.92 U	< 10 U	< 4.6 UJ	< 5.2 U	< 4.8 U	< 4.8 U	< 0.98 U	< 1.1 U	< 9.8 U	< 9.2 U	< 1.1 U
Aroclor-1242	ug/kg			< 0.89 U	< 4.8 U	< 4.7 U	< 9.5 U	< 4.7 U	< 4.9 U	< 0.92 U	< 0.92 U	< 10 U	< 4.6 UJ	< 5.2 U	< 4.8 U	< 4.8 U	< 0.98 U	< 1.1 U	< 9.8 U	< 9.2 U	< 1.1 U
Aroclor-1248	ug/kg	1		< 0.89 U	16 J	12 J	< 9.5 U	< 4.7 U	< 4.9 U	< 0.92 U	< 0.92 U	< 10 U	< 4.6 UJ	< 5.2 U	< 4.8 U	< 4.8 U	< 0.98 U	< 1.1 U	430 J+	360 J+	< 1.1 U
Aroclor-1254	ug/kg	1		< 0.89 U	< 4.8 U	< 4.7 U	< 9.5 U	< 4.7 U	< 4.9 U	< 0.92 U	< 0.92 U	< 10 U	< 4.6 UJ	< 5.2 U	< 4.8 U	< 4.8 U	< 0.98 U	< 1.1 U	120 J+	250 J+	4.9 J+
Aroclor-1260	ug/kg	1		1.0	91 J	93 J	< 9.5 U	< 4.7 U	< 4.9 U	260	42 J+	< 10 U	< 4.6 UJ	< 5.2 U	7.4	< 4.8 U	< 0.98 U	< 1.1 U	450 J+	280 J+	4.8 J+
Aroclor-1262	ug/kg	1		< 0.89 U	< 4.8 U	< 4.7 U	< 9.5 U	< 4.7 U	< 4.9 U	< 0.92 U	< 0.92 U	< 10 U	< 4.6 UJ	< 5.2 U	< 4.8 U	< 4.8 U	< 0.98 U	< 1.1 U	< 9.8 U	< 9.2 U	< 1.1 U
Aroclor-1268	ug/kg	1		< 0.89 U	< 4.8 U	< 4.7 U	< 9.5 U	< 4.7 U	17	< 0.92 U	2.7 J+	< 10 U	< 4.6 UJ	< 5.2 U	< 4.8 U	< 4.8 U	< 0.98 U	< 1.1 U	< 9.8 U	< 9.2 U	< 1.1 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		1.0	110	110	< 9.5 U	< 4.7 U	17	260	45	< 10 U	< 4.6 U	< 5.2 U	7.4	< 4.8 U	< 0.98 U	< 1.1 U	1000	890	9.7

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP21-1C	SUSDP21-1C	SUSDP21-1C	SUSDP21-3A	SUSDP21-3A	SUSDP21-3G	SUSDP21-3G	SUSDP21-3M	SUSDP21-3M	SUSDP21-3T	SUSDP21-3T	SUSDP21-3T	SUSDP21-3V	SUSDP21-5W	SUSDP21-5W	SUSDP22	SUSDP22	SUSDP22
			Sample Date	8/24/2017	8/24/2017	8/24/2017	8/25/2017	8/25/2017	8/28/2017	8/28/2017	8/28/2017	8/28/2017	8/25/2017	8/25/2017	8/25/2017	8/25/2017	1/26/2018	1/26/2018	5/22/2013	6/12/2013	6/12/2013
				DPS211C01N	DPS211C02N	DPS211C03N	DPS213A01N	DPS213A02N	DPS213G01N	DPS213G02N	DPS213M01N	DPS213M02N	DPS213T01N	DPS213T02N	DPS213T03N	DPS213V01N		DPS215W02N	DPS2203N	DPS2210N	DPS2215N
			Depth	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft
			Type	 N	N	N	N N	N	N N	N N	N N	N N	N = 11	N N	N	N Z II	N = 11	N N	N	N	N
		Project	. 7/																		
		Screening																		, ,	1
Analyte	Unit	Criteria																		, ,	1
4,4'-DDD	ug/kg	2500																		,	
4,4'-DDE	ug/kg	9300																		,	
4,4'-DDT	ug/kg	8500																			
Aldrin	ug/kg	180																		,	
alpha-BHC	ug/kg	360																			
beta-BHC	ug/kg	1300																			
cis-Chlordane	ug/kg	7700																			
delta-BHC	ug/kg	360																			
Dieldrin	ug/kg	140																			
Endosulfan I	ug/kg	700000																		i	
Endosulfan II	ug/kg	700000																		i	
Endosulfan Sulfate	ug/kg	700000																		i	
Endrin	ug/kg	25000																		,	
Endrin aldehyde	ug/kg	25000																		,	
Endrin ketone	ug/kg	25000																		,	
gamma-BHC (Lindane)	ug/kg	2500																		,	
Heptachlor	ug/kg	630																		,	
Heptachlor Epoxide	ug/kg	330																		,	
Methoxychlor	ug/kg	410000																		,	
Toxaphene	ug/kg	2100																		,	
trans-Chlordane	ug/kg	7700																		ı 	
Aroclor-1016	ug/kg			< 95 U	< 11 U	< 10 U	< 8.9 U	< 8.9 U	< 9.6 U	< 9.5 U	< 94 U	< 9.4 U	< 9.2 U	< 9.3 U	< 9.0 U	< 8.9 U	< 4.6 U	< 9.2 U	< 4.8 U	< 5.0 U	< 5.0 U
Aroclor-1221	ug/kg			< 95 U	< 11 U	< 10 U	< 8.9 U	< 8.9 U	< 9.6 U	< 9.5 U	< 94 U	< 9.4 U	< 9.2 U	< 9.3 U	< 9.0 U	< 8.9 U	< 4.6 U	< 9.2 U	< 4.8 U	< 5.0 U	< 5.0 U
Aroclor-1232	ug/kg			< 95 U	< 11 U	< 10 U	< 8.9 U	< 8.9 U	< 9.6 U	< 9.5 U	< 94 U	< 9.4 U	< 9.2 U	< 9.3 U	< 9.0 U	< 8.9 U	< 4.6 U	< 9.2 U	< 4.8 U	< 5.0 U	< 5.0 U
Aroclor-1242	ug/kg			10000 J+	230	22	130	670	< 9.6 U	< 9.5 U	< 94 U	< 9.4 U	860 J+	730	< 9.0 U	< 8.9 U	< 4.6 U	< 9.2 U	< 4.8 U	< 5.0 U	< 5.0 U
Aroclor-1248	ug/kg			< 95 U	< 11 U	< 10 U	< 8.9 U	< 8.9 U	300	560	6900	88	< 9.2 U	< 9.3 U	< 9.0 U	< 8.9 U	< 4.6 U	< 9.2 U	< 4.8 U	< 5.0 U	15 J
Aroclor-1254	ug/kg			4800 J+	< 11 U	< 10 U	< 8.9 U	< 8.9 U	< 9.6 U	< 9.5 U	< 94 U	< 9.4 U	660 J+	< 9.3 U	30 J+	< 8.9 U	< 4.6 U	< 9.2 U	< 4.8 U	< 5.0 U	< 5.0 U
Aroclor-1260	ug/kg			2200 J+	73 J+	< 10 U	980 J+	190	< 9.6 U	< 9.5 U	9300	180	1400 J+	1100	40 J+	55	430	98	30	2.1 J	22 J
Aroclor-1262	ug/kg			< 95 U	< 11 U	< 10 U	< 8.9 U	< 8.9 U	< 9.6 U	< 9.5 U	< 94 U	< 9.4 U	< 9.2 U	< 9.3 U	< 9.0 U	< 8.9 U	< 4.6 U	< 9.2 U	< 4.8 U	< 5.0 U	< 5.0 U
Aroclor-1268	ug/kg	1		< 95 U	15 J+	< 10 U	74 J	< 8.9 U	< 9.6 U	< 9.5 U	< 94 U	< 9.4 U	< 9.2 U	< 9.3 U	< 9.0 U	< 8.9 U	< 4.6 U	< 9.2 U	< 4.8 U	< 5.0 U	41 J
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		17000	320	22	1200	860	300	560	16000	270	2900	1800	70	55	430	98	30	2.1	78

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

	•		Location ID SUSDP23	SUSDP23	SUSDP23	SUSDP24	SUSDP24	SUSDP24	SUSDP24	SUSDP24	SUSDP37	SUSDP37	SUSDP37	SUSDP37	SUSDP37	SUSDP39	SUSDP39	SUSDP39	SUSDP39	SUSDP39	SUSDP39
			Sample Date 5/28/2013	6/12/2013	6/12/2013	5/20/2013	5/20/2013	6/4/2013	6/4/2013	6/4/2013	5/16/2013	5/23/2013	5/23/2013	1/25/2017	1/25/2017	5/17/2013	5/22/2013	5/22/2013	1/25/2017	1/25/2017	1/26/2017
			Sample ID DPS2305N	DPS2310N	DPS2315N	DPS2405N	DPS2405R	DPS2410N	DPS2415N	DPS2410R	DPS3703N	DPS3710N	DPS3715N	DPS37F01N	DPS37F02-05N	DPS3903N	DPS3910N	DPS3915N	DPS39F01N	DPS39F02-05N	DPS39F05-10
			Depth 4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	4.5 - 5.5 ft	4.5 - 5.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	9.5 - 10.5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft
			Type N	N	N	N	FD	N	N	FD	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit	Project Screening Criteria																			
4,4'-DDD	ug/kg	2500				0.017 J	< 0.091 U														
1,4'-DDE	ug/kg	9300				0.029 J	0.026 J														
4,4'-DDT	ug/kg	8500				0.021 J	0.018 J														
Aldrin	ug/kg	180				< 0.091 U	< 0.091 U														
alpha-BHC	ug/kg	360				< 0.091 U	< 0.091 U														
beta-BHC	ug/kg	1300				< 0.091 U	< 0.091 U														
cis-Chlordane	ug/kg	7700				< 0.091 U	< 0.091 U														
delta-BHC	ug/kg	360				< 0.091 U	< 0.091 U														
Dieldrin	ug/kg	140				< 0.091 U	< 0.091 U														
Endosulfan I	ug/kg	700000				< 0.091 U	0.023 J														
Endosulfan II	ug/kg	700000				< 0.091 U	< 0.091 U														
Endosulfan Sulfate	ug/kg	700000				< 0.091 U	< 0.091 U														
Endrin	ug/kg	25000				0.038 J	0.030 J														
Endrin aldehyde	ug/kg	25000				< 0.091 UJ	< 0.091 U														
Endrin ketone	ug/kg	25000				0.024 J	< 0.091 U														
gamma-BHC (Lindane)	ug/kg	2500				0.027 J	0.030 J														
Heptachlor	ug/kg	630				< 0.091 U	< 0.091 U														
Heptachlor Epoxide	ug/kg	330				< 0.091 U	< 0.091 U														
Methoxychlor	ug/kg	410000				< 0.18 U	< 0.18 U														
Toxaphene	ug/kg	2100				< 3.7 U	< 3.6 U														
trans-Chlordane	ug/kg	7700				< 0.091 U	< 0.091 U														
Aroclor-1016	ug/kg		< 4.6 U	< 4.9 U	< 5.3 U	< 4.6 U	< 4.5 U	< 4.6 U	< 4.7 U	< 4.8 U	< 0.96 U	< 4.5 U	< 4.5 U	< 9.3 U	< 4.6 U	< 0.94 U	< 4.9 U	< 4.9 U	< 1.8 U	< 0.88 U	< 1.1 U
Aroclor-1221	ug/kg		< 4.6 U	< 4.9 U	< 5.3 U	< 4.6 U	< 4.5 U	< 4.6 U	< 4.7 U	< 4.8 U	< 0.96 U	< 4.5 U	< 4.5 U	< 9.3 U	< 4.6 U	< 0.94 U	< 4.9 U	< 4.9 U	< 1.8 U	< 0.88 U	< 1.1 U
Aroclor-1232	ug/kg		< 4.6 U	< 4.9 U	< 5.3 U	< 4.6 U	< 4.5 U	< 4.6 U	< 4.7 U	< 4.8 U	< 0.96 U	< 4.5 U	< 4.5 U	< 9.3 U	< 4.6 U	< 0.94 U	< 4.9 U	< 4.9 U	< 1.8 U	< 0.88 U	< 1.1 U
Aroclor-1242	ug/kg		< 4.6 U	< 4.9 U	< 5.3 U	< 4.6 U	< 4.5 U	< 4.6 U	< 4.7 U	< 4.8 U	< 0.96 U	< 4.5 U	< 4.5 U	< 9.3 U	< 4.6 U	< 0.94 U	< 4.9 U	< 4.9 U	< 1.8 U	< 0.88 U	< 1.1 U
Aroclor-1248	ug/kg		< 4.6 U	< 4.9 U	< 5.3 U	< 4.6 U	< 4.5 U	< 4.6 U	< 4.7 U	< 4.8 U	< 0.96 U	< 4.5 U	< 4.5 U	< 9.3 U	< 4.6 U	< 0.94 U	< 4.9 U	< 4.9 U	< 1.8 U	< 0.88 U	< 1.1 U
Aroclor-1254	ug/kg		< 4.6 U	< 4.9 U	< 5.3 U	< 4.6 U	< 4.5 U	< 4.6 U	< 4.7 U	< 4.8 U	2.7	< 4.5 U	< 4.5 U	< 9.3 U	< 4.6 U	38 J	< 4.9 U	< 4.9 U	< 1.8 U	< 0.88 U	< 1.1 U
Aroclor-1260	ug/kg		< 4.6 U	3.0 J	< 5.3 U	< 4.6 U	< 4.5 U	< 4.6 U	< 4.7 U	< 4.8 U	< 0.96 U	< 4.5 U	< 4.5 U	< 9.3 U	< 4.6 U	55 J	57	1.9 J	110	7.9 J+	< 1.1 U
Aroclor-1262	ug/kg		< 4.6 U	< 4.9 U	< 5.3 U	< 4.6 U	< 4.5 U	< 4.6 U	< 4.7 U	< 4.8 U	< 0.96 U	< 4.5 U	< 4.5 U	< 9.3 U	< 4.6 U	< 0.94 U	< 4.9 U	< 4.9 U	< 1.8 U	< 0.88 U	< 1.1 U
Aroclor-1268	ug/kg		< 4.6 U	< 4.9 U	< 5.3 U	< 4.6 U	< 4.5 U	< 4.6 U	< 4.7 U	< 4.8 U	< 0.96 U	< 4.5 U	< 4.5 U	< 9.3 U	< 4.6 U	< 0.94 U	< 4.9 U	< 4.9 U	< 1.8 U	1.4 J+	< 1.1 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970	< 4.6 U	3.0	< 5.3 U	< 4.6 U	< 4.5 U	< 4.6 U	< 4.7 U	< 4.8 U	2.7	< 4.5 U	< 4.5 U	< 9.3 U	< 4.6 U	93	57	1.9	110	9.3	< 1.1 U

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDP39	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP41	SUSDP43	SUSDP43	SUSDP43	SUSDP43	SUSDP43	SUSDP43	SUSDP43	SUSDP43-2J	SUSDP43-2J	SUSDP43-2J
			Sample Date	1/26/2017	5/22/2013	5/24/2013	5/24/2013	1/24/2017	1/24/2017	1/24/2017	1/24/2017	5/17/2013	6/7/2013	6/7/2013	1/26/2017	1/26/2017	1/30/2017	1/30/2017	8/8/2017	8/8/2017	8/8/2017
			Sample ID	DPS39F10-15N	DPS4103N	DPS41 10N	DPS41 15N	DPS41F01N	DPS41F02-05N	DPS41F05-10N	DPS41F10-15N	DPS4304N	DPS4310N	DPS4315N	DPS43F01N	DPS43F02-05N	DPS43F05-10N	DPS43F10-15N	DPS432J01N	DPS432J02N	DPS432J03N
			Depth	10 - 15 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	3.5 - 4.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																			
		Screening																			
Analyte	Unit	Criteria																			
4,4'-DDD	ug/kg	2500																			
4,4'-DDE	ug/kg	9300																			
4,4'-DDT	ug/kg	8500																			
Aldrin	ug/kg	180																			
alpha-BHC	ug/kg	360																			
beta-BHC	ug/kg	1300																			
cis-Chlordane	ug/kg	7700																			
delta-BHC	ug/kg	360																			
Dieldrin	ug/kg	140																			
Endosulfan I	ug/kg	700000																			
Endosulfan II	ug/kg	700000																			
Endosulfan Sulfate	ug/kg	700000																			
Endrin	ug/kg	25000																			
Endrin aldehyde	ug/kg	25000																			
Endrin ketone	ug/kg	25000																			
gamma-BHC (Lindane)	ug/kg	2500																			
Heptachlor	ug/kg	630																			
Heptachlor Epoxide	ug/kg	330																			
Methoxychlor	ug/kg	410000																			
Toxaphene	ug/kg	2100																			
trans-Chlordane	ug/kg	7700																			
Aroclor-1016	ug/kg			< 1.1 U	< 5.0 U	< 5.2 U	< 4.4 U	< 5.1 U	< 4.9 U	< 5.0 U	< 4.4 U	< 1.0 U	< 5.1 U	< 5.3 U	< 9.1 U	< 9.9 U	< 9.3 U	< 1.0 U	< 0.98 U	< 0.98 U	< 1.0 U
Aroclor-1221	ug/kg			< 1.1 U	< 5.0 U	< 5.2 U	< 4.4 U	< 5.1 U	< 4.9 U	< 5.0 U	< 4.4 U	< 1.0 U	< 5.1 U	< 5.3 U	< 9.1 U	< 9.9 U	< 9.3 U	< 1.0 U	< 0.98 U	< 0.98 U	< 1.0 U
Aroclor-1232	ug/kg			< 1.1 U	< 5.0 U	< 5.2 U	< 4.4 U	< 5.1 U	< 4.9 U	< 5.0 U	< 4.4 U	< 1.0 U	< 5.1 U	< 5.3 U	< 9.1 U	< 9.9 U	< 9.3 U	< 1.0 U	< 0.98 U	< 0.98 U	< 1.0 U
Aroclor-1242	ug/kg			< 1.1 U	< 5.0 U	< 5.2 U	< 4.4 U	< 5.1 U	< 4.9 U	< 5.0 U	< 4.4 U	< 1.0 U	< 5.1 U	< 5.3 U	< 9.1 U	< 9.9 U	< 9.3 U	< 1.0 U	< 0.98 U	< 0.98 U	< 1.0 U
Aroclor-1248	ug/kg			< 1.1 U	67 J	41 J	< 4.4 U	110 J+	110 J+	32 J+	< 4.4 U	< 1.0 U	180 J	4.2 J	< 9.1 U	< 9.9 U	< 9.3 U	4.4 J+	< 0.98 U	< 0.98 U	< 1.0 U
Aroclor-1254	ug/kg			< 1.1 U	< 5.0 U	< 5.2 U	< 4.4 U	110 J+	130 J+	110 J+	4.8 J+	8.0 J	< 5.1 U	< 5.3 U	160 J+	97 J+	< 9.3 U	3.2 J+	< 0.98 U	< 0.98 U	< 1.0 U
Aroclor-1260	ug/kg			< 1.1 U	88 J	150 J	< 4.4 U	87 J+	140 J+	140 J+	3.7 J+	5.8 J	100 J	2.9 J	1500 J+	1200 J+	240 J+	19 J+	120 J+	< 0.98 U	< 1.0 U
Aroclor-1262	ug/kg			< 1.1 U	< 5.0 U	< 5.2 U	< 4.4 U	< 5.1 U	< 4.9 U	< 5.0 U	< 4.4 U	< 1.0 U	< 5.1 U	< 5.3 U	< 9.1 U	< 9.9 U	< 9.3 U	< 1.0 U	< 0.98 U	< 0.98 U	< 1.0 U
Aroclor-1268	ug/kg			< 1.1 U	< 5.0 U	< 5.2 U	< 4.4 U	< 5.1 U	< 4.9 U	< 5.0 U	< 4.4 U	< 1.0 U	< 5.1 U	< 5.3 U	180 J+	100 J+	26 J+	9.3 J+	36 J+	< 0.98 U	< 1.0 U
PCB, Total Aroclors (AECOM Calc)	ug/kg ug/kg	970		< 1.1 U	160	190	< 4.4 U	310	380	280	8.5	14	280	7.1	1800	1400	270	36	160	< 0.98 U	< 1 U

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDP43-2J	SUSDP43-2M	SUSDP43-2M	SUSDP43-2M	SUSDP43-2M	SUSDP43-3A	SUSDP43-3A	SUSDP43-3A	SUSDP43-3A	SUSDP44	SUSDP44	SUSDP44	SUSDP44	SUSDP44	SUSDP44-1D	SUSDP44-1D	SUSDP44-1H	SUSDP44-1H
			Sample Date	8/8/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017	8/10/2017	8/10/2017	8/10/2017	8/10/2017	5/21/2013	6/10/2013	6/10/2013	1/27/2017	1/27/2017	8/9/2017	8/9/2017	8/9/2017	8/9/2017
			Sample ID	DPS432J04N	DPS432M01N	DPS432M02N	DPS432M03N	DPS432M04N	DPS433A01N	DPS433A02N	DPS433A03N	DPS433A04N	DPS4403N	DPS4410N	DPS4415N	DPS44F01N	DPS44F02-05N	DPS441D02N	DPS441D03N	DPS441H02N	DPS441H03N
			Depth	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	2.5 - 3.5 ft	9.5 - 10.5 ft	14.5 - 15.5 ft	2.5 - 3.5 ft	3.5 - 5 ft	2 - 3 ft	3 - 4 ft	2 - 3 ft	3 - 4 ft
			Туре	N N	N N	N N	N N	N N	N N	N N	N N	N N	2.5 - 5.5 it	9.5 - 10.5 it	14.5 - 15.5 It	2.3 - 3.5 it	3.3 - 3 it	N N	N N	N N	N N
		Project	- 71-																		
		Screening																			
Analyte	Unit	Criteria																			
4,4'-DDD	ug/kg	2500																			
4,4'-DDE	ug/kg	9300																			
4,4'-DDT	ug/kg	8500																			
Aldrin	ug/kg	180																			
alpha-BHC	ug/kg	360																			
beta-BHC	ug/kg	1300																			
cis-Chlordane	ug/kg	7700																		İ	İ
delta-BHC	ug/kg	360																			
Dieldrin	ug/kg	140																			
Endosulfan I	ug/kg	700000																			
Endosulfan II	ug/kg	700000																			
Endosulfan Sulfate	ug/kg	700000																			
Endrin	ug/kg	25000																			
Endrin aldehyde	ug/kg	25000																			
Endrin ketone	ug/kg	25000																			
gamma-BHC (Lindane)	ug/kg	2500																			
Heptachlor	ug/kg	630																			
Heptachlor Epoxide	ug/kg	330																			
Methoxychlor	ug/kg	410000																			
Toxaphene	ug/kg	2100																			
trans-Chlordane	ug/kg	7700																			
Aroclor-1016	ug/kg			< 0.97 U	< 1.0 U	< 0.95 U	< 1.0 U	< 1.0 U	< 10 U	< 1.0 U	< 0.99 U	< 1.0 U	< 47 U	< 4.5 U	< 5.3 U	< 9.2 U	< 1.0 U	< 0.91 U	< 0.90 U	< 5.0 U	< 0.91 U
Aroclor-1221	ug/kg			< 0.97 U	< 1.0 U	< 0.95 U	< 1.0 U	< 1.0 U	< 10 U	< 1.0 U	< 0.99 U	< 1.0 U	< 47 U	< 4.5 U	< 5.3 U	< 9.2 U	< 1.0 U	< 0.91 U	< 0.90 U	< 5.0 U	< 0.91 U
Aroclor-1232	ug/kg	1		< 0.97 U	< 1.0 U	< 0.95 U	< 1.0 U	< 1.0 U	< 10 U	< 1.0 U	< 0.99 U	< 1.0 U	< 47 U	< 4.5 U	< 5.3 U	< 9.2 U	< 1.0 U	< 0.91 U	< 0.90 U	< 5.0 U	< 0.91 U
Aroclor-1242	ug/kg	†		< 0.97 U	< 1.0 U	< 0.95 U	< 1.0 U	< 1.0 U	< 10 U	< 1.0 U	< 0.99 U	< 1.0 U	< 47 U	< 4.5 U	< 5.3 U	< 9.2 U	< 1.0 U	10 J+	< 0.90 U	< 5.0 U	< 0.91 U
Aroclor-1248	ug/kg	†		1.1 J+	< 1.0 U	< 0.95 U	< 1.0 U	< 1.0 U	210 J	8.3 J+	< 0.99 U	< 1.0 U	1500 J	< 4.5 U	< 5.3 U	1400 J+	< 1.0 U	< 0.91 U	2.2 J+	480 J+	78 J+
Aroclor-1254	ug/kg	†		1.2 J+	< 1.0 U	< 0.95 U	< 1.0 U	< 1.0 U	150 J+	5.8 J+	0.95 J+	3.2 J+	< 47 U	< 4.5 U	< 5.3 U	1100 J+	14 J+	13 J+	4.0 J+	700 J+	81 J+
Aroclor-1260	ug/kg	†		< 0.97 U	150 J+	< 0.95 U	2.0	< 1.0 U	100 J+	3.5 J+	1.3 J+	1.7 J+	1600 J	< 4.5 U	< 5.3 U	1900 J+	27 J+	9.1 J+	3.1 J+	530 J+	53 J+
Aroclor-1262	ug/kg	†		< 0.97 U	< 1.0 U	< 0.95 U	< 1.0 U	< 1.0 U	< 10 U	< 1.0 U	< 0.99 U	< 1.0 U	< 47 U	< 4.5 U	< 5.3 U	< 9.2 U	< 1.0 U	< 0.91 U	< 0.90 U	< 5.0 U	< 0.91 U
Aroclor-1268	ug/kg	†		< 0.97 U	33 J+	< 0.95 U	< 1.0 U	< 1.0 U	14 J+	< 1.0 U	< 0.99 U	< 1.0 U	< 47 U	< 4.5 U	< 5.3 U	150 J+	2.3 J+	< 0.91 U	0.56 J+	65 J+	9.4 J+
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		2.3	180	< 0.95 U	2.0	< 1 U	470	18	2.3	4.9	3100	< 4.5 U	< 5.3 U	4600	43	32	9.9	1800	220

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

Analyte U 4,4'-DDD ug/kg 4,4'-DDE ug/kg 4,4'-DDT ug/kg Aldrin ug/kg alpha-BHC ug/kg beta-BHC ug/kg delta-BHC ug/kg felta-BHC ug/kg felta-BHC ug/kg Endosulfan I ug/kg Endosulfan I ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	Unit //kg //kg //kg //kg	Project Screening Criteria 2500 9300 8500	Sample Date Sample ID D Depth Type	8/9/2017 PS442N01N 1 - 2 ft N	8/9/2017 DPS442N02N 2 - 3 ft N	8/9/2017 DPS442N02R 2 - 3 ft FD	1/26/2017 DPS48F01N 1 - 2 ft N	1/26/2017 DPS48F01R 1 - 2 ft	1/26/2017 DPS48F02-05N 2 - 5 ft	1/26/2017 DPS48F02-05R	1/27/2017 DPS48F05-10N	1/27/2017 DPS48F10-15N	8/15/2017	8/16/2017	8/16/2017	1/30/2018	8/11/2017	8/11/2017	8/11/2017	8/11/2017	8/11/2017
4,4'-DDD ug/kg 4,4'-DDE ug/kg 4,4'-DDT ug/kg Aldrin ug/kg alpha-BHC ug/kg beta-BHC ug/kg cis-Chlordane ug/kg delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	Unit //kg //kg //kg //kg	Screening Criteria 2500 9300	Depth	1 - 2 ft	2 - 3 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft		DPS48F02-05R	DPS48F05-10N	DDC40E40 4EN	l					DD040045			
4,4*-DDD ug/kg 4,4*-DDE ug/kg 4,4*-DDT ug/kg Aldrin ug/kg alpha-BHC ug/kg beta-BHC ug/kg cis-Chlordane ug/kg delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	Unit //kg //kg //kg //kg	Screening Criteria 2500 9300							2 5 ft		DI 0-101 00 1011	DPS48F 10-15N	DPS481C01N	DPS481E01N	DPS481G01N	DPS482E01N	DPS4901N	DPS4901R	DPS4902N	DPS491C01N	DPS491C02N
4,4'-DDD ug/kg 4,4'-DDE ug/kg 4,4'-DDT ug/kg 4,4'-DT ug/kg Aldrin ug/kg alpha-BHC ug/kg beta-BHC ug/kg cis-Chlordane ug/kg delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	Unit //kg //kg //kg //kg	Screening Criteria 2500 9300	Туре	N	N	FD	N		2-311	2 - 5 ft	5 - 10 ft	10 - 15 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft
4,4'-DDD ug/kg 4,4'-DDE ug/kg 4,4'-DDT ug/kg Aldrin ug/kg alpha-BHC ug/kg beta-BHC ug/kg cis-Chlordane ug/kg delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan II ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	Unit //kg //kg //kg //kg	Screening Criteria 2500 9300						FD	N	FD	N	N	N	N	N	N	N	FD	N	N	N
4,4'-DDD ug/kg 4,4'-DDE ug/kg 4,4'-DDT ug/kg Aldrin ug/kg alpha-BHC ug/kg beta-BHC ug/kg cis-Chlordane ug/kg delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan II ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	Unit /kg /kg /kg /kg	2500 9300															, '	1		1	i
4,4'-DDD ug/kg 4,4'-DDE ug/kg 4,4'-DDT ug/kg 4,4'-DT ug/kg Aldrin ug/kg alpha-BHC ug/kg beta-BHC ug/kg cis-Chlordane ug/kg delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	/kg /kg /kg /kg	2500 9300															i '	1		1	ĺ
4.4'-DDE	/kg /kg /kg	9300															·'	\longmapsto			
4,4'-DDT ug/kg Aldrin ug/kg alpha-BHC ug/kg beta-BHC ug/kg cis-Chlordane ug/kg delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	/kg /kg																·'	\longmapsto		\vdash	
Aldrin ug/kg alpha-BHC ug/kg beta-BHC ug/kg cis-Chlordane ug/kg delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	/kg	หวบบ															·'	\longmapsto		\vdash	
alpha-BHC ug/kg beta-BHC ug/kg cis-Chlordane ug/kg delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan II ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg																	·'	\longmapsto		\vdash	
beta-BHC ug/kg cis-Chlordane ug/kg delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan II ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	/kg	180															ļ———'				
cis-Chlordane ug/kg delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan II ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg		360															ļ'	\longmapsto			
delta-BHC ug/kg Dieldrin ug/kg Endosulfan I ug/kg Endosulfan II ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg		1300															ļ'	\longrightarrow		\vdash	!
Dieldrin ug/kg Endosulfan I ug/kg Endosulfan II ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg		7700															<u> </u>				<u></u>
Endosulfan I ug/kg Endosulfan II ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	/kg	360															<u> </u>				1
Endosulfan II ug/kg Endosulfan Sulfate ug/kg Endrin ug/kg	/kg	140															<u> </u>			1	<u> </u>
Endosulfan Sulfate ug/kg Endrin ug/kg	/kg	700000															1			į J	1
Endrin ug/kg	/kg	700000															1			į I	1
	/kg	700000															1				ĺ
Endrin aldehyde ug/kg	/kg	25000																			ĺ
Litariii alaciiyac	/kg	25000																			ĺ
Endrin ketone ug/kg	/kg	25000																			ĺ
gamma-BHC (Lindane) ug/kg	/kg	2500																			ĺ
Heptachlor ug/kg	/kg	630																			ĺ
Heptachlor Epoxide ug/kg	/kg	330																			ĺ
Methoxychlor ug/kg	/kg	410000																			ĺ
Toxaphene ug/kg	/kg	2100																			ĺ
trans-Chlordane ug/kg	/kg	7700																			ĺ
Aroclor-1016 ug/kg				< 0.91 U	< 0.93 U	< 0.93 U	< 0.99 U	< 0.93 U	< 0.92 U	< 0.93 U	< 0.89 U	< 0.98 U	< 11 U	< 9.1 U	< 8.8 U	< 9.5 U	< 9.4 U	< 9.3 U	< 11 U	< 9.4 U	< 10 U
Aroclor-1221 ug/kg	/kg			< 0.91 U	< 0.93 U	< 0.93 U	< 0.99 U	< 0.93 U	< 0.92 U	< 0.93 U	< 0.89 U	< 0.98 U	< 11 U	< 9.1 U	< 8.8 U	< 9.5 U	< 9.4 U	< 9.3 U	< 11 U	< 9.4 U	< 10 U
Aroclor-1232 ug/kg	ŭ			< 0.91 U	< 0.93 U	< 0.93 U	< 0.99 U	< 0.93 U	< 0.92 U	< 0.93 U	< 0.89 U	< 0.98 U	< 11 U	< 9.1 U	< 8.8 U	< 9.5 U	< 9.4 U	< 9.3 U	< 11 U	< 9.4 U	< 10 U
Aroclor-1242 ug/kg	•			< 0.91 U	< 0.93 U	< 0.93 U	< 0.99 U	< 0.93 U	< 0.92 U	< 0.93 U	< 0.89 U	13 J+	< 11 U	< 9.1 U	< 8.8 U	< 9.5 U	< 9.4 U	< 9.3 U	< 11 U	< 9.4 U	< 10 U
Aroclor-1248 ug/kg	-			51 J+	110 J+	110 J+	< 0.99 U	3.8 J+	110 J+	88 J+	51 J+	< 0.98 U	72 J+	< 9.1 U	< 8.8 U	< 9.5 U	790 J	950 J	250 J+	2700 J+	< 10 U
Aroclor-1254 ug/kg				70 J+	210 J+	150 J+	< 0.99 U	< 0.93 U	52 J+	41 J+	51 J	5.3 J+	250 J+	< 9.1 U	< 8.8 U	< 9.5 U	480 J	480 J+	180 J+	460 J+	< 10 U
Aroclor-1260 ug/kg				200 J+	160 J+	160 J+	10 J+	8.8 J+	180 J+	140 J+	120 J+	11 J+	490 J+	420 J+	< 8.8 U	910 J+	500 J+	600 J+	99 J+	340 J+	< 10 U
Aroclor-1262 ug/kg			+	< 0.91 U	< 0.93 U	< 0.93 U	< 0.99 U	< 0.93 U	< 0.92 U	< 0.93 U	< 0.89 U	< 0.98 U	< 11 U	< 9.1 U	< 8.8 U	< 9.5 U	< 9.4 U	< 9.3 U	< 11 U	< 9.4 U	< 10 U
Aroclor-1268 ug/kg			+	37 J+	29 J+	29 J+	< 0.99 U	< 0.93 U	21 J+	16 J+	11 J+	1.1 J+	< 11 U	< 9.1 U	< 8.8 U	< 9.5 U	37 J+	43 J+	< 11 U	40 J+	< 10 U
PCB, Total Aroclors (AECOM Calc) ug/kg		970		360	510	450	10	13	360	290	230	30	810	420	< 8.8 U	910	1800	2100	530	3500	< 10 U

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDP49-1E	SUSDP49-1E	SUSDP50	SUSDP50	SUSDP51	SUSDP51	SUSDP51	SUSDP51	SUSDP53	SUSDP53	SUSDP53	SUSDP53	SUSDP64	SUSDP65	SUSDBOT16 10	SUSDPCT16-1E	SUSDPCT16-1G
						8/10/2017				1/27/2017										
			Sample Date		8/11/2017 DPS491E02N	8/10/2017 DPS5001N	8/10/2017 DPS5002N	1/26/2017 DPS51F01N	1/26/2017 DPS51F02-05N		1/27/2017 DPS51F10-15N	1/31/2017 DPS53F01N	1/31/2017 DPS53F02-05N	2/2/2017 DPS53F05-10N	2/2/2017 DPS53F10-15N	8/10/2017 DPS6401N	1/30/2018 DPS6501N	2/1/2018 DPCT161C01N	2/1/2018	2/1/2018 DPCT161G01N
			Sample ID	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 5 ft	DPS51F05-10N 5 - 10 ft	10 - 15 ft	1 - 2 ft	2 - 5 ft	5 - 10 ft	10 - 15 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	DPCT161E01N 1 - 2 ft	1 - 2 ft
			Depth	1 - 2 π N		1 - 2 II N	2 - 3 II	1-2π N	2 - 5 II	5 - 10 ft N	10 - 15 ft N	1 - 2 π N	2-5π N	5 - 10 II	10 - 15 ft N	1 - 2 II	1 - 2 π N	1 - 2 II N	1 - 2 π N	1 - 2 π N
		T	Туре	IN	N	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN
		Project Screening																		i l
Analyte	Unit	Criteria																		ı J
4,4'-DDD	ug/kg	2500																		
4,4'-DDE	ug/kg	9300																		
4,4'-DDT	ug/kg	8500																		
Aldrin	ug/kg	180																		
alpha-BHC	ug/kg	360																		
beta-BHC	ug/kg	1300																		
cis-Chlordane	ug/kg	7700																		
delta-BHC	ug/kg	360																		
Dieldrin	ug/kg	140																		
Endosulfan I	ug/kg	700000																		
Endosulfan II	ug/kg	700000																		
Endosulfan Sulfate	ug/kg	700000																		
Endrin	ug/kg	25000																		
Endrin aldehyde	ug/kg	25000																		
Endrin ketone	ug/kg	25000																		
gamma-BHC (Lindane)	ug/kg	2500																		
Heptachlor	ug/kg	630																		
Heptachlor Epoxide	ug/kg	330																		
Methoxychlor	ug/kg	410000																		
Toxaphene	ug/kg	2100																		
trans-Chlordane	ug/kg	7700																		
Aroclor-1016	ug/kg			< 5.0 U	< 10 U	< 45 U	< 10 U	< 0.92 U	< 0.90 U	< 0.95 U	< 0.95 U	< 0.92 U	< 0.98 U	< 1.0 U	< 1.1 U	< 10 U	< 9.2 U	< 0.99 U	< 0.89 U	< 18 U
Aroclor-1221	ug/kg			< 5.0 U	< 10 U	< 45 U	< 10 U	< 0.92 U	< 0.90 U	< 0.95 U	< 0.95 U	< 0.92 U	< 0.98 U	< 1.0 U	< 1.1 U	< 10 U	< 9.2 U	< 0.99 U	< 0.89 U	< 18 U
Aroclor-1232	ug/kg			< 5.0 U	< 10 U	< 45 U	< 10 U	< 0.92 U	< 0.90 U	< 0.95 U	< 0.95 U	< 0.92 U	< 0.98 U	< 1.0 U	< 1.1 U	< 10 U	< 9.2 U	< 0.99 U	< 0.89 U	< 18 U
Aroclor-1242	ug/kg			< 5.0 U	< 10 U	< 45 U	< 10 U	< 0.92 U	< 0.90 U	< 0.95 U	< 0.95 U	17 J+	< 0.98 U	< 1.0 U	< 1.1 U	< 10 U	< 9.2 U	< 0.99 U	< 0.89 U	< 18 U
Aroclor-1248	ug/kg			900 J+	< 10 U	190	< 10 U	100 J+	15 J+	< 0.95 U	< 0.95 U	< 0.92 U	< 0.98 U	< 1.0 U	< 1.1 U	520 J	140	< 0.99 U	< 0.89 U	< 18 U
Aroclor-1254	ug/kg			200 J+	< 10 U	< 45 U	< 10 U	49 J+	7.2 J+	< 0.95 U	< 0.95 U	5.7 J+	< 0.98 U	< 1.0 U	< 1.1 U	190 J	< 9.2 U	< 0.99 U	< 0.89 U	< 18 U
Aroclor-1260	ug/kg			230 J+	68	440	< 10 U	19 J+	2.9 J+	< 0.95 U	< 0.95 U	27 J+	< 0.98 U	< 1.0 U	< 1.1 U	100 J+	290	270	81	1900
Aroclor-1262	ug/kg			< 5.0 U	< 10 U	< 45 U	< 10 U	< 0.92 U	< 0.90 U	< 0.95 U	< 0.95 U	< 0.92 U	< 0.98 U	< 1.0 U	< 1.1 U	< 10 U	< 9.2 U	< 0.99 U	< 0.89 U	< 18 U
Aroclor-1268	ug/kg			24 J+	< 10 U	< 45 U	< 10 U	5.1 J+	< 0.90 U	< 0.95 U	< 0.95 U	< 0.92 U	< 0.98 U	< 1.0 U	< 1.1 U	9.2 J+	< 9.2 U	< 0.99 U	< 0.89 U	< 18 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		1400	68	630	< 10 U	170	25	< 0.95 U	< 0.95 U	50	< 0.98 U	< 1 U	< 1.1 U	820	430	270	81	1900

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			I+: ID	CLICDDOTAC 4C	SUSDPCT16-2E	SUSDPCT16-2I	CHEDDOTACOM	CHICDDOTAC OM	SUSDPCT16-2M	CHCDDOT4C OM	CHCDDCT4C 2O	CHCDDCT4C 20	CHICDDOTAC 2D	CUCDDOT4C 2D	CHCDDCT4C 2C	CUCDDOT46 26	CUCDDOT4C 2C	SUSDPCT16-3S
			Sample Date	2/1/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	2/22/2018	6/29/2018	6/29/2018	5/31/2018	5/31/2018	3/15/2018	3/15/2018	3/15/2018	3/15/2018
				DPCT161G02N			DPSCT162M01N					DPSCT163Q02N					DPSCT163S03N	DPSCT163S04N
			Depth	2 - 3 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft
	1	T	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																
Analyte	Unit	Screening Criteria																
4,4'-DDD	ug/kg	2500																
4,4'-DDE	ug/kg	9300																
4,4'-DDT	ug/kg	8500																
Aldrin	ug/kg	180																
alpha-BHC	ug/kg	360																
beta-BHC	ug/kg	1300																
cis-Chlordane	ug/kg	7700																
delta-BHC	ug/kg	360																
Dieldrin	ug/kg	140																
Endosulfan I	ug/kg	700000																
Endosulfan II	ug/kg	700000																
Endosulfan Sulfate	ug/kg	700000																
Endrin	ug/kg	25000																
Endrin aldehyde	ug/kg	25000																
Endrin ketone	ug/kg	25000																
gamma-BHC (Lindane)	ug/kg	2500																
Heptachlor	ug/kg	630																
Heptachlor Epoxide	ug/kg	330																
Methoxychlor	ug/kg	410000																
Toxaphene	ug/kg	2100																
trans-Chlordane	ug/kg	7700																
Aroclor-1016	ug/kg			< 0.97 U	< 4.6 U	< 0.93 U	< 98 U	< 110 U	< 10 U	< 10 U	< 62 U	< 63 U	< 0.91 U	< 0.95 U	< 9.1 U	< 8.8 U	< 1.0 U	< 1.1 U
Aroclor-1221	ug/kg			< 0.97 U	< 4.6 U	< 0.93 U	< 98 U	< 110 U	< 10 U	< 10 U	< 62 U	< 63 U	< 0.91 U	< 0.95 U	< 9.1 U	< 8.8 U	< 1.0 U	< 1.1 U
Aroclor-1232	ug/kg			< 0.97 U	< 4.6 U	< 0.93 U	< 98 U	< 110 U	< 10 U	< 10 U	< 62 U	< 63 U	< 0.91 U	< 0.95 U	< 9.1 U	< 8.8 U	< 1.0 U	< 1.1 U
Aroclor-1242	ug/kg			< 0.97 U	< 4.6 U	< 0.93 U	< 98 U	< 110 U	< 10 U	< 10 U	< 62 U	< 63 U	< 0.91 U	< 0.95 U	< 9.1 U	< 8.8 U	< 1.0 U	< 1.1 U
Aroclor-1248	ug/kg			< 0.97 UJ	< 4.6 U	< 0.93 U	< 98 U	< 110 U	< 10 U	< 10 U	< 62 U	< 63 U	< 0.91 U	< 0.95 U	< 9.1 U	< 8.8 U	< 1.0 U	< 1.1 U
Aroclor-1254	ug/kg			< 0.97 UJ	< 4.6 U	< 0.93 U	< 98 U	< 110 U	< 10 U	< 10 U	< 62 U	< 63 U	< 0.91 U	35	< 9.1 U	< 8.8 U	< 1.0 U	< 1.1 U
Aroclor-1260	ug/kg			190 J	99	34	7000	6400	660	400	< 62 U	< 63 U	82	< 0.95 U	140	1600	3.5	33
Aroclor-1262	ug/kg			< 0.97 U	< 4.6 U	< 0.93 U	< 98 U	< 110 U	< 10 U	< 10 U	< 62 U	< 63 U	< 0.91 U	< 0.95 U	< 9.1 U	< 8.8 U	< 1.0 U	< 1.1 U
Aroclor-1268	ug/kg			< 0.97 U	< 4.6 U	< 0.93 U	< 98 U	< 110 U	< 10 U	< 10 U	< 62 U	< 63 U	< 0.91 U	< 0.95 U	< 9.1 U	< 8.8 U	< 1.0 U	< 1.1 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		190	99	34	7000	6400	660	400	< 62 U	< 63 U	82	35	140	1600	3.5	33

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDPCT16-4W	SUSDPCT16-4W	SUSDPGD21-C3	SUSDPGD21-C3	SUSDPGD21-C3	SUSDPGD21-C5	SUSDPGD21-C5	SUSDPGD21-C5	SUSDPGD21-C5	SUSDPGD21-D1	SUSDPGD21-D1	SUSDPGD21-D1	SUSDPGD21-D1	SUSDPGD21-E1	SUSDPGD21-E1
			Sample Date		4/6/2018	7/2/2018	7/2/2018	7/2/2018	5/31/2018	5/31/2018	5/31/2018	5/31/2018	5/30/2018	5/30/2018	5/30/2018	5/30/2018	5/30/2018	5/30/2018
			Sample ID		DPSCT164W02N	DPSGD21C301N	DPSGD21C302N	DPSGD21C303N	DPSGD21C501N	DPSGD21C502N	DPSGD21C503N		DPSGD21D101N	DPSGD21D102N	DPSGD21D103N	DPSGD21D104N	DPSGD21E101N	
			Depth	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft
			Type	N Z II	N N	N N	N	N	N N	N	N	N N	N	N N	N	N N	N N	N N
Analyte	Unit	Project Screening Criteria	1,450			.,		, ,	· · ·	· ·		, ,	· ·	· · ·	· · ·	· ·	N.	· ·
4,4'-DDD	ug/kg	2500																
4,4'-DDE	ug/kg	9300																
4,4'-DDT	ug/kg	8500																
Aldrin	ug/kg	180																
alpha-BHC	ug/kg	360																
beta-BHC	ug/kg	1300																
cis-Chlordane	ug/kg	7700																
delta-BHC	ug/kg	360																
Dieldrin	ug/kg	140																
Endosulfan I	ug/kg	700000																
Endosulfan II	ug/kg	700000																
Endosulfan Sulfate	ug/kg	700000																
Endrin	ug/kg	25000																
Endrin aldehyde	ug/kg	25000																
Endrin ketone	ug/kg	25000																
gamma-BHC (Lindane)	ug/kg	2500																
Heptachlor	ug/kg	630																
Heptachlor Epoxide	ug/kg	330																
Methoxychlor	ug/kg	410000																
Toxaphene	ug/kg	2100																
trans-Chlordane	ug/kg	7700																
Aroclor-1016	ug/kg			< 1.1 U	< 1.0 U	< 10 U	< 1.1 U	< 1.0 U	< 53 U	< 57 U	< 55 U	< 57 U	< 95 U	< 94 U	< 9.7 U	< 9.7 U	< 96 U	< 9.5 U
Aroclor-1221	ug/kg			< 1.1 U	< 1.0 U	< 10 U	< 1.1 U	< 1.0 U	< 53 U	< 57 U	< 55 U	< 57 U	< 95 U	< 94 U	< 9.7 U	< 9.7 U	< 96 U	< 9.5 U
Aroclor-1232	ug/kg			< 1.1 U	< 1.0 U	< 10 U	< 1.1 U	< 1.0 U	< 53 U	< 57 U	< 55 U	< 57 U	< 95 U	< 94 U	< 9.7 U	< 9.7 U	< 96 U	< 9.5 U
Aroclor-1242	ug/kg			< 1.1 U	< 1.0 U	< 10 U	< 1.1 U	< 1.0 U	< 53 U	< 57 U	< 55 U	< 57 U	< 95 U	< 94 U	< 9.7 U	< 9.7 U	< 96 U	< 9.5 U
Aroclor-1248	ug/kg			< 1.1 U	< 1.0 U	< 10 U	< 1.1 U	< 1.0 U	< 53 U	< 57 U	< 55 U	< 57 U	< 95 U	< 94 U	< 9.7 U	< 9.7 U	< 96 U	< 9.5 U
Aroclor-1254	ug/kg			< 1.1 U	< 1.0 U	< 10 U	< 1.1 U	< 1.0 U	< 53 U	< 57 U	< 55 U	< 57 U	< 95 U	< 94 U	< 9.7 U	< 9.7 U	< 96 U	< 9.5 U
Aroclor-1260	ug/kg			6.1	3.8 J	160	2.5 J+	< 1.0 U	94	< 57 U	< 55 U	< 57 U	11000	7000	1600	59	7700	28
Aroclor-1262	ug/kg			< 1.1 U	< 1.0 U	< 10 U	< 1.1 U	< 1.0 U	< 53 U	< 57 U	< 55 U	< 57 U	< 95 U	< 94 U	< 9.7 U	< 9.7 U	< 96 U	< 9.5 U
Aroclor-1268	ug/kg			< 1.1 U	< 1.0 U	< 10 U	1.4 J+	< 1.0 U	< 53 U	< 57 U	< 55 U	< 57 U	< 95 U	< 94 U	< 9.7 U	< 9.7 U	< 96 U	< 9.5 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		6.1	3.8	160	3.9	< 1 U	94	< 57 U	< 55 U	< 57 U	11000	7000	1600	59	7700	28

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDPGD21-E1	SUSDPGD21-E1	SUSDPGD21-F1	SUSDPGD21-F1	SUSDPGD21-F1	SUSDPGD21-F1	SUSDPGD21-G1	SUSDPGD21-G1	SUSDPGD21-G1	SUSDPGD21-G1	SUSDPGD21-G1	SUSDPGD21-G2	SUSDPGD21-G2	SUSDPGD21-H1	SUSDPGD21-H1
			Sample Date	5/30/2018	5/30/2018	5/30/2018	5/30/2018	5/30/2018	5/30/2018	4/4/2018	4/4/2018	4/4/2018	4/4/2018	4/4/2018	4/4/2018	4/4/2018	3/14/2018	3/14/2018
			Sample ID	DPSGD21E103N	DPSGD21E104N	DPSGD21F101N	DPSGD21F102N	DPSGD21F103N	DPSGD21F104N	DPSGD21G101N	DPSGD21G102N	DPSGD21G103N	DPSGD21G104N	DPSGD21G105N	DPSGD21G201N	DPSGD21G202N	DPSGD21H101N	DPSGD21H102N
			Depth	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	1 - 2 ft	2 - 3 ft	3 - 4 ft	4 - 5 ft	5 - 6 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																
		Screening																
Analyte	Unit	Criteria																
4,4'-DDD	ug/kg	2500																
4,4'-DDE	ug/kg	9300																
4,4'-DDT	ug/kg	8500																
Aldrin	ug/kg	180																
alpha-BHC	ug/kg	360																
beta-BHC	ug/kg	1300																
cis-Chlordane	ug/kg	7700																
delta-BHC	ug/kg	360																
Dieldrin	ug/kg	140																
Endosulfan I	ug/kg	700000																
Endosulfan II	ug/kg	700000																
Endosulfan Sulfate	ug/kg	700000																
Endrin	ug/kg	25000																
Endrin aldehyde	ug/kg	25000																
Endrin ketone	ug/kg	25000																
gamma-BHC (Lindane)	ug/kg	2500																
Heptachlor	ug/kg	630																
Heptachlor Epoxide	ug/kg	330																
Methoxychlor	ug/kg	410000																
Toxaphene	ug/kg	2100																
trans-Chlordane	ug/kg	7700																
Aroclor-1016	ug/kg			< 9.8 U	< 10 U	< 500 U	< 9.9 U	< 9.7 U	< 9.6 U	< 9500 U	< 470 U	< 4900 U	< 470 U	< 9.3 U	< 88 U	< 8.4 U	< 9.1 U	< 9.3 U
Aroclor-1221	ug/kg			< 9.8 U	< 10 U	< 500 U	< 9.9 U	< 9.7 U	< 9.6 U	< 9500 U	< 470 U	< 4900 U	< 470 U	< 9.3 U	< 88 U	< 8.4 U	< 9.1 U	< 9.3 U
Aroclor-1232	ug/kg			< 9.8 U	< 10 U	< 500 U	< 9.9 U	< 9.7 U	< 9.6 U	< 9500 U	< 470 U	< 4900 U	< 470 U	< 9.3 U	< 88 U	< 8.4 U	< 9.1 U	< 9.3 U
Aroclor-1242	ug/kg			< 9.8 U	< 10 U	< 500 U	< 9.9 U	< 9.7 U	< 9.6 U	< 9500 U	< 470 U	< 4900 U	< 470 U	< 9.3 U	< 88 U	< 8.4 U	< 9.1 U	< 9.3 U
Aroclor-1248	ug/kg			< 9.8 U	< 10 U	< 500 U	< 9.9 U	< 9.7 U	< 9.6 U	< 9500 U	< 470 U	< 4900 U	< 470 U	< 9.3 U	< 88 U	< 8.4 U	< 9.1 U	< 9.3 U
Aroclor-1254	ug/kg			< 9.8 U	< 10 U	< 500 U	< 9.9 U	< 9.7 U	< 9.6 U	< 9500 U	< 470 U	< 4900 U	< 470 U	< 9.3 U	< 88 U	< 8.4 U	< 9.1 U	< 9.3 U
Aroclor-1260	ug/kg			210	87	52000	21	190	250	450000	77000	180000	23000	190	5300	1500	1900	230
Aroclor-1262	ug/kg			< 9.8 U	< 10 U	< 500 U	< 9.9 U	< 9.7 U	< 9.6 U	< 9500 U	< 470 U	< 4900 U	< 470 U	< 9.3 U	< 88 U	< 8.4 U	< 9.1 U	< 9.3 U
Aroclor-1268	ug/kg			< 9.8 U	< 10 U	< 500 U	< 9.9 U	< 9.7 U	< 9.6 U	< 9500 U	< 470 U	< 4900 U	< 470 U	< 9.3 U	< 88 U	< 8.4 U	< 9.1 U	< 9.3 U
PCB, Total Aroclors (AECOM Cal-	c) ug/kg	970		210	87	52000	21	190	250	450000	77000	180000	23000	190	5300	1500	1900	230

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

			Location ID	SUSDPGD21-H2	SUSDPGD21-H2	SUSDPGD21-I1	SUSDPGD21-I1	SUSDPGD21-I1	SUSDPGD21-I2	SUSDPGD21-I2	SUSDPGD21-J1	SUSDPGD21-J1	SUSDPGD21-J1	SUSDPGD21-J2	SUSDPGD21-J2	SUSDPGD21-K1	SUSDPGD21-K1	SUSDPGD21-K1.5
						-											-	
			Sample Date	3/14/2018	3/14/2018	2/20/2018 DPSGD21I101N	2/20/2018 DPSGD21I101R	2/20/2018	2/20/2018	2/20/2018	1/24/2018	1/24/2018	1/24/2018 DPSGD21J102N	1/24/2018 DPSGD21J201N	1/24/2018 DPSGD21J202N	1/24/2018	1/24/2018	1/26/2018 DPSGD21K1.501N
				DPSGD21H201N	DPSGD21H202N 2 - 3 ft	1 - 2 ft		DPSGD21I102N	DPSGD21I201N	DPSGD21I202N	DPSGD21J101N					DPSGD21K101N		
			Depth	1 - 2 ft			1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft
	1		Туре	N	N	N	FD	N	N	N	N	FD	N	N	N	N	N	N
		Project																
Analyte	Unit	Screening Criteria																
4,4'-DDD	ug/kg	2500																
4,4'-DDE	ug/kg	9300																
4,4'-DDT	ug/kg	8500																
Aldrin	ug/kg	180																
alpha-BHC	ug/kg	360																
beta-BHC	ug/kg	1300																
cis-Chlordane	ug/kg	7700																
delta-BHC	ug/kg	360																
Dieldrin	ug/kg	140																
Endosulfan I	ug/kg	700000																
Endosulfan II	ug/kg	700000																
Endosulfan Sulfate	ug/kg	700000																
Endrin	ug/kg	25000																
Endrin aldehyde	ug/kg	25000																
Endrin ketone	ug/kg	25000																
gamma-BHC (Lindane)	ug/kg	2500																
Heptachlor	ug/kg	630																
Heptachlor Epoxide	ug/kg	330																
Methoxychlor	ug/kg	410000																
Toxaphene	ug/kg	2100																
trans-Chlordane	ug/kg	7700																
Aroclor-1016	ug/kg			< 8.7 U	< 8.5 U	< 93 U	< 470 U	< 0.96 U	< 490 U	< 44 U	< 93 U	< 93 U	< 0.89 U	< 88 U	< 8.7 U	< 460 U	< 0.96 U	< 94 U
Aroclor-1221	ug/kg			< 8.7 U	< 8.5 U	< 93 U	< 470 U	< 0.96 U	< 490 U	< 44 U	< 93 U	< 93 U	< 0.89 U	< 88 U	< 8.7 U	< 460 U	< 0.96 U	< 94 U
Aroclor-1232	ug/kg			< 8.7 U	< 8.5 U	< 93 U	< 470 U	< 0.96 U	< 490 U	< 44 U	< 93 U	< 93 U	< 0.89 U	< 88 U	< 8.7 U	< 460 U	< 0.96 U	< 94 U
Aroclor-1242	ug/kg			< 8.7 U	< 8.5 U	< 93 U	< 470 U	< 0.96 U	< 490 U	< 44 U	< 93 U	< 93 U	< 0.89 U	< 88 U	< 8.7 U	< 460 U	< 0.96 U	< 94 U
Aroclor-1248	ug/kg			< 8.7 U	< 8.5 U	1100 J	2300 J	25 J	< 490 U	< 44 U	< 93 U	< 93 U	R	< 88 U	< 8.7 U	< 460 U	< 0.96 U	< 94 U
Aroclor-1254	ug/kg			< 8.7 U	< 8.5 U	< 93 U	< 470 U	< 0.96 UJ	< 490 U	< 44 U	< 93 U	< 93 U	R	< 88 U	< 8.7 U	< 460 U	< 0.96 U	< 94 U
Aroclor-1260	ug/kg			2400 J+	900	18000	22000	100 J	14000	4900	9500	9200	50 J-	7700	690	42000	34	8800
Aroclor-1262	ug/kg			< 8.7 U	< 8.5 U	< 93 U	< 470 U	< 0.96 U	< 490 U	< 44 U	< 93 U	< 93 U	< 0.89 U	< 88 U	< 8.7 U	< 460 U	< 0.96 U	< 94 U
Aroclor-1268	ug/kg			< 8.7 U	< 8.5 U	< 93 U	< 470 U	< 0.96 U	< 490 U	< 44 U	< 93 U	< 93 U	< 0.89 U	< 88 U	< 8.7 U	< 460 U	< 0.96 U	< 94 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		2400	900	19000	24000	130	14000	4900	9500	9200	50	7700	690	42000	34	8800

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

										T							
				SUSDPGD21-K1.5	SUSDPGD21-K2	SUSDPGD21-K2	SUSDPGD21-L1	SUSDPGD21-L1	SUSDPGD21-L2				SUSDPGD21-M1	SUSDPGD21-M1	SUSDPGD21-M2	SUSDPGD21-M2	SUSDPGD21-M2
			Sample Date		1/24/2018	1/24/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	2/20/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018	3/14/2018
			Sample ID			DPSGD21K202N	DPSGD21L101N	DPSGD21L102N	DPSGD21L201N		DPSGD21L202N	DPSGD21M101N		DPSGD21M102N	DPSGD21M201N	DPSGD21M201R	DPSGD21M202N
			Depth	2 - 3 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft
		, ,	Туре	N	N	N	N	N	N	FD	N	N	FD	N	N	FD	N
		Project															
		Screening															
Analyte 4,4'-DDD	Unit ug/kg	Criteria 2500															
4,4'-DDE	ug/kg ug/kg	9300															
4,4'-DDT	ug/kg ug/kg	8500															
Aldrin	ug/kg ug/kg	180															
alpha-BHC	ug/kg	360															
beta-BHC	ug/kg	1300															
cis-Chlordane	ug/kg	7700															
delta-BHC	ug/kg	360															
Dieldrin	ug/kg	140															
Endosulfan I	ug/kg	700000															
Endosulfan II	ug/kg	700000															
Endosulfan Sulfate	ug/kg	700000															
Endrin	ug/kg	25000															
Endrin aldehyde	ug/kg	25000															
Endrin ketone	ug/kg	25000															
gamma-BHC (Lindane)	ug/kg	2500															
Heptachlor	ug/kg	630															
Heptachlor Epoxide	ug/kg	330															
Methoxychlor	ug/kg	410000															
Toxaphene	ug/kg	2100															
trans-Chlordane	ug/kg	7700															
Aroclor-1016	ug/kg			< 0.96 U	< 460 U	< 9.6 U	< 460 U	< 0.99 U	< 4.9 U	< 4.8 U	< 9.4 U	< 9.7 U	< 9.8 U	< 9.5 U	< 9.4 U	< 92 U	< 18 U
Aroclor-1221	ug/kg			< 0.96 U	< 460 U	< 9.6 U	< 460 U	< 0.99 U	< 4.9 U	< 4.8 U	< 9.4 U	< 9.7 U	< 9.8 U	< 9.5 U	< 9.4 U	< 92 U	< 18 U
Aroclor-1232	ug/kg			< 0.96 U	< 460 U	< 9.6 U	< 460 U	< 0.99 U	< 4.9 U	< 4.8 U	< 9.4 U	< 9.7 U	< 9.8 U	< 9.5 U	< 9.4 U	< 92 U	< 18 U
Aroclor-1242	ug/kg			< 0.96 U	< 460 U	< 9.6 U	< 460 U	< 0.99 U	< 4.9 U	< 4.8 U	< 9.4 U	< 9.7 U	< 9.8 U	< 9.5 U	< 9.4 U	< 92 U	< 18 U
Aroclor-1248	ug/kg			15 J+	< 460 U	< 9.6 U	1800	8.0	230	310	110	< 9.7 U	< 9.8 U	< 9.5 U	< 9.4 U	< 92 U	< 18 U
Aroclor-1254	ug/kg			8.8 J+	< 460 U	< 9.6 U	< 460 U	< 0.99 U	< 4.9 U	< 4.8 U	< 9.4 U	< 9.7 U	< 9.8 U	< 9.5 U	< 9.4 U	< 92 U	< 18 U
Aroclor-1260	ug/kg			40 J+	42000	810	7900	88	720	680	980	120	76	56	1800 J	5900 J	730
Aroclor-1262	ug/kg			< 0.96 U	< 460 U	< 9.6 U	< 460 U	< 0.99 U	< 4.9 U	< 4.8 U	< 9.4 U	< 9.7 U	< 9.8 U	< 9.5 U	< 9.4 U	< 92 U	< 18 U
Aroclor-1268	ug/kg			< 0.96 U	< 460 U	< 9.6 U	< 460 U	< 0.99 U	< 4.9 U	< 4.8 U	< 9.4 U	< 9.7 U	< 9.8 U	< 9.5 U	< 9.4 U	< 92 U	< 18 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		64	42000	810	9700	96	950	990	1100	120	76	56	1800	5900	730

Subsurface Soil Results

PCBs and Pesticides Concentrations in Subsurface Soils Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

									,		1	,	
			Location ID	SUSDPGD21-N1	SUSDPGD21-N2	SUSDPGD21-N2	SUSDPGD21-P1	SUSDPGD21-P1	SUSDPGD21-P1	SUSDPGD21-R1	SUSDPGD21-R2	SUSDPGD21-S1	SUSDPGD21-S2
		Sa	ample Date	4/4/2018	4/4/2018	4/4/2018	5/30/2018	5/30/2018	5/30/2018	1/23/2018	1/23/2018	1/23/2018	1/24/2018
			Sample ID	DPSGD21N101N	DPSGD21N201N	DPSGD21N201R	DPSGD21P101N	DPSGD21P101R	DPSGD21P102N	DPSGD21R101N	DPSGD21R201N	DPSGD21S101N	DPSGD21S201N
			Depth	1 - 2 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft	1 - 2 ft
			Type	N	N	FD	N	FD	N	N	N	N	N
		Project											
		Screening											
Analyte	Unit	Criteria											
	ug/kg	2500											
	ug/kg	9300											
4,4'-DDT	ug/kg	8500											
	ug/kg	180											
	ug/kg	360											
	ug/kg	1300											
	ug/kg	7700											
	ug/kg	360											
	ug/kg	140											
Endosulfan I	ug/kg	700000											
	ug/kg	700000											
Endosulfan Sulfate	ug/kg	700000											
Endrin	ug/kg	25000											
Endrin aldehyde	ug/kg	25000											
Endrin ketone	ug/kg	25000											
gamma-BHC (Lindane)	ug/kg	2500											
Heptachlor	ug/kg	630											
Heptachlor Epoxide	ug/kg	330											
Methoxychlor	ug/kg	410000											
Toxaphene	ug/kg	2100											
trans-Chlordane	ug/kg	7700											
Aroclor-1016	ug/kg			< 9.1 U	< 9.4 U	< 9.4 U	< 93 U	< 93 U	< 9.2 U	< 9.5 U	< 9.4 U	< 9.3 U	< 9.4 U
Aroclor-1221	ug/kg			< 9.1 U	< 9.4 U	< 9.4 U	< 93 U	< 93 U	< 9.2 U	< 9.5 U	< 9.4 U	< 9.3 U	< 9.4 U
Aroclor-1232	ug/kg			< 9.1 U	< 9.4 U	< 9.4 U	< 93 U	< 93 U	< 9.2 U	< 9.5 U	< 9.4 U	< 9.3 U	< 9.4 U
Aroclor-1242	ug/kg			< 9.1 U	< 9.4 U	< 9.4 U	< 93 U	< 93 U	< 9.2 U	< 9.5 U	< 9.4 U	< 9.3 U	< 9.4 U
Aroclor-1248	ug/kg			< 9.1 U	120 J+	110 J+	< 93 U	< 93 U	< 9.2 U	15	73	84 J+	< 9.4 U
Aroclor-1254	ug/kg			< 9.1 U	230 J+	220 J+	< 93 U	< 93 U	< 9.2 U	< 9.5 U	< 9.4 U	95 J+	< 9.4 U
Aroclor-1260	ug/kg			360	460 J+	450 J+	11000	15000	140	7.0 J	150	89 J+	< 9.4 U
Aroclor-1262	ug/kg			< 9.1 U	< 9.4 U	< 9.4 U	< 93 U	< 93 U	< 9.2 U	< 9.5 U	< 9.4 U	< 9.3 U	< 9.4 U
Aroclor-1268	ug/kg			< 9.1 U	< 9.4 U	< 9.4 U	< 93 U	< 93 U	< 9.2 U	< 9.5 U	< 9.4 U	< 9.3 U	< 9.4 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		360	810	780	11000	15000	140	22	220	270	< 9.4 U

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable

RSL Table, May 2018 Industrial Soil [ELCR = 1E-6, HQ=0.1]

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ug/kg = micrograms per kilogram

Table 4-9
Subsurface Soil Results
Dioxins and Furans Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

												Location ID	SUSDP01	SUSDP02
												Sample Date	5/20/2013	5/14/2013
												Sample ID	DPS0103N	DPS0205N
												Depth	2.5 - 3.5 ft	4.5 - 5.5 ft
												Туре	N	N
		Project												
		Screening			Max	Min	Mean	Median		Count	Count			
Analyte	Unit	Criteria	Method	CAS	Detect	Detect	Detect	Detect	Max Location	Detect	Total			
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g		SW8290A	67562-39-4	109	0.0628	16.7	3.81	SUSDP44-2N	19	21		0.579 JN	4.24 JN
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g		SW8290A	35822-46-9	598	0.915	93.5	28.7	SUSDP44-2N	21	21		3.72 J	6.94
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g		SW8290A	55673-89-7	9.05	0.137	2.76	1.5	SUSDP44-2N	10	21		0.159 JN	0.668 JN
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g		SW8290A	70648-26-9	9.57	0.0688	2.93	1.62	SUSDP44-2N	11	21		0.173 JN	1.13 JN
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g		SW8290A	39227-28-6	6.34	0.128	1.82	0.912	SUSDP44-2N	15	21		0.132 JN	0.176 JN
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g		SW8290A	57117-44-9	7.46	0.0752	2.49	1.16	SUSDP19	14	21		0.307 JN	0.393 JN
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g		SW8290A	57653-85-7	22.2	0.147	3.63	0.896	SUSDP44-2N	20	21		0.147 JN	0.411 J
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g		SW8290A	72918-21-9	0.862	0.862	0.862	0.862	SUSDP10-3G	1	21		< 0.0424 U	< 0.104 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g		SW8290A	19408-74-3	13.5	0.288	3.33	1.74	SUSDP44-2N	19	21		0.486 J	0.864 J
1,2,3,7,8-PeCDF	pg/g		SW8290A	57117-41-6	3.02	0.23	1.24	0.615	SUSDP44-2N	6	21		< 0.0415 U	< 0.133 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g		SW8290A	40321-76-4	3.83	0.0461	1.09	0.637	SUSDP10-3G	10	21		< 0.0376 U	< 0.260 U
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g		SW8290A	60851-34-5	11.5	0.0944	2.59	1.52	SUSDP10-3G	14	21		0.195 J	0.421 JN
2,3,4,7,8-Pentachlorodibenzofuran	pg/g		SW8290A	57117-31-4	16.7	0.0835	4.18	2.75	SUSDP10-3G	10	21		< 0.0406 U	0.270 JN
2,3,7,8-Tetrachlorodibenzofuran	pg/g		SW8290A	51207-31-9	2.69	0.0462	1.19	0.675	SUSDP19	9	21		< 0.0388 U	< 0.166 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g	22	SW8290A	1746-01-6	0.735	0.124	0.43	0.43	SUSDP10-3G	2	21		< 0.0208 U	< 0.235 U
Octachlorochlorodibenzofuran	pg/g		SW8290A	39001-02-0	295	0.147	45.7	4.92	SUSDP44-2N	17	21		0.703 J	3.37 JN
Octachlorochlorodibenzo-p-dioxin	pg/g		SW8290A	3268-87-9	5430	12.4	1220	623	SUSDP44-2N	21	21		81.0	59.4
Total HpCDD	pg/g		SW8290A	37871-00-4	997	2.38	178	67.2	SUSDP44-2N	21	21		8.74 J	15.8
Total HpCDF	pg/g		SW8290A	38998-75-3	315	0.0628	47.4	10.2	SUSDP44-2N	19	21		1.14 JN	8.51 JN
Total HxCDD	pg/g		SW8290A	34465-46-8	129	1.38	31.5	19.9	SUSDP10-3G	21	21		3.40 JN	7.66 JN
Total HxCDF	pg/g		SW8290A	55684-94-1	184	0.266	39.3	5.86	SUSDP10-3G	20	21		5.29 JN	6.42 JN
Total PeCDD	pg/g		SW8290A	36088-22-9	162	0.0461	19.2	3.93	SUSDP19	20	21		0.409 JN	3.21 JN
Total PeCDF	pg/g		SW8290A	30402-15-4	165	0.0368	38.6	14.6	SUSDP19	20	21		12.8 JN	1.57 JN
Total TCDD	pg/g		SW8290A	41903-57-5	19.3	0.258	2.79	0.72	SUSDP10-3G	19	21		1.14 JN	0.484 JN
Total TCDF	pg/g		SW8290A	55722-27-5	121	0.0871	29.9	11.4	SUSDP19	18	21		8.02 JN	0.279 JN
TCDD TEQ HH	pg/g	22	SW8290A	DFTEQ-HH	23.5	0.0367	3.97	1.25	SUSDP10-3G	21	21		0.213	0.558

Table 4-9
Subsurface Soil Results
Dioxins and Furans Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	SUSDP08	SUSDP08-2G	SUSDP08-2G	SUSDP09	SUSDP10	SUSDP10-3F	SUSDP10-3G	SUSDP10-3G	SUSDP10-4E
			Sample Date	5/15/2013	8/3/2017	8/3/2017	5/17/2013	5/15/2013	8/8/2017	8/8/2017	8/8/2017	2/1/2018
			Sample ID	DPS0803N	DPS082G01N	DPS082G01R	DPS0905N	DPS1005N	DPS103F01N	DPS103G01N	DPS103G02N	DPS104E01R
			Depth	2.5 - 3.5 ft	1 - 2 ft	1 - 2 ft	4.5 - 5.5 ft	4.5 - 5.5 ft	1 - 2 ft	1 - 2 ft	2 - 3 ft	1 - 2 ft
			Type	N	N	FD	N	N	N	N	N	FD
		Project										
		Screening										
Analyte	Unit	Criteria										
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g			3.27 J	6.24	7.47	< 0.141 U	0.322 JN	18.5	85.6	13.9	0.68 JN
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g			25.1	73	90.9	17.5	3.43 J	102	460	109	31.3
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g			0.355 J	< 0.491 U	< 0.298 U	< 0.0419 U	< 0.125 U	1.68 J	7.09	1.31 J	0.137 JN
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g			0.379 JN	< 0.307 U	1.11 J	< 0.0442 U	< 0.0743 U	2.39	8.55	1.62 J	< 0.11 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g			0.370 JN	< 0.594 U	< 0.339 U	< 0.125 U	< 0.116 U	2.01 J	5.98	2.22	0.93 JN
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g			2.92 J	0.664 JN	0.849 J	< 0.0409 U	0.216 JN	1.92 J	6.84	1.48 J	< 0.149 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g			0.842 JN	1.8 JN	2.11	0.340 JN	< 0.107 U	4.58	18.2	4.27	0.95 JN
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g			< 0.143 U	< 0.388 U	< 0.255 U	< 0.0507 U	< 0.0857 U	< 0.535 U	0.862 JN	< 0.238 U	< 0.115 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g			0.729 JN	1.28 JN	1.26 J	1.74 J	< 0.104 U	3.75	13.1	4.96	2.26
1,2,3,7,8-PeCDF	pg/g			0.230 JN	< 0.287 U	0.396 J	< 0.0285 U	< 0.111 U	0.715 J	2.56	0.514 J	< 0.125 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g			< 0.292 U	0.87 J	< 0.279 U	< 0.0668 U	< 0.154 U	1.03 J	3.83	0.989 J	0.403 J
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g			0.378 JN	1.46 J	1.57 J	< 0.0395 U	< 0.0686 U	2.81	11.5	2.08	< 0.0934 U
2,3,4,7,8-Pentachlorodibenzofuran	pg/g			0.411 JN	2.87	2.63	< 0.0264 U	< 0.103 U	3.62	16.7	3.3	< 0.118 U
2,3,7,8-Tetrachlorodibenzofuran	pg/g			0.270 JN	< 0.304 U	0.505	< 0.0391 U	< 0.135 U	0.675	2.64	0.472	< 0.135 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g	22		< 0.266 U	< 0.366 U	< 0.174 U	< 0.0408 U	< 0.182 U	< 0.487 U	0.735	0.124 JN	< 0.165 U
Octachlorochlorodibenzofuran	pg/g			4.92 J	15.7	16.2	0.564 JN	< 0.201 U	45.2	228	39.3	< 0.516 U
Octachlorochlorodibenzo-p-dioxin	pg/g			623	1330	1620	288	263 J	777	4940	1130	372
Total HpCDD	pg/g			54.3	146	179	67.2	7.60 J	194	904	228	75.4
Total HpCDF	pg/g			10.4 JN	16.1	19	< 0.344 U	0.587 JN	49.9	240	39.5	1.19
Total HxCDD	pg/g			10.6 JN	19.9	19.9	22.7 JN	1.38 JN	45	129	60.9	22.7
Total HxCDF	pg/g			32.9 JN	19.9	20.7	0.328 JN	2.94 JN	41.3	184	31.8	0.266
Total PeCDD	pg/g			102 JN	7.56	4.15	2.01 JN	< 0.154 U	10.9	32.5	11.2	2.49
Total PeCDF	pg/g			70.9 JN	25.1	24.1	1.09 JN	7.36 JN	28.3	146	25.2	0.305
Total TCDD	pg/g			1.13 JN	0.61	1.14	0.482 JN	0.546 JN	2.7	19.3	4.06	0.668
Total TCDF	pg/g			73.5 JN	10.7	12	1.58 JN	7.74 JN	10.2	66.3	12.4	< 0.135 U
TCDD TEQ HH	pg/g	22		1.19	3.45	3.02	0.470	0.138	5.42	23.5	5.42	1.25

Table 4-9
Subsurface Soil Results
Dioxins and Furans Concentrations in Subsurface Soils
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

							01100010		011000040	01100004	01100004	01100004440	CLICE DATA ON
				-	SUSDP11	SUSDP17	SUSDP18	SUSDP19	SUSDP19	SUSDP24	SUSDP24	SUSDP44-1D	SUSDP44-2N
			Sample Date	2/1/2018	5/14/2013	5/23/2013	5/23/2013	5/23/2013	5/23/2013	5/20/2013	5/20/2013	8/9/2017	8/9/2017
				DPS104E01N	DPS1105N	DPS1705N	DPS1803N	DPS1902N	DPS1902R	DPS2405N	DPS2405R	DPS441D01N	_
			Depth	1 - 2 ft	4.5 - 5.5 ft	4.5 - 5.5 ft	2.5 - 3.5 ft	1.5 - 2.5 ft	1.5 - 2.5 ft	4.5 - 5.5 ft	4.5 - 5.5 ft	1 - 2 ft	1 - 2 ft
			Туре	N	N	N	N	N	FD	N	FD	N	N
		Project											
		Screening											
1 1111911		Criteria											
1,2,3,4,6,7,8-Heptachlorodibenzofuran pg/				0.449 J	0.303 J	0.0628 JN	< 0.129 U	29.7 J	31.0	3.81 J	0.596 JN	0.842 J	109
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin pg/				19.2	15.0	28.7	0.915 J	175	153	8.30	5.17 J	38.2	598
1,2,3,4,7,8,9-Heptachlorodibenzofuran pg/				< 0.105 U	< 0.134 U	< 0.121 U	< 0.224 U	3.53 JN	3.59 JN	< 0.0505 U	< 0.0684 U	< 0.104 U	9.05
1,2,3,4,7,8-Hexachlorodibenzofuran pg/				< 0.0827 U	< 0.0763 U	< 0.0567 U	< 0.117 U	3.57 JN	3.69 JN	0.0688 JN	< 0.0444 U	< 0.0337 U	9.57
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin pg/				0.524 JN	0.149 JN	0.712 JN	< 0.135 U	4.27 J	2.49 JN	0.128 J	< 0.0708 U	0.912 JN	6.34
1,2,3,6,7,8-Hexachlorodibenzofuran pg/	/g			< 0.085 U	< 0.0721 U	< 0.0480 U	< 0.0953 U	7.46 JN	5.39 JN	0.131 JN	< 0.0404 U	0.0752 JN	6.25
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin pg/	/g			0.598 JN	0.336 JN	0.721 J	0.238 J	7.78 JN	5.19 JN	0.431 J	0.179 JN	1.19 J	22.2
1,2,3,7,8,9-Hexachlorodibenzofuran pg/	/g			< 0.102 U	< 0.0858 U	< 0.0546 U	< 0.120 U	< 0.825 U	< 0.537 U	< 0.0311 U	< 0.0562 U	< 0.0536 U	< 0.445 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin pg/	/g			1.48	1.15 JN	2.54 J	< 0.127 U	6.64 J	4.81 JN	0.343 J	0.288 JN	2.16	13.5
1,2,3,7,8-PeCDF pg/	/g			< 0.0774 U	< 0.138 U	< 0.0893 U	< 0.122 U	< 1.18 U	< 0.713 U	< 0.0173 U	< 0.0291 U	< 0.0394 U	3.02
1,2,3,7,8-Pentachlorodibenzo-p-dioxin pg/	/g			0.229 J	< 0.206 U	0.309 JN	< 0.177 U	< 2.17 U	< 0.978 U	0.0461 JN	< 0.0384 U	0.268 JN	2.94
2,3,4,6,7,8-Hexachlorodibenzofuran pg/	/g			< 0.0826 U	0.130 JN	< 0.0417 U	< 0.0911 U	3.22 JN	2.12 J	0.0944 JN	< 0.0411 U	0.0944 J	10.2
2,3,4,7,8-Pentachlorodibenzofuran pg/	/g			< 0.072 U	< 0.117 U	< 0.0731 U	< 0.109 U	< 1.31 U	1.88 JN	< 0.0174 U	< 0.0238 U	0.0835 JN	10
2,3,7,8-Tetrachlorodibenzofuran pg/	/g			< 0.144 UJ	< 0.188 U	< 0.105 U	< 0.148 U	2.69 JN	1.82 JN	< 0.0189 U	0.0462 JN	< 0.0543 U	1.63 JN
2,3,7,8-Tetrachlorodibenzo-p-dioxin pg/	/g	22		< 0.142 U	< 0.253 U	< 0.160 U	< 0.196 U	< 2.26 U	< 1.24 U	< 0.0142 U	< 0.0370 U	< 0.0881 U	< 0.237 U
Octachlorochlorodibenzofuran pg/	/g			< 0.338 U	0.451 J	0.147 JN	< 0.276 U	64.3 J	56.6 J	4.12 J	0.918 J	1.27 J	295
Octachlorochlorodibenzo-p-dioxin pg/	/g			275 J-	906	1250	12.4	2990	2390	246	190	445	5430
Total HpCDD pg/	/g			46.6	49.0	63.9	2.38 J	312	277	19.0	12.2	87.3	997
Total HpCDF pg/				0.846	0.585 J	0.0628 JN	< 0.165 U	96.4 JN	87.2 JN	10.2 JN	1.70 JN	1.66	315
Total HxCDD pg/	/g			16	15.4 JN	31.7 JN	1.98 JN	54.2 JN	45.9 JN	3.29 JN	2.93 JN	27.8	120
Total HxCDF pg/			İ	< 0.0873 U	4.75 JN	0.276 JN	4.59 JN	125 JN	117 JN	4.42 JN	0.503 JN	0.969	182
Total PeCDD pg/				1.25	3.88 JN	3.98 JN	0.319 JN	8.97 JN	162 JN	0.0461 JN	0.126 JN	2.38	24.5
Total PeCDF pg/				< 0.0747 U	16.3 JN	1.05 JN	12.4 JN	165 JN	143 JN	1.34 JN	0.0368 JN	0.264	89.5
Total TCDD pg/				0.431	< 0.253 U	2.99 JN	0.290 JN	< 2.26 U	4.58 JN	0.300 JN	0.258 JN	0.72	11.2
Total TCDF pg/				< 0.144 U	27.7 JN	1.93 JN	24.5 JN	121 JN	119 JN	1.63 JN	0.0871 JN	< 0.0543 U	40.4
TCDD TEQ HH pg/		22		0.768	0.601	1.37	0.0367	6.56	5.72	0.362	0.166	1.26	21.9

Subsurface Soil Results Dioxins and Furans Concentrations in Subsurface Soils Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable

RSL Table, May 2018 Industrial Soil [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

pg/g = picograms per gram

Table 4-10 Groundwater Results

Inorganic Concentrations in UWZ Direct Push Groundwater Samples

													!											
													Location ID	DP26	DP28	DP28	DP30	DP31	DP33	DP35	DP36	DP38	DP40	DP42
													Sample ID	DPW26(25-30)N	DPW2821N	DPW2821R	DPW3028N	DPW3120N	DPW33(27-32)N	DPW3515N	DPW3612-17N	DPW3815-20N	DPW4015-20N	DPW4220-25N
													Depth	25 - 30 ft	20 - 22 ft	20 - 22 ft	27 - 29 ft	19.5 - 20.5 ft	27 - 32 ft	14 - 16 ft	12 - 17 ft	15 - 20 ft	15 - 20 ft	20 - 25 ft
													Sample Date	3/29/2013	4/2/2013	4/2/2013	4/3/2013	4/1/2013	4/4/2013	3/28/2013	5/20/2013	5/23/2013	5/28/2013	5/29/2013
		1		1	_	1				1			Туре	N	N	FD	N	N	N	N	N	N	N	N
		Project																						
	1	Screening			0.40	Max		Mean	Median		Count	Count												
Analyte	Unit	Criteria	Method	Fraction		Detect	Min Detect	Detect	Detect	Max Location	Detect	Total		. 00 111		. 00 111								. 00 11
Aluminum	ug/l	2000	SW6020A	ט	7429-90-5	970	2.7	92	21	SUSDP17	29	45		< 30 UJ	4.5 J+	< 30 UJ	2.8 J+	2.7 J+	37 J+	800	19 J	19 J	130	< 30 U
Antimony	ug/l	6	SW6020A	ט	7440-36-0	1.4	0.054	0.34	0.24	SUSDP37	35	45		0.19 J	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	0.22 J	0.19 J	0.28 J	0.35 J	0.054 J
Arsenic	ug/l	10	SW6020A	ט	7440-38-2	2.8	0.31	1	0.65	DP46	18	45		1.1	1.3	< 1.0 U	< 1.0 U	< 1.0 U	0.31 J	2.7	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Barium	ug/l	1000	SW6020A	D	7440-39-3 7440-41-7	580	19	120	93	SUSDP08	45	45		150 < 1.0 U	210	220	240	240	110	49	93	26	26 < 1.0 U	110 < 1.0 U
Beryllium	ug/l	4	SW6020A	ט		1.3	0.057	0.36	0.26	DP35	11	45			< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.0 J+ 1.5	1.3 7.9	< 1.0 U	< 1.0 U		
Cadmium	ug/l	EN	SW6020A	D	7440-43-9 7440-70-2	7.9	0.12	1.5	0.64 57000	DP35 DP40	18	45		0.41 J 24000	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U			0.40 J 100000	< 1.0 U 56000	< 1.0 U 170000	0.12 J 100000
Calcium Chromium	ug/l ug/l	100	SW6020A SW6020A	ח	7440-70-2	170000 5.6	5000 0.55	70000 2.3	1.9	SUSDP14	45 41	45 45		2.0	83000 1.9 J	82000 1.5 J	37000 2.3	57000 1.9 J	51000 1.7 J	65000 4.3	0.59 J	0.91 J	0.95 J	3.2
Cobalt		0.6	SW6020A SW6020A	ח	7440-47-3		0.33												37					7.8
_	ug/l	1300	SW6020A SW6020A	ם	7440-46-4	71 9.5	0.29	15 1.8	7.8 1.2	DP35 DP28	45 43	45 45	 	4.0 1.5 J	2.1 < 8.1 U	9.5	13 8.8	9.8 8.5	< 7.7 U	71 4.0	23 1.3 J	0.88 0.36 J	12 2.1	7.8 0.59 J
Copper	ug/l ug/l	1400	SW6020A SW6020A	ס	7439-89-6	150000	6.1	6100	320	SUSDP22	32	45 45		2400	< 50 U	< 50 U	360	< 50 U	1700	1100	59	0.36 J 35 J	3600	< 50 U
Iron Lead	ug/I ug/I	15	SW6020A SW6020A	ם	7439-89-8	0.087	0.019	0.043	0.04	SUSDP22 SUSDP17	19	45 45	+ +	< 1.0 U	0.028 J	0.028 J	0.019 J	0.048 J	0.082 J	< 1.0 U	0.040 J	< 1.0 U	< 1.0 U	< 1.0 U
	_	EN	SW6020A SW6020A	ח	7439-92-1	33000	3800	16000	17000	DP35	45	40		13000 J+					25000 J+	33000			18000	24000
Magnesium	ug/l	EIN	SVVUUZUA	ا	1-00-00-4	33000	3300	10000	17000	SUSDP14	70	45		13000 3+	19000 J+	19000 J+	12000 J+	22000 J+	23000 J+	33000	18000	5800	10000	24000
Manganese	ug/l	43	SW6020A	D	7439-96-5	4900	25	1100	790	SUSDP10	45	45		3100	93	120	2200	3700	1900	2500	1100	200	1200	1400
Nickel	ug/l	39	SW6020A	D	7440-02-0	85	0.73	12	5.5	DP35	43	45		5.5	2.8	2.4	7.2	5.7	41	85	7.4	1.0	3.2	3.4
Potassium	ug/l	EN	SW6020A	D	7440-02-0	16000	2000	8300	8100	SUSDP14	45	45		8200	9900	9800	5400	8400	11000	9200	7400	5200	12000	8100
Selenium	ug/l	50	SW6020A	D	7782-49-2	2.8	0.57	1.6	1.6	DP38	16	40		0.60 J	1.3 J	1.0 J	0.76 J	1.0 J	1.1 J	1.9 J	< 5.0 U	2.8 J	2.8 J	< 5.0 U
Seleman	ug/i	30	500020A		1102-43-2	2.0	0.57	1.0	1.0	DP40	10	45		0.00 3	1.5 5	1.03	0.703	1.0 3	1.10	1.5 5	3.00	2.00	2.00	V 3.0 0
Silver	ug/l	50	SW6020A	D	7440-22-4							45		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l	EN	SW6020A	D	7440-23-5	700000	12000	150000	130000	SUSDP03	45	45		56000 J+	190000 J+	190000 J+	200000 J+	340000 J+	310000 J+	220000	230000	87000	83000	69000
Thallium	ug/l	2	SW6020A	D	7440-28-0	0.22	0.024	0.12	0.12	SUSDP05	22	40		< 1.0 U	0.13 J	0.11 J	0.061 J	0.16 J	0.10 J	< 1.0 U	0.16 J	0.032 J	0.17 J	< 1.0 U
mamam	ug/i	_	011002071		7 110 20 0	0.22	0.021	0.12	0.12	SUSDP41		45		1.00	0.10 0	0.110	0.0010	0.100	0.100	1.00	0.100	0.002.0	0.17 0	1.00
Vanadium	ug/l	8.6	SW6020A	D	7440-62-2	5.4	0.21	1.5	0.86	DP46	20	45		0.92 J	1.4	< 1.0 U	0.59 J	0.58 J	< 1.0 U	1.5	0.36 J	< 1.0 U	< 1.0 U	< 1.0 U
Zinc	ug/l	600	SW6020A	D	7440-66-6	490	1.3	37	8.5	SUSDP17	41	45		12 J-	3.2 J-	2.5 J-	10 J-	170 J-	72 J-	170	8.1	< 5.0 U	22	5.5
Aluminum	ug/l	2000	SW6020A	T	7429-90-5	170000	43	18000	2100	SUSDP12	45	45		890	12000	13000	380	24000	14000	5300	7800 J	4000 J	47000 J	270
Antimony	ug/l	6	SW6020A	Т	7440-36-0	1.9	0.08	0.58	0.31	SUSDP12	31	10		< 2.0 UJ	0.46 J	0.56 J	0.080 J	0.77 J	0.57 J	< 2.0 U	0.73 J	0.16 J	0.57 J	< 2.0 U
,	-g/.	Ĭ	011002071				0.00	0.00	0.01	SUSDP37	٠.	45		2.0 00	51.15 5	0.000	0.0000		0.0.	2.0 0			0.07 0	2.00
Arsenic	ug/l	10	SW6020A	Т	7440-38-2	74	0.41	16	8.2	SUSDP09	38	45		6.4 J	19 J	20 J	0.44 J	50 J	32 J	4.0	6.4	2.8	41	4.9
Barium	ug/l	1000	SW6020A	Т	7440-39-3	1800	17	260	110	DP40	45	45		130	270	270	280	400	160	52	150	44	1800	120
Beryllium	ug/l	4	SW6020A	Т	7440-41-7	40	0.041	3.7	0.53	SUSDP12	42	45		0.38 J	1.6 J	1.9 J	0.094 J	2.6 J	3.6 J	1.1	0.93 J	0.36 J	5.0	0.050 J
Cadmium	ug/l	5	SW6020A	Т	7440-43-9	6.5	0.14	1.5	0.7	DP35	31	45	†	0.31 J	0.55 J	0.54 J	< 1.0 UJ	0.27 J	2.2 J	6.5	0.82 J	0.29 J	0.55 J	0.14 J
Calcium	ug/l	EN	SW6020A	Т	7440-70-2	150000	4900	64000	57000	DP40	45	45		23000 J	82000 J	76000 J	39000 J	54000 J	45000 J	52000	110000	47000	150000	100000
Chromium	ug/l	100	SW6020A	Т	7440-47-3	650	0.72	73	8.5	SUSDP14	45	45	†	5.5 J	44 J	44 J	1.7 J	120 J	97 J	8.5	67	11	110	2.2
Cobalt	ug/l	0.6	SW6020A	Т	7440-48-4	560	0.69	44	18	SUSDP37	45	45		6.2 J	61 J	12 J	15 J	61 J	51 J	54	96	6.6	120	9.7
Copper	ug/l	1300	SW6020A	Т	7440-50-8	960	0.6	77	7.6	SUSDP12	44	45	İ	6.4 J	48 J	46 J	7.5 J	68 J	52 J	7.7	29	7.3	270	1.9 J
Iron	ug/l	1400	SW6020A	T	7439-89-6	1200000	130	99000	29000	SUSDP37	45	45		29000	160000	160000	50000	130000	35000	11000	46000 J	13000 J	340000 J	24000
Lead	ug/l	15	SW6020A	Т	7439-92-1	220	0.37	43	12	SUSDP23	32	45		1.1 J	15 J	15 J	0.37 J	41 J	28 J	3.8	11	3.3	180	1.2
Magnesium	ug/l	EN	SW6020A	T	7439-95-4	33000	3600	16000	16000	DP35	45	45		14000	19000	18000	13000	21000	23000	33000	19000	6400	23000	23000
Manganese	ug/l	43	SW6020A	T	7439-96-5	4900	56	1300	1200	DP31	45	45		2800 J	640 J	640 J	2400 J	4900 J	1800 J	2000	2500	420	1900	1400
Nickel	ug/l	39	SW6020A	Т	7440-02-0	260	0.96	35	15	SUSDP37	44	45		7.1 J	24 J	26 J	8.5 J	35 J	54 J	66	31	6.1	60	2.5
Potassium	ug/l	EN	SW6020A	Т	7440-09-7	27000	3000	8800	7900	DP40	45	45		7400 J	10000 J	9800 J	5700 J	10000 J	11000 J	7600	9100	5100	27000	8200
Selenium	ug/l	50	SW6020A	Т	7782-49-2	7.1	0.5	2.5	1.4	DP33	12	45		< 5.0 U	1.4 J	2.0 J	0.97 J	1.8 J	7.1	1.1 J	< 5.0 U	< 5.0 U	6.2	< 5.0 U
Silver	ug/l	50	SW6020A	Т	7440-22-4	0.85	0.044	0.28	0.26	SUSDP14	13	45		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.26 J	0.42 J	< 1.0 U
Sodium	ug/l	EN	SW6020A	Т	7440-23-5	670000	11000	130000	110000	SUSDP03	45	45		53000 J	180000 J	170000 J	210000 J	290000 J	260000 J	190000	240000	84000	80000	70000
Thallium	ug/l	2	SW6020A	Т	7440-28-0	2.6	0.022	0.45	0.15	DP40	28	45		0.089 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.44 J	0.098 J	2.6	< 1.0 U
Vanadium	ug/l	8.6	SW6020A	Т	7440-62-2	850	0.18	98	15	SUSDP12	43	45		7.1 J	76 J	76 J	2.0 J	170 J	93 J	23	50	15	200	2.4
Zinc	ug/l	600	SW6020A	Т	7440-66-6	870	3.3	130	40	SUSDP37	43	45		16 J	64 J	68 J	18 J	120 J	120 J	140	67	22	200	26
Mercury	ug/l	2	SW7470A	D	7439-97-6	0.042	0.04	0.041	0.041	SUSDP01	2	45		< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	0.040 J	< 0.20 U	< 0.20 U	< 0.20 U
Mercury	ug/l	2	SW7470A	T	7439-97-6	3	0.038	0.37	0.081	SUSDP14	20	45		< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	0.084 J+	0.10 J+	< 0.20 U	0.056 J	< 0.20 U	0.44	< 0.20 U
-	•			-	-										-	-						-	-	

Groundwater Results

Inorganic Concentrations in UWZ Direct Push Groundwater Samples

										1	1		T						T
			Location ID	DP45	DP46	DP47	SUSDP01	SUSDP02	SUSDP03	SUSDP04	SUSDP05	SUSDP05	SUSDP07	SUSDP08	SUSDP09	SUSDP10	SUSDP11	SUSDP12	SUSDP13
			Sample ID	DPW4515-20N		DPW4710-15N	DPW0112-15N	DPW0212-17N	DPW0310-15N	DPW0415-20N	DPW0514-19N	DPW0514-19R	DPW0720-25N	DPW0815-25N	DPW0925-30N	DPW1015-20N	DPW1110-15N	DPW1215-20N	DPW1310-15N
			Depth	15 - 20 ft	15 - 20 ft	10 - 15 ft	12 - 15 ft	12 - 17 ft	10 - 15 ft	15 - 20 ft	14 - 19 ft	14 - 19 ft	20 - 25 ft	15 - 25 ft	25 - 30 ft	15 - 20 ft	10 - 15 ft	15 - 20 ft	10 - 15 ft
			Sample Date	6/4/2013	6/5/2013	6/5/2013	5/20/2013	5/20/2013	5/21/2013	5/20/2013	5/21/2013	5/21/2013	5/22/2013	5/24/2013	6/11/2013	6/10/2013	5/28/2013	6/13/2013	5/29/2013
	ı	1	Туре	N	N	N	N	N	N	N	N	FD	N	N	N	N	N	N	N
		Project																	
Analyta	Unit	Screening Criteria																	
Analyte Aluminum	ug/l	2000		< 30 U	37	< 30 U	18 J	6.6 J	3.5 J	3.7 J	3.8 J	30	4.6 J	35	24 J	< 30 U	< 30 U	10 J	< 30 U
	ug/l	6		0.20 J	0.13 J	0.27 J	0.44 J	0.26 J			0.21 J	1.2 J	0.48 J	0.39 J	< 2.0 U	< 2.0 U	0.88 J	0.41 J	0.18 J
Antimony Arsenic	ug/l	10		0.20 J	2.8	< 1.0 U	< 1.0 U	< 1.0 U		0.42 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U		1.8	0.64 J	< 3.9 U	< 1.0 U
Barium	ug/l	1000		58	47	67	51	19		33	41	41	65	580	1	120	100	170	81
Beryllium	ug/l	4		0.26 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cadmium	ug/l	5		2.5	0.13 J	< 1.0 U	< 1.0 U	< 1.0 U		0.17 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U		0.67 J	< 1.0 U	< 1.0 U	< 1.0 U
Calcium	ug/l	EN		20000	43000	90000	85000	32000	120000	110000	57000	57000	130000	110000	55000	26000	74000	120000	30000
Chromium	ug/l	100		3.7	4.3	3.8	1.2 J	0.55 J		0.98 J	< 2.0 U	0.59 J	0.57 J	0.75 J		1.2 J	3.8	1.4 J	4.2
Cobalt	ug/l	0.6		38	0.86	5.7	0.39 J	18		10	5.2	5.4	0.29 J	1.2	12	32	0.32 J	0.77	1.5
Copper	ug/l	1300		0.53 J	1.7 J	1.5 J	1.1 J	1.3 J		2.0	1.4 J	1.3 J	1.1 J	1.0 J		0.43 J		2.3	0.53 J
Iron	ug/l	1400		1400	210	180	32 J	21 J		310	120	190	23 J	230	880	5400	< 50 U	< 50 U	< 50 U
Lead	ug/l	15		< 1.0 U	< 1.0 U	< 1.0 U	0.040 J	0.047 J		0.051 J	0.021 J	0.044 J	< 1.0 U	< 1.0 U	0.063 J	< 1.0 U	< 1.0 U	0.056 J	< 1.0 U
Magnesium	ug/l	EN		14000	24000	21000	7600	4200	25000	11000	12000	12000	10000	18000		16000	23000	18000	3800
3													,						
Manganese	ug/l	43		1300	500	100	25	510	820	1100	190	190	360	1400	830	4900	790	590	71
Nickel	ug/l	39		32	1.8	3.2	0.95 J	5.5			3.1	3.4	< 1.0 U	2.9		6.7	4.0	< 1.0 U	3.6
Potassium	ug/l	EN		5600	5600	15000	9400	3000	13000	12000	6700	6700	8300	11000	9200	7100	9900	13000	5700
Selenium	ug/l	50		< 5.0 U	< 5.0 U	< 5.0 U	1.8 J	1.6 J	2.2 J	< 5.0 U	2.1 J	2.2 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.8 U	< 5.0 U
Silver	ug/l	50		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l	EN		31000	170000	420000	240000	32000	700000	63000	53000	53000	12000	160000	210000	98000	52000	200000	24000
Thallium	ug/l	2		< 1.0 U	< 1.0 U	< 1.0 U	0.076 J	0.13 J	0.14 J	0.16 J	0.11 J	0.22 J	< 1.0 U	0.024 J	< 1.0 U	0.064 J	< 1.0 U	< 1.0 U	< 1.0 U
Vanadium	ug/l	8.6		2.3	5.4	< 1.0 U	0.79 J	< 1.0 U	< 1.0 U	0.41 J	< 1.0 U	0.58 J	0.64 J	< 1.0 U	0.21 J	< 1.1 U	< 1.0 U	1.9	< 1.0 U
Zinc	ug/l	600		31	4.9 J	1.7 J	4.4 J	8.5	19	14	4.2 J	4.0 J	3.9 J	4.0 J	24	16	< 5.0 U	2.6 J	2.5 J
Aluminum	ug/l	2000		400	12000	430	1300 J	43 J	330 J	100 J	640 J	940 J	310 J	32000 J	26000 J	740	1100	170000 J	2100
Antimony	ug/l	6		0.11 J	< 2.0 U	< 2.0 U	1.3 J	0.14 J	0.19 J	0.25 J	0.28 J	0.18 J	< 2.0 U	0.53 J	0.62 J	< 2.0 U	1.7 J	1.9 J	0.15 J
Arsenic	ug/l	10		0.47 J	13	1.6	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.46 J	< 1.0 U	15	74 J-	3.9	20	64 J-	0.41 J
Barium	ug/l	1000		62	90	63	55	17	100	35	42	42	92	950	170	100	170	820	91
Beryllium	ug/l	4		0.15 J	4.0	0.11 J	0.11 J	< 1.0 U	0.043 J	0.041 J	0.063 J	0.082 J	< 1.0 U	5.5	9.2	0.21 J	0.10 J	40	0.044 J
Cadmium	ug/l	5		2.7	1.1	< 1.0 U	< 1.0 U	< 1.0 U	0.36 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.70 J		0.51 J	< 1.0 U	5.3	< 1.0 U
Calcium	ug/l	EN		20000	36000	83000	93000	33000			57000	62000	140000	94000	1	23000	67000	87000	27000
Chromium	ug/l	100		2.9	56	2.3	4.3	0.72 J			2.6	3.5	1.6 J	91		2.3	3.4	550	5.3
Cobalt	ug/l	0.6		41	11	5.8	2.9	18		11	7.4	7.9	0.69	49		30	1.4	90	3.4
Copper	ug/l	1300		1.7 J	68	3.3	2.0	0.60 J		1.1 J	1.8 J	2.4	2.1	74		5.7	3.0	960	3.8
Iron	ug/l	1400		6700	91000	6300	2900 J	210 J			2500 J	4000 J	3200 J	92000 J		9700	32000	470000	4100
Lead	ug/l	15		< 1.0 U	16	< 1.0 U	1.6	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.0	< 1.0 U	41	41 J-	< 1.4 U	44	210 J-	2.8
Magnesium	ug/l	EN		14000	19000	18000	7300	3600	24000	11000	11000	11000	10000	19000		13000	20000	21000	3600
Manganese	ug/l	43		1300	770	100	140	550	930	1200	230	270	400	1800	1200 J-	4300	1400	1600 J-	92
Nickel Datassium	ug/l	39 EN		34	19	3.2	1.8	5.4			3.8	4.4	< 1.0 U	51		6.7	1.8	120	3.8
Potassium	ug/l	EN		5800	5400	14000	10000	3000	14000	13000	6800	7300	8300	11000	1	6100	8900	14000	5400
Selenium	ug/l	50		< 5.0 U	< 5.0 U	< 5.0 U	1.3 J	< 5.0 U	0.76 J	< 5.0 U	< 5.0 U	1.1 J	< 5.0 U	< 5.0 U	< 5.5 U	< 5.0 U	0.50 J	< 10 U	< 5.0 U
Silver	ug/l	50		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	0.22 J	0.26 J	< 1.0 U	< 1.0 U 79000	0.044 J 45000	0.39 J	< 1.0 U
Sodium Thallium	ug/l	EN 2		32000 < 1.0 U	130000	380000	250000	31000		67000	52000	54000	13000	140000			45000 < 1.0 U	140000	21000 < 1.0 U
/anadium	ug/l ug/l	8.6		3.1	0.16 J 93	0.20 J 2.8	0.15 J 4.2	0.051 J < 1.0 U		0.22 J 0.18 J	0.14 J 2.8	0.13 J 4.2	0.022 J 1.1	0.45 J 140		0.055 J 5.3	5.5	1.7 850	7.7
variauiUIII	ug/l	600		32	79	2.8 3.8 J	4.2 5.1	5.3		4.8 J	3.3 J	4.5 J	< 9.7 U	190		5.3 17	9.7	660	16
7inc		000		3Z	13	3.0 J	J. I							130			3.1	000	-
Zinc Mercury	ug/l	2		< 0.20 U	< 0.20 U	< 0.20 U	0.042 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U

Groundwater Results

Inorganic Concentrations in UWZ Direct Push Groundwater Samples

			T					•	•		T	1		1	1	•		
			Location ID	SUSDP14	SUSDP15	SUSDP16	SUSDP16	SUSDP17	SUSDP18	SUSDP19	SUSDP20	SUSDP22	SUSDP23	SUSDP24	SUSDP24	SUSDP37	SUSDP37	SUSDP39
			Sample ID	DPW1423-28N	DPW1520-25N	DPW1615-20N	DPW1615-20R	DPW1713-18N	DPW1815-20N	DPW1915-20N	DPW2015-20N	DPW2215-20N	DPW2323-28N	DPW2415-20N	DPW2415-20R	DPW3713-18N	DPW3725-30N	DPW3913-18N
			Depth	23 - 28 ft	20 - 25 ft	15 - 20 ft	15 - 20 ft	13 - 18 ft	15 - 20 ft	15 - 20 ft	13 - 20 ft	15 - 20 ft	23 - 28 ft	15 - 20 ft	15 - 20 ft	13 - 18 ft	25 - 30 ft	13 - 18 ft
			Sample Date	6/6/2013	6/6/2013	6/10/2013	6/10/2013	6/11/2013	6/4/2013	6/5/2013	6/12/2013	6/12/2013	6/12/2013	6/4/2013	6/4/2013	5/23/2013	5/23/2013	5/22/2013
	T		Туре	N	N	N	FD	N	N	N	N	N	N	N	FD	N	N	N
		Project																
Amalusta	Limit	Screening Criteria																
Analyte Aluminum	Unit ug/l	2000		< 30 U	< 30 U	140	51	970	< 30 U	< 30 U	< 30 U	28 J	8.1 J	75	99	< 30 U	70	2.8 J
Antimony	ug/l	6			0.18 J	0.11 J	< 2.0 U	< 2.0 U	0.53 J	1	0.16 J	0.23 J	< 2.0 U	0.094 J	0.13 J	0.11 J	1.4 J	0.27 J
Arsenic	ug/l	10			1.3	0.51 J	< 1.0 U	< 1.0 U	0.65 J	0.63 J	< 2.1 U	< 1.5 U	< 2.0 U	0.53 J	< 1.0 U	< 1.0 U	0.55 J	0.40 J
Barium	ug/l	1000			200	130	130	69	54	1	60	470	160	33	36	23	120	29
Beryllium	ug/l	4			< 1.0 U	0.30 J	0.31 J	0.19 J	0.057 J	< 1.0 U	< 1.0 U	0.26 J	0.13 J	0.064 J	0.12 J	< 1.0 U	< 1.0 U	< 1.0 U
Cadmium	ug/l	5			< 1.0 U	0.51 J	0.61 J	6.6	1.5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.82 J	0.95 J	< 1.0 U	< 1.0 U	< 1.0 U
Calcium	ug/l	EN		100000	120000	5100	5000	110000	31000	150000	76000	16000	12000	28000	29000	33000	60000	41000
Chromium	ug/l	100			3.6	2.4	2.1		3.6		0.95 J		4.1	4.3	4.4	1.6 J	1.3 J	< 2.0 U
Cobalt	ug/l	0.6			6.8	9.1	9.4	70	64	0.54	16	5.5	9.0	24	26	1.3	0.85	1.8
Copper	ug/l	1300			1.2 J	1.9 J	1.6 J	2.1	0.30 J		0.70 J		0.32 J	1.6 J	3.9 J	0.55 J	1.7 J	0.62 J
Iron	ug/l	1400		< 50 U	< 50 U	660	320	180	10000	94	< 50 U	150000	12000	< 56 UJ	600 J		920	59
Lead	ug/l	15			< 1.0 U	< 1.0 U	< 1.0 U	0.087 J	< 1.0 U	< 1.0 U	0.020 J		0.038 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.029 J
Magnesium	ug/l	EN		33000	28000	5100	5100	17000	13000	30000	12000	17000	8300	10000	10000	4700	12000	4400
									1									
Manganese	ug/l	43		660	120	560	560	1800	1300	1700	690	1300	520	490	520	47	45	1300
Nickel	ug/l	39		16	2.3	15	15	34	18	0.98 J	3.8	4.1	11	37	44	0.75 J	2.8	0.73 J
Potassium	ug/l	EN		16000	15000	4600	4600	8200	5200	14000	7900	2900	2000	5600	5700	3400	7100	3500
Selenium	ug/l	50		0.57 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 12 U	< 5.0 U	< 5.5 U	< 5.0 U	< 5.0 U	1.6 J	< 5.0 U	< 5.0 U
Silver	ug/l	50		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l	EN		190000	180000	14000	14000	180000	120000	320000	270000	230000	30000	75000	73000	61000	120000	13000
Thallium	ug/l	2		< 1.0 U	< 1.0 U	0.061 J	0.036 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.086 J	0.12 J	< 1.0 U
Vanadium	ug/l	8.6			< 1.0 U	< 2.4 U	< 1.8 U	1.4	< 1.0 U		0.66 J		3.4	< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U
Zinc	ug/l	600			2.2 J	33	36	490	32		4.7 J	30	79	61	64	< 5.0 U	< 16 U	3.0 J
Aluminum	ug/l	2000		130000	12000	930	770	5800 J	150	4400 J+	6400 J	6100 J	130000 J	1300 J	2800 J	46 J	110000 J	2100 J
Antimony	ug/l	6		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	0.16 J	0.69 J	< 2.0 U	0.29 J	1.8 J	1.0 J	0.11 J	0.31 J	0.22 J	1.9 J	0.18 J
		10														4.0.11		
Arsenic	ug/l	10			17	1.6	1.3	6.2 J-	0.71 J		22 J-	12 J-	47 J-	4.5 J	10 J	< 1.0 U	64	11
Barium	ug/l	1000			250	110	120	130	58		95	460	1100	38	44		580	65
Beryllium	ug/l	5			1.6	0.55 J	0.52 J	0.61 J	0.072 J	1	0.67 J	0.83 J	20	0.27 J 0.97 J	0.42 J	< 1.0 U	19	0.19 J
Cadmium	ug/l	EN			0.23 J 91000	0.45 J 4900	0.40 J 4900	93000	1.5 32000	< 1.0 U 120000	0.19 J 63000	< 1.0 U 16000	3.1 22000	25000	0.99 J 25000	< 1.0 U 30000	3.5 J 62000	< 1.0 U 38000
Calcium Chromium	ug/l ug/l	100			42	3.7	3.9		1.3 J		29		530	9.3	17	0.97 J	500	4.5
Cobalt	ug/l	0.6			19	9.3	9.4	65	63		69	9.9	46	22	24	1.6	560	4.6
Copper	ug/l	1300			28	4.1	3.7		1.6 J		21	24	390	7.1 J	18 J	< 2.0 U	480	6.0
Iron	ug/l	1400			46000	4500	4000	27000	16000	42000	110000	180000	200000	12000 J		130 J	1200000 J	43000 J
Lead	ug/l	15			15	< 1.1 U	< 1.0 U	10 J-	< 1.0 U	11	11 J-	12 J-	220 J-	3.7 J	8.3 J	< 1.0 U	130	5.7
Magnesium	ug/l	EN			21000	4200	4300	15000	13000	22000	11000		22000	8900	9300	5300	17000	4200
Manganese	ug/l	43			170	530	540	1600 J-	1200	1400	770 J-	1200 J-	790 J-	440	470	56	2200	1500
Nickel	ug/l	39			10	16	16	32	17	4.9	11	8.5	100	35	39	0.96 J	260	2.9
Potassium	ug/l	EN		17000	12000	4200	4300	7900	5300		7200	3400	7800	5200	5400	3300	11000	3600
Selenium	ug/l	50			< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 7.9 U	< 5.0 U	< 14 U	< 5.0 U	< 5.0 U	< 5.0 U	< 50 U	< 5.0 U
Silver	ug/l	50			< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.11 J	< 1.0 U		0.058 J	0.53 J	0.27 J
Sodium	ug/l	EN		92000	140000	12000	12000	160000	120000	240000	220000	210000	20000	66000	67000	65000	100000	11000
Thallium	ug/l	2		1.4	0.11 J	0.030 J	0.023 J	< 1.0 U	< 1.0 U	0.063 J	< 1.0 U	< 1.0 U	1.7	< 1.0 U	< 1.0 U	0.19 J	2.0 J	0.080 J
Vanadium	ug/l	8.6		600	59	7.6	6.5	27	0.94 J	78	46	44	790	13 J	28 J	< 1.0 U	400	6.6
Zinc	ug/l	600			32	41	35	450	38	16	40	53	800	57	75	< 5.0 U	870	17
Mercury	ug/l	2		< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U
Mercury	ug/l	2		3.0	< 0.20 U	< 0.20 U	< 0.20 U	0.066 J	< 0.20 U	0.045 J	0.038 J	< 0.20 U	1.2	< 0.20 U	< 0.20 U	< 0.20 U	0.28	0.053 J

Table 4-10 Groundwater Results Inorganic Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

						•
			Location ID	SUSDP41	SUSDP43	SUSDP44
			Sample ID	DPW41 15-25N	DPW4315-20N	DPW4413-18N
			Depth	15 - 25 ft	15 - 20 ft	13 - 18 ft
			Sample Date	5/24/2013	6/6/2013	6/10/2013
			Туре	N	N	N
		Project				
		Screening				
Analyte	Unit	Criteria				
Aluminum	ug/l	2000		21 J	< 30 U	< 30 U
Antimony	ug/l	6		0.26 J	0.16 J	0.52 J
Arsenic	ug/l	10		< 1.0 U	1.4	< 1.0 U
Barium	ug/l	1000		32	220	87
Beryllium	ug/l	4		< 1.0 U	< 1.0 U	< 1.0 U
Cadmium	ug/l	5		< 1.0 U	< 1.0 U	1.1
Calcium	ug/l	EN		150000	140000	53000
Chromium	ug/l	100		0.78 J	2.9	1.6 J
Cobalt	ug/l	0.6		13	1.4	65
Copper	ug/l	1300		0.98 J	0.43 J	0.54 J
Iron	ug/l	1400		1900	< 50 U	6.1 J
Lead	ug/l	15		< 1.0 U	< 1.0 U	< 1.0 U
Magnesium	ug/l	EN		17000	21000	23000
	~g,'					
Manganese	ug/l	43		1000	920	2800
Nickel	ug/l	39		8.7	2.8	14
Potassium	ug/l	EN		14000	12000	8000
Selenium	ug/l	50		< 5.0 U	< 5.0 U	< 5.0 U
Selemani	ug/i	30		V 3.0 0	V 3.0 0	V 3.0 0
Silver	ug/l	50		< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l	EN		130000	170000	150000
Thallium	ug/l	2		0.22 J	< 1.0 U	0.19 J
	-					
Vanadium	ug/l	8.6		< 1.0 U	2.5	< 2.1 U
Zinc	ug/l	600		5.6	8.0	43
Aluminum	ug/l	2000		1700 J	15000	350
Antimony	ug/l	6		0.16 J	< 2.0 U	< 2.0 U
Arsenic	ug/l	10		2.6	14	0.70 J
Barium	ug/l	1000		51	380	84
Beryllium	ug/l	4		0.18 J	1.8	0.13 J
Cadmium	ug/l	5		0.16 J	0.38 J	0.94 J
Calcium	ug/l	EN		130000	120000	51000
Chromium	ug/l	100		3.1	33	2.2
Cobalt	ug/l	0.6		18	15	68
Copper	ug/l	1300		9.1	86	2.2
Iron	ug/l	1400		30000 J	62000	2400
Lead	ug/l	15		1.6	92	< 1.0 U
Magnesium	ug/l	EN		16000	17000	20000
Manganese	ug/l	43		870	1000	2800
Nickel	ug/l	39		10	57	14
Potassium	ug/l	EN		12000	11000	7700
Selenium	ug/l	50		< 5.0 U	< 5.0 U	< 5.0 U
Silver	ug/l	50		0.12 J	0.069 J	< 1.0 U
Sodium	ug/l	EN		110000	140000	140000
Thallium	ug/l	2		0.22 J	0.17 J	0.10 J
Vanadium	ug/l	8.6		5.3	53	2.0
Zinc	ug/l	600		30	450	44
Mercury	ug/l	2		< 0.20 U	< 0.20 U	< 0.20 U
Mercury	ug/l	2		< 0.20 U	0.18 J	< 0.20 U
incioury	ug/I	2		. 0.20 0	0.100	- 3.20 0

Notes

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

JN = The analyte was tentatively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- ug/l = micrograms per liter

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

													Location ID	DP26	DP28	DP28	DP30	DP31	DP33	DP35	DP36	DP38
														DPW26(25-30)N	DPW2821N	DPW2821R		DPW3120N	DPW33(27-32)N	DPW3515N		DPW3815-20N
													Depth	25 - 30 ft	20 - 22 ft	20 - 22 ft	27 - 29 ft	19.5 - 20.5 ft	27 - 32 ft	14 - 16 ft	12 - 17 ft	15 - 20 ft
													Sample Date	3/29/2013	4/2/2013	4/2/2013	4/3/2013	4/1/2013	4/4/2013	3/28/2013	5/20/2013	5/23/2013
	1 1		_		1	1	1	1	1	1	,	•	Туре	N	N	FD	N	N	N	N	N	N
		Project																				
Aurabata	1.1	Screening		F		Max	Min	Mean	Median	Max	Count Count	O Tatal										
Analyte	Unit	Criteria	Method SW8015C DRO	Fraction	n CAS C10C20	Detect 540	Detect	Detect 430	Detect	Location DP46	Detect Reject	Count Total		< 510 U	z 400 III	4 400 111	< 500 U	< 480 U	< 480 U	< 480 U	< 480 U	< 500 U
Diesel Range Organics (C10-C20) Oil Range Organics (C20-C36)	ug/l	100 6000	SW8015C DRO	N N	C20C36	1900	320 230	760	450 560	SUSDP43	6 11	45 45		< 510 U	< 480 UJ 240 J	< 480 UJ 250 J	550 550	590	< 480 U	< 480 U	< 480 U	< 500 U
Gasoline Range Organics (C6-C10)	ug/l ug/l	3.3	SW8015C BRO	N	8006-61-9	1900	230	700	300	303DF43	11	46		< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U
1,1,1-Trichloroethane	ug/l	200	SW8260B/SW8260C	N	71-55-6							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane	ug/l	0.076	SW8260B/SW8260C	N	79-34-5							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	1000	SW8260B/SW8260C	N	76-13-1							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloroethane	ug/l	5	SW8260B/SW8260C	N	79-00-5							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	2.8	SW8260B/SW8260C	N	75-34-3							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethene	ug/l	7	SW8260B/SW8260C	N	75-35-4							96		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene	ug/l	0.7	SW8260B/SW8260C	N	87-61-6							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,4-Trichlorobenzene	ug/l	70	SW8260B/SW8260C	N	120-82-1							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane	ug/l	0.2	SW8260B/SW8260C	N	96-12-8							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane	ug/l	0.05	SW8260B/SW8260C	N	106-93-4							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene	ug/l	600	SW8260B/SW8260C	N	95-50-1							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l	5	SW8260B/SW8260C	N	107-06-2							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane	ug/l	5	SW8260B/SW8260C	N	78-87-5	1				1		75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,3-Dichlorobenzene	ug/l	0.48	SW8260B/SW8260C	N	541-73-1							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	75	SW8260B/SW8260C	N	106-46-7							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dioxane 2-Butanone	ug/l	0.46 560	SW8260B/SW8260C SW8260B/SW8260C	N	123-91-1 78-93-3	13	0.74	4.1	1.3	DP58	4	75		< 200 U < 5.0 U	< 200 U < 5.0 U	< 200 U < 5.0 U	< 200 U < 5.0 U	< 200 U < 5.0 U	< 200 U < 5.0 U	< 200 U < 5.0 U	< 200 U < 5.0 U	< 200 U < 5.0 U
2-Butanone 2-Hexanone	ug/l ug/l	3.8	SW8260B/SW8260C	N N	591-78-6	13	0.74	4.1	1.3	DP36	4	75 75		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
4-Methyl-2-pentanone	ug/l	630	SW8260B/SW8260C	N	108-10-1							75 75		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Acetone	ug/l	1400	SW8260B/SW8260C	N	67-64-1	73	2.7	7.8	4.3	DP58	29	75		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	3.2 J	< 5.0 U
Benzene	ug/l	5	SW8260B/SW8260C	N	71-43-2	0.26	0.21	0.24	0.24	DP33	2	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.26 J	< 1.0 U	< 1.0 U	< 1.0 U
Bromochloromethane	ug/l	8.3	SW8260B/SW8260C	N	74-97-5		V	1				75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane	ug/l	80	SW8260B/SW8260C	N	75-27-4	2.6	0.36	1.5	1.5	DP60	2	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromoform	ug/l	80	SW8260B/SW8260C	N	75-25-2							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromomethane	ug/l	0.75	SW8260B/SW8260C	N	74-83-9						6	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Butyl alcohol, tert-	ug/l	14	SW8260B/SW8260C	N	75-65-0	110	110	110	110	DP58	1	29										
Carbon Disulfide	ug/l	81	SW8260B/SW8260C	N	75-15-0	1.5	0.39	0.87	0.84	DP58	9	75		< 1.0 U	0.46 J	0.39 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Carbon Tetrachloride	ug/l	5	SW8260B/SW8260C	N	56-23-5							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chlorobenzene	ug/l	100	SW8260B/SW8260C	N	108-90-7							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane	ug/l	2100	SW8260B/SW8260C	N	75-00-3							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroform	ug/l	80	SW8260B/SW8260C	N	67-66-3	15	0.26	2.2	1.1	DP60	13	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloromethane	ug/l	19	SW8260B/SW8260C	N	74-87-3		0.05			DDD7	22	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene	ug/l	70	SW8260B/SW8260C	N	156-59-2	23	0.35	7.4	5.6	DPB7	20	96		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.81 J	0.56 J	< 1.0 U	< 1.0 U
cis-1,3-Dichloropropene	ug/l	0.47 1300	SW8260B/SW8260C SW8260B/SW8260C	IN N	10061-01-5 110-82-7	-		-		ļ	+	75 75	 	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane Dibromochloromethane	ug/l ug/l	80	SW8260B/SW8260C	N	124-48-1		-	-				75 75	+	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dichlorodifluoromethane	ug/l	20	SW8260B/SW8260C	N	75-71-8						+ +	75 75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Disopropyl ether	ug/l	150	SW8260B/SW8260C	N	108-20-3	0.63	0.33	0.48	0.48	TA19C1	2	29	+	- 1.00	- 1.00	- 1.0 0	1.00	- 1.0 0	- 1.0 0	- 1.0 0	- 1.00	- 1.00
Ethylbenzene	ug/l	700	SW8260B/SW8260C	N	100-20-3	0.00	0.00	0.40	0.40	1711301	-	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether	ug/l		SW8260B/SW8260C	N	637-92-3							29		0					0			
Isopropylbenzene	ug/l	45	SW8260B/SW8260C	N	98-82-8	1				<u> </u>	1	75	1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
n, p-Xylene	ug/l	10000	SW8260B/SW8260C	N	XYLMP	0.56	0.27	0.44	0.46	SUSDP06	4	75		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Methyl Acetate	ug/l	2000	SW8260B/SW8260C	N	79-20-9	İ				Ì		75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methyl tert-Butyl Ether (MTBE)	ug/l	14	SW8260B/SW8260C	N	1634-04-4	48	0.21	5.6	1.2	DP45	45	75		2.2	1.2	1.2	0.47 J	2.0	21	< 1.0 U	0.53 J	< 1.0 U
Methylcyclohexane	ug/l	1300	SW8260B/SW8260C	N	108-87-2							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	5	SW8260B/SW8260C	N	75-09-2	0.49	0.2	0.32	0.31	SUSDP02	6	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
o-Xylene	ug/l	10000	SW8260B/SW8260C	N	95-47-6	0.24	0.11	0.16	0.15	SUSDP06	4	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Styrene	ug/l	100	SW8260B/SW8260C	N	100-42-5							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tertiary-Amyl Methyl Ether	ug/l	41	SW8260B/SW8260C	N	994-05-8	1.3	0.2	0.64	0.53	DP57	4	29										
Tetrachloroethylene	ug/l	5	SW8260B/SW8260C	N	127-18-4	470	0.2	70	2.1	DPB7	41	96		0.27 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.81 J	0.20 J	< 1.0 U	< 1.0 U
Toluene	ug/l	1000	SW8260B/SW8260C	N	108-88-3	2.1	0.15	0.42	0.26	SUSDP06	35	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,2-Dichloroethene	ug/l	100	SW8260B/SW8260C	N	156-60-5							96		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,3-Dichloropropene	ug/l	0.47	SW8260B/SW8260C	N	10061-02-6						<u> </u>	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

													Location ID	DP26	DP28	DP28	DP30	DP31	DP33	DP35	DP36	DP38
														DPW26(25-30)N	DPW2821N	DPW2821R	DPW3028N	DPW3120N	DPW33(27-32)N	DPW3515N	DPW3612-17N	DPW3815-20N
													Depth	25 - 30 ft	20 - 22 ft	20 - 22 ft	27 - 29 ft	19.5 - 20.5 ft	27 - 32 ft	14 - 16 ft	12 - 17 ft	15 - 20 ft
													Sample Date	3/29/2013	4/2/2013	4/2/2013	4/3/2013	4/1/2013	4/4/2013	3/28/2013	5/20/2013	5/23/2013
			T			1	1				1		Туре	N	N	FD	N	N	N	N	N	N
		Project				1																1
Analyte	Unit	Screening Criteria	Method	Fraction	n CAS	Max	Min Detect	Mean	Median Detect	Max Location	Count Count Detect Reject	Count Total										1
Trichloroethene	ug/l	5	SW8260B/SW8260C	N	79-01-6	Detect 26	0.17	Detect 9.8	6.4	DPA4	Detect Reject 22	Count Total		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.17 J	< 1.0 U	< 1.0 U	< 1.0 U
The increase is	ug.	ŭ	31102002/01102000				0	0.0	0	DPB7		96		0	0	1.00			5 5		0	1
Trichlorofluoromethane	ug/l	520	SW8260B/SW8260C	N	75-69-4							75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	2	SW8260B/SW8260C	N	75-01-4							96		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	10000	SW8260B/SW8260C	N	1330-20-7	0.8	0.11	0.4	0.37	SUSDP06	6	75		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
1,1'-Biphenyl	ug/l	0.083	SW8270D LL	N	92-52-4	-						7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
1,2,4,5-Tetrachlorobenzene	ug/l	0.17	SW8270D LL	N	95-94-3							7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		1
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol	ug/l ug/l	71 24	SW8270D LL SW8270D LL	N N	108-60-1 58-90-2							7		< 0.19 U < 0.97 U	< 0.19 U < 0.96 U	< 0.19 U < 0.96 U	< 0.19 U < 0.97 U	< 0.19 U < 0.96 U	< 0.19 U < 0.96 U	< 0.19 U < 0.97 U		
2,4,5-Trichlorophenol	ug/l	120	SW8270D LL	N	95-95-4							7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
2,4,6-Trichlorophenol	ug/l	1.2	SW8270D LL	N	88-06-2	1						7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
2,4-Dichlorophenol	ug/l	4.6	SW8270D LL	N	120-83-2							7		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U		
2,4-Dimethylphenol	ug/l	36	SW8270D LL	N	105-67-9							7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
2,4-Dinitrophenol	ug/l	3.9	SW8270D LL	N	51-28-5							7		< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U		
2,4-Dinitrotoluene	ug/l	0.24	SW8270D LL	N	121-14-2							7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
2,6-Dinitrotoluene	ug/l	0.049	SW8270D LL	N	606-20-2							7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
2-Chloronaphthalene 2-Chlorophenol	ug/l	75	SW8270D LL SW8270D LL	N N	91-58-7 95-57-8	+		-				7		< 0.19 U < 0.97 U	< 0.19 U < 0.96 U	< 0.19 U < 0.96 U	< 0.19 U < 0.97 U	< 0.19 U < 0.96 U	< 0.19 U	< 0.19 U < 0.97 U		<u> </u>
2-Methylnaphthalene	ug/l ug/l	9.1 3.6	SW8270D LL	N	91-57-6	0.076	0.067	0.072	0.072	DP26	2	7		0.076 J	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U < 0.19 U	0.067 J		
2-Methylphenol	ug/l	93	SW8270D LL	N	95-48-7	0.070	0.007	0.072	0.072	D1 20		7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.13 U	< 0.96 U	< 0.96 U	< 0.97 U		
2-Nitroaniline	ug/l	19	SW8270D LL	N	88-74-4							7		< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U		
2-Nitrophenol	ug/l	580	SW8270D LL	N	88-75-5							7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
3,3'-Dichlorobenzidine	ug/l	0.13	SW8270D LL	N	91-94-1							7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
3-Nitroaniline	ug/l	3.8	SW8270D LL	N	99-09-2							7		< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U		
4,6-Dinitro-2-methylphenol	ug/l	0.15	SW8270D LL	N	534-52-1							7		< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U		ļ
4-Bromophenyl-phenylether	ug/l	440	SW8270D LL	N	101-55-3							7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
4-Chloro-3-methylphenol 4-Chloroaniline	ug/l ug/l	140 0.37	SW8270D LL SW8270D LL	N N	59-50-7 106-47-8	+		-				7		< 0.97 U < 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U < 0.97 U	< 0.96 U < 0.96 U	< 0.96 U	< 0.97 U < 0.97 U		<u> </u>
4-Chlorophenyl-phenylether	ug/l	0.37	SW8270D LL	N	7005-72-3							7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
4-Methylphenol	ug/l	190	SW8270D LL	N	106-44-5							7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
4-Nitroaniline	ug/l	3.8	SW8270D LL	N	100-01-6							7		< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U		
4-Nitrophenol	ug/l	580	SW8270D LL	N	100-02-7							7		< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U	< 4.8 U	< 4.8 U	< 4.9 U		
Acenaphthene	ug/l	53	SW8270D LL	N	83-32-9	0.28	0.017	0.071	0.033	SUSDP39	7	45		0.021 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	0.033 J	< 0.19 U	< 0.19 U
Acenaphthylene	ug/l	53	SW8270D LL	N	208-96-8	0.057	0.057	0.057	0.057	SUSDP20	1	45		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Acetophenone	ug/l	190	SW8270D LL	N	98-86-2	0.54	0.000	0.45	0.000	0110000	45	7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	0.40.11	
Anthracene	ug/l	180	SW8270D LL	N	120-12-7	0.51	0.023	0.15	0.082	SUSDP37	15	45 7		< 0.19 U	0.20	0.082 J	0.047 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Atrazine Benzaldehyde	ug/l ug/l	3 19	SW8270D LL SW8270D LL	IN NI	1912-24-9 100-52-7	0.9	0.9	0.9	0.9	DP35	1	7		< 0.97 U < 0.97 U	< 0.96 U < 0.96 U	< 0.96 U	< 0.97 U < 0.97 U	< 0.96 U < 0.96 U	< 0.96 U < 0.96 U	< 0.97 U 0.90 J		
Benzo(a)anthracene	ug/l	0.03	SW8270D LL	N	56-55-3	3.4	0.047	0.82	0.37	SUSDP37	10	45		< 0.19 U	1.2 J	0.48 J	0.42	< 0.30 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Benzo(a)pyrene	ug/l	0.2	SW8270D LL	N	50-32-8	2.9	0.094	0.94	0.38	SUSDP37		45		< 0.19 U	0.81 J	0.38 J	0.37	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Benzo(b)fluoranthene	ug/l	0.25	SW8270D LL	N	205-99-2	3.1	0.067	0.98	0.59	SUSDP37		45		< 0.19 U	1.2 J	0.69 J	0.48	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Benzo(g,h,i)perylene	ug/l	12	SW8270D LL	N	191-24-2	3.9	0.071	1.4	0.89	SUSDP37	6	45		< 0.19 U	1.1 J	0.68 J	0.51	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Benzo(k)fluoranthene	ug/l	2.5	SW8270D LL	N	207-08-9	4	0.063	1.3	0.67	SUSDP37	7	45		< 0.19 U	1.3 J	0.67 J	0.59	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
bis-(2-chloroethoxy)methane	ug/l	5.9	SW8270D LL	N	111-91-1	1						7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
bis-(2-Chloroethyl)ether	ug/l	0.014	SW8270D LL	N N	111-44-4	7.0	7.0	7.0	7.0	DDOF		7		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U		\vdash
bis-(2-Ethylhexyl)phthalate	ug/l	6 16	SW8270D LL	N N	117-81-7	7.6	7.6	7.6	7.6	DP35	5	7		< 1.9 U	< 1.9 U	< 1.9 U	< 1.9 U	< 1.9 U	< 1.9 U	7.6		\vdash
Butylbenzylphthalate Caprolactam	ug/l ug/l	16 990	SW8270D LL SW8270D LL	N	85-68-7 105-60-2	0.9	0.15	0.4	0.27	DP33	5	7		< 0.97 U < 4.9 U	0.44 J < 4.8 U	0.24 J < 4.8 U	0.27 J < 4.9 U	0.15 J < 4.8 U	0.90 J < 4.8 U	< 0.97 U < 4.9 U		
Carbazole	ug/l	29	SW8270D LL	N	86-74-8	1						7		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U		
Chrysene	ug/l	25	SW8270D LL	N	218-01-9	3.8	0.057	0.91	0.39	SUSDP37	10	45		< 0.19 U	1.3 J	0.71 J	0.48	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Dibenzo(a,h)anthracene	ug/l	0.025	SW8270D LL	N	53-70-3	3.8	0.51	1.7	1.2	SUSDP37	5	45		< 0.19 U	1.2 J	0.63 J	0.51	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Dibenzofuran	ug/l	0.79	SW8270D LL	N	132-64-9							7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
Diethylphthalate	ug/l	1500	SW8270D LL	N	84-66-2	0.4	0.16	0.3	0.3	DP28	6	7		0.16 J	0.38 J	0.40 J	< 0.97 U	0.33 J	0.26 J	0.27 J		
Dimethylphthalate	ug/l	1500	SW8270D LL	N	131-11-3	0.13	0.13	0.13	0.13	DP35	1	7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	0.13 J		\sqsubseteq
Di-n-butylphthalate	ug/l	90	SW8270D LL	N	84-74-2	1.5	0.13	0.82	0.82	DP35	2	7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	0.13 J	1.5		
Di-n-octylphthalate	ug/l	20	SW8270D LL	N	117-84-0	0.73	0.62	0.68	0.68	DP28	2	7		< 0.97 U	0.73 J	0.62 J	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	404011	404011
Fluoranthene	ug/l	80	SW8270D LL	N	206-44-0	1.6	0.036	0.27	0.099	SUSDP39	14	45		< 0.19 U	0.39 J	0.18 J	0.079 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

														Location ID	DP26	DP28	DP28	DP30	DP31	DP33	DP35	DP36	DP38
														Sample ID	DPW26(25-30)N	DPW2821N	DPW2821R	DPW3028N	DPW3120N	DPW33(27-32)N	DPW3515N	DPW3612-17N	DPW3815-20N
														Depth	25 - 30 ft	20 - 22 ft	20 - 22 ft	27 - 29 ft	19.5 - 20.5 ft	27 - 32 ft	14 - 16 ft	12 - 17 ft	15 - 20 ft
														Sample Date	3/29/2013	4/2/2013	4/2/2013	4/3/2013	4/1/2013	4/4/2013	3/28/2013	5/20/2013	5/23/2013
														Туре	N	N	FD	N	N	N	N	N	N
		Project																					
		Screening				Max	Min	Mean	Median	Max	Count	Count											
Analyte	Unit	Criteria	Method	Fraction		Detect	Detect	Detect	Detect	Location	Detect	Reject	Count Total										
Fluorene	ug/l	29	SW8270D LL	N	86-73-7	0.25	0.022	0.1	0.063	SUSDP39	4		45		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Hexachlorobenzene	ug/l	1	SW8270D LL	N	118-74-1								7		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U		
Hexachlorobutadiene	ug/l	0.14	SW8270D LL	N	87-68-3								7		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U		
Hexachlorocyclo-pentadiene	ug/l	50	SW8270D LL	N	77-47-4								7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
Hexachloroethane	ug/l	0.33	SW8270D LL	N	67-72-1								7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
Indeno(1,2,3-cd)pyrene	ug/l	0.25	SW8270D LL	N	193-39-5	3.7	0.063	1.4	0.96	SUSDP37	6		45		< 0.19 U	1.2 J	0.71 J	0.51	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Isophorone	ug/l	78	SW8270D LL	N	78-59-1								7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
Naphthalene	ug/l	0.17	SW8270D LL	N	91-20-3	0.46	0.044	0.2	0.094	DP26	5		45		0.46	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	0.31	< 0.19 U	< 0.19 U
Nitrobenzene	ug/l	0.14	SW8270D LL	N	98-95-3								7		< 1.9 U	< 1.9 U	< 1.9 U	< 1.9 U	< 1.9 U	< 1.9 U	< 1.9 U		
N-Nitroso-di-n-propylamine	ug/l	0.011	SW8270D LL	N	621-64-7								7		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U		
N-Nitrosodiphenylamine	ug/l	12	SW8270D LL	N	86-30-6								7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
Pentachlorophenol	ug/l	1	SW8270D LL	N	87-86-5								7		< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.97 U		
Phenanthrene	ug/l	180	SW8270D LL	N	85-01-8	1.5	0.042	0.21	0.069	SUSDP39	13		45		< 0.19 U	0.069 J	0.057 J	< 0.19 U	< 0.19 U	< 0.19 U	0.059 J	< 0.19 U	< 0.19 U
Phenol	ug/l	580	SW8270D LL	N	108-95-2								7		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U		
Pyrene	ug/l	12	SW8270D LL	N	129-00-0	1.2	0.059	0.26	0.13	SUSDP39	12		45		< 0.19 U	0.29	0.17 J	0.059 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
BaP-TE	ug/l	0.2	SW8270D LL	N	BAP	7.76	0.00476	1.76	0.66	SUSDP37	10		45		< 0.190 U	2.38	1.21	1.03	< 0.190 U	< 0.190 U	< 0.190 U	< 0.190 U	< 0.190 U
Total High-molecular-weight PAHs	ug/l		SW8270D LL	N	TOT-PAH-HMW	30	0.039	5.3	0.78	SUSDP37	14		45		< 0.19 U	10	5.3	4.0	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Total Low-molecular-weight PAHs	ug/l		SW8270D LL	N	TOT-PAH-LMW	2.5	0.033	0.33	0.16	SUSDP39	21		45		0.48	0.27	0.14	0.047	< 0.19 U	< 0.19 U	0.40	< 0.19 U	< 0.19 U
Total PAHs (sum 16)	ug/l		SW8270D LL	N	TOT-PAH	30	0.043	3.6	0.37	SUSDP37	22		45		0.48	10	5.4	4.1	< 0.19 U	< 0.19 U	0.40	< 0.19 U	< 0.19 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

			Location ID	DP40	DP42	DP45	DP46	DP47	DP54	DP55	DP55	DP56	DP57	DP57	DP58	DP59	DP60	DP61	DP62
			Sample ID	DPW4015-20N	DPW4220-25N	DPW4515-20N	DPW4615-20N	DPW4710-15N	-		DPW5515-20R	DPW5615-20N	DPW5715-20N	DPW5715-20R	DPW5815-20N	DPW5915-20N	DPW6015-20N	DPW6115-20N	DPW6215-20N
			Depth	15 - 20 ft	20 - 25 ft	15 - 20 ft	15 - 20 ft	10 - 15 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft
			Sample Date	5/28/2013	5/29/2013	6/4/2013	6/5/2013	6/5/2013	2/2/2017	2/2/2017	2/2/2017	2/3/2017	2/3/2017	2/3/2017	2/6/2017	2/3/2017	2/6/2017	2/6/2017	2/6/2017
			Туре	N	N	N	N	N	N	N	FD	N	N	FD	N	N	N	N	N
		Project																	
Aurabata	1.1	Screening																	
Analyte Diesel Range Organics (C10-C20)	Unit	Criteria 100		< 480 U	< 500 U	< 480 UJ	540	< 480 U											
Dil Range Organics (C20-C36)	ug/l ug/l	6000		< 480 U	< 500 U	230 J	940	< 480 U											
Gasoline Range Organics (C6-C10)	ug/l	3.3		< 100 U	< 100 U	< 100 U	< 100 U	< 100 U											
1.1.1-Trichloroethane	ug/l	200		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane	ug/l	0.076		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	1000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 UJ
1,1,2-Trichloroethane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	2.8		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethene	ug/l	7		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 UJ
1,2,3-Trichlorobenzene	ug/l	0.7		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 UJ
1,2,4-Trichlorobenzene	ug/l	70		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane	ug/l	0.2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane	ug/l	0.05		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorosthana	ug/l	600 5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane 1,2-Dichloropropane	ug/l ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1.3-Dichloropenzene	ug/I ug/I	0.48		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dioxane	ug/l	0.46	1	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	R R	< 200 U	R	R	R
2-Butanone	ug/l	560		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	13	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
2-Hexanone	ug/l	3.8		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
4-Methyl-2-pentanone	ug/l	630		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Acetone	ug/l	1400		2.7 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	3.9 J	3.1 J	< 5.0 U	3.4 J	< 5.0 U	73	10	7.6	4.4 J	3.4 J
Benzene	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromochloromethane	ug/l	8.3		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	2.6	< 1.0 U	< 1.0 U
Bromoform	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromomethane	ug/l	0.75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U	R	R	R
Butyl alcohol, tert-	ug/l	14					1011		< 40 U	< 40 U	< 40 U	< 40 U	< 40 U	< 40 U	110 J-	< 40 U	< 40 U	< 40 U	< 40 U
Carbon Disulfide	ug/l	81		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.5 < 1.0 U	0.57 J < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Carbon Tetrachloride Chlorobenzene	ug/l ug/l	5 100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane	ug/l	2100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroform	ug/l	80		1.5	1.1	< 1.0 U	0.44 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	15	< 1.0 U	< 1.0 U
Chloromethane	ug/l	19		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene	ug/l	70		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,3-Dichloropropene	ug/l	0.47		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane	ug/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dibromochloromethane	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dichlorodifluoromethane	ug/l	20		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U
Diisopropyl ether	ug/l	150							< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
Ethylbenzene	ug/l	700		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether	ug/l								< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Isopropylbenzene	ug/l	45		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
m, p-Xylene	ug/l	10000		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.27 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methyl Acetate	ug/l	2000		< 1.0 U 0.96 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U	< 5.0 U 0.55 J	< 5.0 U	< 5.0 U	< 5.0 U 6.8	< 5.0 U < 1.0 U	< 5.0 U 0.21 J	< 5.0 U 0.31 J	< 5.0 U 0.28 J
Methyl tert-Butyl Ether (MTBE) Methylcyclohexane	ug/l ug/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	6.8 < 1.0 U	< 1.0 U	0.21 J < 1.0 U	0.31 J < 1.0 U	0.28 J < 1.0 U
Methylene Chloride	ug/l	5	+	0.24 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
p-Xylene	ug/l	10000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Styrene	ug/l	10000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Fertiary-Amyl Methyl Ether	ug/l	41	1	1.00	1.00	11.00	- 1.00	10	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.3	0.68 J	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U
Tetrachloroethylene	ug/l	5		< 1.0 U	< 1.0 U	0.70 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.30 J	0.44 J	< 1.0 U	< 1.0 U
Toluene	ug/l	1000		0.24 J	0.21 J	< 1.0 U	< 1.0 U	< 1.0 U	0.26 J	0.22 J	0.17 J	< 1.0 U	0.27 J	0.25 J	0.74 J	< 1.0 U	0.20 J	< 1.0 UJ	0.22 J
trans-1,2-Dichloroethene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,3-Dichloropropene	ug/l	0.47	i	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

									_	11, DC 20019									
			Location ID	DP40	DP42	DP45	DP46	DP47	DP54	DP55	DP55	DP56	DP57	DP57	DP58	DP59	DP60	DP61	DP62
			Sample ID		DPW4220-25N	DPW4515-20N	DPW4615-20N	DPW4710-15N	DPW5415-20N	DPW5515-20N	DPW5515-20R	DPW5615-20N	DPW5715-20N				DPW6015-20N	DPW6115-20N	DPW6215-20N
			Depth	15 - 20 ft	20 - 25 ft	15 - 20 ft	15 - 20 ft	10 - 15 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft
			Sample Date	5/28/2013	5/29/2013	6/4/2013	6/5/2013	6/5/2013	2/2/2017	2/2/2017	2/2/2017	2/3/2017	2/3/2017	2/3/2017	2/6/2017	2/3/2017	2/6/2017	2/6/2017	2/6/2017
			Туре	N	N	N	N	N	N	N	FD	N	N	FD	N	N	N	N	N
		Project																	
		Screening																	1
Analyte	Unit	Criteria																	
Trichloroethene	ug/l	5		< 1.0 U	< 1.0 U	0.19 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Trichlorofluoromethane	ug/l	520		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	10000		< 1.0 U < 2.0 U	< 1.0 U < 2.0 U	< 1.0 U < 2.0 U	< 1.0 U < 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U 0.27	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total) 1,1'-Biphenyl	ug/l ug/l	0.083		< 2.0 0	\ 2.0 U	< 2.0 U	\ 2.0 0	< 2.0 0	×10	\10	×10	×10	×10	×10	0.27	×10	×10	×10	10
1,2,4,5-Tetrachlorobenzene	ug/l	0.003	1																
2,2'-oxybis(1-Chloropropane)	ug/l	71																	
2,3,4,6-Tetrachlorophenol	ug/l	24																	
2,4,5-Trichlorophenol	ug/l	120																	
2,4,6-Trichlorophenol	ug/l	1.2																	
2,4-Dichlorophenol	ug/l	4.6																	
2,4-Dimethylphenol	ug/l	36																	
2,4-Dinitrophenol	ug/l	3.9																	
2,4-Dinitrotoluene	ug/l	0.24																	
2,6-Dinitrotoluene	ug/l	0.049																	
2-Chloronaphthalene	ug/l	75																	
2-Chlorophenol	ug/l	9.1																	
2-Methylnaphthalene	ug/l	3.6																	
2-Methylphenol	ug/l	93																	
2-Nitroaniline	ug/l	19																	\vdash
2-Nitrophenol	ug/l	580																	
3,3'-Dichlorobenzidine	ug/l	0.13																	
3-Nitroaniline	ug/l	3.8 0.15																	
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	ug/l ug/l	0.15																	
4-Chloro-3-methylphenol	ug/l	140																	
4-Chloroaniline	ug/l	0.37																	
4-Chlorophenyl-phenylether	ug/l																		
4-Methylphenol	ug/l	190																	
4-Nitroaniline	ug/l	3.8																	
4-Nitrophenol	ug/l	580																	
Acenaphthene	ug/l	53		< 0.19 U	0.033 J	< 0.19 U	< 0.19 U	< 0.19 U											
Acenaphthylene	ug/l	53		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U											
Acetophenone	ug/l	190																	
Anthracene	ug/l	180		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U											
Atrazine	ug/l	3																	
Benzaldehyde	ug/l	19		< 0.1011	< 0.2011	< 0.1011	< 0.1011	< 0.10.11											
Benzo(a)anthracene Benzo(a)pyrene	ug/l ug/l	0.03		< 0.19 U < 0.19 U	< 0.20 U < 0.20 U	< 0.19 U < 0.19 U	< 0.19 U < 0.19 U	< 0.19 U < 0.19 U					1			+			
Benzo(a)pyrene Benzo(b)fluoranthene	ug/l	0.25		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U					 	1	+	+			1
Benzo(g,h,i)perylene	ug/l	12		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U					<u> </u>	1	+	+			
Benzo(k)fluoranthene	ug/l	2.5		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U											
bis-(2-chloroethoxy)methane	ug/l	5.9		0.100	0.20 0	0.100	5.15 5	000											
bis-(2-Chloroethyl)ether	ug/l	0.014																	
bis-(2-Ethylhexyl)phthalate	ug/l	6																	
Butylbenzylphthalate	ug/l	16																	
Caprolactam	ug/l	990																	
Carbazole	ug/l	29	<u> </u>																
Chrysene	ug/l	25		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U											
Dibenzo(a,h)anthracene	ug/l	0.025		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U											
Dibenzofuran	ug/l	0.79																	
Diethylphthalate	ug/l	1500																	
Dimethylphthalate	ug/l	1500											ļ						
Di-n-butylphthalate	ug/l	90												ļ					
Di-n-octylphthalate	ug/l	20		. 0 . 10 . 1	0.000 1	.0.40.11	. 0 . 0 . 1 . 1	. 0 . 10 . 1					-	-		-			
Fluoranthene	ug/l	80	ļ	< 0.19 U	0.039 J	< 0.19 U	< 0.19 U	< 0.19 U	<u> </u>			<u> </u>	L		ļ				

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples

			Location ID	DP40	DP42	DP45	DP46	DP47	DP54	DP55	DP55	DP56	DP57	DP57	DP58	DP59	DP60	DP61	DP62
				DPW4015-20N	DPW4220-25N	DPW4515-20N	DPW4615-20N	DPW4710-15N	_		DPW5515-20R	DPW5615-20N	_			DPW5915-20N		DPW6115-20N	DPW6215-20N
			Depth	15 - 20 ft	20 - 25 ft	15 - 20 ft	15 - 20 ft	10 - 15 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft
			Sample Date	5/28/2013	5/29/2013	6/4/2013	6/5/2013	6/5/2013	2/2/2017	2/2/2017	2/2/2017	2/3/2017	2/3/2017	2/3/2017	2/6/2017	2/3/2017	2/6/2017	2/6/2017	2/6/2017
			Туре	N	N	N	N	N	N	N	FD	N	N	FD	N	N	N	N	N
		Project	,,																
		Screening																	
Analyte	Unit	Criteria																	
Fluorene	ug/l	29		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U											
Hexachlorobenzene	ug/l	1																	
Hexachlorobutadiene	ug/l	0.14																	
Hexachlorocyclo-pentadiene	ug/l	50																	
Hexachloroethane	ug/l	0.33																	
Indeno(1,2,3-cd)pyrene	ug/l	0.25		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U											
Isophorone	ug/l	78																	
Naphthalene	ug/l	0.17		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U											
Nitrobenzene	ug/l	0.14																	
N-Nitroso-di-n-propylamine	ug/l	0.011																	
N-Nitrosodiphenylamine	ug/l	12																	
Pentachlorophenol	ug/l	1																	
Phenanthrene	ug/l	180		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U											
Phenol	ug/l	580																	
Pyrene	ug/l	12		< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U											
BaP-TE	ug/l	0.2		< 0.190 U	< 0.200 U	< 0.190 U	< 0.190 U	< 0.190 U											
Total High-molecular-weight PAHs	ug/l			< 0.19 U	0.039	< 0.19 U	< 0.19 U	< 0.19 U											
Total Low-molecular-weight PAHs	ug/l			< 0.19 U	0.033	< 0.19 U	< 0.19 U	< 0.19 U											
Total PAHs (sum 16)	ug/l			< 0.19 U	0.072	< 0.19 U	< 0.19 U	< 0.19 U											

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

		Location ID	DP62	DP63	DPA2	DPA2	DPA3	DPA4	DPA5	DPA5	DPB10	DPB11	DPB12	DPB2	DPB3	DPB5	DPB6	DPB7
		Location ID Sample ID			DPWA220-25N		DPWA325-30N	DPWA425-30N	DPWA525-30N	DPWA525-30R	DPB10 DPWB1025-30N			DPB2 DPWB220-25N	DPWB325-30N			DPWB730-35N
		Depth	15 - 20 ft	15 - 20 ft	20 - 25 ft	20 - 25 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	20 - 25 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	30 - 35 ft
		Sample Date	2/6/2017	2/6/2017	4/17/2014	4/17/2014	4/16/2014	4/16/2014	4/16/2014	4/16/2014	4/17/2014	4/17/2014	4/17/2014	4/17/2014	4/16/2014	4/16/2014	4/16/2014	4/16/2014
		Туре	FD	N	N	FD	N	N	N	FD	N	N	N	N	N	N	N	N
		Project																
		Screening																
Analyte	Unit	Criteria																
Diesel Range Organics (C10-C20)	ug/l	100																
Oil Range Organics (C20-C36)	ug/l	6000																
Gasoline Range Organics (C6-C10) 1,1,1-Trichloroethane	ug/l	3.3	< 1.0 U	< 1.0 U														
1,1,2,2-Tetrachloroethane	ug/l ug/l	0.076	< 1.0 U	< 1.0 U														
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	1000	< 1.0 UJ	< 1.0 U														
1,1,2-Trichloroethane	ug/l	5	< 1.0 U	< 1.0 U														
1,1-Dichloroethane	ug/l	2.8	< 1.0 U	< 1.0 U														
1,1-Dichloroethene	ug/l	7	< 1.0 UJ	< 1.0 U	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
1,2,3-Trichlorobenzene	ug/l	0.7	< 1.0 UJ	< 1.0 U														
1,2,4-Trichlorobenzene	ug/l	70	< 1.0 U	< 1.0 U														
1,2-Dibromo-3-chloropropane	ug/l	0.2	< 1.0 U	< 1.0 U														
1,2-Dibromoethane	ug/l	0.05	< 1.0 U	< 1.0 U														
1,2-Dichlorobenzene	ug/l	600	< 1.0 U	< 1.0 U														
1,2-Dichloroethane	ug/l	5	< 1.0 U	< 1.0 U	-													
1,2-Dichloropropane	ug/l	5	< 1.0 U	< 1.0 U														
1,3-Dichlorobenzene	ug/l	0.48	< 1.0 U	< 1.0 U														
1,4-Dichlorobenzene	ug/l	75	< 1.0 U	< 1.0 U														
1,4-Dioxane	ug/l	0.46	R	R														
2-Butanone	ug/l	560	< 5.0 U	< 5.0 U														
2-Hexanone	ug/l	3.8	< 5.0 U	< 5.0 U														
4-Methyl-2-pentanone	ug/l ug/l	630 1400	< 5.0 U	< 5.0 U 4.3 J														
Acetone Benzene	ug/l	5	< 1.0 U	< 1.0 U														
Bromochloromethane	ug/l	8.3	< 1.0 U	< 1.0 U														
Bromodichloromethane	ug/l	80	< 1.0 U	< 1.0 U														
Bromoform	ug/l	80	< 1.0 U	< 1.0 U														
Bromomethane	ug/l	0.75	R	R														
Butyl alcohol, tert-	ug/l	14	< 40 U	< 40 U														
Carbon Disulfide	ug/l	81	< 1.0 U	< 1.0 U														
Carbon Tetrachloride	ug/l	5	< 1.0 U	< 1.0 U														
Chlorobenzene	ug/l	100	< 1.0 U	< 1.0 U														
Chloroethane	ug/l	2100	< 1.0 U	< 1.0 U														
Chloroform	ug/l	80	< 1.0 U	< 1.0 U														
Chloromethane	ug/l	19	< 1.0 U	< 1.0 UJ														
cis-1,2-Dichloroethylene	ug/l	70	< 1.0 U	< 1.0 U	< 1	< 1	11	15	12	13	1.5	< 1	< 1	< 1	5	7	14	23
cis-1,3-Dichloropropene	ug/l	0.47	< 1.0 U	< 1.0 U				1		-		-				-		
Cyclohexane	ug/l ug/l	1300 80	< 1.0 U	< 1.0 U				-										
Dibromochloromethane Dichlorodifluoromethane	ug/l ug/l	20	< 1.0 U	< 1.0 U			-	 					-				1	
Diisopropyl ether	ug/l	150	< 1.0 UJ	< 1.0 UJ						+		+				 		
Ethylbenzene	ug/l	700	< 1.0 U	< 1.0 U														
Ethyl-Tert-Butyl-Ether	ug/l		< 1.0 U	< 1.0 U				1				1						
Isopropylbenzene	ug/l	45	< 1.0 U	< 1.0 U														
m, p-Xylene	ug/l	10000	< 1.0 U	< 1.0 U														
Methyl Acetate	ug/l	2000	< 5.0 U	< 5.0 U														
Methyl tert-Butyl Ether (MTBE)	ug/l	14	0.23 J	0.28 J	<u> </u>		-		<u> </u>									
Methylcyclohexane	ug/l	1300	< 1.0 U	< 1.0 U														
Methylene Chloride	ug/l	5	< 1.0 U	< 1.0 U														
o-Xylene	ug/l	10000	< 1.0 U	< 1.0 U														
Styrene	ug/l	100	< 1.0 U	< 1.0 U														
Tertiary-Amyl Methyl Ether	ug/l	41	< 1.0 U	< 1.0 UJ			0.55	253	0.12	0.00		<u> </u>			4.12	455	0.55	4=-
Tetrachloroethylene	ug/l	5	< 1.0 U	< 1.0 U	2.3	2.1	270	300	240	260	25	< 1	< 1	3	140	190	330	470
Toluene	ug/l	1000	0.23 J	0.35 J		- 4	- 4	- 4		- 4	- 4	- 4			- 4		- 4	- 4
trans-1,2-Dichloroethene	ug/l	100	< 1.0 U	< 1.0 U	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	ug/l	0.47	< 1.0 U	< 1.0 U		l		I .									<u> </u>	i

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

									J	11, DC 20019									
			Location ID	DP62	DP63	DPA2	DPA2	DPA3	DPA4	DPA5	DPA5	DPB10	DPB11	DPB12	DPB2	DPB3	DPB5	DPB6	DPB7
			Sample ID			DPWA220-25N			DPWA425-30N	DPWA525-30N	DPWA525-30R	DPWB1025-30N		DPWB1225-30N	DPWB220-25N	DPWB325-30N		DPWB625-30N	DPWB730-35N
			Depth	15 - 20 ft	15 - 20 ft	20 - 25 ft	20 - 25 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	20 - 25 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	30 - 35 ft
			Sample Date		2/6/2017	4/17/2014	4/17/2014	4/16/2014	4/16/2014	4/16/2014	4/16/2014	4/17/2014	4/17/2014	4/17/2014	4/17/2014	4/16/2014	4/16/2014	4/16/2014	4/16/2014
	1	<u> </u>	Туре	FD	N	N	FD	N	N	N	FD	N	N	N	N	N	N	N	N
		Project Screening																	
Analyte	Unit	Criteria																	
Trichloroethene	ug/l	5		< 1.0 U	< 1.0 U	< 1	< 1	19	26	22	23	0.94	< 1	< 1	< 1	10	14	22	26
Trichlorofluoromethane	ug/l	520		< 1.0 U	< 1.0 UJ														
Vinyl Chloride	ug/l	2		< 1.0 U	< 1.0 U	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Xylenes (total)	ug/l	10000		< 1 U	< 1 U														
1,1'-Biphenyl	ug/l	0.083																	
1,2,4,5-Tetrachlorobenzene	ug/l	0.17																	
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol	ug/l	71 24																	-
2,4,5-Trichlorophenol	ug/l ug/l	120																	+
2,4,6-Trichlorophenol	ug/l	1.2	 			 											+		+
2,4-Dichlorophenol	ug/l	4.6	<u> </u>			<u> </u>													1
2,4-Dimethylphenol	ug/l	36																	
2,4-Dinitrophenol	ug/l	3.9							_										
2,4-Dinitrotoluene	ug/l	0.24																	
2,6-Dinitrotoluene	ug/l	0.049																	
2-Chloronaphthalene	ug/l	75																	
2-Chlorophenol	ug/l	9.1																	
2-Methylnaphthalene	ug/l	3.6																	
2-Methylphenol 2-Nitroaniline	ug/l ug/l	93 19																	-
2-Nitrophenol	ug/l	580																	
3,3'-Dichlorobenzidine	ug/l	0.13																	
3-Nitroaniline	ug/l	3.8																	
4,6-Dinitro-2-methylphenol	ug/l	0.15																	
4-Bromophenyl-phenylether	ug/l																		
4-Chloro-3-methylphenol	ug/l	140																	
4-Chloroaniline	ug/l	0.37																	
4-Chlorophenyl-phenylether	ug/l	100																	
4-Methylphenol 4-Nitroaniline	ug/l ug/l	190 3.8																	-
4-Nitrophenol	ug/l	580																	
Acenaphthene	ug/l	53																	
Acenaphthylene	ug/l	53																	
Acetophenone	ug/l	190																	
Anthracene	ug/l	180																	
Atrazine	ug/l	3																	
Benzaldehyde	ug/l	19																	
Benzo(a)anthracene	ug/l	0.03																	
Benzo(a)pyrene Benzo(b)fluoranthene	ug/l ug/l	0.2 0.25																	-
Benzo(g,h,i)perylene	ug/l	12																	
Benzo(k)fluoranthene	ug/l	2.5																	
bis-(2-chloroethoxy)methane	ug/l	5.9																	
bis-(2-Chloroethyl)ether	ug/l	0.014																	
bis-(2-Ethylhexyl)phthalate	ug/l	6																	
Butylbenzylphthalate	ug/l	16																	
Caprolactam	ug/l	990																	
Carbazole	ug/l	29																	<u> </u>
Chrysene	ug/l	25	ļ			-	1					-							<u> </u>
Dibenzo(a,h)anthracene	ug/l	0.025					1					-							
Dibenzofuran Diethylphthalate	ug/l ug/l	0.79 1500	-				-					-							
Dimethylphthalate	ug/l	1500	+			+	 					 							+
Di-n-butylphthalate	ug/l	90	1																+
Di-n-octylphthalate	ug/l	20	1				1					1							
Fluoranthene	ug/l	80	1				1												
	1 3	·				1		<u> </u>			!		l					ļ	

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples

			Location ID	DP62	DP63	DPA2	DPA2	DPA3	DPA4	DPA5	DPA5	DPB10	DPB11	DPB12	DPB2	DPB3	DPB5	DPB6	DPB7
				DPW6215-20R		DPWA220-25N	DPWA220-25R	-		_	DPWA525-30R		DPWB1125-30N			-	DPWB525-30N		DPWB730-35N
			Depth	15 - 20 ft	15 - 20 ft	20 - 25 ft	20 - 25 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	20 - 25 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	30 - 35 ft
			Sample Date	2/6/2017	2/6/2017	4/17/2014	4/17/2014	4/16/2014	4/16/2014	4/16/2014	4/16/2014	4/17/2014	4/17/2014	4/17/2014	4/17/2014	4/16/2014	4/16/2014	4/16/2014	4/16/2014
			Type		N	N	FD	N	N	N	FD	N	N	N	N	N	N	N	N
		Project																	
		Screening																	
Analyte	Unit	Criteria																	
Fluorene	ug/l	29																	
Hexachlorobenzene	ug/l	1																	
Hexachlorobutadiene	ug/l	0.14																	
Hexachlorocyclo-pentadiene	ug/l	50																	
Hexachloroethane	ug/l	0.33																	
Indeno(1,2,3-cd)pyrene	ug/l	0.25																	
Isophorone	ug/l	78																	
Naphthalene	ug/l	0.17																	
Nitrobenzene	ug/l	0.14																	
N-Nitroso-di-n-propylamine	ug/l	0.011																	
N-Nitrosodiphenylamine	ug/l	12																	1
Pentachlorophenol	ug/l	1																	
Phenanthrene	ug/l	180																	
Phenol	ug/l	580																	
Pyrene	ug/l	12																	
BaP-TE	ug/l	0.2																	
Total High-molecular-weight PAHs	ug/l																		
Total Low-molecular-weight PAHs	ug/l																		
Total PAHs (sum 16)	ug/l																		1

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

Analyte Unit Crite Diesel Range Organics (C10-C20) ug/l 10 Oil Range Organics (C20-C36) ug/l 600 Gasoline Range Organics (C6-C10) ug/l 3.1 1,1,1-Trichloroethane ug/l 20 1,1,2,2-Tetrachloroethane ug/l 10.0 1,1,2-Trichloroethane ug/l 5 1,1-Dichloroethane ug/l 5 1,1-Dichloroethane ug/l 7 1,1-Dichloroethane ug/l 7 1,2,3-Trichloroethane ug/l 7 1,2,3-Trichloroethane ug/l 7 1,2,4-Trichloroethane ug/l 7 1,2,2-Tichloroethane ug/l 7 1,2,2-Tichloroethane ug/l 7 1,2,3-Trichloroethane ug/l 7 1,2,3-Trichlorobenzene ug/l 7 1,2-Dibromo-3-chloropropane ug/l 7 1,2-Dibromo-3-chloropropane ug/l 9 1,2-Dichloroethane ug/l 60 1,2-Dichloroethane ug/l 5 1,3-Dichloroethane ug/l 5 1,3-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 9 1,4-Dichlorobenzene ug/l 9 1,4-Dichlorobenzene ug/l 9 1,4-Dichlorobenzene ug/l 9 1,4-Dichlorobenzene ug/l 9 1,4-Dichlorobenzene ug/l 3.3 1,4-Dichlorobenzene ug/l 3.4 1,4-Dichlorobenzene ug/l 3.4 1,4-Dichlorobenzene ug/l 3.5 1,4-Dichlorobenzene ug/l 3.6 1,4-D	Sample I 1 2 ect ning via 0 000 300 76 000 8 7 000 2 1 1 1 1 1 1 1 1 1 1 1 1	e ID DPWB925-30N ppth 25 - 30 ft 4/17/2014 ype N	DPC3 DPWC325-30N 25 - 30 ft 4/16/2014 N	DPC4 DPWC425-30N 25 - 30 ft 4/16/2014 N	DPC5 DPWC525-30N 25 - 30 ft 4/16/2014 N	DPC7 DPWC730-35N 30 - 35 ft 4/17/2014 N	DPC8 DPWC830-35N 30 - 35 ft 4/17/2014 N	DPC9 DPWC930-35N 30 - 35 ft 4/18/2014 N	DPOS-01 DPWOS0116-20N 16 - 20 ft 8/24/2017 N	DPOS-02 DPWOS0216-20N 16 - 20 ft 8/24/2017 N	DPOS-02 DPWOS0224-28N 24 - 28 ft 8/24/2017 N	DPOS-03 DPWOS0312-16N 12 - 16 ft 8/21/2017 N	SUSDP01 DPW0112-15N 12 - 15 ft 5/20/2013 N	SUSDP02 DPW0212-17N 12 - 17 ft 5/20/2013 N	SUSDP03 DPW0310-15N 10 - 15 ft 5/21/2013 N	SUSDP04 DPW0415-20N 15 - 20 ft 5/20/2013 N
Analyte Unit Crite Diesel Range Organics (C10-C20) ug/l 10 Oil Range Organics (C20-C36) ug/l 600 Gasoline Range Organics (C6-C10) ug/l 3.3 1,1,1-Trichloroethane ug/l 20 1,1,2,2-Tetrachloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 7 1,1-Dichloroethane ug/l 7 1,2,3-Trichloroethane ug/l 7 1,2,3-Trichlorobenzene ug/l 7 1,2-Dibromo-3-chloropropane ug/l 7 1,2-Dibromo-3-chloropropane ug/l 0.3 1,2-Dichloroethane ug/l 60 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,3-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 60 1,4-Dichlorobenzene ug/l 63 1,4-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 63 1,4-Dichlorobenzene ug/l 63 1,4-Dichlorobenzene ug/l 63 1,4-Methyl-2-pentanone ug/l 63 Acetone ug/l 55 Bromochloromethane ug/l 8.8 Bromochloromethane ug/l 8.8	D Sample I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pth 25 - 30 ft late 4/17/2014 lype N	25 - 30 ft 4/16/2014	25 - 30 ft 4/16/2014	25 - 30 ft 4/16/2014	30 - 35 ft 4/17/2014	30 - 35 ft 4/17/2014	30 - 35 ft 4/18/2014	16 - 20 ft 8/24/2017	16 - 20 ft 8/24/2017	24 - 28 ft 8/24/2017	12 - 16 ft 8/21/2017	12 - 15 ft 5/20/2013	12 - 17 ft 5/20/2013	10 - 15 ft 5/21/2013	15 - 20 ft
Analyte Unit Crite Diesel Range Organics (C10-C20) ug/l 10 Oil Range Organics (C20-C36) ug/l 600 Gasoline Range Organics (C6-C10) ug/l 3.3 1,1,1-Trichloroethane ug/l 20 1,1,2-Tetrachloroethane ug/l 100 1,1,2-Trichloroethane ug/l 100 1,1,2-Trichloroethane ug/l 100 1,1,2-Trichloroethane ug/l 100 1,1,2-Trichloroethane ug/l 70 1,1-Dichloroethane ug/l 70 1,2-Ja-Trichloroethane ug/l 70 1,2-Ja-Trichloroethane ug/l 70 1,2-Trichloroethane ug/l 70 1,2-Trichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,3-Dichloroethane ug/l 70 1,4-Dichlorobenzene ug/l 70 1,4-Dichlorobenzene ug/l 70 1,4-Dichlorobenzene ug/l 70 1,4-Dichloroethane	Sample I 1 2 ect ning via 0 000 300 76 000 8 7 000 2 1 1 1 1 1 1 1 1 1 1 1 1	ate 4/17/2014 ype N	4/16/2014	4/16/2014	4/16/2014	4/17/2014	4/17/2014	4/18/2014	8/24/2017	8/24/2017	8/24/2017	8/21/2017	5/20/2013	5/20/2013	5/21/2013	
Analyte Unit Crite Diesel Range Organics (C10-C20) ug/l 10 Oil Range Organics (C20-C36) ug/l 600 Gasoline Range Organics (C6-C10) ug/l 3.3 1,1,1-Trichloroethane ug/l 20 1,1,2,2-Tetrachloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 7 1,1-Dichloroethane ug/l 7 1,2,3-Trichloroethane ug/l 7 1,2,3-Trichlorobenzene ug/l 7 1,2-Dibromo-3-chloropropane ug/l 7 1,2-Dibromo-3-chloropropane ug/l 0.3 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,3-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 60 1,4-Dichlorobenzene ug/l 63 1,4-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 63 1,4-Dichlorobenzene ug/l 63 1,4-Dichlorobenzene ug/l 63 1,4-Methyl-2-pentanone ug/l 63 1,4-Methyl-2-pentanone ug/l 63 1,5-Dichloromethane ug/l 63 1,5-Dichloromethane ug/l 63 1,60 1,60 1,7-Dichlorobenzene ug/l 63 1,60 1,7-Dichlorobenzene ug/l 63 1,8-Dichlorobenzene ug/l 63 1,8-Dichlorobenzene ug/l 63 1,8-Dichlorobenzene ug/l 63 1,8-Dichlorobenzene ug/l 63 1,8-Dichlorobenzene ug/l 63 1,8-Dichlorobenzene ug/l 63 1,8-Dichlorobenzene ug/l 63 1,8-Dichlorobenzene ug/l 63 1,8-Dichlorobenzene ug/l 63 1,8-Dichlorobenzene ug/l 63	ect ning vria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ype N														N N
Analyte Unit Crite Diesel Range Organics (C10-C20) ug/l 10 Oil Range Organics (C20-C36) ug/l 600 Gasoline Range Organics (C6-C10) ug/l 3.3 1,1,1-Trichloroethane ug/l 20 1,1,2-Tetrachloroethane ug/l 100 1,1,2-Trichloroethane ug/l 100 1,1,2-Trichloroethane ug/l 100 1,1,2-Trichloroethane ug/l 100 1,1,2-Trichloroethane ug/l 70 1,1-Dichloroethane ug/l 70 1,2-Ja-Trichloroethane ug/l 70 1,2-Ja-Trichloroethane ug/l 70 1,2-Trichloroethane ug/l 70 1,2-Trichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,2-Dichloroethane ug/l 70 1,3-Dichloroethane ug/l 70 1,4-Dichlorobenzene ug/l 70 1,4-Dichlorobenzene ug/l 70 1,4-Dichlorobenzene ug/l 70 1,4-Dichloroethane	ect ning									, ,		''			 '` 	
Analyte Unit Crite Diesel Range Organics (C10-C20) ug/l 10 Oil Range Organics (C20-C36) ug/l 600 Gasoline Range Organics (C6-C10) ug/l 3.3 1,1,1-Trichloroethane ug/l 20 1,1,2,2-Tetrachloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 10 1,1,2-Trichloroethane ug/l 7 1,1-Dichloroethane ug/l 7 1,2,3-Trichloroethane ug/l 7 1,2,3-Trichlorobenzene ug/l 7 1,2-Dibromo-3-chloropropane ug/l 7 1,2-Dibromo-3-chloropropane ug/l 0.3 1,2-Dichloroethane ug/l 60 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloroethane ug/l 5 1,3-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 60 1,4-Dichlorobenzene ug/l 63 1,4-Dichlorobenzene ug/l 7 1,4-Dichlorobenzene ug/l 63 1,4-Dichlorobenzene ug/l 63 1,4-Dichlorobenzene ug/l 63 1,4-Methyl-2-pentanone ug/l 63 Acetone ug/l 55 Bromochloromethane ug/l 8.8 Bromochloromethane ug/l 8.8	ning o o o o o o o o o o o o o o o o o o o										•			· ·	1	
Diesel Range Organics (C10-C20) ug/l 10 Oil Range Organics (C20-C36) ug/l 600 Gasoline Range Organics (C6-C10) ug/l 3.3 1,1,1-Trichloroethane ug/l 20 1,1,2,2-Tetrachloroethane ug/l 0.0° 1,1,2-Trichloroethane ug/l 100 1,1,2-Trichloroethane ug/l 5 1,1-Dichloroethane ug/l 7 1,1-Dichloroethane ug/l 7 1,2,3-Trichlorobenzene ug/l 0.0 1,2,3-Trichlorobenzene ug/l 7 1,2-Trichlorobenzene ug/l 7 1,2-Trichlorobenzene ug/l 0.0 1,2-Trichlorobenzene ug/l 0.0 1,2-Trichlorobenzene ug/l 0.0 1,2-Dibromo-3-chloropropane ug/l 0.0 1,2-Dichlorobenzene ug/l 5 1,2-Dichloropenane ug/l 5 1,3-Dichlorobenzene ug/l 0.4 1,4-Dioxane ug/l 0.4 2-But	000 000 33 00 76 000 88 7												1	i '		
Oil Range Organics (C20-C36) ug/l 600 Gasoline Range Organics (C6-C10) ug/l 3.3 1,1,1-Trichloroethane ug/l 20 1,1,2,2-Tetrachloroethane ug/l 0.0° 1,1,2-Trichloro-1,2,2-trifluoroethane ug/l 5 1,1-Dichloroethane ug/l 2.3 1,1-Dichloroethane ug/l 7 1,1-Dichloroethane ug/l 7 1,2,3-Trichlorobenzene ug/l 7 1,2,3-Trichlorobenzene ug/l 7 1,2,3-Trichlorobenzene ug/l 7 1,2,3-Trichlorobenzene ug/l 7 1,2-Dibromo-3-chloropropane ug/l 0.0 1,2-Dibromoethane ug/l 60 1,2-Dichlorobenzene ug/l 5 1,2-Dichloropenane ug/l 5 1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 7 1,4-Dioxane ug/l 3 2-Hexanone ug/l 3 4-Methyl-2-pentanone <td>000 33 0 076 000 8 8 7 0) 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>]</td> <td>1</td> <td>i '</td> <td></td> <td></td>	000 33 0 076 000 8 8 7 0) 2]	1	i '		
Gasoline Range Organics (C6-C10) ug/l 3.3 1,1,1-Trichloroethane ug/l 20 1,1,2-Tetrachloroethane ug/l 0.0° 1,1,2-Trichloroethane ug/l 100 1,1,2-Trichloroethane ug/l 5 1,1-Dichloroethane ug/l 2.3 1,1-Dichloroethane ug/l 7 1,1-Dichloroethane ug/l 7 1,2,3-Trichlorobenzene ug/l 70 1,2,3-Trichlorobenzene ug/l 70 1,2,3-Trichlorobenzene ug/l 70 1,2-Trichlorobenzene ug/l 0.0 1,2-Dibromo-3-chloropropane ug/l 0.0 1,2-Dichlorobenzene ug/l 5 1,2-Dichloroethane ug/l 5 1,2-Dichloropropane ug/l 5 1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 0.4 1,4-Dioxane ug/l 0.4 2-Butanone ug/l 3 2-Hexanone ug/l	3 0 0 76 00 8 8 7 0)						1						< 480 U	< 480 U	< 480 U	< 480 U
1,1,1-Trichloroethane ug/l 20 1,1,2,2-Tetrachloroethane ug/l 0.0° 1,1,2-Trichloro-1,2,2-trifluoroethane ug/l 10° 1,1-Dichloroethane ug/l 2.3° 1,1-Dichloroethane ug/l 7 1,1-Dichloroethene ug/l 7 1,2,3-Trichlorobenzene ug/l 7° 1,2,4-Trichlorobenzene ug/l 7° 1,2,4-Trichlorobenzene ug/l 7° 1,2-Dibromo-3-chloropropane ug/l 0.0° 1,2-Dibromoethane ug/l 6° 1,2-Dichlorobenzene ug/l 5° 1,2-Dichloroethane ug/l 5° 1,2-Dichloropropane ug/l 5° 1,3-Dichlorobenzene ug/l 0.4° 1,4-Dichlorobenzene ug/l 7° 1,4-Dioxane ug/l 0.4° 2-Butanone ug/l 3° 2-Hexanone ug/l 3° 4-Methyl-2-pentanone ug/l 6° Acetone ug/l	0 76 00 8 8 7 0)				1								< 480 U	< 480 U	< 480 U	< 480 U
1,1,2,2-Tetrachloroethane ug/l 0.0 1,1,2-Trichloro-1,2,2-trifluoroethane ug/l 100 1,1,2-Trichloroethane ug/l 5 1,1-Dichloroethane ug/l 2.3 1,1-Dichloroethane ug/l 7 1,2,3-Trichlorobenzene ug/l 0.3 1,2,4-Trichlorobenzene ug/l 70 1,2-Dibromo-3-chloropropane ug/l 0.0 1,2-Dibromo-3-chloropropane ug/l 0.0 1,2-Dichlorobenzene ug/l 60 1,2-Dichlorobenzene ug/l 5 1,2-Dichloropropane ug/l 5 1,2-Dichlorobenzene ug/l 0.4 1,2-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 0.4 1,4-Dioxane ug/l 0.4 2-Butanone ug/l 56 2-Hexanone ug/l 63 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 5 Bromochloromethane ug/l	76 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												< 100 U	< 100 U	< 100 U	< 100 U
1,1,2-Trichloro-1,2,2-trifluoroethane ug/l 100 1,1,2-Trichloroethane ug/l 5 1,1-Dichloroethane ug/l 2.3 1,1-Dichloroethane ug/l 7 1,2-Trichlorobenzene ug/l 0.3 1,2,3-Trichlorobenzene ug/l 0.3 1,2-Trichlorobenzene ug/l 0.0 1,2-Dibromo-3-chloropropane ug/l 0.0 1,2-Dichlorobenzene ug/l 60 1,2-Dichlorobenzene ug/l 5 1,2-Dichloropropane ug/l 5 1,2-Dichlorobenzene ug/l 5 1,2-Dichlorobenzene ug/l 5 1,2-Dichlorobenzene ug/l 5 1,4-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 7.5 1,4-Dioxane ug/l 5 2-Butanone ug/l 5 2-Hexanone ug/l 63 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 5	7								< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloroethane ug/l 5 1,1-Dichloroethane ug/l 2.3 1,1-Dichloroethene ug/l 7 1,2,3-Trichlorobenzene ug/l 0.3 1,2,4-Trichlorobenzene ug/l 0.3 1,2-Dibromo-3-chloropropane ug/l 0.0 1,2-Dishorobenzene ug/l 60 1,2-Dichlorobenzene ug/l 5 1,2-Dichlorothane ug/l 5 1,2-Dichloropopane ug/l 5 1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 75 1,4-Dioxane ug/l 0.4 2-Butanone ug/l 56 2-Hexanone ug/l 56 2-Hexanone ug/l 63 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 5 Bromochloromethane ug/l 8 Bromodichloromethane ug/l 8	7 0 2								< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane ug/l 2.3 1,1-Dichloroethene ug/l 7 1,2,3-Trichlorobenzene ug/l 0.3 1,2,4-Trichlorobenzene ug/l 70 1,2-Dibromo-3-chloropropane ug/l 0.0 1,2-Dichlorobenzene ug/l 60 1,2-Dichlorobenzene ug/l 5 1,2-Dichloropropane ug/l 5 1,2-Dichlorobenzene ug/l 0.4 1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 75 1,4-Dioxane ug/l 56 2-Butanone ug/l 56 2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 63 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 8.3	7 0 2		1						< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethene ug/l 7 1,2,3-Trichlorobenzene ug/l 0. 1,2,4-Trichlorobenzene ug/l 70 1,2-Dibromo-3-chloropropane ug/l 0.0 1,2-Dibromoethane ug/l 60 1,2-Dichlorobenzene ug/l 5 1,2-Dichloropropane ug/l 5 1,2-Dichloropropane ug/l 0.4 1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 75 1,4-Dichlorobenzene ug/l 75 1,4-Dichlorobenzene ug/l 56 2-Butanone ug/l 56 2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 5 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 8.3	7								< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene ug/l 0. 1,2,4-Trichlorobenzene ug/l 70 1,2-Dibromo-3-chloropropane ug/l 0.0 1,2-Dibromoethane ug/l 60 1,2-Dichlorobenzene ug/l 5 1,2-Dichloropropane ug/l 5 1,2-Dichloropropane ug/l 5 1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 75 1,4-Dioxane ug/l 56 2-Butanone ug/l 56 2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 5 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 8.3	7) 2	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,4-Trichlorobenzene ug/l 70 1,2-Dibromo-3-chloropropane ug/l 0.3 1,2-Dibromoethane ug/l 0.0 1,2-Dichlorobenzene ug/l 60 1,2-Dichloroethane ug/l 5 1,2-Dichloropropane ug/l 0.4 1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 75 1,4-Dioxane ug/l 0.4 2-Butanone ug/l 5 2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 5 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 8.3	2	- 1	* 1	7.1	- 1	7.1	7.1	- 1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane ug/l 0.3 1,2-Dibromoethane ug/l 0.0 1,2-Dichlorobenzene ug/l 60 1,2-Dichloroethane ug/l 5 1,2-Dichloropropane ug/l 5 1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 75 1,4-Dioxane ug/l 0.4 2-Butanone ug/l 56 2-Hexanone ug/l 33 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 140 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 8.3	2								< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane ug/l 0.0 1,2-Dichlorobenzene ug/l 60 1,2-Dichloroethane ug/l 5 1,2-Dichloropropane ug/l 5 1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 75 1,4-Dioxane ug/l 0.4 2-Butanone ug/l 56 2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 140 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 8.3									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene ug/l 60 1,2-Dichloroethane ug/l 5 1,2-Dichloropropane ug/l 5 1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 0.4 2-Butanone ug/l 56 2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 144 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 8.3	15								< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane ug/l 5 1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 75 1,4-Dioxane ug/l 0.4 2-Butanone ug/l 56 2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 140 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 8.3									< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,3-Dichlorobenzene ug/l 0.4 1,4-Dichlorobenzene ug/l 75 1,4-Dioxane ug/l 0.4 2-Butanone ug/l 56 2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 140 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 80									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene ug/l 75 1,4-Dioxane ug/l 0.4 2-Butanone ug/l 56 2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 140 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 80						·		·	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dioxane ug/l 0.4 2-Butanone ug/l 56 2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 140 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 80									< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
2-Butanone ug/l 56 2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 140 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 80									< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
2-Hexanone ug/l 3.3 4-Methyl-2-pentanone ug/l 63 Acetone ug/l 140 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 80									< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U
4-Methyl-2-pentanone ug/l 63 Acetone ug/l 140 Benzene ug/l 5 Bromochloromethane ug/l 83 Bromodichloromethane ug/l 80									< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Acetone ug/l 140 Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 80									< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Benzene ug/l 5 Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 80									< 5.0 U	< 5.0 U < 5.0 U	< 5.0 U < 5.0 U	< 5.0 U < 5.0 U	< 5.0 U < 5.0 U	< 5.0 U 4.1 J	< 5.0 U < 5.0 U	< 5.0 U
Bromochloromethane ug/l 8.3 Bromodichloromethane ug/l 86									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane ug/l 80									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
- J									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.36 J	< 1.0 U
									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromomethane ug/l 0.7	75								< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Butyl alcohol, tert- ug/l 14	1								< 40 U	< 40 UJ	< 40 U	< 40 U		ı		
Carbon Disulfide ug/l 81	1								1.1	< 1.0 U	0.54 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Carbon Tetrachloride ug/l 5									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chlorobenzene ug/l 10									< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane ug/l 210									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroform ug/l 80									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.30 J	1.4	< 1.0 U
Chloromethane ug/l 19				4.0	4-				< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene ug/l 70		20	< 1	1.6	4.7	0.5	< 1	< 1	< 1.0 U	0.35 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.55 J	< 1.0 U
cis-1,3-Dichloropropene ug/l 0.4 Cyclohexane ug/l 130									< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane ug/l 130 Dibromochloromethane ug/l 80			+				+		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dichlorodifluoromethane ug/l 20			+				+		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Diisopropyl ether ug/l 15									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U			1.00	
Ethylbenzene ug/l 70			1				1		< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether ug/l									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	,			
Isopropylbenzene ug/l 45	5								< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
m, p-Xylene ug/l 100	00								< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Methyl Acetate ug/l 200									< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methyl tert-Butyl Ether (MTBE) ug/l 14									< 1.0 U	6.1 J+	28	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.71 J
Methylcyclohexane ug/l 130									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride ug/l 5							1		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.20 J	0.49 J	< 1.0 U	< 1.0 U
p-Xylene ug/l 100			1						< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Styrene ug/l 10									< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tertiary-Amyl Methyl Ether ug/l 41		400	0.00	50		00		0.00	< 1.0 U	< 1.0 U	0.37 J	< 1.0 U	0.05 1	-1011		44011
Tetrachloroethylene ug/l 5		190	0.99	53	69	88	< 1	0.96	< 1.0 U	< 1.0 U	< 1.0 U	0.34 J	0.25 J	< 1.0 U	2.0	< 1.0 U
Toluene ug/l 100 trans-1,2-Dichloroethene ug/l 10				<u> </u>	1 1		1		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.23 J	0.32 J	< 1.0 U	< 1.0 U
trans-1,2-Dichloroethene ug/l 10 trans-1,3-Dichloropropene ug/l 0.4	00	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

									J	ni, DC 20019								
			Location ID	DPB9	DPC3	DPC4	DPC5	DPC7	DPC8	DPC9	DPOS-01	DPOS-02	DPOS-02	DPOS-03	SUSDP01	SUSDP02	SUSDP03	SUSDP04
			Sample ID	DPWB925-30N	DPWC325-30N	DPWC425-30N	DPWC525-30N	DPWC730-35N	DPWC830-35N	DPWC930-35N	DPWOS0116-20N	DPWOS0216-20N	DPWOS0224-28N	DPWOS0312-16N	DPW0112-15N	DPW0212-17N	DPW0310-15N	DPW0415-20
			Depth	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	30 - 35 ft	30 - 35 ft	30 - 35 ft	16 - 20 ft	16 - 20 ft	24 - 28 ft	12 - 16 ft	12 - 15 ft	12 - 17 ft	10 - 15 ft	15 - 20 ft
			Sample Date	4/17/2014	4/16/2014	4/16/2014	4/16/2014	4/17/2014	4/17/2014	4/18/2014	8/24/2017	8/24/2017	8/24/2017	8/21/2017	5/20/2013	5/20/2013	5/21/2013	5/20/2013
		T	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																
Australia	1.1	Screening																
Analyte Trichloroethene	Unit ug/l	Criteria 5		14	< 1	4.1	4.2	6.9	< 1	< 1	< 1.0 U	< 1.0 U	0.50 J	< 1.0 U	< 1.0 U	< 1.0 U	0.93 J	< 1.0 U
Thenlordethene	ug/i	3		14	` '	4.1	4.2	0.9	` '	~ 1	< 1.0 0	< 1.0 0	0.50 5	V 1.0 0	V 1.0 0	< 1.0 0	0.93 3	V 1.0 0
Trichlorofluoromethane	ug/l	520									< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	2		< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	10000						-			< 1 U	< 1 U	< 1 U	< 1 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
1,1'-Biphenyl	ug/l	0.083																
1,2,4,5-Tetrachlorobenzene	ug/l	0.17																
2,2'-oxybis(1-Chloropropane)	ug/l	71																
2,3,4,6-Tetrachlorophenol	ug/l	24																
2,4,5-Trichlorophenol	ug/l	120																
2,4,6-Trichlorophenol	ug/l	1.2																
2,4-Dichlorophenol	ug/l	4.6																
2,4-Dimethylphenol	ug/l	36			1													1
2,4-Dinitrophenol	ug/l	3.9																ļ
2,4-Dinitrotoluene	ug/l	0.24																
2,6-Dinitrotoluene	ug/l	0.049																<u> </u>
2-Chloronaphthalene 2-Chlorophenol	ug/l	75 9.1																
2-Methylnaphthalene	ug/l ug/l	3.6																1
2-Methylphenol	ug/l	93			+													1
2-Nitroaniline	ug/l	19																
2-Nitrophenol	ug/l	580																
3,3'-Dichlorobenzidine	ug/l	0.13																
3-Nitroaniline	ug/l	3.8																
4,6-Dinitro-2-methylphenol	ug/l	0.15																
4-Bromophenyl-phenylether	ug/l																	
4-Chloro-3-methylphenol	ug/l	140																
4-Chloroaniline	ug/l	0.37																
4-Chlorophenyl-phenylether	ug/l																	
4-Methylphenol	ug/l	190																
4-Nitroaniline	ug/l	3.8																
4-Nitrophenol	ug/l	580													2.42.44			
Acenaphthene	ug/l	53													< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Acenaphthylene	ug/l	53													< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Acetophenone	ug/l	190													4 O 4 O 1 I	4 O 4 O L L	404011	404011
Anthracene Atrazine	ug/l	180													< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Atrazine Benzaldehyde	ug/l ug/l	3 19			+						+				1			+
Benzo(a)anthracene	ug/l	0.03			1				1		1				< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Benzo(a)pyrene	ug/l	0.00	+												< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Benzo(b)fluoranthene	ug/l	0.25	+		 										< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Benzo(g,h,i)perylene	ug/l	12			1										< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Benzo(k)fluoranthene	ug/l	2.5	 		1										< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
bis-(2-chloroethoxy)methane	ug/l	5.9																
bis-(2-Chloroethyl)ether	ug/l	0.014																
bis-(2-Ethylhexyl)phthalate	ug/l	6																
Butylbenzylphthalate	ug/l	16																
Caprolactam	ug/l	990																
Carbazole	ug/l	29																
Chrysene	ug/l	25													< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Dibenzo(a,h)anthracene	ug/l	0.025			1										< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Dibenzofuran	ug/l	0.79			1													<u> </u>
Diethylphthalate	ug/l	1500			1						1							
Dimethylphthalate	ug/l	1500	ļļ		1										ļ			<u> </u>
Di-n-butylphthalate	ug/l	90			ļ										ļ			ļ
Di-n-octylphthalate	ug/l	20			ļ													
Fluoranthene	ug/l	80			1	<u> </u>									< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples

			Location ID	DPB9	DPC3	DPC4	DPC5	DPC7	DPC8	DPC9	DPOS-01	DPOS-02	DPOS-02	DPOS-03	SUSDP01	SUSDP02	SUSDP03	SUSDP04
				DPWB925-30N	DPWC325-30N	DPWC425-30N		DPWC730-35N	DPWC830-35N					DPWOS0312-16N	DPW0112-15N	DPW0212-17N	DPW0310-15N	DPW0415-20N
			Depth	25 - 30 ft	25 - 30 ft	25 - 30 ft	25 - 30 ft	30 - 35 ft	30 - 35 ft	30 - 35 ft	16 - 20 ft	16 - 20 ft	24 - 28 ft	12 - 16 ft	12 - 15 ft	12 - 17 ft	10 - 15 ft	15 - 20 ft
			Sample Date	4/17/2014	4/16/2014	4/16/2014	4/16/2014	4/17/2014	4/17/2014	4/18/2014	8/24/2017	8/24/2017	8/24/2017	8/21/2017	5/20/2013	5/20/2013	5/21/2013	5/20/2013
		1	Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																
		Screening																
Analyte	Unit	Criteria																
Fluorene	ug/l	29													< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Hexachlorobenzene	ug/l	1																
Hexachlorobutadiene	ug/l	0.14																
Hexachlorocyclo-pentadiene	ug/l	50																
Hexachloroethane	ug/l	0.33																
Indeno(1,2,3-cd)pyrene	ug/l	0.25													< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Isophorone	ug/l	78																
Naphthalene	ug/l	0.17													< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Nitrobenzene	ug/l	0.14																
N-Nitroso-di-n-propylamine	ug/l	0.011																
N-Nitrosodiphenylamine	ug/l	12																
Pentachlorophenol	ug/l	1																
Phenanthrene	ug/l	180													< 0.19 U	0.051 J	< 0.19 U	< 0.19 U
Phenol	ug/l	580																
Pyrene	ug/l	12													< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
BaP-TE	ug/l	0.2													< 0.190 U	< 0.190 U	< 0.190 U	< 0.190 U
Total High-molecular-weight PAHs	ug/l														< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Total Low-molecular-weight PAHs	ug/l														< 0.19 U	0.051	< 0.19 U	< 0.19 U
Total PAHs (sum 16)	ug/l	1													< 0.19 U	0.051	< 0.19 U	< 0.19 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples

									washington,										
			Location ID SUS	SDP05	SUSDP05	SUSDP06	SUSDP07	SUSDP08	SUSDP09	SUSDP10	SUSDP11	SUSDP12	SUSDP13	SUSDP14	SUSDP15	SUSDP16	SUSDP16	SUSDP17	SUSDP18
				0514-19N	DPW0514-19R	DPW0614.5-19.5N	DPW0720-25N	DPW0815-25N	DPW0925-30N	DPW1015-20N	DPW1110-15N	DPW1215-20N	DPW1310-15N	DPW1423-28N	DPW1520-25N	DPW1615-20N	DPW1615-20R	DPW1713-18N	DPW1815-20N
			'	- 19 ft	14 - 19 ft	14.5 - 19.5 ft	20 - 25 ft	15 - 25 ft	25 - 30 ft	15 - 20 ft	10 - 15 ft	15 - 20 ft	10 - 15 ft	23 - 28 ft	20 - 25 ft	15 - 20 ft	15 - 20 ft	13 - 18 ft	15 - 20 ft
			'	1/2013	5/21/2013	5/23/2013	5/22/2013	5/24/2013	6/11/2013	6/10/2013	5/28/2013	6/13/2013	5/29/2013	6/6/2013	6/6/2013	6/10/2013	6/10/2013	6/11/2013	6/4/2013
			·	N	FD	N	N	N	N	N	N	N	N	N	N	N	FD	N	N
		Project	. , , , ,					.,					· · · ·						<u> </u>
		Screening																	
Analyte	Unit	Criteria																	
Diesel Range Organics (C10-C20)	ug/l	100	< 4	480 U	< 480 U		< 490 U	< 480 U	< 480 U	< 480 U	320 J	< 500 U	< 480 U	440 J	460 J	< 480 U	< 490 U	< 480 U	< 480 UJ
Oil Range Organics (C20-C36)	ug/l	6000		480 U	< 480 U		< 490 U	< 480 U	< 480 U	< 480 U	430 J	560	< 480 U	1800	< 480 U	< 480 U	< 490 U	< 480 U	< 480 UJ
Gasoline Range Organics (C6-C10)	ug/l	3.3		100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U
1,1,1-Trichloroethane	ug/l	200		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane	ug/l	0.076	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	1000		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloroethane	ug/l	5		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	2.8		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethene	ug/l	7		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene	ug/l	0.7		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,4-Trichlorobenzene	ug/l	70		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane	ug/l	0.2		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane	ug/l	0.05		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene	ug/l	600		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l	5		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane	ug/l	5		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,3-Dichlorobenzene	ug/l	0.48		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	75	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dioxane	ug/l	0.46	< 2	200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U
2-Butanone	ug/l	560	< :	5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	1.5 J	< 5.0 U	1.1 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
2-Hexanone	ug/l	3.8	< :	5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
4-Methyl-2-pentanone	ug/l	630	< :	5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Acetone	ug/l	1400	< :	5.0 U	< 5.0 U	13	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	4.5 J	8.1	< 5.0 U	9.8	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Benzene	ug/l	5	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromochloromethane	ug/l	8.3	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane	ug/l	80	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromoform	ug/l	80	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromomethane	ug/l	0.75	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Butyl alcohol, tert-	ug/l	14																	
Carbon Disulfide	ug/l	81	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.2	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Carbon Tetrachloride	ug/l	5	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chlorobenzene	ug/l	100	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane	ug/l	2100	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroform	ug/l	80		2.1	2.0	< 1.0 U	< 1.0 U	< 1.0 U	0.32 J	< 1.0 U	0.28 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.26 J	< 1.0 U
Chloromethane	ug/l	19	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene	ug/l	70	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	9.2	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,3-Dichloropropene	ug/l	0.47	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane	ug/l	1300		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dibromochloromethane	ug/l	80	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dichlorodifluoromethane	ug/l	20	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Diisopropyl ether	ug/l	150																	
Ethylbenzene	ug/l	700	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether	ug/l																		L
Isopropylbenzene	ug/l	45		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
m, p-Xylene	ug/l	10000		2.0 U	< 2.0 U	0.56 J	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Methyl Acetate	ug/l	2000		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methyl tert-Butyl Ether (MTBE)	ug/l	14		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	3.1	5.0	4.9	< 1.0 U	0.39 J	< 1.0 U	0.71 J	3.1	14	13	< 1.0 U	0.42 J
Methylcyclohexane	ug/l	1300		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	5		.37 J	0.39 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.21 J	< 1.0 U	< 1.0 U	< 1.0 U
o-Xylene	ug/l	10000		1.0 U	< 1.0 U	0.24 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.11 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Styrene	ug/l	100	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tertiary-Amyl Methyl Ether	ug/l	41										ļ							_
Tetrachloroethylene	ug/l	5		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	160	0.21 J	< 1.0 U	< 1.0 U	0.44 J	< 1.0 U	< 1.0 U	0.56 J	0.47 J	0.30 J	0.35 J
Toluene	ug/l	1000		.46 J	0.54 J	2.1	< 1.0 U	0.39 J	< 1.0 U	< 1.0 U	0.15 J	0.85 J	0.26 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,2-Dichloroethene	ug/l	100		1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,3-Dichloropropene	ug/l	0.47	<	1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

									wasiiiigtoii,										
			Location ID	SUSDP05	SUSDP05	SUSDP06	SUSDP07	SUSDP08	SUSDP09	SUSDP10	SUSDP11	SUSDP12	SUSDP13	SUSDP14	SUSDP15	SUSDP16	SUSDP16	SUSDP17	SUSDP18
			Sample ID DI	PW0514-19N	DPW0514-19R	DPW0614.5-19.5N	DPW0720-25N	DPW0815-25N	DPW0925-30N	DPW1015-20N	DPW1110-15N	DPW1215-20N	DPW1310-15N	DPW1423-28N	DPW1520-25N	DPW1615-20N	DPW1615-20R	DPW1713-18N	DPW1815-20N
			Depth	14 - 19 ft	14 - 19 ft	14.5 - 19.5 ft	20 - 25 ft	15 - 25 ft	25 - 30 ft	15 - 20 ft	10 - 15 ft	15 - 20 ft	10 - 15 ft	23 - 28 ft	20 - 25 ft	15 - 20 ft	15 - 20 ft	13 - 18 ft	15 - 20 ft
			·	5/21/2013	5/21/2013	5/23/2013	5/22/2013	5/24/2013	6/11/2013	6/10/2013	5/28/2013	6/13/2013	5/29/2013	6/6/2013	6/6/2013	6/10/2013	6/10/2013	6/11/2013	6/4/2013
	<u> </u>	1	Туре	N	FD	N	N	N	N	N	N	N	N	N	N	N	FD	N	N
		Project																	1
Analyte	Unit	Screening Criteria																	1
Trichloroethene	ug/I	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	12	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.58 J
	[ag/.	Ů		0												0			
Trichlorofluoromethane	ug/l	520		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	10000		< 2.0 U	< 2.0 U	0.80	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	0.11	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
1,1'-Biphenyl	ug/l	0.083																	
1,2,4,5-Tetrachlorobenzene	ug/l	0.17																	
2,2'-oxybis(1-Chloropropane)	ug/l	71 24																	1
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	ug/l ug/l	120																	
2,4,6-Trichlorophenol	ug/l	1.2																	
2,4-Dichlorophenol	ug/l	4.6																	
2,4-Dimethylphenol	ug/l	36											1						
2,4-Dinitrophenol	ug/l	3.9																	
2,4-Dinitrotoluene	ug/l	0.24																	
2,6-Dinitrotoluene	ug/l	0.049																	
2-Chloronaphthalene	ug/l	75																	
2-Chlorophenol	ug/l	9.1																	
2-Methylnaphthalene 2-Methylphenol	ug/l ug/l	3.6 93																	
2-Nitroaniline	ug/l	19																	\vdash
2-Nitrophenol	ug/l	580																	
3,3'-Dichlorobenzidine	ug/l	0.13																	
3-Nitroaniline	ug/l	3.8																	
4,6-Dinitro-2-methylphenol	ug/l	0.15																	
4-Bromophenyl-phenylether	ug/l																		
4-Chloro-3-methylphenol	ug/l	140																	
4-Chloroaniline 4-Chlorophenyl-phenylether	ug/l ug/l	0.37																	
4-Methylphenol	ug/l	190																	
4-Nitroaniline	ug/l	3.8																	
4-Nitrophenol	ug/l	580																	
Acenaphthene	ug/l	53		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.050 J	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	0.017 J
Acenaphthylene	ug/l	53		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U
Acetophenone	ug/l	190								2.42.11								2 (2)	
Anthracene	ug/l	180		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.10 J	0.023 J	0.060 J	0.043 J	0.28	< 0.20 U	< 0.19 U	0.025 J
Atrazine Benzaldehyde	ug/l ug/l	3 19																	
Benzo(a)anthracene	ug/l	0.03		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.13 J	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	0.091 J
Benzo(a)pyrene	ug/l	0.2		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.094 J	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U
Benzo(b)fluoranthene	ug/l	0.25		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.11 J	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U
Benzo(g,h,i)perylene	ug/l	12		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.071 J	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U
Benzo(k)fluoranthene	ug/l	2.5		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U
bis-(2-chloroethoxy)methane	ug/l	5.9																	
bis-(2-Chloroethyl)ether	ug/l	0.014	<u> </u>												-				
bis-(2-Ethylhexyl)phthalate	ug/l	6							1	1		1	1	1	1				
Butylbenzylphthalate Caprolactam	ug/l ug/l	16 990													-				
Carbazole	ug/l	29	+ +										1	1					\vdash
Chrysene	ug/l	25	† †	< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.13 J	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	0.060 J
Dibenzo(a,h)anthracene	ug/l	0.025		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U
Dibenzofuran	ug/l	0.79																	
Diethylphthalate	ug/l	1500																	
Dimethylphthalate	ug/l	1500			1														
Di-n-butylphthalate	ug/l	90													-				
Di-n-octylphthalate	ug/l	20	 	< 0.1011	0.044 J		0.10 J	< 0.19 U	< 0.1011	< 0.4011	< 0.22.11	0.33	0.098 J	< 0.2411	< 0.4011	< 0.19 U	< 0.2011	< 0.1011	0.064
Fluoranthene	ug/l	80	ļ	< 0.19 U	U.U44 J	ļ	0.10 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.33	0.098 J	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	0.061 J

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples

			Location ID	SUSDP05	SUSDP05	SUSDP06	SUSDP07	SUSDP08	SUSDP09	SUSDP10	SUSDP11	SUSDP12	SUSDP13	SUSDP14	SUSDP15	SUSDP16	SUSDP16	SUSDP17	SUSDP18
			Sample ID	DPW0514-19N	DPW0514-19R	DPW0614.5-19.5N	DPW0720-25N	DPW0815-25N	DPW0925-30N	DPW1015-20N	DPW1110-15N	DPW1215-20N	DPW1310-15N	DPW1423-28N	DPW1520-25N	DPW1615-20N	DPW1615-20R	DPW1713-18N	DPW1815-20N
			Depth	14 - 19 ft	14 - 19 ft	14.5 - 19.5 ft	20 - 25 ft	15 - 25 ft	25 - 30 ft	15 - 20 ft	10 - 15 ft	15 - 20 ft	10 - 15 ft	23 - 28 ft	20 - 25 ft	15 - 20 ft	15 - 20 ft	13 - 18 ft	15 - 20 ft
			Sample Date	5/21/2013	5/21/2013	5/23/2013	5/22/2013	5/24/2013	6/11/2013	6/10/2013	5/28/2013	6/13/2013	5/29/2013	6/6/2013	6/6/2013	6/10/2013	6/10/2013	6/11/2013	6/4/2013
			Туре	N	FD	N	N	N	N	N	N	N	N	N	N	N	FD	N	N
		Project																	
		Screening																	
Analyte	Unit	Criteria																	
Fluorene	ug/l	29		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.051 J	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	0.022 J
Hexachlorobenzene	ug/l	1																	
Hexachlorobutadiene	ug/l	0.14																	
Hexachlorocyclo-pentadiene	ug/l	50																	
Hexachloroethane	ug/l	0.33																	
Indeno(1,2,3-cd)pyrene	ug/l	0.25		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.063 J	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U
Isophorone	ug/l	78																	
Naphthalene	ug/l	0.17		< 0.19 U	< 0.20 U		< 0.20 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	< 0.20 U	< 0.23 U	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U
Nitrobenzene	ug/l	0.14																	
N-Nitroso-di-n-propylamine	ug/l	0.011																	
N-Nitrosodiphenylamine	ug/l	12																	
Pentachlorophenol	ug/l	1																	
Phenanthrene	ug/l	180		< 0.19 U	< 0.20 U		0.16 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.29	0.068 J	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	0.042 J
Phenol	ug/l	580																	
Pyrene	ug/l	12		< 0.19 U	< 0.20 U		0.085 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.22	0.083 J	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	0.059 J
BaP-TE	ug/l	0.2		< 0.190 U	< 0.200 U		< 0.200 U	< 0.190 U	< 0.190 U	< 0.190 U	< 0.220 U	0.124	< 0.230 U	< 0.210 U	< 0.190 U	< 0.190 U	< 0.200 U	< 0.190 U	0.00916
Total High-molecular-weight PAHs	ug/l			< 0.19 U	0.044		0.19	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	1.1	0.18	< 0.21 U	< 0.19 U	< 0.19 U	< 0.20 U	< 0.19 U	0.27
Total Low-molecular-weight PAHs	ug/l		1	< 0.19 U	< 0.20 U		0.16	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	0.49	0.091	0.060	0.043	0.28	< 0.20 U	< 0.19 U	0.11
Total PAHs (sum 16)	ug/l			< 0.19 U	0.044		0.35	< 0.19 U	< 0.19 U	< 0.19 U	< 0.22 U	1.6	0.27	0.060	0.043	0.28	< 0.20 U	< 0.19 U	0.38

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

									wasiinigu	on, DC 20019								
			Location ID	SUSDP19	SUSDP20	SUSDP22	SUSDP23	SUSDP24	SUSDP24	SUSDP37	SUSDP37	SUSDP39	SUSDP41	SUSDP43	SUSDP44	SUSDP52	TA19A1	TA19A2
			Sample ID	DPW1915-20N	DPW2015-20N	DPW2215-20N	DPW2323-28N	DPW2415-20N	DPW2415-20R	DPW3713-18N	DPW3725-30N		DPW41 15-25N	DPW4315-20N	DPW4413-18N	DPW5215-20N		-
			Depth	15 - 20 ft	13 - 20 ft	15 - 20 ft	23 - 28 ft	15 - 20 ft	15 - 20 ft	13 - 18 ft	25 - 30 ft	13 - 18 ft	15 - 25 ft	15 - 20 ft	13 - 18 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft
			Sample Date	6/5/2013	6/12/2013	6/12/2013	6/12/2013	6/4/2013	6/4/2013	5/23/2013	5/23/2013	5/22/2013	5/24/2013	6/6/2013	6/10/2013	2/3/2017	3/20/2017	3/20/2017
			Type	N	N	0/12/2013 N	0/12/2013 N	0/4/2013 N	FD	N	N	N	N	N	N	N	N	N
		Dunings	Туре	IN .	IN	IN	IN	IN	10	IN	IN .	11	IN	IN	IN	IN	IN	11
		Project Screening																
Analyte	Unit	Criteria																
Diesel Range Organics (C10-C20)	ug/l	100		350 J	< 480 U	< 520 U	< 480 U	< 480 UJ	< 480 UJ	< 480 U	< 500 U	< 490 U	< 480 U	490	< 480 U			
Oil Range Organics (C20-C36)	ug/l	6000		860	< 480 U	< 520 U	< 480 U	< 480 UJ	< 480 UJ	< 480 U	< 500 U	< 490 U	< 480 U	1900	< 480 U			
Gasoline Range Organics (C6-C10)	ug/l	3.3		< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U			
1,1,1-Trichloroethane	ug/l	200		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane	ug/l	0.076		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	1000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloroethane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	2.8		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethene	ug/l	7		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene	ug/l	0.7		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,4-Trichlorobenzene	ug/l	70		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane	ug/l	0.2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane	ug/l	0.05		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene	ug/l	600		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,3-Dichlorobenzene	ug/l	0.48		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dioxane	ug/l	0.46		< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U
2-Butanone	ug/l	560		< 5.0 U	< 5.0 U	0.74 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
2-Hexanone	ug/l	3.8		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
4-Methyl-2-pentanone	ug/l	630		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Acetone	ug/l	1400		3.3 J	< 5.0 U	3.7 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	4.2 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	4.5 J	< 5.0 U	< 5.0 U
Benzene	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	0.21 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromochloromethane	ug/l	8.3		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromoform	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromomethane	ug/l	0.75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Butyl alcohol, tert-	ug/l	14														< 40 U	< 40 U	< 40 U
Carbon Disulfide	ug/l	81		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.2	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.84 J
Carbon Tetrachloride	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chlorobenzene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane	ug/l	2100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroform	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	3.3	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.43 J	< 1.0 U	< 1.0 U
Chloromethane	ug/l	19		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene	ug/l	70		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U
cis-1,3-Dichloropropene	ug/l	0.47 1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U
Cyclohexane Dibromochloromethane	ug/l ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dibromochloromethane Dichlorodifluoromethane	ug/l ug/l	20		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Disopropyl ether	ug/l	150		` 1.0 0	` 1.0 0	~ 1.0 U	> 1.0 U	· 1.0 U	× 1.0 U	` 1.0 0	` 1.0 0	~ 1.0 U	~ 1.0 U	` 1.0 0	~ 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Ethylbenzene	ug/l	700		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether	ug/l	. 50		- 1.0 0	. 1.0 0	1.00	- 1.0 0	- 1.0 0	- 1.00	- 1.0 0	- 1.0 0	1.00	1.00	- 1.0 0	1.00	< 1.0 U	< 1.0 U	< 1.0 U
Isopropylbenzene	ug/l	45		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
n, p-Xylene	ug/l	10000		< 2.0 U	0.46 J	< 2.0 U	0.46 J	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methyl Acetate	ug/l	2000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Methyl tert-Butyl Ether (MTBE)	ug/l	14		0.21 J	14 J	< 1.0 U	0.33 J	< 1.0 U	< 1.0 U	< 1.0 U	1.6	< 1.0 U	1.6	0.25 J	3.9	1.9	0.29 J	0.28 J
Methylcyclohexane	ug/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
o-Xylene	ug/l	10000		< 1.0 U	< 1.0 U	0.13 J	0.16 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
	J' ·	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
•	ua/l								1									
Styrene	ug/l ug/l															< 1.0 U	< 1.0 U	< 1.0 U
Styrene Tertiary-Amyl Methyl Ether	ug/l	41		< 1.0 U	0.24 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U
Styrene Tertiary-Amyl Methyl Ether Tetrachloroethylene Toluene	ug/l ug/l	41		< 1.0 U 0.20 J	0.24 J 0.69 J	< 1.0 U 0.99 J	< 1.0 U 0.92 J	< 1.0 U < 1.0 U	< 1.0 U 0.27 J	< 1.0 U < 1.0 U	< 1.0 U 0.38 J	< 1.0 U < 1.0 U	< 1.0 U 0.26 J	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U			
Styrene Tertiary-Amyl Methyl Ether Tetrachloroethylene	ug/l	41 5														< 1.0 U	< 1.0 U	< 1.0 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

			Location ID	SUSDP19	SUSDP20	SUSDP22	SUSDP23	SUSDP24	SUSDP24	SUSDP37	SUSDP37	SUSDP39	SUSDP41	SUSDP43	SUSDP44	SUSDP52	TA19A1	TA19A2
			Sample ID	DPW1915-20N	DPW2015-20N	DPW2215-20N	DPW2323-28N	DPW2415-20N	DPW2415-20R	DPW3713-18N	DPW3725-30N	DPW3913-18N	DPW41 15-25N	DPW4315-20N	DPW4413-18N	DPW5215-20N	DPWTA19A115-20N	DPWTA19A215-20N
			Depth	15 - 20 ft	13 - 20 ft	15 - 20 ft	23 - 28 ft	15 - 20 ft	15 - 20 ft	13 - 18 ft	25 - 30 ft	13 - 18 ft	15 - 25 ft	15 - 20 ft	13 - 18 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft
			Sample Date	6/5/2013	6/12/2013	6/12/2013	6/12/2013	6/4/2013	6/4/2013	5/23/2013	5/23/2013	5/22/2013	5/24/2013	6/6/2013	6/10/2013	2/3/2017	3/20/2017	3/20/2017
		T	Туре	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N
		Project																
		Screening																
Analyte	Unit	Criteria		. 4 0 11	.4011	. 4 0 1 1	.4011	. 4 0 1 1	. 4 0 1 1	. 4 0 11	.4011	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	.4011	.4011
Trichloroethene	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Trichlorofluoromethane	ug/l	520		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	10000		< 2.0 U	0.46	0.13	0.62	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 1.0 U	< 1 U	< 1 U
1,1'-Biphenyl	ug/l	0.083		12.00	0.40	0.13	0.02	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	110	110	110
1,2,4,5-Tetrachlorobenzene	ug/l	0.17																
2,2'-oxybis(1-Chloropropane)	ug/l	71																
2,3,4,6-Tetrachlorophenol	ug/l	24	1															
2,4,5-Trichlorophenol	ug/l	120																
2,4,6-Trichlorophenol	ug/l	1.2																
2,4-Dichlorophenol	ug/l	4.6																
2,4-Dimethylphenol	ug/l	36																
2,4-Dinitrophenol	ug/l	3.9	<u> </u>															
2,4-Dinitrotoluene	ug/l	0.24																
2,6-Dinitrotoluene	ug/l	0.049																
2-Chloronaphthalene	ug/l	75																
2-Chlorophenol	ug/l	9.1													ļ			
2-Methylnaphthalene	ug/l	3.6																
2-Methylphenol	ug/l	93																
2-Nitroaniline	ug/l	19																
2-Nitrophenol	ug/l	580																
3,3'-Dichlorobenzidine	ug/l	0.13																
3-Nitroaniline	ug/l	3.8																
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	ug/l ug/l	0.15																
4-Chloro-3-methylphenol	ug/l	140																
4-Chloroaniline	ug/l	0.37																
4-Chlorophenyl-phenylether	ug/l	0.01																
4-Methylphenol	ug/l	190	1															
4-Nitroaniline	ug/l	3.8																
4-Nitrophenol	ug/l	580																
Acenaphthene	ug/l	53		< 0.19 U	0.063 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.21 U	0.28	< 0.19 U	< 0.20 U	< 0.19 U			
Acenaphthylene	ug/l	53		< 0.19 U	0.057 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.21 U	< 0.20 U	< 0.19 U	< 0.20 U	< 0.19 U			
Acetophenone	ug/l	190																
Anthracene	ug/l	180		< 0.19 U	0.066 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	0.51	0.21	0.35	< 0.19 U	0.029 J	0.28			
Atrazine	ug/l	3																
Benzaldehyde	ug/l	19																
Benzo(a)anthracene	ug/l	0.03		< 0.19 U	0.087 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	3.4	2.0	0.32	< 0.19 U	0.047 J	< 0.19 U			
Benzo(a)pyrene	ug/l	0.2		< 0.19 U	< 0.19 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	2.9	1.8	0.23	< 0.19 U	< 0.20 U	< 0.19 U			
Benzo(b)fluoranthene	ug/l	0.25		< 0.19 U	0.067 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	3.1	1.9	0.27	< 0.19 U	< 0.20 U	< 0.19 U			
Benzo(g,h,i)perylene	ug/l	12		< 0.19 U	< 0.19 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	3.9	2.3	< 0.20 U	< 0.19 U	< 0.20 U	< 0.19 U			
Benzo(k)fluoranthene	ug/l	2.5 5.9		< 0.19 U	0.063 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	4.0	2.4	0.087 J	< 0.19 U	< 0.20 U	< 0.19 U			
bis-(2-chloroethoxy)methane bis-(2-Chloroethyl)ether	ug/l ug/l	0.014										-						
bis-(2-Ethylhexyl)phthalate	ug/l	0.014							1			+		+	+			
Butylbenzylphthalate	ug/l	16							1			1	 	 	1			
Caprolactam	ug/l	990							1			 	+	 	 			
Carbazole	ug/l	29																
Chrysene	ug/l	25		< 0.19 U	0.074 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	3.8	2.2	0.30	< 0.19 U	0.057 J	< 0.19 U			
Dibenzo(a,h)anthracene	ug/l	0.025		< 0.19 U	< 0.19 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	3.8	2.3	< 0.20 U	< 0.19 U	< 0.20 U	< 0.19 U			
Dibenzofuran	ug/l	0.79							1					1	1			
Diethylphthalate	ug/l	1500																
Dimethylphthalate	ug/l	1500																
Di-n-butylphthalate	ug/l	90	<u> </u>															
Di-n-octylphthalate	ug/l	20																
Fluoranthene	ug/l	80		< 0.19 U	0.065 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	0.56	0.24	1.6	< 0.19 U	0.036 J	< 0.19 U	1		

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

			Location ID	SUSDP19	SUSDP20	SUSDP22	SUSDP23	SUSDP24	SUSDP24	SUSDP37	SUSDP37	SUSDP39	SUSDP41	SUSDP43	SUSDP44	SUSDP52	TA19A1	TA19A2
			Sample ID I	DPW1915-20N	DPW2015-20N	DPW2215-20N	DPW2323-28N	DPW2415-20N	DPW2415-20R	DPW3713-18N	DPW3725-30N	DPW3913-18N	DPW41 15-25N	DPW4315-20N	DPW4413-18N	DPW5215-20N	DPWTA19A115-20N	DPWTA19A215-20N
			Depth	15 - 20 ft	13 - 20 ft	15 - 20 ft	23 - 28 ft	15 - 20 ft	15 - 20 ft	13 - 18 ft	25 - 30 ft	13 - 18 ft	15 - 25 ft	15 - 20 ft	13 - 18 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft
			Sample Date	6/5/2013	6/12/2013	6/12/2013	6/12/2013	6/4/2013	6/4/2013	5/23/2013	5/23/2013	5/22/2013	5/24/2013	6/6/2013	6/10/2013	2/3/2017	3/20/2017	3/20/2017
			Туре	N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N
		Project																
		Screening																
Analyte	Unit	Criteria																
Fluorene	ug/l	29		< 0.19 U	0.075 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.21 U	0.25	< 0.19 U	< 0.20 U	< 0.19 U			
Hexachlorobenzene	ug/l	1																
Hexachlorobutadiene	ug/l	0.14																
Hexachlorocyclo-pentadiene	ug/l	50																
Hexachloroethane	ug/l	0.33																
Indeno(1,2,3-cd)pyrene	ug/l	0.25		< 0.19 U	< 0.19 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	3.7	2.2	< 0.20 U	< 0.19 U	< 0.20 U	< 0.19 U			
Isophorone	ug/l	78																
Naphthalene	ug/l	0.17		< 0.19 U	0.078 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	< 0.19 U	< 0.21 U	0.094 J	0.044 J	< 0.20 U	< 0.19 U			
Nitrobenzene	ug/l	0.14																
N-Nitroso-di-n-propylamine	ug/l	0.011																
N-Nitrosodiphenylamine	ug/l	12																
Pentachlorophenol	ug/l	1																
Phenanthrene	ug/l	180		< 0.19 U	0.087 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	0.16 J	0.095 J	1.5	< 0.19 U	0.049 J	< 0.19 U			
Phenol	ug/l	580																
Pyrene	ug/l	12		< 0.19 U	0.092 J	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	0.55	0.26	1.2	< 0.19 U	0.060 J	< 0.19 U			
BaP-TE	ug/l	0.2		< 0.190 U	0.0161	< 0.200 U	< 0.200 U	< 0.200 U	< 0.190 U	7.76	4.74	0.290	< 0.190 U	0.00476	< 0.190 U			
Total High-molecular-weight PAHs	ug/l			< 0.19 U	0.45	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	30	18	4.0	< 0.19 U	0.20	< 0.19 U			
Total Low-molecular-weight PAHs	ug/l			< 0.19 U	0.43	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	0.67	0.31	2.5	0.044	0.078	0.28			
Total PAHs (sum 16)	ug/l			< 0.19 U	0.87	< 0.20 U	< 0.20 U	< 0.20 U	< 0.19 U	30	18	6.5	0.044	0.28	0.28			

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	TA19A3	TA19B3	TA19C1	TA19C2	TA19C3	TA19D1	TA19D3	TA19E1	TA19E2
			Sample ID	DPWTA19A315-20N	DPWTA19B315-20N	DPWTA19C115-20N		DPWTA19C315-20N	DPWTA19D115-20N	DPWTA19D315-20N	DPWTA19E115-20N	DPWTA19E215-20N
			Depth	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft
			Sample Date	3/20/2017	2/7/2017	2/8/2017	2/7/2017	2/7/2017	3/3/2017	3/8/2017	2/7/2017	2/7/2017
			Туре	N	N	N	N	N	N	N	N	N
		Project										
		Screening										
Analyte	Unit	Criteria										
Diesel Range Organics (C10-C20)	ug/l	100										
Oil Range Organics (C20-C36)	ug/l	6000										
Gasoline Range Organics (C6-C10)	ug/l	3.3										
1,1,1-Trichloroethane	ug/l	200		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	0.076 1000		< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U
1,1,2-Trichloroethane	ug/l ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	2.8		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1.1-Dichloroethene	ug/l	7		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene	ug/l	0.7		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,4-Trichlorobenzene	ug/l	70		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane	ug/l	0.2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane	ug/l	0.05		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene	ug/l	600		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,3-Dichlorobenzene	ug/l	0.48		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dioxane	ug/l	0.46		< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U
2-Butanone	ug/l	560		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
2-Hexanone	ug/l	3.8		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
4-Methyl-2-pentanone	ug/l	630		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Acetone	ug/l	1400		< 5.0 U	8.8	3.3 J	3.5 J	8.6	3.7 J	< 5.0 U	8.8	7.2
Benzene Bromochloromethane	ug/l ug/l	5 8.3		< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U
Bromodichloromethane	ug/I ug/I	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromoform	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromomethane	ug/l	0.75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Butyl alcohol, tert-	ug/l	14		< 40 U	< 40 U	< 40 U	< 40 U	< 40 U	< 40 U	< 40 U	< 40 U	< 40 U
Carbon Disulfide	ug/l	81		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Carbon Tetrachloride	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chlorobenzene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane	ug/l	2100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroform	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloromethane	ug/l	19		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene	ug/l	70		< 1.0 U	< 1.0 U	1.2	6.2	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,3-Dichloropropene	ug/l	0.47		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane	ug/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dibromochloromethane Dichlorodifluoromethane	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Disopropyl ether	ug/l ug/l	20 150		< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U 0.63 J	< 1.0 U 0.33 J	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U
Ethylbenzene	ug/l	700		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether	ug/l	700		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Isopropylbenzene	ug/l	45		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
m, p-Xylene	ug/l	10000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methyl Acetate	ug/l	2000		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Methyl tert-Butyl Ether (MTBE)	ug/l	14		0.71 J	< 1.0 U	3.9	0.73 J	< 1.0 U	0.51 J	< 1.0 U	0.39 J	< 1.0 U
Methylcyclohexane	ug/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
o-Xylene	ug/l	10000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Styrene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tertiary-Amyl Methyl Ether	ug/l	41		< 1.0 U	< 1.0 U	0.20 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tetrachloroethylene	ug/l	5		2.2	0.24 J	30	18	6.7	< 1.0 U	< 1.0 U	< 1.0 U	0.80 J
Toluene	ug/l	1000		< 1.0 U	0.45 J	< 1.0 U	< 1.0 U	0.18 J	< 1.0 U	< 1.0 U	0.62 J	0.52 J
trans-1,2-Dichloroethene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,3-Dichloropropene	ug/l	0.47		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U

Benning Road Facilty RI Report

Groundwater Results

							•	vasnington, DC 20	7013			
			Location ID	TA19A3	TA19B3	TA19C1	TA19C2	TA19C3	TA19D1	TA19D3	TA19E1	TA19E2
			Sample ID	DPWTA19A315-20N	DPWTA19B315-20N	DPWTA19C115-20N	DPWTA19C215-20N	DPWTA19C315-20N	DPWTA19D115-20N	DPWTA19D315-20N	DPWTA19E115-20N	DPWTA19E215-20N
			Depth	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft
			Sample Date	3/20/2017	2/7/2017	2/8/2017	2/7/2017	2/7/2017	3/3/2017	3/8/2017	2/7/2017	2/7/2017
			Туре	N	N	N	N	N	N	N	N	N
		Project										
		Screening										
Analyte	Unit	Criteria										
Trichloroethene	ug/l	5		< 1.0 U	< 1.0 U	3.2	5.9	0.23 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Trichlorofluoromethane	ug/l	520		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	10000		< 1.0 U	< 1.0 U	<1.00	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1'-Biphenyl	ug/l	0.083		110	110	×10	110	110	110	110	110	110
1,2,4,5-Tetrachlorobenzene	ug/l	0.17										
2,2'-oxybis(1-Chloropropane)	ug/l	71										
2,3,4,6-Tetrachlorophenol	ug/l	24										
2,4,5-Trichlorophenol	ug/l	120										
2,4,6-Trichlorophenol	ug/l	1.2										
2,4-Dichlorophenol	ug/l	4.6					1					
2,4-Dimethylphenol	ug/l	36										
2,4-Dinitrophenol	ug/l	3.9										
2,4-Dinitrotoluene	ug/l	0.24										
2,6-Dinitrotoluene	ug/l	0.049										
2-Chloronaphthalene	ug/l	75										
2-Chlorophenol	ug/l	9.1										
2-Methylnaphthalene	ug/l	3.6										
2-Methylphenol	ug/l	93										
2-Nitroaniline	ug/l	19										
2-Nitrophenol	ug/l	580										
3,3'-Dichlorobenzidine	ug/l	0.13										
3-Nitroaniline	ug/l	3.8										
4,6-Dinitro-2-methylphenol	ug/l	0.15										
4-Bromophenyl-phenylether	ug/l											
4-Chloro-3-methylphenol	ug/l	140										
4-Chloroaniline	ug/l	0.37										
4-Chlorophenyl-phenylether	ug/l	400										
4-Methylphenol	ug/l	190										
4-Nitroaniline	ug/l	3.8 580										
4-Nitrophenol Acenaphthene	ug/l ug/l	53										
Acenaphthylene	ug/l	53										
Acetophenone	ug/l	190										
Anthracene	ug/l	180										
Atrazine	ug/l	3										
Benzaldehyde	ug/l	19										
Benzo(a)anthracene	ug/l	0.03										
Benzo(a)pyrene	ug/l	0.2										
Benzo(b)fluoranthene	ug/l	0.25										
Benzo(g,h,i)perylene	ug/l	12										
Benzo(k)fluoranthene	ug/l	2.5										
bis-(2-chloroethoxy)methane	ug/l	5.9										
bis-(2-Chloroethyl)ether	ug/l	0.014										
bis-(2-Ethylhexyl)phthalate	ug/l	6										
Butylbenzylphthalate	ug/l	16										
Caprolactam	ug/l	990										-
Carbazole	ug/l	29										
Chrysene	ug/l	25										
Dibenzo(a,h)anthracene	ug/l	0.025										
Dibenzofuran	ug/l	0.79										
Diethylphthalate	ug/l	1500										
Dimethylphthalate	ug/l	1500										
Di-n-butylphthalate	ug/l	90										
Di-n-octylphthalate	ug/l	20										
Fluoranthene	ug/l	80					L	L				

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road. NE

0400 D	
3400 Benning	j Koad, NE
Washington,	DC 20019

			Location ID	TA19A3	TA19B3	TA19C1	TA19C2	TA19C3	TA19D1	TA19D3	TA 40E4	TA19E2
			Sample ID			DPWTA19C115-20N	DPWTA19C215-20N		DPWTA19D1	DPWTA19D3	TA19E1 DPWTA19E115-20N	
			'				15 - 20 ft					15 - 20 ft
			Depth	15 - 20 ft	15 - 20 ft	15 - 20 ft		15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	
			Sample Date	3/20/2017	2/7/2017	2/8/2017	2/7/2017	2/7/2017	3/3/2017	3/8/2017	2/7/2017	2/7/2017
	1	1	Туре	N	N	N	N	N	N	N	N	N
		Project										
		Screening										
Analyte	Unit	Criteria										
Fluorene	ug/l	29										
Hexachlorobenzene	ug/l	1										
Hexachlorobutadiene	ug/l	0.14										
Hexachlorocyclo-pentadiene	ug/l	50										
Hexachloroethane	ug/l	0.33										
Indeno(1,2,3-cd)pyrene	ug/l	0.25										
Isophorone	ug/l	78										
Naphthalene	ug/l	0.17										
Nitrobenzene	ug/l	0.14										
N-Nitroso-di-n-propylamine	ug/l	0.011										
N-Nitrosodiphenylamine	ug/l	12										
Pentachlorophenol	ug/l	1										
Phenanthrene	ug/l	180										
Phenol	ug/l	580										
Pyrene	ug/l	12										
BaP-TE	ug/l	0.2										
Total High-molecular-weight PAHs	ug/l											
Total Low-molecular-weight PAHs	ug/l											
Total PAHs (sum 16)	ug/l											

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential nutrient

 $\label{thm:harmonic} \mbox{HHRA screening values provided for detected compounds or compound sums where applicable}$

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.

 $\label{eq:U} \textbf{U} = \textbf{The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$

R = The sample results are rejected due to serious deficiencies in the ability to analyze the

sample and meet quality control criteria. The presence or absence of the analyte cannot be

verified.

ug/l = micrograms per liter

Groundwater Results

													Location ID	DP26	DP28
													Sample ID	DPW26(25-30)N	DPW2821N
													Depth	25 - 30 ft	20 - 22 ft
													Sample Date	3/29/2013	4/2/2013
													Type	N	N
		Project											• •		
		Screening				Max	Min	Mean	Median	Max	Count	Count			
Analyte	Unit	Criteria	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total			
4,4'-DDD	ug/l	0.0063	SW8081B LL	N	72-54-8	0.0011	0.00068	0.00089	0.00089	SUSDP11	2	11			
4,4'-DDE	ug/l	0.046	SW8081B LL	N	72-55-9							11			
4,4'-DDT	ug/l	0.23	SW8081B LL	N	50-29-3	0.0018	0.0011	0.0015	0.0015	SUSDP11	2	11			
Aldrin	ug/l	0.00092	SW8081B LL	N	309-00-2							11			
alpha-BHC	ug/l	0.0072	SW8081B LL	N	319-84-6							11			
beta-BHC	ug/l	0.025	SW8081B LL	N	319-85-7	0.0021	0.002	0.0021	0.0021	SUSDP17	2	11			
cis-Chlordane	ug/l	2	SW8081B LL	N	5103-71-9	0.00096	0.00096	0.00096	0.00096	SUSDP09	1	11			
delta-BHC	ug/l	0.0072	SW8081B LL	N	319-86-8	0.00068	0.00056	0.00062	0.00063	SUSDP11	3	11			
Dieldrin	ug/l	0.0018	SW8081B LL	N	60-57-1	0.0012	0.0012	0.0012	0.0012	SUSDP09	1	11			
Endosulfan I	ug/l	10	SW8081B LL	N	959-98-8							11			
Endosulfan II	ug/l	10	SW8081B LL	N	33213-65-9							11			
Endosulfan Sulfate	ug/l	10	SW8081B LL	N	1031-07-8							11			
Endrin	ug/l	0.2	SW8081B LL	N	72-20-8							11			
Endrin aldehyde	ug/l	0.23	SW8081B LL	N	7421-93-4							11			
Endrin ketone	ug/l	0.23	SW8081B LL	N	53494-70-5							11			
gamma-BHC (Lindane)	ug/l	0.2	SW8081B LL	N	58-89-9							11			
Heptachlor	ug/l	0.4	SW8081B LL	N	76-44-8							11			
Heptachlor Epoxide	ug/l	0.2	SW8081B LL	N	1024-57-3	0.0037	0.0013	0.0025	0.0025	SUSDP10	2	11			
Methoxychlor	ug/l	40	SW8081B LL	N	72-43-5							11			
Toxaphene	ug/l	3	SW8081B LL	N	8001-35-2							11			
trans-Chlordane	ug/l	2	SW8081B LL	N	5103-74-2	0.0017	0.0013	0.0015	0.0015	SUSDP09	2	11			
Aroclor-1016	ug/l		SW8082A LL	N	12674-11-2							45		< 0.0097 U	< 0.0095 U
Aroclor-1221	ug/l		SW8082A LL	N	11104-28-2							45		< 0.0097 U	< 0.0095 U
Aroclor-1232	ug/l		SW8082A LL	N	11141-16-5							45		< 0.0097 U	< 0.0095 U
Aroclor-1242	ug/l		SW8082A LL	N	53469-21-9							45		< 0.0097 U	< 0.0095 U
Aroclor-1248	ug/l		SW8082A LL	N	12672-29-6	0.15	0.15	0.15	0.15	SUSDP05	1	45		< 0.0097 U	< 0.0095 U
Aroclor-1254	ug/l		SW8082A LL	N	11097-69-1	0.013	0.0077	0.01	0.01	SUSDP37	2	45		< 0.0097 U	< 0.0095 U
Aroclor-1260	ug/l		SW8082A LL	N	11096-82-5							45		< 0.0097 U	< 0.0095 U
Aroclor-1262	ug/l		SW8082A LL	N	37324-23-5							45		< 0.0097 U	< 0.0095 U
Aroclor-1268	ug/l		SW8082A LL	N	11100-14-4							45		< 0.0097 U	< 0.0095 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5	SW8082A LL	N	TOT-PCB-ARO-C	0.15	0.0077	0.057	0.013	SUSDP05	3	45		< 0.0097 U	< 0.0095 U

Groundwater Results

PCBs and Pesticides Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

			Location ID	DP28	DP30	DP31	DP33	DP35	DP36	DP38	DP40	DP42	DP45
				DPW2821R	DPW3028N	DPW3120N	DPW33(27-32)N	DPW3515N	DPW3612-17N	DPW3815-20N	DPW4015-20N	DPW4220-25N	DPW4515-20N
			Depth	20 - 22 ft	27 - 29 ft	19.5 - 20.5 ft	27 - 32 ft	14 - 16 ft	12 - 17 ft	15 - 20 ft	15 - 20 ft	20 - 25 ft	15 - 20 ft
			Sample Date	4/2/2013	4/3/2013	4/1/2013	4/4/2013	3/28/2013	5/20/2013	5/23/2013	5/28/2013	5/29/2013	6/4/2013
			Type	FD	N	N	N	N	N	N	N	N	N
		Project											
		Screening											
Analyte	Unit	Criteria											
4,4'-DDD	ug/l	0.0063											
4,4'-DDE	ug/l	0.046											
4,4'-DDT	ug/l	0.23											
Aldrin	ug/l	0.00092											
alpha-BHC	ug/l	0.0072											
beta-BHC	ug/l	0.025											
cis-Chlordane	ug/l	2											
delta-BHC	ug/l	0.0072											
Dieldrin	ug/l	0.0018											
Endosulfan I	ug/l	10											
Endosulfan II	ug/l	10											
Endosulfan Sulfate	ug/l	10											
Endrin	ug/l	0.2											
Endrin aldehyde	ug/l	0.23											
Endrin ketone	ug/l	0.23											
gamma-BHC (Lindane)	ug/l	0.2											
Heptachlor	ug/l	0.4											
Heptachlor Epoxide	ug/l	0.2											
Methoxychlor	ug/l	40											
Toxaphene	ug/l	3											
trans-Chlordane	ug/l	2											
Aroclor-1016	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0098 U	< 0.0096 U
Aroclor-1221	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0098 U	< 0.0096 U
Aroclor-1232	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0098 U	< 0.0096 U
Aroclor-1242	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0098 U	< 0.0096 U
Aroclor-1248	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0098 U	< 0.0096 U
Aroclor-1254	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	0.0077 J	< 0.0095 U	< 0.0098 U	< 0.0096 U
Aroclor-1260	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0098 U	< 0.0096 U
Aroclor-1262	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0098 U	< 0.0096 U
Aroclor-1268	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0098 U	< 0.0096 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5		< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	0.0077	< 0.0095 U	< 0.0098 U	< 0.0096 U

Groundwater Results

PCBs and Pesticides Concentrations in UWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

			Location ID	DP46	DP47	SUSDP01	SUSDP01	SUSDP02	SUSDP02	SUSDP03	SUSDP04	SUSDP05
				DPW4615-20N			DPW0112-15N2	-	DPW0212-17N2			DPW0514-19N
			Sample ID Depth		10 - 15 ft	12 - 15 ft	12 - 15 ft	12 - 17 ft	12 - 17 ft	10 - 15 ft	15 - 20 ft	14 - 19 ft
			Sample Date		6/5/2013	5/20/2013	6/13/2013	5/20/2013	6/13/2013	5/21/2013	5/20/2013	5/21/2013
							6/13/2013 N	5/20/2013 N	6/13/2013 N	5/21/2013 N		5/21/2013 N
			Туре	IN	N	N	IN	IN	IN	IN	N	IN
		Project										
Analyte	Unit	Screening Criteria										
4,4'-DDD	ug/l	0.0063					< 0.0012 U		< 0.0012 U			
4.4'-DDE	ug/l	0.046					< 0.0012 U		< 0.0012 U			
4,4'-DDT	ug/l	0.040					< 0.0012 U		< 0.0012 U			
Aldrin	ug/l	0.00092					< 0.0012 U		< 0.0012 U			
alpha-BHC	ug/l	0.0072					< 0.0012 U		< 0.0012 U			
beta-BHC	ug/l	0.025					< 0.0012 U		< 0.0012 U			
cis-Chlordane	ug/l	2					< 0.0012 U		< 0.0012 U			
delta-BHC	ug/l	0.0072					< 0.0012 U		< 0.0012 U			
Dieldrin	ug/l	0.0012					< 0.0012 U		< 0.0012 U			
Endosulfan I	ug/l	10					< 0.0012 U		< 0.0012 U			
Endosulfan II	ug/l	10					< 0.0012 U		< 0.0012 U			
Endosulfan Sulfate	ug/l	10					< 0.0012 U		< 0.0012 U			
Endrin	ug/l	0.2					< 0.0012 U		< 0.0012 U			
Endrin aldehyde	ug/l	0.23					< 0.0012 U		< 0.0012 U			
Endrin ketone	ug/l	0.23					< 0.0012 U		< 0.0012 U			
gamma-BHC (Lindane)	ug/l	0.2					< 0.0012 U		< 0.0012 U			
Heptachlor	ug/l	0.4					< 0.0012 U		< 0.0012 U			
Heptachlor Epoxide	ug/l	0.2					< 0.0012 U		< 0.0012 U			
Methoxychlor	ug/l	40					< 0.0024 U		< 0.0024 U			
Toxaphene	ug/l	3					< 0.094 U		< 0.095 U			
trans-Chlordane	ug/l	2					< 0.0012 U		< 0.0012 U			
Aroclor-1016	ug/l			< 0.0095 U	< 0.0096 U	< 0.0095 U		< 0.0095 U		< 0.0096 U	< 0.0094 U	< 0.0098 U
Aroclor-1221	ug/l			< 0.0095 U	< 0.0096 U	< 0.0095 U		< 0.0095 U		< 0.0096 U	< 0.0094 U	< 0.0098 U
Aroclor-1232	ug/l			< 0.0095 U	< 0.0096 U	< 0.0095 U		< 0.0095 U		< 0.0096 U	< 0.0094 U	< 0.0098 U
Aroclor-1242	ug/l			< 0.0095 U	< 0.0096 U	< 0.0095 U		< 0.0095 U		< 0.0096 U	< 0.0094 U	< 0.0098 U
Aroclor-1248	ug/l			< 0.0095 U	< 0.0096 U	< 0.0095 U		< 0.0095 U		< 0.0096 U	< 0.0094 U	0.15 J
Aroclor-1254	ug/l			< 0.0095 U	< 0.0096 U	< 0.0095 U		< 0.0095 U		< 0.0096 U	< 0.0094 U	< 0.0098 U
Aroclor-1260	ug/l			< 0.0095 U	< 0.0096 U	< 0.0095 U		< 0.0095 U		< 0.0096 U	< 0.0094 U	< 0.0098 U
Aroclor-1262	ug/l			< 0.0095 U	< 0.0096 U	< 0.0095 U		< 0.0095 U		< 0.0096 U	< 0.0094 U	< 0.0098 U
Aroclor-1268	ug/l			< 0.0095 U	< 0.0096 U	< 0.0095 U		< 0.0095 U		< 0.0096 U	< 0.0094 U	< 0.0098 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5		< 0.0095 U	< 0.0096 U	< 0.0095 U		< 0.0095 U		< 0.0096 U	< 0.0094 U	0.15

Groundwater Results

			Location ID	SUSDP05	SUSDP07	SUSDP08	SUSDP09	SUSDP10	SUSDP11	SUSDP12	SUSDP13	SUSDP14
				DPW0514-19R	DPW0720-25N	DPW0815-25N	DPW0925-30N	DPW1015-20N	DPW1110-15N	DPW1215-20N	-	DPW1423-28N
			Depth	14 - 19 ft	20 - 25 ft	15 - 25 ft	25 - 30 ft	15 - 20 ft	10 - 15 ft	15 - 20 ft	10 - 15 ft	23 - 28 ft
			Sample Date	5/21/2013	5/22/2013	5/24/2013	6/11/2013	6/10/2013	5/28/2013	6/13/2013	5/29/2013	6/6/2013
			Type	FD	N	N	N	N	N	N	N	N
		Project	.,,,,		.,	.,		.,		.,	.,	
		Screening										
Analyte	Unit	Criteria										
4,4'-DDD	ug/l	0.0063				< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0011 J			
4,4'-DDE	ug/l	0.046				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
4,4'-DDT	ug/l	0.23				< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0018			
Aldrin	ug/l	0.00092				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
alpha-BHC	ug/l	0.0072				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
beta-BHC	ug/l	0.025				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
cis-Chlordane	ug/l	2				< 0.0012 U	0.00096 J	< 0.0012 U	< 0.0013 U			
delta-BHC	ug/l	0.0072				< 0.0012 U	< 0.0012 U	< 0.0012 U	0.00068 J			
Dieldrin	ug/l	0.0018				< 0.0012 U	0.0012	< 0.0012 U	< 0.0013 U			
Endosulfan I	ug/l	10				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
Endosulfan II	ug/l	10				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
Endosulfan Sulfate	ug/l	10				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
Endrin	ug/l	0.2				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
Endrin aldehyde	ug/l	0.23				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
Endrin ketone	ug/l	0.23				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
gamma-BHC (Lindane)	ug/l	0.2				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
Heptachlor	ug/l	0.4				< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U			
Heptachlor Epoxide	ug/l	0.2				< 0.0012 U	0.0013 J	0.0037	< 0.0013 U			
Methoxychlor	ug/l	40				< 0.0024 U	< 0.0024 U	< 0.0024 U	< 0.0025 U			
Toxaphene	ug/l	3				< 0.095 U	< 0.095 U	< 0.094 U	< 0.10 U			
trans-Chlordane	ug/l	2				< 0.0012 U	0.0017 J	< 0.0012 U	< 0.0013 U			
Aroclor-1016	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0095 U	< 0.0099 U
Aroclor-1221	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0095 U	< 0.0099 U
Aroclor-1232	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0095 U	< 0.0099 U
Aroclor-1242	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0095 U	< 0.0099 U
Aroclor-1248	ug/l			< 0.0095 UJ	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0095 U	< 0.0099 U
Aroclor-1254	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0095 U	< 0.0099 U
Aroclor-1260	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0095 U	< 0.0099 U
Aroclor-1262	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0095 U	< 0.0099 U
Aroclor-1268	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0095 U	< 0.0099 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5		< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0095 U	< 0.0099 U

Groundwater Results

			Location ID	SUSDP15	SUSDP16	SUSDP16	SUSDP17	SUSDP18	SUSDP19	SUSDP20	SUSDP22	SUSDP23
				DPW1520-25N	DPW1615-20N	DPW1615-20R	DPW1713-18N	DPW1815-20N	DPW1915-20N	DPW2015-20N	-	DPW2323-28N
			Depth	20 - 25 ft	15 - 20 ft	15 - 20 ft	13 - 18 ft	15 - 20 ft	15 - 20 ft	13 - 20 ft	15 - 20 ft	23 - 28 ft
			Sample Date	6/6/2013	6/10/2013	6/10/2013	6/11/2013	6/4/2013	6/5/2013	6/12/2013	6/12/2013	6/12/2013
			Type	N	N	FD	N	N	N	N	N	N
		Project	.,,,,									
		Screening										
Analyte	Unit	Criteria										
4,4'-DDD	ug/l	0.0063					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
4,4'-DDE	ug/l	0.046					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
4,4'-DDT	ug/l	0.23					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
Aldrin	ug/l	0.00092					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
alpha-BHC	ug/l	0.0072					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
beta-BHC	ug/l	0.025					0.0021	< 0.0012 U	< 0.0012 UJ			
cis-Chlordane	ug/l	2					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
delta-BHC	ug/l	0.0072					< 0.0012 U	0.00063 J	< 0.0012 UJ			
Dieldrin	ug/l	0.0018					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
Endosulfan I	ug/l	10					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
Endosulfan II	ug/l	10					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
Endosulfan Sulfate	ug/l	10					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
Endrin	ug/l	0.2					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
Endrin aldehyde	ug/l	0.23					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
Endrin ketone	ug/l	0.23					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
gamma-BHC (Lindane)	ug/l	0.2					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
Heptachlor	ug/l	0.4					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
Heptachlor Epoxide	ug/l	0.2					< 0.0012 U	< 0.0012 U	< 0.0012 UJ			
Methoxychlor	ug/l	40					< 0.0024 U	< 0.0024 U	< 0.0024 UJ			
Toxaphene	ug/l	3					< 0.094 U	< 0.094 U	< 0.094 UJ			
trans-Chlordane	ug/l	2					0.0013 J	< 0.0012 U	< 0.0012 UJ			
Aroclor-1016	ug/l			< 0.0096 U	< 0.0094 U	< 0.0098 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U	< 0.010 U	< 0.0096 U
Aroclor-1221	ug/l			< 0.0096 U	< 0.0094 U	< 0.0098 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U	< 0.010 U	< 0.0096 U
Aroclor-1232	ug/l			< 0.0096 U	< 0.0094 U	< 0.0098 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U	< 0.010 U	< 0.0096 U
Aroclor-1242	ug/l			< 0.0096 U	< 0.0094 U	< 0.0098 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U	< 0.010 U	< 0.0096 U
Aroclor-1248	ug/l			< 0.0096 U	< 0.0094 U	< 0.0098 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U	< 0.010 U	< 0.0096 U
Aroclor-1254	ug/l			< 0.0096 U	< 0.0094 U	< 0.0098 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U	< 0.010 U	< 0.0096 U
Aroclor-1260	ug/l			< 0.0096 U	< 0.0094 U	< 0.0098 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U	< 0.010 U	< 0.0096 U
Aroclor-1262	ug/l			< 0.0096 U	< 0.0094 U	< 0.0098 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U	< 0.010 U	< 0.0096 U
Aroclor-1268	ug/l			< 0.0096 U	< 0.0094 U	< 0.0098 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U	< 0.010 U	< 0.0096 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5		< 0.0096 U	< 0.0094 U	< 0.0098 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U	< 0.010 U	< 0.0096 U

Groundwater Results

			Location ID	SUSDP24	SUSDP24	SUSDP37	SUSDP37	SUSDP39	SUSDP41	SUSDP43	SUSDP44
			Sample ID	-	DPW2415-20R	DPW3713-18N			-		-
			Depth	15 - 20 ft	15 - 20 ft	13 - 18 ft	25 - 30 ft	13 - 18 ft	15 - 25 ft	15 - 20 ft	13 - 18 ft
			Sample Date	6/4/2013	6/4/2013	5/23/2013	5/23/2013	5/22/2013	5/24/2013	6/6/2013	6/10/2013
			Type	N	FD	N	N	N	N	N	N
		Project	, , , , , , , , , , , , , , , , , , ,								
		Screening									
Analyte	Unit	Criteria									
4,4'-DDD	ug/l	0.0063		0.00068 J	< 0.0012 U						
4,4'-DDE	ug/l	0.046		< 0.0012 U	< 0.0012 U						
4,4'-DDT	ug/l	0.23		0.0011 J	< 0.0012 U						
Aldrin	ug/l	0.00092		< 0.0012 U	< 0.0012 U						
alpha-BHC	ug/l	0.0072		< 0.0012 U	< 0.0012 U						
beta-BHC	ug/l	0.025		0.0020	< 0.0012 U						
cis-Chlordane	ug/l	2		< 0.0012 U	< 0.0012 U						
delta-BHC	ug/l	0.0072		0.00056 J	< 0.0012 U						
Dieldrin	ug/l	0.0018		< 0.0012 U	< 0.0012 U						
Endosulfan I	ug/l	10		< 0.0012 U	< 0.0012 U						
Endosulfan II	ug/l	10		< 0.0012 U	< 0.0012 U						
Endosulfan Sulfate	ug/l	10		< 0.0012 U	< 0.0012 U						
Endrin	ug/l	0.2		< 0.0012 U	< 0.0012 U						
Endrin aldehyde	ug/l	0.23		< 0.0012 U	< 0.0012 U						
Endrin ketone	ug/l	0.23		< 0.0012 U	< 0.0012 U						
gamma-BHC (Lindane)	ug/l	0.2		< 0.0012 U	< 0.0012 U						
Heptachlor	ug/l	0.4		< 0.0012 U	< 0.0012 U						
Heptachlor Epoxide	ug/l	0.2		< 0.0012 U	< 0.0012 U						
Methoxychlor	ug/l	40		< 0.0024 U	< 0.0024 U						
Toxaphene	ug/l	3		< 0.095 U	< 0.094 U						
trans-Chlordane	ug/l	2		< 0.0012 U	< 0.0012 U						
Aroclor-1016	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1221	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1232	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1242	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1248	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1254	ug/l			< 0.0095 U	< 0.0094 U	0.013	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1260	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1262	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1268	ug/l			< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5		< 0.0095 U	< 0.0094 U	0.013	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0095 U

Groundwater Results

PCBs and Pesticides Concentrations in UWZ Direct Push Groundwater Samples
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

Votes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

JN = The analyte was tentatively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ug/l = micrograms per liter

Groundwater Results

Dioxins and Furans Concentrations in UWZ Direct Push Groundwater Samples

Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

												Location ID	SUSDP01	SUSDP02	SUSDP08	SUSDP09	SUSDP10	SUSDP11	SUSDP17	SUSDP18	SUSDP19	SUSDP24	SUSDP24
												Sample ID	DPW0112-15N2	DPW0212-17N2	DPW0815-25N	DPW0925-30N	DPW1015-20N	DPW1110-15N	DPW1713-18N	DPW1815-20N	DPW1915-20N	DPW2415-20N	DPW2415-20R
												Depth	12 - 15 ft	12 - 17 ft	15 - 25 ft	25 - 30 ft	15 - 20 ft	10 - 15 ft	13 - 18 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft	15 - 20 ft
												Sample Date	6/13/2013	6/13/2013	5/24/2013	6/11/2013	6/10/2013	5/28/2013	6/11/2013	6/4/2013	6/5/2013	6/4/2013	6/4/2013
												Type	N	N	N	N	N	N	N	N	N	N	FD FD
		Project										1											
		Screening				Min	Mean	Median	Max	Count	Count	+											
Analyte	Unit	Criteria	Method	CAS	Max Detect	Detect	Detect	Detect	Location	Detect	Rejec												1
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/l		SW8290A	67562-39-4	1.26	0.463	0.941	1.1	SUSDP24	3		11	< 0.484 U	< 0.589 U	< 0.539 U	< 0.496 U	< 0.467 U	< 0.490 U	1.10 JN	< 0.477 U	< 0.427 U	0.463 JN	1.26 JN
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/l		SW8290A	35822-46-9	37.2	1.72	9.2	3.12	SUSDP08	6		11	1.72 JN	< 0.652 U	37.2 J	4.34 JN	< 0.632 U	1.79 JN	8.25 JN	< 0.564 U	1.90 JN	< 0.327 U	< 0.321 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/l		SW8290A	55673-89-7	Ì							11	< 0.658 U	< 0.834 U	< 0.688 U	< 0.716 U	< 0.672 U	< 0.644 U	< 0.653 U	< 0.625 U	< 0.563 U	< 0.329 U	< 0.314 U
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/l		SW8290A	70648-26-9	0.352	0.352	0.352	0.352	SUSDP24	1		11	< 0.401 U	< 0.458 U	< 0.438 U	< 0.375 U	< 0.286 U	< 0.492 U	< 0.335 U	< 0.272 U	< 0.240 U	< 0.158 U	0.352 J
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/l		SW8290A	39227-28-6								11	< 0.706 U	< 0.724 U	< 0.820 U	< 0.671 U	< 0.730 U	< 0.774 U	< 0.671 U	< 0.571 U	< 0.560 U	< 0.398 U	< 0.413 U
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/l		SW8290A	57117-44-9	1.68	1.68	1.68	1.68	SUSDP17	1		11	< 0.388 U	< 0.433 U	< 0.454 U	< 0.381 U	< 0.378 U	< 0.523 U	1.68 J	< 0.326 U	< 0.287 U	< 0.196 U	< 0.208 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/l		SW8290A	57653-85-7								11	< 0.716 U	< 0.694 U	< 0.784 U	< 0.637 U	< 0.730 U	< 0.745 U	< 0.707 U	< 0.566 U	< 0.538 U	< 0.389 U	< 0.398 U
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/l		SW8290A	72918-21-9								11	< 0.451 U	< 0.511 U	< 0.503 U	< 0.433 U	< 0.445 U	< 0.568 U	< 0.408 U	< 0.386 U	< 0.346 U	< 0.244 U	< 0.237 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/l		SW8290A	19408-74-3	1	1	1	1	SUSDP17	1		11	< 0.667 U	< 0.665 U	< 0.752 U	< 0.614 U	< 0.685 U	< 0.713 U	1.00 JN	< 0.534 U	< 0.515 U	< 0.370 U	< 0.380 U
1,2,3,7,8-PeCDF	pg/l		SW8290A	57117-41-6								11	< 0.555 U	< 0.516 U	< 0.908 U	< 0.435 U	< 0.906 U	< 1.02 U	< 0.541 U	< 0.796 U	< 0.684 U	< 0.451 U	< 0.473 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/l		SW8290A	40321-76-4								11	< 0.724 U	< 0.810 U	< 1.29 U	< 0.614 U	< 1.18 U	< 1.39 U	< 0.737 U	< 1.05 U	< 0.842 U	< 0.546 U	< 0.590 U
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/l		SW8290A	60851-34-5								11	< 0.431 U	< 0.468 U	< 0.433 U	< 0.410 U	< 0.394 U	< 0.479 U	< 0.366 U	< 0.339 U	< 0.311 U	< 0.223 U	< 0.210 U
2,3,4,7,8-Pentachlorodibenzofuran	pg/l		SW8290A	57117-31-4	0.742	0.742	0.742	0.742	SUSDP02	! 1		11	< 0.532 U	0.742 JN	< 0.778 U	< 0.399 U	< 0.763 U	< 0.839 U	< 0.523 U	< 0.653 U	< 0.583 U	< 0.394 U	< 0.399 U
2,3,7,8-Tetrachlorodibenzofuran	pg/l		SW8290A	51207-31-9	0.502	0.502	0.502	0.502	SUSDP09	1		11	< 0.858 U	< 0.996 U	< 1.11 U	0.502 JN	< 1.02 U	< 1.19 U	< 0.877 U	< 0.851 U	< 0.827 U	< 0.551 U	< 0.513 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/l	30	SW8290A	1746-01-6								11	< 1.66 U	< 1.74 U	< 1.81 U	< 1.42 U	< 1.66 U	< 1.82 U	< 1.35 U	< 1.41 U	< 1.44 U	< 0.858 U	< 0.855 U
Octachlorochlorodibenzofuran	pg/l		SW8290A	39001-02-0	2.21	2.21	2.21	2.21	SUSDP17	1		11	< 0.659 U	< 0.985 U	< 0.884 U	< 0.680 U	< 0.977 U	< 1.10 U	2.21 J	< 0.902 U	< 0.799 U	< 0.439 U	< 0.474 U
Octachlorochlorodibenzo-p-dioxin	pg/l		SW8290A	3268-87-9	904	2	113	31.6	SUSDP08	11		11	31.6 J	5.43 JN	904	63.8 J	5.95 JN	88.1 J	81.2 J	2.54 JN	50.2 J	2.00 JN	4.02 J
Total HpCDD	pg/l		SW8290A	37871-00-4	75	0.411	12.4	5.53	SUSDP08	10		11	5.74 JN	< 0.652 U	75.0 J	11.4 JN	1.64 JN	6.24 JN	15.6 JN	0.819 JN	5.32 JN	0.411 JN	1.61 J
Total HpCDF	pg/l		SW8290A	38998-75-3	3.01	0.463	1.79	1.9	SUSDP17	3		11	< 0.561 U	< 0.695 U	< 0.607 U	< 0.590 U	< 0.555 U	< 0.559 U	3.01 JN	< 0.544 U	< 0.488 U	0.463 JN	1.90 JN
Total HxCDD	pg/l		SW8290A	34465-46-8	22.9	1.35	7.68	6.07	SUSDP08	9		11	1.35 JN	< 0.693 U	22.9 J	8.34 JN	2.09 JN	2.02 JN	16.5 JN	< 0.556 U	6.07 JN	2.37 JN	7.50 JN
Total HxCDF	pg/l		SW8290A	55684-94-1	17.9	0.352	9.13	9.13	SUSDP17	2		11	< 0.416 U	< 0.465 U	< 0.455 U	< 0.398 U	< 0.367 U	< 0.513 U	17.9 JN	< 0.326 U	< 0.292 U	< 0.200 U	0.352 J
Total PeCDD	pg/l		SW8290A	36088-22-9	8.96	0.969	3.29	1.78	SUSDP17	6		11	1.53 JN	0.969 JN	4.90 JN	< 0.614 U	< 1.18 U	< 1.39 U	8.96 JN	< 1.05 U	2.03 JN	< 0.546 U	1.34 JN
Total PeCDF	pg/l		SW8290A	30402-15-4	61.5	0.271	15.8	0.741	SUSDP17	4		11	< 0.542 U	0.742 JN	< 0.835 U	< 1.41 U	< 0.825 U	< 0.917 U	61.5 JN	0.739 JN	< 0.627 U	< 0.419 U	0.271 JN
Total TCDD	pg/l		SW8290A	41903-57-5	33	0.954	11.1	9.36	SUSDP18	9		11	< 1.66 U	< 1.74 U	12.4 JN	9.36 JN	3.96 JN	0.954 JN	12.9 JN	33.0	17.0 JN	3.38 JN	6.52 JN
Total TCDF	pg/l		SW8290A	55722-27-5	118	0.502	39.9	1.29	SUSDP17	3		11	1.29 JN	< 0.996 U	< 1.11 U	0.502 JN	< 1.02 U	< 1.19 U	118 JN	< 0.851 U	< 0.827 U	< 0.663 U	< 0.784 U
Total TEQ	pg/l	30	SW8290A	TTEQ	0.643	0.0008	0.139	0.0443	SUSDP08	11		11	0.0267	0.224	0.643	0.113	0.00179	0.0443	0.387	0.000762	0.0341	0.00523	0.0490

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the

sample and meet quality control criteria. The presence or absence of the analyte cannot be

verified.

pg/I = picograms per liter

Groundwater Results

Inorganic Concentrations in LWZ Direct Push Groundwater Samples

													Location ID	DP27	DP29	DP30	DP31	DP32	DP34	DP40	DP46	SUSDP03	SUSDP07	SUSDP08
													Sample ID	DPW27(48-58)N	DPW29(45-50)N	DPW30(50-55)N	DPW31(37-42)N	DPW32(38-43)N	DPW3453N	DPW4050-55N	DPW4637-42N	DPW0347-52N	DPW0743-48N	DPW08 34-39N
													Depth	48 - 58 ft	45 - 50 ft	50 - 55 ft	37 - 42 ft	38 - 43 ft	52.5 - 54 ft	50 - 55 ft	37 - 42 ft	47 - 52 ft	43 - 48 ft	34 - 39 ft
													Sample Date	3/26/2013	4/2/2013	4/3/2013	4/1/2013	4/1/2013	3/29/2013	5/28/2013	6/5/2013	5/22/2013	5/22/2013	5/24/2013
													Туре	N	N	N	N	N	N	N	N	N	N	N
		Project																						
		Screening				Max	Min	Mean	Median		Count	Count												
Analyte	Unit	Criteria	Method F	raction	CAS	Detect	Detect	Detect	Detect	Max Location	Detect	Total												
Aluminum	ug/l	2000	SW6020A D)	7429-90-5	200	4.1	45	18	SUSDP41	13	17		5.1 J	12 J+	9.5 J+	< 30 UJ	60 J+	< 30 U	11 J	45	18 J	4.1 J	140
Antimony	ug/l	6	SW6020A D)	7440-36-0	0.54	0.063	0.22	0.2	DP40	11	17		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	0.22 J	0.54 J	0.17 J	0.20 J	0.21 J	0.27 J
Arsenic	ug/l	10	SW6020A D)	7440-38-2	2.3	0.42	1.2	0.97	DP27	4	17		2.3	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.1	< 1.0 U	0.84 J	< 1.0 U	< 1.0 U	< 1.0 U
Barium	ug/l	1000	SW6020A D)	7440-39-3	510	81	210	200	SUSDP03	17	17		200	380	270	81	190	240	180	140	510	250	110
Beryllium	ug/l	4	SW6020A D		7440-41-7	1.3	0.038	0.46	0.33	DP30	6	17		< 1.0 U	0.073 J+	1.3 J+	< 1.0 U	0.55 J+	0.10 J+	< 1.0 U	< 1.0 U	0.70 J	< 1.0 U	< 1.0 U
Cadmium	ug/l	5	SW6020A D		7440-43-9	2.4	0.11	0.83	0.36	DP30	9	17		< 1.0 U	< 1.0 U	2.4	0.15 J	0.85 J	1.6	< 1.0 U	< 1.0 U	0.35 J	< 1.0 U	< 1.0 U
Calcium	ug/l	EN	SW6020A D)	7440-70-2	54000	14000	28000	26000	SUSDP09	17	17		31000	30000	21000	18000	29000	20000	14000	48000	34000	19000	28000
Chromium	ug/l	100	SW6020A D	,	7440-47-3	4.5	0.66	2.5	2	SUSDP13	15	17		0.84 J	1.9 J	1.9 J	1.9 J	1.9 J	2.0	0.66 J	4.4	< 2.0 U	< 2.0 U	2.4
Cobalt	ug/l	0.6	SW6020A D	,	7440-48-4 7440-50-8	80	2	21	12	SUSDP09	17 17	17		2.5 1.9 J	2.6	53 28	18 8.6	68	19 1.5 J	2.0 0.51 J	6.3	16	8.2	3.0
Copper	ug/l	1300 1400	SW6020A D SW6020A D	,	7440-50-8	28 26000	0.33 170	4.9 5400	1.5 4100	DP30	16	17		1.9 J 8500	9.3 6000	6300	8.6 < 50 U	22 170	4600	6000	1.6 J 310	1.8 J 26000	1.0 J 3600	1.2 J 1900
Iron	ug/l	15	SW6020A D		7439-89-8	0.12	0.023	0.048	0.041	SUSDP03 DP32	8	17 17		0.025 J	0.033 J	0.053 J	0.023 J	0.12 J	< 1.0 U	< 1.0 U	< 1.0 U	0.049 J	0.031 J	< 1.0 U
Lead Magnesium	ug/l ug/l	EN	SW6020A D	,	7439-92-1	30000	5200	11000	8400	SUSDP09	17	17		9600	17000 J+	0.053 J 11000 J+	5200 J+	19000 J+	7500 J+	5500	13000	21000	8100	5800
Manganese	ug/l	43	SW6020A D	,	7439-95-4	3300	400	1000	880	SUSDP09	17	17		870	860	980	530	750	7300 3∓ 580	670	400	1500	880	880
Nickel	ug/l	39	SW6020A D)	7440-02-0	81	8.4	31	26	DP32	17	17		11	19	67	27	81	37	8.4	22	35	19	11
Potassium	ug/l	EN	SW6020A D	,	7440-02-0	10000	2500	4200	3400	SUSDP09	17	17		3100	5000	4800	2600	5900	3000	2600	6700	4600	2500	2700
Selenium	ug/l	50	SW6020A D		7782-49-2	0.94	0.44	0.62	0.55	DP31	4	17		0.47 J	0.63 J	< 5.0 U	0.94 J	0.44 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Silver	ug/l	50	SW6020A D		7440-22-4	0.067	0.067	0.067	0.067	DP30	1	17		< 1.0 U	< 1.0 U	0.067 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l	EN	SW6020A D		7440-23-5	280000	7500	59000	18000	SUSDP09	17	17		24000	44000 J+	57000 J+	18000 J+	91000 J+	17000 J+	12000	170000	110000	8000	8300
Thallium	ug/l	2	SW6020A D)	7440-28-0	0.3	0.025	0.084	0.045	DP32	10	17		0.056 J	0.030 J	0.15 J	0.12 J	0.30 J	< 1.0 U	0.057 J	< 1.0 U	0.032 J	0.034 J	0.025 J
Vanadium	ug/l	8.6	SW6020A D)	7440-62-2	4.4	0.2	1.6	1.2	SUSDP24	14	17		0.43 J	0.30 J	0.20 J	1.2	0.50 J	0.43 J	< 1.0 U	1.7	0.47 J	< 1.0 U	< 1.0 U
Zinc	ug/l	600	SW6020A D)	7440-66-6	790	14	120	58	DP30	17	17		20	58 J-	790 J-	100 J-	190 J-	100 J-	63	14	270	58	17
Aluminum	ug/l	2000	SW6020A T		7429-90-5	170000	980	48000	28000	SUSDP13	17	17		23000	980	24000	110000	21000	11000	3400 J	38000	25000 J	35000 J	55000 J
Antimony	ug/l	6	SW6020A T		7440-36-0	3.2	0.19	1.2	0.79	SUSDP13	15	17		0.63 J	0.19 J	1.1 J	1.2 J	0.81 J	2.0 J	0.31 J	< 2.0 U	0.69 J	0.57 J	0.79 J
Arsenic	ug/l	10	SW6020A T		7440-38-2	160	3.6	41	21	SUSDP13	16	17		18	< 1.0 UJ	19 J	34 J	23 J	25 J	3.6	17	13	19	16
Barium	ug/l	1000	SW6020A T		7440-39-3	1200	220	540	460	SUSDP13	17	17		430	390	380	560	250	310	220	460	680	570	640
Beryllium	ug/l	4	SW6020A T	•	7440-41-7	59	0.77	12	6.9	SUSDP13	17	17		6.9	0.77 J	8.1 J	14 J	2.3 J	2.4 J	1.0	7.0	6.8	8.6	7.6
Cadmium	ug/l	5	SW6020A T		7440-43-9	7.6	0.17	2.6	2.1	SUSDP13	16	17		0.69 J	< 1.0 UJ	2.4 J	2.1 J	1.1 J	3.6 J	0.17 J	2.3	0.89 J	1.0	1.7
Calcium	ug/l	EN	SW6020A T		7440-70-2	86000	12000	33000	30000	DP46	17	17		38000	30000 J	21000 J	28000 J	28000 J	17000 J	12000	86000	32000	20000	47000
Chromium	ug/l	100	SW6020A T		7440-47-3	2000	15	620	340	SUSDP13	17	17		300	15 J	200 J	670 J	170 J	350 J	61	830	300	340	750
Cobalt	ug/l	0.6	SW6020A T		7440-48-4	2200	3.3	340	89	SUSDP13	17	17		39	3.3 J	89 J	110 J	79 J	43 J	7.8	110	68	86	140
Copper	ug/l	1300	SW6020A T		7440-50-8	1500	9.3	370	190	SUSDP13	17	17		170	9.3 J	120 J	380 J	84 J	130 J	61	490	170	190	340
Iron .	ug/l	1400	SW6020A T		7439-89-6	690000	47000	210000	150000	SUSDP13	17	17		170000	53000	120000	240000	63000	88000	47000 J	180000	150000 J	140000 J	260000 J
Lead	ug/l	15	SW6020A T		7439-92-1	910	1.7	190	86	SUSDP13	17	17		68	1.7 J	37 J	120 J	25 J	19 J	11	220	86	79	200
Magnesium	ug/l	EN	SW6020A T		7439-95-4	39000	5900	18000	17000	DP46	17	17		18000	17000	13000	17000	19000	8700	5900	39000	22000	11000	23000
Manganese	ug/l	43	SW6020A T		7439-96-5	4800	590	1900	1700	SUSDP13	17	17		1800	890 J	1100 J	1700 J	790 J	610 J	590	1200	1700	1300	2400
Nickel	ug/l	39 EN	SW6020A T		7440-02-0	1800	20	340	120	SUSDP13	17	17		78	20 J	120 J	170 J	100 J	88 J	24	200	110	120	200
Potassium Selenium	ug/l ug/l	EN 50	SW6020A T SW6020A T		7440-09-7 7782-49-2	15000 12	2900	7600	6400	SUSDP13 SUSDP13	17	17	 	5100 2.2 J	5100 J < 5.0 U	6700 J 2.5 J	12000 J 5.3	7700 J 2.2 J	4000 J 1.6 J	2900 < 5.0 U	7300	6400 < 5.0 U	5700 < 5.0 U	6200 < 5.0 U
Silver	~g,.	50 50	SW6020A T	. <u> </u>	7440-22-4	1.5	1.6 0.053	5.2 0.44	3.5 0.3	DP46	15	17 17		2.2 J 0.18 J	< 1.0 U	0.053 J	0.26 J	0.054 J	0.060 J	0.076 J	< 5.0 U	0.54 J	0.71 J	0.59 J
-	ug/l	EN	SW6020A T		7440-22-4	250000	6800	49000	17000	SUSDP09	17	17		19000	45000 J	57000 J	17000 J	82000 J	14000 J	11000	98000	100000	7200	7100
Sodium Thallium	ug/l ug/l	2	SW6020A T		7440-23-5	2.6	0.093	0.93	0.65	SUSDP09 SUSDP13	11	17		< 1.0 U	< 1.0 U	< 1.0 U	17000 J	< 1.0 U	0.24 J	0.093 J	0.65 J	0.44 J	0.53 J	0.76 J
Vanadium	ug/l	8.6	SW6020A T		7440-26-0	2900	8	560	330	SUSDP13	17	17		330	8.0 J	220 J	460 J	96 J	86 J	46	190	180	360	350
Zinc	ug/l	600	SW6020A T		7440-66-6	3100	110	940	630	SUSDP13	17	17		300	110 J	660 J	1100 J	320 J	410 J	160	1200	630	410	790
Mercury	ug/l	2	SW7470A D)	7439-97-6	0.045	0.043	0.044	0.044	SUSDP03	2	17		< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	0.045 J	0.043 J	< 0.20 U
Mercury	ug/l	2	SW7470A T	· .	7439-97-6	0.62	0.039	0.29	0.044	SUSDP13	14	17		0.087 J	< 0.20 U	< 0.20 U	0.25 J+	< 0.20 U	0.039 J+	0.062 J	0.42	0.12 J	0.043 3 0.15 J	0.60
.violodi y	49/1		I OA I		. 100 01-0	0.02	0.000	0.20	٧.٧	555DI 10			<u> </u>	0.007 0	- 0.20 0	- 0.20 0	0.20 UT	- 0.20 0	0.000 0∓	0.002 0	V.72	5.12.0	0.100	0.00

Groundwater Results

Inorganic Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

			Location ID	SUSDP09	SUSDP13	SUSDP13	SUSDP19	SUSDP24	SUSDP41
			Sample ID	DPW0945-50N	DPW1345-50N	DPW1345-50R	DPW191944.5-49.5N	DPW2448.5-53.5N	DPW41 39-44N
			Depth	45 - 50 ft	45 - 50 ft	45 - 50 ft	44.5 - 49.5 ft	48.5 - 53.5 ft	39 - 44 ft
			Sample Date	6/11/2013	5/29/2013	5/29/2013	6/5/2013	6/4/2013	5/24/2013
			Туре	N	N	FD	N	N	N
		Project							
		Screening							
Analyte	Unit	Criteria							
Aluminum	ug/l	2000		16 J	< 30 U	31	< 30 U	31	200
Antimony	ug/l	6		< 2.0 U	0.18 J	0.14 J	0.17 J	0.063 J	0.22 J
Arsenic	ug/l	10		< 1.9 U	< 1.0 U	0.42 J	< 1.0 U	< 1.0 U	< 1.0 U
Barium	ug/l	1000		90	200	200	280	150	170
Beryllium	ug/l	4		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.038 J
Cadmium	ug/l	5		1.5	0.11 J	< 1.0 U	0.36 J	0.16 J	< 1.0 U
Calcium	ug/l	EN		54000	23000	23000	39000	18000	26000
Chromium	ug/l	100		0.96 J	3.9	4.5	3.8	3.7	2.9
Cobalt	ug/l	0.6		80	38 J	5.7 J	20	12	4.3
Copper	ug/l	1300		0.96 J	0.97 J	0.58 J	0.33 J	0.54 J	2.9
Iron	ug/l	1400		980	350	460	3400	9400	8200
Lead	ug/l	15		0.051 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Magnesium	ug/l	EN		30000	6100	6300	15000	8400	5900
Manganese	ug/l	43		3300	900	920	1100	1300	1000
Nickel	ug/l	39		32	39 J	19 J	22	59	26
Potassium	ug/l	EN		10000	3400	3300	5400	3600	2600
Selenium	ug/l	50		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Silver	ug/l	50		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l	EN		280000	13000	13000	110000	16000	7500
Thallium	ug/l	2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.031 J
Vanadium	ug/l	8.6		1.2	2.7	3.3	2.6	4.4	3.0
Zinc	ug/l	600		40	41 J	16 J	66	170	39
Aluminum	ug/l	2000		28000 J	170000	160000	13000	56000	37000 J
Antimony	ug/l	6		0.42 J	3.1	3.2	< 2.0 U	2.2	0.50 J
Arsenic	ug/l	10		41 J-	150	160	38	75	9.4
Barium	ug/l	1000		260	1200	1200	360	630	580
Beryllium	ug/l	4		4.4	59	59	3.2	8.0	5.9
Cadmium	ug/l	5		2.1	7.6	7.6	5.1	3.0	1.0
Calcium	ug/l	EN		49000	37000	37000	32000	23000	29000
Chromium	ug/l	100		210	2000	2000	260	1600	450
Cobalt	ug/l	0.6 1300		110 110	2200 1500	2200 1500	240 250	170 560	83 250
Copper	ug/l	1400		71000	690000	690000	83000	340000	190000 J
Iron Lead	ug/l ug/l	1400		47 J-	900	910	110	240	190000 J 87
Lead Magnesium	ug/I ug/I	EN		29000	20000	20000	13000	15000	13000
Manganese	ug/l	43		3200 J-	4800	4800	1000	2100	2100
Nickel	ug/l	39		75	1800	1800	240	400	200
Potassium	ug/l	EN		11000	15000	15000	5600	8000	5600
Selenium	ug/l	50		< 7.0 U	11	12	< 5.0 U	4.5 J	< 5.0 U
Silver	ug/l	50		< 1.0 U	0.82 J	0.86 J	0.13 J	0.52 J	0.30 J
Sodium	ug/l	EN		250000	10000	10000	83000	15000	6800
Thallium	ug/l	2		< 1.0 U	2.5	2.6	0.68 J	< 1.0 U	0.50 J
Vanadium	ug/l	8.6		330	2900	2900	230	340	520
Zinc	ug/l	600		190	3100	3100	680	2300	480
Mercury	ug/l	2		< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U
Mercury	ug/l	2		0.14 J	0.61	0.62	0.54	0.36	0.096 J
	٦9′٠	_		0.170	0.01	0.02	0.0-	5.55	0.000

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1] J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be

verified.

ug/l = micrograms per liter

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project

													Lo	cation ID DP27	DP29	DP30	DP31	DP32	DP34	DP40
														ample ID DPW27(48-58)		DPW30(50-55)N	DPW31(37-42)N		DP34 DPW3453N	DPW4050-55N
													O.	Depth 48 - 58 ft	45 - 50 ft	50 - 55 ft	37 - 42 ft	38 - 43 ft	52.5 - 54 ft	50 - 55 ft
													Sam	nple Date 3/26/2013	4/2/2013	4/3/2013	4/1/2013	4/1/2013	3/29/2013	5/28/2013
														Type N	N	N	N	N	N	N
		Project												,						
		Screening						Mean	Median	Max	Count	Count								i
Analyte	Unit	Criteria	Method	Fraction	CAS	Max Detect	Min Detect	Detect	Detect	Location	Detect	Reject	Count Total							i
Diesel Range Organics (C10-C20)	ug/l	100	SW8015C DRO	N	C10C20	380	260	320	320	DP46	2		17	< 480 U	< 480 UJ	< 480 U	< 480 U	< 480 U	< 480 U	< 480 U
Oil Range Organics (C20-C36)	ug/l	6000		N	C20C36	580	350	470	470	SUSDP09	4		17	490	< 480 UJ	< 480 U	< 480 U	< 480 U	< 480 U	< 480 U
Gasoline Range Organics (C6-C10)	ug/l	3.3		N	8006-61-9	880	880	880	880	DP32	1		17	< 100 U	< 100 U	< 100 U	< 150 U	880	< 100 U	< 100 U
1,1,1-Trichloroethane	ug/l	200	SW8260B/SW8260C	N	71-55-6							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane	ug/l	0.076	SW8260B/SW8260C	N	79-34-5							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	1000	SW8260B/SW8260C SW8260B/SW8260C	N	76-13-1							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,1,2-Trichloroethane 1,1-Dichloroethane	ug/l ug/l	5 2.8	SW8260B/SW8260C	IN NI	79-00-5 75-34-3							4	43	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	7	SW8260B/SW8260C	N	75-35-4							4	46	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1.2.3-Trichlorobenzene	ug/l	0.7	SW8260B/SW8260C	N	87-61-6							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,2,4-Trichlorobenzene	ug/l	70	SW8260B/SW8260C	N	120-82-1	1		<u> </u>	<u> </u>			4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane	ug/l	0.2	SW8260B/SW8260C	N	96-12-8							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane	ug/l	0.05	SW8260B/SW8260C	N	106-93-4	1						4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene	ug/l	600	SW8260B/SW8260C	N	95-50-1							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l	5	SW8260B/SW8260C	N	107-06-2							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane	ug/l	5	SW8260B/SW8260C	N	78-87-5							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,3-Dichlorobenzene	ug/l	0.48	SW8260B/SW8260C	N	541-73-1							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	75	SW8260B/SW8260C	N	106-46-7							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
1,4-Dioxane	ug/l	0.46	SW8260B/SW8260C	N	123-91-1							9	43	< 200 U	< 200 U	< 200 U	< 200 U	< 10000 U	< 200 U	< 200 U
2-Butanone	ug/l	560	SW8260B/SW8260C	N	78-93-3	3	0.68	1.8	1.7	DP54	4	4	43	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 250 U	< 5.0 U	< 5.0 U
2-Hexanone	ug/l ug/l	3.8 630	SW8260B/SW8260C SW8260B/SW8260C	N	591-78-6 108-10-1							4	43	< 5.0 U < 5.0 U	< 5.0 U < 5.0 U	< 5.0 U < 5.0 U	< 5.0 U < 5.0 U	< 250 U < 250 U	< 5.0 U < 5.0 U	< 5.0 U < 5.0 U
4-Methyl-2-pentanone Acetone	ug/l	1400	SW8260B/SW8260C	N N	67-64-1	16	2.5	5.5	4.1	DP54	25	4	43	< 5.0 U	< 5.0 U	3.4 J	< 5.0 U	< 250 U	2.5 J	< 5.0 U
Benzene	ug/l	5	SW8260B/SW8260C	N	71-43-2	0.21	0.11	0.16	0.16	DP57	23	4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Bromochloromethane	ug/l	8.3	SW8260B/SW8260C	N	74-97-5	0.21	0.11	0.10	0.10	DI 37		4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Bromodichloromethane	ug/l	80		N	75-27-4	1.4	0.17	0.65	0.39	DP34	3	4	43	0.17 J	< 1.0 U	< 1.0 U	0.39 J	< 50 U	1.4	< 1.0 U
Bromoform	ug/l	80		N	75-25-2							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Bromomethane	ug/l	0.75	SW8260B/SW8260C	N	74-83-9							9	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Butyl alcohol, tert-	ug/l	14	SW8260B/SW8260C	N	75-65-0	62	4.4	24	5.6	DP58	3	4	26							i
Carbon Disulfide	ug/l	81	SW8260B/SW8260C	N	75-15-0	1.8	0.31	0.8	0.64	SUSDP08	14	3	43	0.52 J	< 1.0 U	0.93 J	0.57 J	< 50 U	0.36 J	0.44 J
Carbon Tetrachloride	ug/l	5	SW8260B/SW8260C	N	56-23-5							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Chlorobenzene	ug/l	100	SW8260B/SW8260C	N	108-90-7							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Chloroethane	ug/l	2100	SW8260B/SW8260C	N	75-00-3							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Chloroform	ug/l	80	SW8260B/SW8260C	N	67-66-3	8.3	0.3	2.8	2.6	DP34	16	3	43	2.2	1.3	4.6	2.8	< 50 U	8.3	1.6
Chloromethane	ug/l	19	SW8260B/SW8260C SW8260B/SW8260C	N	74-87-3 156-59-2	0.72	0.72	0.72	0.72	DP57	1 10	4	43	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene	ug/l	70 0.47	SW8260B/SW8260C	IN NI	10061-01-5	8.6	0.35	2.8	1.8	TA19A1	12	4	46 43	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
cis-1,3-Dichloropropene Cyclohexane	ug/l ug/l	1300		N	110-82-7	+						4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Dibromochloromethane	ug/l	80		N	124-48-1	0.25	0.25	0.25	0.25	DP34	1	4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	0.25 J	< 1.0 U
Dichlorodifluoromethane	ug/l	20	SW8260B/SW8260C		75-71-8	1.20					· ·	4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Diisopropyl ether	ug/l	150	SW8260B/SW8260C		108-20-3	5.6	0.18	1.8	1.2	TA19A3	11	1	26					1		
Ethylbenzene	ug/l	700	SW8260B/SW8260C	N	100-41-4							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether	ug/l		SW8260B/SW8260C	N	637-92-3							4	26							
Isopropylbenzene	ug/l	45	SW8260B/SW8260C		98-82-8							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
m, p-Xylene	ug/l	10000	SW8260B/SW8260C	N	XYLMP	0.35	0.17	0.26	0.26	TA19D3	2	4	43	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 100 U	< 2.0 U	< 2.0 U
Methyl Acetate	ug/l	2000	SW8260B/SW8260C	N	79-20-9							4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Methyl tert-Butyl Ether (MTBE)	ug/l	14	SW8260B/SW8260C		1634-04-4	1100	0.2	110	1.5	DPOS-03	28	1	43	< 1.0 U	19	< 1.0 U	< 1.0 U	740	< 1.0 U	< 1.0 U
Methylcyclohexane	ug/l	1300	SW8260B/SW8260C		108-87-2	0.40	0.00	0.00	0.07	DD 10		4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	5	SW8260B/SW8260C		75-09-2	0.42	0.22	0.29	0.27	DP40	4	4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	0.42 J
o-Xylene Styrono	ug/l	10000 100	SW8260B/SW8260C		95-47-6 100-42-5	0.14	0.14	0.14	0.14	SUSDP24	I	4	43	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Styrene Tertiary-Amyl Methyl Ether	ug/l ug/l	41	SW8260B/SW8260C SW8260B/SW8260C		994-05-8	26	0.32	10	11	DPOS-03	6	4	43 26	< 1.0 U	× 1.0 U	\ 1.0 U	\ 1.0 U	\ 50 U	\ 1.0 U	<u> </u>
Tetrachloroethylene	ug/I ug/I	5	SW8260B/SW8260C		127-18-4	68	0.32	16	7.1	TA19A3	11	1	46	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Toluene	ug/l	1000	SW8260B/SW8260C		108-88-3	0.88	0.23	0.32	0.3	SUSDP24	21	1	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	0.19 J	0.33 J
trans-1,2-Dichloroethene	ug/l	1000	SW8260B/SW8260C		156-60-5	0.52	0.52	0.52	0.52	TA19C3	1	4	46	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
trans-1,3-Dichloropropene	ug/l	0.47	SW8260B/SW8260C		10061-02-6						•	4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Trichloroethene	ug/l	5		N	79-01-6	51	0.24	17	12	TA19B3	10	1	46	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Trichlorofluoromethane	ug/l	520	SW8260B/SW8260C	N	75-69-4	1		İ	İ			4	43	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
-	-		•		•	•								•	•	•	•	•		

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project

														Lasation ID	DD07	DDOO	DP30	DD24	DP32	DP34	DP40
														Location ID Sample ID	DP27 DPW27(48-58)N	DP29	DPW30(50-55)N	DP31 DPW31(37-42)N		DP34 I DPW3453N	DP40 DPW4050-55N
														Depth	48 - 58 ft	45 - 50 ft	50 - 55 ft	37 - 42 ft	38 - 43 ft	52.5 - 54 ft	50 - 55 ft
														Sample Date	3/26/2013	4/2/2013	4/3/2013	4/1/2013	4/1/2013	3/29/2013	5/28/2013
														Туре	N	N	N	N	N	N	N
		Project																			
		Screening						Mean	Median	Max	Count	Count									
Analyte	Unit	Criteria	Method	Fraction	CAS	Max Detect	Min Detect	Detect	Detect	Location	Detect	Reject	Count Total								
Vinyl Chloride	ug/l	2	SW8260B/SW8260C	N	75-01-4	0.68	0.24	0.46	0.46	SUSDP19	2	3	46		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 50 U	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	10000	SW8260B/SW8260C	N	1330-20-7	0.35	0.14	0.22	0.17	TA19D3	3		39		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 100 U	< 2.0 U	< 2.0 U
1,1'-Biphenyl	ug/l	0.083	SW8270D LL	N	92-52-4								6		< 0.95 U < 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
1,2,4,5-Tetrachlorobenzene 2,2'-oxybis(1-Chloropropane)	ug/l ug/l	0.17 71	SW8270D LL SW8270D LL	IN NI	95-94-3 108-60-1	_							6		< 0.95 U	< 0.96 U < 0.19 U	< 0.97 U < 0.19 U	< 0.97 U < 0.19 U	< 0.97 U < 0.19 U	< 0.96 U < 0.19 U	
2,3,4,6-Tetrachlorophenol	ug/l	24	SW8270D LL	N	58-90-2								6		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	
2,4,5-Trichlorophenol	ug/l	120	SW8270D LL	N	95-95-4								6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
2,4,6-Trichlorophenol	ug/l	1.2	SW8270D LL	N	88-06-2								6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
2,4-Dichlorophenol	ug/l	4.6	SW8270D LL	N	120-83-2								6		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	
2,4-Dimethylphenol	ug/l	36	SW8270D LL	N	105-67-9								6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
2,4-Dinitrophenol	ug/l	3.9	SW8270D LL	N	51-28-5								6		< 4.8 U	< 4.8 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.8 U	\Box
2,4-Dinitrotoluene	ug/l	0.24	SW8270D LL	N	121-14-2	-	ļ					ļ	6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	ļ
2,6-Dinitrotoluene	ug/l	0.049	SW8270D LL	N	606-20-2 91-58-7	1	1						6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
2-Chloronaphthalene 2-Chlorophenol	ug/l ug/l	75 9.1	SW8270D LL SW8270D LL	N	95-57-8	1	-						6		< 0.19 U < 0.95 U	< 0.19 U < 0.96 U	< 0.19 U < 0.97 U	< 0.19 U < 0.97 U	< 0.19 U < 0.97 U	< 0.19 U < 0.96 U	+
2-Methylnaphthalene	ug/l	3.6	SW8270D LL	N	91-57-6	0.094	0.02	0.046	0.025	DP27	3		6		0.93 U	< 0.96 U	< 0.97 U	0.020 J	< 0.97 U	0.025 J	
2-Methylphenol	ug/l	93	SW8270D LL	N	95-48-7	3.001	3.02	3.310	3.320	J. 21			6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	1
2-Nitroaniline	ug/l	19	SW8270D LL	N	88-74-4								6		< 4.8 U	< 4.8 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.8 U	
2-Nitrophenol	ug/l	580	SW8270D LL	N	88-75-5								6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
3,3'-Dichlorobenzidine	ug/l	0.13	SW8270D LL	N	91-94-1							1	6		< 0.95 U	< 0.96 U	R	< 0.97 U	< 0.97 U	< 0.96 U	
3-Nitroaniline	ug/l	3.8	SW8270D LL	N	99-09-2								6		< 4.8 U	< 4.8 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.8 U	
4,6-Dinitro-2-methylphenol	ug/l	0.15	SW8270D LL	N	534-52-1								6		< 4.8 U	< 4.8 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.8 U	
4-Bromophenyl-phenylether	ug/l	110	SW8270D LL	N	101-55-3 59-50-7								6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
4-Chloro-3-methylphenol 4-Chloroaniline	ug/l ug/l	140 0.37	SW8270D LL SW8270D LL	N N	106-47-8								6		< 0.95 U < 0.95 U	< 0.96 U < 0.96 U	< 0.97 U < 0.97 U	< 0.97 U < 0.97 U	< 0.97 U < 0.97 U	< 0.96 U < 0.96 U	
4-Chlorophenyl-phenylether	ug/l	0.07	SW8270D LL	N	7005-72-3								6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
4-Methylphenol	ug/l	190	SW8270D LL	N	106-44-5								6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
4-Nitroaniline	ug/l	3.8	SW8270D LL	N	100-01-6								6		< 4.8 U	< 4.8 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.8 U	
4-Nitrophenol	ug/l	580	SW8270D LL	N	100-02-7								6		< 4.8 U	< 4.8 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.8 U	
Acenaphthene	ug/l	53	SW8270D LL	N	83-32-9	0.2	0.022	0.09	0.071	DP27	5		17		0.20	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Acenaphthylene	ug/l	53	SW8270D LL	N	208-96-8								17		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Acetophenone	ug/l	190	SW8270D LL	N	98-86-2	0.47	0.047	0.050	0.040	DD07			6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	0.004 1
Anthracene Atrazine	ug/l ug/l	180	SW8270D LL SW8270D LL	N N	120-12-7 1912-24-9	0.17	0.017	0.059	0.048	DP27	9		17 6		0.17 J < 0.95 U	0.027 J < 0.96 U	< 0.19 U < 0.97 U	< 0.19 U < 0.97 U	< 0.19 U < 0.97 U	< 0.19 U < 0.96 U	0.024 J
Benzaldehyde	ug/l	19	SW8270D LL	N	100-52-7	0.93	0.78	0.86	0.86	DP31	2		6		< 0.95 U	< 0.96 U	0.78 J	0.93 J	< 0.97 U	< 0.96 U	
Benzo(a)anthracene	ug/l	0.03	SW8270D LL	N	56-55-3	0.15	0.039	0.1	0.11	DP40	7		17		0.14 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	0.15 J
Benzo(a)pyrene	ug/l	0.2	SW8270D LL	N	50-32-8	0.072	0.064	0.068	0.068	SUSDP19	2		17		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	0.064 J
Benzo(b)fluoranthene	ug/l	0.25	SW8270D LL	N	205-99-2	0.1	0.061	0.089	0.098	DP40	4		17		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	0.10 J
Benzo(g,h,i)perylene	ug/l	12	SW8270D LL	N	191-24-2								17		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Benzo(k)fluoranthene	ug/l	2.5	SW8270D LL	N	207-08-9	0.066	0.058	0.062	0.062	DP40	2		17		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	0.066 J
bis-(2-chloroethoxy)methane	ug/l	5.9	SW8270D LL	N	111-91-1	-							6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
bis-(2-Chloroethyl)ether bis-(2-Ethylhexyl)phthalate	ug/l ug/l	0.014 6	SW8270D LL SW8270D LL	N	111-44-4 117-81-7	1.5	1.3	1.4	1.4	DP32	2	-	6		< 0.19 U < 1.9 U	< 0.19 U < 1.9 U	< 0.19 U < 1.9 U	< 0.19 U	< 0.19 U 1.5 J	< 0.19 U < 1.9 U	
Butylbenzylphthalate	ug/I ug/I	16	SW8270D LL SW8270D LL	N	85-68-7	0.26	0.26	0.26	0.26	DP32 DP29	2		О		< 0.95 U	0.26 J	< 1.9 U	< 0.97 U	0.26 J	< 0.96 U	
Daty Donzy printidiate	ug/i	10	0.10210D LL	['`	55-00-7	0.20	0.20	0.20	0.20	DP32	~		6		- 0.33 0	0.200	- 0.97 0	- 0.07 0	0.20 0	- 0.30 0	
Caprolactam	ug/l	990	SW8270D LL	N	105-60-2								6		< 4.8 U	< 4.8 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.8 U	1
Carbazole	ug/l	29	SW8270D LL	N	86-74-8	0.11	0.11	0.11	0.11	DP27	1		6		0.11 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	
Chrysene	ug/l	25	SW8270D LL	N	218-01-9	0.14	0.025	0.11	0.13	DP40	7				0.13 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	0.14 J
				1						SUSDP19			17								
Dibenzo(a,h)anthracene	ug/l	0.025	SW8270D LL	N	53-70-3	1							17		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Dibenzofuran Diethylphtholete	ug/l	0.79	SW8270D LL	N	132-64-9	0.11	0.11	0.11	0.11	DP27	11		6		0.11 J	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
Diethylphthalate	ug/l	1500 1500	SW8270D LL SW8270D LL	N	84-66-2	0.44	0.22	0.31	0.3	DP31	4	 	6		< 0.95 U	0.22 J < 0.96 U	< 0.97 U < 0.97 U	0.44 J < 0.97 U	0.25 J < 0.97 U	0.34 J < 0.96 U	
Dimethylphthalate Di-n-butylphthalate	ug/l ug/l	90	SW8270D LL SW8270D LL	N	131-11-3 84-74-2	1.3	0.18	0.47	0.2	DP31	4		6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
Di-n-octylphthalate	ug/l	20	SW8270D LL	N	117-84-0	1.0	0.10	0.47	0.2	וטוטו	-7		6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	+
Fluoranthene	ug/l	80	SW8270D LL	N	206-44-0	0.63	0.02	0.21	0.16	DP27	14	<u> </u>	17		0.63	0.040 J	0.024 J	< 0.19 U	0.020 J	< 0.19 U	0.24
Fluorene	ug/l	29	SW8270D LL	N	86-73-7	0.15	0.022	0.077	0.06	DP27	3		17		0.15 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
			SW8270D LL	N	118-74-1	1	t e	1				1	6	 	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	1

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project

														Location ID	DP27	DP29	DP30	DP31	DP32	DP34	DP40
														Sample ID	DPW27(48-58)N	DPW29(45-50)N	DPW30(50-55)N	DPW31(37-42)N	DPW32(38-43)N	DPW3453N	DPW4050-55N
														Depth	48 - 58 ft	45 - 50 ft	50 - 55 ft	37 - 42 ft	38 - 43 ft	52.5 - 54 ft	50 - 55 ft
														Sample Date	3/26/2013	4/2/2013	4/3/2013	4/1/2013	4/1/2013	3/29/2013	5/28/2013
														Туре	N	N	N	N	N	N	N
		Project																			
		Screening						Mean	Median	Max	Count	Count									
Analyte	Unit	Criteria	Method	Fraction	n CAS	Max Detect	Min Detect	Detect	Detect	Location	Detect	Reject	Count Total								
Hexachlorobutadiene	ug/l	0.14	SW8270D LL	N	87-68-3								6		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	
Hexachlorocyclo-pentadiene	ug/l	50	SW8270D LL	N	77-47-4							1	6		< 0.95 U	< 0.96 U	R	< 0.97 U	< 0.97 U	< 0.96 U	
Hexachloroethane	ug/l	0.33	SW8270D LL	N	67-72-1								6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
Indeno(1,2,3-cd)pyrene	ug/l	0.25	SW8270D LL	N	193-39-5								17		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Isophorone	ug/l	78	SW8270D LL	N	78-59-1								6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
Naphthalene	ug/l	0.17	SW8270D LL	N	91-20-3	0.15	0.036	0.092	0.098	DP34	8		17		0.11 J	< 0.19 U	< 0.19 U	0.036 J	< 0.19 U	0.15 J	< 0.19 U
Nitrobenzene	ug/l	0.14	SW8270D LL	N	98-95-3								6		< 1.9 U	< 1.9 U	< 1.9 U	< 1.9 U	< 1.9 U	< 1.9 U	
N-Nitroso-di-n-propylamine	ug/l	0.011	SW8270D LL	N	621-64-7								6		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	
N-Nitrosodiphenylamine	ug/l	12	SW8270D LL	N	86-30-6								6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
Pentachlorophenol	ug/l	1	SW8270D LL	N	87-86-5								6		< 0.95 U	< 0.96 U	< 0.97 U	< 0.97 U	< 0.97 U	< 0.96 U	
Phenanthrene	ug/l	180	SW8270D LL	N	85-01-8	0.69	0.049	0.25	0.2	DP27	12		17		0.69	0.084 J	< 0.19 U	< 0.19 U	0.049 J	< 0.19 U	0.11 J
Phenol	ug/l	580	SW8270D LL	N	108-95-2								6		< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	
Pyrene	ug/l	12	SW8270D LL	N	129-00-0	0.54	0.018	0.19	0.16	DP27	12		17		0.54	0.044 J	0.018 J	< 0.19 U	< 0.19 U	< 0.19 U	0.15 J
BaP-TE	ug/l	0.2	SW8270D LL	N	BAP	0.0949	0.00393	0.0351	0.0172	SUSDP19	7		17		0.0141	< 0.190 U	< 0.190 U	< 0.190 U	< 0.190 U	< 0.190 U	0.0898
Total High-molecular-weight PAHs	ug/l		SW8270D LL	N	TOT-PAH-HMW	1.4	0.02	0.52	0.36	DP27	14		17		1.4	0.084	0.042	< 0.19 U	0.020	< 0.19 U	0.91
Total Low-molecular-weight PAHs	ug/l		SW8270D LL	N	TOT-PAH-LMW	1.3	0.036	0.35	0.22	DP27	14		17		1.3	0.11	< 0.19 U	0.036	0.049	0.15	0.13
Total PAHs (sum 16)	ug/l		SW8270D LL	N	TOT-PAH	2.8	0.036	0.77	0.34	DP27	16		17		2.8	0.20	0.042	0.036	0.069	0.15	1.0

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project

										ington, DC 2									
			Location ID	DP46	DP54	DP55	DP56	DP57	DP58	DP59	DP60	DP61	DP62	DP63	DPA4	DPB5	DPB7	DPOS-01	DPOS-02
				DPW4637-42N	DPW5438-42N	DPW5538-42N	DPW5630-35N	DPW5740-45N	DPW5845-50N	DPW5945-50N	DPW6045-50N	DPW6145-50N	DPW6245-50N	DPW6345-50N	DPWA445-50N	DPWB545-50N	DPWB750-55N	DPWOS0146-50N	
			Depth	37 - 42 ft	38 - 42 ft	38 - 42 ft	30 - 35 ft	40 - 45 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	50 - 55 ft	46 - 50 ft	46 - 50 ft
			Sample Date	6/5/2013	2/2/2017	2/2/2017	2/3/2017	2/3/2017	2/6/2017	2/3/2017	2/6/2017	2/6/2017	2/6/2017	2/6/2017	4/18/2014	4/18/2014	4/18/2014	8/24/2017	8/24/2017
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																	
		Screening																	
Analyte	Unit	Criteria																	
Diesel Range Organics (C10-C20)	ug/l	100		380 J															
Dil Range Organics (C20-C36)	ug/l	6000		350 J															
Gasoline Range Organics (C6-C10)	ug/l	3.3		< 100 U < 1.0 U	44011	44011	< 1.0 U	44011	< 2.0 U	44011	44011	- 4 O I I	< 1.0 U	44011				< 1.0 U	44011
1,1,1-Trichloroethane	ug/l	200			< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane	ug/l ug/l	0.076 1000	-	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U < 1.0 UJ	< 1.0 UJ	< 1.0 UJ				< 1.0 U	< 1.0 U
1,1,2-Trichloroethane	ug/l	5	+	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	2.8		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
1,1-Dichloroethene	ug/l	7	-	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1	< 1	< 1	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene	ug/l	0.7	-	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ				< 1.0 U	< 1.0 U
1,2,4-Trichlorobenzene	ug/l	70		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane	ug/l	0.2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
l,2-Dibromoethane	ug/l	0.05		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
1,2-Dichlorobenzene	ug/l	600		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
1,2-Dichloropropane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
1,3-Dichlorobenzene	ug/l	0.48		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
1,4-Dioxane	ug/l	0.46		< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	R	< 200 U	R	R	R	R				< 200 U	< 200 U
2-Butanone	ug/l	560		0.68 J	3.0 J	< 5.0 U	< 5.0 U	< 5.0 U	< 10 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U				< 5.0 U	< 5.0 U
2-Hexanone	ug/l	3.8		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 10 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U				< 5.0 U	< 5.0 U
4-Methyl-2-pentanone	ug/l	630		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 10 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U				< 5.0 U	< 5.0 U
Acetone	ug/l	1400		5.2	16	3.9 J	5.0	9.2 J+	< 10 U	3.5 J	< 5.0 U	< 5.0 U	< 5.0 U	4.5 J				4.0 J	< 5.0 U
Benzene	ug/l	5	-	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.21 J	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Bromochloromethane	ug/l	8.3		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Bromodichloromethane Bromoform	ug/l ug/l	80 80		< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Bromomethane	ug/l	0.75	+	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	× 2.0 U	< 1.0 U	7 1.0 U	× 1.0 0	× 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Butyl alcohol, tert-	ug/l	14		V 1.0 0	< 40 U	< 40 U	< 40 U	4.4 J	62 J	< 40 U	< 40 U	5.6 J	< 40 U	< 40 U				< 40 U	< 40 U
Carbon Disulfide	ug/l	81	+	0.31 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	0.68 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				1.0	< 1.0 U
Carbon Tetrachloride	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Chlorobenzene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Chloroethane	ug/l	2100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Chloroform	ug/l	80		2.9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Chloromethane	ug/l	19		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.72 J	< 2.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene	ug/l	70		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.3	1.5 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1	< 1	< 1	< 1.0 U	< 1.0 U
cis-1,3-Dichloropropene	ug/l	0.47		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Cyclohexane	ug/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Dibromochloromethane	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Dichlorodifluoromethane	ug/l	20		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Diisopropyl ether	ug/l	150		~ 1 O I I	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.55 J	< 1.0 U	2.3 J	1.2 J	< 1.0 UJ	< 1.0 UJ				< 1.0 U	< 1.0 U
Ethylbenzene	ug/l	700		< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether sopropylbenzene	ug/l ug/l	45	-	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
m, p-Xylene	ug/l	10000		< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.17 J	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Methyl Acetate	ug/l	2000		< 1.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 10 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U				< 5.0 U	< 5.0 U
Methyl tert-Butyl Ether (MTBE)	ug/l	14		< 1.0 U	1.4	< 1.0 U	0.71 J	7.0	57	2.1	650	300	0.72 J	0.20 J				< 1.0 U	0.24 J
Methylcyclohexane	ug/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
p-Xylene	ug/l	10000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Styrene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
ertiary-Amyl Methyl Ether	ug/l	41			< 1.0 U	< 1.0 U	< 1.0 U	0.32 J	2.2 J	< 1.0 U	12 J	12	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
etrachloroethylene	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.25 J	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.5	8.1	< 1	< 1.0 U	< 1.0 U
oluene	ug/l	1000		0.33 J	0.43 J	0.17 J	< 1.0 U	0.41 J	< 2.0 U	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	0.19 J				< 1.0 U	< 1.0 U
rans-1,2-Dichloroethene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1	< 1	< 1	< 1.0 U	< 1.0 U
rans-1,3-Dichloropropene	ug/l	0.47		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U
Trichloroethene	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.24 J	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1	3.1	< 1	< 1.0 U	< 1.0 U
richlorofluoromethane	ug/l	520		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U				< 1.0 U	< 1.0 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE

				5546	DD54	2255	DD50	2257	DD50	DD50	D.D.C.	D DOG	D.D.O.	5500	DD4.4	5555	2227	DD00.04	
			Location ID	DP46	DP54 DPW5438-42N	DP55 DPW5538-42N	DP56 DPW5630-35N	DP57 DPW5740-45N	DP58 DPW5845-50N	DP59 DPW5945-50N	DP60 DPW6045-50N	DP01	DP62 DPW6245-50N	DP63 DPW6345-50N	DPA4 DPWA445-50N	DPB5 DPWB545-50N	DPB7 DPWB750-55N	DPOS-01	DPOS-02 DPWOS0246-50N
			Depth	37 - 42 ft	38 - 42 ft	38 - 42 ft	30 - 35 ft	40 - 45 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	50 - 55 ft	46 - 50 ft	46 - 50 ft
			Sample Date	6/5/2013	2/2/2017	2/2/2017	2/3/2017	2/3/2017	2/6/2017	2/3/2017	2/6/2017	2/6/2017	2/6/2017	2/6/2017	4/18/2014	4/18/2014	4/18/2014	8/24/2017	8/24/2017
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																	1
Analyte	Unit	Screening Criteria																	1
Vinyl Chloride	ug/l	2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1	< 1	< 1	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	10000		< 2.0 U	< 1 U	< 1 U	< 1 U	0.17	< 2 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U				< 1 U	< 1 U
1,1'-Biphenyl	ug/l	0.083																	
1,2,4,5-Tetrachlorobenzene	ug/l	0.17																	
2,2'-oxybis(1-Chloropropane)	ug/l	71																	
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	ug/l ug/l	24 120																	
2,4,6-Trichlorophenol	ug/l	1.2																	
2,4-Dichlorophenol	ug/l	4.6																	
2,4-Dimethylphenol	ug/l	36																	
2,4-Dinitrophenol	ug/l	3.9																	
2,4-Dinitrotoluene	ug/l	0.24																	
2,6-Dinitrotoluene	ug/l	0.049													1				
2-Chloronaphthalene 2-Chlorophenol	ug/l ug/l	75 9.1										+			 				
2-Methylnaphthalene	ug/l	3.6	 									 							
2-Methylphenol	ug/l	93																	
2-Nitroaniline	ug/l	19																	
2-Nitrophenol	ug/l	580																	
3,3'-Dichlorobenzidine	ug/l	0.13																	
3-Nitroaniline	ug/l	3.8																	
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	ug/l ug/l	0.15	+																
4-Chloro-3-methylphenol	ug/l	140																	
4-Chloroaniline	ug/l	0.37																	
4-Chlorophenyl-phenylether	ug/l																		
4-Methylphenol	ug/l	190																	
4-Nitroaniline	ug/l	3.8																	<u> </u>
4-Nitrophenol Acenaphthene	ug/l	580 53		< 0.19 U															
Acenaphthylene	ug/l ug/l	53		< 0.19 U															
Acetophenone	ug/l	190		0.100															
Anthracene	ug/l	180		0.066 J															
Atrazine	ug/l	3																	
Benzaldehyde	ug/l	19																	<u> </u>
Benzo(a)anthracene	ug/l	0.03		0.11 J < 0.19 U															
Benzo(a)pyrene Benzo(b)fluoranthene	ug/l ug/l	0.2		0.061 J											1				1
Benzo(g,h,i)perylene	ug/l	12		< 0.19 U								1			1				
Benzo(k)fluoranthene	ug/l	2.5		< 0.19 U															
bis-(2-chloroethoxy)methane	ug/l	5.9																·	
bis-(2-Chloroethyl)ether	ug/l	0.014										 	ļ		ļ				ļ
bis-(2-Ethylhexyl)phthalate	ug/l	6													1				
Butylbenzylphthalate	ug/l	16																	1
Caprolactam	ug/l	990	 									 			1				
Carbazole	ug/l	29																	
Chrysene	ug/l	25		0.13 J															
												1			ļ				
Dibenzo(a,h)anthracene	ug/l	0.025		< 0.19 U								-							
Dibenzofuran Diethylphthalate	ug/l ug/l	0.79 1500										-							
Dimethylphthalate	ug/l	1500										1			1				
Di-n-butylphthalate	ug/l	90																	
Di-n-octylphthalate	ug/l	20										1							
Fluoranthene	ug/l	80		0.23															
Fluorene	ug/l	29		< 0.19 U															
Hexachlorobenzene	ug/l	1													<u> </u>				

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project

			Location ID	DP46	DP54	DP55	DP56	DP57	DP58	DP59	DP60	DP61	DP62	DP63	DPA4	DPB5	DPB7	DPOS-01	DPOS-02
				_	-								_			_			
				DPW4637-42N		DPW5538-42N	DPW5630-35N			DPW5945-50N		DPW6145-50N		DPW6345-50N					DPWOS0246-50N
			Depth	37 - 42 ft	38 - 42 ft	38 - 42 ft	30 - 35 ft	40 - 45 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	50 - 55 ft	46 - 50 ft	46 - 50 ft
			Sample Date		2/2/2017	2/2/2017	2/3/2017	2/3/2017	2/6/2017	2/3/2017	2/6/2017	2/6/2017	2/6/2017	2/6/2017	4/18/2014	4/18/2014	4/18/2014	8/24/2017	8/24/2017
			Туре	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
1		Project																	ı
		Screening																	ı
Analyte	Unit	Criteria																	<u> </u>
Hexachlorobutadiene	ug/l	0.14																	ı
Hexachlorocyclo-pentadiene	ug/l	50																	ı
Hexachloroethane	ug/l	0.33																	İ
Indeno(1,2,3-cd)pyrene	ug/l	0.25		< 0.19 U															1
Isophorone	ug/l	78																	·
Naphthalene	ug/l	0.17		0.051 J															·
Nitrobenzene	ug/l	0.14																	·
N-Nitroso-di-n-propylamine	ug/l	0.011																	i
N-Nitrosodiphenylamine	ug/l	12																	
Pentachlorophenol	ug/l	1																	i
Phenanthrene	ug/l	180		0.27															i
Phenol	ug/l	580																	
Pyrene	ug/l	12		0.23															
BaP-TE	ug/l	0.2		0.0172															
Total High-molecular-weight PAHs	ug/l			0.76															
Total Low-molecular-weight PAHs	ug/l			0.39															
Total PAHs (sum 16)	ug/l			1.1															

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project

							1						1			T	,
			Location ID	DPOS-02	DPOS-03	SUSDP03	SUSDP07	SUSDP08	SUSDP09	SUSDP13	SUSDP13	SUSDP19	SUSDP24	SUSDP41	SUSDP52	TA19A1	TA19A2
			Sample ID	DPWOS0246-50R		DPW0347-52N	DPW0743-48N	DPW08 34-39N	DPW0945-50N	DPW1345-50N	DPW1345-50R	DPW191944.5-49.5N	DPW2448.5-53.5N	DPW41 39-44N	DPW5245-50N		DPWTA19A245-50N
			Depth	46 - 50 ft	46 - 50 ft	47 - 52 ft	43 - 48 ft	34 - 39 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	44.5 - 49.5 ft	48.5 - 53.5 ft	39 - 44 ft	45 - 50 ft	44 - 49 ft	45 - 50 ft
			Sample Date	8/24/2017	8/21/2017	5/22/2013	5/22/2013	5/24/2013	6/11/2013	5/29/2013	5/29/2013	6/5/2013	6/4/2013	5/24/2013	2/3/2017	3/20/2017	3/20/2017
		T	Туре	FD	N	N	N	N	N	N	FD	N	N	N	N	N	N
		Project															
Analyte	Unit	Screening Criteria															
Diesel Range Organics (C10-C20)	ug/l	100				< 480 U	< 480 U	< 500 U	< 480 U	< 510 U	< 500 U	260 J	< 480 UJ	< 480 U			
Oil Range Organics (C20-C36)	ug/l	6000				< 480 U	< 480 U	< 500 U	580	< 510 U	< 500 U	440 J	< 480 UJ	< 480 U			
Gasoline Range Organics (C6-C10)	ug/l	3.3				< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U			
1,1,1-Trichloroethane	ug/l	200		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,1,2,2-Tetrachloroethane	ug/l	0.076		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	1000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,1,2-Trichloroethane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,1-Dichloroethane	ug/l	2.8		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,1-Dichloroethene	ug/l	7		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,2,3-Trichlorobenzene	ug/l	0.7		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,2,4-Trichlorobenzene	ug/l	70		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,2-Dibromo-3-chloropropane	ug/l	0.2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,2-Dibromoethane	ug/l	0.05		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,2-Dichlorobenzene	ug/l	600		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,2-Dichloroethane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,2-Dichloropropane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,3-Dichlorobenzene	ug/l	0.48		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,4-Dichlorobenzene	ug/l	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
1,4-Dioxane	ug/l	0.46		< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	R	R
2-Butanone	ug/l	560		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	0.73 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	R	R
2-Hexanone	ug/l	3.8		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	R	R
4-Methyl-2-pentanone	ug/l	630		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	R	R
Acetone	ug/l	1400		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	3.4 J	2.8 J	3.5 J	2.8 J	4.1 J	2.8 J	2.7 J	6.1	< 5.0 UJ	5.2 J
Benzene	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.11 J	< 1.0 U	< 1.0 U	R	R
Bromochloromethane	ug/l	8.3		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
Bromodichloromethane	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
Bromoform	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
Bromomethane	ug/l	0.75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
Butyl alcohol, tert-	ug/l	14		< 40 U	< 40 U					4.0				. 4 0 11	< 40 U	R	R
Carbon Disulfide	ug/l	81		0.60 J	< 1.0 U	< 1.0 U	< 1.0 U	1.8	< 1.0 U	1.2	1.4	< 1.0 U	0.33 J	< 1.0 U	< 1.0 U	R	1.1 J
Carbon Tetrachloride	ug/l	5 100		< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	R R	R R
Chlorosthana	ug/l ug/l	2100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R R	R R
Chloroethane Chloroform	ug/l	80		< 1.0 U	< 1.0 U	1.7	1.4	2.3	< 1.0 U	3.5	3.4	3.8	1.9	3.5	< 1.0 U	R	R
Chloromethane	ug/l	19		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
cis-1,2-Dichloroethylene	ug/l	70		< 1.0 U	0.78 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	3.2	< 1.0 U	< 1.0 U	0.35 J	8.6 J	6.3 J
cis-1,3-Dichloropropene	ug/l	0.47		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
Cyclohexane	ug/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
Dibromochloromethane	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
Dichlorodifluoromethane	ug/l	20		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
Diisopropyl ether	ug/l	150		< 1.0 U	1.3										0.81 J	3.6 J	3.7 J
Ethylbenzene	ug/l	700		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
Ethyl-Tert-Butyl-Ether	ug/l			< 1.0 U	< 1.0 U	<u> </u>									< 1.0 U	R	R
Isopropylbenzene	ug/l	45		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
m, p-Xylene	ug/l	10000		< 1.0 U	< 1.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 1.0 U	R	R
Methyl Acetate	ug/l	2000		< 5.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U	R	R
Methyl tert-Butyl Ether (MTBE)	ug/l	14		0.21 J	1100	< 1.0 U	< 1.0 U	< 1.0 U	5.4	< 1.0 U	< 1.0 U	0.60 J	1.2	< 1.0 U	250	2.2 J	2.1 J
Methylcyclohexane	ug/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
Methylene Chloride	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.26 J	0.22 J	< 1.0 U	0.27 J	< 1.0 U	< 1.0 U	R	R
-Xylene	ug/l	10000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.14 J	< 1.0 U	< 1.0 U	R	R
Styrene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
ertiary-Amyl Methyl Ether	ug/l	41		< 1.0 U	26										10	R	R
etrachloroethylene	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.88 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.59 J	33 J	49 J
Toluene	ug/l	1000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.30 J	< 1.0 U	0.21 J	0.21 J	0.42 J	0.88 J	0.38 J	0.17 J	0.17 J	0.30 J
trans-1,2-Dichloroethene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
trans-1,3-Dichloropropene	ug/l	0.47		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R
Trichloroethene	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.27 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	42 J	20 J
Trichlorofluoromethane	ug/l	520		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	R

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

									J	ni, DC 20019							
			Location ID	DPOS-02	DPOS-03	SUSDP03	SUSDP07	SUSDP08	SUSDP09	SUSDP13	SUSDP13	SUSDP19	SUSDP24	SUSDP41	SUSDP52	TA19A1	TA19A2
			Sample ID	DPWOS0246-50R		DPW0347-52N	DPW0743-48N	DPW08 34-39N	DPW0945-50N		DPW1345-50R	DPW191944.5-49.5N	DPW2448.5-53.5N	DPW41 39-44N		DPWTA19A144-49N	
			Depth	46 - 50 ft	46 - 50 ft	47 - 52 ft	43 - 48 ft	34 - 39 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	44.5 - 49.5 ft	48.5 - 53.5 ft	39 - 44 ft	45 - 50 ft	44 - 49 ft	45 - 50 ft
			Sample Date	8/24/2017	8/21/2017	5/22/2013	5/22/2013	5/24/2013	6/11/2013	5/29/2013	5/29/2013	6/5/2013	6/4/2013	5/24/2013	2/3/2017	3/20/2017	3/20/2017
			Туре	FD	N	N	N	N	N	N	FD	N	N	N	N	N	N
		Project															
		Screening															
Analyte	Unit	Criteria															
Vinyl Chloride	ug/l	2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.68 J	< 1.0 U	< 1.0 U	< 1.0 U	0.24 J	R
Xylenes (total)	ug/l	10000		< 1 U	< 1 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	0.14	< 2.0 U	< 1 U		
1,1'-Biphenyl	ug/l	0.083															
1,2,4,5-Tetrachlorobenzene	ug/l	0.17															
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol	ug/l	71 24															
2,4,5-Trichlorophenol	ug/l ug/l	120															
2,4,6-Trichlorophenol	ug/l	1.2															
2,4-Dichlorophenol	ug/l	4.6															
2,4-Dimethylphenol	ug/l	36															
2,4-Dinitrophenol	ug/l	3.9															
2,4-Dinitrotoluene	ug/l	0.24	1														
2,6-Dinitrotoluene	ug/l	0.049															
2-Chloronaphthalene	ug/l	75															
2-Chlorophenol	ug/l	9.1															-
2-Methylnaphthalene	ug/l	3.6		-					<u></u>								
2-Methylphenol	ug/l	93															
2-Nitroaniline	ug/l	19															
2-Nitrophenol	ug/l	580															
3,3'-Dichlorobenzidine	ug/l	0.13															
3-Nitroaniline 4,6-Dinitro-2-methylphenol	ug/l ug/l	3.8 0.15															
4-Bromophenyl-phenylether	ug/l	0.13															
4-Chloro-3-methylphenol	ug/l	140															
4-Chloroaniline	ug/l	0.37															
4-Chlorophenyl-phenylether	ug/l																
4-Methylphenol	ug/l	190															
4-Nitroaniline	ug/l	3.8															
4-Nitrophenol	ug/l	580															
Acenaphthene	ug/l	53				< 0.19 U	0.055 J	0.10 J	< 0.19 U	< 0.21 U	< 0.19 U	0.071 J	< 0.19 U	0.022 J			
Acenaphthylene	ug/l	53				< 0.19 U	< 0.19 U	< 0.21 U	< 0.19 U	< 0.21 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U			
Acetophenone	ug/l	190				0.40.11	2242.1	0.070.1	0.40.11		. 0.4011		2 222 1				
Anthracene	ug/l	180				< 0.19 U	0.048 J	0.079 J	< 0.19 U	< 0.21 U	< 0.19 U	0.077 J	0.020 J	0.017 J			
Atrazine	ug/l	3 19															
Benzaldehyde Benzo(a)anthracene	ug/l ug/l	0.03				< 0.19 U	< 0.19 U	0.084 J	< 0.19 U	0.039 J	< 0.19 U	0.13 J	0.064 J	< 0.19 U			
Benzo(a)pyrene	ug/l	0.03				< 0.19 U	< 0.19 U	< 0.21 U	< 0.19 U	< 0.21 U	< 0.19 U	0.072 J	< 0.19 U	< 0.19 U			
Benzo(a)pyrene Benzo(b)fluoranthene	ug/l	0.25				< 0.19 U	< 0.19 U	0.098 J	< 0.19 U	< 0.21 U	< 0.19 U	0.072 J	< 0.19 U	< 0.19 U			
Benzo(g,h,i)perylene	ug/l	12				< 0.19 U	< 0.19 U	< 0.21 U	< 0.19 U	< 0.21 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U			
Benzo(k)fluoranthene	ug/l	2.5				< 0.19 U	< 0.19 U	0.058 J	< 0.19 U	< 0.21 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U			
bis-(2-chloroethoxy)methane	ug/l	5.9															
bis-(2-Chloroethyl)ether	ug/l	0.014															
bis-(2-Ethylhexyl)phthalate	ug/l	6															
Butylbenzylphthalate	ug/l	16							<u></u>					<u></u>			
Caprolactam	ug/l	990															
Carbazole	ug/l	29						0.10	.0.10	0.005 :	. 0 . 10	244:	0.40.7	. 0 . 10			
Chrysene	ug/l	25				< 0.19 U	< 0.19 U	0.10 J	< 0.19 U	0.025 J	< 0.19 U	0.14 J	0.12 J	< 0.19 U			
Dihanza(a h)arthur	, D	0.005				~ 0.40 LL	Z 0 40 LL	Z 0 04 11	< 0.40 LL	Z 0 04 11	Z 0 40 L1	Z 0 00 11	Z 0 40 LL	~ 0.40 LL			
Dibenzo(a,h)anthracene Dibenzofuran	ug/l	0.025 0.79				< 0.19 U	< 0.19 U	< 0.21 U	< 0.19 U	< 0.21 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U			
Dibenzofuran Diethylphthalate	ug/l ug/l	1500	 														
Dimethylphthalate	ug/l	1500															
Di-n-butylphthalate	ug/l	90															
Di-n-octylphthalate	ug/l	20															
Fluoranthene	ug/l	80				0.069 J	0.31	0.28	< 0.19 U	0.061 J	0.079 J	0.34	0.53	0.097 J			
Fluorene	ug/l	29				< 0.19 U	< 0.19 U	0.060 J	< 0.19 U	< 0.21 U	< 0.19 U	< 0.20 U	0.022 J	< 0.19 U			
Hexachlorobenzene	ug/l	1															

Benning Road Facilty RI Report

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples

			Location ID	DPOS-02	DPOS-03	SUSDP03	SUSDP07	SUSDP08	SUSDP09	SUSDP13	SUSDP13	SUSDP19	SUSDP24	SUSDP41	SUSDP52	TA19A1	TA19A2
					DPWOS0346-50N		-	DPW08 34-39N	DPW0945-50N		DPW1345-50R	DPW191944.5-49.5N				DPWTA19A144-49N	-
			Depth	46 - 50 ft	46 - 50 ft	47 - 52 ft	43 - 48 ft	34 - 39 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	44.5 - 49.5 ft	48.5 - 53.5 ft	39 - 44 ft	45 - 50 ft	44 - 49 ft	45 - 50 ft
			Sample Date	8/24/2017	8/21/2017	5/22/2013	5/22/2013	5/24/2013	6/11/2013	5/29/2013	5/29/2013	6/5/2013	6/4/2013	5/24/2013	2/3/2017	3/20/2017	3/20/2017
			Туре	FD	N	N	N	N	N	N	FD	N	N	N	N	N	N
		Project															
		Screening															
Analyte	Unit	Criteria															
Hexachlorobutadiene	ug/l	0.14															
Hexachlorocyclo-pentadiene	ug/l	50															
Hexachloroethane	ug/l	0.33															
Indeno(1,2,3-cd)pyrene	ug/l	0.25				< 0.19 U	< 0.19 U	< 0.21 U	< 0.19 U	< 0.21 U	< 0.19 U	< 0.20 U	< 0.19 U	< 0.19 U			
Isophorone	ug/l	78															
Naphthalene	ug/l	0.17				< 0.19 U	< 0.19 U	0.14 J	< 0.19 U	< 0.21 U	< 0.19 U	0.055 J	0.086 J	0.11 J			
Nitrobenzene	ug/l	0.14															
N-Nitroso-di-n-propylamine	ug/l	0.011															
N-Nitrosodiphenylamine	ug/l	12															
Pentachlorophenol	ug/l	1															
Phenanthrene	ug/l	180				0.11 J	0.43	0.34	< 0.19 U	< 0.21 U	0.086 J	0.34	0.40	0.13 J			
Phenol	ug/l	580															
Pyrene	ug/l	12				< 0.19 U	0.23	0.17 J	< 0.19 U	0.045 J	0.058 J	0.35	0.39	0.071 J			
BaP-TE	ug/l	0.2				< 0.190 U	< 0.190 U	0.0189	< 0.190 U	0.00393	< 0.190 U	0.0949	0.00652	< 0.190 U			
Total High-molecular-weight PAHs	ug/l					0.069	0.54	0.79	< 0.19 U	0.17	0.14	1.1	1.1	0.17			
Total Low-molecular-weight PAHs	ug/l					0.11	0.53	0.72	< 0.19 U	< 0.21 U	0.086	0.54	0.53	0.28			
Total PAHs (sum 16)	ug/l					0.18	1.1	1.5	< 0.19 U	0.17	0.22	1.7	1.6	0.45			

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

								wasnington, i				
			Location ID	TA19A3	TA19B3	TA19C1	TA19C2	TA19C3	TA19D1	TA19D3	TA19E1	TA19E2
			Sample ID	DPWTA19A345-50N	DPWTA19B345-50N	DPWTA19C145-50N	DPWTA19C245-50N	DPWTA19C345-50N	DPWTA19D145-50N	DPWTA19D345-50N	DPWTA19E145-50N	DPWTA19E245-50N
			Depth	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft
			Sample Date	3/20/2017	2/7/2017	2/8/2017	2/7/2017	2/7/2017	3/3/2017	3/8/2017	2/7/2017	2/7/2017
			Туре	N	N	N	N	N	N	N	N	N
		Project										
Amalista	Unit	Screening										
Analyte		Criteria 100										
esel Range Organics (C10-C20) Il Range Organics (C20-C36)	ug/l ug/l	6000										
asoline Range Organics (C6-C10)	ug/l	3.3										
1,1-Trichloroethane	ug/l	200		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
1,2,2-Tetrachloroethane	ug/l	0.076		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
1.2-Trichloro-1.2.2-trifluoroethane	ug/l	1000		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
1,2-Trichloroethane	ug/l	5		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
1-Dichloroethane	ug/l	2.8		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
1-Dichloroethene	ug/l	7		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
2,3-Trichlorobenzene	ug/l	0.7		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
2,4-Trichlorobenzene	ug/l	70		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
2-Dibromo-3-chloropropane	ug/l	0.2		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
2-Dibromoethane	ug/l	0.05		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
2-Dichlorobenzene	ug/l	600		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
2-Dichloroethane	ug/l	5		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
2-Dichloropropane	ug/l	5		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
3-Dichlorobenzene	ug/l	0.48		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
4-Dichlorobenzene	ug/l	75		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
4-Dioxane	ug/l	0.46		< 600 U	< 400 U	R	< 200 U	< 200 U	< 200 U	< 200 U	R	< 200 U
Butanone	ug/l	560		< 15 U	< 10 U	R	2.7 J	< 5.0 U	< 5.0 U	< 5.0 U	R	< 5.0 U
Hexanone	ug/l	3.8		< 15 U	< 10 U	R	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	R	< 5.0 U
Methyl-2-pentanone	ug/l	630		< 15 U	< 10 U	R	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	R	< 5.0 U
cetone	ug/l	1400		< 15 U	< 10 U	11 J	15	< 5.0 U	5.3	5.6	6.5 J	3.3 J
enzene	ug/l	5		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
romochloromethane	ug/l	8.3		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
romodichloromethane	ug/l	80		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
romoform	ug/l	80		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
romomethane	ug/l	0.75		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
utyl alcohol, tert-	ug/l	14		< 120 U	< 80 U*	R	< 40 U	< 40 U	< 40 U	< 40 U	R	< 40 U
arbon Disulfide	ug/l	81		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
arbon Tetrachloride	ug/l	5		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
hlorobenzene	ug/l	100 2100		< 3.0 U < 3.0 U	< 2.0 U < 2.0 U	R R	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	R	< 1.0 U < 1.0 U
hloroethane hloroform	ug/l	80		< 3.0 U	< 2.0 U	R R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.30 J	< 1.0 U
hloromethane	ug/l ug/l	19		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.30 J R	< 1.0 U
s-1,2-Dichloroethylene	ug/l	70		1.7 J	3.6	1.8 J	0.53 J	3.4	< 1.0 U	< 1.0 U	R	< 1.0 U
s-1,3-Dichloropropene	ug/l	0.47		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
yclohexane	ug/l	1300		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
ibromochloromethane	ug/l	80		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
ichlorodifluoromethane	ug/l	20		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
iisopropyl ether	ug/l	150		5.6	0.46 J	0.36 J	< 1.0 U	0.18 J	< 1.0 U	< 1.0 U	R	< 1.0 U
thylbenzene	ug/l	700		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
hyl-Tert-Butyl-Ether	ug/l		1	< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
opropylbenzene	ug/l	45	İ	< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
, p-Xylene	ug/l	10000		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	0.35 J	R	< 1.0 U
ethyl Acetate	ug/l	2000		< 15 U	< 10 U	R	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	R	< 5.0 U
ethyl tert-Butyl Ether (MTBE)	ug/l	14		1.5 J	1.9 J	1.3 J	0.44 J	1.5	0.74 J	0.40 J	R	0.83 J
ethylcyclohexane	ug/l	1300		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
thylene Chloride	ug/l	5		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
Kylene	ug/l	10000		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
rene	ug/l	100		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
rtiary-Amyl Methyl Ether	ug/l	41		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
trachloroethylene	ug/l	5		68	7.1	8.7 J	0.68 J	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
luene	ug/l	1000		< 3.0 U	< 2.0 U	0.26 J	0.23 J	0.25 J	< 1.0 U	0.46 J	R	0.37 J
ns-1,2-Dichloroethene	ug/l	100		< 3.0 U	< 2.0 U	R	< 1.0 U	0.52 J	< 1.0 U	< 1.0 U	R	< 1.0 U
ns-1,3-Dichloropropene	ug/l	0.47		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
ichloroethene	ug/l	5		6.2	51	18 J	2.5	29	< 1.0 U	< 1.0 U	R	< 1.0 U
richlorofluoromethane	ug/l	520		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID Sample ID		TA19B3 DPWTA19B345-50N	TA19C1 DPWTA19C145-50N	TA19C2 DPWTA19C245-50N	TA19C3 DPWTA19C345-50N	TA19D1 DPWTA19D145-50N	TA19D3 DPWTA19D345-50N	TA19E1 DPWTA19E145-50N	TA19E2 DPWTA19E245-50N
			Depth Sample Date	45 - 50 ft 3/20/2017	45 - 50 ft 2/7/2017	45 - 50 ft 2/8/2017	45 - 50 ft 2/7/2017	45 - 50 ft 2/7/2017	45 - 50 ft 3/3/2017	45 - 50 ft 3/8/2017	45 - 50 ft 2/7/2017	45 - 50 ft 2/7/2017
		Project	Туре	N	N	N	N	N	N	N	N	N
Analyte	Unit	Screening Criteria										
Vinyl Chloride	ug/l	2		< 3.0 U	< 2.0 U	R	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	R	< 1.0 U
Xylenes (total)	ug/l	10000		< 3 U	< 2 U		< 1 U	< 1 U	< 1 U	0.35		< 1 U
1,1'-Biphenyl	ug/l	0.083										
1,2,4,5-Tetrachlorobenzene	ug/l	0.17										
2,2'-oxybis(1-Chloropropane)	ug/l	71										
2,3,4,6-Tetrachlorophenol	ug/l	24										
2,4,5-Trichlorophenol	ug/l	120										
2,4,6-Trichlorophenol	ug/l	1.2										
2,4-Dichlorophenol	ug/l	4.6 36										
2,4-Dimethylphenol 2,4-Dinitrophenol	ug/l ug/l	3.9										
2,4-Dinitrotoluene	ug/l	0.24										
2,6-Dinitrotoluene	ug/l	0.049										
2-Chloronaphthalene	ug/l	75										
2-Chlorophenol	ug/l	9.1										
2-Methylnaphthalene	ug/l	3.6										
2-Methylphenol	ug/l	93										
2-Nitroaniline	ug/l	19										
2-Nitrophenol	ug/l	580										
3,3'-Dichlorobenzidine	ug/l	0.13										
3-Nitroaniline	ug/l	3.8										
4,6-Dinitro-2-methylphenol	ug/l	0.15										
4-Bromophenyl-phenylether	ug/l											
4-Chloro-3-methylphenol	ug/l	140										
4-Chloroaniline	ug/l	0.37										
4-Chlorophenyl-phenylether 4-Methylphenol	ug/l ug/l	190										
4-Nitroaniline	ug/l	3.8										
4-Nitrophenol	ug/l	580										
Acenaphthene	ug/l	53										
Acenaphthylene	ug/l	53										
Acetophenone	ug/l	190										
Anthracene	ug/l	180										
Atrazine	ug/l	3										
Benzaldehyde	ug/l	19										
Benzo(a)anthracene	ug/l	0.03										
Benzo(a)pyrene	ug/l	0.2										
Benzo(b)fluoranthene	ug/l	0.25										
Benzo(g,h,i)perylene	ug/l	12										
Benzo(k)fluoranthene bis-(2-chloroethoxy)methane	ug/l ug/l	2.5 5.9										
bis-(2-Chloroethyl)ether	ug/I ug/I	0.014										
bis-(2-Ethylhexyl)phthalate	ug/l	6										
Butylbenzylphthalate	ug/l	16										
Caprolactam	ug/l	990										
Carbazole	ug/l	29										
Chrysene	ug/l	25										
Dibenzo(a,h)anthracene	ug/l	0.025										
Dibenzofuran	ug/l	0.79					-					
Diethylphthalate	ug/l	1500										
Dimethylphthalate	ug/l	1500										
Di-n-butylphthalate	ug/l	90										
Di-n-octylphthalate	ug/l	20										
Fluoranthene	ug/l	80										
Fluorene	ug/l	29										
Hexachlorobenzene	ug/l	1										

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road. NE

3400 Benning Road, NE Washington, DC 20019

				T. 40.40	TA 40D0	T14004	T11000	TA 4000	TA 40D 4	T140D0	T140F4	T1.10F0
			Location ID		TA19B3	TA19C1	TA19C2	TA19C3	TA19D1	TA19D3	TA19E1	TA19E2
				DPWTA19A345-50N								
			Depth	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft	45 - 50 ft
			Sample Date	3/20/2017	2/7/2017	2/8/2017	2/7/2017	2/7/2017	3/3/2017	3/8/2017	2/7/2017	2/7/2017
			Туре	N	N	N	N	N	N	N	N	N
		Project										
		Screening										
Analyte	Unit	Criteria										
Hexachlorobutadiene	ug/l	0.14										
Hexachlorocyclo-pentadiene	ug/l	50										
Hexachloroethane	ug/l	0.33										
Indeno(1,2,3-cd)pyrene	ug/l	0.25										
Isophorone	ug/l	78										
Naphthalene	ug/l	0.17										
Nitrobenzene	ug/l	0.14										
N-Nitroso-di-n-propylamine	ug/l	0.011										
N-Nitrosodiphenylamine	ug/l	12										
Pentachlorophenol	ug/l	1										
Phenanthrene	ug/l	180										
Phenol	ug/l	580										
Pyrene	ug/l	12										
BaP-TE	ug/l	0.2										
Total High-molecular-weight PAHs	ug/l						_		_	_		_
Total Low-molecular-weight PAHs	ug/l											
Total PAHs (sum 16)	ug/l						_		_	_		_

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

JN = The analyte was tentatively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ug/l = micrograms per liter

Groundwater Results

PCBs Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

													Location ID	DP27	DP29
													Sample ID	DPW27(48-58)N	DPW29(45-50)N
													Depth	48 - 58 ft	45 - 50 ft
													Sample Date	3/26/2013	4/2/2013
													Туре	N	N
		Project													
		Screening				Max	Min	Mean	Median	Max		Count			
Analyte	Unit	Criteria	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total			
Aroclor-1016	ug/l		SW8082A LL	N	12674-11-2							17		< 0.0095 U	< 0.0095 U
Aroclor-1221	ug/l		SW8082A LL	N	11104-28-2							17		< 0.0095 U	< 0.0095 U
Aroclor-1232	ug/l		SW8082A LL	N	11141-16-5							17		< 0.0095 U	< 0.0095 U
Aroclor-1242	ug/l		SW8082A LL	N	53469-21-9							17		< 0.0095 U	< 0.0095 U
Aroclor-1248	ug/l		SW8082A LL	N	12672-29-6	0.011	0.011	0.011	0.011	DP27	1	17		0.011	< 0.0095 U
Aroclor-1254	ug/l		SW8082A LL	N	11097-69-1	0.039	0.011	0.027	0.029	SUSDP41	4	17		< 0.0095 U	< 0.0095 U
Aroclor-1260	ug/l		SW8082A LL	N	11096-82-5	0.012	0.012	0.012	0.012	DP27	1	17		0.012	< 0.0095 U
Aroclor-1262	ug/l		SW8082A LL	N	37324-23-5							17		< 0.0095 U	< 0.0095 U
Aroclor-1268	ug/l		SW8082A LL	N	11100-14-4							17		< 0.0095 U	< 0.0095 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5	SW8082A LL	N	TOT-PCB-ARO-C	0.039	0.011	0.026	0.027	SUSDP41	5	17		0.023	< 0.0095 U

Groundwater Results

PCBs Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	DP30	DP31	DP32	DP34	DP40	DP46	SUSDP03	SUSDP07	SUSDP08
			Sample ID	DPW30(50-55)N	DPW31(37-42)N	DPW32(38-43)N	DPW3453N	DPW4050-55N	DPW4637-42N	DPW0347-52N	DPW0743-48N	DPW08 34-39N
			Depth	50 - 55 ft	37 - 42 ft	38 - 43 ft	52.5 - 54 ft	50 - 55 ft	37 - 42 ft	47 - 52 ft	43 - 48 ft	34 - 39 ft
			Sample Date	4/3/2013	4/1/2013	4/1/2013	3/29/2013	5/28/2013	6/5/2013	5/22/2013	5/22/2013	5/24/2013
			Туре	N	N	N	N	N	N	N	N	N
		Project										
		Screening										
Analyte	Unit	Criteria										
Aroclor-1016	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U
Aroclor-1221	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U
Aroclor-1232	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U
Aroclor-1242	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U
Aroclor-1248	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U
Aroclor-1254	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	0.011	0.030	0.027
Aroclor-1260	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U
Aroclor-1262	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U
Aroclor-1268	ug/l			< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5		< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	0.011	0.030	0.027

Groundwater Results

PCBs Concentrations in LWZ Direct Push Groundwater Samples Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

		Location ID	SUSDP09	SUSDP13	SUSDP13	SUSDP19	SUSDP24	SUSDP41
		Sample ID	DPW0945-50N	DPW1345-50N	DPW1345-50R	DPW191944.5-49.5N	DPW2448.5-53.5N	DPW41 39-44N
		Depth	45 - 50 ft	45 - 50 ft	45 - 50 ft	44.5 - 49.5 ft	48.5 - 53.5 ft	39 - 44 ft
		Sample Date	6/11/2013	5/29/2013	5/29/2013	6/5/2013	6/4/2013	5/24/2013
		Туре	N	N	FD	N	N	N
Unit	Project Screening Criteria							
ug/l			< 0.0094 U	< 0.0098 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0094 U
ug/l			< 0.0094 U	< 0.0098 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0094 U
ug/l			< 0.0094 U	< 0.0098 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0094 U
ug/l			< 0.0094 U	< 0.0098 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0094 U
ug/l			< 0.0094 U	< 0.0098 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0094 U
ug/l			< 0.0094 U	< 0.0098 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	0.039
ug/l			< 0.0094 U	< 0.0098 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0094 U
ug/l			< 0.0094 U	< 0.0098 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0094 U
ug/l			< 0.0094 U	< 0.0098 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0094 U
ug/l	0.5		< 0.0094 U	< 0.0098 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	0.039
	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	Unit Screening Criteria ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I	Sample ID Depth Sample Date Type Project Screening Criteria ug/I	Sample ID DPW0945-50N 45 - 50 ft 6/11/2013 N	Sample ID DPW0945-50N 45 - 50 ft 45 - 50 ft 5/29/2013 N N	Sample ID DPW0945-50N DPW1345-50R 45 - 50 ft 45 - 50 ft 45 - 50 ft 45 - 50 ft 45 - 50 ft 5/29/2013 5/29/2013 FD	Sample ID DPW0945-50N DPW1345-50N DPW1345-50R DPW191944.5-49.5N Sample Date Sample Date Depth Sample Date Sample Date Depth Sample Date Depth Sample Date Depth Sample Date Depth Sample Date Depth Depth Sample Date Depth Sample Date Depth Depth Sample Date Depth Depth Sample Date Depth	Sample ID

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- JN = The analyte was tentatively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ug/l = micrograms per liter

Groundwater Results

Inorganic Concentrations in UWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

										Lo	cation ID	MW01A	MW02A	MW03A	MW04A	MW05A	MW06A	MW06A	MW07A	MW08A	MW09A	MW10A	MW11A	MW12A	MW13A	MW14A	MW15A
											ample ID	MW01AN	MW02AN	MW03AN	MW04AN	MW05AN	MW06AN	MW06AR	MW07AN	MW08AN	MW09AN	MW10AN	MW11AN	MW12AN	MW13AN	MW14AN	MW15AN
											ple Date	-	11/5/2014	11/4/2014	11/4/2014	11/4/2014	11/4/2014	11/4/2014	11/5/2014	11/10/2014	11/3/2014	11/4/2014	11/4/2014	11/3/2014	11/3/2014	11/3/2014	11/3/2014
										Oum	Туре		N	N	N	N	N	FD	N	N	N	N	N	N	N	N	N
		Project									. , , , ,										.,	.,	.,				
		Screening			Ma	x Min	Mean	Median	Max	Count	Count																
Analyte	Unit	Criteria	Method	Fraction CAS			Detect	Detect	Location	Detect	Total																
Aluminum	ug/l	2000	SW6020A	D 7429-90	-5						16	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U
Antimony	ug/l	6	SW6020A	D 7440-36	-0						16	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Arsenic	ug/l	10	SW6020A		-2	3 0.51	1.4	1.2	MW07A	9	16	< 1.0 U	2.3	1.2	< 1.0 U	< 1.0 U	0.89 J	< 1.0 U	3.0	1.2	0.85 J	1.3	< 1.0 U	< 1.0 U	0.51 J	< 1.0 U	1.5
Barium	ug/l	1000	SW6020A	D 7440-39	-3	420 16	110	70	MW12A	16	16	180	16	92	86	34	75	72	32	58	340	90	38	420	53	43	68
Beryllium	ug/l	4	SW6020A	D 7440-41	-7 0.	043 0.043	0.043	0.043	MW07A	1	16	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 UJ	0.043 J-	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cadmium	ug/l	5	SW6020A	D 7440-43	-9 (0.11	0.11	0.11	MW14A	1	16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.11 J	< 1.0 U
Calcium	ug/l	EN	SW6020A	D 7440-70	-2 240	000 17000	76000	59000	MW12A	16	16	72000	50000	37000	57000	51000	64000	61000	200000	38000	72000	120000	20000	240000	60000	57000	17000
Chromium	ug/l	100	SW6020A	D 7440-47	-3						16	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.4 U	< 2.3 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Cobalt	ug/l	0.6	SW6020A	D 7440-48	-4	30 0.2	8.2	5.3	MW04A	11	16	8.5	< 0.50 U	5.8	30	29	0.20 J+	0.25 J+	0.42 J+	5.3	< 0.85 U	0.27 J+	2.2	< 1.1 U	< 0.50 U	< 1.5 U	8.0
Copper	ug/l	1300	SW6020A		-8						16	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Iron	ug/l	1400	SW6020A	D 7439-89	-6	550 540	550	550	MW09A	2	16	< 50 U	< 50 U	< 50 U	< 50 U	< 77 U	< 50 U	< 50 U	< 50 U	< 50 U	550	< 50 U	< 50 U	< 50 U	< 50 U	< 67 U	540
Lead	ug/l	15	SW6020A	D 7439-92	-1			Ì			16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Magnesium	ug/l	EN	SW6020A	D 7439-95	-4 23	000 4100	13000	13000	MW12A	16	16	11000	5000	4300	15000	8300	21000	19000	10000	7300	18000	16000	4100	23000	14000	15000	9800
Manganese	ug/l	43	SW6020A	D 7439-96	-5 5	000 3.5	1500	700	MW04A	16	16	3800	200	3800	5000	4100	3.5 J+	3.5 J+	140	1300	2000	690	430	1100	580	110	700
Nickel	ug/l	39	SW6020A	D 7440-02	:-0	9.5 0.28	3.2	1.6	MW14A	12	16	0.28 J-	0.41 J	3.0	5.7	8.2	1.1 J-	0.85 J-	0.58 J-	2.0	< 1.0 U	< 1.0 UJ	1.1	< 1.0 U	< 1.0 U	9.5	5.3
Potassium	ug/l	EN	SW6020A	D 7440-09	-7 23	000 2600	8300	6500	MW07A	16	16	6200	7400	5900	6800	7000	6100	6000	23000	6000	12000	8800	4000	17000	8000	5500	2600
Selenium	ug/l	50	SW6020A	D 7782-49	-2	1.2 1.2	1.2	1.2	MW14A	1	16	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	1.2 J	< 5.0 U
Silver	ug/l	50	SW6020A	D 7440-22	-4						16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l	EN	SW6020A	D 7440-23	-5 680	000 14000	140000	98000	MW12A	16	16	100000	96000	42000	160000	54000	210000	200000	65000	26000	190000	99000	14000	680000	250000	52000	35000
Thallium	ug/l	2	SW6020A	D 7440-28	-0 0.	043 0.043	0.043	0.043	A80WM	1	16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.043 J	< 1.0 U						
Vanadium	ug/l	8.6	SW6020A	D 7440-62	-2	6.6 1.8	4.6	4.6	MW06A	10	16	4.7 J+	6.5 J+	4.5 J+	2.6 J	6.3 J+	1.8 J	6.6 J	3.1 J	4.1 J+	< 4.9 U	< 1.0 UJ	5.8 J+	< 5.0 U	< 3.0 U	< 3.4 U	< 1.0 U
Zinc	ug/l	600	SW6020A	D 7440-66	i-6	13 13	13	13	MW15A	1	16	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 7.2 U	< 5.0 U	< 5.1 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 11 U	13
Aluminum	ug/l	2000	SW6020A	T 7429-90	-5 11	000 53	1200	470	MW15A	16	16	730 J+	160 J+	210 J+	500 J+	230 J+	61 J+	53 J+	960 J+	1600	470 J+	1000 J	320 J+	470 J+	660	330 J+	11000
Antimony	ug/l	6	SW6020A	T 7440-36	i-0						16	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 UJ	< 2.0 UJ	< 2.0 UJ	< 2.0 UJ	< 2.0 U	< 20 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Arsenic	ug/l	10	SW6020A	T 7440-38	-2	14 2.3	5.9	6	A80WM	16	16	2.5 J+	3.7 J+	6.1 J+	8.0 J+	6.5 J+	8.3 J+	7.0 J+	7.1 J+	14 J+	4.6 J	5.8 J+	3.4 J+	3.1 J	7.4 J	2.3 J	5.2 J
Barium	ug/l	1000	SW6020A	T 7440-39	-3	560 18	150	79	MW12A	15	16	270	18	98	110	38	79	76	44	< 100 U	400	190	42	560	63	47	230
Beryllium	ug/l	4	SW6020A	T 7440-41	-7	2.6 0.041	0.32	0.064	MW15A	10	16	0.072 J+	< 1.0 U	< 1.0 U	0.041 J	0.055 J	< 1.0 U	< 1.0 U	0.056 J+	< 10 U	0.050 J	0.11 J+	0.048 J	< 1.0 U	0.11 J	0.092 J	2.6
Cadmium	ug/l	5	SW6020A	T 7440-43	-9	6.1 6.1	6.1	6.1	MW15A	1	16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 10 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	6.1
Calcium	ug/l	EN	SW6020A	T 7440-70	-2 240	000 17000	82000	64000	MW12A	16	16	80000	53000	39000	68000	54000	68000	65000	220000	46000	71000	140000	21000	240000	60000	63000	17000
Chromium	ug/l	100	SW6020A		-	38 8.1	18	8.8	MW15A	3	16	< 3.4 U	< 2.0 U	< 4.3 U	< 4.8 U	< 5.6 U	< 7.3 U	8.8 J+	< 2.2 U	< 20 U	< 2.1 U	< 2.9 U	8.1	< 2.0 U	< 3.5 U	< 2.0 U	38
Cobalt	ug/l	0.6	SW6020A	T 7440-48		87 0.29	12	1.6	MW15A	16	16	13	0.74 J+	6.7	33	29	0.29 J+	0.29 J+	1.2 J+	7.9	1.3	1.2 J+	2.6	1.7	0.67	1.4	87
Copper	ug/l	1300	SW6020A			28 28	28	28	MW15A	1	16	< 2.0 U	< 2.0 U	< 3.1 U	< 2.4 U	< 3.5 U	< 2.4 U	< 2.0 U	< 2.3 U	< 20 U	< 2.1 U	< 2.9 U	< 3.2 U	< 2.0 U	< 2.0 U	< 2.0 U	28
Iron	ug/l	1400	SW6020A	T 7439-89	-6 44	000 210	15000	8700	MW01A MW12A	16	16	44000	820	1900	12000	9400	240	210	6900	7900	27000 J	33000	1800	44000 J	17000 J	2600 J	28000 J
Lead	ug/l	15	SW6020A	T 7439-92	-1	15 0.28	2.2	1	MW15A	13	16	1.4 J	< 1.0 U	0.48 J	0.73 J	0.61 J	0.28 J	< 1.0 U	1.8 J	< 10 U	0.59 J	3.0 J	1.0 J	2.6	1.1	0.59 J	15
Magnesium	ug/l	EN	SW6020A			000 3800	13000	13000	MW12A	16	16	12000	5100	3800	17000	7700	21000 J	20000	11000	8600	17000	18000	3800	23000	14000	15000	9700
Manganese	ug/l	43	SW6020A			700 3.6	1700	990	MW04A	16	16	4100	280	3900	5700	4200	3.9 J	3.6 J+	170	1500	2000	870	440	1100	610	81	1600
Nickel	ug/l	39	SW6020A			49 0.52	6.4	2.3	MW15A	15	16	2.3	0.85 J-	4.0	7.9	10	2.0	1.8	2.3	4.1 J	0.52 J	1.6 J-	2.1	< 1.0 U	1.1	5.9	49
Potassium	ug/l	EN	SW6020A			000 3800	8900	7400	MW07A	16	16	7100	7900	6600	8200	7600	6900 J	6600	25000	7200	12000	10000	4600	16000	7900	5700	3800
Selenium	ug/l	50	SW6020A								16	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 50 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Silver	ug/l	50	SW6020A								16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 10 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l	EN	SW6020A	T 7440-23	-5 650	000 16000	150000	110000	MW12A	16	16	110000 J	100000 J	47000 J	190000 J	59000 J	220000 J	210000 J	68000 J	30000	190000	110000 J	16000 J	650000	240000	56000	30000
Thallium	ug/l	2	SW6020A	T 7440-28		0.26 0.024	0.12	0.065	MW15A	3	16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 10 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.024 J	0.065 J	0.26 J
Vanadium	ug/l	8.6	SW6020A	T 7440-62	-2	83 3.1	18	6.6	MW15A	12	16	9.8 J+	3.1 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	5.3 J+	19 J+	52 J+	6.1 J+	13 J	3.6 J+	5.5 J+	7.1 J+	5.5 J+	83 J+
Zinc	ug/l	600	SW6020A	T 7440-66	-6	63 11	37	37	MW15A	2	16	< 6.1 U	< 5.0 U	< 5.0 U	< 5.0 U	11 J+	< 5.0 U	< 5.0 U	< 5.2 U	< 50 U	< 5.0 U	< 6.8 U	< 5.0 U	< 5.0 U	< 6.0 U	< 7.8 U	63
Mercury	ug/l	2	SW7470A	D 7439-97	-6						16	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 UJ	< 0.20 U	< 0.20 U	< 0.20 UJ	< 0.20 UJ	< 0.20 UJ	< 0.20 UJ
Mercury	ug/l	2	SW7470A		-6						16	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U
		•	•					•													•						

Notes

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte. ug/l = micrograms per liter

- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Groundwater Monitoring Wells

													Location ID Sample ID Sample Date Type	MW01A MW01AN 11/5/2014 N	MW01A MW01A122216N 12/22/2016 N	MW01A MW01A122216R 12/22/2016 FD	MW02A MW02AN 11/5/2014 N	MW02A MW02A122216N 12/22/2016 N	MW03A MW03AN 11/4/2014 N	MW04A MW04AN 11/4/2014 N	MW05A MW05AN 11/4/2014 N	MW05A MW05A122116N 12/21/2016 N
		Project											. 71-									
		Screening				Max	Min	Mean	Median	Max	Count	Count										
Analyte	Unit	Criteria	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total										
Total Petroleum Hydrocarbons (C9-C44)	mg/l		M8015D	N	TPH							1						< 0.034 U				
1,1,1-Trichloroethane	ug/l	200	SW8260B/SW8260C	N	71-55-6							25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane	ug/l	0.076	SW8260B/SW8260C	N	79-34-5							25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	1000	SW8260B/SW8260C	N	76-13-1							25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloroethane	ug/l	5	SW8260B/SW8260C	N	79-00-5					<u> </u>		25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	2.8	SW8260B/SW8260C	IN	75-34-3	0.70	0.70	0.70	0.70	1414/00 A	4	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethene	ug/l	0.7	SW8260B/SW8260C	N	75-35-4	0.72	0.72	0.72	0.72	MW09A	1	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene	ug/l	0.7	SW8260B/SW8260C	IN N	87-61-6							25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U
1,2,4-Trichlorobenzene	ug/l	70	SW8260B/SW8260C	IN NI	120-82-1							25		< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ug/l	0.2	SW8260B/SW8260C SW8260B/SW8260C	NI NI	96-12-8 106-93-4							25 25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene	ug/l	600	SW8260B/SW8260C	N	95-50-1		 					25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l ug/l	5	SW8260B/SW8260C	N	107-06-2		1	1		 		25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane	ug/l	5	SW8260B/SW8260C	N	78-87-5		-	1	 	+	 	25 25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
		0.48		N										< 1.0 U	< 1.0 U	< 1.0 U			< 1.0 U	< 1.0 U		
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/l ug/l	75	SW8260B/SW8260C SW8260B/SW8260C	N	541-73-1 106-46-7		-	1	 	+	 	25 25	-	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U
1,4-Dioxane	ug/l	0.46	SW8260B/SW8260C	N	123-91-1		1	1	1	+	1	25 25		< 1.0 U	< 200 U	< 1.0 U	< 200 U	< 1.0 U	< 200 U	< 200 U	< 200 U	< 1.0 U
2-Butanone	ug/l	560	SW8260B/SW8260C	N	78-93-3	21	7.5	14	14	MW09A	2	25		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	7.5	< 5.0 U	< 5.0 U	< 5.0 U
2-Hexanone	ug/l	3.8	SW8260B/SW8260C	N	591-78-6	0.47	0.47	0.47	0.47	MW09A	1	25		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 UJ	< 5.0 UJ	< 5.0 UJ	< 5.0 U
4-Methyl-2-pentanone	ug/l	630	SW8260B/SW8260C	N	108-10-1	0.64	0.47	0.47	0.47	MW09A	1	25		< 5.0 UJ	< 5.0 U	< 5.0 U	< 5.0 UJ	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Acetone	ug/l	1400	SW8260B/SW8260C	N	67-64-1	25	2.9	8	5.3	MW09A	6	25		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	4.1 J	< 5.0 U	2.9 J	< 5.0 U
Benzene	ug/l	5	SW8260B/SW8260C	N	71-43-2	0.27	0.27	0.27	0.27	MW09A	1	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromochloromethane	ug/l	8.3	SW8260B/SW8260C	N	74-97-5	0.21	0.21	0.27	0.21	IVIVVOSA	'	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane	ug/l	80	SW8260B/SW8260C	N	75-27-4					1		25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromoform	ug/l	80	SW8260B/SW8260C	N	75-25-2							25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromomethane	ug/l	0.75	SW8260B/SW8260C	N	74-83-9							25		< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 U
Butyl alcohol, tert-	ug/l	14	SW8260B/SW8260C	N	75-65-0					1		9		1.0 00	< 40 U	< 40 U	1.0 00	< 40 U	V 1.0 00	V 1.0 00	V 1.0 00	< 40 U
Carbon Disulfide	ug/l	81	SW8260B/SW8260C	N	75-15-0	0.6	0.6	0.6	0.6	MW09A	1	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Carbon Tetrachloride	ug/l	5	SW8260B/SW8260C	N	56-23-5	0.0	0.0	0.0	0.0	WWWOON		25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chlorobenzene	ug/l	100	SW8260B/SW8260C	N	108-90-7		1			 		25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane	ug/l	2100	SW8260B/SW8260C	N	75-00-3							25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 U	< 1.0 U
Chloroform	ug/l	80	SW8260B/SW8260C	N	67-66-3	1.3	0.22	0.89	0.99	MW09A	6	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.2	0.22 J	0.77 J	< 1.0 U
Chloromethane	ug/l	19	SW8260B/SW8260C	N	74-87-3		0.22	0.00	0.00		-	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene	ug/l	70	SW8260B/SW8260C	N	156-59-2	18	0.34	4	0.88	MW09A	8	25		0.92 J	0.83 J	0.77 J	< 1.0 U	0.34 J	< 1.0 U	< 1.0 U	0.38 J	3.6
cis-1,3-Dichloropropene	ug/l	0.47	SW8260B/SW8260C	N	10061-01-5	.,	1	1				25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane	ug/l	1300	SW8260B/SW8260C	N	110-82-7		 	1	 	†	 	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dibromochloromethane	ug/l	80	SW8260B/SW8260C	N	124-48-1							25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dichlorodifluoromethane	ug/l	20	SW8260B/SW8260C	N	75-71-8		l		l	1	l	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 U	< 1.0 U
Diisopropyl ether	ug/l	150	SW8260B/SW8260C	N	108-20-3	0.29	0.27	0.28	0.28	MW01A	2	9			0.29 J	0.27 J		< 1.0 U				< 1.0 U
Ethylbenzene	ug/l	700	SW8260B/SW8260C	N	100-41-4		İ		l	1	l	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether	ug/l		SW8260B/SW8260C	N	637-92-3			İ				9			< 1.0 U	< 1.0 U		< 1.0 U				< 1.0 U
Isopropylbenzene	ug/l	45	SW8260B/SW8260C	N	98-82-8		1	1	1	1	1	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
m, p-Xylene	ug/l	10000	SW8260B/SW8260C	N	XYLMP			1				25		< 2.0 U	< 1.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 1.0 U
Methyl Acetate	ug/l	2000	SW8260B/SW8260C	N	79-20-9			İ				25		< 1.0 U	< 5.0 U	< 5.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U
Methyl tert-Butyl Ether (MTBE)	ug/l	14	SW8260B/SW8260C	N	1634-04-4	8.3	0.26	1.9	0.78	MW15A	11	25		1.6	1.7	1.7	< 1.0 U	< 1.0 U	< 1.0 U	0.29 J	0.73 J	0.78 J
Methylcyclohexane	ug/l	1300	SW8260B/SW8260C	N	108-87-2							25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	5	SW8260B/SW8260C	N	75-09-2							25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
o-Xylene	ug/l	10000	SW8260B/SW8260C	N	95-47-6			1				25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Styrene	ug/l	100	SW8260B/SW8260C	N	100-42-5							25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tertiary-Amyl Methyl Ether	ug/l	41	SW8260B/SW8260C	N	994-05-8	0.31	0.31	0.31	0.31	MW15A	1	9			< 1.0 U	< 1.0 U		< 1.0 U				< 1.0 U
Tetrachloroethylene	ug/l	5	SW8260B/SW8260C	N	127-18-4	320	0.18	31	2	MW09A	16	25		4.4	5.4 J-	5.5	2.3	1.8	0.32 J	0.25 J	2.2	15
Toluene	ug/l	1000	SW8260B/SW8260C	N	108-88-3	0.34	0.31	0.33	0.33	MW03A	2	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.34 J	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,2-Dichloroethene	ug/l	100	SW8260B/SW8260C	N	156-60-5	0.22	0.22	0.22	0.22	MW09A	1	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,3-Dichloropropene	ug/l	0.47	SW8260B/SW8260C	N	10061-02-6							25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U
Trichloroethene	ug/l	5	SW8260B/SW8260C	N	79-01-6	41	0.22	7.7	1.2	MW09A	8	25		0.43 J	1.2	1.1	< 1.0 U	0.22 J	< 1.0 U	< 1.0 U	0.23 J	2.3
		-		•			•	-	-	•	-	-			-	-		-	•	-	•	

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Groundwater Monitoring Wells

													Location ID	MW01A	MW01A	MW01A	MW02A	MW02A	MW03A	MW04A	MW05A	MW05A
													Sample ID	MW01AN	MW01A122216N	MW01A122216R	MW02AN	MW02A122216N	MW03AN	MW04AN	MW05AN	MW05A122116N
													Sample Date	11/5/2014	12/22/2016	12/22/2016	11/5/2014	12/22/2016	11/4/2014	11/4/2014	11/4/2014	12/21/2016
		1	1	T	ı	I	1	1	1	1	ı	1 1	Туре	N	N	FD	N	N	N	N	N	N
		Project				Mass	NA:	Moon	Modies	May	Carret	Count										
Analyte	Unit	Screening Criteria	Method	Fraction	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count Detect	Count Total										
Trichlorofluoromethane	ug/l	520	SW8260B/SW8260C	N	75-69-4	Detect	Detect	Detect	Detect	Location	Detect	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	2	SW8260B/SW8260C	N	75-01-4	5.3	5.3	5.3	5.3	MW09A	1	25		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	10000	SW8260B/SW8260C	N	1330-20-7	0.0	0.0	0.0	0.0			25		< 2.0 U	< 1 U	<1U	< 2.0 U	< 1 U	< 2.0 U	< 2.0 U	< 2.0 U	< 1 U
1,1'-Biphenyl	ug/l	0.083	SW8270D LL	N	92-52-4	0.27	0.27	0.27	0.27	MW02A	1	16		< 1.0 U			0.27 J		< 1.0 U	< 1.1 U	< 1.1 U	
1,2,4,5-Tetrachlorobenzene	ug/l	0.17	SW8270D LL	N	95-94-3							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
2,2'-oxybis(1-Chloropropane)	ug/l	71	SW8270D LL	N	108-60-1							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
2,3,4,6-Tetrachlorophenol	ug/l	24	SW8270D LL	N	58-90-2							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
2,4,5-Trichlorophenol	ug/l	120	SW8270D LL	N	95-95-4							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
2,4,6-Trichlorophenol	ug/l	1.2	SW8270D LL	N	88-06-2							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
2,4-Dichlorophenol	ug/l	4.6	SW8270D LL	N	120-83-2							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
2,4-Dimethylphenol	ug/l	36	SW8270D LL	N	105-67-9							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
2,4-Dinitrophenol	ug/l	3.9	SW8270D LL	N	51-28-5	ļ						16		< 5.0 U			< 4.8 U		< 5.2 U	< 5.4 U	< 5.7 U	
2,4-Dinitrotoluene	ug/l	0.24	SW8270D LL	N	121-14-2							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
2,6-Dinitrotoluene	ug/l	0.049	SW8270D LL	N	606-20-2		ļ					16		< 1.0 U			< 0.96 U	ļ	< 1.0 U	< 1.1 U	< 1.1 U	
2-Chloronaphthalene	ug/l	75	SW8270D LL	IN N	91-58-7	}	1			1	}	16		< 0.20 U			< 0.19 U	ļ	< 0.21 U	< 0.22 U	< 0.23 U	
2-Chlorophenol 2-Methylnaphthalene	ug/l ug/l	9.1 3.6	SW8270D LL SW8270D LL	N N	95-57-8 91-57-6	1.2	0.026	0.42	0.029	MW02A	3	16 16		< 1.0 U 0.029 J			< 0.96 U	-	< 1.0 U < 0.21 U	< 1.1 U < 0.22 U	< 1.1 U < 0.23 U	
2-Methylphenol	ug/l ug/l	93	SW8270D LL SW8270D LL	N	95-48-7	1.2	0.020	0.42	0.029	IVIVVUZA	3	16		< 1.0 U			< 0.96 U	 	< 1.0 U	< 1.1 U	< 1.1 U	
2-Nitroaniline	ug/l	19	SW8270D LL	N	88-74-4		-					16		< 5.0 U			< 4.8 U		< 5.2 U	< 5.4 U	< 5.7 U	
2-Nitrophenol	ug/l	580	SW8270D LL	N	88-75-5							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
3,3'-Dichlorobenzidine	ug/l	0.13	SW8270D LL	N	91-94-1							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
3-Nitroaniline	ug/l	3.8	SW8270D LL	N	99-09-2							16		< 5.0 U			< 4.8 U		< 5.2 U	< 5.4 U	< 5.7 U	
4,6-Dinitro-2-methylphenol	ug/l	0.15	SW8270D LL	N	534-52-1							16		< 5.0 U			< 4.8 U		< 5.2 U	< 5.4 U	< 5.7 U	
4-Bromophenyl-phenylether	ug/l		SW8270D LL	N	101-55-3							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
4-Chloro-3-methylphenol	ug/l	140	SW8270D LL	N	59-50-7							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
4-Chloroaniline	ug/l	0.37	SW8270D LL	N	106-47-8							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
4-Chlorophenyl-phenylether	ug/l		SW8270D LL	N	7005-72-3							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
4-Methylphenol	ug/l	190	SW8270D LL	N	106-44-5	0.53	0.29	0.38	0.33	MW10A	3	16		0.33 J			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
4-Nitroaniline	ug/l	3.8	SW8270D LL	N	100-01-6							16		< 5.0 U			< 4.8 U		< 5.2 U	< 5.4 U	< 5.7 U	
4-Nitrophenol	ug/l	580	SW8270D LL	N	100-02-7							16		< 5.0 U			< 4.8 U		< 5.2 U	< 5.4 U	< 5.7 U	
Acenaphthene	ug/l	53	SW8270D LL	N	83-32-9	1.3	0.12	0.75	0.84	MW02A	3	19		< 0.20 U	< 0.18 U	< 0.20 U	1.3	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Acenaphthylene	ug/l	53	SW8270D LL	N	208-96-8	0.086	0.086	0.086	0.086	MW02A	1	19		< 0.20 U	< 0.18 U	< 0.20 U	0.086 J	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Acetophenone	ug/l	190	SW8270D LL	N	98-86-2	0.044	0.000	0.026	0.026	NAVA (OO A	_	16		< 2.0 U	< 0.40 H	< 0.2011	< 1.9 U	< 0.40 LL	< 2.1 U	< 2.2 U	< 2.3 U	
Anthracene	ug/l	180 3	SW8270D LL SW8270D LL	N N	120-12-7 1912-24-9	0.044	0.028	0.036	0.036	MW02A	2	19		< 0.20 U < 2.0 U	< 0.18 U	< 0.20 U	0.044 J < 1.9 U	< 0.18 U	< 0.21 U < 2.1 U	< 0.22 U < 2.2 U	< 0.23 U < 2.3 U	
Atrazine Benzaldehyde	ug/l ug/l	19	SW8270D LL SW8270D LL	N	1912-24-9		1			1		16 16		< 2.0 U			< 1.9 U	 	< 2.1 U	< 2.2 U	< 2.3 U	
Benzo(a)anthracene	ug/l	0.03	SW8270D LL SW8270D LL	N	56-55-3	1	1				1	19		< 0.20 U	< 0.18 U	< 0.20 U	< 0.19 U	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Benzo(a)pyrene	ug/l	0.03	SW8270D LL	N	50-32-8	1	 			1	1	19		< 0.20 U	< 0.18 U	< 0.20 U	< 0.19 U	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Benzo(b)fluoranthene	ug/l	0.25	SW8270D LL	N	205-99-2	1	1				1	19		< 0.20 U	< 0.18 U	< 0.20 U	< 0.19 U	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Benzo(g,h,i)perylene	ug/l	12	SW8270D LL	N	191-24-2							19		< 0.20 U	< 0.18 U	< 0.20 U	< 0.19 U	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Benzo(k)fluoranthene	ug/l	2.5	SW8270D LL	N	207-08-9							19		< 0.20 U	< 0.18 U	< 0.20 U	< 0.19 U	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
bis-(2-chloroethoxy)methane	ug/l	5.9	SW8270D LL	N	111-91-1							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
bis-(2-Chloroethyl)ether	ug/l	0.014	SW8270D LL	N	111-44-4							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
bis-(2-Ethylhexyl)phthalate	ug/l	6	SW8270D LL	N	117-81-7							16		< 2.0 U			< 1.9 U		< 2.1 U	< 2.2 U	< 2.3 U	
Butylbenzylphthalate	ug/l	16	SW8270D LL	N	85-68-7							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
Caprolactam	ug/l	990	SW8270D LL	N	105-60-2	1.7	1.7	1.7	1.7	MW09A	1	16		< 5.0 U			< 4.8 U		< 5.2 U	< 5.4 U	< 5.7 U	
Carbazole	ug/l	29	SW8270D LL	N	86-74-8	0.27	0.27	0.27	0.27	MW02A	1	16		< 1.0 U			0.27 J		< 1.0 U	< 1.1 U	< 1.1 U	
Chrysene	ug/l	25	SW8270D LL	N	218-01-9							19		< 0.20 U	< 0.18 U	< 0.20 U	< 0.19 U	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Dibenzo(a,h)anthracene	ug/l	0.025	SW8270D LL	N	53-70-3		0 = :	0.5	0 = :		ļ	19		< 0.20 U	< 0.18 U	< 0.20 U	< 0.19 U	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Dibenzofuran	ug/l	0.79	SW8270D LL	N	132-64-9	0.71	0.71	0.71	0.71	MW02A	1	16		< 1.0 U			0.71 J	ļ	< 1.0 U	< 1.1 U	< 1.1 U	
Diethylphthalate	ug/l	1500	SW8270D LL	N	84-66-2	0.37	0.37	0.37	0.37	MW06A	1	16		< 1.0 U			< 0.96 U	ļ	< 1.0 U	< 1.1 U	< 1.1 U	
Dimethylphthalate	ug/l	1500	SW8270D LL	IN N	131-11-3		ļ			1		16		< 1.0 U			< 0.96 U	ļ	< 1.0 U	< 1.1 U	< 1.1 U	
Di-n-butylphthalate	ug/l	90	SW8270D LL	IN N	84-74-2	}	1			1	}	16		< 1.0 U			< 0.96 U	ļ	< 1.0 U	< 1.1 U	< 1.1 U	
Di-n-octylphthalate	ug/l	20	SW8270D LL	IN NI	117-84-0	0.000	0.065	0.077	0.077	NAVA/OO A	2	16		< 1.0 U	< 0.1011	< 0.2011	< 0.96 U	< 0.1011	< 1.0 U	< 1.1 U	< 1.1 U	
Fluoranthene	ug/l	80	SW8270D LL	IN	206-44-0	0.088	0.065	0.077	0.077	MW02A	2	19		< 0.20 U	< 0.18 U	< 0.20 U	0.088 J	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Groundwater Monitoring Wells

													Location ID	MW01A	MW01A	MW01A	MW02A	MW02A	MW03A	MW04A	MW05A	MW05A
													Sample ID	MW01AN	MW01A122216N	MW01A122216R	MW02AN	MW02A122216N	MW03AN	MW04AN	MW05AN	MW05A122116N
													Sample Date	11/5/2014	12/22/2016	12/22/2016	11/5/2014	12/22/2016	11/4/2014	11/4/2014	11/4/2014	12/21/2016
													Type	N	N	FD	N	N	N	N	N	N
		Project Screening	M. II.	- ·	010	Max	Min	Mean	Median	Max	Count	Count										
Analyte	Unit	Criteria	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total			0.40.11	2.22.11		0.40.11	0.04.11	0.0011	0.00.11	
Fluorene	ug/l	29	SW8270D LL		86-73-7	0.64	0.056	0.35	0.35	MW02A	2	19		< 0.20 U	< 0.18 U	< 0.20 U	0.64	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Hexachlorobenzene	ug/l	1	SW8270D LL		118-74-1							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
Hexachlorobutadiene	ug/l	0.14	SW8270D LL		87-68-3							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
Hexachlorocyclo-pentadiene	ug/l	50	SW8270D LL		77-47-4							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
Hexachloroethane	ug/l	0.33	SW8270D LL		67-72-1							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	1
Indeno(1,2,3-cd)pyrene	ug/l	0.25	SW8270D LL	N	193-39-5							19		< 0.20 U	< 0.18 U	< 0.20 U	< 0.19 U	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Isophorone	ug/l	78	SW8270D LL	N	78-59-1							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
Naphthalene	ug/l	0.17	SW8270D LL	N	91-20-3	13	0.046	3.3	0.12	MW02A	4	19		0.20	< 0.18 U	< 0.20 U	13 J	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Nitrobenzene	ug/l	0.14	SW8270D LL	N	98-95-3							16		< 2.0 U			< 1.9 U		< 2.1 U	< 2.2 U	< 2.3 U	
N-Nitroso-di-n-propylamine	ug/l	0.011	SW8270D LL	N	621-64-7							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
N-Nitrosodiphenylamine	ug/l	12	SW8270D LL	N	86-30-6							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	ĺ
Pentachlorophenol	ug/l	1	SW8270D LL	N	87-86-5							16		< 1.0 U			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
Phenanthrene	ug/l	180	SW8270D LL	N	85-01-8	0.67	0.16	0.42	0.42	MW02A	2	19		< 0.20 U	< 0.18 U	< 0.20 U	0.67	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Phenol	ug/l	580	SW8270D LL	N	108-95-2	0.57	0.57	0.57	0.57	MW01A	1	16		0.57 J			< 0.96 U		< 1.0 U	< 1.1 U	< 1.1 U	
Pyrene	ug/l	12	SW8270D LL	N	129-00-0	0.05	0.042	0.046	0.046	MW12A	2	19		< 0.20 U	< 0.18 U	< 0.20 U	0.042 J	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
BaP-TE	ug/l	0.2	SW8270D LL	N	BAP							19		< 0.200 U	< 0.180 U	< 0.200 U	< 0.190 U	< 0.180 U	< 0.210 U	< 0.220 U	< 0.230 U	
Total High-molecular-weight PAHs	ug/l		SW8270D LL	N	TOT-PAH-HMW	0.13	0.12	0.13	0.13	MW02A	2	19		< 0.20 U	< 0.18 U	< 0.2 U	0.13	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Total Low-molecular-weight PAHs	ug/l	Ī	SW8270D LL	N	TOT-PAH-LMW	16	0.046	3.5	0.41	MW02A	5	19		0.20	< 0.18 U	< 0.2 U	16	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	
Total PAHs (sum 16)	ug/l	1	SW8270D LL	N	TOT-PAH	16	0.046	3.5	0.53	MW02A	5	19		0.20	< 0.18 U	< 0.2 U	16	< 0.18 U	< 0.21 U	< 0.22 U	< 0.23 U	

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Groundwater Monitoring Wells

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

											DO 20013								
			Location ID	MW06A	MW06A	MW07A	MW08A	MW09A	MW09A	MW10A	MW11A	MW11A	MW12A	MW13A	MW13A	MW14A	MW14A	MW15A	MW15A
			Sample ID	MW06AN	MW06AR	MW07AN	MW08AN	MW09AN	MW09A122116N	MW10AN	MW11AN	MW11A122216N	MW12AN	MW13AN	MW13A122016N	MW14AN	MW14A122016N	MW15AN	MW15A122116N
			Sample Date	11/4/2014	11/4/2014	11/5/2014	11/10/2014	11/3/2014	12/21/2016	11/4/2014	11/4/2014	12/22/2016	11/3/2014	11/3/2014	12/20/2016	11/3/2014	12/20/2016	11/3/2014	12/21/2016
			Туре	N	FD	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project	. , , , ,	.,		.,	.,	.,	.,	.,	.,		.,	.,		.,			.,
		Screening																	
Analyte	Unit	Criteria																	
Total Petroleum Hydrocarbons (C9-C44)	mg/l	Ontena																	
1,1,1-Trichloroethane	ug/l	200		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane	ug/l	0.076		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	1000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloroethane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1.1-Dichloroethane	ug/l	2.8		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	7	-	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.72 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
·	_	0.7		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene	ug/l																		
1,2,4-Trichlorobenzene	ug/l	70		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane	ug/l	0.2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane	ug/l	0.05		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene	ug/l	600		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,3-Dichlorobenzene	ug/l	0.48		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dioxane	ug/l	0.46		< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U
2-Butanone	ug/l	560		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	21	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
2-Hexanone	ug/l	3.8		< 5.0 UJ	< 5.0 UJ	< 5.0 U	< 5.0 U	0.47 J	< 5.0 U	< 5.0 U	< 5.0 UJ	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
4-Methyl-2-pentanone	ug/l	630		< 5.0 U	< 5.0 U	< 5.0 UJ	< 5.0 U	0.64 J	< 5.0 U	< 5.0 UJ	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Acetone	ug/l	1400		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	25	6.4 J+	< 5.0 U	< 5.0 U	< 5.0 U	3.3 J	6.5	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Benzene	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.27 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromochloromethane	ug/l	8.3		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromoform	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromomethane	ug/l	0.75		< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Butyl alcohol, tert-	ug/l	14							< 800 U			< 40 U			< 40 U		< 40 U		< 40 U
Carbon Disulfide	ug/l	81		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.60 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Carbon Tetrachloride	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chlorobenzene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane	ug/l	2100		< 1.0 UJ	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroform	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	1.2	< 1.0 U	1.3	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.67 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloromethane	ug/l	19		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene	ug/l	70		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	7.2	18	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,3-Dichloropropene	ug/l	0.47		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane	ug/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dibromochloromethane	ug/l	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dichlorodifluoromethane	ug/l	20		< 1.0 UJ	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Diisopropyl ether	ug/l	150							< 20 U			< 1.0 U			< 1.0 U		< 1.0 U		< 1.0 U
Ethylbenzene	ug/l	700		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether	ug/l								< 20 U			< 1.0 U			< 1.0 U		< 1.0 U		< 1.0 U
Isopropylbenzene	ug/l	45		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
m, p-Xylene	ug/l	10000		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 1.0 U	< 2.0 U	< 2.0 U	< 1.0 U	< 2.0 U	< 2.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 2.0 U	< 1.0 U
Methyl Acetate	ug/l	2000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 5.0 U
Methyl tert-Butyl Ether (MTBE)	ug/l	14		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.58 J	0.65 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.26 J	< 1.0 U	< 1.0 U	< 1.0 U	4.3	8.3
Methylcyclohexane	ug/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
o-Xylene	ug/l	10000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Styrene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tertiary-Amyl Methyl Ether	ug/l	41							< 20 U			< 1.0 U			< 1.0 U		< 1.0 U		0.31 J
Tetrachloroethylene	ug/l	5		0.25 J	0.26 J	< 1.0 U	< 1.0 U	130	320	< 1.0 U	0.18 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.96 J	0.73 J	< 1.0 U	< 1.0 U
Toluene	ug/l	1000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.31 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,2-Dichloroethene	ug/l	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.22 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,3-Dichloropropene	ug/l	0.47		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Trichloroethene	ug/l	5	1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	15	41	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
	∽ອ′່	Ŭ		0	0		0							0	5				0

Final February 2020

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Groundwater Monitoring Wells

			Location ID	MW06A	MW06A	MW07A	MW08A	MW09A	MW09A	MW10A	MW11A	MW11A	MW12A	MW13A	MW13A	MW14A	MW14A	MW15A	MW15A
			Sample ID	MW06AN	MW06AR	MW07AN	MW08AN	MW09AN	MW09A122116N	MW10AN	MW11AN	MW11A122216N	MW12AN	MW13AN	MW13A122016N	MW14AN	MW14A122016N	MW15AN	MW15A122116N
			Sample Date	11/4/2014	11/4/2014	11/5/2014	11/10/2014	11/3/2014	12/21/2016	11/4/2014	11/4/2014	12/22/2016	11/3/2014	11/3/2014	12/20/2016	11/3/2014	12/20/2016	11/3/2014	12/21/2016
			Туре	N	FD	N	N	N	N	N	N	N	N	N	N	N	N	N	N
		Project																	1
		Screening																	1
Analyte	Unit	Criteria		. 4 0 111	. 4 0 111	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11
Trichlorofluoromethane	ug/l	520		< 1.0 UJ	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	5.3	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	10000		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 1 U	< 2.0 U	< 2.0 U	< 1 U	< 2.0 U	< 2.0 U	< 1 U	< 2.0 U	< 1 U	< 2.0 U	< 1 U
1,1'-Biphenyl 1.2.4.5-Tetrachlorobenzene	ug/l	0.083		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U < 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U < 0.96 U		< 0.96 U < 0.96 U		< 1.0 U	
2,2'-oxybis(1-Chloropropane)	ug/l ug/l	0.17 71		< 1.0 U	< 1.1 U < 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
2,3,4,6-Tetrachlorophenol	ug/l	24		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	<u> </u>
2,4,5-Trichlorophenol	ug/l	120		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
2,4,6-Trichlorophenol	ug/l	1.2		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
2,4-Dichlorophenol	ug/l	4.6		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
2,4-Dimethylphenol	ug/l	36		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
2,4-Dinitrophenol	ug/l	3.9		< 5.2 U	< 5.4 U	< 5.0 U	< 5.0 U	< 5.0 U		< 4.6 U	< 5.0 U		< 4.8 U	< 4.8 U		< 4.8 U		< 5.2 U	
2,4-Dinitrotoluene	ug/l	0.24		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U	1	< 1.0 U	
2,6-Dinitrotoluene	ug/l	0.049		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
2-Chloronaphthalene	ug/l	75		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		< 0.19 U	< 0.19 U		< 0.19 U		< 0.21 U	
2-Chlorophenol	ug/l	9.1		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
2-Methylnaphthalene	ug/l	3.6		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		0.026 J	< 0.19 U		< 0.19 U		< 0.21 U	
2-Methylphenol	ug/l	93		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
2-Nitroaniline	ug/l	19		< 5.2 U	< 5.4 U	< 5.0 U	< 5.0 U	< 5.0 U		< 4.6 U	< 5.0 U		< 4.8 U	< 4.8 U		< 4.8 U		< 5.2 U	
2-Nitrophenol	ug/l	580		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
3,3'-Dichlorobenzidine	ug/l	0.13		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
3-Nitroaniline	ug/l	3.8		< 5.2 U	< 5.4 U	< 5.0 U	< 5.0 U	< 5.0 U		< 4.6 U	< 5.0 U		< 4.8 U	< 4.8 U		< 4.8 U		< 5.2 U	
4,6-Dinitro-2-methylphenol	ug/l	0.15		< 5.2 U	< 5.4 U	< 5.0 U	< 5.0 U	< 5.0 U		< 4.6 U	< 5.0 U		< 4.8 U	< 4.8 U		< 4.8 U		< 5.2 U	
4-Bromophenyl-phenylether	ug/l			< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
4-Chloro-3-methylphenol	ug/l	140		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
4-Chloroaniline	ug/l	0.37		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
4-Chlorophenyl-phenylether	ug/l			< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
4-Methylphenol	ug/l	190		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	0.29 J		0.53 J	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
4-Nitroaniline	ug/l	3.8		< 5.2 U	< 5.4 U	< 5.0 U	< 5.0 U	< 5.0 U		< 4.6 U	< 5.0 U		< 4.8 U	< 4.8 U		< 4.8 U		< 5.2 U	
4-Nitrophenol Acenaphthene	ug/l	580 53		< 5.2 U < 0.21 U	< 5.4 U < 0.22 U	< 5.0 U 0.84	< 5.0 U < 0.20 U	< 5.0 U < 0.20 U		< 4.6 U < 0.19 U	< 5.0 U < 0.20 U		< 4.8 U 0.12 J	< 4.8 U < 0.19 U		< 4.8 U < 0.19 U		< 5.2 U < 0.21 U	
Acenaphthylene	ug/l ug/l	53		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		< 0.12 J	< 0.19 U		< 0.19 U		< 0.21 U	<u> </u>
Acetophenone	ug/l	190		< 2.1 U	< 2.2 U	< 2.0 U	< 2.0 U	< 2.0 U		< 1.9 U	< 2.0 U		< 1.9 U	< 1.9 U		< 1.9 U		< 2.1 U	
Anthracene	ug/l	180		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		0.028 J	< 0.19 U		< 0.19 U		< 0.21 U	
Atrazine	ug/l	3		< 2.1 U	< 2.2 U	< 2.0 U	< 2.0 U	< 2.0 U		< 1.9 U	< 2.0 U		< 1.9 U	< 1.9 U		< 1.9 U		< 2.1 U	
Benzaldehyde	ug/l	19		< 2.1 U	< 2.2 U	< 2.0 U	< 2.0 U	< 2.0 U		< 1.9 U	< 2.0 U		< 1.9 U	< 1.9 U		< 1.9 U		< 2.1 U	
Benzo(a)anthracene	ug/l	0.03		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		< 0.19 U	< 0.19 U		< 0.19 U		< 0.21 U	
Benzo(a)pyrene	ug/l	0.2		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		< 0.19 U	< 0.19 U		< 0.19 U		< 0.21 U	
Benzo(b)fluoranthene	ug/l	0.25		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		< 0.19 U	< 0.19 U		< 0.19 U	1	< 0.21 U	
Benzo(g,h,i)perylene	ug/l	12		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		< 0.19 U	< 0.19 U		< 0.19 U		< 0.21 U	
Benzo(k)fluoranthene	ug/l	2.5		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		< 0.19 U	< 0.19 U		< 0.19 U		< 0.21 U	
bis-(2-chloroethoxy)methane	ug/l	5.9		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
bis-(2-Chloroethyl)ether	ug/l	0.014		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
bis-(2-Ethylhexyl)phthalate	ug/l	6		< 2.1 U	< 2.2 U	< 2.0 U	< 2.0 U	< 2.0 U		< 1.9 U	< 2.0 U		< 2.3 U	< 1.9 U		< 1.9 U		< 2.1 U	
Butylbenzylphthalate	ug/l	16		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
Caprolactam	ug/l	990		< 5.2 U	< 5.4 U	< 5.0 U	< 5.0 U	1.7 J		< 4.6 U	< 5.0 U		< 4.8 U	< 4.8 U		< 4.8 U		< 5.2 U	
Carbazole	ug/l	29		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
Chrysene	ug/l	25		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		< 0.19 U	< 0.19 U		< 0.19 U		< 0.21 U	
Dibenzo(a,h)anthracene	ug/l	0.025		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		< 0.19 U	< 0.19 U		< 0.19 U		< 0.21 U	
Dibenzofuran	ug/l	0.79		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
Diethylphthalate	ug/l	1500		0.37 J	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
Dimethylphthalate	ug/l	1500		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U	1	< 1.0 U	
Di-n-butylphthalate	ug/l	90		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
Di-n-octylphthalate	ug/l	20		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U	<u> </u>	< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
Fluoranthene	ug/l	80		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		0.065 J	< 0.19 U		< 0.19 U	<u> </u>	< 0.21 U	

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in UWZ Groundwater Monitoring Wells

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	MW06A	MW06A	MW07A	MW08A	MW09A	MW09A	MW10A	MW11A	MW11A	MW12A	MW13A	MW13A	MW14A	MW14A	MW15A	MW15A
			Sample ID	MW06AN	MW06AR	MW07AN	MW08AN	MW09AN	MW09A122116N	MW10AN	MW11AN	MW11A122216N	MW12AN	MW13AN	MW13A122016N	MW14AN	MW14A122016N	MW15AN	MW15A122116N
			Sample Date	11/4/2014	11/4/2014	11/5/2014	11/10/2014	11/3/2014	12/21/2016	11/4/2014	11/4/2014	12/22/2016	11/3/2014	11/3/2014	12/20/2016	11/3/2014	12/20/2016	11/3/2014	12/21/2016
			Type	N	FD	N	N	N	N	N	N	N	N	N	12/20/2010 N	N	N	N	N
		Proiect	Турс	14	10	IN .	14	11			11	17	- 11		14	- 11	11	- 11	· · · · · ·
		Screening																	İ
Analyte	Unit	Criteria																	Í
Fluorene	ug/l	29		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		0.056 J	< 0.19 U		< 0.19 U		< 0.21 U	
Hexachlorobenzene	ug/l	1		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
Hexachlorobutadiene	ug/l	0.14		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	1
Hexachlorocyclo-pentadiene	ug/l	50		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	1
Hexachloroethane	ug/l	0.33		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
Indeno(1,2,3-cd)pyrene	ug/l	0.25		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		< 0.19 U	< 0.19 U		< 0.19 U		< 0.21 U	
Isophorone	ug/l	78		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	1
Naphthalene	ug/l	0.17		< 0.21 U	< 0.22 U	< 0.20 U	0.046 J	< 0.20 U		< 0.19 U	< 0.20 U		0.046 J	< 0.19 U		< 0.19 U		< 0.21 U	
Nitrobenzene	ug/l	0.14		< 2.1 U	< 2.2 U	< 2.0 U	< 2.0 U	< 2.0 U		< 1.9 U	< 2.0 U		< 1.9 U	< 1.9 U		< 1.9 U		< 2.1 U	
N-Nitroso-di-n-propylamine	ug/l	0.011		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
N-Nitrosodiphenylamine	ug/l	12		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
Pentachlorophenol	ug/l	1		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
Phenanthrene	ug/l	180		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		0.16 J	< 0.19 U		< 0.19 U		< 0.21 U	
Phenol	ug/l	580		< 1.0 U	< 1.1 U	< 1.0 U	< 1.0 U	< 1.0 U		< 0.93 U	< 1.0 U		< 0.96 U	< 0.96 U		< 0.96 U		< 1.0 U	
Pyrene	ug/l	12		< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		0.050 J	< 0.19 U		< 0.19 U		< 0.21 U	
BaP-TE	ug/l	0.2		< 0.210 U	< 0.220 U	< 0.200 U	< 0.200 U	< 0.200 U		< 0.190 U	< 0.200 U		< 0.190 U	< 0.190 U		< 0.190 U		< 0.210 U	
Total High-molecular-weight PAHs	ug/l			< 0.21 U	< 0.22 U	< 0.20 U	< 0.20 U	< 0.20 U		< 0.19 U	< 0.20 U		0.12	< 0.19 U		< 0.19 U		< 0.21 U	
Total Low-molecular-weight PAHs	ug/l			< 0.21 U	< 0.22 U	0.84	0.046	< 0.20 U		< 0.19 U	< 0.20 U		0.41	< 0.19 U		< 0.19 U		< 0.21 U	
Total PAHs (sum 16)	ug/l			< 0.21 U	< 0.22 U	0.84	0.046	< 0.20 U		< 0.19 U	< 0.20 U		0.53	< 0.19 U		< 0.19 U		< 0.21 U	

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the

sample and meet quality control criteria. The presence or absence of the analyte cannot be

verified.

mg/l = milligrams per liter

ug/l = micrograms per liter

Groundwater Results

PCBs and Pesticides Concentrations in UWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

													Location ID	MW01A	MW02A
													Sample ID	MW01AN	MW02AN
												S	ample Date	11/5/2014	11/5/2014
													Туре	N	N
		Project													
		Screening				Max	Min	Mean	Median	Max	Count	Count			
Analyte	Unit	Criteria	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total			
4,4'-DDD	ug/l	0.0063	SW8081B LL	N	72-54-8							20		< 0.0012 U	< 0.0013 U
4,4'-DDE	ug/l	0.046	SW8081B LL	N	72-55-9							20		< 0.0012 U	< 0.0013 U
4,4'-DDT	ug/l	0.23	SW8081B LL	N	50-29-3	0.00061	0.00046	0.00054	0.00054	MW06A	2	20		< 0.0012 U	< 0.0013 U
Aldrin	ug/l	0.00092	SW8081B LL	N	309-00-2							20		< 0.0012 U	< 0.0013 U
alpha-BHC	ug/l	0.0072	SW8081B LL	N	319-84-6							20		< 0.0012 U	< 0.0013 U
beta-BHC	ug/l	0.025	SW8081B LL	N	319-85-7	0.00095	0.00095	0.00095	0.00095	MW03A	1	20		< 0.0012 U	< 0.0013 U
cis-Chlordane	ug/l	2	SW8081B LL	N	5103-71-9							20		< 0.0012 U	< 0.0013 U
delta-BHC	ug/l	0.0072	SW8081B LL	N	319-86-8	0.00097	0.0004	0.0007	0.00073	MW10A	3	20		< 0.0012 U	0.00040 J
Dieldrin	ug/l	0.0018	SW8081B LL	N	60-57-1							20		< 0.0012 U	< 0.0013 U
Endosulfan I	ug/l	10	SW8081B LL	N	959-98-8							20		< 0.0012 U	< 0.0013 U
Endosulfan II	ug/l	10	SW8081B LL	N	33213-65-9							20		< 0.0012 U	< 0.0013 U
Endosulfan Sulfate	ug/l	10	SW8081B LL	N	1031-07-8							20		< 0.0012 U	< 0.0013 U
Endrin	ug/l	0.2	SW8081B LL	N	72-20-8							20		< 0.0012 U	< 0.0013 U
Endrin aldehyde	ug/l	0.23	SW8081B LL	N	7421-93-4							20		< 0.0012 U	< 0.0013 U
Endrin ketone	ug/l	0.23	SW8081B LL	N	53494-70-5							20		< 0.0012 U	< 0.0013 U
gamma-BHC (Lindane)	ug/l	0.2	SW8081B LL	N	58-89-9	0.0015	0.0013	0.0014	0.0014	MW05A	2	20		< 0.0012 U	< 0.0013 U
Heptachlor	ug/l	0.4	SW8081B LL	N	76-44-8							20		< 0.0012 U	< 0.0013 U
Heptachlor Epoxide	ug/l	0.2	SW8081B LL	N	1024-57-3	0.017	0.00081	0.0089	0.0089	MW06A	2	20		< 0.0012 U	< 0.0013 U
Methoxychlor	ug/l	40	SW8081B LL	N	72-43-5							20		< 0.0024 U	< 0.0024 U
Toxaphene	ug/l	3	SW8081B LL	N	8001-35-2							20		< 0.095 U	< 0.096 U
trans-Chlordane	ug/l	2	SW8081B LL	N	5103-74-2	0.0021	0.0012	0.0015	0.0014	MW13A	4	20		< 0.0012 U	< 0.0013 U
Aroclor-1016	ug/l		SW8082A LL	N	12674-11-2							16		< 0.0095 U	< 0.0096 U
Aroclor-1221	ug/l		SW8082A LL	N	11104-28-2							16		< 0.0095 U	< 0.0096 U
Aroclor-1232	ug/l		SW8082A LL	N	11141-16-5							16		< 0.0095 U	< 0.0096 U
Aroclor-1242	ug/l		SW8082A LL	N	53469-21-9	0.034	0.034	0.034	0.034	MW07A	1	16		< 0.0095 U	< 0.0096 U
Aroclor-1248	ug/l		SW8082A LL	N	12672-29-6							16		< 0.0095 U	< 0.0096 U
Aroclor-1254	ug/l		SW8082A LL	N	11097-69-1							16		< 0.0095 U	< 0.0096 U
Aroclor-1260	ug/l		SW8082A LL	N	11096-82-5							16		< 0.0095 U	< 0.0096 U
Aroclor-1262	ug/l		SW8082A LL	N	37324-23-5							16		< 0.0095 U	< 0.0096 U
Aroclor-1268	ug/l		SW8082A LL	N	11100-14-4							16		< 0.0095 U	< 0.0096 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5	SW8082A LL	N	TOT-PCB-ARO-C	0.034	0.034	0.034	0.034	MW07A	1	16		< 0.0095 U	< 0.0096 U

Groundwater Results

PCBs and Pesticides Concentrations in UWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	MW03A	MW04A	MW05A	MW06A	MW06A	MW06A	MW06A	MW07A	MW07A
			Sample ID	MW03AN	MW04AN	MW05ANB	MW06AN	MW06AR	MW06A122116N	MW06A122116R	MW07AN	MW07A122016N
			Sample Date	11/4/2014	11/4/2014	11/5/2014	11/4/2014	11/4/2014	12/21/2016	12/21/2016	11/5/2014	12/20/2016
			Туре	N	N	FD	N	FD	N	FD	N	N
		Project										
		Screening										
Analyte	Unit	Criteria										
4,4'-DDD	ug/l	0.0063		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
4,4'-DDE	ug/l	0.046		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
4,4'-DDT	ug/l	0.23		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	0.00046 J	0.00061 J	< 0.0012 U	< 0.0012 U
Aldrin	ug/l	0.00092		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
alpha-BHC	ug/l	0.0072		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
beta-BHC	ug/l	0.025		0.00095 J	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
cis-Chlordane	ug/l	2		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
delta-BHC	ug/l	0.0072		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	0.00073 J	< 0.0012 U
Dieldrin	ug/l	0.0018		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
Endosulfan I	ug/l	10		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
Endosulfan II	ug/l	10		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
Endosulfan Sulfate	ug/l	10		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
Endrin	ug/l	0.2		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
Endrin aldehyde	ug/l	0.23		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
Endrin ketone	ug/l	0.23		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
gamma-BHC (Lindane)	ug/l	0.2		< 0.0012 U	< 0.0013 U	0.0015	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
Heptachlor	ug/l	0.4		< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
Heptachlor Epoxide	ug/l	0.2		< 0.0012 U	< 0.0013 U	< 0.0013 U	0.017 J	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
Methoxychlor	ug/l	40		< 0.0024 U	< 0.0025 U	< 0.0024 U	< 0.0024 U	< 0.0025 U	< 0.0012 U	< 0.0012 U	< 0.0024 U	< 0.0012 U
Toxaphene	ug/l	3		< 0.095 U	< 0.098 U	< 0.097 U	< 0.096 U	< 0.098 U	< 0.095 U	< 0.095 U	< 0.095 U	< 0.095 U
trans-Chlordane	ug/l	2		< 0.0012 U	< 0.0013 U	< 0.0013 U	0.0015	0.0013	< 0.0012 U	< 0.0012 U	0.0012	< 0.0012 U
Aroclor-1016	ug/l			< 0.0095 UJ	< 0.0098 UJ	< 0.0097 U	< 0.0096 UJ	< 0.0098 UJ			< 0.0095 U	
Aroclor-1221	ug/l			< 0.0095 UJ	< 0.0098 UJ	< 0.0097 U	< 0.0096 UJ	< 0.0098 UJ			< 0.0095 U	
Aroclor-1232	ug/l			< 0.0095 UJ	< 0.0098 UJ	< 0.0097 U	< 0.0096 UJ	< 0.0098 UJ			< 0.0095 U	
Aroclor-1242	ug/l			< 0.0095 UJ	< 0.0098 UJ	< 0.0097 U	< 0.0096 UJ	< 0.0098 UJ			0.034 J	
Aroclor-1248	ug/l			< 0.0095 UJ	< 0.0098 UJ	< 0.0097 U	< 0.0096 UJ	< 0.0098 UJ			< 0.0095 U	
Aroclor-1254	ug/l			< 0.0095 UJ	< 0.0098 UJ	< 0.0097 U	< 0.0096 UJ	< 0.0098 UJ			< 0.0095 U	
Aroclor-1260	ug/l			< 0.0095 UJ	< 0.0098 UJ	< 0.0097 U	< 0.0096 UJ	< 0.0098 UJ			< 0.0095 U	
Aroclor-1262	ug/l			< 0.0095 UJ	< 0.0098 UJ	< 0.0097 U	< 0.0096 UJ	< 0.0098 UJ			< 0.0095 U	
Aroclor-1268	ug/l			< 0.0095 UJ	< 0.0098 UJ	< 0.0097 U	< 0.0096 UJ	< 0.0098 UJ			< 0.0095 U	
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5		< 0.0095 U	< 0.0098 U	< 0.0097 U	< 0.0096 U	< 0.0098 U			0.034	

Groundwater Results

PCBs and Pesticides Concentrations in UWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	MW08A	MW09A	MW10A	MW11A	MW11A	MW12A	MW13A	MW14A	MW15A
			Sample ID	MW08AN	MW09AN	MW10AN	MW11AN	MW11A122216N	MW12AN	MW13AN	MW14AN	MW15AN
			Sample Date	11/10/2014	11/3/2014	11/4/2014	11/4/2014	12/22/2016	11/3/2014	11/3/2014	11/3/2014	11/3/2014
			Туре	N	N	N	N	N	N	N	N	N
		Project										
		Screening										
Analyte	Unit	Criteria										
4,4'-DDD	ug/l	0.0063		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
4,4'-DDE	ug/l	0.046		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
4,4'-DDT	ug/l	0.23		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
Aldrin	ug/l	0.00092		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
alpha-BHC	ug/l	0.0072		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
beta-BHC	ug/l	0.025		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
cis-Chlordane	ug/l	2		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
delta-BHC	ug/l	0.0072		< 0.0013 U	< 0.0012 U	0.00097 J	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
Dieldrin	ug/l	0.0018		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
Endosulfan I	ug/l	10		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
Endosulfan II	ug/l	10		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
Endosulfan Sulfate	ug/l	10		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
Endrin	ug/l	0.2		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
Endrin aldehyde	ug/l	0.23		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
Endrin ketone	ug/l	0.23		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
gamma-BHC (Lindane)	ug/l	0.2		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0013	< 0.0012 U	< 0.0012 U
Heptachlor	ug/l	0.4		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
Heptachlor Epoxide	ug/l	0.2		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	0.00081 J	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U
Methoxychlor	ug/l	40		< 0.0024 U	< 0.0024 U	< 0.0025 U	< 0.0024 U	< 0.0012 U	< 0.0024 U	< 0.0024 U	< 0.0024 U	< 0.0024 U
Toxaphene	ug/l	3		< 0.097 U	< 0.095 U	< 0.098 U	< 0.095 U	< 0.095 U	< 0.094 U	< 0.096 U	< 0.095 U	< 0.095 U
trans-Chlordane	ug/l	2		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0021 J	< 0.0012 U	< 0.0012 U
Aroclor-1016	ug/l			< 0.0097 U	< 0.0095 U	< 0.0098 U	< 0.0095 U		< 0.0094 U	< 0.0096 U	< 0.0095 U	< 0.0095 U
Aroclor-1221	ug/l			< 0.0097 U	< 0.0095 U	< 0.0098 U	< 0.0095 U		< 0.0094 U	< 0.0096 U	< 0.0095 U	< 0.0095 U
Aroclor-1232	ug/l			< 0.0097 U	< 0.0095 U	< 0.0098 U	< 0.0095 U		< 0.0094 U	< 0.0096 U	< 0.0095 U	< 0.0095 U
Aroclor-1242	ug/l			< 0.0097 U	< 0.0095 U	< 0.0098 U	< 0.0095 U		< 0.0094 U	< 0.0096 U	< 0.0095 U	< 0.0095 U
Aroclor-1248	ug/l			< 0.0097 U	< 0.0095 U	< 0.0098 U	< 0.0095 U		< 0.0094 U	< 0.0096 U	< 0.0095 U	< 0.0095 U
Aroclor-1254	ug/l			< 0.0097 U	< 0.0095 U	< 0.0098 U	< 0.0095 U		< 0.0094 U	< 0.0096 U	< 0.0095 U	< 0.0095 U
Aroclor-1260	ug/l			< 0.0097 U	< 0.0095 U	< 0.0098 U	< 0.0095 U		< 0.0094 U	< 0.0096 U	< 0.0095 U	< 0.0095 U
Aroclor-1262	ug/l			< 0.0097 U	< 0.0095 U	< 0.0098 U	< 0.0095 U		< 0.0094 U	< 0.0096 U	< 0.0095 U	< 0.0095 U
Aroclor-1268	ug/l			< 0.0097 U	< 0.0095 U	< 0.0098 U	< 0.0095 U		< 0.0094 U	< 0.0096 U	< 0.0095 U	< 0.0095 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5		< 0.0097 U	< 0.0095 U	< 0.0098 U	< 0.0095 U		< 0.0094 U	< 0.0096 U	< 0.0095 U	< 0.0095 U

Groundwater Results

PCBs and Pesticides Concentrations in UWZ Groundwater Monitoring Wells
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential Nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ug/l = micrograms per liter

Groundwater Results

Dioxins and Furans Concentrations in UWZ Groundwater Monitoring Wells

													Location ID	MW01A	MW01A
													Sample ID	MW01AN	MW01A122216N
													Sample Date	11/5/2014	12/22/2016
													Туре	N	N
		Project													
		Screening				Max	Min	Mean	Median	Max	Count	Count			
Analyte	Unit	Criteria	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total			
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/l		SW8290A	N	67562-39-4	16.3	2.06	7.71	4.77	MW12A	3	16		< 0.806 U	< 0.774 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/l		SW8290A	N	35822-46-9	555	1.25	70.4	5.7	MW12A	10	16		12.8 JN	< 1.07 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/l		SW8290A	N	55673-89-7							16		< 1.19 U	< 0.984 U
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/l		SW8290A	N	70648-26-9	2.91	2.91	2.91	2.91	MW12A	1	16		< 0.573 U	< 1.16 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/l		SW8290A	N	39227-28-6							16		< 1.11 U	< 1.46 U
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/l		SW8290A	N	57117-44-9	3.32	3.32	3.32	3.32	MW12A	1	16		< 0.582 U	< 1.02 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/l		SW8290A	N	57653-85-7	15.9	1.41	8.66	8.66	MW12A	2	16		< 1.27 U	< 1.5 U
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/l		SW8290A	N	72918-21-9							16		< 0.804 U	< 1.34 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/l		SW8290A	N	19408-74-3	28	3.76	11.4	6.85	MW12A	4	16		< 1.10 U	< 1.58 U
1,2,3,7,8-PeCDF	pg/l		SW8290A	N	57117-41-6							16		< 1.43 U	< 0.793 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/l		SW8290A	N	40321-76-4							16		< 1.63 U	< 1.18 U
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/l		SW8290A	N	60851-34-5							16		< 0.543 U	< 1.12 U
2,3,4,7,8-Pentachlorodibenzofuran	pg/l		SW8290A	N	57117-31-4							16		< 1.25 U	< 0.752 U
2,3,7,8-Tetrachlorodibenzofuran	pg/l		SW8290A	N	51207-31-9							16		< 1.96 U	< 0.948 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/l	30	SW8290A	N	1746-01-6							16		< 2.70 U	< 0.885 U
Octachlorochlorodibenzofuran	pg/l		SW8290A	N	39001-02-0	29.2	29.2	29.2	29.2	MW12A	1	16		< 7.52 U	< 2.71 U
Octachlorochlorodibenzo-p-dioxin	pg/l		SW8290A	N	3268-87-9	11200	4.28	1410	63.5	MW12A	12	16		148 JN	6.43 JN
Total HpCDD	pg/l		SW8290A	N	37871-00-4	1290	1.48	121	5.31	MW12A	14	16		24.3 JN	1.48
Total HpCDF	pg/l		SW8290A	N	38998-75-3	23.7	2.06	10.2	4.77	MW12A	3	16		< 0.966 U	< 0.869 U
Total HxCDD	pg/l		SW8290A	N	34465-46-8	512	1.19	83	9.21	MW12A	8	16		< 1.90 U	< 1.51 U
Total HxCDF	pg/l		SW8290A	N	55684-94-1	27	27	27	27	MW12A	1	16		< 0.610 U	< 1.15 U
Total PeCDD	pg/l		SW8290A	N	36088-22-9	155	4.18	55.5	7.39	MW12A	3	16		4.18 JN	< 1.18 U
Total PeCDF	pg/l		SW8290A	N	30402-15-4	16	1.94	7.75	5.3	MW12A	3	16		< 1.33 U	< 0.772 U
Total TCDD	pg/l		SW8290A	N	41903-57-5	555	3.63	127	33.4	MW12A	5	16		< 2.70 U	< 0.885 U
Total TCDF	pg/l		SW8290A	N	55722-27-5	64.4	3.58	34	34	MW12A	2	16		< 1.96 U	< 0.948 U
TCDD TEQ HH	pg/l	30	SW8290A	N	DFTEQ-HH	14.1	0.00128	1.48	0.0579	MW12A	13	16		0.172	0.00193

Groundwater Results

Dioxins and Furans Concentrations in UWZ Groundwater Monitoring Wells

			Location ID Sample ID Sample Date Type	MW01A MW01A122216R 12/22/2016 FD	MW03A MW03AN 11/4/2014 N	MW04A MW04AN 11/4/2014 N	MW04A MW04A122116N 12/21/2016 N	MW07A MW07AN 11/5/2014 N	MW07A MW07AR 11/5/2014 FD	MW07A MW07A122016N 12/20/2016 N	MW09A MW09AN 11/3/2014 N
		Project	Туре	FD	IN	IN	IN	IN	FD	IN	IN
		Screening									
Analyte	Unit	Criteria									
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/l	Ontona		< 0.902 U	< 0.684 U	< 0.796 U	< 0.668 U	4.77 JN	< 0.728 U	< 0.709 U	2.06 JN
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/l			< 0.836 U	1.25 JN	3.12 JN	< 0.956 U	39.7 JN	8.27 JN	< 0.852 U	77.3
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/l			< 1.09 U	< 0.816 U	< 0.936 U	< 0.885 U	< 3.07 U	< 0.851 U	< 0.915 U	< 0.722 U
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/l			< 1.03 U	< 0.511 U	< 0.586 U	< 1.04 U	< 1.07 U	< 0.497 U	< 0.795 U	< 0.305 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/l			< 1.38 U	< 0.804 U	< 1.42 U	< 1.48 U	< 2.33 U	< 1.26 U	< 1.15 U	< 0.682 U
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/l			< 0.973 U	< 0.471 U	< 0.569 U	< 0.967 U	< 0.996 U	< 0.464 U	< 0.767 U	< 0.305 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/l			< 1.34 U	< 0.847 U	< 1.41 U	< 1.54 U	< 2.23 U	< 1.27 U	< 1.24 U	1.41 JN
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/l			< 1.27 U	< 0.641 U	< 0.741 U	< 1.26 U	< 1.35 U	< 0.591 U	< 0.977 U	< 0.300 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/l			< 1.46 U	< 0.768 U	< 1.31 U	< 1.62 U	7.96 JN	< 1.18 U	< 1.22 U	5.73 JN
1,2,3,7,8-PeCDF	pg/l			< 0.664 U	< 0.648 U	< 1.06 U	< 0.761 U	< 1.50 U	< 0.610 U	< 0.608 U	< 0.689 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/l			< 1.22 U	< 0.671 U	< 1.34 U	< 1.02 U	< 2.53 U	< 0.881 U	< 0.8 U	< 0.730 U
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/l			< 1.09 U	< 0.483 U	< 0.565 U	< 1.05 U	< 1.10 U	< 0.503 U	< 0.804 U	< 0.226 U
2,3,4,7,8-Pentachlorodibenzofuran	pg/l			< 0.678 U	< 0.581 U	< 0.896 U	< 0.791 U	< 1.28 U	< 0.578 U	< 0.593 U	< 0.572 U
2,3,7,8-Tetrachlorodibenzofuran	pg/l			< 0.808 U	< 1.55 U	< 2.18 U	< 0.77 U	< 1.89 U	< 1.54 U	< 0.784 U	< 0.731 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/l	30		< 1.26 U	< 2.33 U	< 3.59 U	< 1.12 U	< 2.57 U	< 2.50 U	< 1.01 U	< 1.18 U
Octachlorochlorodibenzofuran	pg/l			< 1.93 U	< 2.90 UJ	< 1.45 U	< 2.44 U	< 4.25 U	< 6.01 UJ	< 2.39 U	< 3.27 U
Octachlorochlorodibenzo-p-dioxin	pg/l			9.22 J	< 15.1 U	89.0 J	4.28 JN	1400 J	155 J	< 4.25 U	3800 J
Total HpCDD	pg/l			< 0.836 U	1.90 JN	9.72 JN	3.5	117 JN	22.6 JN	< 0.852 U	206
Total HpCDF	pg/l			< 0.988 U	< 0.745 U	< 0.862 U	< 0.766 U	4.77 JN	< 0.786 U	< 0.802 U	2.06 JN
Total HxCDD	pg/l			< 1.39 U	7.27 JN	6.60 JN	< 1.54 U	52.0 JN	< 1.76 U	< 1.19 U	66.5 JN
Total HxCDF	pg/l			< 1.08 U	< 0.518 U	< 0.607 U	< 1.07 U	< 1.11 U	< 0.509 U	< 0.829 U	< 0.279 U
Total PeCDD	pg/l			< 1.22 U	< 0.671 U	< 1.34 U	< 1.02 U	< 2.53 U	< 0.881 U	< 0.8 U	7.39 JN
Total PeCDF	pg/l			< 0.671 U	< 0.611 U	< 0.967 U	< 0.775 U	5.30 JN	1.94 JN	< 0.6 U	< 0.623 U
Total TCDD	pg/l			< 1.26 U	< 2.33 U	< 3.59 U	< 1.12 U	34.0 JN	< 2.50 U	< 1.01 U	33.4 JN
Total TCDF	pg/l			< 0.808 U	< 1.55 U	< 2.18 U	< 0.77 U	3.58 JN	< 1.54 U	< 0.784 U	< 0.731 U
TCDD TEQ HH	pg/l	30		0.00277	0.0125	0.0579	0.00128	1.66	0.129	< 1.01 U	2.65

Groundwater Results

Dioxins and Furans Concentrations in UWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project

			Location ID	MW09A	MW11A	MW11A	MW12A	MW12A	MW13A
			Sample ID	MW09A122116N	MW11AN	MW11A122216N	MW12AN	MW12A122016N	MW13AN
			Sample Date	12/21/2016	11/4/2014	12/22/2016	11/3/2014	12/20/2016	11/3/2014
			Type	N	N	N	N	N	N
		Project	1,700		.,			.,	.,
		Screening							
Analyte	Unit	Criteria							
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/l			< 0.732 U	< 0.803 U	< 0.768 U	16.3 JN	< 0.606 U	< 0.866 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/l			2.28 J	2.18 J	< 0.869 U	555	1.96 J	< 1.11 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/l			< 0.984 U	< 0.897 U	< 0.962 U	< 1.84 U	< 0.789 U	< 1.28 U
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/l			< 0.957 U	< 0.527 U	< 1.06 U	2.91 JN	< 0.828 U	< 0.468 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/l			< 1.37 U	< 0.997 U	< 1.27 U	< 1.60 U	< 1.27 U	< 1.00 U
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/l			< 0.88 U	< 0.492 U	< 1.01 U	3.32 J	< 0.793 U	< 0.482 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/l			< 1.39 U	< 1.11 U	< 1.24 U	15.9 J	< 1.33 U	< 1.04 U
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/l			< 1.12 U	< 0.573 U	< 1.17 U	< 1.29 U	< 1.03 U	< 0.605 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/l			< 1.55 U	3.76 JN	< 1.32 U	28.0 JN	< 1.39 U	< 0.948 U
1,2,3,7,8-PeCDF	pg/l			< 0.64 U	< 0.826 U	< 0.577 U	< 1.84 U	< 0.678 U	< 1.00 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/l			< 1.05 U	< 0.846 U	< 0.981 U	< 1.94 U	< 1.19 U	< 1.45 U
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/l			< 0.943 U	< 0.430 U	< 1.07 U	< 1.17 U	< 0.87 U	< 0.471 U
2,3,4,7,8-Pentachlorodibenzofuran	pg/l			< 0.608 U	< 0.699 U	< 0.607 U	< 1.43 U	< 0.693 U	< 0.963 U
2,3,7,8-Tetrachlorodibenzofuran	pg/l			< 0.913 U	< 1.47 U	< 0.692 U	< 2.33 U	< 0.857 U	< 1.56 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/l	30		< 1.18 U	< 2.26 U	< 0.847 U	< 2.90 U	< 1.13 U	< 2.63 U
Octachlorochlorodibenzofuran	pg/l			< 2.28 U	< 1.94 U	< 2.49 U	29.2 J	< 2.08 U	< 1.64 U
Octachlorochlorodibenzo-p-dioxin	pg/l			37.9 J	25.2 J	< 4.38 U	11200	14.4 J	< 18.4 U
Total HpCDD	pg/l			5.81	2.18 J	1.56	1290	4.81	3.16 JN
Total HpCDF	pg/l			< 0.846 U	< 0.848 U	< 0.857 U	23.7 JN	< 0.689 U	< 1.04 U
Total HxCDD	pg/l			< 1.43 U	9.72 JN	< 1.27 U	512 JN	1.19	8.69 JN
Total HxCDF	pg/l			< 0.969 U	< 0.499 U	< 1.07 U	27.0 JN	< 0.873 U	< 0.501 U
Total PeCDD	pg/l			< 1.05 U	< 0.846 U	< 0.981 U	155 JN	< 1.19 U	< 1.45 U
Total PeCDF	pg/l			< 0.623 U	< 0.755 U	< 0.591 U	16.0 JN	< 0.685 U	< 0.980 U
Total TCDD	pg/l			8.14	< 2.26 U	< 0.847 U	555 JN	3.63	< 2.63 U
Total TCDF	pg/l			< 0.913 U	< 1.47 U	< 0.692 U	64.4 JN	< 0.857 U	< 1.56 U
TCDD TEQ HH	pg/l	30		0.0342	0.405	< 0.981 U	14.1	0.0239	< 2.63 U

Groundwater Results Dioxins and Furans Concentrations in UWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the

sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

pg/l = picograms per liter

Groundwater Results

Inorganic Concentrations in LWZ Groundwater Monitoring Wells

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

												ID	MMOAD	MANAGOD	MANAGOOD	MANO AD	MMOED	MANOCO	MMOZD	MANOOD	MAYOOD	MAYOOD	MANAGO	MANAAD	MAZZOD	MM/40D	MANA AD	MAZZED
												cation ID	MW01B MW01BN	MW02B	MW03B	MW04B MW04BN	MW05B	MW06B	MW07B MW07BN	MW08B MW08BN	MW08B MW08BR	MW09B	MW10B MW10BN	MW11B MW11BN	MW12B	MW13B MW13BN	MW14B	MW15B MW15BN
												ple Date	11/5/2014	MW02BN 11/5/2014	MW03BN 11/4/2014	11/4/2014	MW05BN 11/4/2014	MW06BN 11/4/2014	11/4/2014	11/5/2014	11/5/2014	MW09BN 11/3/2014	11/4/2014	11/4/2014	MW12BN 11/3/2014	11/3/2014	MW14BN 11/3/2014	11/3/2014
											Saiii	ріе Баїе Туре	1 1/5/20 14 N	N	11/4/2014 N	1 1/4/2014 NI	N N	N N	11/4/2014 NI	N	FD	N N	11/4/2014 NI	N	N N	N N	N N	N N
	1				1							Туре	IN	IN	IN	IN	IN	IN	IN	IN	FD	IN	IN	IN	IN	IN	IN	- IN
		Project					N 45		N 4 C		0	0																i
Analyte	Unit	Screening Criteria	Method	Fraction	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count Detect	Count Total																i
Aluminum	ug/l	2000	SW6020A	riaction	7429-90-5	Detect	Detect	Detect	Detect	Location	Detect	16 16	< 30 U	< 30 U	< 30 U	< 55 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U
Antimony	ug/l	6	SW6020A	D	7440-36-0							16	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Arsenic	ug/l	10	SW6020A	D	7440-38-2	2.2	0.31	1	0.94	MW11B	10	16	< 1.0 U	< 1.0 U	0.48 J	0.91 J	1.4	1.3	< 1.0 U	0.31 J	< 1.0 U	0.52 J	< 1.0 U	2.2	1.4	0.55 J	< 1.0 U	0.96 J
	ug/l	1000	SW6020A	D	7440-30-2	540	75	210	160	MW05B	16	16	190	75	150	100	540	160	230	140	130	440	220	120	360	110	230	150
Beryllium	ug/l	4	SW6020A	D	7440-39-3	0.64	0.041	0.36	0.4	MW05B	6	16	< 1.0 UJ	0.51 J	< 1.0 U	< 1.0 U	0.64 J	0.070 J	0.041 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.59 J	0.28 J
Cadmium	ug/l	5	SW6020A	D	7440-41-7	6.5	0.16	3.3	3.3	MW15B	2	16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.16 J	< 1.0 U	6.5
	ug/l	EN	SW6020A	D	7440-43-9	120000	7900	31000	23000	MW12B	16	16	30000	12000	20000	25000	28000	8300	12000	17000	16000	49000	46000	29000	120000	66000	7900	15000
Chromium	ug/l	100	SW6020A	D	7440-70-2	120000	7900	31000	23000	IVIVV IZD	10	16	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Cobalt	-	0.6	SW6020A	D	7440-47-3	80	0.2	9.4	1.4	MW15B	14	_	8.2		1.9		0.63 J+		0.65	0.83	0.75	< 0.50 U	0.84	0.20 J	< 0.86 U	4.1	5.3	80
	ug/l ug/l	1300	SW6020A	ח	7440-46-4	00	0.2	<i>3.</i> ₩	1.4	IVIVVIOD	14	16 16	< 2.0 U	26 < 2.0 U	< 2.0 U	1.9 < 2.0 U	< 2.0 U	0.78 < 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 3.2 U
Copper	ug/l	1400	SW6020A SW6020A	ס	7439-89-6	38000	190	9600	2300	MW05B	9	16	5800 J	30000 J	190 J	570 J	38000 J	8400 J	680 J	< 50 U	< 50 U	< 50 U	2300 J	< 50 U	< 50 U	< 50 U	630	< 50 U
	ug/l ug/l	15	SW6020A SW6020A	ס	7439-69-6	30000	190	9000	2300	IVIVVUOD	ש	16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
	_	EN	SW6020A	D	7439-92-1	21000	2600	10000	7400	MW09B	16	10	13000					3600	5400		5700					21000		8600
Magnesium	ug/l	⊏IN	SWUUZUA	5	1439-93-4	21000	3600	10000	1400	MW13B	16	16	13000	4800	6100	7900	18000	3000	3400	6400	3700	21000	12000	6800	15000	21000	6600	0000
Manganese	ug/l	43	SW6020A	D	7439-96-5	3400	250	1100	800	MW01B	16	16	3400	1600	530	950	1200	510	840	280	250	2700	640	360	760	1200	340	1500
	ug/l	39	SW6020A	D	7440-02-0	44	0.33	5	0.97	MW15B	15	16	4.3 J-	11	1.2	1.6	1.3 J-	0.73 J	0.62 J	0.87 J	0.67 J	0.91 J	0.65 J	0.33 J	< 1.0 U	5.9	0.97 J	44
	ug/l	EN	SW6020A	D	7440-02-0	9700	2100	4800	4300	MW11B	16	16	5000	2400	2700	3600	4700	2100	2200	3900	3500	7000	5300	9700	9200	7500	5400	2300
Selenium	ug/l	50	SW6020A	D	7782-49-2	9700	2100	4000	4300	IVIVVIID	10	16	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Silver	-	50	SW6020A	D	7440-22-4							16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
	ug/l ug/l	EN	SW6020A	D	7440-22-4	330000	13000	71000	33000	MW12B	16	16	120000	36000	13000	18000	110000	18000	21000	19000	17000	73000	71000	46000	330000	200000	14000	30000
Thallium	ug/l	2	SW6020A	D	7440-23-3	330000	13000	7 1000	33000	IVIVV IZD	10	16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
	ug/l	8.6	SW6020A	D	7440-26-0	8.3	1.4	3.7	3.5	MW06B	9	16	3.2 J	3.5 J+	2.5 J+	1.4 J+	2.0 J	8.3 J	< 1.0 U	< 1.0 U	4.2 J+	< 4.3 U	4.0 J+	3.8 J+	< 1.0 U	< 4.3 U	< 5.9 U	< 2.6 U
Zinc	ug/l	600	SW6020A	D	7440-62-2	56	39	48	48	MW15B	2		< 5.4 U	3.5 5+	< 7.5 U	< 5.0 U	< 8.3 U	< 10 U	< 1.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.7 U	< 5.9 U	56
Aluminum	ug/l	2000	SW6020A	T	7429-90-5	1300	100	620	630	MW11B	16	16 16	260 J+	900 J+	690 J+	600 J+	650 J+	1100 J+	430 J+	910 J+	990 J+	460 J+	230 J+	1300 J+	250 J+	100 J+	320 J+	670
Antimony	ug/l	6	SW6020A	т Т	7440-36-0	1300	100	020	030	IVIVVIID	10	16	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Arsenic	ug/l	10	SW6020A	T	7440-38-2	7.5	0.99	3.7	3.5	MW10B	14	16	2.0 J+	< 1.0 U	3.6 J+	5.2 J+	4.0 J+	4.2 J+	< 1.0 U	3.0 J+	3.3 J+	1.7 J	7.5 J+	5.4 J+	5.6 J	0.99 J	2.2 J	2.7 J
	ug/l	1000	SW6020A	T	7440-30-2	610	68	240	180	MW09B	16	16	240	80	170	120	520	180	260	170	180	610	300	180	430	110	220	68
Beryllium	ug/l	4	SW6020A	т	7440-33-3	1.2	0.038	0.3	0.096	MW05B	15	16	0.059 J+	0.91 J	0.096 J	0.064 J	1.2	0.55 J	0.042 J	0.053 J	0.038 J	0.18 J	0.11 J	0.14 J	0.061 J	< 1.0 U	0.86 J	0.094 J
Cadmium	ug/l	5	SW6020A	T	7440-41-7	0.27	0.030	0.27	0.090	MW13B	13	16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.27 J	< 1.0 U	< 1.0 U
Calcium	ug/l	EN	SW6020A	T	7440-43-3	120000	7700	33000	24000	MW12B	16	16	34000	12000	21000	27000	27000	8800	13000	19000	19000	51000	48000	34000	120000	71000	7700	16000
Chromium	ug/l	100	SW6020A	T	7440-47-3	9.5	7.8	8.7	8.7	MW06B	2	16	< 2.0 U	< 3.0 U	< 6.5 U	< 6.1 U	< 5.7 U	9.5	< 2.0 U	< 2.1 U	< 2.2 U	< 2.8 U	< 5.9 U	7.8	< 2.3 U	< 2.0 U	< 3.0 U	< 3.8 U
Cobalt	ug/l	0.6	SW6020A	<u>'</u> Т	7440-47-3	26	1.2	5.1	2.7	MW02B	16	16	8.0	26	2.8	2.8	2.4	7.8	1.2	2.1	2.0	1.8	1.4	2.5	1.5	5.6	5.2	7.7
	ug/l	1300	SW6020A	T	7440-40-4	5.6	4.8	5.1	5	MW06B	3	16	< 2.0 U	< 2.0 U	4.8	< 2.7 U	< 4.5 U	5.6	< 2.0 U	< 4.4 U	< 4.5 U	< 2.0 U	< 3.5 U	5.0	< 2.2 U	< 2.0 U	< 2.0 U	< 2.0 U
Iron	ug/l	1400	SW6020A	T	7439-89-6	61000	660	29000	30000	MW05B	16	16	37000	41000	24000	7600	61000	35000	46000	5500	5700	60000 J	40000	17000	44000 J	660 J	25000 J	11000 J
Lead	ug/l	15	SW6020A	T	7439-09-0	3.2	0.23	1.3	0.87	MW08B	16	16	0.48 J	1.2 J	1.5 J	0.75 J	1.6 J	2.1 J	0.70 J	3.2 J	3.0 J	0.81 J	0.67 J	2.2 J	0.90 J	0.23 J	0.58 J	0.83 J
Magnesium	ug/l	EN	SW6020A	T	7439-95-4	22000	3400	10000	7400	MW13B	16	16	15000	4700	5700	7700	16000	3400	5900	6600	6900	21000	11000	7000	15000	22000	6300	8800
	ug/l	43	SW6020A	T	7439-96-5	3700	320	1100	750	MW01B	16	16	3700	1600	550	1000	1100	510	870	320	330	2900	700	520	800	1200	330	660
Nickel	ug/l	39	SW6020A	T	7440-02-0	12	0.37	4	3.4	MW02B	16	16	4.7	12	3.9	3.5	3.2	6.6	1.3	2.8	2.9	2.3	2.1	3.9	0.37 J	7.4	1.3	5.2
Potassium	ug/l	EN	SW6020A	T	7440-02-0	12000	2400	5400	4700	MW11B	16	16	5800	2600	3000	4300	4800	2400	2500	4400	4500	7100	6100	12000	11000	7500	5300	2700
Selenium	ug/l	50	SW6020A	T .	7782-49-2	12000	2-700	5-700	-1,00	17177 1 10	.0	16	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Silver	ug/l	50	SW6020A	T	7440-22-4	 	+					16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
	ug/l	EN	SW6020A	T	7440-22-4	330000	14000	73000	34000	MW12B	16	16	130000 J	35000 J	15000 J	21000 J	100000 J	21000 J	24000 J	20000 J	21000 J	75000	79000 J	56000 J	330000	190000	14000	32000
	ug/l	2	SW6020A	T	7440-28-0	0.13	0.025	0.063	0.035	MW13B	3	16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.13 J	0.035 J	0.025 J
Vanadium	ug/l	8.6	SW6020A	T	7440-20-0	23	2.3	10	9.2	MW08B	15	16	20 J+	12 J+	3.0 J+	< 1.0 U	5.5 J+	13 J+	9.2 J+	20 J+	23 J+	4.4 J+	2.3 J+	4.8 J+	5.3 J+	10 J+	7.6 J+	15 J+
Zinc	ug/l	600	SW6020A	T	7440-66-6	37	8.5	15	9.9	MW02B	7	16	< 6.4 U	37	9.9	< 6.7 U	9.6	16	8.6	< 6.2 U	< 7.5 U	< 5.3 U	< 5.0 U	8.5	< 5.0 U	< 7.0 U	< 6.6 U	12
Mercury	ug/l	2	SW7470A	D.	7439-97-6	3,	0.0		0.0	11111020	,	16	< 0.20 U	< 0.20 U	< 0.20 U	< 0.7 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 UJ	< 0.20 U	< 0.20 U	< 0.20 UJ	< 0.20 UJ	< 0.20 UJ	< 0.20 UJ
Mercury	ug/l	2	SW7470A	Т	7439-97-6	 						16	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U
wichouty	ug/i	۷	O111410A	<u> ' </u>	1 700-31-0	I	<u> </u>			L		10	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0	- 0.20 0

Notes

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential Nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte. ug/l = micrograms per liter

- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- JN = The analyte was tentatively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.

- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the

sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Groundwater Monitoring Wells

												Location ID	MW01B	MW01B	MW02B	MW02B	MW03B	MW04B	MW05B	MW05B	MW06B	MW07B	MW08B
												Sample ID	MW01BN	MW01B122216N	MW02BN	MW02B122216N	MW03BN	MW04BN	MW05BN	MW05B042517N	MW06BN	MW07BN	MW08BN
												Sample Date	11/5/2014 N	12/22/2016 N	11/5/2014 N	12/22/2016 N	11/4/2014 N	11/4/2014	11/4/2014 N	4/25/2017	11/4/2014 N	11/4/2014	11/5/2014 N
		Project										Туре	IN	IN	IN	IN	IN	N	IN	IN .	IN	IN	IN
		Screening				Max Mi	Mean	Median	Max	Count	Count												1
Analyte	Unit	Criteria	Method	Fraction	CAS	Detect Dete	ct Detect	Detect	Location	Detect	Total												
1,1,1-Trichloroethane	ug/l ug/l	200 0.076	SW8260B/SW8260C SW8260B/SW8260C	N	71-55-6 79-34-5						24		< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	1000	SW8260B/SW8260C	N	76-13-1						24 24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloroethane	ug/l	5	SW8260B/SW8260C	N	79-00-5						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	2.8	SW8260B/SW8260C	N	75-34-3						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethene	ug/l	7	SW8260B/SW8260C	N	75-35-4						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ug/l ug/l	0.7 70	SW8260B/SW8260C SW8260B/SW8260C	N	87-61-6 120-82-1						24 24		< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane	ug/l	0.2	SW8260B/SW8260C	N	96-12-8						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane	ug/l	0.05	SW8260B/SW8260C	N	106-93-4						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene	ug/l	600	SW8260B/SW8260C	N	95-50-1						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l	5	SW8260B/SW8260C	N	107-06-2 78-87-5						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane 1,3-Dichlorobenzene	ug/l ug/l	0.48	SW8260B/SW8260C SW8260B/SW8260C	N	78-87-5 541-73-1	+ +		+		+	24 24		< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	75	SW8260B/SW8260C	N	106-46-7			1		1	24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dioxane	ug/l	0.46	SW8260B/SW8260C	N	123-91-1						24		< 200 U	< 200 U	< 200 U		< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U
2-Butanone	ug/l	560	SW8260B/SW8260C	N	78-93-3	1.3 1.	1.2	1.2	MW12B	2	24		< 5.0 U	< 5.0 U	< 5.0 U		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
2-Hexanone 4-Methyl-2-pentanone	ug/l ug/l	3.8 630	SW8260B/SW8260C SW8260B/SW8260C	N	591-78-6 108-10-1			+			24 24	+	< 5.0 U < 5.0 UJ	< 5.0 U	< 5.0 U < 5.0 UJ		< 5.0 UJ < 5.0 U	< 5.0 UJ < 5.0 U	< 5.0 UJ < 5.0 U	< 5.0 U	< 5.0 UJ < 5.0 U	< 5.0 U < 5.0 UJ	< 5.0 UJ < 5.0 U
Acetone	ug/l	1400	SW8260B/SW8260C	N	67-64-1	7.7 2.	5.2	5	MW12B	5	24		< 5.0 U	< 5.0 U	< 5.0 U		< 5.0 U	2.8 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Benzene	ug/l	5	SW8260B/SW8260C	N	71-43-2	0.68 0.2		0.45	MW08B	2	24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.22 J
Bromochloromethane	ug/l	8.3	SW8260B/SW8260C	N	74-97-5						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane	ug/l	80	SW8260B/SW8260C	N	75-27-4	1.9 0.2	3 0.74	0.63	MW05B	6	24		< 1.0 U	< 1.0 U	< 1.0 U		0.65 J	< 1.0 U	1.9	< 1.0 U	< 1.0 U	< 1.0 U	0.23 J
Bromoform Bromomethane	ug/l ug/l	80 0.75	SW8260B/SW8260C SW8260B/SW8260C	N N	75-25-2 74-83-9						24 24		< 1.0 U < 1.0 UJ	< 1.0 U < 1.0 U	< 1.0 U		< 1.0 U < 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 UJ	< 1.0 U < 1.0 UJ	< 1.0 U
Butyl alcohol, tert-	ug/l	14	SW8260B/SW8260C	N	75-65-0	62 6.	34	34	MW09B	2	8		1.0 00	< 200 U	1.0 00		1.0 00	1.0 00	- 1.0 00	< 40 U	1.0 00	11.0 00	11.0 00
Carbon Disulfide	ug/l	81	SW8260B/SW8260C	N	75-15-0	6.3 0.2	5 1.4	0.78	MW09B	9	24		0.27 J	< 1.0 U	< 1.0 U		1.8	1.1	0.93 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Carbon Tetrachloride	ug/l	5	SW8260B/SW8260C	N	56-23-5						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chlorobenzene Chloroethane	ug/l ug/l	100 2100	SW8260B/SW8260C SW8260B/SW8260C	N	108-90-7 75-00-3	1.2 1.3	1.2	1.2	MW12B	1	24		< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U		< 1.0 U < 1.0 UJ	< 1.0 U < 1.0 UJ	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 1.0 UJ	< 1.0 U	< 1.0 U
Chloroform	ug/l	80	SW8260B/SW8260C	N	67-66-3	4.2 0.2	7 2	1.4	MW09B	11	24 24		0.87 J	< 1.0 U	< 1.0 U		3.2	1.4	3.6	< 1.0 U	< 1.0 U	< 1.0 U	3.2
Chloromethane	ug/l	19	SW8260B/SW8260C	N	74-87-3						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene	ug/l	70	SW8260B/SW8260C	N	156-59-2	7 0.5	1 2.3	0.68	MW01B	5	24		2.6	7.0	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	0.51 J	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,3-Dichloropropene	ug/l	0.47	SW8260B/SW8260C	N	10061-01-5						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane Dibromochloromethane	ug/l ug/l	1300 80	SW8260B/SW8260C SW8260B/SW8260C	N N	110-82-7 124-48-1	0.66 0.2	1 0.36	0.27	MW05B	4	24 24		< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U		< 1.0 U 0.24 J	< 1.0 U	< 1.0 U 0.66 J	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dichlorodifluoromethane	ug/l	20	SW8260B/SW8260C	N	75-71-8	0.00 0.2	+ 0.50	0.21	WWWOOD	1 -	24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 UJ	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U
Diisopropyl ether	ug/l	150	SW8260B/SW8260C	N	108-20-3	2.6 0.1	0.74	0.35	MW01B	5	8			2.6 J						0.19 J			
Ethylbenzene	ug/l	700	SW8260B/SW8260C	N	100-41-4						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether	ug/l	45	SW8260B/SW8260C	N	637-92-3			1		 	8		-1011	< 5.0 U	Z 1 0 1 1		z 1011	z 1 0 1 1	-1011	< 1.0 U	-1011	-1011	-10U
Isopropylbenzene m, p-Xylene	ug/l ug/l	45 10000	SW8260B/SW8260C SW8260B/SW8260C	N	98-82-8 XYLMP	0.15 0.1	5 0.15	0.15	MW09B	1	24 24		< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 2.0 U		< 1.0 U < 2.0 U	< 1.0 U < 2.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U < 2.0 U	< 1.0 U < 2.0 U	< 1.0 U < 2.0 U
Methyl Acetate	ug/l	2000	SW8260B/SW8260C	N	79-20-9	3.10 0.1	0.10	5.15	14144000	† '	24		< 1.0 U	< 5.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methyl tert-Butyl Ether (MTBE)	ug/l	14	SW8260B/SW8260C	N	1634-04-4	190 0.3	2 23	3.4	MW13B	15	24		1.0	3.4	0.39 J		< 1.0 U	< 1.0 U	0.32 J	0.86 J	< 1.0 U	< 1.0 U	< 1.0 U
Methylcyclohexane	ug/l	1300	SW8260B/SW8260C	N	108-87-2						24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	5	SW8260B/SW8260C	N	75-09-2	0.2 0.1	0.19	0.19	MW08B	2	24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
o-Xylene Styrene	ug/l ug/l	10000	SW8260B/SW8260C SW8260B/SW8260C	N	95-47-6 100-42-5	+ +		+			24 24		< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tertiary-Amyl Methyl Ether	ug/l	41	SW8260B/SW8260C	N	994-05-8	2.4 2.4	2.4	2.4	MW13B	1	8		0	< 5.0 U			0	0		< 1.0 U			
Tetrachloroethylene	ug/l	5	SW8260B/SW8260C	N	127-18-4	110 0.1		1.2	MW01B	7	24		110	78	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	18	< 1.0 U	< 1.0 U	< 1.0 U
Toluene	ug/l	1000	SW8260B/SW8260C	N	108-88-3	12 0.1		0.28	MW12B	7	24		< 1.0 U	< 1.0 U	< 1.0 U		0.28 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.18 J
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ug/l ug/l	100 0.47	SW8260B/SW8260C SW8260B/SW8260C	N	156-60-5 10061-02-6	0.51 0.5	1 0.51	0.51	MW01B	1	24 24	+	< 1.0 U	0.51 J < 1.0 U	< 1.0 U		< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U < 1.0 UJ	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Trichloroethene	ug/l	5	SW8260B/SW8260C	N	79-01-6	48 0.4	3 18	13	MW01B	4	24		25	48	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	0.53 J	< 1.0 U	< 1.0 U	< 1.0 U
Trichlorofluoromethane	ug/l	520	SW8260B/SW8260C	N	75-69-4			1	1	1	24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 UJ	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	2	SW8260B/SW8260C	N	75-01-4	0.26 0.2		0.26	MW09B	1	24		< 1.0 U	< 1.0 U	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	10000	SW8260B/SW8260C	N	1330-20-7	0.15 0.1	0.15	0.15	MW09B	1	24		< 2.0 U	< 1 U	< 2.0 U		< 2.0 U	< 2.0 U	< 2.0 U	< 1 U	< 2.0 U	< 2.0 U	< 2.0 U
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	ug/l ug/l	0.083 0.17	SW8270D LL SW8270D LL	N	92-52-4 95-94-3	+ +		+		-	16 16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
2,2'-oxybis(1-Chloropropane)	ug/l	71	SW8270D LL SW8270D LL	N	108-60-1			+			16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
2,2 Oxybio(1-Orliotopioparie)	ug/i	, , , , , , , , , , , , , , , , , , ,	0110210D LL	113	100-00-1			1	_i	1	10		- 1.0 0		1.00	<u> </u>	- 1.0 0	- 1.0 0	- 1.0 0	l	- 1.10	- 1.00	- 1.00

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

											Location ID	MW01B	MW01B	MW02B	MW02B	MW03B	MW04B	MW05B	MW05B	MW06B	MW07B	MW08B
											Sample ID	MW01BN	MW01B122216N	MW02BN	MW02B122216N	MW03BN	MW04BN	MW05BN	MW05B042517N	MW06BN	MW07BN	MW08BN
											Sample Date Type	11/5/2014 N	12/22/2016 N	11/5/2014 N	12/22/2016 N	11/4/2014 N	11/4/2014	11/4/2014 N	4/25/2017 N	11/4/2014 N	11/4/2014 N	11/5/2014 N
		Project									Туре	IN	IN .	IN	IN .	IN	IN	IN	IN .	IN	IN	IN
		Project Screening			Max	Min	Mean	Median	Max	Count Count												
Analyte	Unit	Criteria	Method	Fraction CAS	Detect	Detect	Detect	Detect	Location [Detect Total												
2,3,4,6-Tetrachlorophenol	ug/l	24	SW8270D LL	N 58-90-2						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
2,4,5-Trichlorophenol	ug/l	120	SW8270D LL	N 95-95-4						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	ug/l ug/l	1.2 4.6	SW8270D LL SW8270D LL	N 88-06-2 N 120-83-2						16 16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
2,4-Dimethylphenol	ug/l	36	SW8270D LL	N 125-67-9						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
2,4-Dinitrophenol	ug/l	3.9	SW8270D LL	N 51-28-5						16		< 5.0 U		< 5.0 U		< 5.0 U	< 5.2 U	< 5.2 U		< 5.4 U	< 5.0 U	< 5.2 U
2,4-Dinitrotoluene	ug/l	0.24	SW8270D LL	N 121-14-2						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
2,6-Dinitrotoluene	ug/l	0.049	SW8270D LL	N 606-20-2						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
2-Chloronaphthalene	ug/l	75	SW8270D LL	N 91-58-7						16		< 0.20 U		< 0.20 U		< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
2-Chlorophenol 2-Methylnaphthalene	ug/l ug/l	9.1 3.6	SW8270D LL SW8270D LL	N 95-57-8 N 91-57-6	0.02	0.02	0.02	0.02	MW01B	16 1 16		< 1.0 U 0.020 J		< 1.0 U < 0.20 U		< 1.0 U < 0.20 U	< 1.0 U < 0.21 U	< 1.0 U < 0.21 U		< 1.1 U < 0.22 U	< 1.0 U < 0.20 U	< 1.0 U < 0.21 U
2-Methylphenol	ug/l	93	SW8270D LL	N 95-48-7	0.02	0.02	0.02	0.02	11111010	16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
2-Nitroaniline	ug/l	19	SW8270D LL	N 88-74-4						16		< 5.0 U		< 5.0 U		< 5.0 U	< 5.2 U	< 5.2 U		< 5.4 U	< 5.0 U	< 5.2 U
2-Nitrophenol	ug/l	580	SW8270D LL	N 88-75-5						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	-	< 1.1 U	< 1.0 U	< 1.0 U
3,3'-Dichlorobenzidine	ug/l	0.13	SW8270D LL	N 91-94-1						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
3-Nitroaniline 4,6-Dinitro-2-methylphenol	ug/l	3.8 0.15	SW8270D LL SW8270D LL	N 99-09-2 N 534-52-1						16		< 5.0 U		< 5.0 U		< 5.0 U < 5.0 U	< 5.2 U < 5.2 U	< 5.2 U < 5.2 U		< 5.4 U < 5.4 U	< 5.0 U	< 5.2 U < 5.2 U
4,5-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	ug/l ug/l	0.10	SW8270D LL SW8270D LL	N 534-52-1 N 101-55-3						16 16	+	< 1.0 U		< 1.0 U		< 1.0 U	< 5.2 U	< 5.2 U		< 1.1 U	< 1.0 U	< 5.2 U
4-Chloro-3-methylphenol	ug/l	140	SW8270D LL	N 59-50-7						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
4-Chloroaniline	ug/l	0.37	SW8270D LL	N 106-47-8						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
4-Chlorophenyl-phenylether	ug/l		SW8270D LL	N 7005-72-3						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
4-Methylphenol	ug/l	190	SW8270D LL	N 106-44-5	0.49	0.49	0.49	0.49	MW08B	1 16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
4-Nitroaniline	ug/l	3.8 580	SW8270D LL	N 100-01-6 N 100-02-7						16		< 5.0 U		< 5.0 U		< 5.0 U	< 5.2 U	< 5.2 U < 5.2 U		< 5.4 U < 5.4 U	< 5.0 U	< 5.2 U < 5.2 U
4-Nitrophenol Acenaphthene	ug/l ug/l	53	SW8270D LL SW8270D LL	N 83-32-9	0.039	0.039	0.039	0.039	MW12B	16 1 18		< 0.20 U	< 0.18 U	< 5.0 U < 0.20 U	< 0.18 U	< 0.20 U	< 5.2 U < 0.21 U	< 0.21 U		< 0.22 U	< 5.0 U < 0.20 U	< 0.21 U
Acenaphthylene	ug/l	53	SW8270D LL	N 208-96-8	0.000	0.000	0.000	0.000		18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Acetophenone	ug/l	190	SW8270D LL	N 98-86-2						16		< 2.0 U		< 2.0 U		< 2.0 U	< 2.1 U	< 2.1 U		< 2.2 U	< 2.0 U	< 2.1 U
Anthracene	ug/l	180	SW8270D LL	N 120-12-7						18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Atrazine	ug/l	3	SW8270D LL	N 1912-24-9						16		< 2.0 U		< 2.0 U		< 2.0 U	< 2.1 U	< 2.1 U		< 2.2 U	< 2.0 U	< 2.1 U
Benzaldehyde Benzo(a)anthracene	ug/l ug/l	0.03	SW8270D LL SW8270D LL	N 100-52-7 N 56-55-3						16		< 2.0 U	< 0.18 U	< 2.0 U < 0.20 U	< 0.18 U	< 2.0 U < 0.20 U	< 2.1 U < 0.21 U	< 2.1 U < 0.21 U		< 2.2 U < 0.22 U	< 2.0 U < 0.20 U	< 2.1 U < 0.21 U
Benzo(a)pyrene	ug/l	0.03	SW8270D LL	N 50-32-8						18 18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Benzo(b)fluoranthene	ug/l	0.25	SW8270D LL	N 205-99-2						18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Benzo(g,h,i)perylene	ug/l	12	SW8270D LL	N 191-24-2						18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Benzo(k)fluoranthene	ug/l	2.5	SW8270D LL	N 207-08-9						18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
bis-(2-chloroethoxy)methane	ug/l	5.9	SW8270D LL	N 111-91-1						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
bis-(2-Chloroethyl)ether bis-(2-Ethylhexyl)phthalate	ug/l ug/l	0.014	SW8270D LL SW8270D LL	N 111-44-4 N 117-81-7						16 16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U < 2.1 U	< 1.0 U < 2.1 U		< 1.1 U < 2.2 U	< 1.0 U	< 1.0 U
Butylbenzylphthalate	ug/l	16	SW8270D LL	N 85-68-7						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
Caprolactam	ug/l	990	SW8270D LL	N 105-60-2						16		< 5.0 U		< 5.0 U		< 5.0 U	< 5.2 U	< 5.2 U		< 5.4 U	< 5.0 U	< 5.2 U
Carbazole	ug/l	29	SW8270D LL	N 86-74-8						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
Chrysene	ug/l	25	SW8270D LL	N 218-01-9						18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Dibenzo(a,h)anthracene	ug/l	0.025	SW8270D LL	N 53-70-3	0.11	0.11	0.11	0.11	MAYCOD	18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Dibenzofuran Diethylphthalate	ug/l ug/l	0.79 1500	SW8270D LL SW8270D LL	N 132-64-9 N 84-66-2	0.11	0.11	0.11	0.11	MW02B	1 16 16		< 1.0 U		0.11 J < 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
Dimethylphthalate	ug/l	1500	SW8270D LL	N 131-11-3					-	16	+	< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
Di-n-butylphthalate	ug/l	90	SW8270D LL	N 84-74-2						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
Di-n-octylphthalate	ug/l	20	SW8270D LL	N 117-84-0						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
Fluoranthene	ug/l	80	SW8270D LL	N 206-44-0						18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Fluorene	ug/l	29	SW8270D LL	N 86-73-7						18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Hexachlorobenzene Hexachlorobutadiene	ug/l ug/l	0.14	SW8270D LL SW8270D LL	N 118-74-1 N 87-68-3						16 16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
Hexachlorocyclo-pentadiene	ug/l	50	SW8270D LL SW8270D LL	N 77-47-4						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
Hexachloroethane	ug/l	0.33	SW8270D LL	N 67-72-1						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
Indeno(1,2,3-cd)pyrene	ug/l	0.25	SW8270D LL	N 193-39-5						18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Isophorone	ug/l	78	SW8270D LL	N 78-59-1						16		< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	·	< 1.1 U	< 1.0 U	< 1.0 U
Naphthalene	ug/l	0.17	SW8270D LL	N 91-20-3	2.6	0.27	1.4	1.4	MW02B	2 18		0.27	< 0.18 U	2.6	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U	·	< 0.22 U	< 0.20 U	< 0.21 U
Nitrobenzene	ug/l		SW8270D LL	N 98-95-3						16		< 2.0 U		< 2.0 U		< 2.0 U	< 2.1 U	< 2.1 U		< 2.2 U	< 2.0 U	< 2.1 U
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	ug/l ug/l	0.011	SW8270D LL SW8270D LL	N 621-64-7 N 86-30-6						16 16	+	< 1.0 U		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
тч-тчигозошрпенуванийе	ug/I	12	OVVOZIUD LL	0-30-0			l	<u> </u>	<u> </u>	16	1	~ 1.0 U	<u> </u>	\ 1.0 U	j .	> 1.0 U	\ 1.0 U	> 1.0 U		\ 1.1 U	\ 1.0 U	\ 1.0 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Groundwater Monitoring Wells

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

													Location ID Sample ID	MW01B MW01BN	MW01B MW01B122216N	MW02B MW02BN	MW02B MW02B122216N	MW03B MW03BN	MW04B MW04BN	MW05B MW05BN	MW05B MW05B042517N	MW06B MW06BN	MW07B MW07BN	MW08B MW08BN
													Sample Date Type	11/5/2014 N	12/22/2016 N	11/5/2014 N	12/22/2016 N	11/4/2014 N	11/4/2014 N	11/4/2014 N	4/25/2017 N	11/4/2014 N	11/4/2014 N	11/5/2014 N
Analyte	Unit	Project Screening Criteria	Method	Fraction	CAS	Max Detect	Min	Mean Detect	Median Detect	Max	Count	Count	,,,,,						-					
Pentachlorophenol	ua/l	1	SW8270D LL	N	87-86-5	0.53	0.53	0.53	0.53	Location MW01B	1	16 16		0.53 J		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	< 1.0 U
Phenanthrene	ug/l	180	SW8270D LL	N	85-01-8	0.068	0.068	0.068	0.068	MW02B	1	18		< 0.20 U	< 0.18 U	0.068 J	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Phenol	ug/l	580	SW8270D LL	N	108-95-2	0.26	0.12	0.2	0.22	MW01B	3	16		0.26 J		< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U		< 1.1 U	< 1.0 U	0.12 J
Pyrene	ug/l	12	SW8270D LL	N	129-00-0							18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
BaP-TE	ug/l	0.2	SW8270D LL	N	BAP							18		< 0.200 U	< 0.180 U	< 0.200 U	< 0.180 U	< 0.200 U	< 0.210 U	< 0.210 U		< 0.220 U	< 0.200 U	< 0.210 U
Total High-molecular-weight PAHs	ug/l		SW8270D LL	N	TOT-PAH-HMW							18		< 0.20 U	< 0.18 U	< 0.20 U	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Total Low-molecular-weight PAHs	ug/l		SW8270D LL	N	TOT-PAH-LMW	2.7	0.039	1	0.27	MW02B	3	18		0.27	< 0.18 U	2.7	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U
Total PAHs (sum 16)	ug/l		SW8270D LL	N	TOT-PAH	2.7	0.039	1	0.27	MW02B	3	18		0.27	< 0.18 U	2.7	< 0.18 U	< 0.20 U	< 0.21 U	< 0.21 U		< 0.22 U	< 0.20 U	< 0.21 U

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

Analyte L			Location ID	MW08B	MW09B	MW09B	MW10B	MW10B	MW11B	MW11B	MW12B	MW13B	MW13B	MW14B	MW14B	MW15B	MW15B
Analyte L			Sample ID	MW08BR	MW09BN	MW09B122116N	MW10BN	MW10B122116N	MW11BN	MW11B122216N	MW12BN	MW13BN	MW13B122016N	MW14BN	MW14B122016N	MW15BN	MW15B122116N
Analyte L			Sample Date Type	11/5/2014 FD	11/3/2014 N	12/21/2016 N	11/4/2014 N	12/21/2016 N	11/4/2014 N	12/22/2016 N	11/3/2014 N	11/3/2014 N	12/20/2016 N	11/3/2014 N	12/20/2016 N	11/3/2014 N	12/21/2016 N
Analyte		Project	. 7/	. –													
Analyte l		Screening															
4.4.4.7.11	Unit	Criteria		. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11	. 4 0 11
1,1,1-Trichloroethane ug/	_	200 0.076		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane ug/ 1,1,2-Trichloro-1,2,2-trifluoroethane ug/	_	1000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloroethane ug/		5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane ug/		2.8		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethene ug/		7		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene ug/		0.7		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,4-Trichlorobenzene ug/	g/l	70		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane ug/	g/l	0.2		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane ug/	g/l	0.05		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene ug/	_	600		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane ug,		5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane ug.	•	5		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,3-Dichlorobenzene ug,		0.48 75		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene ug/ 1,4-Dioxane ug/	_	0.46		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
2-Butanone ug/		560	+	< 5.0 U	1.1 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	1.3 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
2-Hexanone ug/	_	3.8		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 UJ	< 5.0 U	< 5.0 UJ	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
4-Methyl-2-pentanone ug/		630		< 5.0 UJ	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Acetone ug/	•	1400		< 5.0 U	5.0	< 5.0 U	< 5.0 U	5.8 J+	< 5.0 U	< 5.0 U	7.7	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	4.5 J	< 5.0 U
Benzene ug/	g/l	5		0.68 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromochloromethane ug/	g/l	8.3		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane ug/	g/l	80		< 1.0 U	0.40 J	< 1.0 U	0.66 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.61 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromoform ug/	_	80		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromomethane ug/	_	0.75		< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Butyl alcohol, tert-	_	14		. 4 0 11		62	0.07.1	6.7 J	0.70 1	< 40 U	0.00.1	. 4 0 11	< 200 U	. 4 0 11	< 40 U	0.05.1	< 40 U
Carbon Disulfide ug/	•	81 5		< 1.0 U	6.3 < 1.0 U	< 1.0 U	0.27 J < 1.0 U	< 1.0 U	0.78 J < 1.0 U	< 1.0 U	0.63 J < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.25 J < 1.0 U	< 1.0 U
Carbon Tetrachloride ug/ Chlorobenzene ug/	_	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	1.2	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane ug/		2100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroform ug/		80		2.0	4.2	< 1.0 U	1.4	< 1.0 U	0.29 J	< 1.0 U	0.27 J	1.1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloromethane ug/		19		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene ug/	_	70		< 1.0 U	< 1.0 U	0.56 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.68 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,3-Dichloropropene ug/	g/l	0.47		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane ug/	g/l	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dibromochloromethane ug/	•	80		< 1.0 U	< 1.0 U	< 1.0 U	0.24 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.30 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dichlorodifluoromethane ug/	_	20		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Diisopropyl ether ug,	•	150		4.0.11	4.0.11	0.37 J	4.0.11	0.19 J	4.0.11	< 1.0 U	4.011	4.011	< 5.0 U	4.0.11	< 1.0 U		0.35 J
Ethylbenzene ug/ Ethyl-Tert-Butyl-Ether ug/	•	700		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 5.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether ug/ Isopropylbenzene ug/	_	45	-	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
m, p-Xylene ug/	•	10000		< 2.0 U	< 2.0 U	0.15 J	< 2.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 2.0 U	< 2.0 U	< 1.0 U	< 2.0 U	< 1.0 U	< 2.0 U	< 1.0 U
Methyl Acetate ug/		2000		< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 5.0 U
Methyl tert-Butyl Ether (MTBE) ug/		14		< 1.0 U	3.5	5.5	2.1	6.1	< 1.0 U	< 1.0 U	< 1.0 U	190	110	11	7.6	1.0	0.93 J
Methylcyclohexane ug/	•	1300		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride ug/	g/l	5		0.20 J	0.18 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
o-Xylene ug/	•	10000		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Styrene ug/	•	100		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tertiary-Amyl Methyl Ether ug/	_	41				< 1.0 U	,	< 1.0 U	4	< 1.0 U	,	4	2.4 J		< 1.0 U	4	< 1.0 U
Tetrachloroethylene ug/	~	5		< 1.0 U	0.34 J	1.2	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.27 J	0.15 J	< 1.0 U	< 1.0 U	< 1.0 U
Toluene ug,	_	1000		0.19 J	0.78 J	< 1.0 U	< 1.0 U	1.6	0.19 J	< 1.0 U	12	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,2-Dichloroethene ug/ trans-1,3-Dichloropropene ug/	_	100 0.47	-	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 UJ	< 1.0 U < 1.0 U	< 1.0 U < 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U < 1.0 U	< 1.0 U
Trichloroethene ug/	_	5	-	< 1.0 U	< 1.0 U	0.43 J	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Trichlorofluoromethane ug/	_	520	+	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vinyl Chloride ug/		2		< 1.0 U	< 1.0 U	0.26 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total) ug/		10000		< 2.0 U	< 2.0 U	0.15	< 2.0 U	< 1 U	< 2.0 U	< 1 U	< 2.0 U	< 2.0 U	< 1 U	< 2.0 U	< 1 U	< 2.0 U	< 1 U
1,1'-Biphenyl ug/	_	0.083		< 1.0 U	< 0.96 U		< 1.0 U	-	< 0.96 U	-	< 1.0 U	< 0.96 U	-	< 1.0 U		< 1.0 U	
1,2,4,5-Tetrachlorobenzene ug/	_	0.17		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
2,2'-oxybis(1-Chloropropane) ug/	g/l	71		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Groundwater Monitoring Wells

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

										wasnington, i							
			Location ID	MW08B	MW09B	MW09B	MW10B	MW10B	MW11B	MW11B	MW12B	MW13B	MW13B	MW14B	MW14B	MW15B	MW15B
			Sample ID Sample Date	MW08BR 11/5/2014	MW09BN 11/3/2014	MW09B122116N 12/21/2016	MW10BN 11/4/2014	MW10B122116N 12/21/2016	MW11BN 11/4/2014	MW11B122216N 12/22/2016	MW12BN 11/3/2014	MW13BN 11/3/2014	MW13B122016N 12/20/2016	MW14BN 11/3/2014	MW14B122016N 12/20/2016	MW15BN 11/3/2014	MW15B122116N 12/21/2016
		Project	Туре	FD	N	N	N	N	N	N	N	N	N	N	N	N	N
		Screening															1
Analyte	Unit	Criteria															
2,3,4,6-Tetrachlorophenol	ug/l	24		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
2,4,5-Trichlorophenol	ug/l	120		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	1
2,4,6-Trichlorophenol	ug/l	1.2		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	1
2,4-Dichlorophenol	ug/l	4.6		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	1
2,4-Dimethylphenol 2,4-Dinitrophenol	ug/l ug/l	36 3.9		< 1.0 U < 5.0 U	< 0.96 U < 4.8 U		< 1.0 U		< 0.96 U < 4.8 U		< 1.0 U < 5.0 U	< 0.96 U < 4.8 U		< 1.0 U < 5.0 U		< 1.0 U < 5.2 U	
2,4-Dinitrophenor	ug/l	0.24		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
2,6-Dinitrotoluene	ug/l	0.049		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	<u> </u>
2-Chloronaphthalene	ug/l	75		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
2-Chlorophenol	ug/l	9.1		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
2-Methylnaphthalene	ug/l	3.6		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
2-Methylphenol	ug/l	93		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
2-Nitroaniline	ug/l	19		< 5.0 U	< 4.8 U		< 5.0 U		< 4.8 U		< 5.0 U	< 4.8 U		< 5.0 U		< 5.2 U	ļ
2-Nitrophenol	ug/l	580		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	ļ
3,3'-Dichlorobenzidine	ug/l	0.13		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
3-Nitroaniline	ug/l	3.8 0.15		< 5.0 U < 5.0 U	< 4.8 U		< 5.0 U		< 4.8 U		< 5.0 U < 5.0 U	< 4.8 U		< 5.0 U < 5.0 U		< 5.2 U < 5.2 U	1
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	ug/l ug/l	0.15		< 1.0 U	< 4.8 U		< 1.0 U		< 4.8 U		< 1.0 U	< 4.8 U		< 1.0 U		< 5.2 U	
4-Chloro-3-methylphenol	ug/l	140		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
4-Chloroaniline	ug/l	0.37		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
4-Chlorophenyl-phenylether	ug/l	0.07		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
4-Methylphenol	ug/l	190		0.49 J	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
4-Nitroaniline	ug/l	3.8		< 5.0 U	< 4.8 U		< 5.0 U		< 4.8 U		< 5.0 U	< 4.8 U		< 5.0 U		< 5.2 U	İ
4-Nitrophenol	ug/l	580		< 5.0 U	< 4.8 U		< 5.0 U		< 4.8 U		< 5.0 U	< 4.8 U		< 5.0 U		< 5.2 U	
Acenaphthene	ug/l	53		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		0.039 J	< 0.19 U		< 0.20 U		< 0.21 U	
Acenaphthylene	ug/l	53		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
Acetophenone	ug/l	190		< 2.0 U	< 1.9 U		< 2.0 U		< 1.9 U		< 2.0 U	< 1.9 U		< 2.0 U		< 2.1 U	1
Anthracene	ug/l	180		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	ļ
Atrazine	ug/l	3		< 2.0 U	< 1.9 U		< 2.0 U		< 1.9 U < 1.9 U		< 2.0 U	< 1.9 U		< 2.0 U		< 2.1 U	1
Benzaldehyde Benzo(a)anthracene	ug/l ug/l	19 0.03		< 2.0 U < 0.20 U	< 1.9 U < 0.19 U		< 2.0 U < 0.20 U		< 0.19 U		< 2.0 U < 0.20 U	< 1.9 U < 0.19 U		< 2.0 U < 0.20 U		< 2.1 U < 0.21 U	
Benzo(a)pyrene	ug/l	0.03		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
Benzo(b)fluoranthene	ug/l	0.25		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
Benzo(g,h,i)perylene	ug/l	12		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
Benzo(k)fluoranthene	ug/l	2.5		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
bis-(2-chloroethoxy)methane	ug/l	5.9		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
bis-(2-Chloroethyl)ether	ug/l	0.014		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
bis-(2-Ethylhexyl)phthalate	ug/l	6		< 2.0 U	< 1.9 U		< 2.0 U		< 1.9 U		< 2.0 U	< 1.9 U		< 2.0 U		< 2.1 U	
Butylbenzylphthalate	ug/l	16		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	1
Caprolactam	ug/l	990		< 5.0 U	< 4.8 U		< 5.0 U		< 4.8 U		< 5.0 U	< 4.8 U		< 5.0 U		< 5.2 U	1
Carbazole	ug/l	29		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	1
Chrysene Dibenzo(a,h)anthracene	ug/l	25		< 0.20 U < 0.20 U	< 0.19 U < 0.19 U		< 0.20 U < 0.20 U		< 0.19 U < 0.19 U		< 0.20 U < 0.20 U	< 0.19 U < 0.19 U		< 0.20 U < 0.20 U		< 0.21 U < 0.21 U	
	ug/l ug/l	0.025 0.79		< 0.20 U	< 0.19 U < 0.96 U		< 0.20 U		< 0.19 U < 0.96 U		< 0.20 U	< 0.19 U < 0.96 U		< 0.20 U		< 0.21 U	
Dibenzofuran Diethylphthalate	ug/l	1500		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	1
Dimethylphthalate	ug/l	1500		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
Di-n-butylphthalate	ug/l	90		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
Di-n-octylphthalate	ug/l	20		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
Fluoranthene	ug/l	80		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
luorene	ug/l	29		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
Hexachlorobenzene	ug/l	1		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
Hexachlorobutadiene	ug/l	0.14		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
lexachlorocyclo-pentadiene	ug/l	50		< 1.0 U	< 0.96 U		< 1.0 UJ		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
lexachloroethane	ug/l	0.33		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	ļ
ndeno(1,2,3-cd)pyrene	ug/l	0.25		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
sophorone	ug/l	78		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
Naphthalene	ug/l	0.17		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	1
Nitrobenzene	ug/l	0.14		< 2.0 U	< 1.9 U < 0.96 U		< 2.0 U		< 1.9 U < 0.96 U		< 2.0 U	< 1.9 U < 0.96 U		< 2.0 U < 1.0 U		< 2.1 U < 1.0 U	
N-Nitroso-di-n-propylamine	ug/l	0.011		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U				< 1.0 U	
N-Nitrosodiphenylamine	ug/l	12		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	<u> </u>

Groundwater Results

VOCs, SVOCs, and TPH Fractions Concentrations in LWZ Groundwater Monitoring Wells

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID Sample ID	MW08BR	MW09B MW09BN	MW09B MW09B122116N	MW10B MW10BN	MW10B MW10B122116N	MW11B MW11BN	MW11B MW11B122216N	MW12B MW12BN	MW13B MW13BN	MW13B MW13B122016N	MW14B MW14BN	MW14B MW14B122016N	MW15B MW15BN	MW15B MW15B122116N
			Sample Date Type	11/5/2014 FD	11/3/2014 N	12/21/2016 N	11/4/2014 N	12/21/2016 N	11/4/2014 N	12/22/2016 N	11/3/2014 N	11/3/2014 N	12/20/2016 N	11/3/2014 N	12/20/2016 N	11/3/2014 N	12/21/2016 N
		Project Screening	Турс	10		N		, ,		N				- N	N	- 14	N
Analyte	Unit	Criteria		44011	40.0011		44011		40.0011		44011	10.0011		44011		44011	
Pentachlorophenol	ug/i	1		< 1.0 U	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
Phenanthrene	ug/l	180		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
Phenol	ug/l	580		0.22 J	< 0.96 U		< 1.0 U		< 0.96 U		< 1.0 U	< 0.96 U		< 1.0 U		< 1.0 U	
Pyrene	ug/l	12		< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
BaP-TE	ug/l	0.2		< 0.200 U	< 0.190 U		< 0.200 U		< 0.190 U		< 0.200 U	< 0.190 U		< 0.200 U		< 0.210 U	
Total High-molecular-weight PAHs	ug/l			< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		< 0.20 U	< 0.19 U		< 0.20 U		< 0.21 U	
Total Low-molecular-weight PAHs	ug/l			< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		0.039	< 0.19 U		< 0.20 U		< 0.21 U	
Total PAHs (sum 16)	ug/l			< 0.20 U	< 0.19 U		< 0.20 U		< 0.19 U		0.039	< 0.19 U		< 0.20 U		< 0.21 U	

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria. D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential Nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte. J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ug/l = micrograms per liter

Groundwater Results

PCBs and Pesticides Concentrations in LWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

													Location ID Sample ID Sample Date Type	MW01B MW01BN 11/5/2014 N	MW02B MW02BN 11/5/2014 N
		Project													
		Screening				Max	Min	Mean	Median	Max	Count				
Analyte	Unit	Criteria	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Count Total		0.004044	0.004044
4,4'-DDD	ug/l	0.0063		N	72-54-8	0.004	2 22 4	0.004	2 22 4	1 #14/00B		21		< 0.0013 U	< 0.0012 U
4,4'-DDE	ug/l	0.046		N	72-55-9	0.001	0.001	0.001	0.001	MW08B	1	21		< 0.0013 U	< 0.0012 U
4,4'-DDT	ug/l	0.23		N	50-29-3	0.0042	0.0028	0.0036	0.0037	MW08B	3	21		< 0.0013 U	< 0.0012 U
Aldrin	ug/l	0.00092		N	309-00-2							21		< 0.0013 U	< 0.0012 U
alpha-BHC	ug/l	0.0072		N	319-84-6	0.0044	0.0044	0.0044	0.0011	1 #14/00B		21		< 0.0013 U	< 0.0012 U
beta-BHC	ug/l	0.025		N	319-85-7	0.0011	0.0011	0.0011	0.0011	MW02B	1	21		< 0.0013 U	0.0011 J
cis-Chlordane	ug/l	2		N	5103-71-9							21		< 0.0013 U	< 0.0012 U
delta-BHC	ug/l	0.0072		N	319-86-8	0.00051	0.00051	0.00051	0.00051	MW14B	1	21		< 0.0013 U	< 0.0012 U
Dieldrin	ug/l	0.0018		N	60-57-1	0.0022	0.0022	0.0022	0.0022	MW08B	1	21		< 0.0013 U	< 0.0012 U
Endosulfan I	ug/l	10		N	959-98-8							21		< 0.0013 U	< 0.0012 U
Endosulfan II	ug/l	10		N	33213-65-9							21		< 0.0013 U	< 0.0012 U
Endosulfan Sulfate	ug/l	10		N	1031-07-8	0.00073	0.00073	0.00073	0.00073	MW04B	1	21		< 0.0013 U	< 0.0012 U
Endrin	ug/l	0.2		N	72-20-8	0.002	0.0017	0.0019	0.0019	MW08B	2	21		< 0.0013 U	< 0.0012 U
Endrin aldehyde	ug/l	0.23		N	7421-93-4							21		< 0.0013 U	< 0.0012 U
Endrin ketone	ug/l	0.23		N	53494-70-5							21		< 0.0013 U	< 0.0012 U
gamma-BHC (Lindane)	ug/l	0.2		N	58-89-9							21		< 0.0013 U	< 0.0012 U
Heptachlor	ug/l	0.4		N	76-44-8							21		< 0.0013 U	< 0.0012 U
Heptachlor Epoxide	ug/l	0.2		N	1024-57-3	0.0016	0.00077	0.0013	0.0014	MW08B	4	21		< 0.0013 U	< 0.0012 U
Methoxychlor	ug/l	40		N	72-43-5							21		< 0.0024 U	< 0.0024 U
Toxaphene	ug/l	3		N	8001-35-2							21		< 0.096 U	< 0.095 U
trans-Chlordane	ug/l	2		N	5103-74-2	0.0026	0.00096	0.0014	0.0013	MW08B	5	21		< 0.0013 U	< 0.0012 U
Aroclor-1016	ug/l			N	12674-11-2							16		< 0.0096 U	< 0.0095 U
Aroclor-1221	ug/l			N	11104-28-2							16		< 0.0096 U	< 0.0095 U
Aroclor-1232	ug/l			Ν	11141-16-5							16		< 0.0096 U	< 0.0095 U
Aroclor-1242	ug/l			Ν	53469-21-9							16		< 0.0096 U	< 0.0095 U
Aroclor-1248	ug/l		SW8082A LL	N	12672-29-6							16		< 0.0096 U	< 0.0095 U
Aroclor-1254	ug/l		SW8082A LL	N	11097-69-1	0.071	0.049	0.06	0.06	MW08B	2	16		< 0.0096 U	< 0.0095 U
Aroclor-1260	ug/l		SW8082A LL	N	11096-82-5	0.038	0.028	0.033	0.033	MW08B	2	16		< 0.0096 U	< 0.0095 U
Aroclor-1262	ug/l		SW8082A LL	N	37324-23-5							16		< 0.0096 U	< 0.0095 U
Aroclor-1268	ug/l		SW8082A LL	N	11100-14-4							16		< 0.0096 U	< 0.0095 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5	SW8082A LL	N	TOT-PCB-ARO-C	0.11	0.077	0.094	0.094	MW08B	2	16		< 0.0096 U	< 0.0095 U

Groundwater Results

PCBs and Pesticides Concentrations in LWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	MW03B	MW04B	MW04B	MW05B	MW05B	MW06B	MW07B	MW08B	MW08B
			Sample ID	MW03BN	MW04BN	MW04B122116N	MW05BN	MW05B122116N	MW06BN	MW07BN	MW08BN	MW08BR
			Sample Date	11/4/2014	11/4/2014	12/21/2016	11/4/2014	12/21/2016	11/4/2014	11/4/2014	11/5/2014	11/5/2014
			Type	N	N	N	N	N	N	N	N	FD
		Project										
		Screening										
Analyte	Unit	Criteria										
4,4'-DDD	ug/l	0.0063		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
4,4'-DDE	ug/l	0.046		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	0.0010 J
4,4'-DDT	ug/l	0.23		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	0.0042	0.0037
Aldrin	ug/l	0.00092		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
alpha-BHC	ug/l	0.0072		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
beta-BHC	ug/l	0.025		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
cis-Chlordane	ug/l	2		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
delta-BHC	ug/l	0.0072		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
Dieldrin	ug/l	0.0018		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
Endosulfan I	ug/l	10		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
Endosulfan II	ug/l	10		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
Endosulfan Sulfate	ug/l	10		< 0.0013 U	0.00073 J	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
Endrin	ug/l	0.2		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	0.0017	0.0020
Endrin aldehyde	ug/l	0.23		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
Endrin ketone	ug/l	0.23		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
gamma-BHC (Lindane)	ug/l	0.2		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
Heptachlor	ug/l	0.4		< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	< 0.0013 U
Heptachlor Epoxide	ug/l	0.2		< 0.0013 U	0.0014 J	< 0.0013 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0013 U	0.0016 J	0.0013 J
Methoxychlor	ug/l	40		< 0.0024 U	< 0.0024 U	< 0.0013 U	< 0.0024 U	< 0.0013 U	< 0.0025 U	< 0.0025 U	< 0.0025 U	< 0.0025 U
Toxaphene	ug/l	3		< 0.097 U	< 0.094 U	< 0.097 U	< 0.095 U	< 0.096 U	< 0.098 U	< 0.098 U	< 0.099 U	< 0.099 U
trans-Chlordane	ug/l	2		< 0.0013 U	0.0014	< 0.0013 U	0.0013	< 0.0013 U	< 0.0013 U	< 0.0013 U	0.0026 J	0.00098 J
Aroclor-1016	ug/l			< 0.0097 UJ	< 0.0094 UJ		< 0.0095 UJ		< 0.0098 UJ	< 0.0098 U	< 0.0099 U	< 0.0099 U
Aroclor-1221	ug/l			< 0.0097 UJ	< 0.0094 UJ		< 0.0095 UJ		< 0.0098 UJ	< 0.0098 U	< 0.0099 U	< 0.0099 U
Aroclor-1232	ug/l			< 0.0097 UJ	< 0.0094 UJ		< 0.0095 UJ		< 0.0098 UJ	< 0.0098 U	< 0.0099 U	< 0.0099 U
Aroclor-1242	ug/l			< 0.0097 UJ	< 0.0094 UJ		< 0.0095 UJ		< 0.0098 UJ	< 0.0098 U	< 0.0099 U	< 0.0099 U
Aroclor-1248	ug/l			< 0.0097 UJ	< 0.0094 UJ		< 0.0095 UJ		< 0.0098 UJ	< 0.0098 U	< 0.0099 U	< 0.0099 U
Aroclor-1254	ug/l			< 0.0097 UJ	< 0.0094 UJ		< 0.0095 UJ		< 0.0098 UJ	< 0.0098 U	0.071 J	0.049 J
Aroclor-1260	ug/l			< 0.0097 UJ	< 0.0094 UJ		< 0.0095 UJ		< 0.0098 UJ	< 0.0098 U	0.038 J	0.028 J
Aroclor-1262	ug/l			< 0.0097 UJ	< 0.0094 UJ		< 0.0095 UJ		< 0.0098 UJ	< 0.0098 U	< 0.0099 U	< 0.0099 U
Aroclor-1268	ug/l			< 0.0097 UJ	< 0.0094 UJ		< 0.0095 UJ		< 0.0098 UJ	< 0.0098 U	< 0.0099 U	< 0.0099 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5		< 0.0097 U	< 0.0094 U		< 0.0095 U		< 0.0098 U	< 0.0098 U	0.11	0.077

Groundwater Results

PCBs and Pesticides Concentrations in LWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	MW08B	MW09B	MW10B	MW11B	MW12B	MW13B	MW13B	MW14B	MW14B	MW15B
			Sample ID	MW08B122116N	MW09BN	MW10BN	MW11BN	MW12BN	MW13BN	MW13B122016N	MW14BN	MW14B122016N	MW15BN
			Sample Date	12/21/2016	11/3/2014	11/4/2014	11/4/2014	11/3/2014	11/3/2014	12/20/2016	11/3/2014	12/20/2016	11/3/2014
			Type	N	N	N	N	N	N	N	N	N	N
		D : 1	1,700			.,	.,	.,	.,		.,		
		Project Screening											
Analyte	Unit	Criteria											
4.4'-DDD	ug/l	0.0063		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
4.4'-DDE	ug/l	0.046		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
4,4'-DDT	ug/l	0.23		< 0.0012 U	< 0.0012 U	< 0.0013 U	0.0028	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
Aldrin	ug/l	0.00092		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
alpha-BHC	ug/l	0.0072		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
beta-BHC	ug/l	0.025		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
cis-Chlordane	ug/l	2		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
delta-BHC	ug/l	0.0072		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.00051 J	< 0.0013 U	< 0.0012 U
Dieldrin	ug/l	0.0018		0.0022	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
Endosulfan I	ug/l	10		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
Endosulfan II	ug/l	10		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
Endosulfan Sulfate	ug/l	10		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
Endrin	ug/l	0.2		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
Endrin aldehyde	ug/l	0.23		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
Endrin ketone	ug/l	0.23		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
gamma-BHC (Lindane)	ug/l	0.2		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
Heptachlor	ug/l	0.4		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
Heptachlor Epoxide	ug/l	0.2		0.00077 J	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0012 U
Methoxychlor	ug/l	40		< 0.0012 U	< 0.0024 U	< 0.0025 U	< 0.0024 U	< 0.0024 U	< 0.0024 U	< 0.0012 U	< 0.0024 U	< 0.0013 U	< 0.0024 U
Toxaphene	ug/l	3		< 0.095 U	< 0.094 U	< 0.10 U	< 0.096 U	< 0.095 U	< 0.094 U	< 0.095 U	< 0.095 U	< 0.096 U	< 0.094 U
trans-Chlordane	ug/l	2		< 0.0012 U	< 0.0012 U	< 0.0013 U	< 0.0013 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.00096 J	< 0.0013 U	< 0.0012 U
Aroclor-1016	ug/l				< 0.0094 U	< 0.010 U	< 0.0096 U	< 0.0095 U	< 0.0094 U		< 0.0095 U		< 0.0094 U
Aroclor-1221	ug/l				< 0.0094 U	< 0.010 U	< 0.0096 U	< 0.0095 U	< 0.0094 U		< 0.0095 U		< 0.0094 U
Aroclor-1232	ug/l				< 0.0094 U	< 0.010 U	< 0.0096 U	< 0.0095 U	< 0.0094 U		< 0.0095 U		< 0.0094 U
Aroclor-1242	ug/l				< 0.0094 U	< 0.010 U	< 0.0096 U	< 0.0095 U	< 0.0094 U		< 0.0095 U		< 0.0094 U
Aroclor-1248	ug/l				< 0.0094 U	< 0.010 U	< 0.0096 U	< 0.0095 U	< 0.0094 U		< 0.0095 U		< 0.0094 U
Aroclor-1254	ug/l				< 0.0094 U	< 0.010 U	< 0.0096 U	< 0.0095 U	< 0.0094 U		< 0.0095 U		< 0.0094 U
Aroclor-1260	ug/l		_		< 0.0094 U	< 0.010 U	< 0.0096 U	< 0.0095 U	< 0.0094 U		< 0.0095 U		< 0.0094 U
Aroclor-1262	ug/l				< 0.0094 U	< 0.010 U	< 0.0096 U	< 0.0095 U	< 0.0094 U		< 0.0095 U		< 0.0094 U
Aroclor-1268	ug/l				< 0.0094 U	< 0.010 U	< 0.0096 U	< 0.0095 U	< 0.0094 U		< 0.0095 U		< 0.0094 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5			< 0.0094 U	< 0.010 U	< 0.0096 U	< 0.0095 U	< 0.0094 U		< 0.0095 U		< 0.0094 U

Groundwater Results

PCBs and Pesticides Concentrations in LWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Notes

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate

EN = Essential Nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ug/l = micrograms per liter

Groundwater Results

Dioxins and Furans Concentrations in LWZ Groundwater Monitoring Wells Benning Road Facility RI/FS Project

3400 Benning Road, NE Washington, DC 20019

											Lo	cation ID	MW01B	MW03B	MW04B	MW07B	MW07B	MW09B	MW09B	MW11B	MW11B	MW12B	MW12B	MW13B
											S	Sample ID	MW01BN	MW03BN	MW04BN	MW07BN	MW07B122016N	MW09BN	MW09B122116N	MW11BN	MW11B122216N	MW12BN	MW12B122016N	MW13BN
											San	nple Date	11/5/2014	11/4/2014	11/4/2014	11/4/2014	12/20/2016	11/3/2014	12/21/2016	11/4/2014	12/22/2016	11/3/2014	12/20/2016	11/3/2014
												Туре	N	N	N	N	N	N	N	N	N	N	N	N
						Max	Min	Mean	Median	Max	Count	Count												
Analyte	Unit	Method	Fraction	n Unit	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total												
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/l	SW8290A	N	pg/l	67562-39-4	4.14	1.86	3	3	MW07B	2	12	< 0.541 U	< 1.57 UJ	< 1.01 U	4.14 JN	< 1.12 U	< 1.30 U	1.86 J	< 0.659 U	< 0.8 U	< 4.14 U	< 0.625 U	< 1.52 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/l	SW8290A	N	pg/l	35822-46-9	205	2.62	58.1	12.4	MW12B	4	12	< 1.33 U	< 1.34 U	< 1.25 U	< 1.49 U	< 1.35 U	9.31 JN	2.62 JN	15.5 JN	< 1.12 U	205 JN	< 0.823 U	< 1.83 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/l	SW8290A	N	pg/l	55673-89-7	1.41	1.41	1.41	1.41	MW09B	1	12	< 0.829 U	< 1.85 UJ	< 1.21 U	< 0.943 U	< 1.54 U	< 1.52 U	1.41 JN	< 0.733 U	< 1.04 U	< 8.19 U	< 0.804 U	< 2.17 U
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/l	SW8290A	N	pg/l	70648-26-9	2.2	2.2	2.2	2.2	MW11B	1	12	< 0.420 U	< 0.806 U	< 0.639 U	< 0.566 U	< 1.17 U	< 0.350 U	< 1.02 U	2.20 JN	< 0.834 U	< 2.37 U	< 0.988 U	< 0.760 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/l	SW8290A	N	pg/l	39227-28-6							12	< 0.652 U	< 1.31 U	< 0.930 U	< 1.22 U	< 1.96 U	< 0.933 U	< 1.35 U	< 1.15 U	< 1.41 U	< 4.12 U	< 1.31 U	< 1.51 U
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/l	SW8290A	N	pg/l	57117-44-9							12	< 0.432 U	< 0.715 U	< 0.627 U	< 0.562 U	< 1.1 U	< 0.353 U	< 1.01 U	< 0.445 U	< 0.818 U	< 2.16 U	< 0.926 U	< 0.809 U
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/l	SW8290A	Ν	pg/l	57653-85-7							12	< 0.774 U	< 1.36 U	< 0.957 U	< 1.41 U	< 2.08 U	< 0.930 U	< 1.36 U	< 1.16 U	< 1.39 U	< 4.07 U	< 1.41 U	< 1.64 U
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/l	SW8290A	N	pg/l	72918-21-9	1.51	1.51	1.51	1.51	MW09B	1	12	< 0.592 U	< 0.920 U	< 0.806 U	< 0.681 U	< 1.43 U	< 0.396 U	1.51 JN	< 0.535 U	< 1.02 U	< 2.56 U	< 1.17 U	< 1.07 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/l	SW8290A	N	pg/l	19408-74-3	0.978	0.978	0.978	0.978	MW09B	1	12	< 0.659 U	< 1.24 U	< 0.877 U	< 1.22 U	< 2.16 U	< 0.866 U	0.978 JN	< 1.07 U	< 1.51 U	< 3.81 U	< 1.46 U	< 1.46 U
1,2,3,7,8-PeCDF	pg/l	SW8290A	N	pg/l	57117-41-6							12	< 0.981 U	< 1.14 U	< 0.779 U	< 0.632 U	< 1.11 U	< 0.631 U	< 0.978 U	< 0.574 U	< 1.01 U	< 2.21 U	< 0.578 U	< 1.71 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/l	SW8290A	N	pg/l	40321-76-4							12	< 1.21 U	< 1.55 U	< 0.956 U	< 0.903 U	< 1.68 U	< 0.896 U	< 1.26 U	< 0.944 U	< 1.35 U	< 3.05 U	< 0.995 U	< 2.51 U
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/l	SW8290A	N	pg/l	60851-34-5	1.74	1.74	1.74	1.74	MW09B	1	12	< 0.397 U	< 0.795 U	< 0.687 U	< 0.581 U	< 1.2 U	< 0.357 U	1.74 J	< 0.457 U	< 0.887 U	< 2.28 U	< 1.01 U	< 0.739 U
2,3,4,7,8-Pentachlorodibenzofuran	pg/l	SW8290A	N	pg/l	57117-31-4							12	< 0.864 U	< 1.15 U	< 0.690 U	< 0.570 U	< 1.17 U	< 0.554 U	< 1.03 U	< 0.532 U	< 0.97 U	< 1.91 U	< 0.541 U	< 1.78 U
2,3,7,8-Tetrachlorodibenzofuran	pg/l	SW8290A	N	pg/l	51207-31-9							12	< 1.29 U	< 2.27 U	< 1.81 U	< 1.49 U	< 1.15 U	< 1.10 U	< 0.93 U	< 1.25 U	< 1 U	< 2.30 U	< 0.83 U	< 2.46 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/l	SW8290A	Ν	pg/l	1746-01-6							12	< 1.82 U	< 2.69 U	< 2.53 U	< 1.71 U	< 1.15 U	< 1.96 U	< 1.34 U	< 2.06 U	< 1.35 U	< 3.10 U	< 0.981 U	< 3.65 U
Octachlorochlorodibenzofuran	pg/l	SW8290A	N	pg/l	39001-02-0	18.9	4.13	11.5	11.5	MW12B	2	12	< 3.79 U	< 2.75 UJ	< 2.08 U	< 3.31 UJ	< 4.51 U	< 1.84 UJ	4.13 JN	< 8.12 U	< 2.79 U	18.9 JN	< 2.49 U	< 8.04 U
Octachlorochlorodibenzo-p-dioxin	pg/l	SW8290A	N	pg/l	3268-87-9	4290	5.67	590	32.1	MW12B	8	12	23.7 J	28.3 J	< 13.5 U	35.8 J	< 7.95 U	96.0 J	23.9 J	218	< 4.84 U	4290	5.67 J	< 14.1 U
Total HpCDD	pg/l	SW8290A	N	pg/l	37871-00-4	507	5.15	141	26.8	MW12B	4	12	< 1.33 U	< 1.34 U	< 1.25 U	< 1.49 U	< 1.35 U	19.4 JN	5.15	34.1 JN	< 1.12 U	507 JN	< 0.823 U	< 1.83 U
Total HpCDF	pg/l	SW8290A	N	pg/l	38998-75-3	4.14	3.27	3.71	3.71	MW07B	2	12	< 0.658 U	< 1.70 UJ	< 1.10 U	4.14 JN	< 1.31 U	< 1.40 U	3.27	< 0.694 U	< 0.91 U	< 5.54 U	< 0.706 U	< 1.79 U
Total HxCDD	pg/l	SW8290A	N	pg/l	34465-46-8	227	0.978	49.8	4.26	MW12B	5	12	3.97 JN	< 1.30 U	12.8 JN	< 1.28 U	< 2.06 U	4.26 JN	0.978	< 1.13 U	< 1.43 U	227 JN	< 1.39 U	< 1.53 U
Total HxCDF	pg/l	SW8290A	N	pg/l	55684-94-1	5.08	2.2	3.62	3.59	MW09B	3	12	< 0.449 U	3.59 JN	< 0.683 U	< 0.593 U	< 1.21 U	< 0.363 U	5.08	2.20 JN	< 0.884 U	< 2.33 U	< 1.02 U	< 0.827 U
Total PeCDD	pg/l	SW8290A	N	pg/l	36088-22-9	56.2	56.2	56.2	56.2	MW12B	1	12	< 1.21 U	< 1.55 U	< 0.956 U	< 0.903 U	< 1.68 U	< 0.896 U	< 1.26 U	< 0.944 U	< 1.35 U	56.2 JN	< 0.995 U	< 2.51 U
Total PeCDF	pg/l	SW8290A	N	pg/l	30402-15-4	3.52	1.24	2.38	2.38	MW12B	2	12	< 0.917 U	< 1.15 U	< 0.730 U	< 0.598 U	< 1.14 U	< 0.589 U	< 1 U	< 0.551 U	< 0.988 U	3.52 JN	< 0.559 U	1.24 JN
Total TCDD	pg/l	SW8290A	N	pg/l	41903-57-5	298	3.92	80.8	10.7	MW12B	4	12	< 1.82 U	< 2.69 U	< 2.53 U	< 1.71 U	< 1.15 U	13.9 JN	3.92	7.43 JN	< 1.35 U	298 JN	< 0.981 U	< 3.65 U
Total TCDF	pg/l	SW8290A	N	pg/l	55722-27-5	11.6	1.29	6.45	6.45	MW12B	2	12	< 1.29 U	< 2.27 U	< 1.81 U	< 1.49 U	< 1.15 U	< 1.10 U	< 0.93 U	< 1.25 U	< 1 U	11.6 JN	< 0.83 U	1.29 J
TCDD TEQ HH	pg/l	SW8290A	N	pg/l	DFTEQ-HH	3.34	0.0017	0.558	0.0871	MW12B	8	12	0.00711	0.00849	< 2.53 U	0.0521	< 1.68 U	0.122	0.490	0.440	< 1.35 U	3.34	0.00170	< 3.65 U

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

D = Dissolved

T = Total

N = Normal

FD = Field Duplicate EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.

 J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- 3- The analyte was positively identified, the associated furfields value is the approximate concentration of the a

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the

sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

pg/l = picograms per liter

Table 4-25
Storm Drain Surface Water Results
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

											Location ID	SD013	SDMH02	SDPEPR1	SDPEPR1	SDPEPR2	SDPEPR3	SDPEPR4	SDPEPR5	SDW101
											Sample ID	SDW013N	SDWMH02N	SDWPEPR1N	SDPEPR1R	SDWPEPR2N	SDWPEPR3N	SDPEPR4N	SDWPEPR5N	SDW101 SDW101N
											Sample Date	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013
											Type	N	N	10/7/2013 N	FD	10/1/2013 N	10/1/2013 N	10/7/2013 N	10/1/2013 N	10/1/2013 N
									Location		Турс	14	14	IN .	10	14	IN	IN	11	
					Max		Mean	Median	Max	Count	Count									ļ
Analyte	Unit	Method	Fraction	CAS	Detect	Min Detect	Detect	Detect	Detect	Detects	Total									ļ
Hardness (as CaCO3)	mg/l	A2340C	D	HARD	32	8	16	12	SDW101	9	9	28	8.0	20	12	8.0	16	10	12	32
Hardness (as CaCO3)	mg/l	A2340C	Т	HARD	46	10	26	24	SDPEPR1	9	9	42	12	40	46	14	10	20	24	24
Aluminum	ug/l	SW6020A	D	7429-90-5	410	4.8	56	11	SDPEPR3	9	9	8.2 J	13 J	8.5 J	11 J	27 J	410 J	7.5 J	4.8 J	16 J
Antimony	ug/l	SW6020A	D	7440-36-0	16	0.5	2.7	1.1	SDPEPR4	9	9	1.1 J	1.7 J	0.73 J	0.50 J	0.79 J	1.7 J	16	1.1 J	1.0 J
Arsenic	ug/l	SW6020A	D	7440-38-2	1.8	0.35	0.68	0.44	SDMH02	6	9	0.63 J	1.8	0.35 J	< 1.0 U	0.44 J	0.44 J	< 1.0 U	< 1.0 U	0.43 J
Barium	ug/l	SW6020A	D	7440-39-3	19	4.6	9.9	9	SDPEPR3	9	9	11	4.6 J	9.7 J	6.3 J	6.8 J	19	5.5 J	9.0 J	17
Beryllium	ug/l	SW6020A	D	7440-41-7						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cadmium	ug/l	SW6020A	D	7440-43-9	0.64	0.43	0.54	0.54	SDPEPR3	2	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.64 J	< 1.0 U	0.43 J	< 1.0 U
Calcium	ug/l	SW6020A	D	7440-70-2	11000	2100	5000	3500	SDW101	9	9	8600	3100	6300 J	3400 J	2100	3700	3000	3500	11000
Chromium	ug/l	SW6020A	D	7440-47-3	4.2	1.9	2.8	2.5	SDPEPR3	9	9	2.5	3.2	1.9 J	2.0	2.8	4.2	3.8	2.3	2.5
Cobalt	ug/l	SW6020A	D	7440-48-4	0.67	0.03	0.35	0.36	SDPEPR3	3	9	< 0.50 U	0.030 J	0.36 J	< 0.50 U	< 0.50 U	0.67	< 0.50 U	< 0.50 U	< 0.50 U
Copper	ug/l	SW6020A	D	7440-50-8	39	5	12	9.4	SDPEPR3	9	9	6.6	13	5.0	5.7	9.4	39	7.3	10	10
Iron	ug/l	SW6020A	D	7439-89-6	790	16	400	400	SDPEPR3	2	9	< 50 UJ	< 50 UJ	< 50 UJ	< 50 UJ	16 J+	790 J+	< 50 UJ	< 50 UJ	< 50 UJ
Lead	ug/l	SW6020A	D	7439-92-1	46	1.1	24	24	SDPEPR3	2	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	46 J	1.1 J	< 1.0 U	< 1.0 U
Magnesium	ug/l	SW6020A	D	7439-95-4	1400	270	700	630	SD013	9	9	1400	270	790	700	470	1100	460	630	460
Manganese	ug/l	SW6020A	D	7439-96-5	39	6.2	20	18	SDPEPR1	4	9	< 5.0 U	< 5.0 U	39 J	6.2 J	< 5.0 U	26	< 5.0 U	< 5.0 U	9.8
Nickel	ug/l	SW6020A	D	7440-02-0	3.4	0.85	1.5	1.4	SDPEPR3	9	9	2.0	1.5	1.7	1.4	0.85 J	3.4	0.89 J	1.3	0.88 J
Potassium	ug/l	SW6020A	D	7440-09-7	1300	330	800	810	SDPEPR1	9	9	960	570	1300	1000	330	1100	810	650	520
Selenium	ug/l	SW6020A	D	7782-49-2	8.0	0.44	0.58	0.55	SDPEPR5	4	9	0.56 J	0.44 J	< 5.0 U	< 5.0 U	0.53 J	< 5.0 U	< 5.0 U	0.80 J	< 5.0 U
Silver	ug/l	SW6020A	D	7440-22-4						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l	SW6020A	D	7440-23-5	3800	750	1400	990	SD013	9	9	3800	960	990	750	1500	1200	980	1400	960
Thallium	ug/l	SW6020A	D	7440-28-0						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vanadium	ug/l	SW6020A	D	7440-62-2	26	1.3	8.9	7.2	SD013	9	9	26	13	10	7.2	3.3	4.6	1.6	1.3	13
Zinc	ug/l	SW6020A	D	7440-66-6	290	20	120	80	SDPEPR1	9	9	41 J	35 J	230 J	290 J	35 J	220 J	80 J	89 J	20 J
Aluminum	ug/l	SW6020A	 -	7429-90-5	3200	170	1200	1100	SDW101	9	9	1400 J+	170 J+	1000 J+	1300 J+	1300 J+	510 J+	640 J+	1100 J+	3200 J+
Antimony	ug/l	SW6020A		7440-36-0	19	0.45	4	2.2	SDPEPR4	9	9	2.2 J	1.7 J	1.0 J	1.3 J	3.4 J	2.6 J	19 J	3.2 J	1.6 J
Arsenic	ug/l	SW6020A		7440-38-2	1.6	0.45	0.9	0.86	SD013	8	9	1.6	1.2	0.74 J	1.1	< 1.0 U	0.45 J	0.66 J	0.47 J	0.98 J
Barium	ug/l	SW6020A	 -	7440-39-3	39	13	25	26	SDW101	8	9	28 J	< 10 U	25 J	29 J	24 J	13 J	15 J	26 J	39 J
Beryllium	ug/l	SW6020A		7440-41-7	0.2	0.045	0.11	0.096	SDW101	4	9	0.12 J	< 1.0 U	< 1.0 U	0.071 J	0.045 J	< 1.0 U	< 1.0 U	< 1.0 U	0.20 J
Cadmium	ug/l	SW6020A		7440-43-9 7440-70-2	1.5	0.18	0.55	0.53	SDPEPR5	9	9	0.40 J	0.18 J 3200	0.55 J	0.54 J	0.24 J 3400	0.37 J	0.53 J 4300	1.5 5700	0.63 J
Calcium Chromium	ug/l ug/l	SW6020A SW6020A	T	7440-70-2	12000 12	3000	6200 8.6	5700 10	SD013 SDW101	9	9	12000 11	3.2	8300 8.1	9200 11	7.2	3000 4.6	10	10	6800 12
Cobalt		SW6020A	T	7440-47-3	3.4	0.31	1.5	1.3	SDW101	9	9	2.3	0.31 J	1.6	2.0	1.1	0.65	0.82	1.3	3.4
0	ug/l	SW6020A SW6020A	 	7440-46-4	59	20	37	35	SDW101	9	0	35		29	35	45	24	33	49	59
Iron	ug/l ug/l	SW6020A	' T	7439-89-6	5200	340	2500	2400	SDW101	9	9	3000 J-	20 340 J-	29 2200 J-	2800 J-	2400 J-	1200 J-	2100 J-	3300 J-	5200 J-
Lead	ug/l	SW6020A	 	7439-99-0	61	7.1	31	31	SDW101	9	9	31	7.1	30	32	2400 J-	1200 J- 17	47	33	61
Magnesium	ug/l	SW6020A	+	7439-95-4	5200	410	2500	2000	SD013	9	9	5200	410	3900	4600	1300	950	1400	2000	2600
Manganese	ug/l	SW6020A	T	7439-96-5	89	8.3	49	48	SD013	9	9	89	8.3	54	67	35	18	30	48	89
manganooo	ug/i	51100Z0A		1 100-00-0	33	5.5	73		SDW101		3		0.5	34	- 0 <i>1</i>	33	10	30	70	0.3
Nickel	ug/l	SW6020A	Т	7440-02-0	32	3.4	15	7.8	SDPEPR1	9	9	27	3.5	24	32	6.2	3.4	4.3	7.8	25
Potassium	ug/l	SW6020A	T	7440-09-7	1500	590	1000	1000	SDPEPR1	9	9	1300	590	1200	1500	750	830	1000	960	1100
Selenium	ug/l	SW6020A	Т	7782-49-2	0.87	0.49	0.68	0.68	SD013	2	9	0.87 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	0.49 J	< 5.0 U
Silver	ug/l	SW6020A	Т	7440-22-4	1	0.044	0.25	0.14	SDPEPR5	7	9	0.12 J	< 1.0 U	0.044 J	0.15 J	< 1.0 U	0.14 J	0.18 J	1.0	0.14 J
Sodium	ug/l	SW6020A	Т	7440-23-5	3600	870	1400	1000	SD013	9	9	3600	960	900	1000	1900	1000	1000	1300	870
Thallium	ug/l	SW6020A	Т	7440-28-0	0.12	0.016	0.047	0.04	SDPEPR1	9	9	0.043 J	0.016 J	0.12 J	0.040 J	0.052 J	0.024 J	0.025 J	0.020 J	0.080 J
Vanadium	ug/l	SW6020A	Т	7440-62-2	73	4.3	32	16	SD013	9	9	73	16	48 J	67 J	13	4.7	4.3	6.9	52
Zinc	ug/l	SW6020A	Т	7440-66-6	760	48	300	210	SDPEPR1	9	9	210 J	48 J	660 J	760 J	140 J	150 J	210 J	250 J	280 J
Mercury	ug/l	SW7470A	ID.	7439-97-6	1	1	i	1		0	9	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U

Table 4-25
Storm Drain Surface Water Results
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

													1	1		II.	1	•		
											Location ID	SD013	SDMH02	SDPEPR1	SDPEPR1	SDPEPR2	SDPEPR3	SDPEPR4	SDPEPR5	SDW101
											Sample ID	SDW013N	SDWMH02N	SDWPEPR1N	SDWPEPR1R	SDWPEPR2N	SDWPEPR3N	SDWPEPR4N	SDWPEPR5N	SDW101N
										5	Sample Date	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013
	1				ı	1		ı	ı	ı	Туре	N	N	N	FD	N	N	N	N	N
									Location											
Analyte	Unit	Method	Fraction	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Detect	Count Detects	Count Total									
Mercury	ug/l	SW7470A	T	7439-97-6	Detect	Will Detect	Detect	Detect	Detect	0	9	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U
Diesel Range Organics (C10-C20)	ug/l	SW8015C DRO	N.	C10C20	1200	320	780	810	SDPEPR4	4	9	< 480 U	< 480 U	320 J	960 J	< 480 U	< 480 U	1200	650	< 480 U
Oil Range Organics (C20-C36)	ug/l	SW8015C DRO	N	C20C36	3300	260	1000	660	SDPEPR4	8	9	420 J	< 480 U	700	940	440 J	610	3300	1500	260 J
Gasoline Range Organics (C6-C10)	ug/l	SW8015C GRO	N	8006-61-9						0	9	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U
4,4'-DDD	ug/l	SW8081B LL	N	72-54-8	0.0019	0.00078	0.0013	0.0012	SDPEPR5	3	9	0.0012 J	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.00078 J	< 0.0012 U	0.0019 J	< 0.0012 U
4,4'-DDE	ug/l	SW8081B LL	N	72-55-9	0.0018	0.0018	0.0018	0.0018	SDPEPR5	1	9	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0018	< 0.0012 U
4,4'-DDT	ug/l	SW8081B LL	N	50-29-3	0.02	0.0022	0.009	0.0077	SDPEPR3	5	9	0.0077 J	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.020	0.0040 J	0.011	0.0022 J
Aldrin	ug/l	SW8081B LL	N	309-00-2						0	9	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
alpha-BHC	ug/l	SW8081B LL	N	319-84-6						0	9	< 0.0012 UJ	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
beta-BHC	ug/l	SW8081B LL	N	319-85-7						0	9	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
cis-Chlordane	ug/l	SW8081B LL	N	5103-71-9	0.0015	0.0013	0.0014	0.0014	SDPEPR1	2	9	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0015	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0013 J	< 0.0012 U
delta-BHC	ug/l	SW8081B LL	N	319-86-8	0.0013	0.00041	0.00075	0.00053	SDPEPR3	3	9	0.00053 J	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0013 J	0.00041 J	< 0.0012 U	< 0.0012 U
Dieldrin	ug/l	SW8081B LL	N	60-57-1	0.0036	0.001	0.0019	0.0011	SDPEPR3	3	9	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0036	0.0011 J	0.0010 J	< 0.0012 U
Endosulfan I	ug/l	SW8081B LL	N	959-98-8						0	9	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
Endosulfan II	ug/l	SW8081B LL	N	33213-65-9	0.0017	0.00093	0.0013	0.0013	SDPEPR3	2	9	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.00093 J	< 0.0012 U	0.0017 J	< 0.0012 U	< 0.0012 U	< 0.0012 U
Endosulfan Sulfate	ug/l	SW8081B LL	N	1031-07-8	0.001	0.00086	0.00093	0.00094	SDPEPR4	3	8	R	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.00094 J	0.0010 J	0.00086 J	< 0.0012 U
Endrin	ug/l	SW8081B LL	N	72-20-8	0.0028	0.0013	0.0019	0.0018	SDPEPR3	4	9	0.0014 J	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0028 J	0.0013 J	0.0022 J	< 0.0012 U
Endrin aldehyde	ug/l	SW8081B LL	N	7421-93-4	0.0013	0.0012	0.0013	0.0013	SDPEPR4	2	8	R	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0013	0.0012 J	< 0.0012 U
Endrin ketone	ug/l	SW8081B LL	N	53494-70-5	0.0037	0.00095	0.0022	0.0023	SDPEPR3	5	9	0.00095 J	< 0.0012 U	0.0013 J	0.0023	< 0.0012 U	0.0037 J	< 0.0012 U	0.0027 J	< 0.0012 U
gamma-BHC (Lindane)	ug/l	SW8081B LL	N	58-89-9	0.0015	0.001	0.0013	0.0013	SDPEPR1	4	9	0.0013 J	< 0.0012 U	0.0010 J	0.0015	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0012 J
Heptachlor	ug/l	SW8081B LL	N	76-44-8						0	9	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U
Heptachlor Epoxide	ug/l	SW8081B LL	N	1024-57-3	0.0012	0.0012	0.0012	0.0012	SDPEPR3	1	9	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	< 0.0012 U	0.0012 J	< 0.0012 U	< 0.0012 U	< 0.0012 U
Methoxychlor	ug/l	SW8081B LL	N	72-43-5	0.014	0.0012	0.005	0.0025	SDPEPR4	7	9	0.0025 J	< 0.0024 U	0.0020 J	0.0079 J	0.0019 J	< 0.0024 U	0.014	0.0012 J	0.0054
Toxaphene	ug/l	SW8081B LL	N	8001-35-2						0	9	< 0.095 U	< 0.094 U	< 0.095 U	< 0.095 U	< 0.095 U	< 0.094 U	< 0.094 U	< 0.094 U	< 0.095 U
trans-Chlordane	ug/l	SW8081B LL	N	5103-74-2	0.0021	0.0011	0.0016	0.0017	SDPEPR1	4	9	< 0.0012 U	< 0.0012 U	0.0021	0.0018	< 0.0012 U	0.0015 J	< 0.0012 U	0.0011 J	< 0.0012 U
Aroclor-1016	ug/l	SW8082A LL	N	12674-11-2						0	9	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1221	ug/l	SW8082A LL	N	11104-28-2						0	9	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1232	ug/l	SW8082A LL	N	11141-16-5						0	9	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1242	ug/l	SW8082A LL	N	53469-21-9						0	9	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1248	ug/l	SW8082A LL	N	12672-29-6	0.26	0.26	0.26	0.26	SDPEPR3	1	9	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	0.26	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1254	ug/l	SW8082A LL	N	11097-69-1	0.40	0.40	0.40	0.40	ODDEDDO	0	9	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1260	ug/l	SW8082A LL	N	11096-82-5	0.19	0.19	0.19	0.19	SDPEPR3	1	9	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	0.19	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor 1262	ug/l	SW8082A LL	N	37324-23-5						0	9	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.0094 U	< 0.0094 U	< 0.0095 U
Aroclor-1268 PCB, Total Aroclors	ug/l	SW8082A LL SW8082A LL	IN N	11100-14-4 TOT-PCB-ARO-C	0.45	0.45	0.45	0.45	SDPEPR3	0	9	< 0.0095 U < 0.0095 U	< 0.0094 U < 0.0094 U	< 0.0095 U < 0.0095 U	< 0.0095 U < 0.0095 U	< 0.0095 U < 0.0095 U	< 0.0094 U	< 0.0094 U < 0.0094 U	< 0.0094 U < 0.0094 U	< 0.0095 U < 0.0095 U
1,1,1-Trichloroethane	ug/l ug/l	SW8260B	N	71-55-6	0.45	0.45	0.45	0.45	SUPERNS	0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.45 < 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane	ug/l	SW8260B	N	79-34-5						0	9	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	SW8260B	N	76-13-1						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1.1.2-Trichloroethane	ug/l	SW8260B	N	79-00-5						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	SW8260B	N	75-34-3						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethene	ug/l	SW8260B	N	75-35-4	1.1	1.1	1.1	1.1	SD013	1	9	1.1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene	ug/l	SW8260B	N	87-61-6	1.1	1.1	1.1	1.1	00010	0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2,4-Trichlorobenzene	ug/l	SW8260B	N	120-82-1						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane	ug/l	SW8260B	N	96-12-8						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane	ug/l	SW8260B	N	106-93-4						0	9	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
1,2-Dichlorobenzene	ug/l	SW8260B	N	95-50-1	2.5	2.5	2.5	2.5	SD013	1	9	2.5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l	SW8260B	N	107-06-2		 			†	0	9	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
1,2-Dichloropropane	ug/l	SW8260B	N	78-87-5						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
7 1 1 11	J					1		I	I .		1 1									

Table 4-25
Storm Drain Surface Water Results
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

											lti ID	00040	CDMUO	CDDEDD4	CDDEDD4	CDDEDDO	CDDEDD2	CDDEDD4	CDDEDDC	CDW404
											Location ID	SD013	SDMH02	SDPEPR1	SDPEPR1	SDPEPR2	SDPEPR3	SDPEPR4 SDWPEPR4N	SDPEPR5	SDW101
											Sample ID	SDW013N	SDWMH02N	SDWPEPR1N	SDWPEPR1R	SDWPEPR2N	SDWPEPR3N		SDWPEPR5N	SDW101N
										3	Sample Date	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013
	1	1	T	1	ı	T I		Ī	Τ	Ī	Туре	N	N	N	FD	N	N	IN	N	N
					Max		Mean	Median	Location Max	Count	Count									ı
Analyte	Unit	Method	Fraction	CAS	Detect	Min Detect	Detect	Detect	Detect	Detects	Total									ı
1,3-Dichlorobenzene	ug/l	SW8260B	N	541-73-1						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	SW8260B	N	106-46-7						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dioxane	ug/l	SW8260B	N	123-91-1						0	9	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U	< 200 U
2-Butanone	ug/l	SW8260B	N	78-93-3	1.5	1.2	1.4	1.4	SD013	2	9	1.5 J	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	1.2 J	< 5.0 U
2-Hexanone	ug/l	SW8260B	N	591-78-6						0	9	< 5.0 UJ	< 5.0 UJ	< 5.0 UJ	< 5.0 UJ	< 5.0 UJ	< 5.0 UJ	< 5.0 UJ	< 5.0 UJ	< 5.0 UJ
4-Methyl-2-pentanone	ug/l	SW8260B	N	108-10-1	1.1	0.53	0.78	0.7	SDPEPR1	3	9	0.70 J	< 5.0 U	1.1 J	< 5.0 UJ	< 5.0 UJ	< 5.0 UJ	< 5.0 UJ	0.53 J	< 5.0 UJ
Acetone	ug/l	SW8260B	N	67-64-1						0	9	< 17 UJ	< 5.0 U	< 19 UJ	< 6.0 UJ	< 8.8 UJ	< 5.5 UJ	< 6.4 UJ	< 7.6 UJ	< 5.9 UJ
Benzene	ug/l	SW8260B	N	71-43-2						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromochloromethane	ug/l	SW8260B	N	74-97-5						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane	ug/l	SW8260B	N	75-27-4						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Bromoform	ug/l	SW8260B	N	75-25-2						0	9	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
Bromomethane	ug/l	SW8260B	N	74-83-9						0	9	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
Carbon Disulfide	ug/l	SW8260B	N	75-15-0						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Carbon Tetrachloride	ug/l	SW8260B	N	56-23-5						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chlorobenzene	ug/l	SW8260B	N	108-90-7						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane	ug/l	SW8260B	N	75-00-3						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloroform	ug/l	SW8260B	N	67-66-3						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Chloromethane	ug/l	SW8260B	N	74-87-3	0.46	0.29	0.38	0.4	SDPEPR4	3	9	< 1.0 U	< 1.0 U	0.29 J	< 1.0 U	< 1.0 U	< 1.0 U	0.46 J	< 1.0 U	0.40 J
cis-1,2-Dichloroethylene	ug/l	SW8260B	N	156-59-2						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,3-Dichloropropene	ug/l	SW8260B	N	10061-01-5						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane	ug/l	SW8260B	N	110-82-7						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Dibromochloromethane	ug/l	SW8260B	N	124-48-1						0	9	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
Dichlorodifluoromethane	ug/l	SW8260B	N	75-71-8						0	9	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
Ethylbenzene	ug/l	SW8260B	N	100-41-4						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Isopropylbenzene	ug/l	SW8260B	N	98-82-8						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
m, p-Xylene	ug/l	SW8260B	N	XYLMP						0	9	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Methyl Acetate	ug/l	SW8260B	N	79-20-9						0	9	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
Methyl tert-Butyl Ether (MTBE)	ug/l	SW8260B	N	1634-04-4						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylcyclohexane	ug/l	SW8260B	N	108-87-2						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	SW8260B	N	75-09-2						0	9	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
o-Xylene	ug/l	SW8260B	N	95-47-6						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Styrene	ug/l	SW8260B	N	100-42-5						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Tetrachloroethylene	ug/l	SW8260B	N	127-18-4						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Toluene	ug/l	SW8260B	N	108-88-3					ļ	0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,2-Dichloroethene	ug/l	SW8260B	N	156-60-5	1					0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,3-Dichloropropene	ug/l	SW8260B	N	10061-02-6						0	9	< 1.0 UJ	< 1.0 U	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
Trichloroethene	ug/l	SW8260B	IN N	79-01-6						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Trichlorofluoromethane	ug/l	SW8260B	IN	75-69-4						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	SW8260B	N	75-01-4						0	9	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	SW8260B	N	1330-20-7						0	9	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Acenaphthene	ug/l	SW8270D LL	IN N	83-32-9	0.007	0.007	0.007	0.007	CDDEDE (0	9	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Acenaphthylene	ug/l	SW8270D LL	IN N	208-96-8	0.037	0.037	0.037	0.037	SDPEPR1	7	9	< 0.19 U	< 0.19 U	< 0.19 U	0.037 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U
Anthracene	ug/l	SW8270D LL	IN N	120-12-7	0.071	0.035	0.05	0.049	SDPEPR4	6	9	0.044 J	0.060 J	< 0.19 U	0.054 J	< 0.19 U	0.038 J	0.071 J	< 0.19 U	0.035 J
Benzo(a)anthracene	ug/l	SW8270D LL	IN NI	56-55-3	0.33	0.039	0.14	0.085	SDMH02	9	9	0.22	0.33	0.039 J	0.063 J	0.049 J	0.19	0.23	0.066 J	0.085 J
Benzo(a)pyrene	ug/l	SW8270D LL	IN NI	50-32-8	0.24	0.031	0.13	0.1	SD013	9	9	0.24	0.22	0.031 J	0.079 J	0.049 J	0.20	0.23	0.059 J	0.10 J
Benzo(b)fluoranthene	ug/l	SW8270D LL	IN NI	205-99-2	0.47	0.045	0.24	0.26	SDPEPR4	9		0.34	0.38	0.045 J	0.26 J	0.053 J	0.28	0.47	0.11 J	0.19
Benzo(g,h,i)perylene	ug/l	SW8270D LL	IN NI	191-24-2	0.46	0.026	0.19	0.14	SDMH02	9	9	0.29	0.46	0.026 J	0.14 J	0.086 J	0.21	0.35	0.095 J	0.097 J
Benzo(k)fluoranthene	ug/l	SW8270D LL	IN	207-08-9	0.39	0.055	0.17	0.14	SDMH02	/	9	0.24	0.39	< 0.19 U	0.075 J	0.055 J	0.14 J	0.23	< 0.19 U	0.073 J

Table 4-25 Storm Drain Surface Water Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

											Location ID	SD013	SDMH02	SDPEPR1	SDPEPR1	SDPEPR2	SDPEPR3	SDPEPR4	SDPEPR5	SDW101
											Sample ID	SDW013N	SDWMH02N	SDWPEPR1N	SDWPEPR1R	SDWPEPR2N	SDWPEPR3N	SDWPEPR4N	SDWPEPR5N	SDW101N
										S	Sample Date	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013	10/7/2013
											Туре	N	N	N	FD	N	N	N	N	N
									Location											
					Max		Mean	Median	Max	Count	Count									
Analyte	Unit	Method	Fraction	CAS	Detect	Min Detect	Detect	Detect	Detect	Detects	Total									
Chrysene	ug/l	SW8270D LL	N	218-01-9	0.47	0.066	0.26	0.28	SDPEPR4	9	9	0.35	0.41	0.066 J	0.35 J	0.072 J	0.28	0.47	0.13 J	0.21
Dibenzo(a,h)anthracene	ug/l	SW8270D LL	N	53-70-3	0.45	0.035	0.16	0.08	SDMH02	5	9	0.18 J	0.45	< 0.19 U	0.035 J	< 0.19 U	0.075 J	0.080 J	< 0.19 U	< 0.19 U
Fluoranthene	ug/l	SW8270D LL	N	206-44-0	0.84	0.1	0.34	0.29	SDPEPR4	9	9	0.44	0.12 J	0.11 J	0.49 J	0.10 J	0.46	0.84	0.18 J	0.29
Fluorene	ug/l	SW8270D LL	N	86-73-7	0.044	0.023	0.031	0.025	SDPEPR4	3	9	< 0.19 U	0.025 J	< 0.19 U	< 0.19 U	< 0.19 U	0.023 J	0.044 J	< 0.19 U	< 0.19 U
Indeno(1,2,3-cd)pyrene	ug/l	SW8270D LL	N	193-39-5	0.43	0.04	0.18	0.13	SDMH02	8	9	0.24	0.43	< 0.19 U	0.097 J	0.040 J	0.17 J	0.28	0.071 J	0.079 J
Naphthalene	ug/l	SW8270D LL	N	91-20-3	1.4	0.023	0.31	0.04	SDPEPR1	5	9	0.063 J	< 0.19 U	< 0.19 UJ	1.4 J	< 0.19 U	0.040 J	0.026 J	0.023 J	< 0.19 U
Phenanthrene	ug/l	SW8270D LL	N	85-01-8	0.56	0.076	0.21	0.16	SDPEPR4	9	9	0.24	0.076 J	0.083 J	0.27 J	0.10 J	0.28	0.56	0.16 J	0.16 J
Pyrene	ug/l	SW8270D LL	N	129-00-0	0.57	0.065	0.24	0.24	SDPEPR4	9	9	0.34	0.095 J	0.065 J	0.25 J	0.097 J	0.35	0.57	0.13 J	0.24
Total High-molecular-weight PAHs	ug/l	SW8270D LL	N	TOT-PAH-HMW	3.8	0.38	1.9	1.8	SDPEPR4	9	9	2.9	3.3	0.38	1.8	0.60	2.4	3.8	0.84	1.4
Total Low-molecular-weight PAHs	ug/l	SW8270D LL	N	TOT-PAH-LMW	1.8	0.083	0.44	0.2	SDPEPR1	9	9	0.35	0.16	0.083	1.8	0.10	0.38	0.70	0.18	0.20
Total PAHs (sum 16)	ug/l	SW8270D LL	N	TOT-PAH	4.5	0.47	2.4	2.7	SDPEPR4	9	9	3.2	3.4	0.47	3.6	0.70	2.7	4.5	1.0	1.6

Notes:

Bold values indicate detects.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample and the numerical
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample and the numerical value has a low bias.
- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate and may or may not represent the actual limit of quantitation in the sample.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- D = Dissolved T = Total

ug/l = micrograms per liter

N = Normal mg/l = milligrams per liter

Table 4-26 Storm Drain Residue Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

										Location ID	SD013	SDPEPR4	SDPEPR5	SDPEPR5	SDR101
										Sample ID	SD013 SDR013N	SDPEPR4 SDRPEPR4N	SDPEPRS SDRPEPRSN	SDPEPRS SDRPEPRSR	SDR101 SDR101N
										Sample Date	10/8/2013	10/8/2013	10/8/2013	10/8/2013	10/8/2013
										Type	N	N	N	FD	N
	1		l	Max	Min	Mean	Median	Max	Count	Турс				15	
Analyte	Unit	Method	CAS	Detect	Detect	Detect	Detect	Location	Detect	Count Total	•			Į.	
Aluminum	mg/kg	SW6020A	7429-90-5	7800	2200	4000	3500	SDPEPR4	5	5	2700	7800	3500	3600	2200
Antimony	mg/kg	SW6020A	7440-36-0	4	0.6	2.2	2.1	SDPEPR4	5	5	0.60	4.0	2.1	1.2	3.2
Arsenic	mg/kg	SW6020A	7440-38-2	4.7	1.6	2.4	2	SDPEPR4	5	5	1.6	4.7	2.2	1.6	2.0
Barium	mg/kg	SW6020A	7440-39-3	120	36	66	58	SDPEPR4	5	5	36	120	73	58	43
Beryllium	mg/kg	SW6020A	7440-41-7	0.49	0.15	0.26	0.23	SDPEPR4	5	5	0.17	0.49	0.24	0.23	0.15
Cadmium	mg/kg	SW6020A	7440-43-9	5.4	0.42	2.1	1.3	SDPEPR4	5	5	0.42 J+	5.4 J+	2.3 J+	1.3 J+	1.2 J+
Calcium	mg/kg	SW6020A	7440-70-2	41000	11000	21000	17000	SD013	5	5	41000 J-	21000 J-	17000 J-	14000 J-	11000 J-
Chromium	mg/kg	SW6020A	7440-47-3	100	19	53	43	SDPEPR4	5	5	19 J-	100 J-	62 J-	41 J-	43 J-
Cobalt	mg/kg	SW6020A	7440-48-4	13	3.8	6.7	5.8	SDPEPR4	5	5	3.8	13	5.8	4.3	6.5
Copper	mg/kg	SW6020A	7440-50-8	610	41	180	89	SDPEPR4	5	5	41 J	610 J	89 J	52 J	91 J
Iron	mg/kg	SW6020A	7439-89-6	85000	16000	33000	23000	SDPEPR4	5	5	17000	85000	23000	16000	23000
Lead	mg/kg	SW6020A	7439-92-1	3200	43	750	150	SDR101	5	5	43 J	290 J	150 J	86 J	3200 J
Magnesium	mg/kg	SW6020A	7439-95-4	20000	7600	12000	9600	SD013	5	5	20000 J-	13000 J-	9600 J-	7600 J-	8700 J-
Manganese	mg/kg	SW6020A	7439-96-5	480	100	240	220	SDPEPR4	5	5	250 J	480 J	170 J	100 J	220 J
Nickel	mg/kg	SW6020A	7440-02-0	90	25	54	41	SDPEPR4	5	5	25	90	41	28	84
Potassium	mg/kg	SW6020A	7440-09-7	1100	340	590	570	SDPEPR4	5	5	340	1100	610	570	340
Selenium	mg/kg	SW6020A	7782-49-2	0.92	0.27	0.42	0.29	SDPEPR4	5	5	0.27 J	0.92 J	0.29 J	0.35 J	0.27 J
Silver	mg/kg	SW6020A	7440-22-4	2.2	0.071	0.64	0.32	SDPEPR4	5	5	0.071 J+	2.2 J+	0.39 J+	0.32 J+	0.21 J+
Sodium	mg/kg	SW6020A	7440-23-5	680	170	410	380	SDPEPR5	5	5	170	380	600	680	230
Thallium	mg/kg	SW6020A	7440-28-0	0.088	0.015	0.051	0.059	SDR101	5	5	0.015 J	0.071 J	0.059 J	0.021 J	0.088 J
Vanadium	mg/kg	SW6020A	7440-62-2	100	22	44	35	SDR101	5	5	22	38	35	23	100
Zinc	mg/kg	SW6020A	7440-66-6	3200	310	980	460	SDPEPR4	5	5	310 0.015 J	3200	490	460	450 0.047
Mercury	mg/kg	SW7471B SW8015C DRO	7439-97-6 C10C20	0.071 3300	0.015 61	0.034 1400	0.021 1100	SDPEPR4 SDPEPR4	5	5	0.015 J 61 J	0.071 3300	0.016 J 1100	0.021 J 1100	1400
Diesel Range Organics (C10-C20) Oil Range Organics (C20-C36)	mg/kg	SW8015C DRO SW8015C DRO	C10C20 C20C36	5800	430	2700	2400	SDPEPR4 SDPEPR4	5	5	61 J 430	3300 5800	1100 2700	1100 2400	1400 2400
Gasoline Range Organics (C6-C10)	mg/kg		8006-61-9	1600	260	720	290	SDR101	3	5	< 100 UJ	< 170 UJ	2700 290 J	2400 260 J	1600 J
4,4'-DDD	ug/kg ug/kg	SW8081B LL	72-54-8	6.6	1.1	3	1.4	SDR 101	3	5	1.1 J	< 170 UJ 6.6 J	290 J 1.4 J	260 J < 27 U	< 5.2 U
4.4'-DDE	ug/kg ug/kg	SW8081B LL	72-55-9	54	1.6	28	28	SDPEPR5	2	5 5	< 5.1 U	1.6 J	< 5.5 U	54 J	< 5.2 U
4,4'-DDT	ug/kg ug/kg	SW8081B LL	50-29-3	52	1.4	21	15	SD013	4	5	52	5.4 J	< 5.5 U	24 J	1.4 J
Aldrin	ug/kg	SW8081B LL	309-00-2	120	5.9	63	63	SDPEPR5	2	5	5.9	< 8.3 U	< 5.5 U	120	< 5.2 U
alpha-BHC	ug/kg	SW8081B LL	319-84-6	120	0.0			ODI ELITO	0	5	< 5.1 U	< 8.3 U	< 5.5 U	< 27 U	< 5.2 U
beta-BHC	ug/kg	SW8081B LL	319-85-7	21	3.6	12	12	SDPEPR5	2	5	< 5.1 U	3.6 J	< 5.5 U	21 J	< 5.2 U
cis-Chlordane	ug/kg	SW8081B LL	5103-71-9	9.8	1.4	4.4	1.9	SDPEPR5	3	5	< 5.1 U	1.9 J	1.4 J	9.8 J	< 5.2 U
delta-BHC	ug/kg	SW8081B LL	319-86-8	15	0.93	5	2	SDPEPR5	4	5	2.2 J	1.7 J	0.93 J	15 J	< 5.2 U
Dieldrin	ug/kg	SW8081B LL	60-57-1	60	5.5	23	13	SDPEPR5	4	5	12	13 J	5.5	60 J	< 5.2 U
Endosulfan I	ug/kg	SW8081B LL	959-98-8	99	99	99	99	SDPEPR5	1	5	< 5.1 U	< 8.3 U	< 5.5 U	99 J	< 5.2 U
Endosulfan II	ug/kg	SW8081B LL	33213-65-9	9.4	1.6	5.8	6.3	SDPEPR4	3	5	6.3	9.4	1.6 J	< 27 U	< 5.2 U
Endosulfan Sulfate	ug/kg	SW8081B LL	1031-07-8	26	2.1	10	6	SDPEPR5	4	5	3.5 J	8.5 J	2.1 J	26 J	< 5.2 U
Endrin	ug/kg	SW8081B LL	72-20-8	11	3.3	6.9	6.3	SDPEPR4	3	5	6.3 J	11 J	3.3 J	< 27 U	< 5.2 U
Endrin aldehyde	ug/kg	SW8081B LL	7421-93-4	5.5	3.4	4.5	4.5	SDPEPR5	2	5	< 5.1 U	< 8.3 U	3.4 J	5.5 J	< 5.2 U
Endrin ketone	ug/kg	SW8081B LL	53494-70-5	21	4.8	13	13	SDPEPR4	4	5	9.7 J	21 J	4.8 J	17 J	< 5.2 U
gamma-BHC (Lindane)	ug/kg	SW8081B LL	58-89-9	17	2.2	7.3	2.8	SDPEPR4	3	5	2.8 J	17	2.2 J	< 27 U	< 5.2 U
Heptachlor	ug/kg	SW8081B LL	76-44-8	4.7	2.1	3.4	3.4	SDPEPR4	2	5	< 5.1 U	4.7 J	2.1 J	< 27 U	< 5.2 U
Heptachlor Epoxide	ug/kg	SW8081B LL	1024-57-3	37	3.5	20	20	SDPEPR5	2	5	3.5 J	< 8.3 U	< 5.5 U	37 J	< 5.2 U
Methoxychlor	ug/kg	SW8081B LL	72-43-5	11000	2	2200	46	SDPEPR5	5	5	46 J	87 J	17 J	11000 JX	2.0 J
Toxaphene	ug/kg	SW8081B LL	8001-35-2						0	5	< 200 U	< 330 U	< 220 U	< 1100 U	< 210 U
trans-Chlordane	ug/kg	SW8081B LL	5103-74-2	4.6	1.9	3	2.4	SD013	3	5	4.6 J	2.4 J	1.9 J	< 27 U	< 5.2 U
Aroclor-1016	ug/kg	SW8082A LL	12674-11-2						0	5	< 5.1 U	< 8.3 U	< 5.5 U	< 5.4 U	< 5.2 U
Aroclor-1221	ug/kg	SW8082A LL	11104-28-2						0	5	< 5.1 U	< 8.3 U	< 5.5 U	< 5.4 U	< 5.2 U
Aroclor-1232	ug/kg	SW8082A LL	11141-16-5						0	5	< 5.1 U	< 8.3 U	< 5.5 U	< 5.4 U	< 5.2 U
Aroclor-1242	ug/kg	SW8082A LL	53469-21-9						0	5	< 5.1 U	< 8.3 U	< 5.5 U	< 5.4 U	< 5.2 U
Aroclor-1248	ug/kg	SW8082A LL	12672-29-6	460	460	460	460	SD013	1	5	460	< 8.3 U	< 5.5 U	< 5.4 U	< 5.2 U
Aroclor-1254	ug/kg	SW8082A LL	11097-69-1	220	10	95	54	SDPEPR4	3	5	< 5.1 U	220 J	54 J	< 5.4 UJ	10 J
Aroclor-1260	ug/kg	SW8082A LL	11096-82-5	560	13	310	320	SDPEPR4	5	5	500	560 J	160 J	320 J	13 J
Aroclor-1262 Aroclor-1268	ug/kg ug/kg	SW8082A LL SW8082A LL	37324-23-5 11100-14-4						0	5	< 5.1 U < 5.1 U	< 8.3 U < 8.3 U	< 5.5 U < 5.5 U	< 5.4 U < 5.4 U	< 5.2 U < 5.2 U

Table 4-26 Storm Drain Residue Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Analyte	Count Detect 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sample ID Sample Date Type Count Total 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SDR013N 10/8/2013 N 960 < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U	SDRPEPR4N 10/8/2013 N 780 < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U	SDRPEPR5N 10/8/2013 N 210 < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U	\$DRPEPRSR 10/8/2013 FD 320 < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U	SDR101N 10/8/2013 N 23 < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U
Analyte	Detect 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Type Count Total 5 5 5 5 5 5 5 5 5 5 5 5 5	960 < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U	780 < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U	N 210 < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U	\$20 \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U	23 < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U
Analyte	Detect 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Type Count Total 5 5 5 5 5 5 5 5 5 5 5 5 5	960 < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U	780 < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U < 8.6 U	N 210 < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U	\$20 \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U \$5.0 U	23 < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U
Analyte	Detect 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Count Total 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U	< 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U
PCB, Total Aroclors ug/kg SW8082A LL TOT-PCB-ARO-C 960 23 460 320 SD013 1,1,1-Trichloroethane ug/kg SW8260B 71-55-6	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U	< 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U
1,1,1-Trichloroethane ug/kg SW8260B 71-55-6 1,1,2,2-Tetrachloroethane ug/kg SW8260B 79-34-5 1,1,2-Trichloroethane ug/kg SW8260B 76-13-1 1,1,2-Trichloroethane ug/kg SW8260B 76-13-1 1,1-Dichloroethane ug/kg SW8260B 75-34-3 1,1-Dichloroethane ug/kg SW8260B 75-35-4 1,2,3-Trichlorobenzene ug/kg SW8260B 87-61-6 1,2,3-Trichlorobenzene ug/kg SW8260B 87-61-6 1,2,4-Trichlorobenzene ug/kg SW8260B 120-82-1 1,2-Dibromo-3-chloropropane ug/kg SW8260B 96-12-8 1,2-Dichlorobenzene ug/kg SW8260B 96-50-1 1,2-Dichloropropane ug/kg SW8260B 95-50-1 1,2-Dichloropropane ug/kg SW8260B 98-75-5 1,2-Dichloropropane ug/kg SW8260B 78-87-5 1,3-Dichloroberzene ug/kg SW8260B 78-87-5 1,3-Dichloroberzene ug/kg	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U	< 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U
1,1,2,2-Tetrachloroethane ug/kg SW8260B 79-34-5 1,1,2-Trichloro-1,2,2-trifluoroethane ug/kg SW8260B 76-13-1 1,1,2-Trichloroethane ug/kg SW8260B 79-00-5 1,1-Dichloroethane ug/kg SW8260B 75-34-3 1,1-Dichloroethane ug/kg SW8260B 75-34-3 1,2-3-Trichlorobenzene ug/kg SW8260B 87-61-6 1,2,4-Trichlorobenzene ug/kg SW8260B 120-82-1 1,2-Dibromo-3-chloropropane ug/kg SW8260B 96-12-8 1,2-Dibromoethane ug/kg SW8260B 106-93-4 1,2-Dichlorobenzene ug/kg SW8260B 95-50-1 1,2-Dichloropropane ug/kg SW8260B 107-06-2 1,2-Dichlorobenzene ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U	< 8.6 U	< 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U	< 5.0 U < 5.0 U < 5.0 U < 5.0 U	< 5.7 U < 5.7 U < 5.7 U < 5.7 U
1,1,2-Trichloro-1,2,2-trifluoroethane ug/kg SW8260B 76-13-1 1,1,2-Trichloroethane ug/kg SW8260B 79-00-5 1,1-Dichloroethane ug/kg SW8260B 75-34-3 1,1-Dichloroethene ug/kg SW8260B 75-35-4 1,2,3-Trichlorobenzene ug/kg SW8260B 87-61-6 1,2,4-Trichlorobenzene ug/kg SW8260B 120-82-1 1,2-Dibromo-3-chloropropane ug/kg SW8260B 96-12-8 1,2-Dibromoethane ug/kg SW8260B 106-93-4 1,2-Dichlorobenzene ug/kg SW8260B 95-50-1 1,2-Dichloropropane ug/kg SW8260B 107-06-2 1,2-Dichlorobenzene ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< 5.5 U	< 8.6 U	< 5.2 U < 5.2 U < 5.2 U	< 5.0 U < 5.0 U	< 5.7 U < 5.7 U
1,1,2-Tirchloroethane ug/kg SW8260B 79-00-5 1,1-Dichloroethane ug/kg SW8260B 75-34-3 1,1-Dichloroethane ug/kg SW8260B 75-35-4 1,2,3-Tirchlorobenzene ug/kg SW8260B 87-61-6 1,2,3-Tirchlorobenzene ug/kg SW8260B 12-82-1 1,2-Dibromo-3-chloropropane ug/kg SW8260B 96-12-8 1,2-Dichlorobenzene ug/kg SW8260B 106-93-4 1,2-Dichlorobenzene ug/kg SW8260B 95-50-1 1,2-Dichloropropane ug/kg SW8260B 107-06-2 1,2-Dichloropropane ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0 0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5 5 5 5 5 5	< 5.5 U	< 8.6 U	<pre><5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U <5.2 U</pre>	< 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U	< 5.7 U < 5.7 U
1,1-Dichloroethane ug/kg SW8260B 75-34-3 1,1-Dichloroethane ug/kg SW8260B 75-35-4 1,2,3-Trichlorobenzene ug/kg SW8260B 87-61-6 1,2,4-Trichlorobenzene ug/kg SW8260B 120-82-1 1,2-Dibromo-3-chloropropane ug/kg SW8260B 96-12-8 1,2-Dibromoethane ug/kg SW8260B 106-93-4 1,2-Dichlorobenzene ug/kg SW8260B 95-50-1 1,2-Dichloropropane ug/kg SW8260B 107-06-2 1,2-Dichloropropane ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5 5 5	< 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U	< 8.6 U	< 5.2 U < 5.2 U	< 5.0 U <	< 5.7 U <
1,1-Dichloroethene ug/kg SW8260B 75-35-4 1,2.3-Trichlorobenzene ug/kg SW8260B 87-61-6 1,2.4-Trichlorobenzene ug/kg SW8260B 120-82-1 1,2-Dibromo-3-chloropropane ug/kg SW8260B 96-12-8 1,2-Dibromoethane ug/kg SW8260B 106-93-4 1,2-Dichlorobenzene ug/kg SW8260B 95-50-1 1,2-Dichloroethane ug/kg SW8260B 107-06-2 1,2-Dichloropropane ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5 5 5	< 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U	< 8.6 U	< 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U	< 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U	< 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U
1,2,3-Trichlorobenzene ug/kg SW8260B 87-61-6 1,2,4-Trichlorobenzene ug/kg SW8260B 120-82-1 1,2-Dibromo-3-chloropropane ug/kg SW8260B 96-12-8 1,2-Dibromoethane ug/kg SW8260B 106-93-4 1,2-Dichlorobenzene ug/kg SW8260B 95-50-1 1,2-Dichloropropane ug/kg SW8260B 107-06-2 1,2-Dichloropropane ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0 0 0 0 0 0	5 5 5 5 5 5 5 5	< 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U	< 8.6 U	< 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U	< 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U	< 5.7 U < 5.7 U < 5.7 U < 5.7 U < 5.7 U
1,2,4-Trichlorobenzene ug/kg SW8260B 120-82-1 1,2-Dibromo-3-chloropropane ug/kg SW8260B 96-12-8 1,2-Dibromoethane ug/kg SW8260B 106-93-4 1,2-Dichlorobenzene ug/kg SW8260B 95-50-1 1,2-Dichlorotehane ug/kg SW8260B 107-06-2 1,2-Dichloropropane ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0 0 0 0	5 5 5 5 5 5 5	< 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U	< 8.6 U	< 5.2 U < 5.2 U < 5.2 U < 5.2 U < 5.2 U	< 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U	< 5.7 U < 5.7 U < 5.7 U < 5.7 U
1,2-Dibromo-3-chloropropane ug/kg SW8260B 96-12-8 1,2-Dibromoethane ug/kg SW8260B 106-93-4 1,2-Dichlorobenzene ug/kg SW8260B 95-50-1 1,2-Dichlorocethane ug/kg SW8260B 107-06-2 1,2-Dichloropropane ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0 0 0 0	5 5 5 5 5 5	< 5.5 U < 5.5 U < 5.5 U < 5.5 U < 5.5 U	< 8.6 U	< 5.2 U < 5.2 U < 5.2 U < 5.2 U	< 5.0 U < 5.0 U < 5.0 U < 5.0 U	< 5.7 U < 5.7 U < 5.7 U
1,2-Dibromoethane ug/kg SW8260B 106-93-4 1,2-Dichlorobenzene ug/kg SW8260B 95-50-1 1,2-Dichloroethane ug/kg SW8260B 107-06-2 1,2-Dichloropropane ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0 0 0	5 5 5 5 5	< 5.5 U < 5.5 U < 5.5 U < 5.5 U	< 8.6 U < 8.6 U < 8.6 U	< 5.2 U < 5.2 U < 5.2 U	< 5.0 U < 5.0 U < 5.0 U	< 5.7 U < 5.7 U
1,2-Dichlorobenzene ug/kg SW8260B 95-50-1 1,2-Dichloroethane ug/kg SW8260B 107-06-2 1,2-Dichloropropane ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0 0 0	5 5 5 5	< 5.5 U < 5.5 U < 5.5 U	< 8.6 U	< 5.2 U < 5.2 U	< 5.0 U < 5.0 U	< 5.7 U
1,2-Dichloroethane ug/kg SW8260B 107-06-2 1,2-Dichloropropane 1,2-Dichloropropane ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0 0	5 5 5	< 5.5 U < 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	
1,2-Dichloropropane ug/kg SW8260B 78-87-5 1,3-Dichlorobenzene 1,3-Dichlorobenzene ug/kg SW8260B 541-73-1 541-73-1	0 0 0 0	5 5	< 5.5 U				< 5.7 U
1,3-Dichlorobenzene ug/kg SW8260B 541-73-1	0 0 0	5		< 8.6 U	< 5.2 ()		4 F 7 H
	0			40011		< 5.0 U	< 5.7 U
1 DW0000D 100 10 -	0			< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
1,4-Dichlorobenzene ug/kg SW8260B 106-46-7			< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
1,4-Dioxane ug/kg SW8260B 123-91-1		5	< 1100 U	< 1700 U	< 1000 U	< 990 U	< 1100 U
2-Butanone ug/kg SW8260B 78-93-3	_	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
2-Hexanone ug/kg SW8260B 591-78-6	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
4-Methyl-2-pentanone ug/kg SW8260B 108-10-1	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Acetone ug/kg SW8260B 67-64-1	0	5	< 22 U	< 35 U	< 21 U	< 20 U	< 23 U
Benzene ug/kg SW8260B 71-43-2	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Bromochloromethane ug/kg SW8260B 74-97-5	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Bromodichloromethane ug/kg SW8260B 75-27-4	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Bromoform ug/kg SW8260B 75-25-2	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Bromomethane ug/kg SW8260B 74-83-9	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Carbon Disulfide ug/kg SW8260B 75-15-0	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Carbon Tetrachloride ug/kg SW8260B 56-23-5	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Chlorobenzene ug/kg SW8260B 108-90-7	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Chloroethane ug/kg SW8260B 75-00-3	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Chloroform ug/kg SW8260B 67-66-3	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Chloromethane ug/kg SW8260B 74-87-3	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
cis-1,2-Dichloroethylene ug/kg SW8260B 156-59-2	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
cis-1,3-Dichloropropene ug/kg SW8260B 10061-01-5	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Cyclohexane ug/kg SW8260B 110-82-7	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Dibromochloromethane ug/kg SW8260B 124-48-1	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Dichlorodifluoromethane ug/kg SW8260B 75-71-8	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Ethylbenzene ug/kg SW8260B 100-41-4	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Isopropylbenzene ug/kg SW8260B 98-82-8	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
m, p-Xylene ug/kg SW8260B XYLMP	0	5	< 11 U	< 17 U	< 10 U	< 9.9 U	< 11 U
Methyl Acetate ug/kg SW8260B 79-20-9	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Methyl tert-Butyl Ether (MTBE) ug/kg SW8260B 1634-04-4	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Methylcyclohexane ug/kg SW8260B 108-87-2	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Methylene Chloride ug/kg SW8260B 75-09-2	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
o-Xylene ug/kg SW8260B 95-47-6	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Styrene ug/kg SW8260B 100-42-5	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Tetrachloroethylene ug/kg SW8260B 127-18-4 1.8 1.8 1.8 1.8 SDR101	1	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	1.8 J
Toluene ug/kg SW8260B 108-88-3	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
trans-1,2-Dichloroethene ug/kg SW8260B 156-60-5	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
trans-1,3-Dichloropropene ug/kg SW8260B 10061-02-6	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Trichloroethene ug/kg SW8260B 79-01-6	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Trichlorofluoromethane ug/kg SW8260B 75-69-4	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Vinyl Chloride ug/kg SW8260B 75-01-4	0	5	< 5.5 U	< 8.6 U	< 5.2 U	< 5.0 U	< 5.7 U
Xylenes (total) ug/kg SW8260B 1330-20-7	0	5	< 11 U	< 17 U	< 10 U	< 9.9 U	< 11 U
Acenaphthene ug/kg SW8270D LL 83-32-9 640 63 210 81 SDR101	5	5	76 J	170 J	81 J	63 J	640
Acenaphthylene ug/kg SW8270D LL 208-96-8 390 34 130 69 SDPEPR4	5	5	34 J	390	69 J	110 J	59 J

Table 4-26 Storm Drain Residue Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

										Location ID	SD013	SDPEPR4	SDPEPR5	SDPEPR5	SDR101
										Sample ID	SDR013N	SDRPEPR4N	SDRPEPR5N	SDRPEPR5R	SDR101N
										Sample Date	10/8/2013	10/8/2013	10/8/2013	10/8/2013	10/8/2013
										Туре	N	N	N	FD	N
				Max	Min	Mean	Median	Max	Count						
Analyte	Unit	Method	CAS	Detect	Detect	Detect	Detect	Location	Detect	Count Total					
Anthracene	ug/kg	SW8270D LL	120-12-7	990	170	470	200	SDR101	5	5	190	820	170 J	200 J	990
Benzo(a)anthracene	ug/kg	SW8270D LL	56-55-3	3100	530	1700	1500	SDR101	5	5	1500	2700 J	670	530	3100
Benzo(a)pyrene	ug/kg	SW8270D LL	50-32-8	2800	450	1600	1600	SDPEPR4	5	5	1600	2800 J	580	450	2700
Benzo(b)fluoranthene	ug/kg	SW8270D LL	205-99-2	4300	690	2400	2200	SDPEPR4	5	5	2200	4300 J	960	690	3600
Benzo(g,h,i)perylene	ug/kg	SW8270D LL	191-24-2	3500	650	1800	1800	SDPEPR4	5	5	1800	3500	700	650	2400
Benzo(k)fluoranthene	ug/kg	SW8270D LL	207-08-9	1500	260	870	860	SDPEPR4	5	5	860	1500	260	420	1300
Chrysene	ug/kg	SW8270D LL	218-01-9	3900	810	2300	2100	SDPEPR4	5	5	2100	3900	1000	810	3600
Dibenzo(a,h)anthracene	ug/kg	SW8270D LL	53-70-3	820	150	410	330	SDPEPR4	5	5	330	820	160 J	150 J	580
Fluoranthene	ug/kg	SW8270D LL	206-44-0	7600	1400	4400	4300	SDR101	5	5	4300	6300	2400 J	1400 J	7600
Fluorene	ug/kg	SW8270D LL	86-73-7	420	91	200	150	SDR101	5	5	91 J	190 J	140 J	150 J	420
Indeno(1,2,3-cd)pyrene	ug/kg	SW8270D LL	193-39-5	2800	530	1500	1400	SDPEPR4	5	5	1400	2800	560	530	2100
Naphthalene	ug/kg	SW8270D LL	91-20-3	200	34	87	57	SDR101	4	5	< 160 U	66 J	34 J	47 J	200
Phenanthrene	ug/kg	SW8270D LL	85-01-8	5400	900	2600	1800	SDR101	5	5	1800	2900 J	1800 J	900 J	5400
Pyrene	ug/kg	SW8270D LL	129-00-0	5400	910	3100	3100	SDR101	5	5	3100	4600 J	1500	910	5400
Total High-molecular-weight PAHs	ug/kg	SW8270D LL	TOT-PAH-HMW	33000	6500	20000	19000	SDPEPR4	5	5	19000	33000	8800	6500	32000
Total Low-molecular-weight PAHs	ug/kg	SW8270D LL	TOT-PAH-LMW	7700	1500	3600	2300	SDR101	5	5	2200	4500	2300	1500	7700
Total PAHs (sum 16)	ug/kg	SW8270D LL	TOT-PAH	40000	8000	24000	21000	SDR101	5	5	21000	38000	11000	8000	40000

Notes:

Bold values indicate detects.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample and the numerical value has a high bias.
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample and the numerical value has a low hias
- JN = The analyte was tentatively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- JX = The analyte was identified by GC/ECD but not confirmed by GC/MS; the result value represents a probable false posititive result.
- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate and may or may not represent the actual limit of quantitation in the sample.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

mg/kg = milligrams per kilogram

ug/kg = micrograms per kilogram

Table 4-27 Anacostia Park Incremental Sampling Methodology Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

											Location	on ID	KMY-DU01	KMY-DU02	KMY-DU03	KMY-DU03	KMY-DU03	KMY-DU03	KMY-DU03	KMY-DU03
											Samp		SUSNPSMI0100N			SUSNPSMI0300N1	SUSNPSMI0300N2			SUSNPSMI0300R2
												Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft				
											Sample		4/12/2017	4/12/2017	4/13/2017	4/13/2017	4/13/2017	4/13/2017	4/13/2017	4/13/2017
												Type	4/12/2017 N	N	N	4/15/2017 N	N	4/10/2017 N	FD	FD
		Project										турс		1	14	IV.	14	17	1.5	15
		Screening			Max	Min	Mean	Median	Max	Count	Count C	ount								
Analyte	Unit	Criteria	Method	CAS	Detect	Detect	Detect	Detect	Location	Detect	Reject T	Γotal								
Total Petroleum Hydrocarbons (C9-C44)	mg/kg		M8015D	TPH	183	136	156	148	KMY-DU02	3		3	148	183	136					
Arsenic	mg/kg	3	SW6020A	7440-38-2	7	3.2	4.8	4.5	KMY-DU01	8		8	7.0	6.0	4.6	3.2 J-	4.2 J-	4.5 J-	4.2	4.5
Barium	mg/kg	22000	SW6020A	7440-39-3	110	71	80	76	KMY-DU01	8		8	110	74	74	71 J-	83 J-	76 J-	75	76
Cadmium	mg/kg	98	SW6020A	7440-43-9	0.62	0.41	0.49	0.47	KMY-DU02	8		8	0.41	0.62	0.49	0.45 J-	0.45 J-	0.53 J-	0.54	0.45
Chromium	mg/kg	180000	SW6020A	7440-47-3	58	32	50	56	KMY-DU03	8		8	32	37	57	43 J-	58 J-	58 J-	57	55
Lead	mg/kg	800	SW6020A	7439-92-1	97	50	66	56	KMY-DU03	8		8	76	91	50	51 J-	97 J-	51 J-	51	60
Selenium	mg/kg	580	SW6020A	7782-49-2	1.9	1.3	1.6	1.5	KMY-DU01	8		8	1.9	1.7	1.5	1.3 J-	1.7 J-	1.5 J-	1.4	1.5
Silver	mg/kg	580	SW6020A	7440-22-4	0.89	0.4	0.79	0.84	KMY-DU03	8		8	0.40	0.79	0.84	0.84 J-	0.83 J-	0.83 J-	0.89	0.86
Mercury	mg/kg	35	SW7471B	7439-97-6	0.18	0.12	0.14	0.13	KMY-DU02	8		8	0.16 J-	0.18 J-	0.12	0.14 J-	0.13 J-	0.13 J-	0.12	0.13 J-
Diesel Range Organics (C10-C20)	mg/kg	440	SW8015C DRO	C10C20	15	8.2	10	9.1	KMY-DU02	5		5	9.6 J	15 J	9.1 J				8.2 J	8.9 J
Diesel Range Organics (C10-C28)	mg/kg	440	SW8015C DRO	DIESELCOMP	59	36	45	43	KMY-DU02	5		5	36	59	45				40	43
Oil Range Organics (C20-C36)	mg/kg	350000	SW8015C DRO	C20C36	110	72	85	81	KMY-DU02	5		5	72	110	84				80	81
Gasoline Range Organics (C6-C10)	ug/kg	42000	SW8015C GRO	8006-61-9	1900	1900	1900	1900	KMY-DU03	1		5	< 5200 UJ	< 5000 UJ	1900 J				< 4600 UJ	< 4600 UJ
4,4'-DDD	ug/kg	2500	SW8081B LL	72-54-8	4.7	2.2	2.9	2.3	KMY-DU02	5		5	2.2 J	4.7 J	2.2 J				2.3 J	3.2 J
4,4'-DDE	ug/kg	9300	SW8081B LL	72-55-9	5.6	2.7	4.1	3.9	KMY-DU02	5		5	5.3 J	5.6 J	2.9 J				2.7 J	3.9 J
4,4'-DDT	ug/kg	8500	SW8081B LL	50-29-3	7	2.9	4.9	4.8	KMY-DU02	4		5	4.8 J	7.0 J	2.9 J				< 0.42 UJ	4.8 J
Aldrin	ug/kg	180	SW8081B LL	309-00-2								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
alpha-BHC	ug/kg	360	SW8081B LL	319-84-6								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
beta-BHC	ug/kg	1300	SW8081B LL	319-85-7								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
cis-Chlordane	ug/kg	7700	SW8081B LL	5103-71-9	12	1.7	7.9	8.9	KMY-DU03	5		5	1.7 J	5.9 J	11 J				8.9 J	12 J
delta-BHC	ug/kg	360	SW8081B LL	319-86-8								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
Dieldrin	ug/kg	140	SW8081B LL	60-57-1	3.6	1.8	2.7	2.7	KMY-DU02	2		5	1.8 J	3.6 J	< 0.42 U				< 0.42 U	< 0.42 U
Endosulfan I	ug/kg	700000	SW8081B LL	959-98-8								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
Endosulfan II	ug/kg	700000	SW8081B LL	33213-65-9								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
Endosulfan Sulfate	ug/kg	700000	SW8081B LL	1031-07-8								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
Endrin	ug/kg	25000	SW8081B LL	72-20-8								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
Endrin aldehyde	ug/kg	25000	SW8081B LL	7421-93-4								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
Endrin ketone	ug/kg	25000	SW8081B LL	53494-70-5								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
gamma-BHC (Lindane)	ug/kg	2500	SW8081B LL	58-89-9								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
Heptachlor	ug/kg	630	SW8081B LL	76-44-8	0.29	0.15	0.2	0.17	KMY-DU03	3		5	< 0.42 UJ	< 0.42 UJ	0.17 J				0.15 J	0.29 J
Heptachlor Epoxide	ug/kg	330	SW8081B LL	1024-57-3	0.57	0.084	0.35	0.44	KMY-DU03	5		5	0.084 J	0.18 J	0.57 J				0.44 J	0.46 J
Methoxychlor	ug/kg	410000	SW8081B LL	72-43-5								5	< 0.42 UJ	< 0.42 UJ	< 0.42 U				< 0.42 U	< 0.42 U
Toxaphene	ug/kg	2100	SW8081B LL	8001-35-2								5	< 17 UJ	< 17 UJ	< 17 U				< 17 U	< 17 U
trans-Chlordane	ug/kg	7700	SW8081B LL	5103-74-2	16	7.8	12	13	KMY-DU03	4		5	< 0.42 UJ	7.8 J	14 J				11 J	16 J
Aroclor-1016	ug/kg		SW8082A LL	12674-11-2						1	+	8	< 0.84 U	< 0.84 U	< 0.85 U	< 4.1 U	< 4.1 U	< 8.2 U	< 0.83 U	< 0.84 U
Aroclor-1221	ug/kg		SW8082A LL	11104-28-2					ļ	1		8	< 0.84 U	< 0.84 U	< 0.85 U	< 4.1 U	< 4.1 U	< 8.2 U	< 0.83 U	< 0.84 U
Aroclor-1232	ug/kg		SW8082A LL	11141-16-5					<u> </u>	1	+	8	< 0.84 U	< 0.84 U	< 0.85 U	< 4.1 U	< 4.1 U	< 8.2 U	< 0.83 U	< 0.84 U
Arcelor 1242	ug/kg		SW8082A LL	53469-21-9			<u> </u>			├		8	< 0.84 U	< 0.84 U	< 0.85 U	< 4.1 U	< 4.1 U	< 8.2 U	< 0.83 U	< 0.84 U
Arcelor 1254	ug/kg		SW8082A LL	12672-29-6								8	< 0.84 U	< 0.84 U	< 0.85 U	< 4.1 U	< 4.1 U	< 8.2 U	< 0.83 U	< 0.84 U
Arcelor 1260	ug/kg		SW8082A LL	11097-69-1	- 00	0.4		40	IZMAY DUIGO			8	< 0.84 U	< 0.84 U	< 0.85 U	< 4.1 U	< 4.1 U	< 8.2 U	< 0.83 U	< 0.84 U
Arcelor 1260	ug/kg		SW8082A LL	11096-82-5	83	31	53	49	KMY-DU02	8		8	31	83	54	44	37	65	39	69
Aroclor 1262	ug/kg		SW8082A LL	37324-23-5								8	< 0.84 U	< 0.84 U	< 0.85 U	< 4.1 U	< 4.1 U	< 8.2 U	< 0.83 U	< 0.84 U
Aroclor-1268	ug/kg	070	SW8082A LL	11100-14-4	00	0.4		40	IVANV DUICO	 _ _		8	< 0.84 U	< 0.84 U	< 0.85 U	< 4.1 U	< 4.1 U	< 8.2 U	< 0.83 U	< 0.84 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	970	SW8082A LL	TOT-PCB-ARO-C		31	53	49	KMY-DU02	8		8	31	83	54	44	37	65	39	69
1,1'-Biphenyl	ug/kg	20000	SW8270D LL	92-52-4	11	3.5	7.3	7.3	KMY-DU02	4		8	< 33 UJ	11 J-	< 67 U	7.3 J-	7.2 J-	R	< 33 U	3.5 J
1,2,4,5-Tetrachlorobenzene	ug/kg	35000	SW8270D LL	95-94-3								8	< 33 UJ	< 67 UJ	< 67 U	R	R	R	< 33 U	< 34 U
2,2'-oxybis(1-Chloropropane)	ug/kg	4.7e+006	SW8270D LL	108-60-1								8	< 6.8 UJ	< 14 UJ	< 14 U	R	R	R	< 6.8 U	< 6.8 U
2,3,4,6-Tetrachlorophenol	ug/kg	2.5e+006	SW8270D LL	58-90-2								8	< 33 UJ	< 67 UJ	< 67 U	R	R	R	< 33 U	< 34 U
2,4,5-Trichlorophenol	ug/kg	8.2e+006	SW8270D LL	95-95-4							+	8	< 33 UJ	< 67 UJ	< 67 U	R	R	R	< 33 U	< 34 U
2,4,6-Trichlorophenol	ug/kg	82000	SW8270D LL	88-06-2								8	< 33 UJ	< 67 UJ	< 67 U	R	R	R	< 33 U	< 34 U
2,4-Dichlorophenol	ug/kg	250000	SW8270D LL	120-83-2								8	< 6.8 UJ	< 14 UJ	< 14 U	R	R	R	< 6.8 U	< 6.8 U
2,4-Dimethylphenol	ug/kg	1.6e+006	SW8270D LL	105-67-9					l		3	8	< 33 UJ	< 67 UJ	< 67 U	R	R	R	< 33 U	< 34 U

Table 4-27 Anacostia Park Incremental Sampling Methodology Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Part												Loo	ation ID	KMY-DU01	KMY-DU02	KMY-DU03	KMY-DU03	KMY-DU03	KMY-DU03	KMY-DU03	KMY-DU03
Company Comp																					SUSNPSMI0300R2
Second Column												Jai	•								
Property Property												Samr			-	-	-	-	-	-	-
Application												Oump									
Section Control Cont			Project										.,,,,		.,	.,	.,	.,			
2.4 Demonstrate			-			Max	Min	Mean	Median	Max	Count	Count	Count								
24 December 1972 7000 000000 11 12 1 1 1 1 1 1 1	Analyte	Unit	Criteria	Method	CAS	Detect	Detect	Detect	Detect	Location	Detect	Reject	Total								
200 1,000	2,4-Dinitrophenol	ug/kg	160000	SW8270D LL	51-28-5							3	8	< 170 UJ	< 350 UJ	< 350 U	R	R	R	< 170 U	< 170 U
2.5000000000000000000000000000000000000	2,4-Dinitrotoluene	ug/kg	7400	SW8270D LL	121-14-2							3	8	< 33 UJ	< 67 UJ		R	R	R	< 33 U	
Second S	2,6-Dinitrotoluene		1500	SW8270D LL	606-20-2							3	8	< 33 UJ	< 67 UJ	< 67 U	R	R	R	< 33 U	< 34 U
Substitution Subs	2-Chloronaphthalene		6e+006									3	8				R		R		< 6.8 U
Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage Amongrapher Sampage	2-Chlorophenol											3	8				* *				
Semination Sem						45	5.5	17	15	KMY-DU02	8									_	
Amountain Span 25-000 Span 25-000 Span 1900													_				.,				
33-50-intervalue upin 1900 890-7001, 1904 1900 890-7001, 1904 1905										1											
Advanced Age 1966 96670 1 9667	· .																				
## 450mos progression 4919 0000 890mos 00000 00000 00000 00000 0000 0000 0000	·										1	_									
Abstractionary deregative Spin											1										
Acheros-Arreyspaner 1988 1980 098/2701 1500 098/2701 1500 1500 098/2701 1500			6600		_			1		1	1										
## CARROPHYSINE 1900			0.0								1										
## 4-Absorphorphysimprofemory											1										
			11000								1										
Methodolime			0.0 .000			40		7.0	0.0	1/1 N / D1 100		3									
## Althogheries upsg 2.5-end Way 2.5-end Way 2.5-end Way 2.5-end Way 2.5-end Way 2.5-end Way 2.5-end Way 2.5-end Way 2.5-end Way Way 2.5-end Way W						13	4	7.6	6.8	KMY-DU03	5	1									
Amengebineme wiley 4, 56-900 SWR27DOLL 833-90 44 51 90 11 10 11 10 11 11 11 11 11 11 11 11 11																					
Accomplishing wing 4 56-900 9W-270 LL 200-06-0 30 0 30 0 10 10 19 0 45-000 0 10 10 10 10 10 10 10 10 10 10 10 1	· .					44	4.0	40	40	IVANV DI IOO		3									
Acempennene wigh 12-end 12-end 12-end 13	· · · · · · · · · · · · · · · · · · ·										_										
Adminishment Mysla 23-e-07 Mystry 2011 1912-17 170 5.6 36 37 Mystry 2011 1912-17 170 5.6 38 38 4.6 170 4.7 4.7 35 4.7 170 4.7 4.	<u> </u>										_										
Attache 9/19, 9/19, 1970 99/2700 1, 192-24 9																				_	
Benzulahlyshe wild a grow with						120	5.0	36	32	KIVIT-DU02	. 0	2								1	
Benzic playmene wight 2 1000 SWR27001 L 95-55 2 29 8 8 19 120 120 KWY-DUZ 8 1 8 24 - 299 - 200 144 - 110 - 110 - 110 - 47 J 69 J 8 Benzic playmene wight 2 1000 SWR27001 50-52 27 4 120 120 140 170 KWY-DUZ 8 2 1 10 120 KWY-DUZ 8 1 8 22 J 170 120 - 110 J 120 - 110 J 120 - 110 J 150 J 65 J 93 J 8 Benzic playmene wight 2 2-000 SWR27001 120 - 20 2 2 10 10 10 120 KWY-DUZ 8 1 8 22 J 120 J 180 J 120 J 140 J 120 J 140 J 110 J 155 J 66 J 93 J 8 Benzic playmene wight 2 2-000 SWR27001 11 140 J 140 J 120 J 140 J 140 J 120 J 140 J						25	9.0	21	21	KWA DI 103		3	_								
Benzelighuren Long 2100 SW2270 LL 250-20 24 120 120 KMY-OUQ 8 8 8 24 270 4 120 120 140 110 140 110 140 150 1																			-		
Bennicy Democration Upsign 2 2000 SW22700 L 200-92 330 34 190 170 KMY-DUG 8 8 34.1 330.1 220.1 180.1 200.1 110.1 140.1 110.1 140.1 110.1 140.1 110.1 140.1 140.1 110.1 140.1 140.1 110.1 140.1 140.1 110.1 140.1 1	. , ,																			-	
Semzick Dispersion Spring																					
Bemody Modern Marker M																					
19-12-Chiropethoylynethane 19-12-Chiropet																					
District District	` ' '					120	17	- 00	- 01	TOT-BOOZ		3									
Disc. C. F. Elly theoly Philadate Ug/Kg 160000 SW8270D LL 17-81-7 100 11 48 41 KMY-DU02 8 8 11 J. 100 J. 44 J 63 J. 87 J. 37 J. 13 J 25 J												_									
Sulphenzylphthalate 19kg 1,2e+008 SW8270 LL 156-02 12 22 18 KMY-DU3 5 8 <33 UJ 18 J. 15 J 36 J. 29 J. 12 J. <33 U <34 U <34 U <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ <35 UJ						100	11	48	41	KMY-DU02	8										
Caprolactam gg/kg 4-e+007 SW8270D LL 905-60-2 II 9 II 6 II 6 II 6 II 6 II 6 II 6 II	\ , , , , ,											1									
Carbazole ug/kg 3e-006 SW827D LL 86-74-8 51 2.1 14 11 KMY-DUO2 8 8 8 2.1 J 51 J 91 12 J 14 J 11 J 4.4 J 10 Chrysene ug/kg 2.1e+006 SW827D LL 218-01-9 310 32 140 130 KMY-DUO2 8 8 8 32 J 310 J 10 J 15								 	- · ·	5000	Ť	3									< 170 U
Chrysene Ug/kg 2.1e+006 SW8270D LL 218-01-9 310 32 140 130 KMY-DUO2 8 8 8 32.J 310.J 210.J 130.J 150.J 130.J 54.J 72.J 150.D 130.J 54.J 72.J 150.D 130.J 54.J 72.J 150.D 130.J 54.J 72.J 150.J 130.J 1	Carbazole					51	2.1	14	11	KMY-DU02	8									1	
Dibenzo(a,h)anthracene Ug/kg 2100 SW827D LL 53-0-3 62 5.2 27 24 KMY-DUQ 8 8 5.2 J- 62 J- 35 27 J- 36 J- 21 J- 12 16	Chrysene							140	130		8	1									
Dibertyphthalate Ug/kg 10000 SW8270D LL 132-64-9 35 4.2 12 8.5 KMY-DU02 7 8 8 <33 UJ 35 J- 7.2 J 8.5 J- 10 J- 9.0 J- 4.2 J 7.9 J	Dibenzo(a,h)anthracene																				
Diethylphthalate Ug/kg 6.6e+007 SW8270D LL 84-66-2 9.3 4.6 6.4 5.2 KMY-DU03 3 2 8 <33 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <67 UJ <68 UJ <68 UJ <68 UJ <68 UJ <68 UJ <68 UJ <68 UJ <68 UJ <68 UJ <68 UJ <	Dibenzofuran										_	1 1								4.2 J	
Dimethylphthalate	Diethylphthalate										3	2	_								
Di-n-butylphthalate	Dimethylphthalate										1	_									< 34 U
Din-octylphthalate	Di-n-butylphthalate										4										< 34 U
Fluoranthene ug/kg 3e+06 SW8270D LL 26-44-0 570 46 220 200 KMY-DU02 8 8 8 46 J- 570 J- 350 J 210 J- 210 J- 190 J- 89 J 130 J Fluorene ug/kg 3e+06 SW8270D LL 86-73-7 42 1.9 12 9.6 KMY-DU02 8 8 8 1.9 J- 42 J- 8.4 J 10 J- 12 J- 10 J- 4.1 J 9.2 Hexachlorobenzene ug/kg 960 SW8270D LL 118-74-1	Di-n-octylphthalate						-	1			1	3	_								< 34 U
Fluorene ug/kg 3e+006 SW8270D LL 86-73-7 42 1.9 12 9.6 KMY-DU02 8 8 1.9 J. 42 J. 84. J. 10 J. 12 J. 10 J. 41. J. 9.2 Hexachlorobenzene ug/kg 960 SW8270D LL 118-74-1	Fluoranthene					570	46	220	200	KMY-DU02	8					350 J					
Hexachlorobenzene											8	1 1		1.9 J-	42 J-				10 J-	4.1 J	
Hexachlorobutadiene								İ			1	3	_	< 6.8 UJ	< 14 UJ	< 14 U			R	< 6.8 U	< 6.8 U
Hexachlorocyclo-pentadiene ug/kg 750 SW827D LL 77-47-4	Hexachlorobutadiene					1				1	1	+									< 6.8 U
Hexachloroethane	Hexachlorocyclo-pentadiene							İ			1				< 67 UJ	< 67 U					< 34 U
Indeno(1,2,3-cd)pyrene ug/kg 21000 SW8270D LL 193-39-5 180 18 91 96 KMY-DU02 8 8 18 J- 180 J- 120 J 100 J- 120 J- 91 J- 44 J 54 J 180 J- 180 J- 190 J										<u> </u>	1	3	_								< 34 U
Isophorone ug/kg 2.4e+006 SW8270D LL 78-59-1 11 3.4 7 6.1 KMY-DU02 7 1 3.4 J 6.1 J 9.3 J 11 J R 4.0 J 4.3 J						180	18	91	96	KMY-DU02	8	1 1	_			120 J					
	Isophorone											1									
	·												8								

Table 4-27 Anacostia Park Incremental Sampling Methodology Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

											L	ocation ID	KMY-DU01	KMY-DU02	KMY-DU03	KMY-DU03	KMY-DU03	KMY-DU03	KMY-DU03	KMY-DU03
											,	Sample ID	SUSNPSMI0100N	SUSNPSMI0200N	SUSNPSMI0300N	SUSNPSMI0300N1	SUSNPSMI0300N2	SUSNPSMI0300N3		SUSNPSMI0300R2
												Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
											Sa	mple Date	4/12/2017	4/12/2017	4/13/2017	4/13/2017	4/13/2017	4/13/2017	4/13/2017	4/13/2017
				1			1	1	1			Туре	N	N	N	N	N	N	FD	FD
Analyte	Unit	Project Screening Criteria	Method	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count	Coun									
Naphthalene	ug/kg	17000	SW8270D LL	91-20-3	48	6.5	19	17	KMY-DU02	8	rtojoc	8	6.5 J-	48 J-	14	22 J-	24 J-	19 J-	8.8	10
Nitrobenzene	ug/kg	22000	SW8270D LL	98-95-3							3	8	< 68 UJ	< 140 UJ	< 140 U	R	R	R	< 68 U	< 68 U
N-Nitroso-di-n-propylamine	ug/kg	330	SW8270D LL	621-64-7							3	8	< 6.8 UJ	< 14 UJ	< 14 U	R	R	R	< 6.8 U	< 6.8 U
N-Nitrosodiphenylamine	ug/kg	470000	SW8270D LL	86-30-6							3	8	< 33 UJ	< 67 UJ	< 67 U	R	R	R	< 33 U	< 34 U
Pentachlorophenol	ug/kg	4000	SW8270D LL	87-86-5							3	8	< 33 UJ	< 67 UJ	< 67 U	R	R	R	< 33 U	< 34 U
Phenanthrene	ug/kg	2.3e+007	SW8270D LL	85-01-8	420	25	130	110	KMY-DU02	8	1	8	25 J-	420 J-	120 J	120 J-	120 J-	99 J-	47 J	92
Phenol	ug/kg	2.5e+007	SW8270D LL	108-95-2	21	5.9	9.8	7.4	KMY-DU02	7	1	8	6.4 J-	21 J-	9.1 J	5.9 J-	6.6 J-	7.4 J-	< 33 U	12 J
Pyrene	ug/kg	2.3e+006	SW8270D LL	129-00-0	460	44	190	180	KMY-DU02	8	1	8	44 J-	460 J-	300 J	200 J-	200 J-	160 J-	68 J	100 J
BaP-TE	ug/kg	2100	SW8270D LL	BAP	414	37.2	184	179	KMY-DU02	8		8	37.2	414	260	190	222	167	77.9	104
Total High-molecular-weight PAHs	ug/kg		SW8270D LL	TOT-PAH-HMW	2800	270	1200	1200	KMY-DU02	8		8	270	2800	1800	1300	1400	1100	510	700
Total Low-molecular-weight PAHs	ug/kg		SW8270D LL	TOT-PAH-LMW	700	45	230	200	KMY-DU02	8		8	45	700	230	220	230	180	84	150
Total PAHs (sum 16)	ug/kg		SW8270D LL	TOT-PAH	3500	310	1500	1400	KMY-DU02	8		8	310	3500	2100	1500	1600	1300	600	850
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g		SW8290A	67562-39-4	38.3	21.8	26.5	25.2	KMY-DU02	8		8	28.5	38.3	23.8	25.5	25.5	24.9	23.4	21.8
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g		SW8290A	35822-46-9	252	159	195	187	KMY-DU01	8		8	252	232	171	205	169	159	181	193
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g		SW8290A	55673-89-7	3.91	2.09	2.57	2.38	KMY-DU01	8		8	3.91	2.99	2.09 J	2.35 JN	2.42 J	2.17 J	2.4 JN	2.25 J
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g		SW8290A	70648-26-9	8.43	3.76	4.91	4.11	KMY-DU02	8		8	6.78	8.43	3.84	4.24	3.76	4.37	3.98	3.85
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g		SW8290A	39227-28-6	5.8	3.6	4.14	3.87	KMY-DU01	8		8	5.8 JN	4.39	4.12	3.86	3.6	3.63 JN	3.88	3.83 JN
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g		SW8290A	57117-44-9	6.43	3.18	4.27	3.82	KMY-DU02	8		8	5.43	6.43	3.18	4.2	3.91	3.72	3.64	3.64
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g		SW8290A	57653-85-7	11.5	7.91	9.13	8.53	KMY-DU02	8		8	11.1	11.5	7.91	9.26	8.69	8.36	7.93	8.26
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g		SW8290A	72918-21-9	0.681	0.417	0.55	0.551	KMY-DU02	3		8	< 0.869 U	0.681 J	< 0.802 U	< 0.327 U	< 0.414 U	< 0.401 U	0.551 JN	0.417 JN
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g		SW8290A	19408-74-3	11.5	7.7	9.16	8.73	KMY-DU01	8		8	11.5	9.24	8.46	8.68	7.7	8.77	8.46	10.5
1,2,3,7,8-PeCDF	pg/g		SW8290A	57117-41-6	6.37	1.67	2.81	2.32	KMY-DU02	8		8	3.76	6.37	1.9 J	2.38	2.36 J	2.28 J	1.67 J	1.75 J
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g		SW8290A	40321-76-4	4.61	2.68	3.48	3.25	KMY-DU01	8		8	4.61	4.21	3.15	3.31	3.63	3.1	2.68 JN	3.18
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g		SW8290A	60851-34-5	8.96	4.95	6.2	5.78	KMY-DU01	8		8	8.96	7.86	4.95	5.78	5.77	5.93	5.01	5.32
2,3,4,7,8-Pentachlorodibenzofuran	pg/g		SW8290A	57117-31-4	13.6	5.57	7.49	6.45	KMY-DU02	8		8	9.56	13.6	5.93	6.53	6.37	5.81	5.57	6.52
2,3,7,8-Tetrachlorodibenzofuran	pg/g		SW8290A	51207-31-9	8.49	1.54	3.08	2	KMY-DU02	8		8	4.49	8.49	1.63	2.18 J	2.77 J	1.72 J	1.81 JN	1.54 JN
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g	22	SW8290A	1746-01-6	1.17	0.53	0.852	0.803	KMY-DU02	7		8	1.02 JN	1.17 JN	0.53 JN	0.803	0.8	0.968	< 0.281 U	0.674
Octachlorochlorodibenzofuran	pg/g		SW8290A	39001-02-0	63.9	32.4	46	44.5	KMY-DU02	8		8	32.4	63.9	43.2	50.7	45.8	47.8	42.7	41.7
Octachlorochlorodibenzo-p-dioxin	pg/g		SW8290A	3268-87-9	7760	5140	6090	5940	KMY-DU01	8		8	7760	6470	5410	6500	6110	5760	5140	5600
Total HpCDD	pg/g		SW8290A	37871-00-4	566	324	405	379	KMY-DU01	8		8	566	489	339	424	343	324	359	399
Total HpCDF	pg/g		SW8290A	38998-75-3	86	55.2	63.6	61.8	KMY-DU02	8		8	62	86	58.2	65.9	63.7	61.6	56.3	55.2
Total HxCDD	pg/g		SW8290A	34465-46-8	152	86.8	107	96.6	KMY-DU01	8		8	152	133	86.8	104	93.2	92.7	93	99.9
Total HxCDF	pg/g		SW8290A	55684-94-1	97.2	50.4	65.4	61.9	KMY-DU02	8		8	78.1	97.2	50.4	64.8	62.1	61.6	52.4	56.8
Total PeCDD	pg/g		SW8290A	36088-22-9	67.7	43.6	50.7	45.9	KMY-DU01	8		8	67.7	64.4	43.6	46.3	48.7	45.5	44.2	44.9
Total PeCDF	pg/g		SW8290A	30402-15-4	132	58	75.9	64.7	KMY-DU02	8		8	101	132	59.1	67.9	64.5	58	60.2	64.8
Total TCDD	pg/g		SW8290A	41903-57-5	36.9	18	23.6	20.4	KMY-DU01	8		8	36.9	32.4	18.4	23.9	19	18.6	18	21.8
Total TCDF	pg/g		SW8290A	55722-27-5	133	41.3	63.6	49.7	KMY-DU02	8		8	92.4	133	41.3	51.2	55	43	44.4	48.2
TCDD TEQ HH	pg/g	22	SW8290A	DFTEQ-HH	20	11.6	14.8	13.7	KMY-DU02	8		8	19.2	20.0	12.5	14.3	13.8	13.1	11.6	13.5

Notes

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

N = Normal

FD = Field Duplicate

HHRA screening values provided for detected compounds or compound sums where applicable.

RSL Table, May 2018 Industrial Soil [ELCR = 1E-6, HQ=0.1]

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte. mg/kg = milligrams per kilogram

pg/g = picograms per gram

ug/kg = micrograms per kilogram

JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the

sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

												Location ID	KMY02	KMY03
												Sample ID	SUSKMY0200N	SUSKMY0300N
												Depth	0 - 1 ft	0 - 1 ft
												Sample Date	5/15/2018	5/15/2018
												Туре	N	N
		Project Screening			Max	Min	Mean	Median	Max	Count	Count			
Analyte	Unit	Criteria	Method	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total			
Aluminum	mg/kg	110000	SW6020A	7429-90-5	15000	1600	5400	4200	KMY-DU01	9	9			
Antimony	mg/kg	47	SW6020A	7440-36-0	0.77	0.078	0.19	0.1	KMY-DU03	9	9			
Arsenic	mg/kg	3	SW6020A	7440-38-2	15	1.7	5.1	4.7	KMY02	22	22		15	5.8
Barium	mg/kg	22000	SW6020A	7440-39-3	120	13	52	40	KMY-DU01	9	9			
Beryllium	mg/kg	230	SW6020A	7440-41-7	1.2	0.26	0.52	0.42	KMY-DU01	9	9			
Cadmium	mg/kg	98	SW6020A	7440-43-9	0.18	0.049	0.099	0.085	KMY-DU02	9	9			
Calcium	mg/kg	EN	SW6020A	7440-70-2	3300	260	1000	610	KMY-DU03	9	9			
Chromium	mg/kg	180000	SW6020A	7440-47-3	51	8.1	26	30	KMY04	22	22		32 J	28 J
Cobalt	mg/kg	35	SW6020A	7440-48-4	16	4.7	8.9	7.2	KMY-DU01	9	9			
Copper	mg/kg	4700	SW6020A	7440-50-8	33	6.8	17	14	KMY-DU03	9	9			
Iron	mg/kg	82000	SW6020A	7439-89-6	27000	6700	14000	13000	KMY-DU01	9	9			
Lead	mg/kg	800	SW6020A	7439-92-1	75	2.8	22	13	KMY-DU03	9	9			
Magnesium	mg/kg	EN	SW6020A	7439-95-4	2100	180	850	800	KMY-DU01	9	9			
Manganese	mg/kg	2600	SW6020A	7439-96-5	570	67	280	240	KMY-DU03	9	9			
Nickel	mg/kg	2200	SW6020A	7440-02-0	20	4.7	9.3	7.1	KMY-DU01	9	9			
Potassium	mg/kg	EN	SW6020A	7440-09-7	1200	210	610	570	KMY-DU01	9	9			
Selenium	mg/kg	580	SW6020A	7782-49-2	2.2	0.36	0.94	0.78	KMY-DU01	9	9			
Silver	mg/kg	580	SW6020A	7440-22-4	0.13	0.029	0.064	0.049	KMY-DU03	4	9			
Sodium	mg/kg	EN	SW6020A	7440-23-5	32	32	32	32	KMY-DU01	1	9			
Thallium	mg/kg	1.2	SW6020A	7440-28-0	0.11	0.0077	0.042	0.0084	KMY-DU01	3	9			
Vanadium	mg/kg	580	SW6020A	7440-62-2	38	11	22	20	KMY-DU01	9	9			
Zinc	mg/kg	35000	SW6020A	7440-66-6	69	20	39	40	KMY-DU01	9	9			
Chromium, hexavalent	mg/kg	6.3	SW7199	18540-29-9	0.98	0.34	0.65	0.62	KMY08	3	6			
Mercury	mg/kg	35	SW7471B	7439-97-6	0.29	0.03	0.1	0.061	KMY-DU01	8	9			
Diesel Range Organics (C10-C20)	mg/kg	440	SW8015C DRO	C10C20	210	11	80	18	KMY-DU03	3	9			
Oil Range Organics (C20-C36)	mg/kg	350000	SW8015C DRO	C20C36	640	7.7	110	39	KMY-DU03	8	9			
Gasoline Range Organics (C6-C10)	ug/kg	42000	SW8015D GRO	8006-61-9	35	35	35	35	KMY-DU03	1	9			
Aroclor-1016	ug/kg		SW8082A LL	12674-11-2							9			
Aroclor-1221	ug/kg		SW8082A LL	11104-28-2							9			
Aroclor-1232	ug/kg		SW8082A LL	11141-16-5	1						9			
Aroclor-1242	ug/kg		SW8082A LL	53469-21-9							9			
Aroclor-1248	ug/kg		SW8082A LL	12672-29-6							9			
Aroclor-1254	ug/kg		SW8082A LL	11097-69-1							9			
Aroclor-1260	ug/kg		SW8082A LL	11096-82-5	9.8	3	6.4	6.4	KMY-DU02	2	9			
Aroclor-1262	ug/kg		SW8082A LL	37324-23-5	1						9			
Aroclor-1268	ug/kg		SW8082A LL	11100-14-4							9			

												Location ID	KMY02	KMY03
												'	SUSKMY0200N	
												Depth	0 - 1 ft	0 - 1 ft
												Sample Date	5/15/2018	5/15/2018
		T	1	T	1	1	1	1	T			Туре	N	N
		Project Screening			Max	Min	Mean	Median	Max	Count	Count			
Analyte	Unit	Criteria	Method	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total			
PCB, Total Aroclors (AECOM Calc)	ug/kg	970	SW8082A LL	TOT-PCB-ARO-C	9.8	3	6.4	6.4	KMY-DU02	2	9			
Acenaphthene	ug/kg	4.5e+006	SW8270D LL	83-32-9	710	0.81	110	2.3	KMY-DU03	7	9			
Acenaphthylene	ug/kg	4.5e+006	SW8270D LL	208-96-8	68	0.94	20	12	KMY-DU03	5	9			
Anthracene	ug/kg	2.3e+007	SW8270D LL	120-12-7	1100	0.97	130	5	KMY-DU03	9	9			
Benzo(a)anthracene	ug/kg	21000	SW8270D LL	56-55-3	2000	2.4	260	19	KMY-DU03	9	9			
Benzo(a)pyrene	ug/kg	2100	SW8270D LL	50-32-8	1500	9.1	230	37	KMY-DU03	8	9			
Benzo(b)fluoranthene	ug/kg	21000	SW8270D LL	205-99-2	1800	10	280	45	KMY-DU03	8	9			
Benzo(g,h,i)perylene	ug/kg	2.3e+006	SW8270D LL	191-24-2	1200	4.7	180	28	KMY-DU03	8	9			
Benzo(k)fluoranthene	ug/kg	210000	SW8270D LL	207-08-9	840	4.8	120	17	KMY-DU03	8	9			
Chrysene	ug/kg	2.1e+006	SW8270D LL	218-01-9	1800	2.4	240	22	KMY-DU03	9	9			
Dibenzo(a,h)anthracene	ug/kg	2100	SW8270D LL	53-70-3	370	1.7	56	7.7	KMY-DU03	8	9			
Fluoranthene	ug/kg	3e+006	SW8270D LL	206-44-0	3400	4.1	440	32	KMY-DU03	9	9			
Fluorene	ug/kg	3e+006	SW8270D LL	86-73-7	800	1.2	120	3.7	KMY-DU03	7	9			
Indeno(1,2,3-cd)pyrene	ug/kg	21000	SW8270D LL	193-39-5	1100	4.5	160	24	KMY-DU03	8	9			
Naphthalene	ug/kg	17000	SW8270D LL	91-20-3	660	1.7	100	4.3	KMY-DU03	7	9			
Phenanthrene	ug/kg	2.3e+007	SW8270D LL	85-01-8	6200	5.6	750	24	KMY-DU03	9	9			
Pyrene	ug/kg	2.3e+006	SW8270D LL	129-00-0	4100	4.3	530	37	KMY-DU03	9	9			
BaP-TE	ug/kg	2100	SW8270D LL	BAP	2370	0.242	320	29	KMY-DU03	9	9			
Total High-molecular-weight PAHs	ug/kg		SW8270D LL	TOT-PAH-HMW	18000	13	2400	190	KMY-DU03	9	9			
Total Low-molecular-weight PAHs	ug/kg		SW8270D LL	TOT-PAH-LMW	9500	6.6	1100	36	KMY-DU03	9	9			
Total PAHs (sum 16)	ug/kg		SW8270D LL	TOT-PAH	28000	20	3600	220	KMY-DU03	9	9			

			1# ID	I/M/O2	IZAAVO4	IZA AVOE	1/14/07	1/14//00	IZA AVOO	IZAAV40	IZNO/40
			Location ID	KMY03	KMY04	KMY05	KMY07	KMY08	KMY09	KMY10	KMY12
				SUSKMY0300R		SUSKMY0500N	SUSKMY0700N	SUSKMY0800N	SUSKMY0900N	SUSKMY1000N	SUSKMY1200N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	5/15/2018	5/15/2018	5/15/2018	5/15/2018	5/15/2018	5/15/2018	5/15/2018	5/15/2018
	1		Туре	FD	N	N	N	N	N	N	N
		Duning the Court of the court									
Analyte	Unit	Project Screening Criteria									
Aluminum	mg/kg	110000									
Antimony	mg/kg	47									
Arsenic	mg/kg	3		5.5	5.9	5.8	5.9	7.8	4.1	8.6	5.0
Barium	mg/kg	22000		0.0	0.0	0.0	0.0	7.0	4.1	0.0	0.0
Beryllium	mg/kg	230									
Cadmium	mg/kg	98									
Calcium	mg/kg	EN									
Chromium	mg/kg	180000		29 J	51 J	41 J	36 J	44 J	26 J	30 J	40 J
Cobalt	mg/kg	35		200	510	710			200	550	-70
Copper	mg/kg	4700									
Iron	mg/kg	82000									
Lead	mg/kg	800									
Magnesium	mg/kg	EN									
Manganese	mg/kg	2600									
Nickel	mg/kg	2200									
Potassium	mg/kg	EN									
Selenium	mg/kg	580									
Silver	mg/kg	580									
Sodium	mg/kg	EN									
Thallium	mg/kg	1.2									
Vanadium	mg/kg	580									
Zinc	mg/kg	35000									
Chromium, hexavalent	mg/kg	6.3			0.34 J	< 1.2 U	< 0.40 U	0.98			0.62
Mercury	mg/kg	35			0.0.0		0.100	0.00			0.02
Diesel Range Organics (C10-C20)	mg/kg	440									
Oil Range Organics (C20-C36)	mg/kg	350000									
Gasoline Range Organics (C6-C10)	ug/kg	42000									
Aroclor-1016	ug/kg	000									
Aroclor-1221	ug/kg										
Aroclor-1232	ug/kg										
Aroclor-1242	ug/kg										
Aroclor-1248	ug/kg										
Aroclor-1254	ug/kg										
Aroclor-1260	ug/kg										
Aroclor-1262	ug/kg										
Aroclor-1268	ug/kg										

			Location ID	KMY03	KMY04	KMY05	KMY07	KMY08	KMY09	KMY10	KMY12
				SUSKMY0300R	SUSKMY0400N	SUSKMY0500N	SUSKMY0700N	SUSKMY0800N	SUSKMY0900N	SUSKMY1000N	SUSKMY1200N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft	0 - 1 ft
			Sample Date	5/15/2018	5/15/2018	5/15/2018	5/15/2018	5/15/2018	5/15/2018	5/15/2018	5/15/2018
			Type	FD	N	N	N	N	N	N	N
			,								
		Project Screening									
Analyte	Unit	Criteria									
PCB, Total Aroclors (AECOM Calc)	ug/kg	970									
Acenaphthene	ug/kg	4.5e+006									
Acenaphthylene	ug/kg	4.5e+006									
Anthracene	ug/kg	2.3e+007									
Benzo(a)anthracene	ug/kg	21000									
Benzo(a)pyrene	ug/kg	2100									
Benzo(b)fluoranthene	ug/kg	21000									
Benzo(g,h,i)perylene	ug/kg	2.3e+006									
Benzo(k)fluoranthene	ug/kg	210000									
Chrysene	ug/kg	2.1e+006									
Dibenzo(a,h)anthracene	ug/kg	2100									
Fluoranthene	ug/kg	3e+006									
Fluorene	ug/kg	3e+006									
Indeno(1,2,3-cd)pyrene	ug/kg	21000									
Naphthalene	ug/kg	17000									
Phenanthrene	ug/kg	2.3e+007									
Pyrene	ug/kg	2.3e+006									
BaP-TE	ug/kg	2100									
Total High-molecular-weight PAHs	ug/kg										
Total Low-molecular-weight PAHs	ug/kg										
Total PAHs (sum 16)	ug/kg										

			Location ID	KMY13	KMY14	KMY15	KMY-DU01	KMY-DU01	KMY-DU01	KMY-DU02	KMY-DU02
				SUSKMY1300N	SUSKMY1400N	SUSKMY1500N	DPSNPS0105N	DPSNPS0110N	DPSNPS0115N		DPSNPS0210N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	5 - 6 ft	10 - 11 ft	15 - 16 ft	5 - 6 ft	10 - 11 ft
			Sample Date	5/15/2018	5/15/2018	5/15/2018	4/20/2017	4/20/2017	4/20/2017	4/21/2017	4/21/2017
			Type	N	N	N	N	N	N	N	N
			Туре	IN	IN	IN	IN	IN	IN	IN	IN
		Project Screening									
Analyte	Unit	Criteria									
Aluminum	mg/kg	110000					7000	7100	15000	4900	3300
Antimony	mg/kg	47					0.10 J	0.078 J	0.19 J	0.19 J	0.095 J
Arsenic	mg/kg	3		4.5	5.2	2.3	2.7	2.8	4.8	4.6	2.9
Barium	mg/kg	22000					62	59	120	34	27
Beryllium	mg/kg	230					0.62	0.64	1.2	0.42	0.34
Cadmium	mg/kg	98					0.085 J	0.094 J	0.15	0.18	0.078 J
Calcium	mg/kg	EN					490	610	870	890	590
Chromium	mg/kg	180000		30 J	35 J	31 J	14	13	33	13	9.0
Cobalt	mg/kg	35					9.2	11	16	7.2	6.6
Copper	mg/kg	4700					11	11	27	19	14
Iron	mg/kg	82000					15000	13000	27000	12000	9100
Lead	mg/kg	800					29	9.0	29	23	13
Magnesium	mg/kg	EN					1100	1100	2100	800	580
Manganese	mg/kg	2600					370	240	480	140	110
Nickel	mg/kg	2200					13	12	20	9.4	6.9
Potassium	mg/kg	EN					630	780	1200	720	430
Selenium	mg/kg	580					1.4 J	1.4 J	2.2 J	0.78 J	0.84 J
Silver	mg/kg	580					< 0.12 U	< 0.13 U	0.065 J	0.033 J	0.029 J
Sodium	mg/kg	EN					< 60 U	< 65 U	32 J	< 70 U	< 62 U
Thallium	mg/kg	1.2					0.0084 J	0.0077 J	0.11 J	< 0.14 U	< 0.12 U
Vanadium	mg/kg	580					35 J	20 J	38 J	29 J	14 J
Zinc	mg/kg	35000					43	40	69	49	40
Chromium, hexavalent	mg/kg	6.3			< 0.35 U						
Mercury	mg/kg	35					0.041	0.081	0.29	0.12	0.18
Diesel Range Organics (C10-C20)	mg/kg	440					< 22 U	< 21 U	< 24 U	18 J	11 J
Oil Range Organics (C20-C36)	mg/kg	350000					21 J	23	43	86	56
Gasoline Range Organics (C6-C10)	ug/kg	42000					< 130 U	< 130 U	< 150 U	< 150 U	< 130 U
Aroclor-1016	ug/kg						< 1.1 U	< 1.1 U	< 1.2 U	< 1.2 U	< 1.1 U
Aroclor-1221	ug/kg						< 1.1 U	< 1.1 U	< 1.2 U	< 1.2 U	< 1.1 U
Aroclor-1232	ug/kg						< 1.1 U	< 1.1 U	< 1.2 U	< 1.2 U	< 1.1 U
Aroclor-1242	ug/kg						< 1.1 U	< 1.1 U	< 1.2 U	< 1.2 U	< 1.1 U
Aroclor-1248	ug/kg						< 1.1 U	< 1.1 U	< 1.2 U	< 1.2 U	< 1.1 U
Aroclor-1254	ug/kg						< 1.1 U	< 1.1 U	< 1.2 U	< 1.2 U	< 1.1 U
Aroclor-1260	ug/kg						< 1.1 U	< 1.1 U	< 1.2 U	9.8	< 1.1 U
Aroclor-1262	ug/kg						< 1.1 U	< 1.1 U	< 1.2 U	< 1.2 U	< 1.1 U
Aroclor-1268	ug/kg						< 1.1 U	< 1.1 U	< 1.2 U	< 1.2 U	< 1.1 U

Table 4-28
Anacostia Park Surface and Subsurface Soil Discrete Sample Results
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	KMY13	KMY14	KMY15	KMY-DU01	KMY-DU01	KMY-DU01	KMY-DU02	KMY-DU02
			Sample ID	_	SUSKMY1400N	SUSKMY1500N		DPSNPS0110N	DPSNPS0115N		DPSNPS0210N
			Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft	5 - 6 ft	10 - 11 ft	15 - 16 ft	5 - 6 ft	10 - 11 ft
			Sample Date	5/15/2018	5/15/2018	5/15/2018	4/20/2017	4/20/2017	4/20/2017	4/21/2017	4/21/2017
			Type	N	N	N	N	N	N	-7/2 1/2017 N	N
			1,400	.,		.,	.,				- 14
		Project Screening									
Analyte	Unit	Criteria									
PCB, Total Aroclors (AECOM Calc)	ug/kg	970					< 1.1 U	< 1.1 U	< 1.2 U	9.8	< 1.1 U
Acenaphthene	ug/kg	4.5e+006					< 8.5 U	0.81 J	1.5 J	32	4.5 J
Acenaphthylene	ug/kg	4.5e+006					< 8.5 U	< 8.5 U	< 9.8 U	13 J	12
Anthracene	ug/kg	2.3e+007					3.3 J	2.3 J	4.9 J	59	17
Benzo(a)anthracene	ug/kg	21000					12	8.8	19	180	67
Benzo(a)pyrene	ug/kg	2100					9.1	9.2	19	160	68
Benzo(b)fluoranthene	ug/kg	21000					10	11	24	220	91
Benzo(g,h,i)perylene	ug/kg	2.3e+006					4.7 J	6.1 J	13	120	57
Benzo(k)fluoranthene	ug/kg	210000					5.6 J	4.8 J	10	76	31
Chrysene	ug/kg	2.1e+006					11	11	22	190	70
Dibenzo(a,h)anthracene	ug/kg	2100					1.7 J	2.0 J	4.4 J	35	17
Fluoranthene	ug/kg	3e+006					18	14	32	330	86
Fluorene	ug/kg	3e+006					< 8.5 U	1.2 J	2.2 J	39	6.3 J
Indeno(1,2,3-cd)pyrene	ug/kg	21000					4.5 J	5.4 J	12	100	50
Naphthalene	ug/kg	17000					< 8.5 U	2.4 J	3.0 J	34	5.7 J
Phenanthrene	ug/kg	2.3e+007					10	8.1 J	17	350	60
Pyrene	ug/kg	2.3e+006					18	17	37	340	120
BaP-TE	ug/kg	2100					13.5	13.8	29.0	246	106
Total High-molecular-weight PAHs	ug/kg						95	89	190	1800	660
Total Low-molecular-weight PAHs	ug/kg						13	15	29	530	110
Total PAHs (sum 16)	ug/kg						110	100	220	2300	760

Table 4-28
Anacostia Park Surface and Subsurface Soil Discrete Sample Results
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

			Location ID	KMY-DU02	KMY-DU03	KMY-DU03	KMY-DU03
			Sample ID	DPSNPS0215N	DPSNPS0305N	DPSNPS0310N	DPSNPS0315N
			Depth	15 - 16 ft	5 - 6 ft	10 - 11 ft	15 - 16 ft
			Sample Date	4/21/2017	4/21/2017	4/21/2017	4/21/2017
			Туре	N	N	N	N
			,,				
		Project Screening					
Analyte	Unit	Criteria					
Aluminum	mg/kg	110000		1900	4200	3600	1600
Antimony	mg/kg	47		0.079 J	0.77 J	0.085 J	0.10 J
Arsenic	mg/kg	3		1.7	4.3	2.6	4.2
Barium	mg/kg	22000		17	40	96	13
Beryllium	mg/kg	230		0.26	0.38	0.36	0.42
Cadmium	mg/kg	98		0.074 J	0.12 J	0.049 J	0.061 J
Calcium	mg/kg	EN		380	3300	1900	260
Chromium	mg/kg	180000		8.1	14	8.2	11
Cobalt	mg/kg	35		4.7	7.0	5.6	13
Copper	mg/kg	4700		6.8	16	33	12
Iron	mg/kg	82000		6700	16000	11000	20000
Lead	mg/kg	800		9.8	75	9.1	2.8
Magnesium	mg/kg	EN		430	920	410	180
Manganese	mg/kg	2600		67	220	570	320
Nickel	mg/kg	2200		5.2	7.1	4.7	5.7
Potassium	mg/kg	EN		550	570	360	210
Selenium	mg/kg	580		0.41 J	0.52 J	0.54 J	0.36 J
Silver	mg/kg	580		< 0.11 U	0.13	< 0.11 U	< 0.10 U
Sodium	mg/kg	EN		< 56 U	< 66 U	< 53 U	< 50 U
Thallium	mg/kg	1.2		< 0.11 U	< 0.13 U	< 0.11 U	< 0.10 U
Vanadium	mg/kg	580		11 J	23 J	13 J	15 J
Zinc	mg/kg	35000		32	34	22	20
Chromium, hexavalent	mg/kg	6.3					
Mercury	mg/kg	35		0.039	0.033 J	0.030 J	< 0.034 U
Diesel Range Organics (C10-C20)	mg/kg	440		< 21 U	210 J+	< 20 U	< 18 U
Oil Range Organics (C20-C36)	mg/kg	350000		34	640 J+	7.7 J	< 18 U
Gasoline Range Organics (C6-C10)	ug/kg	42000		< 130 U	35 J	< 120 U	< 110 U
Aroclor-1016	ug/kg			< 1.1 U	< 1.1 U	< 0.98 U	< 0.91 U
Aroclor-1221	ug/kg			< 1.1 U	< 1.1 U	< 0.98 U	< 0.91 U
Aroclor-1232	ug/kg			< 1.1 U	< 1.1 U	< 0.98 U	< 0.91 U
Aroclor-1242	ug/kg			< 1.1 U	< 1.1 U	< 0.98 U	< 0.91 U
Aroclor-1248	ug/kg			< 1.1 U	< 1.1 U	< 0.98 U	< 0.91 U
Aroclor-1254	ug/kg			< 1.1 U	< 1.1 U	< 0.98 U	< 0.91 U
Aroclor-1260	ug/kg			< 1.1 U	3.0	< 0.98 U	< 0.91 U
Aroclor-1262	ug/kg			< 1.1 U	< 1.1 U	< 0.98 U	< 0.91 U
Aroclor-1268	ug/kg			< 1.1 U	< 1.1 U	< 0.98 U	< 0.91 U

Anacostia Park Surface and Subsurface Soil Discrete Sample Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	KMY-DU02	KMY-DU03	KMY-DU03	KMY-DU03
			Sample ID	DPSNPS0215N	DPSNPS0305N	DPSNPS0310N	
			Depth	15 - 16 ft	5 - 6 ft	10 - 11 ft	15 - 16 ft
			Sample Date	4/21/2017	4/21/2017	4/21/2017	4/21/2017
			Type	N	4/2 1/2017 N	N	N
			Турс	14	IN .		11
		Project Screening					
Analyte	Unit	Criteria					
PCB, Total Aroclors (AECOM Calc)	ug/kg	970		< 1.1 U	3.0	< 0.98 U	< 0.91 U
Acenaphthene	ug/kg	4.5e+006		1.9 J	710	2.3 J	< 7.3 U
Acenaphthylene	ug/kg	4.5e+006		5.8 J	68	0.94 J	< 7.3 U
Anthracene	ug/kg	2.3e+007		12	1100	5.0 J	0.97 J
Benzo(a)anthracene	ug/kg	21000		54	2000	12	2.4 J
Benzo(a)pyrene	ug/kg	2100		55	1500	12	< 7.3 U
Benzo(b)fluoranthene	ug/kg	21000		66	1800	15	< 7.3 U
Benzo(g,h,i)perylene	ug/kg	2.3e+006		42	1200	11	< 7.3 U
Benzo(k)fluoranthene	ug/kg	210000		23	840	5.1 J	< 7.3 U
Chrysene	ug/kg	2.1e+006		49	1800	12	2.4 J
Dibenzo(a,h)anthracene	ug/kg	2100		11	370	3.1 J	< 7.3 U
Fluoranthene	ug/kg	3e+006		56	3400	20	4.1 J
Fluorene	ug/kg	3e+006		3.7 J	800	2.4 J	< 7.3 U
Indeno(1,2,3-cd)pyrene	ug/kg	21000		35	1100	8.5	< 7.3 U
Naphthalene	ug/kg	17000		4.3 J	660	1.7 J	< 7.3 U
Phenanthrene	ug/kg	2.3e+007		35	6200	24	5.6 J
Pyrene	ug/kg	2.3e+006		85	4100	24	4.3 J
BaP-TE	ug/kg	2100		81.8	2370	18.7	0.242
Total High-molecular-weight PAHs	ug/kg			480	18000	120	13
Total Low-molecular-weight PAHs	ug/kg			63	9500	36	6.6
Total PAHs (sum 16)	ug/kg			540	28000	160	20

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

N = Normal

FD = Field Duplicate

EN = Essential Nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

RSL Table, May 2018 Industrial Soil [ELCR = 1E-6, HQ=0.1]

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- JN = The analyte was tentatively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria.

The presence or absence of the analyte cannot be verified.

mg/kg = milligrams per kilogram

ug/kg = micrograms per kilogram

											Sa	ation ID	KMY-DU01 DPWNPS0108-12N	KMY-DU02 DPWNPS0210-14N	KMY-DU03 DPWNPS0315-19N
											Sam	ole Date	4/20/2017	4/21/2017	4/21/2017 N
		Drainat	1	I		1						Туре	N	N	N
		Project Screening				Max	Min	Mean	Median	Max	Count	Count			
Analyte	Unit	Criteria	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total			
Total Petroleum Hydrocarbons (C9-C44)	mg/l		M8015D	N	TPH	0.453	0.211	0.336	0.343	KMY-DU01	3	3	0.453 J	0.343 J	0.211 J
Aluminum	ug/l	2000	SW6020A	D	7429-90-5	78	78	78	78	KMY-DU03	1	3	< 30 U	< 30 U	78
Antimony	ug/l	6	SW6020A	D	7440-36-0							3	< 2.0 U	< 2.0 U	< 2.0 U
Arsenic	ug/l	10	SW6020A	D	7440-38-2	0.76	0.23	0.57	0.73	KMY-DU02	3	3	0.73 J	0.76 J	0.23 J
Barium	ug/l	1000	SW6020A	D	7440-39-3	93	71	84	87	KMY-DU01	3	3	93	71	87
Beryllium	ug/l	4	SW6020A	D	7440-41-7							3	< 1.0 U	< 1.0 U	< 1.0 U
Cadmium	ug/l	5	SW6020A	D	7440-43-9							3	< 1.0 U	< 1.0 U	< 1.0 U
Calcium	ug/l	EN	SW6020A	D	7440-70-2	180000	69000	120000	97000	KMY-DU02	3	3	69000	180000	97000
Chromium	ug/l	100	SW6020A	D	7440-47-3	0.63	0.63	0.63	0.63	KMY-DU01	1	3	0.63 J	< 2.0 U	< 2.0 U
Cobalt	ug/l	0.6	SW6020A	D	7440-48-4	16	0.59	9.5	12	KMY-DU03	3	3	12	0.59	16
Copper	ug/l	1300	SW6020A	D	7440-50-8	4	4	4	4	KMY-DU01	1	3	4.0	< 2.0 U	< 2.0 U
Iron	ug/l	1400	SW6020A	D	7439-89-6	160	38	99	99	KMY-DU03	2	3	38 J	< 50 U	160
Lead	ug/l	15	SW6020A	D	7439-92-1							3	< 1.0 U	< 1.0 U	< 1.0 U
Magnesium	ug/l	EN	SW6020A	D	7439-95-4	29000	11000	20000	21000	KMY-DU02	3	3	21000	29000	11000
Manganese	ug/l	43	SW6020A	D	7439-96-5	3400	970	2400	2900	KMY-DU02	3	3	2900	3400	970
Nickel	ug/l	39	SW6020A	D	7440-02-0	10	0.93	5.2	4.8	KMY-DU01	3	3	10	0.93 J	4.8
Potassium	ug/l	EN	SW6020A	D	7440-09-7	13000	6400	9100	8000	KMY-DU02	3	3	8000	13000	6400
Selenium	ug/l	50	SW6020A	D	7782-49-2	1.5	1.5	1.5	1.5	KMY-DU03	1	3	< 5.0 U	< 5.0 U	1.5 J
Silver	ug/l	50	SW6020A	D	7440-22-4							3	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l	EN	SW6020A	D	7440-23-5	130000	20000	59000	28000	KMY-DU03	3	3	20000	28000	130000
Thallium	ug/l	2	SW6020A	D	7440-28-0							3	< 1.0 U	< 1.0 U	< 1.0 U
Vanadium	ug/l	8.6	SW6020A	D	7440-62-2							3	< 1.0 U	< 1.0 U	< 1.0 U
Zinc	ug/l	600	SW6020A	D	7440-66-6	5.7	3.3	4.5	4.5	KMY-DU03	2	3	3.3 J	< 5.0 U	5.7
Aluminum	ug/l	2000	SW6020A	Т	7429-90-5	33000	52	13000	7100	KMY-DU01	3	3	33000	52	7100
Antimony	ug/l	6	SW6020A	Т	7440-36-0	0.52	0.52	0.52	0.52	KMY-DU01	1	3	0.52 J	< 2.0 U	< 2.0 U
Arsenic	ug/l	10	SW6020A	Т	7440-38-2	16	8.8	11	8.8	KMY-DU01	3	3	16	8.8	8.8
Barium	ug/l	1000	SW6020A	Т	7440-39-3	460	120	260	200	KMY-DU01	3	3	460	200	120
Beryllium	ug/l	4	SW6020A	Т	7440-41-7	2.9	0.62	1.8	1.8	KMY-DU01	2	3	2.9	< 1.0 U	0.62 J
Cadmium	ug/l	5	SW6020A	Т	7440-43-9	0.45	0.18	0.32	0.32	KMY-DU01	2	3	0.45 J	< 1.0 U	0.18 J
Calcium	ug/l	EN	SW6020A	Т	7440-70-2	190000	75000	120000	96000	KMY-DU02	3	3	75000	190000	96000
Chromium	ug/l	100	SW6020A	Т	7440-47-3	78	1.2	34	23	KMY-DU01	3	3	78	1.2 J	23
Cobalt	ug/l	0.6	SW6020A	Т	7440-48-4	52	0.96	29	35	KMY-DU01	3	3	52	0.96	35
Copper	ug/l	1300	SW6020A	T	7440-50-8	63	1.4	27	17	KMY-DU01	3	3	63	1.4 J	17
Iron	ug/l	1400	SW6020A	Т	7439-89-6	150000	25000	73000	45000	KMY-DU01	3	3	150000	45000	25000
Lead	ug/l	15	SW6020A	Т	7439-92-1	72	12	42	42	KMY-DU01	2	3	72	< 1.0 U	12
Magnesium	ug/l	EN	SW6020A	Т	7439-95-4	29000	12000	22000	26000	KMY-DU02	3	3	26000	29000	12000
Manganese	ug/l	43	SW6020A	T	7439-96-5	4800	1400	3300	3800	KMY-DU01	3	3	4800	3800	1400
Nickel	ug/l	39	SW6020A	Т	7440-02-0	61	1.5	26	14	KMY-DU01	3	3	61	1.5	14
Potassium	ug/l	EN	SW6020A	Т	7440-09-7	13000	7300	10000	11000	KMY-DU02	3	3	11000	13000	7300
Selenium	ug/l	50	SW6020A	Т	7782-49-2	3.6	2.1	2.9	2.9	KMY-DU01	2	3	3.6 J	< 5.0 U	2.1 J
Silver	ug/l	50	SW6020A	Т	7440-22-4	1						3	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l	EN	SW6020A	Т	7440-23-5	130000	19000	59000	28000	KMY-DU03	3	3	19000	28000	130000
Thallium	ug/l	2	SW6020A	Т	7440-28-0	1						3	< 1.0 U	< 1.0 U	< 1.0 U

											Sa	ation ID	KMY-DU01 DPWNPS0108-12N	KMY-DU02 DPWNPS0210-14N	KMY-DU03 DPWNPS0315-19N
											Sam	ole Date Type	4/20/2017 N	4/21/2017 N	4/21/2017 N
		Duningt								1	l	1 ype	IN	IN	IN
		Project Screening				Max	Min	Mean	Median	Max	Count	Count			
Analyte	Unit	Criteria	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total			
Vanadium	ug/l	8.6	SW6020A	Т	7440-62-2	80	1.1	37	29	KMY-DU01	3	3	80	1.1	29
Zinc	ug/l	600	SW6020A	Т	7440-66-6	170	45	87	46	KMY-DU01	3	3	170	46	45
Mercury	ug/l	2	SW7470A	D	7439-97-6							3	< 0.20 U	< 0.20 U	< 0.20 U
Mercury	ug/l	2	SW7470A	Т	7439-97-6							3	< 0.20 U	< 0.20 U	< 0.20 U
Diesel Range Organics (C10-C20)	ug/l	100	SW8015C DRO	N	C10C20	270	270	270	270	KMY-DU01	1	3	270 J	< 510 U	< 480 U
Oil Range Organics (C20-C36)	ug/l	6000	SW8015C DRO	N	C20C36	850	560	710	710	KMY-DU01	2	3	850	560	< 480 U
Gasoline Range Organics (C6-C10)	ug/l	3.3	SW8015C GRO	N	8006-61-9							3	< 100 U	< 100 U	< 100 U
4,4'-DDD	ug/l	0.0063	SW8081B LL	N	72-54-8							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
4,4'-DDE	ug/l	0.046	SW8081B LL	N	72-55-9							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
4,4'-DDT	ug/l	0.23	SW8081B LL	N	50-29-3	0.00043	0.00043	0.00043	0.00043	KMY-DU02	1	3	< 0.0013 U	0.00043 J	< 0.0013 U
Aldrin	ug/l	0.00092	SW8081B LL	N	309-00-2							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
alpha-BHC	ug/l	0.0072	SW8081B LL	N	319-84-6							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
beta-BHC	ug/l	0.025	SW8081B LL	N	319-85-7							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
cis-Chlordane	ug/l	2	SW8081B LL	N	5103-71-9							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
delta-BHC	ug/l	0.0072	SW8081B LL	N	319-86-8							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Dieldrin	ug/l	0.0018	SW8081B LL	N	60-57-1							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Endosulfan I	ug/l	10	SW8081B LL	N	959-98-8							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Endosulfan II	ug/l	10	SW8081B LL	N	33213-65-9							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Endosulfan Sulfate	ug/l	10	SW8081B LL	N	1031-07-8							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Endrin	ug/l	0.2	SW8081B LL	N	72-20-8							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Endrin aldehyde	ug/l	0.23	SW8081B LL	N	7421-93-4							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Endrin ketone	ug/l	0.23	SW8081B LL	N	53494-70-5							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
gamma-BHC (Lindane)	ug/l	0.2	SW8081B LL	N	58-89-9							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Heptachlor	ug/l	0.4	SW8081B LL	N	76-44-8							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Heptachlor Epoxide	ug/l	0.2	SW8081B LL	N	1024-57-3							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Methoxychlor	ug/l	40	SW8081B LL	N	72-43-5							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Toxaphene	ug/l	3	SW8081B LL	N	8001-35-2							3	< 0.097 U	< 0.097 U	< 0.097 U
trans-Chlordane	ug/l	2	SW8081B LL	N	5103-74-2							3	< 0.0013 U	< 0.0013 U	< 0.0013 U
Aroclor-1016	ug/l		SW8082A LL	N	12674-11-2							3	< 0.0097 U	< 0.0097 U	< 0.0097 U
Aroclor-1221	ug/l		SW8082A LL	N	11104-28-2							3	< 0.0097 U	< 0.0097 U	< 0.0097 U
Aroclor-1232	ug/l		SW8082A LL	N	11141-16-5							3	< 0.0097 U	< 0.0097 U	< 0.0097 U
Aroclor-1242	ug/l		SW8082A LL	N	53469-21-9							3	< 0.0097 U	< 0.0097 U	< 0.0097 U
Aroclor-1248	ug/l		SW8082A LL	N	12672-29-6							3	< 0.0097 U	< 0.0097 U	< 0.0097 U
Aroclor-1254	ug/l		SW8082A LL	N	11097-69-1							3	< 0.0097 U	< 0.0097 U	< 0.0097 U
Aroclor-1260	ug/l		SW8082A LL	N	11096-82-5							3	< 0.0097 U	< 0.0097 U	< 0.0097 U
Aroclor-1262	ug/l		SW8082A LL	N	37324-23-5							3	< 0.0097 U	< 0.0097 U	< 0.0097 U
Aroclor-1268	ug/l		SW8082A LL	N	11100-14-4							3	< 0.0097 U	< 0.0097 U	< 0.0097 U
PCB, Total Aroclors (AECOM Calc)	ug/l	0.5	SW8082A LL	N	TOT-PCB-ARO-C							3	< 0.0097 U	< 0.0097 U	< 0.0097 U
1,1,1-Trichloroethane	ug/l	200	SW8260C	N	71-55-6							3	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2,2-Tetrachloroethane	ug/l	0.076	SW8260C	N	79-34-5					İ		3	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/l	1000	SW8260C	N	76-13-1					İ		3	< 1.0 U	< 1.0 U	< 1.0 U
1,1,2-Trichloroethane	ug/l	5	SW8260C	N	79-00-5							3	< 1.0 U	< 1.0 U	< 1.0 U
1,1-Dichloroethane	ug/l	2.8	SW8260C	N	75-34-3							3	< 1.0 U	< 1.0 U	< 1.0 U

											Sa	ation ID mple ID ble Date Type	KMY-DU01 DPWNPS0108-12N 4/20/2017 N	KMY-DU02 DPWNPS0210-14N 4/21/2017 N	KMY-DU03 DPWNPS0315-19N 4/21/2017 N
		Project													
Analyte	Unit	Screening Criteria	Method	Fraction	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count Detect	Count Total			
1,1-Dichloroethene	ug/l	7	SW8260C	N	75-35-4	Detect	Detect	Detect	Detect	Location	Detect	3	< 1.0 U	< 1.0 U	< 1.0 U
1,2,3-Trichlorobenzene	ug/l	0.7	SW8260C	N	87-61-6							3	< 1.0 U	< 1.0 U	< 1.0 U
1.2.4-Trichlorobenzene	ug/l	70	SW8260C	N	120-82-1							3	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromo-3-chloropropane	ug/l	0.2	SW8260C	N	96-12-8							3	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dibromoethane	ug/l	0.05	SW8260C	N	106-93-4							3	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichlorobenzene	ug/l	600	SW8260C	N	95-50-1							3	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloroethane	ug/l	5	SW8260C	N	107-06-2							3	< 1.0 U	< 1.0 U	< 1.0 U
1,2-Dichloropropane	ug/l	5	SW8260C	N	78-87-5							3	< 1.0 U	< 1.0 U	< 1.0 U
1,3-Dichlorobenzene	ug/l	0.48	SW8260C	N	541-73-1							3	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dichlorobenzene	ug/l	75	SW8260C	N	106-46-7							3	< 1.0 U	< 1.0 U	< 1.0 U
1,4-Dioxane	ug/l	0.46	SW8260C	N	123-91-1							3	< 200 U	< 200 U	< 200 U
2-Butanone	ug/l	560	SW8260C	N	78-93-3							3	< 5.0 U	< 5.0 U	< 5.0 U
2-Hexanone	ug/l	3.8	SW8260C	N	591-78-6							3	< 5.0 U	< 5.0 U	< 5.0 U
4-Methyl-2-pentanone	ug/l	630	SW8260C	N	108-10-1							3	< 5.0 U	< 5.0 U	< 5.0 U
Acetone	ug/l	1400	SW8260C	N	67-64-1	6.1	5.8	6	6	KMY-DU01	2	3	6.1 J+	5.8 J+	< 5.0 U
Benzene	ug/l	5	SW8260C	N	71-43-2							3	< 1.0 U	< 1.0 U	< 1.0 U
Bromochloromethane	ug/l	8.3	SW8260C	N	74-97-5							3	< 1.0 U	< 1.0 U	< 1.0 U
Bromodichloromethane	ug/l	80	SW8260C	N	75-27-4							3	< 1.0 U	< 1.0 U	< 1.0 U
Bromoform	ug/l	80	SW8260C	N	75-25-2							3	< 1.0 U	< 1.0 U	< 1.0 U
Bromomethane	ug/l	0.75	SW8260C	N	74-83-9							3	< 1.0 U	< 1.0 U	< 1.0 U
Butyl alcohol, tert-	ug/l	14	SW8260C	N	75-65-0							3	< 40 U	< 40 U	< 40 U
Carbon Disulfide	ug/l	81	SW8260C	N	75-15-0	1	0.69	0.85	0.85	KMY-DU03	2	3	< 1.0 U	0.69 J	1.0
Carbon Tetrachloride	ug/l	5	SW8260C	N	56-23-5							3	< 1.0 U	< 1.0 U	< 1.0 U
Chlorobenzene	ug/l	100	SW8260C	N	108-90-7							3	< 1.0 U	< 1.0 U	< 1.0 U
Chloroethane	ug/l	2100	SW8260C	N	75-00-3							3	< 1.0 U	< 1.0 U	< 1.0 U
Chloroform	ug/l	80	SW8260C	N	67-66-3							3	< 1.0 U	< 1.0 U	< 1.0 U
Chloromethane	ug/l	19	SW8260C	N	74-87-3							3	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,2-Dichloroethylene	ug/l	70	SW8260C	N	156-59-2							3	< 1.0 U	< 1.0 U	< 1.0 U
cis-1,3-Dichloropropene	ug/l	0.47	SW8260C	N	10061-01-5							3	< 1.0 U	< 1.0 U	< 1.0 U
Cyclohexane	ug/l	1300	SW8260C	N	110-82-7							3	< 1.0 U	< 1.0 U	< 1.0 U
Dibromochloromethane	ug/l	80	SW8260C	N	124-48-1							3	< 1.0 U	< 1.0 U	< 1.0 U
Dichlorodifluoromethane	ug/l	20	SW8260C	N	75-71-8							3	< 1.0 U	< 1.0 U	< 1.0 U
Diisopropyl ether	ug/l	150	SW8260C	N	108-20-3							3	< 1.0 U	< 1.0 U	< 1.0 U
Ethylbenzene	ug/l	700	SW8260C	N	100-41-4							3	< 1.0 U	< 1.0 U	< 1.0 U
Ethyl-Tert-Butyl-Ether	ug/l		SW8260C	N	637-92-3							3	< 1.0 U	< 1.0 U	< 1.0 U
Isopropylbenzene	ug/l	45	SW8260C	N	98-82-8							3	< 1.0 U	< 1.0 U	< 1.0 U
m, p-Xylene	ug/l	10000	SW8260C	N	XYLMP							3	< 1.0 U	< 1.0 U	< 1.0 U
Methyl Acetate	ug/l	2000	SW8260C	N	79-20-9							3	< 5.0 U	< 5.0 U	< 5.0 U
Methyl tert-Butyl Ether (MTBE)	ug/l	14	SW8260C	N	1634-04-4							3	< 1.0 U	< 1.0 U	< 1.0 U
Methylcyclohexane	ug/l	1300	SW8260C	N	108-87-2							3	< 1.0 U	< 1.0 U	< 1.0 U
Methylene Chloride	ug/l	5	SW8260C	N	75-09-2							3	< 1.0 U	< 1.0 U	< 1.0 U
o-Xylene	ug/l	10000	SW8260C	N	95-47-6							3	< 1.0 U	< 1.0 U	< 1.0 U
Styrene	ug/l	100	SW8260C	N	100-42-5	<u> </u>	L		L		L	3	< 1.0 U	< 1.0 U	< 1.0 U

						T					Sa	ation ID mple ID ble Date Type	KMY-DU01 DPWNPS0108-12N 4/20/2017 N	KMY-DU02 DPWNPS0210-14N 4/21/2017 N	KMY-DU03 DPWNPS0315-19N 4/21/2017 N
		Project				١		١							
Analyte	Unit	Screening Criteria	Method	Fraction	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count Detect	Count Total			
Tertiary-Amyl Methyl Ether	ug/l	41	SW8260C	N	994-05-8	Dottool	Detect	Beteet	Dotoot	Location	Botoot	3	< 1.0 U	< 1.0 U	< 1.0 U
Tetrachloroethylene	ug/l	5	SW8260C	N	127-18-4							3	< 1.0 U	< 1.0 U	< 1.0 U
Toluene	ug/l	1000	SW8260C	N	108-88-3							3	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,2-Dichloroethene	ug/l	100	SW8260C	N	156-60-5							3	< 1.0 U	< 1.0 U	< 1.0 U
trans-1,3-Dichloropropene	ug/l	0.47	SW8260C	N	10061-02-6							3	< 1.0 U	< 1.0 U	< 1.0 U
Trichloroethene	ug/l	5	SW8260C	N	79-01-6							3	< 1.0 U	< 1.0 U	< 1.0 U
Trichlorofluoromethane	ug/l	520	SW8260C	N	75-69-4							3	< 1.0 U	< 1.0 U	< 1.0 U
Vinyl Chloride	ug/l	2	SW8260C	N	75-01-4							3	< 1.0 U	< 1.0 U	< 1.0 U
Xylenes (total)	ug/l	10000	SW8260C	N	1330-20-7							3	< 1 U	< 1 U	< 1 U
1,1'-Biphenyl	ug/l	0.083	SW8270D LL	N	92-52-4						1	3	< 0.99 U	< 1.1 U	< 0.95 U
1,2,4,5-Tetrachlorobenzene	ug/l	0.17	SW8270D LL	N	95-94-3							3	< 0.99 U	< 1.1 U	< 0.95 U
2,2'-oxybis(1-Chloropropane)	ug/l	71	SW8270D LL	N	108-60-1							3	< 0.19 U	< 0.20 U	< 0.18 U
2,3,4,6-Tetrachlorophenol	ug/l	24	SW8270D LL	N	58-90-2							3	< 0.99 U	< 1.1 U	< 0.95 U
2,4,5-Trichlorophenol	ug/l	120	SW8270D LL	N	95-95-4							3	< 0.99 U	< 1.1 U	< 0.95 U
2,4,6-Trichlorophenol	ug/l	1.2	SW8270D LL	N	88-06-2							3	< 0.99 U	< 1.1 U	< 0.95 U
2,4-Dichlorophenol	ug/l	4.6	SW8270D LL	N	120-83-2							3	< 0.19 U	< 0.20 U	< 0.18 U
2,4-Dimethylphenol	ug/l	36	SW8270D LL	N	105-67-9							3	< 0.99 U	< 1.1 U	< 0.95 U
2,4-Dinitrophenol	ug/l	3.9	SW8270D LL	N	51-28-5							3	< 5.0 U	< 5.3 U	< 4.8 U
2,4-Dinitrotoluene	ug/l	0.24	SW8270D LL	N	121-14-2							3	< 0.99 U	< 1.1 U	< 0.95 U
2,6-Dinitrotoluene	ug/l	0.049	SW8270D LL	N	606-20-2							3	< 0.99 U	< 1.1 U	< 0.95 U
2-Chloronaphthalene	ug/l	75	SW8270D LL	N	91-58-7							3	< 0.19 U	< 0.20 U	< 0.18 U
2-Chlorophenol	ug/l	9.1	SW8270D LL	N	95-57-8							3	< 0.99 U	< 1.1 U	< 0.95 U
2-Methylnaphthalene	ug/l	3.6	SW8270D LL	N	91-57-6							3	< 0.19 U	< 0.20 U	< 0.18 U
2-Methylphenol	ug/l	93	SW8270D LL	N	95-48-7							3	< 0.99 U	< 1.1 U	< 0.95 U
2-Nitroaniline	ug/l	19	SW8270D LL	N	88-74-4							3	< 5.0 U	< 5.3 U	< 4.8 U
2-Nitrophenol	ug/l	580	SW8270D LL	N	88-75-5							3	< 0.99 U	< 1.1 U	< 0.95 U
3,3'-Dichlorobenzidine	ug/l	0.13	SW8270D LL	N	91-94-1							3	< 0.99 U	< 1.1 U	< 0.95 U
3-Nitroaniline	ug/l	3.8	SW8270D LL	N	99-09-2							3	< 5.0 U	< 5.3 U	< 4.8 U
4,6-Dinitro-2-methylphenol	ug/l	0.15	SW8270D LL	N	534-52-1							3	< 5.0 U	< 5.3 U	< 4.8 U
4-Bromophenyl-phenylether	ug/l		SW8270D LL	N	101-55-3							3	< 0.99 U	< 1.1 U	< 0.95 U
4-Chloro-3-methylphenol	ug/l	140	SW8270D LL	N	59-50-7							3	< 0.99 U	< 1.1 U	< 0.95 U
4-Chloroaniline	ug/l	0.37	SW8270D LL	N	106-47-8							3	< 0.99 U	< 1.1 U	< 0.95 U
4-Chlorophenyl-phenylether	ug/l		SW8270D LL	N	7005-72-3							3	< 0.99 U	< 1.1 U	< 0.95 U
4-Methylphenol	ug/l	190	SW8270D LL	N	106-44-5							3	< 0.99 U	< 1.1 U	< 0.95 U
4-Nitroaniline	ug/l	3.8	SW8270D LL	N	100-01-6							3	< 5.0 U	< 5.3 U	< 4.8 U
4-Nitrophenol	ug/l	580	SW8270D LL	N	100-02-7							3	< 5.0 U	< 5.3 U	< 4.8 U
Acenaphthene	ug/l	53	SW8270D LL	N	83-32-9							3	< 0.19 U	< 0.20 U	< 0.18 U
Acenaphthylene	ug/l	53	SW8270D LL	N	208-96-8							3	< 0.19 U	< 0.20 U	< 0.18 U
Acetophenone	ug/l	190	SW8270D LL	N	98-86-2							3	< 0.99 U	< 1.1 U	< 0.95 U
Anthracene	ug/l	180	SW8270D LL	N	120-12-7	0.029	0.029	0.029	0.029	KMY-DU03	1	3	< 0.19 U	< 0.20 U	0.029 J
Atrazine	ug/l	3	SW8270D LL	N	1912-24-9							3	< 0.99 U	< 1.1 U	< 0.95 U
Benzaldehyde	ug/l	19	SW8270D LL	N	100-52-7	0.24	0.24	0.24	0.24	KMY-DU01	1	3	0.24 J	< 1.1 U	< 0.95 U
Benzo(a)anthracene	ug/l	0.03	SW8270D LL	N	56-55-3			1				3	< 0.19 U	< 0.20 U	< 0.18 U

											Loc	ation ID	KMY-DU01	KMY-DU02	KMY-DU03
												mple ID	DPWNPS0108-12N	DPWNPS0210-14N	DPWNPS0315-19N
												ole Date	4/20/2017	4/21/2017	4/21/2017
											Odini	Type	N	N	-7/21/2017 N
		Project										Турс	11		
		Screening				Max	Min	Mean	Median	Max	Count	Count			
Analyte	Unit	Criteria	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total			
Benzo(a)pyrene	ug/l	0.2	SW8270D LL	N	50-32-8							3	< 0.19 U	< 0.20 U	< 0.18 U
Benzo(b)fluoranthene	ug/l	0.25	SW8270D LL	N	205-99-2							3	< 0.19 U	< 0.20 U	< 0.18 U
Benzo(g,h,i)perylene	ug/l	12	SW8270D LL	N	191-24-2							3	< 0.19 U	< 0.20 U	< 0.18 U
Benzo(k)fluoranthene	ug/l	2.5	SW8270D LL	N	207-08-9							3	< 0.19 U	< 0.20 U	< 0.18 U
bis-(2-chloroethoxy)methane	ug/l	5.9	SW8270D LL	N	111-91-1							3	< 0.99 U	< 1.1 U	< 0.95 U
bis-(2-Chloroethyl)ether	ug/l	0.014	SW8270D LL	N	111-44-4							3	< 0.19 U	< 0.20 U	< 0.18 U
bis-(2-Ethylhexyl)phthalate	ug/l	6	SW8270D LL	N	117-81-7	4.9	4.9	4.9	4.9	KMY-DU01	1	3	4.9	< 2.1 U	< 1.9 U
Butylbenzylphthalate	ug/l	16	SW8270D LL	N	85-68-7							3	< 0.99 U	< 1.1 U	< 0.95 U
Caprolactam	ug/l	990	SW8270D LL	N	105-60-2							3	< 5.0 U	< 5.3 U	< 4.8 U
Carbazole	ug/l	29	SW8270D LL	N	86-74-8	0.032	0.032	0.032	0.032	KMY-DU03	1	3	< 0.19 U	< 0.20 U	0.032 J
Chrysene	ug/l	25	SW8270D LL	N	218-01-9							3	< 0.19 U	< 0.20 U	< 0.18 U
Dibenzo(a,h)anthracene	ug/l	0.025	SW8270D LL	N	53-70-3							3	< 0.19 U	< 0.20 U	< 0.18 U
Dibenzofuran	ug/l	0.79	SW8270D LL	N	132-64-9							3	< 0.99 U	< 1.1 U	< 0.95 U
Diethylphthalate	ug/l	1500	SW8270D LL	N	84-66-2	0.4	0.17	0.27	0.24	KMY-DU02	3	3	0.24 J	0.40 J	0.17 J
Dimethylphthalate	ug/l	1500	SW8270D LL	N	131-11-3							3	< 0.99 U	< 1.1 U	< 0.95 U
Di-n-butylphthalate	ug/l	90	SW8270D LL	N	84-74-2	0.78	0.12	0.35	0.15	KMY-DU01	3	3	0.78 J	0.15 J	0.12 J
Di-n-octylphthalate	ug/l	20	SW8270D LL	N	117-84-0	0.64	0.64	0.64	0.64	KMY-DU01	1	3	0.64 J	< 1.1 U	< 0.95 U
Fluoranthene	ug/l	80	SW8270D LL	N	206-44-0	0.098	0.098	0.098	0.098	KMY-DU03	1	3	< 0.19 U	< 0.20 U	0.098 J
Fluorene	ug/l	29	SW8270D LL	N	86-73-7							3	< 0.19 U	< 0.20 U	< 0.18 U
Hexachlorobenzene	ug/l	1	SW8270D LL	N	118-74-1							3	< 0.19 U	< 0.20 U	< 0.18 U
Hexachlorobutadiene	ug/l	0.14	SW8270D LL	N	87-68-3							3	< 0.19 U	< 0.20 U	< 0.18 U
Hexachlorocyclo-pentadiene	ug/l	50	SW8270D LL	N	77-47-4							3	< 0.99 U	< 1.1 U	< 0.95 U
Hexachloroethane	ug/l	0.33	SW8270D LL	N	67-72-1							3	< 0.99 U	< 1.1 U	< 0.95 U
Indeno(1,2,3-cd)pyrene	ug/l	0.25	SW8270D LL	N	193-39-5							3	< 0.19 U	< 0.20 U	< 0.18 U
Isophorone	ug/l	78	SW8270D LL	N	78-59-1							3	< 0.99 U	< 1.1 U	< 0.95 U
Naphthalene	ug/l	0.17	SW8270D LL	N	91-20-3							3	< 0.19 U	< 0.20 U	< 0.18 U
Nitrobenzene	ug/l	0.14	SW8270D LL	N	98-95-3							3	< 2.0 U	< 2.1 U	< 1.9 U
N-Nitroso-di-n-propylamine	ug/l	0.011	SW8270D LL	N	621-64-7							3	< 0.19 U	< 0.20 U	< 0.18 U
N-Nitrosodiphenylamine	ug/l	12	SW8270D LL	N	86-30-6							3	< 0.99 U	< 1.1 U	< 0.95 U
Pentachlorophenol	ug/l	1	SW8270D LL	N	87-86-5							3	< 0.99 U	< 1.1 U	< 0.95 U
Phenanthrene	ug/l	180	SW8270D LL	N	85-01-8	0.15	0.15	0.15	0.15	KMY-DU03	1	3	< 0.19 U	< 0.20 U	0.15 J
Phenol	ug/l	580	SW8270D LL	N	108-95-2							3	< 0.99 U	< 1.1 U	< 0.95 U
Pyrene	ug/l	12	SW8270D LL	N	129-00-0	0.086	0.086	0.086	0.086	KMY-DU03	1	3	< 0.19 U	< 0.20 U	0.086 J
BaP-TE	ug/l	0.2	SW8270D LL	N	BAP							3	< 0.190 U	< 0.200 U	< 0.180 U
Total High-molecular-weight PAHs	ug/l		SW8270D LL	N	TOT-PAH-HMW	0.18	0.18	0.18	0.18	KMY-DU03	1	3	< 0.19 U	< 0.2 U	0.18
Total Low-molecular-weight PAHs	ug/l		SW8270D LL	N	TOT-PAH-LMW	0.18	0.18	0.18	0.18	KMY-DU03	1	3	< 0.19 U	< 0.2 U	0.18
Total PAHs (sum 16)	ug/l		SW8270D LL	N	TOT-PAH	0.36	0.36	0.36	0.36	KMY-DU03	1	3	< 0.19 U	< 0.2 U	0.36
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/l		SW8290A	Т	67562-39-4							3	< 0.505 U	< 1.05 U	< 0.665 U
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/l		SW8290A	Т	35822-46-9	54.6	54.6	54.6	54.6	KMY-DU01	1	3	54.6	< 2.52 U	< 1.95 U
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/l		SW8290A	Т	55673-89-7							3	< 0.74 U	< 1.56 U	< 0.954 U
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/l		SW8290A	Т	70648-26-9							3	< 1.55 U	< 1.51 U	< 1.61 U
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/l		SW8290A	T	39227-28-6							3	< 2.49 U	< 2.01 U	< 1.99 U
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/l		SW8290A	T	57117-44-9							3	< 1.61 U	< 1.55 U	< 1.48 U

											Loc	ation ID	KMY-DU01	KMY-DU02	KMY-DU03
											Sa	mple ID	DPWNPS0108-12N	DPWNPS0210-14N	DPWNPS0315-19N
											Sam	ple Date	4/20/2017	4/21/2017	4/21/2017
												Type	N	N	N
Analyte	Unit	Project Screening Criteria	Method	Fraction	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count	Count			
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/l	Ontona	SW8290A	Т	57653-85-7	Dottool	Dottoot	Botoot	Botoot	Location	Dotoot	3	< 2.74 U	< 1.95 U	< 2.13 U
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/l		SW8290A	Т	72918-21-9							3	< 1.93 U	< 1.91 U	< 1.92 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/l		SW8290A	T	19408-74-3							3	< 2.78 U	< 2.15 U	< 2.28 U
1,2,3,7,8-PeCDF	pg/l		SW8290A	Т	57117-41-6							3	< 1.59 U	< 1.31 U	< 1.12 U
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/l		SW8290A	T	40321-76-4							3	< 2.46 U	< 2.3 U	< 1.88 U
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/l		SW8290A	T	60851-34-5							3	< 1.58 U	< 1.59 U	< 1.59 U
2,3,4,7,8-Pentachlorodibenzofuran	pg/l		SW8290A	Т	57117-31-4							3	< 1.5 U	< 1.26 U	< 1.17 U
2,3,7,8-Tetrachlorodibenzofuran	pg/l		SW8290A	T	51207-31-9							3	< 1.94 U	< 2.18 U	< 1.56 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/l	30	SW8290A	T	1746-01-6							3	< 2.3 U	< 2.37 U	< 1.91 U
Octachlorochlorodibenzofuran	pg/l		SW8290A	T	39001-02-0							3	< 13.7 U	< 11.4 U	< 7.85 U
Octachlorochlorodibenzo-p-dioxin	pg/l		SW8290A	T	3268-87-9	1950	1950	1950	1950	KMY-DU01	1	3	1950	< 13.8 U	< 19.5 U
Total HpCDD	pg/l		SW8290A	Т	37871-00-4	144	144	144	144	KMY-DU01	1	3	144	< 2.52 U	< 1.95 U
Total HpCDF	pg/l		SW8290A	T	38998-75-3							3	< 0.614 U	< 1.28 U	< 0.797 U
Total HxCDD	pg/l		SW8290A	T	34465-46-8	15.3	15.3	15.3	15.3	KMY-DU01	1	3	15.3	< 2.03 U	< 2.12 U
Total HxCDF	pg/l		SW8290A	Т	55684-94-1							3	< 1.66 U	< 1.63 U	< 1.64 U
Total PeCDD	pg/l		SW8290A	T	36088-22-9	10.1	10.1	10.1	10.1	KMY-DU02	1	3	< 2.46 U	10.1	< 1.88 U
Total PeCDF	pg/l		SW8290A	T	30402-15-4							3	< 1.55 U	< 1.28 U	< 1.14 U
Total TCDD	pg/l		SW8290A	T	41903-57-5							3	< 2.3 U	< 2.37 U	< 1.91 U
Total TCDF	pg/l		SW8290A	T	55722-27-5							3	< 1.94 U	< 2.18 U	< 1.56 U
TCDD TEQ HH	pg/l	30	SW8290A	Т	DFTEQ-HH	1.13	1.13	1.13	1.13	KMY-DU01	1	3	1.13	< 2.37 U	< 1.91 U

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Project Screening Criteria.

T = Total N = Normal

FD = Field Duplicate

EN = Essential nutrient

HHRA screening values provided for detected compounds or compound sums where applicable.

Heirarchy: 1) Lower of DOEE/MCL (primary standards). 2) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte.
- JN = The analyte was tentatively identified; the associated numerical value is the

approximate concentration of the analyte in the sample.

- UJ = The analyte was not detected above the reported sample quantitation limit. The reported quantitation limit is approximate.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the
- sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

mg/l = milligrams per liter

pg/l = picograms per liter

ug/l = micrograms per liter

Table 4-30 Waterside Investigation Area Surface Water Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

																•		1						
												Loc	ation ID	SUW10B	SUW1B	SUW2B	SUW3C	SUW4B	SUW5C	SUW6B	SUW6B	SUW7B	SUW8B	SUW9C
												Sa	mple ID	SUW10BN	SUW1BN	SUW2BN	SUW3CN	SUW4BN	SUW5CN	SUW6BN	SUW6BR	SUW7BN	SUW8BN	SUW9CN
												Sam	ole Date	9/26/2013	9/23/2013	9/23/2013	9/23/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/25/2013
													Туре	N	N	N	N	N	N	N	FD	N	N	N
		HHRA	ERA																					
		Screening	Screening				Max	Min	Mean	Median	Max	Count Count	Count											
Analyte	Unit	Levels (a)	Levels (b)	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect Reject	Total											
Hardness (as CaCO3)	mg/l			A2340C	D	HARD	68	48	57	56	SUW1B	11	11	56	68	60	50	54	58	56	56	64	48	62
Hardness (as CaCO3)	mg/l			A2340C	1.	HARD	72	50	60	58	SUW1B	11	11	58	72	58	50	56	62	58	58	68	52	64
HEM (Oil and Grease)	mg/l			E1664B	N	348	2.2	1.5	1.9	1.8	SUW3C	6	6	2.1 J	1.8 J		2.2 J			1.8 J	1.5 J	1.7 J		
Conductivity	ms/cm			FIELD	I	Cond	0.263	0.198	0.23	0.231	SUW1B	10	10	0.228	0.263	0.231	0.198	0.215	0.231	0.242		0.247	0.202	0.243
DO	mg/l			FIELD	Т	DO	3.97	3.35	3.66	3.63	SUW9C	10	10	3.94	3.41	3.79	3.94	3.35	3.45	3.46		3.41	3.84	3.97
OXIDATION-REDUCTION POTENTIAL	mV			FIELD	Т	ORP	98.6	7.6	55.1	56.6	SUW4B	10	10	79.8	29.6	48.1	41.1	98.6	54.3	63.9		7.6	68.7	58.8
PH	ph units			FIELD	Т	PH	6.93	6.52	6.73	6.74	SUW7B	10	10	6.81	6.81	6.82	6.67	6.67	6.86	6.58		6.93	6.61	6.52
SALINITY	ppt			FIELD	Т	SAL	0.13	0.09	0.11	0.11	SUW1B	10	10	0.11	0.13	0.11	0.09	0.10	0.11	0.11		0.12	0.10	0.12
TEMPERATURE	deg F			FIELD	Т	TEMP	68.2	65.62	67.23	67.61	SUW3C	10	10	65.62	67.87	67.80	68.20	66.48	65.71	67.42		67.20	67.93	68.10
TURBIDITY	ntu			FIELD	Т	TURB	24.9	0	11	9.55	SUW10B	10	10	24.9	0	15.0	4.3	6.5	19.4	17.2		3.3	8.4	10.7
Aluminum	ug/l	2000	87	SW6020A	D	7429-90-5	1		ļ				11	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U
Antimony	ug/l	640	30	SW6020A	D	7440-36-0	1.8	0.74	0.92	0.84	SUW3C	11	11	0.74 J	0.92 J	0.84 J	1.8 J	0.78 J	0.79 J	0.87 J	0.88 J	0.94 J	0.79 J	0.77 J
Arsenic	ug/l	0.14	150	SW6020A	D	7440-38-2	0.67	0.32	0.5	0.49	SUW6B	8	11	0.32 J	< 1.0 U	0.41 J	< 1.0 U	0.56 J	< 1.0 U	0.67 J	0.49 J	0.64 J	0.48 J	0.44 J
Barium	ug/l	380	4	SW6020A	D	7440-39-3	36	28	32	33	SUW1B	11		30	36	34	30	31	33	33	32	36	28	34
											SUW7B		11											
Beryllium	ug/l	2.5	0.66	SW6020A	D	7440-41-7	0.079	0.037	0.05	0.045	SUW3C	5	11	< 1.0 U	0.045 J	< 1.0 U	0.079 J	< 1.0 U	0.037 J	< 1.0 U	< 1.0 U	< 1.0 U	0.042 J	0.048 J
Cadmium	ug/l	0.92	0.51	SW6020A	D	7440-43-9							11	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Calcium	ug/l	EN	116000	SW6020A	D	7440-70-2	19000	14000	16000	16000	SUW1B	11	11	15000	19000	17000	14000	15000	16000	16000	16000	18000	14000	17000
Chromium	ug/l	2200	11	SW6020A	D	7440-47-3	2.3	1.6	1.9	1.9	SUW1B	11	11	1.7 J	2.3	2.1	2.2	2.0	1.9 J	1.7 J	1.8 J	1.8 J	1.9 J	1.6 J
Cobalt	ug/l	0.6	23	SW6020A	D	7440-48-4	0.71	0.093	0.29	0.29	SUW3C	11	11	0.093 J	0.31 J	0.23 J	0.71	0.24 J	0.23 J	0.31 J	0.34 J	0.31 J	0.29 J	0.10 J
Copper	ug/l	80	22	SW6020A	D	7440-50-8	3.9	1.7	2.4	2.2	SUW3C	11	11	1.8 J	2.7	3.3	3.9	2.7	2.5	2.2	1.9 J	1.7 J	2.2	1.7 J
Iron	ug/l	EN	1000	SW6020A	D	7439-89-6	18	8.9	12	11	SUW2B	5	11	9.1 J	< 50 U	18 J	11 J	11 J	< 50 U	8.9 J	< 50 U	< 50 U	< 50 U	< 50 U
Lead	ug/l	15	7.8	SW6020A	D	7439-92-1							11	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Magnesium	ug/l	EN	82000	SW6020A	D	7439-95-4	5800	3700	4700	4500	SUW1B	11	11	4300	5800	5000	4000	4400	4800	4500	4500	5500	3700	5100
Manganese	ug/l	100	120	SW6020A	D	7439-96-5	77	29	56	59	SUW7B	9	11	< 5.0 U	42	36	29	51	59	70	75	77	64	< 5.0 U
Nickel	ug/l	4600	128	SW6020A	D	7440-02-0	2.5	1.5	2.1	2.1	SUW3C	11	11	1.5	2.4	2.4	2.5	2.1	2.2	2.1	2.0	2.1	2.1	1.7
									2500	3500	01.04/45										1			
Potassium	ug/l	EN	53000	SW6020A	D	7440-09-7	3800	3100	3500	3300	SUW1B	11	11	3300	3800	3600	3300	3400	3500	3400	3500	3700	3100	3500
Potassium Selenium		EN 4200	53000	SW6020A SW6020A	D D	7440-09-7 7782-49-2	3800 0.55	3100 0.55	0.55	0.55	SUW1B SUW7B	11		3300	3800 < 5.0 U	3600 < 5.0 U	3300 < 5.0 U	3400 < 5.0 U	3500 < 5.0 U	3400 < 5.0 U	3500 < 5.0 U	3700 0.55 J	3100 < 5.0 U	3500 < 5.0 U
	ug/l		53000										11 11 11											
Selenium	ug/l ug/l	4200		SW6020A		7782-49-2	0.55	0.55	0.55	0.55	SUW7B	1	11 11	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	0.55 J	< 5.0 U	< 5.0 U
Selenium Silver	ug/l ug/l ug/l	4200 65000	20	SW6020A SW6020A	D D	7782-49-2 7440-22-4	0.55 0.062	0.55 0.062	0.55 0.062	0.55 0.062	SUW7B SUW3C	1	11 11 11	< 5.0 U	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U	< 5.0 U 0.062 J	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U	0.55 J < 1.0 U	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U
Selenium Silver Sodium	ug/l ug/l ug/l ug/l	4200 65000 EN	20	SW6020A SW6020A SW6020A	D D	7782-49-2 7440-22-4 7440-23-5	0.55 0.062 20000	0.55 0.062 15000	0.55 0.062 18000	0.55 0.062 17000	SUW7B SUW3C SUW1B SUW3C	1 1 11	11 11 11 11	< 5.0 U < 1.0 U 17000	< 5.0 U < 1.0 U 20000	< 5.0 U < 1.0 U 19000	< 5.0 U 0.062 J 16000	< 5.0 U < 1.0 U 17000	< 5.0 U < 1.0 U 18000	< 5.0 U < 1.0 U 17000	< 5.0 U < 1.0 U 17000	0.55 J < 1.0 U 19000	< 5.0 U < 1.0 U 15000	< 5.0 U < 1.0 U 19000
Selenium Silver Sodium Thallium Vanadium	ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2	0.55 0.062 20000 0.21	0.55 0.062 15000 0.028	0.55 0.062 18000 0.08 0.37	0.55 0.062 17000 0.051 0.29	SUW7B SUW3C SUW1B SUW3C SUW3C	1 1 11 11 8	11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J	< 5.0 U 0.062 J 16000 0.21 J 1.0	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J	0.55 J < 1.0 U 19000 0.077 J 0.29 J	< 5.0 U < 1.0 U 15000 0.028 J < 1.0 U	< 5.0 U < 1.0 U 19000 0.031 J < 1.0 U
Selenium Silver Sodium Thallium	ug/l ug/l ug/l ug/l	4200 65000 EN 0.47	20 680000	SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0	0.55 0.062 20000 0.21	0.55 0.062 15000 0.028 0.11	0.55 0.062 18000 0.08	0.55 0.062 17000 0.051	SUW7B SUW3C SUW1B SUW3C	1 1 11 11	11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J	< 5.0 U < 1.0 U 20000 0.19 J	< 5.0 U < 1.0 U 19000 0.12 J	< 5.0 U 0.062 J 16000 0.21 J	< 5.0 U < 1.0 U 17000 0.068 J	< 5.0 U < 1.0 U 18000 0.051 J	< 5.0 U < 1.0 U 17000 0.047 J	< 5.0 U < 1.0 U 17000 0.029 J	0.55 J < 1.0 U 19000 0.077 J	< 5.0 U < 1.0 U 15000 0.028 J	< 5.0 U < 1.0 U 19000 0.031 J
Selenium Silver Sodium Thallium Vanadium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2	0.55 0.062 20000 0.21	0.55 0.062 15000 0.028 0.11	0.55 0.062 18000 0.08 0.37	0.55 0.062 17000 0.051 0.29	SUW7B SUW3C SUW1B SUW3C SUW3C SUW3C	1 1 11 11 8	11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J	< 5.0 U 0.062 J 16000 0.21 J 1.0	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J	0.55 J < 1.0 U 19000 0.077 J 0.29 J	< 5.0 U < 1.0 U 15000 0.028 J < 1.0 U	< 5.0 U < 1.0 U 19000 0.031 J < 1.0 U
Selenium Silver Sodium Thallium Vanadium Zinc	ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-66-6	0.55 0.062 20000 0.21 1 12	0.55 0.062 15000 0.028 0.11 4	0.55 0.062 18000 0.08 0.37 7.6	0.55 0.062 17000 0.051 0.29 7.6	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW6B	1 1 11 11 8 11	11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J	< 5.0 U 0.062 J 16000 0.21 J 1.0 7.7 J	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J 5.4 J	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J	< 5.0 U < 1.0 U 15000 0.028 J < 1.0 U 12 J	< 5.0 U < 1.0 U 19000 0.031 J < 1.0 U 4.0 J
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-66-6 7429-90-5	0.55 0.062 20000 0.21 1 12 570	0.55 0.062 15000 0.028 0.11 4	0.55 0.062 18000 0.08 0.37 7.6	0.55 0.062 17000 0.051 0.29 7.6	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C	1 1 11 11 11 8 11	11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J	< 5.0 U 0.062 J 16000 0.21 J 1.0 7.7 J	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J 5.4 J	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J	< 5.0 U < 1.0 U 15000 0.028 J < 1.0 U 12 J	< 5.0 U < 1.0 U 19000 0.031 J < 1.0 U 4.0 J
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-66-6 7429-90-5 7440-36-0	0.55 0.062 20000 0.21 1 12 570 0.81	0.55 0.062 15000 0.028 0.11 4 230 0.54	0.55 0.062 18000 0.08 0.37 7.6 390 0.61	0.55 0.062 17000 0.051 0.29 7.6 380 0.6	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B	1 1 11 11 11 8 11 11	11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J	< 5.0 U 0.062 J 16000 0.21 J 1.0 7.7 J 570 0.62 J	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J	< 5.0 U < 1.0 U 15000 0.028 J < 1.0 U 12 J 290 0.62 J	< 5.0 U < 1.0 U 19000 0.031 J < 1.0 U 4.0 J 250 0.54 J
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-66-6 7429-90-5 7440-36-0	0.55 0.062 20000 0.21 1 12 570 0.81	0.55 0.062 15000 0.028 0.11 4 230 0.54	0.55 0.062 18000 0.08 0.37 7.6 390 0.61	0.55 0.062 17000 0.051 0.29 7.6 380 0.6	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B	1 1 11 11 11 8 11 11	11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J	< 5.0 U 0.062 J 16000 0.21 J 1.0 7.7 J 570 0.62 J	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J	< 5.0 U < 1.0 U 15000 0.028 J < 1.0 U 12 J 290 0.62 J	< 5.0 U < 1.0 U 19000 0.031 J < 1.0 U 4.0 J 250 0.54 J
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640 0.14	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-36-0 7440-38-2	0.55 0.062 20000 0.21 1 12 570 0.81 1.2	0.55 0.062 15000 0.028 0.11 4 230 0.54	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW4B SUW6B	1 1 11 11 11 8 11 11 11	11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J	< 5.0 U 0.062 J 16000 0.21 J 1.0 7.7 J 570 0.62 J 0.70 J	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J	< 5.0 U < 1.0 U 15000 0.028 J < 1.0 U 12 J 290 0.62 J 0.82 J	< 5.0 U < 1.0 U 19000 0.031 J < 1.0 U 4.0 J 250 0.54 J 0.62 J
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640 0.14	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-36-0 7440-38-2 7440-39-3	0.55 0.062 20000 0.21 1 12 570 0.81 1.2	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW4B SUW4B SUW1B	1 1 11 11 11 8 11 11 11 11	11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36	< 5.0 U 0.062 J 16000 0.21 J 1.0 7.7 J 570 0.62 J 0.70 J 33	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J	< 5.0 U < 1.0 U 15000 0.028 J < 1.0 U 12 J 290 0.62 J 0.82 J 33	< 5.0 U < 1.0 U 19000 0.031 J < 1.0 U 4.0 J 250 0.54 J 0.62 J 38
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640 0.14 380 2.5	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7	0.55 0.062 20000 0.21 1 12 570 0.81 1.2	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW4B SUW4B SUW1B	1 1 11 11 11 8 11 11 11 11	11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J	< 5.0 U 0.062 J 16000 0.21 J 1.0 7.7 J 570 0.62 J 0.70 J 33 0.10 J	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J	< 5.0 U < 1.0 U 15000 0.028 J < 1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J	< 5.0 U < 1.0 U 19000 0.031 J < 1.0 U 4.0 J 250 0.54 J 0.62 J 38 0.083 J
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640 0.14 380 2.5 0.92	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-39-3 7440-41-7 7440-43-9	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW6B SUW1B	1 1 11 11 11 8 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J < 1.0 U	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J < 1.0 U	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U	<pre></pre>	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J < 1.0 U	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J < 1.0 U	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U	<pre><5.0 U <1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J <1.0 U</pre>	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U</pre>	<pre><5.0 U <1.0 U 19000 0.031 J <1.0 U 4.0 J 250 0.54 J 0.62 J 38 0.083 J <1.0 U</pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640 0.14 380 2.5 0.92 EN	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW4B SUW1B SUW1B	1 1 11 11 11 8 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J < 1.0 U 15000	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J < 1.0 U 19000	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9	<pre></pre>	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J < 1.0 U 15000	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J < 1.0 U 16000 3.2	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J < 1.0 U 15000	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000 2.8</pre>	<pre><5.0 U <1.0 U 19000 0.031 J <1.0 U 4.0 J 250 0.54 J 0.62 J 38 0.083 J <1.0 U 17000 2.3</pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 640 0.14 380 2.5 0.92 EN 2200	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-47-3	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW6B SUW6B SUW4B SUW4B SUW4B SUW1B SUW3C	1	11 11 11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J < 1.0 U 15000 2.7	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J < 1.0 U 19000 3.3	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000	<pre></pre>	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J < 1.0 U 15000 2.9	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J < 1.0 U 16000	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J < 1.0 U 15000 3.6	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000</pre>	< 5.0 U < 1.0 U 19000 0.031 J < 1.0 U 4.0 J 250 0.54 J 0.62 J 38 0.083 J < 1.0 U 17000
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 640 0.14 380 2.5 0.92 EN 2200	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-47-3	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW4B SUW4B SUW1B SUW1B SUW1B SUW1B SUW1B	1	11 11 11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J < 1.0 U 15000 2.7	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J < 1.0 U 19000 3.3	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9	<pre></pre>	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J < 1.0 U 15000 2.9	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J < 1.0 U 16000 3.2	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J < 1.0 U 15000 3.6	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000 2.8</pre>	<pre><5.0 U <1.0 U 19000 0.031 J <1.0 U 4.0 J 250 0.54 J 0.62 J 38 0.083 J <1.0 U 17000 2.3</pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 640 0.14 380 2.5 0.92 EN 2200	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-47-3	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW4B SUW4B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW10B SUW10B SUW3C	1	11 11 11 11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J < 1.0 U 15000 2.7	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J < 1.0 U 19000 3.3	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9	<pre></pre>	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J < 1.0 U 15000 2.9	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J < 1.0 U 16000 3.2	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9	< 5.0 U < 1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J < 1.0 U 15000 3.6	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000 2.8</pre>	<pre><5.0 U <1.0 U 19000 0.031 J <1.0 U 4.0 J 250 0.54 J 0.62 J 38 0.083 J <1.0 U 17000 2.3</pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 640 0.14 380 2.5 0.92 EN 2200	20 680000 20	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6 1.1	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3 0.8	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3 0.98	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9 0.98	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW4B SUW4B SUW4B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW10B SUW10B SUW10B SUW10B	1	11 11 11 11 11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J < 1.0 U 15000 2.7 1.1	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J < 1.0 U 19000 3.3	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9 0.93	< 5.0 U 0.062 J 16000 0.21 J 1.0 7.7 J 570 0.62 J 0.70 J 33 0.10 J < 1.0 U 14000 3.5 1.1	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J < 1.0 U 15000 2.9 1.0	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J < 1.0 U 16000 3.2 0.97	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9 1.0	<pre><5.0 U <1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J <1.0 U 15000 3.6 1.1</pre>	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4 0.80	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000 2.8 0.98</pre>	<pre><5.0 U <1.0 U 19000 0.031 J <1.0 U 4.0 J 250 0.54 J 0.62 J 38 0.083 J <1.0 U 17000 2.3 0.89</pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 640 0.14 380 2.5 0.92 EN 2200 0.6	20 680000 20 291	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6 1.1	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3 0.8	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3 0.98	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9 0.98	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW4B SUW6B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1C SUW1B SUW3C SUW6B	1	11 11 11 11 11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J < 1.0 U 15000 2.7 1.1	<pre><5.0 U <1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J <1.0 U 19000 3.3 0.96</pre>	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9 0.93	<pre></pre>	< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J < 1.0 U 15000 2.9 1.0	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J < 1.0 U 16000 3.2 0.97 4.0	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9 1.0	<pre><5.0 U <1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J <1.0 U 15000 3.6 1.1</pre>	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4 0.80	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000 2.8 0.98</pre>	<pre><5.0 U <1.0 U 19000 0.031 J <1.0 U 4.0 J 250 0.54 J 0.62 J 38 0.083 J <1.0 U 17000 2.3 0.89</pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Ccadmium Calcium Chromium Cobalt Copper Iron Lead	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640 0.14 380 2.5 0.92 EN 2200 0.6 80 EN	20 680000 20 291	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-70-2 7440-48-4 7440-50-8 7439-89-6 7439-92-1	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6 1.1 5.8 1400 3.2	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3 0.8	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3 0.98	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9 0.98 4.1 1100 2.8	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW6B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW4B SUW4B SUW4B SUW4B SUW4B SUW4B SUW4B SUW4B SUW4B SUW4B SUW4B SUW4B	1	11 11 11 11 11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J < 1.0 U 15000 2.7 1.1 3.3	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J < 1.0 U 19000 3.3 0.96	<pre>< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9 0.93 4.1 1000 2.7</pre>	<pre></pre>	<pre>< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J < 1.0 U 15000 2.9 1.0 5.8 1100</pre>	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J < 1.0 U 16000 3.2 0.97 4.0 1200	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9 1.0 4.2 1200	<pre><5.0 U <1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J <1.0 U 15000 3.6 1.1 4.2 1300 2.9</pre>	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4 0.80	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000 2.8 0.98</pre>	<pre></pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Cobalt Copper Iron Lead Magnesium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640 0.14 380 2.5 0.92 EN 2200 0.6 80 EN 15 EN	20 680000 20 291	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6 1.1 5.8 1400 3.2 5700	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3 0.8	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3 0.98 4 1100 2.7 4700	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9 0.98 4.1 1100 2.8 4500	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW6B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW4B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B	1	11 11 11 11 11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J < 1.0 U 15000 2.7 1.1 3.3 1100 2.4 4400	<pre><5.0 U <1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J <1.0 U 19000 3.3 0.96 3.9 1200 2.8</pre>	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9 0.93 4.1 1000 2.7 4600	<pre></pre>	<pre>< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J < 1.0 U 15000 2.9 1.0 5.8 1100 3.2 4500</pre>	< 5.0 U < 1.0 U 18000	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9 1.0 4.2 1200 2.9 4500	<pre><5.0 U <1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J <1.0 U 15000 3.6 1.1 4.2 1300 2.9 4500</pre>	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4 0.80 2.9 740 2.1 5400	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000 2.8 0.98 4.2 950 2.6 3900</pre>	<pre></pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Calmium Chromium Cobalt Copper Iron Lead Magnesium Manganese	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640 0.14 380 2.5 0.92 EN 2200 0.6 80 EN 15 EN 100	20 680000 20 291	SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-48-4 7440-50-8 7439-89-6 7439-96-5	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6 1.1 5.8 1400 3.2 5700 170	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3 0.8	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3 0.98 4 1100 2.7 4700 140	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9 0.98 4.1 1100 2.8 4500 140	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW6B SUW4B SUW6B SUW4B SUW6B SUW1B SUW1B SUW1B SUW1B SUW1B SUW4B SUW4B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B	1	11 11 11 11 11 11 11 11 11 11 11 11 11	310 0.56 J 0.62 J 35 0.048 J <1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J <1.0 U 15000 2.7 1.1	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J < 1.0 U 19000 3.3 0.96 1200 2.8 5700 140	<pre>< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9 0.93 4.1 1000 2.7 4600 130</pre>	<pre></pre>	<pre><5.0 U <1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J <1.0 U 15000 2.9 1.0 5.8 1100 3.2 4500 140</pre>	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J < 1.0 U 16000 3.2 0.97 4.0 1200 2.9 4900 140	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9 1.0 4.2 1200 2.9 4500	<pre><5.0 U <1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J <1.0 U 15000 3.6 1.1 4.2 1300 2.9 4500 140</pre>	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4 0.80 2.9 740 2.1 5400	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000 2.8 0.98 4.2 950 2.6 3900 130</pre>	<pre></pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Cobalt Copper Iron Lead Magnesium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640 0.14 380 2.5 0.92 EN 2200 0.6 80 EN 15 EN	20 680000 20 291	SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6 1.1 5.8 1400 3.2 5700	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3 0.8	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3 0.98 4 1100 2.7 4700	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9 0.98 4.1 1100 2.8 4500	SUW7B SUW3C SUW1B SUW3C SUW3C SUW6B SUW8B SUW3C SUW6B SUW4B SUW6B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW4B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B SUW1B	1	11 11 11 11 11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J < 1.0 U 15000 2.7 1.1 3.3 1100 2.4 4400	<pre><5.0 U <1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J <1.0 U 19000 3.3 0.96 3.9 1200 2.8 5700</pre>	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9 0.93 4.1 1000 2.7 4600	<pre></pre>	<pre>< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J < 1.0 U 15000 2.9 1.0 5.8 1100 3.2 4500</pre>	< 5.0 U < 1.0 U 18000	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9 1.0 4.2 1200 2.9 4500	<pre><5.0 U <1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J <1.0 U 15000 3.6 1.1 4.2 1300 2.9 4500</pre>	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4 0.80 2.9 740 2.1 5400	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000 2.8 0.98 4.2 950 2.6 3900</pre>	<pre></pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Calmium Chromium Cobalt Copper Iron Lead Magnesium Manganese	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640 0.14 380 2.5 0.92 EN 2200 0.6 80 EN 15 EN 100	20 680000 20 291	SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-48-4 7440-50-8 7439-89-6 7439-96-5	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6 1.1 5.8 1400 3.2 5700 170	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3 0.8	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3 0.98 4 1100 2.7 4700 140	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9 0.98 4.1 1100 2.8 4500 140	SUW7B SUW3C SUW3C SUW3C SUW3C SUW6B SUW3C SUW6B SUW4B SUW6B SUW4B SUW1B SUW1B SUW1C SUW6B SUW1B SUW1C SUW1C SUW1C SUW1C SUW3C SUW4C SUW3C SUW4C	1	11 11 11 11 11 11 11 11 11 11 11 11 11	310 0.56 J 0.62 J 35 0.048 J <1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J <1.0 U 15000 2.7 1.1	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J < 1.0 U 19000 3.3 0.96 1200 2.8 5700 140	<pre>< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9 0.93 4.1 1000 2.7 4600 130</pre>	<pre></pre>	<pre><5.0 U <1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J <1.0 U 15000 2.9 1.0 5.8 1100 3.2 4500 140</pre>	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J < 1.0 U 16000 3.2 0.97 4.0 1200 2.9 4900 140	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9 1.0 4.2 1200 2.9 4500	<pre><5.0 U <1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J <1.0 U 15000 3.6 1.1 4.2 1300 2.9 4500 140</pre>	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4 0.80 2.9 740 2.1 5400	< 5.0 U < 1.0 U 15000 0.028 J < 1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J < 1.0 U 14000 2.8 0.98 4.2 950 2.6 3900 130	<pre></pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel	ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I	4200 65000 EN 0.47 8.6 26000 640 0.14 380 2.5 0.92 EN 2200 0.6 80 EN 15 EN 100 4600	20 680000 20 291	SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-96-6 7439-96-6 7440-02-0	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6 1.1 5.8 1400 3.2 5700 170 3.2	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3 0.8	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3 0.98 4 1100 2.7 4700 140 2.8	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9 0.98 4.1 1100 2.8 4500 140 2.8	SUW7B SUW3C SUW3C SUW3C SUW3C SUW6B SUW8B SUW6B SUW6B SUW4B SUW6B SUW1B SUW1B SUW3C SUW6B SUW1B SUW1C SUW1B SUW1C SUW1C SUW4B SUW1C SUW4B SUW1C SUW4B SUW1C SUW4B SUW4B SUW4B SUW4B SUW4B SUW4B SUW4B SUW4B SUW4B SUW1B	1	11 11 11 11 11 11 11 11 11 11 11 11 11	< 5.0 U < 1.0 U 17000 0.034 J < 1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J < 1.0 U 15000 2.7 1.1 3.3 1100 2.4 4400 170 2.7 3300	<pre><5.0 U <1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J <1.0 U 19000 3.3 0.96 3.9 1200 2.8 5700 140 2.9</pre>	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9 0.93 4.1 1000 2.7 4600 130 2.8	<pre></pre>	<pre>< 5.0 U < 1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J < 1.0 U 15000 2.9 1.0 5.8 1100 3.2 4500 140 3.2</pre>	<pre></pre>	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9 1.0 4.2 1200 2.9 4500 140 2.8	<pre><5.0 U <1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J <1.0 U 15000 3.6 1.1 4.2 1300 2.9 4500 140 3.0</pre>	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4 0.80 2.9 740 2.1 5400 140 2.4	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000 2.8 0.98 4.2 950 2.6 3900 130 2.8</pre>	<pre></pre>
Selenium Silver Sodium Thallium Vanadium Zinc Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4200 65000 EN 0.47 8.6 26000 2000 640 0.14 380 2.5 0.92 EN 2200 0.6 80 EN 15 EN 100 4600 EN	20 680000 20 291 300	SW6020A SW6020A	D D D	7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7429-90-5 7440-38-2 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-96-5 7440-02-0 7440-09-7	0.55 0.062 20000 0.21 1 12 570 0.81 1.2 41 0.1 19000 3.6 1.1 5.8 1400 3.2 5700 170 3.2	0.55 0.062 15000 0.028 0.11 4 230 0.54 0.48 33 0.038 14000 2.3 0.8	0.55 0.062 18000 0.08 0.37 7.6 390 0.61 0.75 37 0.064 16000 3 0.98 4 1100 2.7 4700 140 2.8	0.55 0.062 17000 0.051 0.29 7.6 380 0.6 0.7 36 0.056 16000 2.9 0.98 4.1 1100 2.8 4500 140 2.8	SUW7B SUW3C SUW3C SUW3C SUW3C SUW6B SUW8B SUW6B SUW6B SUW4B SUW6B SUW1B SUW1C SUW6B SUW1B SUW1C SUW6B SUW1C SUW6B SUW1C SUW6B SUW1C SUW6B SUW1C SUW6B SUW3C SUW6B SUW3C SUW4B SUW3C SUW4B SUW4B SUW4B SUW4B SUW4B	1	11 11 11 11 11 11 11 11 11 11 11 11 11	310 0.56 J 0.048 J <1.0 U 17000 0.034 J <1.0 U 4.7 J 310 0.56 J 0.62 J 35 0.048 J <1.0 U 15000 2.7 1.1	< 5.0 U < 1.0 U 20000 0.19 J 0.14 J 7.6 J 460 0.62 J 0.73 J 41 0.038 J < 1.0 U 19000 3.3 0.96 2.8 5700 140 2.9 3800	< 5.0 U < 1.0 U 19000 0.12 J 0.28 J 6.8 J 330 0.63 J 0.59 J 36 0.093 J < 1.0 U 16000 2.9 0.93 4.1 1000 2.7 4600 130 2.8 3400	33 0.10 J 14000 3.5 1.1 4.8 1400 3.1 3800 120 3.2	<pre><5.0 U <1.0 U 17000 0.068 J 0.21 J 7.9 J 380 0.57 J 1.2 J 36 0.079 J <1.0 U 15000 2.9 1.0 5.8 1100 3.2 4500 140 3.2 3400</pre>	< 5.0 U < 1.0 U 18000 0.051 J 0.29 J 6.7 J 490 0.60 J 0.83 J 38 0.064 J < 1.0 U 16000 3.2 0.97 4.0 1200 2.9 4900 140 2.8 3500	< 5.0 U < 1.0 U 17000 0.047 J 0.61 J 12 J 430 0.59 J 0.48 J 36 0.054 J < 1.0 U 16000 2.9 1.0 4.2 1200 2.9 4500 140 2.8 3400	<pre><5.0 U <1.0 U 17000 0.029 J 0.11 J 5.4 J 550 0.81 J 1.2 J 37 0.056 J <1.0 U 15000 3.6 1.1 4.2 1300 2.9 4500 140 3.0</pre>	0.55 J < 1.0 U 19000 0.077 J 0.29 J 8.3 J 230 0.58 J 0.48 J 39 0.041 J < 1.0 U 18000 2.4 0.80 2.9 740 2.1 5400 140 2.4 3600	<pre><5.0 U <1.0 U 15000 0.028 J <1.0 U 12 J 290 0.62 J 0.82 J 33 0.043 J <1.0 U 14000 2.8 0.98 4.2 950 2.6 3900 130 2.8 3200</pre>	38 0.083 J < 1.0 U 17000 2.3 0.89 800 2.2 5100 150 2.4

Benning Road Facilty RI Report

Table 4-30 Waterside Investigation Area Surface Water Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Part														Las	otion ID	CLIM/10D	CLIM/4D	CLIMOR	CLIMAC	CLIMAD	CLIMEC	CLIMED	CLIMED	CLIM/7D	CLIMOD	CLIMOC
March Marc																SUW10B	SUW1BN	SUW2B	SUW3CN	SUW4B	SUW5CN	SUW6BN	SUW6B SUW6BB	SUW7B	SUW8B	SUW9CN
Mary Mary														_							1					
Part														Odini	_											
Second S			HHRA	ERA											. , , , .											
Section Sect								Max	Min	Mean	Median	Max	Count	Count	Count											
Company Comp	Analyte	_	` '	Levels (b)		Fraction								Reject	Total											
Company 1	Sodium	ug/l	EN		SW6020A	Т	7440-23-5	19000	15000	17000	17000	l l	11		44	17000	19000	17000	15000	17000	18000	17000	17000	19000	16000	18000
Part	Thallium	ua/I	0.47	0.8	SW6020A	Т	7440-28-0	0.11	0.015	0.046	0.035		11			0.050 J	0.10 J	0.073 J	0.035 J	0.018 J	0.020 J	0.018 J	0.11 J	0.015 J	0.053 J	0.017 J
The color						Т																				
Metery	Zinc		26000		SW6020A	Т	7440-66-6	31	6.9	12	9.8	SUW1B	11			8.2	31	9.5	12	12	9.7	9.8	11	8.4	10	6.9
CATONIX 19	Mercury	ug/l	0.15		SW7470A	D	7439-97-6								11	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U
CARDIT	Mercury	ug/l	0.15	0.77	SW7470A	Т	7439-97-6								11	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U
February Control Con	4,4'-DDD	ug/l	0.00031	0.001	SW8081B LL	N	72-54-8								6	< 0.0013 UJ	< 0.0013 U		< 0.0012 U			< 0.0013 UJ	< 0.0012 U	< 0.0012 U		
Part						N									6	< 0.0013 UJ						< 0.0013 UJ				
Part Part	,	_				N		0.0016	0.0011	0.0012	0.0011	SUW1B	6		6											
Debt Debt				3		N									6											
Declaration Miles				0.0		N									6											
Design Company Compa						N N		1	 	1	-				6											
Description spir Sec S						N		1	-	1	-															
Editionation gip g						N		1		1	 	1	1		6											
Proceeding 100						N									6											
Excision Section Sec						N																				
Entern Authorize	Endosulfan Sulfate		89	0.056	SW8081B LL	N	1031-07-8									< 0.0013 UJ	< 0.0013 U		< 0.0012 U			< 0.0013 UJ	< 0.0012 U	< 0.0012 U		
Formissment	Endrin		0.06	0.036	SW8081B LL	N	72-20-8								6	< 0.0013 UJ	< 0.0013 U		< 0.0012 U			< 0.0013 UJ	< 0.0012 U	< 0.0012 U		
Section Sect	Endrin aldehyde	ug/l	0.3	0.15	SW8081B LL	N	7421-93-4								6	< 0.0013 UJ	< 0.0013 U		< 0.0012 U			< 0.0013 UJ	< 0.0012 U	< 0.0012 UJ		
Popularion	Endrin ketone	ug/l	0.23	0.036	SW8081B LL	N	53494-70-5								6	< 0.0013 UJ	< 0.0013 U		< 0.0012 U			< 0.0013 UJ	< 0.0012 U	< 0.0012 U		
Peptination Propriet Peptination Propriet Peptination Propriet Peptination Peptinati	gamma-BHC (Lindane)	ug/l	1.8		SW8081B LL	N	58-89-9								6	< 0.0013 UJ	< 0.0013 U		< 0.0012 U			< 0.0013 UJ	< 0.0012 U	< 0.0012 U		
Debta	Heptachlor					N									6											
Transprieme	<u> </u>					N									6											
Part Part						N																				
Accident 1016 Ug O.014 SW/9002ALL N 12674-11-2						N				1					6											
Arcoler 1221			0.00081			N									6			< 0.000411		< 0.000E II	< 0.000411				< 0.000E11	< 0.000E II
Arcoler-1232 Ug/l 0.014 \$V898262.LL N 1114-16-5 111 < 0.010 < 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.						N N																				
Arcelor-1242						N				1																
Arodon-1248 ugh						N																				
Acoder-1284 Style						N																				
Arodox1260						N																				< 0.0095 U
According Approximation	Aroclor-1260			0.014	SW8082A LL	N	11096-82-5									< 0.010 U	< 0.010 U	< 0.0094 U	< 0.0095 U	< 0.0095 U		< 0.010 U		< 0.0094 U	< 0.0095 U	< 0.0095 U
PCB, Total Arcoclors (Lab provides) ug/l 6.4e-005	Aroclor-1262	ug/l		0.014	SW8082A LL	N	37324-23-5								11	< 0.010 U	< 0.010 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U
PCB, Total Arcciors (AECOM Calc) ug/l 6.4e-005 0.014 SW8280B N TOT-PCB-ARO-C 11 < 0.010 U < 0.010 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U < 0.0095 U	Aroclor-1268	ug/l		0.014	SW8082A LL	N	11100-14-4								11	< 0.010 U	< 0.010 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U
1.1.4-Trichloroethane Ug/l 200000 11 SW8260B N 71-55-6	PCB, Total Aroclors (Lab provided)	ug/l	6.4e-005												11	< 0.010 U	< 0.010 U		< 0.0095 U	< 0.0095 U		< 0.010 U	< 0.0095 U		< 0.0095 U	< 0.0095 U
1,1,2,2-Tetrachloroethane	PCB, Total Aroclors (AECOM Calc)	ug/l	6.4e-005	0.014	SW8082A LL	N	TOT-PCB-ARO-C								11	< 0.010 U	< 0.010 U	< 0.0094 U	< 0.0095 U	< 0.0095 U	< 0.0094 U	< 0.010 U	< 0.0095 U	< 0.0094 U	< 0.0095 U	< 0.0095 U
1,1,2-Trichloro-1,2,2-trifluoroethane ug/l 1000 SW8260B N 76-13-1						N									6											
1,1,2-Trichloroethane				610		N				ļ																
1,1-Dichloroethane				4000				1		1		1	1													
1,1-Dichloroethene yg/l 7100 25 SW8260B N 75-35-4 6 < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U	• •					N N				1																
1,2,3-Trichlorobenzene ug/l 0.7 SW8260B N 87-61-6 6 < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0						IN N		1	-	1	<u> </u>															
1,2,4-Trichlorobenzene ug/l 70	,			20		N		1		1	 	1	1													
1,2-Dibromo-3-chloropropane ug/l 0.00033 SW8260B N 96-12-8 6 < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U </td <td>• •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td> </td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	• •							-	-	 	-	-														
1,2-Dibromoethane ug/l 0.0075 SW8260B N 106-93-4 6 < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U	, ,							1	 	 	 															
1,2-Dichlorobenzene ug/l 1300 200 SW8260B N 95-50-1 6 < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U <								<u> </u>				 	 													
1,2-Dichloroethane ug/l 37 100 SW8260B N 107-06-2 6 < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1	,			200				1			<u> </u>															
1,2-Dichloropropane ug/l 15 2000 SW8260B N 78-87-5 6 < 1.0 U										1																
1,3-Dichlorobenzene ug/l 960 200 SW8260B N 541-73-1 6 < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U < 1.0 U <	,					N		1	1	1	1															
			960	200		N					İ					< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
1,4-Dioxane ug/l 0.46 SW8260B N 123-91-1 6 < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U < 200 U	1,4-Dichlorobenzene		190	200	SW8260B	N	106-46-7								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
	1,4-Dioxane	ug/l	0.46		SW8260B	N	123-91-1								6	< 200 U	< 200 U		< 200 U			< 200 U	< 200 U	< 200 U		
2-Butanone ug/l 560 14000 SW8260B N 78-93-3 6 < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U < 5.0 U	2-Butanone	ug/l	560	14000	SW8260B	N	78-93-3								6	< 5.0 U	< 5.0 U		< 5.0 U			< 5.0 U	< 5.0 U	< 5.0 U		

Table 4-30 Waterside Investigation Area Surface Water Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

													Loc	ation ID	SUW10B	SUW1B	SUW2B	SUW3C	SUW4B	SUW5C	SUW6B	SUW6B	SUW7B	SUW8B	SUW9C
														mple ID	SUW10BN	SUW1BN	SUW2BN	SUW3CN	SUW4BN	SUW5CN	SUW6BN	SUW6BR	SUW7BN	SUW8BN	SUW9CN
													Samp	ole Date	9/26/2013	9/23/2013	9/23/2013	9/23/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/25/2013
														Туре	N	N	N	N	N	N	N	FD	N	N	N
		HHRA	ERA				l		l]		l														
Analyte	Unit	Screening Levels (a)	Screening Levels (b)	Method	Fraction	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count Detect	Count Reject	Count Total											i
2-Hexanone	ug/l	3.8	99	SW8260B	_	591-78-6	Detect	Detect	Detect	Detect	LUCALIOIT	Detect	Reject	6	< 5.0 U	< 5.0 U		< 5.0 U			< 5.0 U	< 5.0 U	< 5.0 U		
4-Methyl-2-pentanone	ug/l	630	170	SW8260B	N	108-10-1								6	< 5.0 U	< 5.0 U		< 5.0 U			< 5.0 U	< 5.0 U	< 5.0 U		
Acetone	ug/l	1400	1500	SW8260B	N	67-64-1								6	< 5.0 U	< 5.0 U		< 5.0 U			< 5.0 U	< 5.0 U	< 5.0 U		
Benzene	ug/l	51	1000	SW8260B	N	71-43-2								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Bromochloromethane	ug/l	8.3		SW8260B	N	74-97-5								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Bromodichloromethane	ug/l	17		SW8260B	N	75-27-4								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		1
Bromoform	ug/l	140	320	SW8260B	N	75-25-2								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		<u> </u>
Bromomethane	ug/l	1500		SW8260B	N	74-83-9								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		L
Carbon Disulfide	ug/l	81	0.92	SW8260B		75-15-0	0.4	0.4	0.4	0.4	SUW6B	1		6	< 1.0 U	< 1.0 U		< 1.0 U			0.40 J	< 1.0 U	< 1.0 U		
Carbon Tetrachloride	ug/l	1.6	1000	SW8260B		56-23-5								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Chlorobenzene	ug/l	1600	25	SW8260B	N	108-90-7								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Chloroform	ug/l	2100	50	SW8260B	N	75-00-3								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Chloromethane	ug/l	470 19	3000	SW8260B SW8260B		67-66-3 74-87-3								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Chloromethane cis-1,2-Dichloroethylene	ug/l ug/l	10000		SW8260B SW8260B	N	74-87-3 156-59-2	-							6 6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
cis-1,3-Dichloropropene	ug/l	21		SW8260B SW8260B	N	10061-01-5	1						-	6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Cyclohexane	ug/l	1300		SW8260B	N	110-82-7								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Dibromochloromethane	ug/l	13		SW8260B	N	124-48-1	†							6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Dichlorodifluoromethane	ug/l	20		SW8260B	N	75-71-8								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Ethylbenzene	ug/l	2100	40	SW8260B	N	100-41-4								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Isopropylbenzene	ug/l	45	2.6	SW8260B	N	98-82-8								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
m, p-Xylene	ug/l	19		SW8260B	N	XYLMP								6	< 2.0 U	< 2.0 U		< 2.0 U			< 2.0 U	< 2.0 U	< 2.0 U		
Methyl Acetate	ug/l	2000		SW8260B	N	79-20-9								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		1
Methyl tert-Butyl Ether (MTBE)	ug/l	14	11070	SW8260B	N	1634-04-4								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Methylcyclohexane	ug/l	1300		SW8260B	N	108-87-2								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		1
Methylene Chloride	ug/l	590		SW8260B	N	75-09-2								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		<u> </u>
o-Xylene	ug/l	19	350	SW8260B	N	95-47-6								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Styrene	ug/l	120		SW8260B	N	100-42-5								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Tetrachloroethylene	ug/l	3.3	800	SW8260B	N	127-18-4								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Toluene	ug/l	15000	600	SW8260B	N	108-88-3	0.15	0.15	0.15	0.15	SUW10B	1		6	0.15 J	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
trans-1,2-Dichloroethene	ug/l	10000	970	SW8260B	N	156-60-5								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
trans-1,3-Dichloropropene	ug/l	21	0.055	SW8260B	N	10061-02-6								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Trichloroethene	ug/l	30 520	21	SW8260B	N	79-01-6								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Trichlorofluoromethane	ug/l	2.4	11000 930	SW8260B	N	75-69-4 75-01-4								6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
Vinyl Chloride Xylenes (total)	ug/l ug/l	19	930	SW8260B SW8260B	N	1330-20-7	-							6 6	< 1.0 U	< 1.0 U		< 1.0 U			< 1.0 U	< 1.0 U	< 1.0 U		
1,1'-Biphenyl	ug/l	0.083	14	SW8270D LL	N	92-52-4	1						-	6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
1,2,4,5-Tetrachlorobenzene	ug/l	1.1	3	SW8270D LL	N	95-94-3	1						 	6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
2,2'-oxybis(1-Chloropropane)	ug/l	65000		SW8270D LL	N	108-60-1								6	< 0.21 U	< 0.22 U		< 0.19 U			< 0.19 U	< 0.19 U	< 0.19 UJ		
2,3,4,6-Tetrachlorophenol	ug/l	24	1.2	SW8270D LL		58-90-2								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
2,4,5-Trichlorophenol	ug/l	3600	63	SW8270D LL		95-95-4								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		 I
2,4,6-Trichlorophenol	ug/l	2.4	4.9	SW8270D LL		88-06-2								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
2,4-Dichlorophenol	ug/l	290	11	SW8270D LL	N	120-83-2								6	< 0.21 U	< 0.22 U		< 0.19 U			< 0.19 U	< 0.19 U	< 0.19 U		1
2,4-Dimethylphenol	ug/l	850	200	SW8270D LL	N	105-67-9								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
2,4-Dinitrophenol	ug/l	5300	19	SW8270D LL	N	51-28-5								6	< 5.3 U	< 5.6 U		< 4.8 U			< 4.9 U	< 4.8 U	< 4.8 U		·
2,4-Dinitrotoluene	ug/l	3.4	33	SW8270D LL	N	121-14-2								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
2,6-Dinitrotoluene	ug/l	0.049	81	SW8270D LL	N	606-20-2								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
2-Chloronaphthalene	ug/l	1600	200	SW8270D LL		91-58-7								6	< 0.21 U	< 0.22 U		< 0.19 U			< 0.19 U	< 0.19 U	< 0.19 U		
2-Chlorophenol	ug/l	150	100	SW8270D LL		95-57-8								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
2-Methylnaphthalene	ug/l	3.6	4.7	SW8270D LL		91-57-6	0.016	0.016	0.016	0.016	SUW3C	1		6	< 0.21 U	< 0.22 U		0.016 J			< 0.19 U	< 0.19 U	< 0.19 U		
2-Methylphenol	ug/l	93	13	SW8270D LL		95-48-7								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
2-Nitroaniline	ug/l	19		SW8270D LL		88-74-4								6	< 5.3 U	< 5.6 U		< 4.8 U			< 4.9 U	< 4.8 U	< 4.8 U		
2-Nitrophenol	ug/l	580	1920	SW8270D LL		88-75-5								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
3,3'-Dichlorobenzidine	ug/l	0.028	10	SW8270D LL		91-94-1							1	6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	R		
3-Nitroaniline	ug/l	3.8		SW8270D LL		99-09-2								6	< 5.3 U	< 5.6 U		< 4.8 U			< 4.9 U	< 4.8 U	< 4.8 U		
4,6-Dinitro-2-methylphenol	ug/l	280		SW8270D LL	N	534-52-1								6	< 5.3 U	< 5.6 U		< 4.8 U			< 4.9 U	< 4.8 U	< 4.8 U		<u></u>

Table 4-30 Waterside Investigation Area Surface Water Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

													Loca	tion ID	SUW10B	SUW1B	SUW2B	SUW3C	SUW4B	SUW5C	SUW6B	SUW6B	SUW7B	SUW8B	SUW9C
														nple ID	SUW10BN	SUW1BN	SUW2BN	SUW3CN	SUW4BN	SUW5CN	SUW6BN	SUW6BR	SUW7BN	SUW8BN	SUW9CN
														e Date	9/26/2013	9/23/2013	9/23/2013	9/23/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/25/2013
														Туре	N	N	N	N	N	N	N	FD	N	N	N
		HHRA	ERA																						
Analyte	Unit	Screening Levels (a)	Screening Levels (b)	Method	Fraction	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count Detect		Count Total											
4-Bromophenyl-phenylether	ug/l	LCVCI3 (a)	1.5	SW8270D LL	N	101-55-3	Detect	Detect	Detect	Detect	Location	Detect	reject	6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
4-Chloro-3-methylphenol	ug/l	2000		SW8270D LL	N	59-50-7								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
4-Chloroaniline	ug/l	0.37	232	SW8270D LL	N	106-47-8								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
4-Chlorophenyl-phenylether	ug/l			SW8270D LL	N	7005-72-3								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
4-Methylphenol	ug/l	190	543	SW8270D LL	N	106-44-5								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
4-Nitroaniline	ug/l	3.8		SW8270D LL	N	100-01-6								6	< 5.3 U	< 5.6 U		< 4.8 U			< 4.9 U	< 4.8 U	< 4.8 U		
4-Nitrophenol	ug/l	580	60		N	100-02-7								6	< 5.3 U	< 5.6 U		< 4.8 U			< 4.9 U	< 4.8 U	< 4.8 U		
Acenaphthene	ug/l	990	50	SW8270D LL	N	83-32-9								11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
Acenaphthylene	ug/l	53	4840	SW8270D LL	N	208-96-8								11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
Actophenone	ug/l	190	0.010	SW8270D LL	N	98-86-2	0.010	0.010	0.010	0.010	CLIMAD	1		6	< 1.1 U	< 1.1 U	< 0.2711	< 0.96 U	0.040 1	< 0.1011	< 0.97 U	< 0.96 U	< 0.96 U	< 0.1011	< 0.24 II
Anthracene Atrazine	ug/l	40000 0.3	0.012	SW8270D LL SW8270D LL	N	120-12-7 1912-24-9	0.018	0.018	0.018	0.018	SUW4B	ı		11	< 0.21 U	< 0.22 U < 1.1 U	< 0.27 U	< 0.19 U < 0.96 U	0.018 J	< 0.19 U	< 0.19 U < 0.97 U	< 0.19 U < 0.96 U	< 0.19 U < 0.96 U	< 0.19 U	< 0.21 U
Benzaldehyde	ug/l ug/l	19		SW8270D LL	N	1912-24-9	1		1				+	6	< 1.1 U	< 1.1 UJ		< 0.96 UJ			< 0.97 U	< 0.96 U	< 0.96 U	1	
Benzo(a)anthracene	ug/l	0.018		SW8270D LL	N	56-55-3	-						+	11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.90 U	< 0.19 U	< 0.19 U	< 0.97 U	< 0.19 U	< 0.30 U	< 0.19 U	< 0.21 U
Benzo(a)pyrene	ug/l	0.018		SW8270D LL		50-32-8	1						+	11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
Benzo(b)fluoranthene	ug/l	0.018	9.07	SW8270D LL		205-99-2								11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
Benzo(g,h,i)perylene	ug/l	12	7.64	SW8270D LL	N	191-24-2								11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
Benzo(k)fluoranthene	ug/l	0.018	0.015	SW8270D LL	N	207-08-9								11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
bis-(2-chloroethoxy)methane	ug/l	5.9	11000	SW8270D LL	N	111-91-1								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
bis-(2-Chloroethyl)ether	ug/l	0.53		SW8270D LL	N	111-44-4								6	< 0.21 U	< 0.22 U		< 0.19 U			< 0.19 U	< 0.19 U	< 0.19 U		
bis-(2-Ethylhexyl)phthalate	ug/l	2.2	16	SW8270D LL	N	117-81-7	2.2	1.4	1.9	2.2	SUW10B SUW6B	3		6	2.2	1.4 J		< 1.9 U			2.2	< 1.9 U	< 1.9 U		
Butylbenzylphthalate	ug/l	1900	19	SW8270D LL	N	85-68-7	0.86	0.86	0.86	0.86	SUW6B	2		6	< 1.1 U	< 1.1 U		< 0.96 U			0.86 J	0.86 J	< 0.96 U		
Caprolactam	ug/l	990		SW8270D LL	N	105-60-2								6	< 5.3 U	< 5.6 U		< 4.8 U			< 4.9 U	< 4.8 U	< 4.8 U		
Carbazole	ug/l	29		SW8270D LL	N	86-74-8	0.037	0.037	0.037	0.037	SUW3C	1		6	< 0.21 U	< 0.22 U		0.037 J			< 0.19 U	< 0.19 U	< 0.19 U		
Chrysene	ug/l	0.018	0.015	SW8270D LL		218-01-9								11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
Dibenzo(a,h)anthracene	ug/l	0.018	0.015	SW8270D LL	N	53-70-3								11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
Dibenzofuran	ug/l	0.79	3.7	SW8270D LL	N	132-64-9								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
Diethylphthalate	ug/l	44000 1.1e+006	210 3	SW8270D LL SW8270D LL	N	84-66-2 131-11-3								6	< 1.1 U	< 1.1 U		< 0.96 U < 0.96 U			< 0.97 U < 0.97 U	< 0.96 U	< 0.96 U < 0.96 U		
Dimethylphthalate Di-n-butylphthalate	ug/l ug/l	4500	19	SW8270D LL	N	84-74-2	0.51	0.47	0.49	0.49	SUW6B	2		6	< 1.1 U	< 1.1 U		< 0.96 U			0.47 J	< 0.96 U 0.51 J	< 0.96 U		
Di-n-octylphthalate	ug/l	20	22	SW8270D LL	N	117-84-0	0.51	0.47	0.43	0.49	30000	2		6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
Fluoranthene	ug/l	140	400	SW8270D LL	N	206-44-0	0.036	0.017	0.028	0.031	SUW3C	7		11	< 0.21 U	0.032 J	0.031 J	0.036 J	0.035 J	< 0.19 U	0.017 J	0.025 J	< 0.19 U	0.019 J	< 0.21 U
Fluorene	ug/l	5300	3	SW8270D LL		86-73-7						-		11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
Hexachlorobenzene	ug/l	0.00029	0.0003	SW8270D LL	N	118-74-1								6	< 0.21 U	< 0.22 U		< 0.19 U			< 0.19 U	< 0.19 U	< 0.19 U		
Hexachlorobutadiene	ug/l	18	10	SW8270D LL	N	87-68-3								6	< 0.21 U	< 0.22 U		< 0.19 U			< 0.19 U	< 0.19 U	< 0.19 U		
Hexachlorocyclo-pentadiene	ug/l	1100	0.5	SW8270D LL	N	77-47-4								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 UJ	< 0.96 UJ	< 0.96 UJ		
Hexachloroethane	ug/l	3.3	12			67-72-1								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 UJ		
Indeno(1,2,3-cd)pyrene	ug/l	0.018	4.31		N	193-39-5								11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
Isophorone	ug/l	960	1000	SW8270D LL	N	78-59-1								6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U	< 0.96 U	< 0.96 U		
Naphthalene	ug/l	0.17	600	SW8270D LL		91-20-3	1							11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
Nitrobenzene	ug/l	690	1000			98-95-3							-	6	< 2.1 U	< 2.2 U		< 1.9 U			< 1.9 U	< 1.9 U	< 1.9 U	1	
N-Nitroso-di-n-propylamine	ug/l	0.51 6	210	SW8270D LL		621-64-7	-						 	6	< 0.21 U	< 0.22 U < 1.1 U		< 0.19 U			< 0.19 U	< 0.19 U	< 0.19 U		
N-Nitrosodiphenylamine Pentachlorophenol	ug/l ug/l	3	210 5.10209	SW8270D LL SW8270D LL		86-30-6 87-86-5	1		-				 	6	< 1.1 U	< 1.1 U		< 0.96 U			< 0.97 U < 0.97 U	< 0.96 U < 0.96 U	< 0.96 U < 0.96 U	1	
Phenanthrene	ug/I ug/I	180	0.4	SW8270D LL		85-01-8	1						+	6 11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.90 U	< 0.19 U	< 0.19 U	< 0.97 U	< 0.96 U	< 0.96 U	< 0.19 U	< 0.21 U
Phenol	ug/I	860000	4	SW8270D LL	N	108-95-2	 						+	6	< 0.21 U	< 0.22 U	- 5.21 0	< 0.19 U	- 3.13 0	- 0.10 0	< 0.19 U	< 0.19 U	< 0.19 U	- 0.18 0	- 0.210
Pyrene	ug/l	4000	0.025	SW8270D LL	N	129-00-0	0.038	0.021	0.03	0.03	SUW1B	4	+	11	< 0.21 U	0.038 J	0.026 J	0.034 J	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	0.021 J
BaP-TE	ug/l	0.018		SW8270D LL		BAP								11	< 0.210 U	< 0.220 U	< 0.270 U	< 0.190 U	< 0.190 U	< 0.190 U	< 0.190 U	< 0.190 U	< 0.190 U	< 0.190 U	< 0.210 U
Total High-molecular-weight PAHs	ug/l		0.015	SW8270D LL		TOT-PAH-HMW	0.07	0.017	0.039	0.03	SUW1B SUW3C	8			< 0.21 U	0.070	0.057	0.070	0.035	< 0.19 U	0.017	0.025	< 0.19 U	0.019	0.021
Total Low-molecular-weight PAHs	ug/l		0.012	SW8270D LL	N	TOT-PAH-LMW	0.018	0.018	0.018	0.018	SUW4B	1	-	11	< 0.21 U	< 0.22 U	< 0.27 U	< 0.19 U	0.018	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.21 U
Total PAHs (sum 16)	ug/l		0.012	SW8270D LL		TOT-PAH	0.018	0.018	0.018	0.039	SUW1B	8	+	11	< 0.21 U	0.070	0.057	0.070	0.018	< 0.19 U	0.017	0.19 0	< 0.19 U	0.019	0.021
, ,											SUW3C			11											
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/l			SW8290A	_	67562-39-4	2.28	1.11	1.47	1.41	SUW6B	6	-	6	1.47 J	1.41 J		1.41 J			2.28 J	1.16 J	1.11 J	-	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/l	ļ	<u> </u>	SW8290A	N	35822-46-9	7.77	6.59	7.24	7.26	SUW6B	6	oxdot	6	7.71 J	6.59 J		7.00 J		<u> </u>	7.77 J	7.51 J	6.85 J	<u> </u>	

Waterside Investigation Area Surface Water Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Second Part Second Part													Loc	ation ID	SUW10B	SUW1B	SUW2B	SUW3C	SUW4B	SUW5C	SUW6B	SUW6B	SUW7B	SUW8B	SUW9C
Hell No. Spreading Hell No. Spreading Hell No. Spreading Hell No. Spreading Hell No. Spreading Hell No. Hell													Sa	mple ID	SUW10BN	SUW1BN	SUW2BN	SUW3CN	SUW4BN	SUW5CN	SUW6BN	SUW6BR	SUW7BN	SUW8BN	SUW9CN
Name													Sam	ole Date	9/26/2013	9/23/2013	9/23/2013	9/23/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/24/2013	9/25/2013
Screening Scre														Type	N	N	N	N	N	N	N	FD	N	N	N
Analysis Unit Levels (a) Levels (b) Method Fraction CAS Deletot Deletot Deletot Deletot Location Deletot Report Total T.2.3.4.7.8.4.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4			HHRA	ERA																					
12.3.4.7.81-begue/horosidemorpfuram pgf SNR290A N 5967-88-7 0.00 0.522 0.577 SNR18 2 6 < 0.141 0.001 0.552 < 0.0101 0.0085U < 0.0086U < 0.0086U 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.0086U < 0.			U				l l						_											İ	
1.23.4.78-Hexachinocolbenzor/ariom og/l SW8200A N 70648-769 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.8	,		Levels (a)	Levels (b)									Reject		. 0 44411	0.004.1		0.550.1			. 0 404 11	. 0.050411	. 0.000011	 	
1.2.3.6.7.8-Hexachtorodiberzo-p-doxin pg SW8290A N 9227.28.6 0.599 0.595 0.599 0.599 0.599 0.599 0.599 0.599 0.599 0.595 0.599 0.599 0.599 0.599 0.599 0.599 0.599 0.595 0.599 0.599 0.599 0.599 0.599 0.599 0.599 0.595 0.599 0.59	7 7-7 7 7-7-		1									2												 	
12.36,78-Некоасићисофиелого-р-сиом рад 598259A N 57173-44 9 1.19 0.796 0.993 0.993 S. S.WWB 2 0 6 < 0.008 U 0.096 U 0.096 U 0.096 U 0.096 U 0.096 U 0.096 U 0.096 U 0.096 U 0.096 U 0.096 U 0.096 U 0.096 U 0.096 U 0.097 U 0.096 U 0.097	7 7-7 7 7-											1		-											
12.3.7.8-Hexachirorolibenzo-p-doxin pg SW2590A N 7593.8-7 0.455 0.42 0.435 0.429 SW270B 3 6 0.0080 U 0.429 J 0.028 U 0.429 J 0.0718 U 0.455 J 1.2.3.7.8-Hexachirorolibenzo-p-doxin pg SW2590A N 72918.21+9 0.904 0.198 0.428 0.429 0.429 J 0.0362 J 0.028 J 0.02												1													
12.37.8-9-Hexachbroodberzopring 10 SW8290A N 72916-21-9 0.904 0.198 0.488 0.392 SUW10B 3 0.6 0.096J 0.198 0.483 0.322 0.0171 0.0669 0.0733 0.221 J 0.223 J 0.224 J 0.237, 3-9-PH 0.0652 0.0733 0.224 J 0.237, 3-9-PH 0.0652 0.0733 0.224 J 0.237, 3-9-PH 0.0652 0.0733 0.224 J 0.237, 3-9-PH 0.0652 0.0733 0.024 0.0735 0.024 0.0735 0.024 0.0735 0.024 0.0735 0.024 0.0735 0.024 0.0735 0.024 0.0735 0.024 0.0735 0.024 0.0735 0.024 0.0735 0.024 0.0735 0.024 0.0735 0.0052	7 7-7-7 7-													6											<u> </u>
1.2.3.7.8.9-Hexachtorodibenzo-p-dioxin pgfl SW8290A N 57117-41-6	7 7-7-7 7-													6										<u> </u>	<u> </u>
1.2.3.7.8-Perclash Pgil SW8290A N S7117-41-6 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N A0321-76-4 N SW8290A N	7 7-7 7-7-											3		6											<u> </u>
12,3,7,8-Pentachlorodibenzo-p-dioxin pgl SW8290A N 40321-76-4 N	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/l			SW8290A	N 19408-74-3	0.736	0.213	0.423	0.443	SUW3C	5		6	< 0.0736 U			0.736 J			0.213 J				<u> </u>
2.3.4,6.7,8-Hexachlorodibenzofuran pg/l SW8290A N 60851-34-5 0.418 0.418 0.418 0.418 SUW7B 1 6 <0.0911 V < 0.275 V < 0.0843 V < 0.0984 V < 0.0521 V < 0.0851 V < 0.0843 V < 0.0994 V < 0.0521 V < 0.0851 V < 0.0843 V < 0.0980 V < 0.0850 V < 0.0851 V < 0.0850 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0.0852 V < 0	1,2,3,7,8-PeCDF	pg/l			SW8290A	N 57117-41-6								6	< 0.0873 U	< 0.184 U		< 0.101 U			< 0.0785 U	< 0.0652 U	< 0.0609 U		
2.3.4.7.8-Pentachlorodibenzofuran pgf SW8290A N 57117-31-4 0.692 0.444 0.568 0.568 SUW6B 2 6 <0.0837 U <0.0850 U <0.0838 U 0.692 J <0.0855 U 0.444 J	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/l			SW8290A	N 40321-76-4								6	< 0.0421 U	< 0.0509 U		< 0.0539 U			< 0.0457 U	< 0.0426 U	< 0.0506 U		
2.3.7.8-Tetrachlorodibenzofuran pg/l SW8290A N 51207-31-9 0.419 0.419 0.419 0.419 SUW3C 1 6 < 0.0800 U < 0.0775 U 0.419 J < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0688 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.0638 U < 0.0724 U < 0.063	2,3,4,6,7,8-Hexachlorodibenzofuran	pg/l			SW8290A	N 60851-34-5	0.418	0.418	0.418	0.418	SUW7B	1		6	< 0.0911 U	< 0.275 U		< 0.0843 U			< 0.0994 U	< 0.0521 U	0.418 J		
2.3,7,8-Tetrachlorodibenzo-p-dioxin pg/l 0.051 SW8290A N 1746-01-6 0.148 0.148 0.148 0.148 SUW3C 1 6 < 0.0721 U < 0.0623 U 0.148 J < < 0.0520 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0709 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.0406 U < 0.040	2,3,4,7,8-Pentachlorodibenzofuran	pg/l			SW8290A	N 57117-31-4	0.692	0.444	0.568	0.568	SUW6B	2		6	< 0.0837 U	< 0.0850 U		< 0.0838 U			0.692 J	< 0.0585 U	0.444 J		
Cotachlorochlorodibenzofuran pg/l SW8290A N 39001-02-0 3.35 1.49 2.22 1.92 SUW3C 6 6 1.96 J 2.95 J 3.35 J 1.88 J 1.49 J 1.67 J	2,3,7,8-Tetrachlorodibenzofuran	pg/l			SW8290A	N 51207-31-9	0.419	0.419	0.419	0.419	SUW3C	1		6	< 0.0800 U	< 0.0775 U		0.419 J			< 0.0760 U	< 0.0638 U	< 0.0724 U		
Cotachlorochlorodibenzo-p-dioxin pg/l SW8290A N 3268-87-9 248 182 208 205 SUW3C 6 6 191 190 248 219 218 182 328 321 321 322 323	2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/l	0.051		SW8290A	N 1746-01-6	0.148	0.148	0.148	0.148	SUW3C	1		6	< 0.0721 U	< 0.0623 U		0.148 J			< 0.0520 U	< 0.0406 U	< 0.0709 U		
Total HpCDD Pg/l SW8290A N 37871-00-4 17.1 13.9 16 16.4 SUW3C 6 6 16.8 J 15.9 J 17.1 J 16.8 J 15.6 J 13.9 J	Octachlorochlorodibenzofuran	pg/l			SW8290A	N 39001-02-0	3.35	1.49	2.22	1.92	SUW3C	6		6	1.96 J	2.95 J		3.35 J			1.88 J	1.49 J	1.67 J		
Total HpCDF pg/l SW8290A N 38998-75-3 3.71 1.47 2.38 2.19 SUW6B 6 6 1.47 J 2.88 J 1.96 J 3.71 J 2.41 J 1.84 J Total HxCDD pg/l SW8290A N 34465-46-8 3.77 0.807 2.5 2.66 SUW3C 6 6 0.807 J 3.42 J 3.77 J 1.90 J 3.75 J 1.34 J Total HxCDF pg/l SW8290A N 55684-94-1 9.11 5 6.45 5.57 SUW3C 6 6 5.00 J 5.67 J 9.11 J 8.09 J 5.36 J 5.46 J Total PeCDD pg/l SW8290A N 36088-22-9 3.08 0.333 1.38 0.73 SUW1B 3 6 <0.0421 U 3.08 J <0.0539 U 0.333 J 0.730 J <0.0506 U 0.333 J 0.730 J <0.0506 U 0.524 0.704 0.296 0.317 SUW7B 1 6 6 0.132 0.0744 0.412 0.876 0.889 0.119 0.524 0.307 U 0.412 U 0.524 0.326 0.307 U 0.412 U 0.412 U 0.412 U 0.412 U 0.412 U 0.412 U 0.414 U 0.414 0.414 U 0.414	Octachlorochlorodibenzo-p-dioxin	pg/l			SW8290A	N 3268-87-9	248	182	208	205	SUW3C	6		6	191	190		248			219	218	182 J		
Total HxCDD pg/l SW8290A N 34465-46-8 3.77 0.807 2.5 2.66 SUW3C 6 6 0.807 J 3.42 J 3.77 J 1.90 J 3.75 J 1.34 J	Total HpCDD	pg/l			SW8290A	N 37871-00-4	17.1	13.9	16	16.4	SUW3C	6		6	16.8 J	15.9 J		17.1 J			16.8 J	15.6 J	13.9 J		
Total HxCDF Pg/l SW8290A N 55684-94-1 9.11 5 6.45 5.57 SUW3C 6 6 5.00 J 5.67 J 9.11 J 8.09 J 5.36 J 5.46 J	Total HpCDF	pg/l			SW8290A	N 38998-75-3	3.71	1.47	2.38	2.19	SUW6B	6		6	1.47 J	2.88 J		1.96 J			3.71 J	2.41 J	1.84 J		
Total PeCDD Pg/l SW8290A N 36088-22-9 3.08 0.333 1.38 0.73 SUW1B 3 6 < 0.0421 U 3.08 J < 0.0539 U 0.333 J 0.730 J < 0.0506 U	Total HxCDD	pg/l			SW8290A	N 34465-46-8	3.77	0.807	2.5	2.66	SUW3C	6		6	0.807 J	3.42 J		3.77 J			1.90 J	3.75 J	1.34 J		
Total PeCDF Pg/l SW8290A N 30402-15-4 13.3 6.82 9.27 9.19 SUW3C 6 6 6.82 10.2 13.3 9.70 8.67 6.92 10.2	Total HxCDF	pg/l			SW8290A	N 55684-94-1	9.11	5	6.45	5.57	SUW3C	6		6	5.00 J	5.67 J		9.11 J			8.09 J	5.36 J	5.46 J		
Total TCDD pg/l SW8290A N 41903-57-5 0.538 0.538 0.538 0.538 0.538 SUW7B 1 6 < 0.0721 U < 0.110 U < 0.148 U < 0.0520 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102 U < 0.102	Total PeCDD	pg/l			SW8290A	N 36088-22-9	3.08	0.333	1.38	0.73	SUW1B	3		6	< 0.0421 U	3.08 J		< 0.0539 U			0.333 J	0.730 J	< 0.0506 U		
Total TCDF pg/l SW8290A N 55722-27-5 21.2 10.5 14.9 15.1 SUW3C 6 6 10.5 J 16.0 J 21.2 J 15.7 J 11.3 J 14.5 J 15.0 TCDD TEQ Bird pg/l SW8290A N DFTEQ-Bird 0.889 0.114 0.447 0.341 SUW6B 6 6 0.132 0.114 0.876 0.889 0.119 0.549 TCDD TEQ Fish pg/l 10 SW8290A N DFTEQ-Fish 0.524 0.0744 0.296 0.317 SUW6B 6 6 0.132 0.0744 0.412 0.524 0.326 0.307	Total PeCDF	pg/l			SW8290A	N 30402-15-4	13.3	6.82	9.27	9.19	SUW3C	6		6	6.82 J	10.2 J		13.3 J			9.70 J	8.67 J	6.92 J		
TCDD TEQ Bird pg/l SW8290A N DFTEQ-Bird 0.889 0.114 0.447 0.341 SUW6B 6 6 0.132 0.114 0.876 0.889 0.119 0.549 TCDD TEQ Fish pg/l 10 SW8290A N DFTEQ-Fish 0.524 0.0744 0.296 0.317 SUW6B 6 6 0.132 0.0744 0.412 0.524 0.326 0.307	Total TCDD	pg/l	1		SW8290A	N 41903-57-5	0.538	0.538	0.538	0.538	SUW7B	1		6	< 0.0721 U	< 0.110 U		< 0.148 U			< 0.0520 U	< 0.102 U	0.538 J		
TCDD TEQ Fish pg/l 10 SW8290A N DFTEQ-Fish 0.524 0.0744 0.296 0.317 SUW6B 6 6 0.132 0.0744 0.412 0.524 0.326 0.307	Total TCDF	pg/l	1		SW8290A	N 55722-27-5	21.2	10.5	14.9	15.1	SUW3C	6		6	10.5 J	16.0 J		21.2 J			15.7 J	11.3 J	14.5 J		
	TCDD TEQ Bird	pg/l			SW8290A	N DFTEQ-Bird	0.889	0.114	0.447	0.341	SUW6B	6		6	0.132	0.114		0.876			0.889	0.119	0.549		
TCDD TEQ HH pg/l 0.051 SW8290A N DFTEQ-HH 0.612 0.24 0.383 0.318 SUW3C 6 6 0.240 0.250 0.612 0.558 0.258 0.378	TCDD TEQ Fish	pg/l		10	SW8290A	N DFTEQ-Fish	0.524	0.0744	0.296	0.317	SUW6B	6		6	0.132	0.0744		0.412			0.524	0.326	0.307		Ì
	TCDD TEQ HH	pg/l	0.051		SW8290A	N DFTEQ-HH	0.612	0.24	0.383	0.318	SUW3C	6		6	0.240	0.250		0.612			0.558	0.258	0.378		

Bold values indicate detects. Highlighted values indicate exceedance of the Human Health Risk Assessment (HHRA) screening level. Italicized values indicate exceedance of the Ecological Risk Assessment (ERA) screening level.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

D = Dissolved

deg F = degrees Farenheit

mg/l = milligrams per liter

ms/cm = millisiemens per centimeter

mV = millivolt ntu = nephelometric turbidity units pg/l = picograms per liter

ppt = parts per trillion

ug/l = micrograms per liter

T = Total

N = Normal

FD = Field Duplicate

HHRA and ERA screening values provided for detected compounds or compound sums where applicable.

(a) The HHRA selected surface water screening level was chosen from the following hierarchy:

1) DOEE SW Class D (2013) 2) NRWQC, organism only (9/2017) 3) RSL Table, May 2018 Tapwater [ELCR = 1E-6, HQ=0.1]

(b) Chronic ESVs selected based on a hierarchy of water quality standards and benchmarks from DDOE WQS Criteria (DOH, 2014), USEPA Region 3 freshwater screening values (USEPA, 2006), and literature values (Suter and Tsao, 1996; Buchman, 2008).

Final

Semple Date Sample Date	-											
Semple Description SED1-8500N SED1-8					_	Location ID		SED1.5C	SED1.5C	SED10A	SED10B	SED10C
Dept					5					,,	,,	
Here Here Screening Screening BTV												
HHRA Levels (a) Levels (b) Serioling Serioling Component Levels (b) Serioling Component Compon												
Analyte Unit Levis (a) Levis (a) Levis (a) Levis (a) Levis (a) Levis (a) Levis (a) Satistic 37000 55000 24000 37000						Туре	N	N	FD	N	N	N
Analyte Unit Levels (a) Levels (b) Satistic 37000 55000 24000 37000 37000 55000 24000 37000 37000 55000 24000 37000 37000 55000 24000 37000 37000 55000 24000 37000 37000 55000 24000 37000												
1501 1500												
SEMANS Ratio			Levels (a)	Levels (b)	Statistic							
Arsenic Umolig												
Cadmium Umolig	SEM/AVS Ratio											
Denominary Den	Arsenic	umol/g								***************************************		*****
Deport	Cadmium	umol/g					0.0071			0.0014 J	0.0022	0.0029
Body	Chromium	umol/g					0.22			0.14	0.17 J	0.20
100 100	Copper	umol/g										
\$\circ \text{Umold}{\text{Q}}	Lead	umol/g										
2.5 0.92 1.5 1.8	Nickel	umol/g										
Mercury Umolfo	Silver	umol/g					< 0.0024 UJ			< 0.0029 UJ	0.00036 J	0.00062 J
Sulficle umol/g	Zinc	umol/g					2.5			0.92	1.5	1.8
Seryllium Park Seryllium Seryllium Seryllium Seryllium Park Seryllium Seryllium Park Seryllium Seryllium Park Seryllium Seryllium Seryllium Park Seryllium Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park Seryllium Park	Mercury	umol/g					< 0.00013 U			< 0.00016 U	0.000049 J	0.000052 J
Cestum-137	Sulfide	umol/g					2.5 J			< 1.2 U	< 1.2 U	2.3
Radium-226 DCir D	Beryllium-7	pCi/g						0.231	0.444			
Polonium-210 Policy	Cesium-137	pCi/g						0.0425	0.0733			
Aluminum mg/kg 7700 15034 10000 5600 6900 3300 5300	Radium-226	pCi/g						0.975	1.10			
Antimony mg/kg 3.1 2 0.92 0.48 J 0.660 J 0.050 J 0.20 J 0.31 J Arsenic mg/kg 0.68 5.9 4.9 4.1 3.0 2.8 J 1.3 J 2.1 J 38 633	Polonium-210	pCi/g						1.94	2.80			
Arsenic mg/kg 0.68 5.9 4.9 4.1 3.0 2.8 J 1.3 J 2.1 J 2	Aluminum	mg/kg	7700		<u>15034</u>		10000	5600		6900	3300	5300
Barium mg/kg 1500 0.7 107 98 52 79 J+ 38 63	Antimony	mg/kg	3.1	2	0.92		0.48 J-	0.60 J		0.050 J-	0.20 J-	0.31 J-
Seryllium mg/kg 16 1.6 1.3 0.75 1.2 0.53 0.85	Arsenic	mg/kg	0.68	5.9	4.9		4.1	3.0		2.8 J-	1.3 J-	2.1 J-
Cadmium mg/kg 7.1 0.583 1.4 0.77 0.33 0.37 0.60 Calcium mg/kg EN 0 3500 1900 1300 J- 1700 2700 Chromium mg/kg EN 0 3500 1900 1300 J- 1700 2700 Cobalt mg/kg 2.3 50 21 20 13 13 J 8.9 16 Copper mg/kg 310 31.6 53 J+ 37 J 9.8 22 40 ron mg/kg 5500 20000 27000 15000 17000 12000 17000 Lead mg/kg 400 31 99 43 11 J 31 44 Magnesium mg/kg EN 3600 2500 1400 1600 2500 Nickel mg/kg 180 460 436 470 130 J 480 190 J+ 210 J+ Nickel mg/kg E	Barium	mg/kg	1500	0.7	<u>107</u>		98	52		79 J+	38	63
Calcium mg/kg EN 3500 1900 1300 J- 1700 2700 Chromium mg/kg 12000 26 47 J+ 28 J 13 J+ 16 J+ 24 J+ Cobalt mg/kg 2.3 50 21 20 13 13 J+ 16 J+ 24 J+ Cobalt mg/kg 310 31.6 53 J+ 37 J 9.8 22 40 Copper mg/kg 310 31.6 53 J+ 37 J 9.8 22 40 ron mg/kg 5500 20000 27000 15000 17000 12000 17000 Lead mg/kg 400 31 99 43 11 J 31 44 Magnesium mg/kg EN 3600 2500 14400 1600 2500 Manganese mg/kg 180 460 436 470 130 J 480 190 J+ 210 J+ Nickel mg/kg 150	Beryllium	mg/kg	16		1.6		1.3	0.75		1.2	0.53	0.85
Chromium	Cadmium	mg/kg	7.1	0.583			1.4	0.77		0.33	0.37	0.60
Cobalt mg/kq 2.3 50 21 20 13 13 J 8.9 16 Copper mg/kq 310 31.6 53 J+ 37 J 9.8 22 40 ron mg/kq 5500 20000 27000 15000 17000 12000 17000 Lead mg/kq 400 31 99 43 11 J 31 44 Magnesium mg/kg EN 3600 2500 1400 1600 2500 Manganese mg/kg 180 460 436 470 130 J 480 190 J+ 210 J+ Nickel mg/kg 150 16 40 38 23 16 16 26 Potassium mg/kg EN 1200 1100 560 580 1000 Selenium mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Siliver mg/kg 39	Calcium	mg/kg	EN				3500	1900		1300 J-	1700	2700
Copper mg/kq 310 31.6 53 J+ 37 J 9.8 22 40 ron mg/kg 5500 20000 27000 15000 17000 12000 17000 ead mg/kg 400 31 99 43 11 J 31 44 Magnesium mg/kg EN 0 3600 2500 1400 1600 2500 Manganese mg/kg 180 460 436 470 130 J 480 190 J+ 210 J+ Nickel mg/kg 150 16 40 38 23 16 16 16 26 Potassium mg/kg EN 1200 1100 560 580 1000 Selenium mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Silver mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Sodium mg/kg<	Chromium	mg/kg	12000	26			47 J+	28 J		13 J+	16 J+	24 J+
ron mg/kg 5500 20000 27000 15000 17000 12000 17000 _ead mg/kg 400 31 99 43 11 J 31 44 Magnesium mg/kg EN 3600 2500 1400 1600 2500 Manganese mg/kg 180 460 436 470 130 J 480 190 J+ 210 J+ Nickel mg/kg 150 16 40 38 23 16 16 26 Potassium mg/kg EN 1200 1100 560 580 1000 Selenium mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Silver mg/kg EN 120 110 100 63 100 Thallium mg/kg 0.078 0.31 0.22 0.15 0.11 J 0.10 0.17 Vanadium mg/kg 230 98 <t< td=""><td>Cobalt</td><td>mg/kg</td><td>2.3</td><td>50</td><td>21</td><td></td><td>20</td><td>13</td><td></td><td>13 J</td><td>8.9</td><td>16</td></t<>	Cobalt	mg/kg	2.3	50	21		20	13		13 J	8.9	16
ron mg/kg 5500 20000 27000 15000 17000 12000 17000 Lead mg/kg 400 31 99 43 11 J 31 44 Magnesium mg/kg EN 3600 2500 1400 1600 2500 Manganese mg/kg 180 460 436 470 130 J 480 190 J+ 210 J+ Nickel mg/kg 150 16 40 38 23 16 16 16 26 Potassium mg/kg EN 1200 1100 560 580 1000 Selenium mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Silver mg/kg EN 120 110 100 63 100 Thallium mg/kg 0.078 0.31 0.22 0.15 0.11 J 0.10 0.17 Vanadium mg/kg 230 <t< td=""><td>Copper</td><td>mg/kg</td><td>310</td><td>31.6</td><td></td><td></td><td>53 J+</td><td>37 J</td><td></td><td>9.8</td><td>22</td><td>40</td></t<>	Copper	mg/kg	310	31.6			53 J+	37 J		9.8	22	40
Magnesium mg/kg EN 3600 2500 1400 1600 2500 Manganese mg/kg 180 460 436 470 130 J 480 190 J+ 210 J+ Nickel mg/kg 150 16 40 38 23 16 16 16 26 Potassium mg/kg EN 1200 1100 560 580 1000 Selenium mg/kg 39 1.3 0.59 J 0.30 J 0.42 J- 0.76 J- Silver mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Sodium mg/kg EN 120 110 100 63 100 Thallium mg/kg 0.078 0.31 0.22 0.15 0.11 J 0.10 0.17 Vanadium mg/kg 230 98 250 180 46 J+ 99 J 160 J	Iron	mg/kg	5500	20000			27000	15000		17000	12000	17000
Manganese mg/kg 180 460 436 470 130 J 480 190 J+ 210 J+ Nickel mg/kg 150 16 40 38 23 16 16 26 Potassium mg/kg EN 1200 1100 560 580 1000 Selenium mg/kg 39 1.3 0.59 J 0.30 J 0.42 J- 0.76 J- Silver mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Sodium mg/kg EN 120 110 100 63 100 Thallium mg/kg 0.078 0.31 0.22 0.15 0.11 J 0.10 0.17 Vanadium mg/kg 230 98 250 180 46 J+ 99 J 160 J	Lead	mg/kg	400	31			99	43		11 J	31	44
Nickel mg/kg 150 16 40 38 23 16 16 26 Potassium mg/kg EN 1200 1100 560 580 1000 Selenium mg/kg 39 1.3 0.59 J 0.30 J 0.42 J- 0.76 J- Silver mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Sodium mg/kg EN 120 110 100 63 100 Thallium mg/kg 0.078 0.31 0.22 0.15 0.11 J 0.10 0.17 Vanadium mg/kg 39 43 39 27 23 J+ 14 23 Zinc mg/kg 2300 98 250 180 46 J+ 99 J 160 J	Magnesium	mg/kg	EN				3600	2500			1600	2500
Potassium mg/kg EN 1200 1100 560 580 1000	Manganese	mg/kg	180	460	<u>436</u>		470	130 J		480	190 J+	210 J+
Selenium mg/kg 39 1.3 0.59 J 0.30 J 0.42 J- 0.76 J- Silver mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Sodium mg/kg EN 120 110 100 63 100 Thallium mg/kg 0.078 0.31 0.22 0.15 0.11 J 0.10 0.17 Vanadium mg/kg 39 43 39 27 23 J+ 14 23 Zinc mg/kg 2300 98 250 180 46 J+ 99 J 160 J	Nickel	mg/kg	150	16	<u>40</u>		38	23		16	16	26
Selenium mg/kg 39 1.3 0.59 J 0.30 J 0.42 J- 0.76 J- Silver mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Sodium mg/kg EN 120 110 100 63 100 Thallium mg/kg 0.078 0.31 0.22 0.15 0.11 J 0.10 0.17 Vanadium mg/kg 39 43 39 27 23 J+ 14 23 Zinc mg/kg 2300 98 250 180 46 J+ 99 J 160 J	Potassium	mg/kg	EN				1200	1100		560	580	1000
Silver mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Sodium mg/kg EN 120 110 100 63 100 Thallium mg/kg 0.078 0.31 0.22 0.15 0.11 J 0.10 0.17 Vanadium mg/kg 39 43 39 27 23 J+ 14 23 Zinc mg/kg 2300 98 250 180 46 J+ 99 J 160 J					ĺ							
Silver mg/kg 39 0.5 0.48 0.52 0.061 J 0.10 0.18 Sodium mg/kg EN 120 110 100 63 100 Thallium mg/kg 0.078 0.31 0.22 0.15 0.11 J 0.10 0.17 Vanadium mg/kg 39 43 39 27 23 J+ 14 23 Zinc mg/kg 2300 98 250 180 46 J+ 99 J 160 J	Selenium	mg/kg	39				1.3	0.59 J		0.30 J	0.42 J-	0.76 J-
Thallium mg/kg 0.078 0.31 0.22 0.15 0.11 J 0.10 0.17 Vanadium mg/kg 39 43 39 27 23 J+ 14 23 Zinc mg/kg 2300 98 250 180 46 J+ 99 J 160 J	Silver			0.5								
Thallium mg/kg 0.078 0.31 0.22 0.15 0.11 J 0.10 0.17 Vanadium mg/kg 39 43 39 27 23 J+ 14 23 Zinc mg/kg 2300 98 250 180 46 J+ 99 J 160 J	Sodium											
Vanadium mg/kg 39 43 39 27 23 J+ 14 23 Zinc mg/kg 2300 98 250 180 46 J+ 99 J 160 J	Thallium				0.31					0.11 J		
Zinc mg/kg 2300 98 250 180 46 J+ 99 J 160 J	Vanadium				43							••••
	Zinc			98								
VEICUIV CYU,U CYU,U CYU,U	Mercury	mg/kg	2.3	0.174			0.17	0.10 J		0.075	0.099 J	0.10 J

					Location ID	SED1A	SED1B	SED1C	SED2.5B	SED2A	SED2B	SED2C	SED3.5B	SED3A	SED3B
					S Sample Date	11/6/2013 2:00:00 PM	11/6/2013 2:05:00 PM			11/6/2013 11:05:00 AM	11/5/2013 2:26:00 PM	11/6/2013 9:16:00 AM	11/12/2013 11:44:00 AM	11/7/2013 1:37:00 PM	
					Sample ID	SED1A00N	SED1B00N	SED1C00N	SED2.5B00N	SED2A00N	SED2B00N	SED2C00N	SED3.5B00N	SED3A00N	SED3B00N
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
					Type	N	N N	N	N N	N	N	0 - 0.5 it	N N	0 - 0.5 it	0 - 0.5 it
		HHRA	ERA		I	.,			· · · · · ·	.,	.,				1,
		Screening	Screening	BTV											
Analyte	Unit	Levels (a)		Statistic											
Total Organic Carbon	ma/ka	2010.0 (4)	2010.0 (5)	Otationo		51000	23000	25000	23000	48000	33000	35000	8400	46000	6300
SEM/AVS Ratio	none					2.2	1.1	1.5	1.2	2.3	1.1	0.56	2.9	2.4	5.5
Arsenic	umol/g					0.012 J	0.011 J	0.0053 J	0.0066 J	0.017 J	0.0080 J	0.0065 J	0.0087 J	0.010 J	0.0040 J
Cadmium	umol/a					0.0055	< 0.0043 U	0.0036	0.0028	0.0048	0.0027	0.0068	0.0018	< 0.0045 U	0.0017
Chromium	umol/a					0.24	0.14	0.12	0.14	0.25	0.11	0.19	0.12	0.061	0.10
Copper	umol/a					0.72	0.36	0.23	0.23	0.47	0.19	0.33	0.15	0.14	0.086
Lead	umol/a					0.24	0.12	0.14	0.14	0.20	0.12	0.37	0.094	0.042	0.085
Nickel	umol/g					0.26	0.10	0.13	0.14	0.25	0.16	0.24	0.12	0.12	0.060
Silver	umol/g					< 0.0031 UJ	< 0.0045 UJ	< 0.0019 UJ	< 0.0020 UJ	< 0.0030 UJ	< 0.0025 UJ	< 0.0023 UJ	< 0.0017 UJ	< 0.0047 UJ	< 0.0016 UJ
Zinc	umol/g					2.9	1.2	1.7	1.5	2.3	1.6 J	2.8	1.0	0.77	0.81
Mercury	umol/g					0.000034 J	< 0.00012 U	0.000019 J	0.000012 J	0.000042 J	< 0.00013 U	0.000013 J	0.000079 J	< 0.00013 U	< 0.000085 U
Sulfide	umol/g					2.0 J	1.9 J	1.7 J	1.9 J	1.6 J	2.1 J	7.3 J	< 0.70 U	< 0.95 UJ	< 0.64 UJ
Beryllium-7	pCi/q														
Cesium-137	pCi/q														
Radium-226	pCi/q														
Polonium-210	pCi/g														
Aluminum	mg/kg	7700		15034		11000	18000	5200	6500	8300	7600	6200	2000	14000	1900
Antimony	mg/kg	3.1	2	0.92		0.62 J-	0.29	0.39	0.39	0.53 J-	0.48 J-	0.50 J-	0.15 J-	< 0.20 U	0.17
Arsenic	mg/kg	0.68	5.9	4.9		4.0	3.9	2.0	1.9	3.6	2.9	2.6	0.96 J-	1.8	0.79
Barium	mg/kg	1500	0.7	<u>107</u>		<u>110</u>	<u>140</u>	53	60	86	76	61	30	<u>180</u>	29
Beryllium	mg/kg	16		<u>1.6</u>		1.5	1.5	0.63	0.80	1.1	0.89	0.82	0.36	1.9	0.32
Cadmium	mg/kg	7.1	0.583			1.0	0.62	0.58	0.52	0.99	0.81	0.92	0.36	0.59	0.24
Calcium	mg/kg	EN				3600	2500	1900	2300	5100	2500	2500	1100	1100	7700 J-
Chromium	mg/kg	12000	26			49 J+	37	24	30	37 J+	38 J+	29 J+	11 J+	24	11 J+
Cobalt	mg/kg	2.3	50	21		21	15	11	12	18	16	18	6.7	16	4.8
Copper	mg/kg	310	31.6			65 J+	50	28	33	54 J+	45 J+	40 J+	17	17	9.6
Iron	mg/kg	5500	20000			31000	30000	14000	17000	25000	22000	19000	8300	16000	8300
Lead	mg/kg	400	31			73	50	37	44	72	63	61	19	16	20
Magnesium	mg/kg	EN				3800	3200	2600	2800	3400	2600	2800	840	2600	870
Manganese	mg/kg	180	460	<u>436</u>		460	470	160	210	420	310	200	120 J+	300	120 J-
Nickel	mg/kg	150	16	40		39	23	19	22	37	30	29	11	26	8.0
Potassium	mg/kg	EN				1300	1300	1000	1100	1000	1000	1000	410	880	500
Selenium	mg/kg	39				1.4	1.4	0.53	0.62	1.2	0.95	0.84	0.31 J-	1.2	0.23 J
Silver	mg/kg	39	0.5			0.36	0.25	0.15	0.16	0.30	0.34	0.27	0.064 J	0.097 J	0.044 J
Sodium	mg/kg	EN				160	130	110	120	180	110	140	47	65	75
Thallium	mg/kg	0.078		0.31		0.25	0.29	0.15	0.16	0.19	0.18	0.19	0.065 J	0.18	0.057 J
Vanadium	mg/kg	39		43		44	38	21	22	32	29	27	9.6	26	8.5 J+
Zinc	mg/kg	2300	98			240	150	140	130	190	180	200	68 J	73	60
Mercury	mg/kg	2.3	0.174			0.23	0.23	0.11	0.086	0.16	0.13	0.15	0.067 J	0.064	0.033

					Location ID	SED3C	SED3C	SED4.5B	SED4A	SED4B	SED4B	SED4C	SED5.5B	SED5A	SED5B
					S Sample Date		11/7/2013 12:27:00 PM	11/8/2013 10:16:00 AM	11/12/2013 1:33:00 PM	11/12/2013 12:13:00 PM	11/12/2013 12:13:00 PM	11/12/2013 2:09:00 PM	11/12/2013 2:53:00 PM	11/8/2013 11:37:00 AM	11/8/2013 12:30:00 PM
					Sample ID	SED3C00N	SED3C00R	SED4.5B00N	SED4A00N	SED4B00N	SED4B00R	SED4C00N	SED5.5B00N	SED5A00N	SED5B00N
					Depth Type	0 - 0.5 ft N	0 - 0.5 ft FD	0 - 0.5 ft N	0 - 0.5 ft N	0 - 0.5 ft N	0 - 0.5 ft FD	0 - 0.5 ft N	0 - 0.5 ft N	0 - 0.5 ft N	0 - 0.5 ft N
	1	HHRA	ERA		туре	IN	FD	IN	IN .	IN .	FU	IN	IN	IN .	<u> </u>
				DT\/											1 '
Analyte	Unit	Screening Levels (a)	Screening Levels (b)	BTV Statistic											1 '
Total Organic Carbon	ma/ka	Levels (a)	Leveis (b)	Statistic		27000	43000	43000	47000	17000	20000	56000	58000	35000	39000
						37000 0,70	0.54	43000 8.2	47000 3.0	2.0	20000 0.65	2.1	1.3	2.1	2.5
SEM/AVS Ratio	none umol/a					0.70 0.0052 J	0.54 0.0069 J	8.2 0.011 J	0.023 J	2.0 0.014 J	0.05 0.0098 J	0.016 J	0.015 J	0.022 J	2.5 0.026 J
Arsenic	umol/g					0.0052 3	0.0069 3	0.011 3	0.023 3	0.014 3	0.0098 3	0.016 J 0.0073 J	0.015 3	0.022 3	0.026 3
Characteristics															
Chromium	umol/g					0.13	0.11	0.24	0.32	0.51	0.62	0.49 J	1.3	0.30	0.36
Copper	umol/g					0.19 0.12	0.21 0.12	0.58 0.25	0.54 0.26	0.27	0.19	0.75 0.29 J	0.75	0.47	0.64
Lead	umol/g umol/a					0.12 0.16	0.12 0.15	0.25	0.26	0.47 0.18	0.31 0.14	0.29 J 0.43	0.31 0.36	0.23 0.32	0.30 0.42
Nickel	umol/g					< 0.0024 UJ	< 0.0025 UJ	< 0.0028 UJ	0.00067 J	0.18 0.00058 J	0.14 0.0035 J	0.43 0.00065 J	0.36 0.0065 J	0.00092 J	0.42 0.0012 J
Silver Zinc	umol/g umol/a					< 0.0024 UJ 1.4	< 0.0025 UJ 1.4	< 0.0028 UJ 2.9	0.00067 J 2.6	0.00058 J 1.8	0.0035 J 1.5	0.00065 J 3.5	0.0065 J 3.3	0.00092 J 2.3	0.0012 J 3.1
Mercury	umol/a					< 0.00013 U	< 0.00014 U	0.000024 J	0.00013 J	< 0.000093 U	< 0.000090 U	0.00018 J	0.00020	2.3 0.00010 J	0.00010 J
Sulfide	umol/a					3.0 J	< 0.00014 0	< 1.1 UJ	< 1.4 U	< 0.000093 U	< 0.000090 0 4.7	2.7 J	5.1 J	1.8 J	0.00010 J 2.1 J
Bervllium-7	pCi/a					3.0 3	3.7 3	< 1.1 03	< 1.4 U	1.0	4.7	Z./ J	5.1 3	1.0 J	2.13
Cesium-137	pCi/g														
Radium-226	pCi/g														
Polonium-210	pCi/g														
Aluminum	ma/ka	7700		15034		5900	5300	13000	9400	4800	6000	10000	11000	11000	15000
Antimony	ma/ka	3.1	2	0.92		0.52	0.40	0.87	0.47 J-	0.15 J-	0.15 J-	0.64 J-	0.56 J-	0.59	0.80
Arsenic	ma/ka	0.68	5.9	4.9		2.3	2.6	4.1	3.6 J-	2.7 J-	3.0 J-	3.4 J-	4.2 J-	3.5	4.6
Barium	ma/ka	1500	0.7	107		61	55	120	120	76	98	110	130	97	130
Beryllium	mg/kg	16	0.7	1.6		0.76	0.69	1.6	1.5	0.73	0.85	1.4	1.5	1.3	1.7
Cadmium	ma/ka	7.1	0.583	1.0		0.55	0.50	1.0	0.97	0.77	1.2	1.1	1.4	0.81	1.1
Calcium	ma/ka	EN	0.003			2400	2200	4300 J-	8400	1300	1600	3500	3300	3200 J-	4000 J-
Chromium	mg/kg	12000	26			25	23	54 J+	45 J+	44 J+	73 J+	45	140	44 J+	57 J+
Cobalt	ma/ka	2.3	50	21		13	12	23	23	10	73 3 +	19	22	18	23
Copper	mg/kg	310	31.6	<u> </u>		29	28	68	66	27	38	66	65	51	70
Iron	ma/ka	5500	20000			16000	14000	32000	29000	14000	16000	27000	29000	27000	33000
Lead	ma/ka	400	31			36	33	80	72	100	140	80	90	63	84
Magnesium	mg/kg	EN	<u> </u>			2600	2300	4500	3300	1300	1700	3600	3100	3700	4600
Manganese	ma/ka	180	460	436		200	190	560 J-	570 J+	160 J+	170 J+	390	530	430 J-	560 J-
Nickel	ma/ka	150	16	40		23	21	40	39	16	20	37	33	33	41
Potassium	mg/kg	EN				1100	960	1500	1200	790	900	1200	1200	1300	1500
	9,9														,
Selenium	ma/ka	39				0.65	0.66	1.3	1.4 J-	0.58 J-	0.77 J-	1.3 J-	1.4 J-	1.1	1.4
Silver	mg/kg	39	0.5			0.14	0.16	0.41	0.38	0.40	0.63	0.43	1.4	0.32	0.43
Sodium	ma/ka	EN	7.4			110	110	150	260	54	63	160	140	120	170
Thallium	ma/ka	0.078		0.31		0.18	0.15	0.28	0.25	0.15	0.19	0,25	0,27	0,23	0.28
Vanadium	mg/kg	39		43		26	30	42 J+	38	23	27	41	43	36 J+	49 J+
Zinc	mg/kg	2300	98			130	120	280	250 J	140 J	200 J	• • • • • • • • • • • • • • • • • • • •	250 J-		
ZIIIC	IIIq/Kq	2300					120	200	230 J	140 J	200 J	260 J-	∠30 J-	220	290

					Location ID	SED5B	SED5C	SED6.5D	SED6.5D	SED6.5E	SED6.5E	SED6A	SED6A	SED6B	SED6B
					S Sample Date	6/20/2017 7:45:00 AM	11/11/2013 8:38:00 AM	11/25/2013 8:10:00 AM	6/9/2017 9:45:00 AM	11/25/2013 8:20:00 AM	6/8/2017 10:00:00 AM	11/13/2013 1:39:00 PM	6/8/2017 1:15:00 PM	11/13/2013 12:39:00 PM	11/13/2013 12:39:00 PM
					Sample ID	SED5B00AN	SED5C00N	SED6.5D00N	SED6.5D00EN	SED6.5E00N	SED6.5E00EN	SED6A00N	SED6A00EN	SED6B00N	SED6B00R
					Depth	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft
					Type	N	N	N	N N	N	N	N	N	N	FD
		HHRA	ERA		T //										
		Screening	Screening	BTV											
Analyte	Unit	Levels (a)	Levels (b)	Statistic											
Total Organic Carbon	ma/ka	(-,					31000	50000	65000 J	86000 J	70000	11000	83000	20000	28000
SEM/AVS Ratio	none						1.8	2.2	2.7	2.9	0.78	1.6	0.35	2.8	3.2
Arsenic	umol/a						0.031 J	0.057	0.014	0.024 J	0.020	0.0099 J	0.016	< 0.0082 UJ	0.0094 J
Cadmium	umol/a						0.0084	0.033	0.02	0.033 J	0.020	0.0042	0.0048	0.0031	0.0034
Chromium	umol/a						0.74 J	0.51	0.14	0.28 J	0.13	0.42	0.15	0.27	0.28
Copper	umol/a						0.67	1.5	0.46	1.3	0.45	0.25	0.30	0.35	0.36
Lead	umol/a						0.58	0.62	0.46	0.65	0.94	0.31	0.21	0.15	0.15
Nickel	umol/g						0.57 J	1.0	0.36	0.67 J	0.35	0.16	0.27	0.24	0.25
Silver	umol/g						0.0044 J	0.0016 J	< 0.0026 U	0.0051 J	< 0.0028 U	0.00071 J	< 0.0033 U	0.0012 J	< 0.0021 UJ
Zinc	umol/g						3.3	6.1	4.4	8.6	4.4	1.6	2.3	1.8	1.9
Mercury	umol/g						0.000030 J	0.000013 J	< 0.000056 U	0.000072 J	< 0.000061 U	0.000044 J	< 0.000071 U	0.000094 J	0.000093 J
Sulfide	umol/g						3.4	4.6 J	2.2	4.1 J	8.2	1.9 J	9.5	< 1.0 UJ	< 1.0 UJ
Beryllium-7	pCi/g					2.12									
Cesium-137	pCi/g					0.049									
Radium-226	pCi/g					1.20									
Polonium-210	pCi/g					3.73 J									
Aluminum	mg/kg	7700		<u>15034</u>		10000	8000	13000	8200	6000	7000	2000	8200	5500	5600
Antimony	mg/kg	3.1	2	0.92		1.1	0.27 J-	0.77 J-	1.3	1.4 J-	2.8	0.13 J-	0.82	0.35 J-	0.35 J-
Arsenic	mg/kg	0.68	5.9	4.9		6.1	5.3 J-	14 J-	7.0	5.9 J-	6.1	1.2 J-	4.5	1.8 J-	2.0 J-
Barium	mg/kg	1500	0.7	<u>107</u>		100	87 J+	<u>120 J-</u>	81	79	70	29	83	60	74
Beryllium	mg/kg	16		<u>1.6</u>		1.4	0.89	1.8	1.1	0.73	0.89	0.37	1.1	0.77	0.86
Cadmium	mg/kg	7.1	0.583			0.81	1.0	2.8 J-	2.5	3.8 J-	2.4	0.33	0.61	0.50	0.54
Calcium	mg/kg	EN				4400	1800 J-	1400 J-	3600	3000	3000	870	3700	2100	2500
Chromium	mg/kg	12000	26			45	57 J+	47 J-	40	31	31	14	34	25	25
Cobalt	mg/kg	2.3	50	<u>21</u>		23	12 J	17 J-	16	16	16	5.3	18	12	14
Copper	mg/kg	310	31.6			65	40	130	74	96	71	13	50	34	35
Iron	mg/kg	5500	20000			30000	23000	17000	20000	16000	17000	8200	23000	18000	18000
Lead	mg/kg	400	31			54	120 J	140	99	130	160	51	43	47	40
Magnesium	mg/kg	EN				3700	1800	1800	3500	2400	2900	640	3100	2200	2300
Manganese	mg/kg	180	460	<u>436</u>		430	300	130 J-	190	150	160	100	300	260	300
Nickel	mg/kg	150	16	<u>40</u>		40	20	91 J-	47	65 J-	47	7.7	31	22	24
Potassium	mg/kg	EN				1200	850	590	1000	610	810	380	1100	950	950
Selenium	mg/kg	39				1.2	0.56	1.5 J-	0.97	0.78 J-	0.86	0.33 J-	1.0	0.70 J-	0.74 J-
Silver	mg/kg	39	0.5			0.24	0.90	0.80	0.99	1.5 J-	0.63	0.12	0.35	0.17	0.17
Sodium	mg/kg	EN				240	71	140	220	140	190	25	220	80	93
Thallium	mg/kg	0.078		0.31		0.21	0.27	0.53	0.22	0.16 J-	0.18	0.070	0.18	0.13	0.16
Vanadium	mg/kg	39		43		44	61 J+	250 J+	63	120	<u>77</u>	11	33	20	22
Zinc	mg/kg	2300	98			280	160 J+	300 J-	340	420	340	57 J-	200	140 J-	150 J-
Mercury	mg/kg	2.3	0.174			0.18	0.38	0.27 J	0.26	0.23 J	0.23	0.045 J-	0.18	0.095 J-	0.096 J-

Analyte Unit Total Organic Carbon mg/kg SEM/AVS Ratio none Arsenic umol/g Cadmium umol/g Chromium umol/g Copper umol/g Lead umol/g Nickel umol/g Silver umol/g Zinc umol/g Mercury umol/g Beryllium-7 pCi/g Beryllium-7 pCi/g Radium-226 pCi/g Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Barium mg/kg Beryllium mg/kg Beryllium mg/kg Antimony mg/kg Beryllium mg/kg Beryllium mg/kg Antimony mg/kg Beryllium mg/kg Beryllium mg/kg	HHRA Screening Levels (a)		Location ID S Sample Date Sample ID Depth Type	SED6B00EN 0 - 0.33 ft	SED6C 11/14/2013 1:33:00 PM SED6C00N 0 - 0.5 ft N 44000 5.7 0.012 0.0078 0.44	SED6C 6/7/2017 10:00:00 AM SED6C00EN 0 - 0.33 ft N 96000 3.6 0.020 0.0069	SED7.5D 11/25/2013 7:30:00 AM SED7.5D00N 0 - 0.5 ft N 40000 2.2 0.055	SED7.5D 6/9/2017 8:15:00 AM SED7.5D00EN 0 - 0.33 ft N	SED7.5E 11/25/2013 10:30:00 AM SED7.5E00N 0 - 0.5 ft N	SED7.5E 6/8/2017 9:15:00 AM SED7.5E00EN 0 - 0.33 ft N	SED7A 11/13/2013 11:50:00 AM SED7A00N 0 - 0.5 ft N	SED7A 6/9/2017 11:15:00 AM SED7A00EN 0 - 0.33 ft N	SED7B 11/13/2013 10:50:00 AM SED7B00N 0 - 0.5 ft N
Total Organic Carbon mg/kg SEM/AVS Ratio none Arsenic umol/g Cadmium umol/g Chromium umol/g Copper umol/g Lead umol/g Nickel umol/g Silver umol/g Silver umol/g Mercury umol/g Sulfide umol/g Sulfide umol/g Beryllium-7 pCi/g Radium-226 pCi/q Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Barium mg/kg Beryllium mg/kg Beryllium mg/kg	Screening	Screening B	Sample ID Depth Type	SED6B00EN 0 - 0.33 ft N 21000 2.0 0.011 0.0043 0.088 0.25	SED6C00N 0 - 0.5 ft N 44000 5.7 0.012 0.0078	96000 3.6 0.020 0.0069	SED7.5D00N 0 - 0.5 ft N 40000 2.2	SED7.5D00EN 0 - 0.33 ft N	SED7.5E00N 0 - 0.5 ft N	SED7.5E00EN 0 - 0.33 ft N	SED7A00N 0 - 0.5 ft N	SED7A00EN 0 - 0.33 ft N	SED7B00N 0 - 0.5 ft N
Total Organic Carbon mg/kg	Screening	Screening B	Depth Type	0 - 0.33 ft N 21000 2.0 0.011 0.0043 0.088 0.25	0 - 0.5 ft N 44000 5.7 0.012 0.0078	96000 3.6 0.020 0.0069	0 - 0.5 ft N 40000 2.2	0 - 0.33 ft N 50000 J	0 - 0.5 ft N	0 - 0.33 ft N	0 - 0.5 ft N	0 - 0.33 ft N	0 - 0.5 ft N
Total Organic Carbon mg/kg SEM/AVS Ratio none Arsenic umol/g Cadmium umol/g Chromium umol/g Copper umol/g Lead umol/g Nickel umol/g Silver umol/g Zinc umol/g Mercury umol/g Sulfide umol/g Beryllium-7 pCi/g Cesium-137 pCi/g Radium-226 pCi/g Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Barium mg/kg Beryllium mg/kg	Screening	Screening B	Type STV	21000 2.0 0.011 0.0043 0.088 0.25	N 44000 5.7 0.012 0.0078 0.44	96000 3.6 0.020 0.0069	40000 2.2	N 50000 J	N	N	N	N	N
Total Organic Carbon mg/kg SEM/AVS Ratio none Arsenic umol/g Cadmium umol/g Chromium umol/g Copper umol/g Lead umol/g Nickel umol/g Silver umol/g Zinc umol/g Mercury umol/g Sulfide umol/g Beryllium-7 pCi/g Cesium-137 pCi/g Radium-226 pCi/g Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Barium mg/kg Beryllium mg/kg	Screening	Screening B	STV	21000 2.0 0.011 0.0043 0.088 0.25	44000 5.7 0.012 0.0078 0.44	96000 3.6 0.020 0.0069	40000 2.2	50000 J			.,		
Total Organic Carbon mg/kg	Screening	Screening B		2.0 0.011 0.0043 0.088 0.25	5.7 0.012 0.0078 0.44	3.6 0.020 0.0069	2.2		140000	94000	28000	79000 .1	21000
Total Organic Carbon mg/kg	3			2.0 0.011 0.0043 0.088 0.25	5.7 0.012 0.0078 0.44	3.6 0.020 0.0069	2.2		140000	94000	28000	79000 J	21,000
Total Organic Carbon mg/kg SEM/AVS Ratio none Arsenic umol/g Cadmium umol/g Chromium umol/g Copper umol/g Lead umol/g Nickel umol/g Silver umol/g Silver umol/g Mercury umol/g Sulfide umol/g Sulfide umol/g Beryllium-7 pCi/g Cesium-137 pCi/g Radium-226 pCi/q Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Arsenic mg/kg Beryllium mg/kg Beryllium mg/kg Beryllium mg/kg	Levels (a)	Levels (b) Sta	atistic	2.0 0.011 0.0043 0.088 0.25	5.7 0.012 0.0078 0.44	3.6 0.020 0.0069	2.2		140000	94000	28000	79000 J	21000
SEM/AVS Ratio none Arsenic umol/g Cadmium umol/g Chromium umol/g Copper umol/g Lead umol/g Nickel umol/g Silver umol/g Zinc umol/g Mercury umol/g Sulfide umol/g Beryllium-7 pCi/g Cesium-137 pCi/g Radium-226 pCi/g Polonium-210 pCi/g Aluminum mg/kg Arsenic mg/kg Barium mg/kg Beryllium mg/kg				2.0 0.011 0.0043 0.088 0.25	5.7 0.012 0.0078 0.44	3.6 0.020 0.0069	2.2		140000	94000	28000	79000 J	21000
Arsenic umol/g Cadmium umol/g Chromium umol/g Copper umol/g Lead umol/g Nickel umol/g Zinc umol/g Mercury umol/g Sulfide umol/g Beryllium-7 pCi/g Cesium-137 pCi/g Radium-226 pCi/g Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Barium mg/kg Beryllium mg/kg				0.011 0.0043 0.088 0.25	0.012 0.0078 0.44	0.020 0.0069		79			2000		21000
Cadmium umol/q Chromium umol/q Chromium umol/q Copper umol/q Lead umol/q Lead umol/q Silver umol/q Zinc umol/q Mercury umol/q Sulfide umol/g Beryllium-7 pCi/q Cesium-137 pCi/q Radium-226 pCi/q Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Barium mg/kg Beryllium mg/kg Beryllium mg/kg Beryllium mg/kg				0.0043 0.088 0.25	0.0078 0.44	0.0069	0.055	7.0	2.2	0.29	1.6	3.8	0.92
Chromium umol/q Copper umol/q Lead umol/q Nickel umol/q Silver umol/q Zinc umol/q Mercury umol/q Sulfide umol/q Beryllium-7 pCi/q Cesium-137 pCi/q Radium-226 pCi/q Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Barium mg/kg Beryllium mg/kg				0.088 0.25	0.44			0.015	0.081	0.018	< 0.0082 UJ	0.023	0.014 J
Copper umol/q Lead umol/q Nickel umol/q Silver umol/q Zinc umol/q Mercury umol/g Sulfide umol/g Beryllium-7 pCi/q Cesium-137 pCi/q Radium-226 pCi/q Polonium-210 pCi/g Aluminum mg/kg Arsenic mg/kg Barium mg/kg Beryllium mg/kg				0.25	••••		0.0097	0.014	0.046	0.022	0.0025	0.0067	0.0071
Lead umol/q Nickel umol/q Silver umol/q Zinc umol/q Mercury umol/q Sulfide umol/g Beryllium-7 pCi/q Cesium-137 pCi/q Radium-226 pCi/q Polonium-210 pCi/g Aluminum mg/kg Arsenic mg/kg Barium mg/kg Beryllium mg/kg					0.74	0.20	1.4	0.2	0.88	0.18	0.22	0.21	0.64
Nickel umol/g Silver umol/g Zinc umol/g Mercury umol/g Sulfide umol/g Beryllium-7 pCi/g Cesium-137 pCi/g Radium-226 pCi/g Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Barium mg/kg Beryllium mg/kg				0.13	0.74	0.57	2.9	0.57	3.1	0.051	0.35	0.73	0.46
Silver umol/q Zinc umol/q Mercury umol/q Sulfide umol/g Beryllium-7 pCi/q Cesium-137 pCi/q Radium-226 pCi/g Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Arsenic mg/kg Barium mg/kg Beryllium mg/kg				VIIV	0.28	0.29	0.69	0.47	1.0	0.46	0.11	0.28	0.35
Zinc umol/g Mercury umol/g Sulfide umol/g Beryllium-7 Cesium-137 Radium-226 Polonium-210 Polonium-210 Roluminum mg/kg Antimony mg/kg Barium mg/kg Beryllium mg/kg Beryllium mg/kg				0.17	0.39	0.34	0.71	0.47	1.5	0.76	0.19	0.39	0.22
Mercury umol/g Sulfide umol/g Beryllium-7 pCi/g Cesium-137 pCi/g Radium-226 pCi/g Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Arsenic mg/kg Barium mg/kg Beryllium mg/kg				< 0.0023 U	0.0011 J	< 0.0035 U	0.0013 J	< 0.0027 U	0.0088	< 0.0033 U	< 0.0019 UJ	< 0.0034 U	0.0034 J
Sulfide umol/g Beryllium-7 pCi/q Cesium-137 pCi/q Radium-226 pCi/q Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Barium mg/kg Beryllium mg/kg				1.5	3.2	3.1	5.1	4.3	9.7	6.6	1.6	3.5	2.1
Beryllium-7 pCi/q Cesium-137 pCi/q Radium-226 pCi/q Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Arsenic mg/kg Barium mg/kg Beryllium mg/kg		1		< 0.000049 U	0.000076 J	< 0.000075 U	0.000050 J	< 0.000059 U	0.000052 J	< 0.000070 U	0.00012	< 0.000074 U	0.000054 J
Cesium-137 pCi/g Radium-226 pCi/g Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Arsenic mg/kg Barium mg/kg Beryllium mg/kg				1.1	0.92 J	1.3 J	5.3 J	0.78 J	7.6 J	28	< 1.6 UJ	1.4	4.5 J
Radium-226 pCi/g Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Barium mg/kg Beryllium mg/kg													
Polonium-210 pCi/g Aluminum mg/kg Antimony mg/kg Arsenic mg/kg Barium mg/kg Beryllium mg/kg	1												
Aluminum mg/kg Antimony mg/kg Arsenic mg/kg Barium mg/kg Beryllium mg/kg													
Antimony mg/kg Arsenic mg/kg Barium mg/kg Beryllium mg/kg													
Arsenic mg/kg Barium mg/kg Beryllium mg/kg	7700	<u>15</u>	5034	5200	9800	13000	13000	12000	15000	8900	5900	12000	8900
Barium mg/kg Beryllium mg/kg	3.1	2 0	.92	0.42	0.49 J-	1.0	0.43 J-	1.7	1.0 J-	2.3	0.43 J-	1.5	0.28 J-
Beryllium mg/kg	0.68	5.9	4.9	2.8	3.6 J-	6.4	11 J-	6.8	17 J-	17	2.2 J-	6.8	4.2 J-
	1500	0.7	07	54	89	110	97 J-	110	150 J-	110	62	120	92
On desirate	16	,	1.6	0.78	1.3	1.7	1.7	1.6	2.2	1.1	0.83	1.8	1.2
Cadmium mg/kg	7.1	0.583		0.38	1.2	0.99	1.3 J-	2.0	5.2 J-	3.3	0.52	0.94	1.3
Calcium mg/kg	EN			2200	2800 J-	4400	1400 J-	4500	2500 J-	5700	2500	6600	1700
Chromium mg/kg	12000	26		25	45	51	80 J-	50	76 J-	62	25	53	61
Cobalt mg/kg	2.3	50	<u>21</u>	10	19	22	15 J-	20	32 J-	23	12	26	13
Copper mg/kg	310	31.6		30	65	72	160	94	240	150	38	74	44
Iron mg/kg	5500	20000		16000	26000	33000	19000	29000	25000	25000	16000	34000	22000
Lead mg/kg	400	31		33	71	62	150	97	230	140	40	59	110
Magnesium mg/kg	EN			2200	2500	4400	1800	4400	3100	5100	2100	5100	1900
Manganese mg/kg	180	460	136	200	390	430	180 J-	250	230 J-	190	270	590	260
Nickel mg/kg	150	16	40	19	36	42	59 J-	57	150 J-	97	21	45	22
Potassium mg/kg	EN			1000	1100	1400	650	1300	760	990	710	1400	950
Selenium mg/kg	39	 		0.57	1.3 J-	1.4	1.0 J-	1,2	1.8 J-	1.4	0.73 J-	1.3	1.1 J-
Silver ma/ka	39	0.5		0.12	0.58	0.39	0.89	0.82	3.3	1.3	0.19	0.29	1.2
Sodium mg/kg	EN	0.0		120	120 J-	250	110	230	220	270	110	280	120
Thallium mg/kg	0.078	0	.31	0.12	0.23 J-	0.24	0.35	0.26	0.63	0.27	0.13	0.24	0.27
Vanadium mg/kg			43	21	37	48	180 J+	88	360 J+	160	22	50	38
Zinc mg/kg	39	98	<u></u>	120	260	290	280 J-	410	580 J-	600	140 J-	320	170 J-
Mercury ma/ka	39 2300	0.174		0.095	0.23 J+	0.24	0.28 J	0.30	0.69 J	0.44	0.11 J-	0.23	0.40 J-

					Location ID	SED7B	SED7B	SED7D	SED7D	SED7E	SED7E	SED7E	SED7F	SED7F	SED7G
					S Sample Date	11/13/2013 10:50:00 AM	6/7/2017 12:30:00 PM	11/25/2013 8:05:00 AM	6/9/2017 9:15:00 AM	11/25/2013 10:00:00 AM	6/8/2017 10:30:00 AM	6/22/2017 9:00:00 AM	11/25/2013 12:00:00 PM	6/8/2017 8:30:00 AM	1/30/2014 2:30:00 PM
					Sample ID	SED7B00R	SED7B00EN	SED7D00N	SED7D00EN	SED7E00N	SED7E00EN	SED7E00AN	SED7F00N	SED7F00EN	SED7G00N
					Depth	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft
					Type	FD	N	N	N	N	N	N	N	N	N
		HHRA	ERA		1										
		Screening	Screening	BTV											
Analyte	Unit	Levels (a)	Levels (b)	Statistic											
Total Organic Carbon	ma/ka	` '	` ′			20000	31000	49000	58000 J	51000	45000		240000 J	58000	8400
SEM/AVS Ratio	none					2.6	1.7	2.1	< 0.0010	5.7	0.83		38	5.9	2.3
Arsenic	umol/g					0.013 J	0.016	0.019	0.015	0.024 J	0.015		0.066 J	0.022	0.026 J
Cadmium	umol/g					0.0068	0.0063	0.042	0.01	0.022	0.014		0.035 J	0.017	0.0031
Chromium	umol/g					0.60	0.32	0.38	0.17	0.30	0.15		0.48	0.15	0.19 J
Copper	umol/g					0.48	0.33	0.79	0.58	1.3	0.39		2.6	0.87	0.56
Lead	umol/g					0.33	0.26	0.84	0.31	0.75	0.40		1.5	0.55	0.19 J
Nickel	umol/g					0.23	0.26	0.66	0.37	0.92 J	0.47		1.8	0.55	0.51 J
Silver	umol/g					0.0030 J	< 0.0031 U	0.0048	< 0.0028 U	0.0034 J	< 0.0021 U		0.016 J	< 0.0027 U	0.00026 J
Zinc	umol/g					2.1	2.4	6.5	3.5	6.7	4.5		11	5.1	2.2
Mercury	umol/g					0.000066 J	< 0.000066 U	0.000032 J	< 0.000061 U	0.000026 J	< 0.000044 U		0.00049	< 0.000058 U	0.000021 J
Sulfide	umol/g					< 1.6 UJ	2.2	4.4 J	< 1.1 U	1.8 J	7.3		0.46 J	1.3	1.6
Beryllium-7	pCi/g											< 0.300 U			
Cesium-137	pCi/g											0.0384			
Radium-226	pCi/g											0.690			
Polonium-210	pCi/g											1.12			
Aluminum	mg/kg	7700		<u>15034</u>		9300	11000	7300	10000	4500	4000	3700	7300	7500	2400
Antimony	mg/kg	3.1	2	0.92		0.23 J-	0.83	0.69 J-	1.1	1.2 J-	1.1	1.4 J	2.8 J-	43	0.38
Arsenic	mg/kg	0.68	5.9	<u>4.9</u>		3.8 J-	5.5	4.3 J-	5.7	4.6 J-	5.1	5.6 J	11 J-	7.2	2.5
Barium	mg/kg	1500	0.7	<u>107</u>		92	<u>120</u>	<u>110 J-</u>	97	72 J-	52	54	100	87	17
Beryllium	mg/kg	16		<u>1.6</u>		1.3	1.5	1.0	1.4	0.71	0.51	0.54	0.95	1.0	0.15
Cadmium	mg/kg	7.1	0.583			1.2	0.87	4.7 J-	1.5	3.7 J-	1.7	2.4 J	4.4 J-	2.6	0.74
Calcium	mg/kg	EN				1600	3400	2000 J-	3700	4200 J-	3300	3500 J	2300	4000	17000
Chromium	mg/kg	12000	26			62	60	36 J-	46	29 J-	29	19	46	40	33
Cobalt	mg/kg	2.3	50	<u>21</u>		13	18	16 J-	19	13 J-	9.3	4.9	13	14	7.1
Copper	mg/kg	310	31.6			43	55	64	73	110	64	45 J	190	130	54
Iron	mg/kg	5500	20000			23000	28000	17000	28000	14000	13000	7500	21000	20000	12000
Lead	mg/kg	400	31			110	85	170	71	130	76	120	320	130	48
Magnesium	mg/kg	EN				1800	3200	2700	4300	3200	3100	2900 J	2800	3900	12000
Manganese	mg/kg	180	460	<u>436</u>		270	370	180 J-	270	120 J-	100	86	200	200	120
Nickel	mg/kg	150	16	<u>40</u>		22	32	50 J-	46	120 J-	56	38 J	160 J-	75	84
Potassium	mg/kg	EN				960	1300	1100	1400	450	460	390	580	870	230
Selenium	mg/kg	39				1.1 J-	1.1	0.72 J-	1.1	0.54 J-	0.61	0.50 J	1.1 J-	0.93	0.034 J
Silver	mg/kg	39	0.5			1.0	0.48	1.3	0.45	0.92	0.55	0.70 J	3.5 J-	1.6	0.083
Sodium	mg/kg	EN				86	180	100	220	110	140	91 J	160	200	420
Thallium	mg/kg	0.078		0.31		0.27	0.23	0.25	0.24	0.15	0.13	0.14	0.13 J-	0.20	0.037 J
Vanadium	mg/kg	39		<u>43</u>		37	42	<u>110 J+</u>	<u>56</u>	150 J+	<u>110</u>	<u>94 J</u>	440	<u>140</u>	<u>56</u>
Zinc	mg/kg	2300	98			160 J-	230	380 J-	320	430 J-	280	180 J	630	470	260
Mercury	mg/kg	2.3	0.174			0.34 J-	0.47	0.24 J	0.29	0.27 J	0.18	0.21 J	0.46 J	0.36	0.041

					Location ID	SED8.5B	SED8A	SED8A	SED8B	SED8B	SED8C	SED8C	SED8C	SED9.5B	SED9A
					S Sample Date	11/13/2013 8:40:00 AM	11/13/2013 10:05:00 AM	6/9/2017 10:30:00 AM	11/13/2013 9:17:00 AM	6/9/2017 12:00:00 PM	11/14/2013 12:36:00 PM	11/14/2013 12:52:00 PM	6/7/2017 11:30:00 AM	11/11/2013 12:14:00 PM	11/11/2013 9:47:00 AM
					Sample ID	SED8.5B00N	SED8A00N	SED8A00EN	SED8B00N	SED8B00EN	SED8C00N	SED8C00R	SED8C00EN	SED9.5B00N	SED9A00N
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft
					Type	N N	N N	N N	N N	N N	N N	FD FD	N N	N N	N N
		HHRA	ERA		.,,,,	.,	.,	.,	.,	.,			.,		.,
		Screening	Screening	BTV											
Analyte	Unit	Levels (a)	Levels (b)	Statistic											
Total Organic Carbon	mg/kg	2010.0 (4)	2010.0 (2)	Otationo		31000	41000	66000 J	25000	67000 J	29000	36000	44000	39000	30000
SEM/AVS Ratio	none					2.8	2.1	5.9	2.6	< 0.0010	4.4	21	1.2	1.7	2.6
Arsenic	umol/a					0.010 J	0.012 J	0.02	< 0.0093 UJ	0.018	0.0084	0.010	0.018	0.016 J	0.021 J
Cadmium	umol/a					0.0042	0.0050	0.0062	0.0037	0.0052	0.0053	0.0063	0.0061	0.0034	0.0044
Chromium	umol/a					0.35	0.41	0.18	0.28	0.16	0.36	0.41	0.18	0.25	0.58
Copper	umol/g					0.49	0.59	0.6	0.39	0.51	0.50	0.59	0.56	0.40	0.48
Lead	umol/g					0.19	0.21	0.28	0.16	0.23	0.21	0.24	0.24	0.19	0.24
Nickel	umol/g					0.31	0.36	0.32	0.25	0.29	0.26	0.30	0.30	0.30	0.29
Silver	umol/g					0.00038 J	< 0.0027 UJ	< 0.0032 U	0.00047 J	< 0.0031 U	0.00039 J	0.00027 J	< 0.0030 U	0.00040 J	0.0025 J
Zinc	umol/g					2.4	2.7	2.8	1.9	2.6	2.3 J	5.9 J	2.7	2.1	2.2
Mercury	umol/g					0.00015	0.00014 J	< 0.000068 U	0.00012	< 0.000066 U	0.000052 J	0.000031 J	< 0.000066 U	0.000083 J	0.000091 J
Sulfide	umol/g					< 1.4 UJ	< 2.2 UJ	0.74 J	< 1.2 UJ	< 1.2 U	0.87 J	0.36 J	3.5	2.0	1.6
Beryllium-7	pCi/g														
Cesium-137	pCi/g														
Radium-226	pCi/g														
Polonium-210	pCi/g														
Aluminum	mg/kg	7700		<u>15034</u>		7700	9700	12000	5500	11000	6600	7700	10000	4500	8800
Antimony	mg/kg	3.1	2	0.92		0.45 J-	0.55 J-	1.1	0.38 J-	1.0	0.35 J-	0.31 J-	0.89	0.27 J-	0.43 J-
Arsenic	mg/kg	0.68	5.9	<u>4.9</u>		2.6 J-	2.9 J-	5.9	2.0 J-	5.3	3.0 J-	3.6 J-	5.1	2.1 J-	3.2 J-
Barium	mg/kg	1500	0.7	<u>107</u>		84	99	<u>120</u>	68	100	63	71	99	44 J+	88 J+
Beryllium	mg/kg	16		1.6		1.1	1.4	1.7	0.82	1.5	0.85	1.0	1.4	0.67	1.1
Cadmium	mg/kg	7.1	0.583			0.73	0.87	0.86	0.61	0.69	0.80	0.89	0.82	0.35	0.88
Calcium	mg/kg	EN				2800	3100	3900	2200	4600	2200 J-	2400 J-	3600	1500 J-	2000 J-
Chromium	mg/kg	12000	26			32	40	49	25	45	37	41	42	18 J+	68 J+
Cobalt	mg/kg	2.3	50	<u>21</u>		16	19	20	12	20	14	16	18	9.1 J	12 J
Copper	mg/kg	310	31.6			45	55	66	38	58	44	52	59	21	38
Iron	mg/kg	5500	20000			22000	25000	32000	17000	29000	19000	21000	27000	12000	21000
Lead	mg/kg	400	31		1	55	66	62	46	55	56	62	55	36 J	61 J
Magnesium	mg/kg	EN	465	400	1	3000	3500	4000	2100	4100	2000	2300	3600	1900	2400
Manganese	mg/kg	180	460	<u>436</u>		370	360	420	290	390	280	330	350	140	310
Nickel	mg/kg	150	16	<u>40</u>		29	34	38	21	36	25	28	35	15	19
Potassium	mg/kg	EN				1100	1300	1400	750	1400	870	980	1200	670	920
Selenium	mg/kg	39				0.98 J-	1.2 J-	1.3	0.74 J-	1.1	1.0 J-	1.2 J-	1.0	0.19 J	0.76
Silver	mg/kg	39	0.5			0.24	0.31	0.33	0.26	0.25	0.29	0.43	0.27	0.15	0.69
Sodium	mg/kg	EN				120	140	220	90	200	89 J-	89 J-	200	74	120
Thallium	mg/kg	0.078		0.31		0.19	0.24	0.26	0.14	0.23	0.16 J-	0.18 J-	0.22	0.12	0.20
Vanadium	mg/kg	39		<u>43</u>		28	35	45	23	41	29	36	39	25 J+	35 J+
Zinc	mg/kg	2300	98			190 J-	220 J-	260	140 J-	240	180	210	240	97 J+	150 J+
Mercury	mg/kg	2.3	0.174			0.13 J-	0.20 J-	0.21	0.12 J-	0.11	0.16 J+	0.17 J+	0.21	0.20	0.29

Inorganic Concentrations in Waterside Investigation Area Surface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

Sample Date Sample Date Sample Date Sample Date September Septembe						Location ID	SED9B	SED9C	WSED1	WSED1	WSED2
Sample ID SED0800N SED0800N WSED100R									_		
Comparignment Comparignmen					`						
HHRA Screening BTV Scr											
HHFA Content											
Manayle			HHRA	ERA		,,,,					
Total Cranes Cethon mg/kg			Screening	Screening	BTV						
SEM/ANS Ratio none	Analyte	Unit	Levels (a)	Levels (b)	Statistic						
Arsenic	Total Organic Carbon	mg/kg	` ′	` '			35000	33000	40000 J	54000 J	60000
Cadmium umol/a	SEM/AVS Ratio	none					6.8	2.9	1.8	0.89	0.33
Chromism	Arsenic	umol/g					0.020 J	0.016 J	0.0068 J	0.0080 J	0.011 J
Copper	Cadmium	umol/g					0.0039	0.0035	0.013 J	0.0040 J	0.0050 J
Lead	Chromium	umol/g					0.30	0.24	0.34 J	0.22 J	0.27 J
Nickel Umol/q	Copper	umol/g					0.55	0.40	0.55 J	0.39 J	0.48 J
Silver	Lead	umol/g					0.24	0.21	0.72 J	0.15 J	0.20 J
Znc	Nickel	umol/g					0.34	0.31	0.35 J	0.24 J	0.31 J
Mercury	Silver	umol/g					0.00096 J	0.00045 J	0.0022 J	< 0.0023 UJ	< 0.0037 UJ
Sulfide Umol/g	Zinc	umol/g					2.5	2.2	3.8 J	1.9 J	2.6 J
Beryllium	Mercury	umol/g					0.00013 J	0.000060 J	0.000090 J	0.000032 J	0.000028 J
Cesium-137	Sulfide	umol/g					< 1.1 U	< 1.2 U	3.3 J	3.4 J	12 J
Radium-226	Beryllium-7	pCi/g									
Polonium-210 Policy Polonium-210 Policy Polonium-210 P	Cesium-137	pCi/g									
Aluminum mg/kg 7700 15034 5600 6300 7900 6100 8700 Antimony mg/kg 3.1 2 0.92 0.31 J- 0.48 J- 0.44 J- 0.59 J- 0.74 J- Arsenic mg/kg 1.6 0.68 5.9 4.9 3.3 J- 2.5 J- 3.0 2.4 4.0 J- Barium mg/kg 1500 0.7 107 57 J+ 66 J+ 89 71 97 Berlium mg/kg 1.6 0.83 0.91 1.0 0.94 1.3 J Cadmium mg/kg 7.1 0.583 0.43 0.59 1.5 0.64 0.95 Calcium mg/kg 7.1 0.583 0.43 0.59 1.5 0.64 0.95 Calcium mg/kg 7.1 0.583 0.41 1900 J- 1700 J 2200 J 3500 Chromium mg/kg 1.8 1.200 J 3.0 4.1 4.1 2.2 <t< td=""><td>Radium-226</td><td>pCi/g</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Radium-226	pCi/g									
Antimony mg/kg 3.1 2 0.92 0.31 J- 0.48 J- 0.44 J- 0.59 J- 0.74 J- Arsenic mg/kg 1500 0.7 107 5.7 J+ 66 J+ 89 71 97 Beryllium mg/kg 16 0.83 0.91 1.0 0.94 1.3 J Cadmium mg/kg 16 0.83 0.91 1.0 0.94 1.3 J Cadmium mg/kg 7.1 0.583 0.43 0.59 1.5 0.64 0.95 Calcilium mg/kg 12000 26 1 20 J+ 24 J+ 34 J+ 29 J+ 42 Cobalt mg/kg 310 31.6 27 38 4 J 12 J 14 16 22 Copper mg/kg 310 31.6 27 30 41 41 59 Iron mg/kg 5500 20000 14000 17000 19000 19000 25000 Lead mg/kg 400 31 40 44 J 49 J 166 J 47 J 70 J Magnesium mg/kg 180 460 436 240 230 260 240 310 Manganese mg/kg 180 460 436 240 230 260 240 310 Nickel mg/kg 39 0.5 0.16 J 0.51 J 0.53 0.93 J- 0.91 J- Thallium mg/kg 39 0.5 0.31 0.12 0.16 0.17 0.18 0.26 Vanadium mg/kg 39 1 0.10 0.10 0.14 0.17 0.18 0.26 Vanadium mg/kg 39 43 35 J+ 29 J+ 36 25 J7 Trinc mg/kg 39 43 35 J+ 29 J+ 36 25 J7 Trinc mg/kg 39 43 35 J+ 29 J+ 36 25 J7 Trinc mg/kg 39 1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	Polonium-210	pCi/g									
Arsenic mg/kg 0.68 5.9 4.9 3.3 J- 2.5 J- 3.0 2.4 4.0 J- Barium mg/kg 1500 0.7 107 57 J+ 66 J+ 89 71 97 Bervillium mg/kg 16 0.83 0.91 1.0 0.94 1.3 J Cadmium mg/kg 7.1 0.583 0.43 0.59 1.5 0.64 0.95 Calcium mg/kg EN 1600 J- 1900 J- 1700 J 2200 J 3500 Chromium mg/kg 2.3 50 21 8.4 J 12 J 14 16 22 Cobalt mg/kg 2.3 50 21 8.4 J 12 J 14 16 22 Copper mg/kg 310 31.6 27 30 41 41 45 59 Iron mg/kg 500 20000 14000 17000 19000 25000 25000 25000	Aluminum	mg/kg	7700		<u>15034</u>		5600	6300	7900	6100	8700
Barium mg/kg 1500 0.7 107 57 J+ 66 J+ 89 71 97 Ber/llium mg/kg 16 1.6 0.83 0.91 1.0 0.94 1.3 J Cadmium mg/kg 7.1 0.583 0.91 1.0 0.94 1.3 J Calcium mg/kg FN 0.43 0.59 1.5 0.64 0.95 Calcium mg/kg EN 1600 J- 1900 J- 1700 J 2200 J 3500 Chromium mg/kg 12000 26 20 J+ 24 J+ 34 J+ 29 J+ 42 Cobalt mg/kg 130 31.6 27 30 41 16 22 Copper mg/kg 310 31.6 27 30 41 41 59 Iron mg/kg 5500 20000 14000 17000 19000 25000 Lead mg/kg 500 20000 19000 2500	Antimony	mg/kg	3.1		0.92		0.31 J-	0.48 J-	0.44 J-	0.59 J-	0.74 J-
Bervillium mg/kg 16	Arsenic	mg/kg	0.68	5.9	4.9		3.3 J-	2.5 J-	3.0	2.4	4.0 J-
Cadmium mg/kg 7.1 0.583 0.43 0.59 1.5 0.64 0.95 Calcium mg/kg EN 1600 J- 1900 J- 1700 J 2200 J 3500 Chromium mg/kg 12000 26 20 J+ 24 J+ 34 J+ 29 J+ 42 Cobalt mg/kg 2.3 50 21 8.4 J 12 J 14 16 22 Copper mg/kg 310 31.6 27 30 41 41 15 59 Iron mg/kg 5500 20000 14000 17000 19000 19000 2500 Lead mg/kg 40 31 44 J 49 J 160 J 47 J 70 J Magnesium mg/kg EN 1900 2500 2600 2600 3300 Manganese mg/kg EN 190 250 260 240 310 Nickel mg/kg 180 460	Barium	mg/kg	1500	0.7			57 J+	66 J+	89	71	97
Calcium mg/kg EN 1600 J- 1900 J- 1700 J 2200 J 3500 Chromium mg/kg 12000 26 20 J+ 24 J+ 34 J+ 29 J+ 42 Cobalt mg/kg 2.3 50 21 8.4 J 12 J 14 16 22 Copper mg/kg 310 31.6 27 30 41 41 15 59 Iron mg/kg 5500 20000 14000 17000 19000 19000 25000 Lead mg/kg 400 31 44 J 49 J 160 J 47 J 70 J Magnesium mg/kg EN 31 1900 2500 2600 2600 3300 Margaesium mg/kg EN 31 1900 2500 2600 2600 3300 Margaesium mg/kg EN 36 240 230 260 240 310 Nickel mg/kg	Beryllium	mg/kg	16		<u>1.6</u>		0.83	0.91	1.0	0.94	1.3 J
Chromium mg/kg 12000 26 20 J+ 24 J+ 34 J+ 29 J+ 42 Cobalt mg/kg 2.3 50 21 8.4 J 12 J 14 16 22 Copper mg/kg 310 31.6 27 30 41 41 59 Iron mg/kg 5500 20000 14000 17000 19000 25000 Lead mg/kg 400 31 44 J 49 J 160 J 47 J 70 J Magnesium mg/kg EN 1900 2500 2600 2600 3300 Manganese mg/kg 180 460 436 240 230 260 240 310 Nickel mg/kg 150 16 40 16 20 32 29 39 J- Potassium mg/kg EN 580 880 1200 1200 1400 Selenium mg/kg 39 0.5	Cadmium	mg/kg	7.1	0.583			0.43	0.59	1.5	0.64	0.95
Cobalt mg/kg 2.3 50 21 8.4 J 12 J 14 16 22 Copper mg/kg 310 31.6 27 30 41 41 59 Iron mg/kg 5500 20000 14000 17000 19000 19000 25000 Lead mg/kg 400 31 44 J 49 J 160 J 47 J 70 J Magnesium mg/kg EN 1900 2500 2600 2600 3300 Manganese mg/kg 180 460 436 240 230 260 240 310 Nickel mg/kg 150 16 40 16 20 32 29 39 J- Potassium mg/kg 80 1200 1200 1400 Selenium mg/kg 39 0.5 0.16 J 0.53 0.93 J- 0.91 J- 1.5 J- Silver mg/kg 39 0.5 0.17	Calcium	mg/kg					1600 J-	1900 J-	1700 J	2200 J	3500
Copper mg/kg 310 31.6 27 30 41 41 41 59 Iron mg/kg 5500 20000 14000 17000 19000 19000 25000 Lead mg/kg 40 31 44 J 49 J 160 J 47 J 70 J Magnesium mg/kg EN 1900 2500 2600 2600 3300 Manganese mg/kg 180 460 436 240 230 260 240 310 Nickel mg/kg 150 16 40 16 20 32 29 39 J- Potassium mg/kg EN 580 880 1200 1200 1400 Selenium mg/kg 39 0.5 0.16 J 0.53 0.93 J- 0.91 J- 1.5 J- Silver mg/kg 39 0.5 0.17 0.18 0.72 J 0.19 J 0.51 J Sodium mg/kg	Chromium	mg/kg	12000				20 J+	24 J+	34 J+	29 J+	42
Iron	Cobalt	mg/kg	2.3	50	21		8.4 J	12 J	14	16	22
Lead mg/kg 400 31 44 J 49 J 160 J 47 J 70 J Magnesium mg/kg EN 1900 2500 2600 2600 3300 Manganese mg/kg 180 460 436 240 230 260 240 310 Nickel mg/kg 150 16 40 16 20 32 29 39 J- Potassium mg/kg EN 580 880 1200 1200 1400 Selenium mg/kg 39 0.5 0.16 J 0.53 0.93 J- 0.91 J- 1.5 J- Silver mg/kg 39 0.5 0.17 0.18 0.72 J 0.19 J 0.51 J Sodium mg/kg EN 87 97 130 120 170 Thallium mg/kg 0.078 0.31 0.12 0.16 0.17 0.18 0.26 Vanadium mg/kg 2300 98	Copper	mg/kg							•		
Magnesium mg/kg EN 1900 2500 2600 2600 3300 Manganese mg/kg 180 460 436 240 230 260 240 310 Nickel mg/kg 150 16 40 16 20 32 29 39 J- Potassium mg/kg EN 580 880 1200 1200 1400 Selenium mg/kg 39 0.16 J 0.53 0.93 J- 0.91 J- 1.5 J- Silver mg/kg 39 0.5 0.17 0.18 0.72 J 0.19 J 0.51 J Sodium mg/kg EN 87 97 130 120 170 Thallium mg/kg 0.078 0.31 0.12 0.16 0.17 0.18 0.26 Vanadium mg/kg 230 98 43 35 J+ 29 J+ 36 25 37 Zinc mg/kg 2300 98		mg/kg									
Manganese mg/kg 180 460 436 240 230 260 240 310 Nickel mg/kg 150 16 40 16 20 32 29 39 J- Potassium mg/kg EN 580 880 1200 1200 1400 Selenium mg/kg 39 0.5 0.16 J 0.53 0.93 J- 0.91 J- 1.5 J- Silver mg/kg 39 0.5 0.17 0.18 0.72 J 0.19 J 0.51 J Sodium mg/kg EN 87 97 130 120 170 Thallium mg/kg 0.078 0.31 0.12 0.16 0.17 0.18 0.26 Vanadium mg/kg 39 43 35 J+ 29 J+ 36 25 37 Zinc mg/kg 2300 98 100 J+ 130 J+ 220 J 170 J 250	Lead	mg/kg		31				49 J	160 J	47 J	
Nickel mg/kg 150 16 40 16 20 32 29 39 J- Potassium mg/kg EN 580 880 1200 1200 1400 Selenium mg/kg 39 0.16 J 0.53 0.93 J- 0.91 J- 1.5 J- Silver mg/kg 39 0.5 0.17 0.18 0.72 J 0.19 J 0.51 J Sodium mg/kg EN 87 97 130 120 170 Thallium mg/kg 0.078 0.31 0.12 0.16 0.17 0.18 0.26 Vanadium mg/kg 39 43 35 J+ 29 J+ 36 25 37 Zinc mg/kg 2300 98 100 J+ 130 J+ 220 J 170 J 250	Magnesium	J J									
Potassium mg/kg EN 580 880 1200 1200 1400 Selenium mg/kg 39 0.16 J 0.53 0.93 J- 0.91 J- 1.5 J- Silver mg/kg 39 0.5 0.17 0.18 0.72 J 0.19 J 0.51 J Sodium mg/kg EN 87 97 130 120 170 Thallium mg/kg 0.078 0.31 0.12 0.16 0.17 0.18 0.26 Vanadium mg/kg 39 43 35 J+ 29 J+ 36 25 37 Zinc mg/kg 2300 98 100 J+ 130 J+ 220 J 170 J 250	Manganese	mg/kg									***
Selenium mg/kg 39 0.16 J 0.53 0.93 J- 0.91 J- 1.5 J- Silver mg/kg 39 0.5 0.17 0.18 0.72 J 0.19 J 0.51 J Sodium mg/kg EN 87 97 130 120 170 Thallium mg/kg 0.078 0.31 0.12 0.16 0.17 0.18 0.26 Vanadium mg/kg 39 43 35 J+ 29 J+ 36 25 37 Zinc mg/kg 2300 98 100 J+ 130 J+ 220 J 170 J 250	Nickel	mg/kg		16	<u>40</u>		• • • • • • • • • • • • • • • • • • • •	20			
Silver mg/kg 39 0.5 0.17 0.18 0.72 J 0.19 J 0.51 J Sodium mg/kg EN 87 97 130 120 170 Thallium mg/kg 0.078 0.31 0.12 0.16 0.17 0.18 0.26 Vanadium mg/kg 39 43 35 J+ 29 J+ 36 25 37 Zinc mg/kg 2300 98 100 J+ 130 J+ 220 J 170 J 250	Potassium	mg/kg	EN				580	880	1200	1200	1400
Sodium mg/kg EN 87 97 130 120 170 Thallium mg/kg 0.078 0.31 0.12 0.16 0.17 0.18 0.26 Vanadium mg/kg 39 43 35 J+ 29 J+ 36 25 37 Zinc mg/kg 2300 98 100 J+ 130 J+ 220 J 170 J 250	Selenium	mg/kg	39				0.16 J	0.53	0.93 J-	0.91 J-	1.5 J-
Sodium mg/kg EN 87 97 130 120 170 Thallium mg/kg 0.078 0.31 0.12 0.16 0.17 0.18 0.26 Vanadium mg/kg 39 43 35 J+ 29 J+ 36 25 37 Zinc mg/kg 2300 98 100 J+ 130 J+ 220 J 170 J 250	Silver			0.5							
Thallium mg/kg 0.078 0.31 0.12 0.16 0.17 0.18 0.26 Vanadium mg/kg 39 43 35 J+ 29 J+ 36 25 37 Zinc mg/kg 2300 98 100 J+ 130 J+ 220 J 170 J 250	Sodium		EN				87	97	130		
Zinc mg/kg 2300 98 100 J+ 130 J+ 220 J 170 J 250	Thallium		0.078		0.31		0.12	0.16	0.17	0.18	0.26
Zinc mg/kg 2300 98 100 J+ 130 J+ 220 J 170 J 250	Vanadium	mg/kg	39		43		35 J+	29 J+	36	25	37
Mercury mg/kg 2.3 0.174 0.18 0.15 0.19 0.34 0.15	Zinc			98			100 J+	130 J+	220 J	170 J	250
	Mercury	mg/kg	2.3	0.174			0.18	0.15	0.19	0.34	0.15

Bold values indicate detects. Highlighted values indicate exceedance of the Human Health Risk Assessment (HHRA) screening level. Italicized values indicate exceedance of the Ecological Risk Assessment (ERA) screening level.

Underlined values indicate exceedance of the BTV Statistic.

EN= Essential Nutrient

AVS = Acid Volatile Sulfide SEM = Simultaneously Extracted Metals

L= The applyte was positively identified; the assessinted purposited value is the applyte was exceptable in the complete.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the
- sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

N = Normal FD = Field Duplicate HHRA and ERA screening values provided for detected compounds or compound sums where applicable.

(a) RSL Table, May 2018 Residential Soil [ELCR = 1E-6, HQ=0.1] (b) Low Effect Ecological Screening Value mg/kg = milligrams per kilogram pCi/g = picocuries per gram umol/g = micromoles per gram

													Location ID Sample Date Sample ID Depth	SED1.5B00N 0 - 0.5 ft	SED1.5C 6/21/2017 8:15:00 AM SED1.5C00AN 0 - 0.33 ft	SED10A 11/11/2013 1:00:00 PM SED10A00N 0 - 0.5 ft	SED10B 11/11/2013 1:59:00 PM SED10B00N 0 - 0.5 ft
		HHRA	ERA	DTV/									Туре	N	N	N	N
		Screening	Screening	BTV Statistic	Max	Min	Mean	Median	Max	Count	Count						
Analyte	Unit	Levels (a)	Levels (b)	Otationo	Detect	Detect	Detect	Detect	Location	Detect	Reject	Count Total			4000 1		
	mg/kg				3090	1020	2120	2240	SED7E	3		3			1020 J-		
	mg/kg	96		<u>64</u>	270	31	90	74	SED7B	18		18			48		
	mg/kg	23000 810000	70		1600	350	660	610	SED5B	18		18			420		< 12 U
	ug/kg	600	1360									20					< 12 U
	ug/kg ug/kg	670000	1300		ł							20 20					< 12 U
	ug/kg ug/kg	150	400									20					< 12 U
, ,	ug/kg ug/kg	3600	20									20					< 12 U
•	ug/kg ug/kg	23000	100									20					< 12 U
	ug/kg	6300	11		1							20					< 12 U
	ug/kg	5800	11	1	<u> </u>	1	 					20					< 12 U
	ug/kg	5.3		1	1	1	1					20	 				< 12 U
	ug/kg	36			<u> </u>		<u> </u>					20					< 12 U
,	ug/kg	180000	30		<u> </u>		<u> </u>					20					< 12 U
•	ug/kg	460	20		<u> </u>		 					20					< 12 U
•	ug/kg	1600	2			i e						20					< 12 U
	ug/kg	2600	30		1		i e					20					< 12 U
	ug/kg	2600	30	1	i	i i	i					20					< 12 U
	ug/kg	5300	119									20					< 2300 U
	ug/kg	2.7e+006	35000		12	12	12	12	SED2C	1		20					< 12 U
	ug/kg	20000	58.2									20					< 12 U
	ug/kg	3.3e+006	25.1									20					< 12 U
	ug/kg	6.1e+006	65		55	20	38	38	SED2C	2		20					< 47 U
	ug/kg	1200	10									20					< 12 U
Bromochloromethane	ug/kg	15000										20					< 12 U
	ug/kg	290										20					< 12 U
Bromoform	ug/kg	19000	75000									20					< 12 U
Bromomethane	ug/kg	680	1.37									20					< 12 U
Carbon Disulfide	ug/kg	77000	0.851									20					< 12 U
Carbon Tetrachloride	ug/kg	650	170									20					< 12 U
Chlorobenzene	ug/kg	28000	30									20					< 12 U
Chloroethane	ug/kg	1.4e+006										20					< 12 U
Chloroform	ug/kg	320	20		1.4	1.1	1.2	1.2	SED7B	3		20					< 12 U
	ug/kg	11000										20					< 12 U
	ug/kg	16000	200									20					< 12 U
i i	ug/kg	1800										20					< 12 U
	ug/kg	650000		ļ	ļ							20					< 12 U
	ug/kg	8300			ļ		ļ					20					< 12 U
	ug/kg	8700			ļ		ļ					20	ļ				< 12 U
	ug/kg	5800	30		<u> </u>							20	_				< 12 U
	ug/kg	190000	86		<u> </u>							20	_				< 12 U
	ug/kg	55000			<u> </u>							20	_				< 23 U
	ug/kg	7.8e+006	400000			-						20	<u> </u>				< 12 U
	ug/kg	47000	100000		<u> </u>	-						20	<u> </u>				< 12 U
	ug/kg	650000	40	ļ	!	-	!					20	<u> </u>				< 12 U
	ug/kg	35000	18	ļ	!	-	!					20	<u> </u>				< 12 U
	ug/kg	65000	89	ļ	!	-	!					20	<u> </u>				< 12 U
	ug/kg	600000	200	ļ	ļ	.	.					20	 				< 12 U
	ug/kg	8100	2	ļ	ļ	.	.					20	 				< 12 U
	ug/kg	490000 160000	10 200		<u> </u>		-					20	 				< 12 U < 12 U
	ug/kg		∠00		<u> </u>		-					20	 				
	ug/kg	1800 410			<u> </u>		-					20	 				< 12 U < 12 U
	ug/kg				 	-	 					20	 				
	ug/kg	2.3e+006	10		 	-	 					20	 				< 12 U
VILLYI CHIDHUE	ug/kg	59	10	J	<u> </u>	1						20					< 12 U < 23 U

													Location ID Sample Date Sample ID Depth Type	SED1.5B 11/6/2013 12:25:00 PM SED1.5B00N 0 - 0.5 ft N	SED1.5C 6/21/2017 8:15:00 AM SED1.5C00AN 0 - 0.33 ft N	SED10A 11/11/2013 1:00:00 PM SED10A00N 0 - 0.5 ft N	SED10B 11/11/2013 1:59:00 PM SED10B00N 0 - 0.5 ft N
		HHRA Screening	ERA Screening	BTV	Max	Min	Mean	Median	Max	Count	Count						
Analyte	Unit	Levels (a)	Levels (b)	Statistic	Detect	Detect	Detect	Detect	Location	Detect	Reject	Count Total					
1,1'-Biphenyl	ug/kg	4700	1220		18	18	18	18	SED4B	1		20					< 300 U
1,2,4,5-Tetrachlorobenzene	ug/kg	2300	10									20					< 300 U
2,2'-oxybis(1-Chloropropane)	ug/kg	310000										20					< 61 U
2,3,4,6-Tetrachlorophenol	ug/kg	190000	10									20					< 300 U
2,4,5-Trichlorophenol	ug/kg	630000 6300	10 10									20					< 300 U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	ug/kg ug/kg	19000	10									20					< 300 U < 61 U
2,4-Dimethylphenol	ug/kg ug/kg	130000	29		27	27	27	27	SED4B	2		20					< 300 U
									SED7B			20					
2,4-Dinitrophenol	ug/kg	13000	6.21									20					< 1600 U
2,4-Dinitrotoluene	ug/kg	1700	41.6		-							20					< 300 U
2,6-Dinitrotoluene	ug/kg	360	41.6	-					-		}	20					< 300 U
2-Chloronaphthalene 2-Chlorophenol	ug/kg	480000 39000	250 55								1	20					< 61 U < 300 U
2-Chlorophenol 2-Methylnaphthalene	ug/kg	24000	20.2		82	0.2	35	26	SED4B	18	1	20			 		< 300 U
2-Methylphenol	ug/kg ug/kg	320000	5.1		62	9.2	ან	∠0	SED4B	۱۵		20 20			-		< 300 U
2-Nitroaniline	ug/kg ug/kg	63000	5.1	1	1				1		1	20			 		< 1600 U
2-Nitrophenol	ug/kg ug/kg	1.9e+006	13.3		 						1	20					< 300 U
3,3'-Dichlorobenzidine	ug/kg ug/kg	1200	127		<u> </u>							20					< 300 U
3-Nitroaniline	ug/kg	25000	127									20					< 1600 U
4,6-Dinitro-2-methylphenol	ug/kg	510	104									20					< 1600 U
4-Bromophenyl-phenylether	ug/kg		1230									20					< 300 U
4-Chloro-3-methylphenol	ug/kg	630000	15000									20					< 300 U
4-Chloroaniline	ug/kg	2700	0.9		82	57	70	70	SED7B	2		20					< 300 U
4-Chlorophenyl-phenylether	ug/kg											20					< 300 U
4-Methylphenol	ug/kg	630000	5.1		110	15	65	65	SED7G WSED1	7		20					< 300 U
4-Nitroaniline	ug/kg	25000							WSEDI			20					< 1600 U
4-Nitrophenol	ug/kg	1.9e+006	13.3									20					< 1600 U
Acenaphthene	ug/kg	360000	6.71		190	7.7	44	34	SED4B	42		55		59 J	< 150 U	< 42 U	18 J
Acenaphthylene	ug/kg	360000	5.87		170	16	60	59	SED5C	43		55		60 J	< 150 U	< 42 U	< 61 U
Acetophenone	ug/kg	780000			44	15	30	30	SED6.5E	7		20					< 300 U
Anthracene	ug/kg	1.8e+006	10		350	16	110	96	SED4B	52		55		220	78 J	< 42 U	61
Atrazine	ug/kg	2400	0.2									20					< 300 U
Benzaldehyde	ug/kg	170000			320	24	170	150	SED3C	13	4	20					250 J
Benzo(a)anthracene	ug/kg	1100	15.72	1603	1000	21	450	420	SED1.5B SED4B	54				1000	400	21 J	380
									WSED1			55					
Benzo(a)pyrene	ug/kg	110	31.9	1700	1100	28	510	520	SED1.5B WSED1	54		55		1100	560	28 J	480
Benzo(b)fluoranthene	ug/kg	1100	190	2305	1800	43	770	810	WSED1	54		55		1700	880	43	700
Benzo(g,h,i)perylene	ug/kg	180000	170		1200	29	520	550	SED1.5B	54		55		1200	520	29 J	430 J
Benzo(k)fluoranthene	ug/kg	11000	27.2	934	570	66	290	290	SED8C	53		55		540	310	< 42 U	290
bis-(2-chloroethoxy)methane	ug/kg	19000										20					< 300 U
bis-(2-Chloroethyl)ether	ug/kg	230	3520									20					< 61 U
bis-(2-Ethylhexyl)phthalate	ug/kg	39000	100	2306	1800	190	1000	1100	SED8C	20		20					1100
Butylbenzylphthalate	ug/kg	290000	100		180	41	91	81	SED7G	10	1	20			ļ		110 J
Caprolactam	ug/kg	3.1e+006	<u> </u>		390	390	390	390	SED8C	1	1	20			ļ		< 1600 U
Carbazole	ug/kg	240000	20.00	4004	250	23	83	77	SED7G	18	1	20		4500	050	26.6	58 J
Chrysene	ug/kg	110000	26.83 6.22	1801	1500	31	720	750	SED1.5B	54	!	55		1500	650	31 J	580
Dibenzofuran	ug/kg	7300	5100	<u>111</u>	210 110	24 27	120 62	130 56	SED1.5B	50	1	55		<u>210</u>	<u>130 J</u>	< 42 U	110 < 300 U
Dibenzofuran Diethylphthalate	ug/kg	5.1e+006	530		120	35	78	78	SED7G SED8C	2		20			-		< 300 U
Dimethylphthalate	ug/kg ug/kg	5.1e+006 5.1e+006	1000	1	120	33	10	10	SEDOC		}	20 20			-		< 300 U
Di-n-butylphthalate	ug/kg ug/kg	630000	440		200	23	72	33	SED6B	4	1	20					< 300 U
z zaty pritrialato			100		240	42	120	100	WSED1	5		20					< 300 U
Di-n-octylphthalate	ug/ka	63000	100														
Di-n-octylphthalate Fluoranthene	ug/kg ug/kg	63000 240000	31.46		2800	37	1100	970	SED1.5B	54		55		2800	960	37 J	880

													Location ID	SED1.5B	SED1.5C	SED10A	SED10B
													Sample Date	11/6/2013 12:25:00 PM	6/21/2017 8:15:00 AM		11/11/2013 1:59:00 PM
													Sample ID	SED1.5B00N	SED1.5C00AN	SED10A00N	SED10B00N
													Depth	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft
													Туре	N	N	N	N
		HHRA	ERA	BTV													
		Screening	Screening	Statistic	Max	Min	Mean	Median	Max	-	Count						
Analyte	Unit	Levels (a)	Levels (b)	Glatistic	Detect	Detect	Detect	Detect	Location	Detect	Reject	Count Total					
Hexachlorobenzene	ug/kg	210	1.4									20					< 61 U
Hexachlorobutadiene	ug/kg	1200	26.5									20					< 61 U
Hexachlorocyclo-pentadiene	ug/kg	180	901									20					< 300 U
Hexachloroethane	ug/kg	1800	1027									20					< 300 U
Indeno(1,2,3-cd)pyrene	ug/kg	1100	17.32	1446	1200	22	420	430	SED1.5B	54		55		1200	440	22 J	380
Isophorone	ug/kg	570000	432									20					< 300 U
Naphthalene	ug/kg	3800	14.65		95	4.9	32	24	SED7G	29		55		< 210 U	< 150 U	< 42 U	< 61 U
Nitrobenzene	ug/kg	5100	145									20					< 610 U
N-Nitroso-di-n-propylamine	ug/kg	78										20					< 61 U
N-Nitrosodiphenylamine	ug/kg	110000	2680									20					< 300 U
Pentachlorophenol	ug/kg	1000	10									20					< 300 U
Phenanthrene	ug/kg	1.8e+006	18.73		2000	92	470	370	SED7G	53		55		1000	310	< 42 U	290
Phenol	ug/kg	1.9e+006	48									20					< 61 U
Pyrene	ug/kg	180000	44.27		2100	36	870	840	SED7G	54		55		1800	790	36 J	720
BaP-TE	ug/kg	110			1710	36.6	788	787	SED1.5B	54		55		1710	866	36.6	739
Total High-molecular-weight PAHs	ug/kg		193	19270	13000	250	5700	5700	SED1.5B	54		55		13000	5600	250	5000
Total Low-molecular-weight PAHs	ug/kg		76.42		2800	150	720	580	SED4B	53		55		1400	390	< 42 U	390
Total PAHs (sum 16)	ug/kg	_	264.1		14000	250	6400	6300	SED1.5B SED7G	54		55	_	14000	6000	250	5300

					Location ID	SED10C	SED1A	SED1B	SED1C	SED2.5B	SED2A	SED2B	SED2C	SED3.5B	SED3A
					Sample Date Sample ID	11/11/2013 3:00:00 PM SED10C00N	11/6/2013 2:00:00 PM SED1A00N	11/6/2013 2:05:00 PM SED1B00N	11/7/2013 10:25:00 AM SED1C00N	11/7/2013 9:34:00 AM SED2.5B00N	11/6/2013 11:05:00 AM SED2A00N	11/5/2013 2:26:00 PM SED2B00N	11/6/2013 9:16:00 AM SED2C00N	11/12/2013 11:44:00 AM SED3.5B00N	11/7/2013 1:37:00 PM SED3A00N
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
					Туре	N	N	N	N	N N	N	N	N	N	N N
		HHRA	ERA	BTV											
A. alida	1.124	Screening	Screening	Statistic											
Analyte Total Petroleum Hydrocarbons (C9-C44)	Unit	Levels (a)	Levels (b)												
Diesel Range Organics (C10-C20)	mg/kg mg/kg	96		64											
Oil Range Organics (C20-C36)	mg/kg	23000		<u>04</u>											
1,1,1-Trichloroethane	ug/kg	810000	70		1			< 12 U					< 8.2 U		
1.1.2.2-Tetrachloroethane	ug/kg	600	1360					< 12 U					< 8.2 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	670000	1000					< 12 U					< 8.2 U		
1.1.2-Trichloroethane	ug/kg	150	400					< 12 U					< 8.2 U		
1,1-Dichloroethane	ug/kg	3600	20					< 12 U					< 8.2 U		
1,1-Dichloroethene	ug/kg	23000	100					< 12 U					< 8.2 U		
1,2,3-Trichlorobenzene	ug/kg	6300	11					< 12 U					< 8.2 U		
1,2,4-Trichlorobenzene	ug/kg	5800	11					< 12 U					< 8.2 U		
1,2-Dibromo-3-chloropropane	ug/kg	5.3						< 12 U					< 8.2 U		
1,2-Dibromoethane	ug/kg	36						< 12 U					< 8.2 U		
1,2-Dichlorobenzene	ug/kg	180000	30					< 12 U					< 8.2 U		
1,2-Dichloroethane	ug/kg	460	20					< 12 U					< 8.2 U		
1,2-Dichloropropane	ug/kg	1600	2					< 12 U					< 8.2 U		
1,3-Dichlorobenzene	ug/kg	2600	30					< 12 U					< 8.2 U		
1,4-Dichlorobenzene	ug/kg	2600	30					< 12 U					< 8.2 U		
1,4-Dioxane	ug/kg	5300	119					< 2400 U					< 1600 U		
2-Butanone	ug/kg	2.7e+006	35000					< 12 U					12		
2-Hexanone	ug/kg	20000	58.2					< 12 U					< 8.2 U		
4-Methyl-2-pentanone	ug/kg	3.3e+006	25.1					< 12 U					< 8.2 U		
Acetone	ug/kg	6.1e+006	65					< 47 U					55		
Benzene	ug/kg	1200	10					< 12 U					< 8.2 U		
Bromochloromethane	ug/kg	15000						< 12 U					< 8.2 U		
Bromodichloromethane	ug/kg	290	75000					< 12 U					< 8.2 U		
Bromoform	ug/kg	19000	75000					< 12 U					< 8.2 U		
Bromomethane Carbon Disulfide	ug/kg ug/kg	680	1.37 0.851					< 12 U < 12 U					< 8.2 U < 8.2 U		
Carbon Distillide Carbon Tetrachloride	ug/kg ug/kg	77000 650	170					< 12 U					< 8.2 U		
Chlorobenzene	ug/kg	28000	30		1			< 12 U					< 8.2 U		
Chloroethane	ug/kg	1.4e+006	30					< 12 U					< 8.2 U		
Chloroform	ug/kg	320	20		+			< 12 U					< 8.2 U		
Chloromethane	ug/kg	11000						< 12 U					< 8.2 U		
cis-1,2-Dichloroethylene	ug/kg	16000	200					< 12 U					< 8.2 U		
cis-1,3-Dichloropropene	ug/kg	1800						< 12 U					< 8.2 U		
Cyclohexane	ug/kg	650000						< 12 U					< 8.2 U		
Dibromochloromethane	ug/kg	8300						< 12 U					< 8.2 U		
Dichlorodifluoromethane	ug/kg	8700						< 12 U					< 8.2 U		
Ethylbenzene	ug/kg	5800	30					< 12 U					< 8.2 U		
Isopropylbenzene	ug/kg	190000	86					< 12 U					< 8.2 U		
m, p-Xylene	ug/kg	55000						< 24 U					< 16 U		
Methyl Acetate	ug/kg	7.8e+006						< 12 U					< 8.2 U		
Methyl tert-Butyl Ether (MTBE)	ug/kg	47000	100000					< 12 U					< 8.2 U		
Methylcyclohexane	ug/kg	650000						< 12 U					< 8.2 U		
Methylene Chloride	ug/kg	35000	18	ļ				< 12 U					< 8.2 U		
o-Xylene	ug/kg	65000	89		ļ			< 12 U					< 8.2 U		
Styrene	ug/kg	600000	200		 			< 12 U					< 8.2 U		
Tetrachloroethylene	ug/kg	8100	2		 			< 12 U					< 8.2 U		
Toluene	ug/kg	490000	10					< 12 U					< 8.2 U		
trans-1,2-Dichloroethene	ug/kg	160000	200					< 12 U					< 8.2 U		
trans-1,3-Dichloropropene Trichloroethene	ug/kg	1800 410	1					< 12 U < 12 U					< 8.2 U < 8.2 U		
Trichlorofluoromethane	ug/kg ug/kg	2.3e+006	 		+ +			< 12 U < 12 U					< 8.2 U		
Vinyl Chloride	ug/kg ug/kg	2.3e+006 59	10	1	 			< 12 U					< 8.2 U		
Xylenes (total)	ug/kg ug/kg	58000	10	1	+ +			< 12 U					< 16 U		
Ayiones (total)	ug/Ng	30000		1	1			` 24 U		1		1	~ 10 0	1	

					Location ID	SED10C	SED1A	SED1B	SED1C	SED2.5B	SED2A	SED2B	SED2C	SED3.5B	SED3A
					Sample Date Sample ID	11/11/2013 3:00:00 PM SED10C00N	11/6/2013 2:00:00 PM SED1A00N	11/6/2013 2:05:00 PM SED1B00N	11/7/2013 10:25:00 AM SED1C00N	11/7/2013 9:34:00 AM SED2.5B00N	11/6/2013 11:05:00 AM SED2A00N	11/5/2013 2:26:00 PM SED2B00N	11/6/2013 9:16:00 AM SED2C00N	11/12/2013 11:44:00 AM SED3.5B00N	11/7/2013 1:37:00 PM SED3A00N
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
					Туре	N	N	N	N	N	N	N	N	N	N
		HHRA	ERA	BTV											
		Screening	Screening	Statistic											
Analyte	Unit	Levels (a)	Levels (b)	<u> </u>				* 400 LL					4 1200 H		
1,1'-Biphenyl	ug/kg	4700	1220	<u> </u>				< 160 U					< 1300 U		
1,2,4,5-Tetrachlorobenzene	ug/kg	2300	10	<u> </u>				< 160 U					< 1300 U		
2,2'-oxybis(1-Chloropropane)	ug/kg	310000	40					< 33 U					< 270 U		
2,3,4,6-Tetrachlorophenol	ug/kg	190000	10					< 160 U					< 1300 U		
2,4,5-Trichlorophenol	ug/kg	630000	10					< 160 U					< 1300 U		
2,4,6-Trichlorophenol	ug/kg	6300	10					< 160 U					< 1300 U		
2,4-Dichlorophenol	ug/kg	19000	10					< 33 U					< 270 U		
2,4-Dimethylphenol	ug/kg	130000	29					< 160 U					< 1300 U		
2,4-Dinitrophenol	ug/kg	13000	6.21	1				< 830 U					< 6800 U		
2,4-Dinitrotoluene	ug/kg	1700	41.6					< 160 U					< 1300 U		
2,6-Dinitrotoluene	ug/kg	360	41.6					< 160 U					< 1300 U		
2-Chloronaphthalene	ug/kg ug/kg	480000	250	 	+		 	< 33 U					< 270 U		
2-Chlorophenol	ug/kg ug/kg	39000	55	 	 			< 160 U					< 1300 U		
2-Methylnaphthalene	ug/kg	24000	20.2	 	 			21 J					< 270 U		
2-Methylphenol	ug/kg ug/kg	320000	5.1	+	1			< 160 U					< 1300 U		
2-Nitroaniline	ug/kg ug/kg	63000	5.1	+	1			< 830 U					< 6800 U		
2-Nitrophenol	ug/kg ug/kg	1.9e+006	13.3	+	1			< 160 U					< 1300 U		
3,3'-Dichlorobenzidine	ug/kg ug/kg	1200	127					< 160 U					< 1300 U		
3-Nitroaniline	ug/kg ug/kg	25000	127					< 830 U					< 6800 U		
4,6-Dinitro-2-methylphenol	ug/kg ug/kg	510	104	1				< 830 U					< 6800 U		
4-Bromophenyl-phenylether		310	1230	1				< 160 U					< 1300 U		
4-Chloro-3-methylphenol	ug/kg ug/kg	630000	15000	 				< 160 U					< 1300 U		
4-Chloroaniline	ug/kg ug/kg	2700	0.9					< 160 U					< 1300 U		
4-Chlorophenyl-phenylether	ug/kg ug/kg	2700	0.9	 				< 160 U					< 1300 U		
4-Methylphenol	ug/kg ug/kg	630000	5.1					< 160 U					< 1300 U		
4-Metryiprierioi	ug/kg	630000	5.1					< 100 0					< 1300 U		
4-Nitroaniline	ug/kg	25000						< 830 U					< 6800 U		
4-Nitrophenol	ug/kg	1.9e+006	13.3					< 830 U					< 6800 U		
Acenaphthene	ug/kg	360000	6.71			24 J	< 270 U	19 J	< 220 U	< 240 U	< 260 U	< 110 U	< 270 U	7.7 J	< 6.7 U
Acenaphthylene	ug/kg	360000	5.87			33 J	< 270 U	31 J	< 220 U	< 240 U	62 J	51 J	67 J	16 J	< 6.7 U
Acetophenone	ug/kg	780000						15 J					< 1300 U		
Anthracene	ug/kg	1.8e+006	10			82	76 J	69	82 J	120 J	120 J	97 J	130 J	20 J	< 6.7 U
Atrazine	ug/kg	2400	0.2					< 160 U					< 1300 U		
Benzaldehyde	ug/kg	170000						150 J					< 1300 UJ		
Benzo(a)anthracene	ug/kg	1100	15.72	1603		480	360	260	490	610	420	390	590	110	< 6.7 U
-									** *				-	•	
			<u> </u>												
Benzo(a)pyrene	ug/kg	110	31.9	1700		580	460	300	550	710	370	450	670	130	< 6.7 U
Ponzo/h)fluoranthona	ualle	1100	100	2205	 	940	020	440	720	1000	820	640	720	210	< 6.7 U
Benzo(b)fluoranthene	ug/kg	1100 180000	190 170	2305		840 490 J	920 560	330	730 470	1000	740	520	730 730	110	< 6.7 U
Benzo(g,h,i)perylene	ug/kg		170	024	1	350	250 J	330 210	470	760			730 560		< 6.7 U
Benzo(k)fluoranthene	ug/kg	11000 19000	27.2	934	 	300	200 J	< 160 U	400	470	280	240	< 1300 U	66	\ 0.7 U
bis-(2-chloroethoxy)methane	ug/kg		3520	+	1			< 160 U							
bis-(2-Chloroethyl)ether	ug/kg	230 39000	1	2200	 		1						< 270 U		
bis-(2-Ethylhexyl)phthalate	ug/kg		100	2306			<u> </u>	520					1500 J		
Butylbenzylphthalate	ug/kg	290000	100		 		1	< 160 U					< 1300 U		
Caprolactam	ug/kg	3.1e+006	1	1			<u> </u>	< 830 U					< 6800 U		
Carbazala		240000		1801		700	600	23 J	740	040	760	600	67 J	400	- C 7 11
	ug/kg	140000		1807	1	700	690	400	710	940	760	620 100 J	900	190	< 6.7 U
Chrysene	ug/kg	110000	26.83		1	4 / 0		65	110 J	<u>170 J</u>	<u>170 J</u>	100 J			
Chrysene Dibenzo(a,h)anthracene	ug/kg ug/kg	110	6.22	111		<u>140</u>	<u>130 J</u>					100 0	200 J	24 J	< 6.7 U
Chrysene Dibenzo(a,h)anthracene Dibenzofuran	ug/kg ug/kg ug/kg	110 7300	6.22 5100			<u>140</u>	<u>130 J</u>	27 J				7000	< 1300 U	24 J	< 6.7 U
Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate	ug/kg ug/kg ug/kg ug/kg	110 7300 5.1e+006	6.22 5100 530			<u>140</u>	<u>130 J</u>	27 J < 160 U				1000	< 1300 U < 1300 U	24 J	< 6.7 U
Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate	ug/kg ug/kg ug/kg ug/kg ug/kg	110 7300 5.1e+006 5.1e+006	6.22 5100 530 1000			<u>140</u>	130 J	27 J < 160 U < 160 U				1000	< 1300 U < 1300 U < 1300 U	24 J	< 6.7 U
Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-butylphthalate	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 7300 5.1e+006 5.1e+006 630000	6.22 5100 530 1000 440			<u>140</u>	130 J	27 J < 160 U < 160 U < 160 U				7,000	< 1300 U < 1300 U < 1300 U < 1300 U	24 J	< 6.7 U
Carbazole Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-butylphthalate Di-n-octylphthalate	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 7300 5.1e+006 5.1e+006 630000 63000	6.22 5100 530 1000 440					27 J < 160 U < 160 U < 160 U < 160 U					< 1300 U < 1300 U < 1300 U < 1300 U < 1300 U < 1300 U		
Chrysene Dibenzo(a,h)anthracene Dibenzofuran Diethylphthalate Dimethylphthalate Di-n-butylphthalate	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	110 7300 5.1e+006 5.1e+006 630000	6.22 5100 530 1000 440			1100 26 J	940 < 270 U	27 J < 160 U < 160 U < 160 U	1000 < 220 U	1400 < 240 U	990 < 260 U	1100 < 110 U	< 1300 U < 1300 U < 1300 U < 1300 U	24 J 270 12 J	< 6.7 U < 6.7 U < 6.7 U

					Location ID	SED10C	SED1A	SED1B	SED1C	SED2.5B	SED2A	SED2B	SED2C	SED3.5B	SED3A
					Sample Date	11/11/2013 3:00:00 PM	11/6/2013 2:00:00 PM	11/6/2013 2:05:00 PM	11/7/2013 10:25:00 AM	11/7/2013 9:34:00 AM	11/6/2013 11:05:00 AM	11/5/2013 2:26:00 PM	11/6/2013 9:16:00 AM	11/12/2013 11:44:00 AM	11/7/2013 1:37:00 PM
					Sample ID	SED10C00N	SED1A00N	SED1B00N	SED1C00N	SED2.5B00N	SED2A00N	SED2B00N	SED2C00N	SED3.5B00N	SED3A00N
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
					Туре	N	N	N	N	N	N	N	N	N	N
		HHRA Screening	ERA Screening	BTV											
Analyte	Unit	Levels (a)	Levels (b)	Statistic											
Hexachlorobenzene	ug/kg	210	1.4					< 33 U					< 270 U		
Hexachlorobutadiene	ug/kg	1200	26.5					< 33 U					< 270 U		
Hexachlorocyclo-pentadiene	ug/kg	180	901					< 160 U					< 1300 U		
Hexachloroethane	ug/kg	1800	1027					< 160 U					< 1300 U		
Indeno(1,2,3-cd)pyrene	ug/kg	1100	17.32	1446		420	440	270	400	610	140 J	410	580	88	< 6.7 U
Isophorone	ug/kg	570000	432					< 160 U					< 1300 U		
Naphthalene	ug/kg	3800	14.65			13 J	< 270 U	27 J	< 220 U	< 240 U	< 260 U	< 110 U	< 270 U	4.9 J	< 6.7 U
Nitrobenzene	ug/kg	5100	145					< 320 U					< 2700 U		
N-Nitroso-di-n-propylamine	ug/kg	78						< 33 U					< 270 U		
N-Nitrosodiphenylamine	ug/kg	110000	2680					< 160 U					< 1300 U		
Pentachlorophenol	ug/kg	1000	10					< 160 U					< 1300 U		
Phenanthrene	ug/kg	1.8e+006	18.73			380	290	260	370	550	310	370	380	92	< 6.7 U
Phenol	ug/kg	1.9e+006	48					< 33 U					< 270 U		
Pyrene	ug/kg	180000	44.27			830	730	480	960	1200	800	640	1000	190	< 6.7 U
BaP-TE	ug/kg	110				898	765	465	827	1110	682	697	1070	196	< 6.70 U
Total High-molecular-weight PAHs	ug/kg		193	19270		5900	5500	3300	5800	7900	5500	5100	7300	1400	< 6.7 U
Total Low-molecular-weight PAHs	ug/kg		76.42			560	370	440	450	670	490	520	580	150	< 6.7 U
Total PAHs (sum 16)	ug/kg		264.1			6500	5800	3800	6300	8500	6000	5600	7800	1500	< 6.7 U

					Location ID Sample Date	SED3B 11/8/2013 9:37:00 AM	SED3C	SED3C 11/7/2013 12:27:00 PM	SED4.5B 11/8/2013 10:16:00 AM	SED4A	SED4B	SED4B 11/12/2013 12:13:00 PM	SED4C 11/12/2013 2:09:00 PM	SED5.5B 11/12/2013 2:53:00 PM
					Sample Date Sample ID	SED3B00N	11/7/2013 12:27:00 PM SED3C00N	SED3C00R	SED4.5B00N	11/12/2013 1:33:00 PM SED4A00N	11/12/2013 12:13:00 PM SED4B00N	SED4B00R	SED4C00N	SED5.5B00N
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
					Туре	N	N	FD	N	N	N	FD	N	N
		HHRA Screening	ERA Screening	BTV										
Analyte	Unit	Levels (a)	Levels (b)	Statistic										
,	mg/kg	2010.0 (4)	2010.0 (2)											
` ` `	mg/kg	96		64										
Oil Range Organics (C20-C36)	mg/kg	23000												
	ug/kg	810000	70				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,1,2,2-Tetrachloroethane	ug/kg	600	1360				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	670000					< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	150	400				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,1-Dichloroethane	ug/kg	3600	20				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,1-Dichloroethene	ug/kg	23000	100				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,2,3-Trichlorobenzene	ug/kg	6300	11				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,2,4-Trichlorobenzene	ug/kg	5800	11				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,2-Dibromo-3-chloropropane	ug/kg	5.3	ļ	1			< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,2-Dibromoethane	ug/kg	36		1	ļļ		< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	180000	30				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,2-Dichloroethane	ug/kg	460	20				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,2-Dichloropropane	ug/kg	1600	2	 	 		< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,3-Dichlorobenzene	ug/kg	2600	30				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
1,4-Dichlorobenzene	ug/kg	2600	30				< 17 U < 3400 U	< 10 U < 2100 U			< 7.4 U < 1500 U	< 6.8 U < 1400 U		
1,4-Dioxane 2-Butanone	ug/kg ug/kg	5300 2.7e+006	119 35000				< 3400 U	< 10 U			< 7.4 U	< 1400 U < 6.8 U		
2-Butanone 2-Hexanone	ug/kg ug/kg	20000	58.2				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg ug/kg	3.3e+006	25.1	+			< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	6.1e+006	65				< 67 U	< 41 U			< 30 U	< 27 U		
	ug/kg	1200	10	1			< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Bromochloromethane	ug/kg	15000					< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Bromodichloromethane	ug/kg	290					< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Bromoform	ug/kg	19000	75000				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Bromomethane	ug/kg	680	1.37				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Carbon Disulfide	ug/kg	77000	0.851				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Carbon Tetrachloride	ug/kg	650	170				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Chlorobenzene	ug/kg	28000	30				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Chloroethane	ug/kg	1.4e+006					< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Chloroform	ug/kg	320	20				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	11000					< 17 U	< 10 U			< 7.4 U	< 6.8 U		
cis-1,2-Dichloroethylene	ug/kg	16000	200				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
cis-1,3-Dichloropropene	ug/kg	1800					< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Cyclohexane	ug/kg	650000					< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Dibromochloromethane	ug/kg	8300		ļ			< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	8700	20				< 17 U < 17 U	< 10 U < 10 U			< 7.4 U < 7.4 U	< 6.8 U < 6.8 U		
	ug/kg	5800 190000	30 86				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg ug/kg	55000	00	 	 		< 34 U	< 10 U			< 7.4 U	< 6.8 U < 14 U		
	ug/kg ug/kg	7.8e+006	1	 	 		< 17 U	< 10 U			< 7.4 U	< 6.8 U		
•	ug/kg ug/kg	47000	100000	1	 		< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg ug/kg	650000	100000	†	 		< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	35000	18		 		< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	65000	89	1			< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	600000	200	1			< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	8100	2				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Toluene	ug/kg	490000	10				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	160000	200		1		< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	1800	1		1		< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	410	1		1		< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	2.3e+006					< 17 U	< 10 U			< 7.4 U	< 6.8 U		
	ug/kg	59	10				< 17 U	< 10 U			< 7.4 U	< 6.8 U		
Vinyl Chloride	ug/itg													

• . • •	,	9	,	
Was	hington	, DC	200	19

						0500	05500	05500	050450	05044	05040	05040	05510	0505.50
					Location ID Sample Date	SED3B 11/8/2013 9:37:00 AM	SED3C 11/7/2013 12:27:00 PM	SED3C 11/7/2013 12:27:00 PM	SED4.5B 11/8/2013 10:16:00 AM	SED4A 11/12/2013 1:33:00 PM	SED4B 11/12/2013 12:13:00 PM	SED4B 11/12/2013 12:13:00 PM	SED4C 11/12/2013 2:09:00 PM	SED5.5B 11/12/2013 2:53:00 PM
					Sample ID	SED3B00N	SED3C00N	SED3C00R	SED4.5B00N	SED4A00N	SED4B00N	SED4B00R	SED4C00N	SED5.5B00N
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
		шивл	ERA		Туре	N	N	FD	N	N	N	FD	N	N
		HHRA Screening	Screening	BTV										
Analyte	Unit	Levels (a)	Levels (b)	Statistic										
1,1'-Biphenyl	ug/kg	4700	1220				< 340 U	< 360 U			< 120 U	18 J		
1,2,4,5-Tetrachlorobenzene	ug/kg	2300	10				< 340 U	< 360 U			< 120 U	< 120 U		
2,2'-oxybis(1-Chloropropane)	ug/kg	310000					< 70 U	< 73 U			< 25 U	< 24 U		
2,3,4,6-Tetrachlorophenol	ug/kg	190000	10				< 340 U	< 360 U			< 120 U	< 120 U		
2,4,5-Trichlorophenol	ug/kg	630000	10				< 340 U	< 360 U			< 120 U	< 120 U		
2,4,6-Trichlorophenol	ug/kg	6300	10	1			< 340 U	< 360 U			< 120 U	< 120 U		
2,4-Dichlorophenol	ug/kg	19000	10				< 70 U	< 73 U			< 25 U	< 24 U		
2,4-Dimethylphenol	ug/kg	130000	29				< 340 U	< 360 U			< 120 U	27 J		
2, 1 2 6	ug/g	.00000					0.00	000 0			.200	v		
2,4-Dinitrophenol	ug/kg	13000	6.21				< 1800 U	< 1900 U			< 630 U	< 610 U		
2,4-Dinitrotoluene	ug/kg	1700	41.6				< 340 U	< 360 U			< 120 U	< 120 U		
2,6-Dinitrotoluene	ug/kg	360	41.6				< 340 U	< 360 U			< 120 U	< 120 U		
2-Chloronaphthalene	ug/kg	480000	250				< 70 U	< 73 U			< 25 U	< 24 U		
2-Chlorophenol	ug/kg	39000	55				< 340 U	< 360 U			< 120 U	< 120 U		
2-Methylnaphthalene	ug/kg	24000	20.2				15 J	< 73 U			41	82		
2-Methylphenol	ug/kg	320000	5.1				< 340 U	< 360 U			< 120 U	< 120 U		
2-Nitroaniline	ug/kg	63000					< 1800 U	< 1900 U			< 630 U	< 610 U		
2-Nitrophenol	ug/kg	1.9e+006	13.3				< 340 U	< 360 U			< 120 U	< 120 U		
3,3'-Dichlorobenzidine	ug/kg	1200	127				< 340 U	< 360 U			< 120 U	< 120 U		
3-Nitroaniline	ug/kg	25000					< 1800 U	< 1900 U			< 630 U	< 610 U		
4,6-Dinitro-2-methylphenol	ug/kg	510	104				< 1800 U	< 1900 U			< 630 U	< 610 U		
4-Bromophenyl-phenylether	ug/kg		1230				< 340 U	< 360 U			< 120 U	< 120 U		
4-Chloro-3-methylphenol	ug/kg	630000	15000				< 340 U	< 360 U			< 120 U	< 120 U		
4-Chloroaniline	ug/kg	2700	0.9				< 340 U	< 360 U			< 120 U	< 120 U		
4-Chlorophenyl-phenylether	ug/kg						< 340 U	< 360 U			< 120 U	< 120 U		
4-Methylphenol	ug/kg	630000	5.1				71 J	< 360 U			15 J	27 J		
4-Nitroaniline	ug/kg	25000					< 1800 U	< 1900 U			< 630 U	< 610 U		
4-Nitrophenol	ug/kg	1.9e+006	13.3				< 1800 U	< 1900 U			< 630 U	< 610 U		
Acenaphthene	ug/kg	360000	6.71			10 J	61 J	34 J	28 J	34 J	49 J	190 J	22 J	33 J
Acenaphthylene	ug/kg	360000	5.87			< 23 U	84	65 J	< 81 U	73 J	90	120	80 J	85
Acetophenone	ug/kg	780000					30 J	< 360 U			< 120 U	< 120 U		
Anthracene	ug/kg	1.8e+006	10			16 J	170	100	95	100	96 J	350 J	87 J	110
Atrazine	ug/kg	2400	0.2				< 340 U	< 360 U			< 120 U	< 120 U		
Benzaldehyde	ug/kg	170000					320 J	320 J			R	R		
Benzo(a)anthracene	ug/kg	1100	15.72	1603		110	620	410	500	410	350 J	1000 J	470	410
Benzo(a)pyrene	ug/kg	110	31.9	1700		130	700	490	580	530	340 J	930 J	550	510
Βοπεσ(α)ργιστίο	ug/kg	110	51.9	1700		150	700	730	000	030	3 7 0 0	330 0	550	010
Benzo(b)fluoranthene	ug/kg	1100	190	2305		210	1000	710	950	870	400 J	910 J	940	780
Benzo(g,h,i)perylene	ug/kg	180000	170			140	760	580	680	740	290 J	740 J	740	630
Benzo(k)fluoranthene	ug/kg	11000	27.2	934		90	320	250	380	300	150 J	490 J	320	290
bis-(2-chloroethoxy)methane	ug/kg	19000					< 340 U	< 360 U			< 120 U	< 120 U		
bis-(2-Chloroethyl)ether	ug/kg	230	3520				< 70 U	< 73 U			< 25 U	< 24 U		
bis-(2-Ethylhexyl)phthalate	ug/kg	39000	100	2306			840	640 J			190 J	210 J		
Butylbenzylphthalate	ug/kg	290000	100				78 J	< 360 U			< 120 U	< 120 U		
Caprolactam	ug/kg	3.1e+006					< 1800 U	< 1900 U			< 630 U	< 610 U		
Carbazole	ug/kg	240000					95	63 J			29	110		
Chrysene	ug/kg	110000	26.83	1801		190	930	650	1000	800	410 J	1100 J	830	800
Dibenzo(a,h)anthracene	ug/kg	110	6.22	<u>111</u>		32	<u>170</u>	130	<u>140</u>	<u>160</u>	68	<u>170</u>	<u>160</u>	110
Dibenzofuran	ug/kg	7300	5100	<u> </u>			< 340 U	< 360 U			< 120 U	70 J		
Diethylphthalate	ug/kg	5.1e+006	530				< 340 U	< 360 U			< 120 U	< 120 U		
Dimethylphthalate	ug/kg	5.1e+006	1000				< 340 U	< 360 U			< 120 U	< 120 U		
	ug/kg	630000	440				< 340 U	< 360 U			< 120 U	< 120 U		
Di-n-butylphthalate					.							< 120 UJ		
Di-n-butylphthalate Di-n-octylphthalate		63000	100				I 42 J	< 360 U			< 120 U	< [20 UJ		
Di-n-butylphthalate Di-n-octylphthalate Fluoranthene	ug/kg ug/kg	63000 240000	100 31.46			290	42 J 1800	< 360 U 1200	1300	990	< 120 U 640 J	2500 J	1000	910

					Location ID	SED3B	SED3C	SED3C	SED4.5B	SED4A	SED4B	SED4B	SED4C	SED5.5B
					Sample Date	11/8/2013 9:37:00 AM	11/7/2013 12:27:00 PM	11/7/2013 12:27:00 PM	11/8/2013 10:16:00 AM	11/12/2013 1:33:00 PM	11/12/2013 12:13:00 PM	11/12/2013 12:13:00 PM	11/12/2013 2:09:00 PM	11/12/2013 2:53:00 PM
					Sample ID	SED3B00N	SED3C00N	SED3C00R	SED4.5B00N	SED4A00N	SED4B00N	SED4B00R	SED4C00N	SED5.5B00N
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
	T		T EDA		Туре	N	N	FD	N	N	N	FD	N	N
		HHRA Screening	ERA Screening	BTV										
Analyte	Unit	Levels (a)	Levels (b)	Statistic										
Hexachlorobenzene	ug/kg	210	1.4				< 70 U	< 73 U			< 25 U	< 24 U		
Hexachlorobutadiene	ug/kg	1200	26.5				< 70 U	< 73 U			< 25 U	< 24 U		
			901											
Hexachlorocyclo-pentadiene	ug/kg	180					< 340 U	< 360 U			< 120 U	< 120 U		
Hexachloroethane	ug/kg	1800	1027				< 340 U	< 360 U			< 120 U	< 120 U		
ndeno(1,2,3-cd)pyrene	ug/kg	1100	17.32	1446		110	600	440	550	530	220 J	600 J	590	410
sophorone	ug/kg	570000	432				< 340 U	< 360 U			< 120 U	< 120 U		
Naphthalene	ug/kg	3800	14.65			< 23 U	< 70 U	< 73 U	< 81 U	24 J	36	61	22 J	36 J
Nitrobenzene	ug/kg	5100	145				< 700 U	< 730 U			< 250 U	< 240 U		
N-Nitroso-di-n-propylamine	ug/kg	78					< 70 U	< 73 U			< 25 U	< 24 U		
N-Nitrosodiphenylamine	ug/kg	110000	2680				< 340 U	< 360 U			< 120 U	< 120 U		
Pentachlorophenol	ug/kg	1000	10				< 340 U	< 360 U			< 120 U	< 120 U		
Phenanthrene	ug/kg	1.8e+006	18.73			190	640 J	360 J	440	320	450 J	1900 J	320	400
Phenol	ug/kg	1.9e+006	48				< 70 U	< 73 U			< 25 U	< 24 U		
Pyrene	ug/kg	180000	44.27			270	910	640	1100	760	650 J	1800 J	840	870
BaP-TE	ug/kg	110				206	1100	779	925	875	507	1360	914	784
Total High-molecular-weight PAHs	ug/kg		193	19270		1600	7800	5500	7200	6100	3500	10000	6400	5700
Total Low-molecular-weight PAHs	ug/kg		76.42			230	1000	560	590	590	780	2800	570	720
Total PAHs (sum 16)	ug/kg		264.1			1800	8800	6100	7800	6700	4300	13000	7000	6400

					Location ID	SED5A	SED5B	SED5B	SED5C	SED6.5D	SED6.5D	SED6.5E	SED6.5E	SED6A	SED6A
					Sample Date	11/8/2013 11:37:00 AM	11/8/2013 12:30:00 PM	6/20/2017 7:45:00 AM	11/11/2013 8:38:00 AM	11/25/2013 8:10:00 AM	6/9/2017 9:45:00 AM	11/25/2013 8:20:00 AM	6/8/2017 10:00:00 AM	11/13/2013 1:39:00 PM	6/8/2017 1:15:00 PM
					Sample ID	SED5A00N	SED5B00N	SED5B00AN	SED5C00N	SED6.5D00N	SED6.5D00EN	SED6.5E00N	SED6.5E00EN	SED6A00N	SED6A00EN
					Depth Type	0 - 0.5 ft N	0 - 0.5 ft N	0 - 0.33 ft N	0 - 0.5 ft N	0 - 0.5 ft N	0 - 0.33 ft N	0 - 0.5 ft N	0 - 0.33 ft N	0 - 0.5 ft N	0 - 0.33 ft N
		HHRA	ERA	BTV	.,,,,	• • • • • • • • • • • • • • • • • • • •							••		
Amalida	1.1	Screening	Screening	Statistic											
Analyte Total Petroleum Hydrocarbons (C9-C44)	Unit mg/kg	Levels (a)	Levels (b)					2240 J-							
Diesel Range Organics (C10-C20)	mg/kg	96		64				140 J-			87		<u>100</u>		31 J
Oil Range Organics (C20-C36)	mg/kg	23000		<u> </u>				1600 J-			700		640		350
1,1,1-Trichloroethane	ug/kg	810000	70		1			.0000				< 11 U			
1,1,2,2-Tetrachloroethane	ug/kg	600	1360		1							< 11 U			
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	670000										< 11 U			
1,1,2-Trichloroethane	ug/kg	150	400									< 11 U			
1,1-Dichloroethane	ug/kg	3600	20									< 11 U			
1,1-Dichloroethene	ug/kg	23000	100									< 11 U			
1,2,3-Trichlorobenzene	ug/kg	6300	11									< 11 U			
1,2,4-Trichlorobenzene	ug/kg	5800	11									< 11 U			
1,2-Dibromo-3-chloropropane	ug/kg	5.3										< 11 U			
1,2-Dibromoethane	ug/kg	36										< 11 U			
1,2-Dichlorobenzene	ug/kg	180000	30		ļļ							< 11 U			
1,2-Dichloroethane	ug/kg	460	20									< 11 U			
1,2-Dichloropropane	ug/kg	1600	2									< 11 U			
1,3-Dichlorobenzene	ug/kg	2600	30									< 11 U			
1,4-Dichlorobenzene	ug/kg	2600	30									< 11 U			
1,4-Dioxane	ug/kg	5300	119									< 2100 U			
2-Butanone	ug/kg	2.7e+006	35000 58.2									< 11 U < 11 U			
2-Hexanone 4-Methyl-2-pentanone	ug/kg ug/kg	20000 3.3e+006	25.1		1							< 11 U			
Acetone	ug/kg ug/kg	6.1e+006	65									< 43 U			
Benzene	ug/kg ug/kg	1200	10									< 11 U			
Bromochloromethane	ug/kg	15000	10									< 11 U			
Bromodichloromethane	ug/kg	290			1							< 11 U			
Bromoform	ug/kg	19000	75000									< 11 U			
Bromomethane	ug/kg	680	1.37									< 11 U			
Carbon Disulfide	ug/kg	77000	0.851									< 11 U			
Carbon Tetrachloride	ug/kg	650	170									< 11 U			
Chlorobenzene	ug/kg	28000	30									< 11 U			
Chloroethane	ug/kg	1.4e+006										< 11 U			
Chloroform	ug/kg	320	20									< 11 U			
Chloromethane	ug/kg	11000										< 11 U			
cis-1,2-Dichloroethylene	ug/kg	16000	200									< 11 U			
cis-1,3-Dichloropropene	ug/kg	1800										< 11 U			
Cyclohexane	ug/kg	650000										< 11 U			
Dibromochloromethane	ug/kg	8300		ļ								< 11 U			
Dichlorodifluoromethane	ug/kg	8700	20		 							< 11 U			
Ethylbenzene Isopropylbenzene	ug/kg	5800 190000	30 86		}							< 11 U < 11 U			
Isopropylbenzene m, p-Xylene	ug/kg ug/kg	55000	OO	1	1							< 21 U			
Methyl Acetate	ug/kg ug/kg	7.8e+006			1							< 11 U			
Methyl tert-Butyl Ether (MTBE)	ug/kg ug/kg	47000	100000		+							< 11 U			
Methylcyclohexane	ug/kg ug/kg	650000	. 30000		1							< 11 U			
Methylene Chloride	ug/kg	35000	18		†							< 11 U			
o-Xylene	ug/kg	65000	89		1							< 11 U			
Styrene	ug/kg	600000	200		†							< 11 U			
Tetrachloroethylene	ug/kg	8100	2									< 11 U			
Toluene	ug/kg	490000	10									< 11 U			
trans-1,2-Dichloroethene	ug/kg	160000	200		ĵ i							< 11 U			
trans-1,3-Dichloropropene	ug/kg	1800										< 11 U			
Trichloroethene	ug/kg	410										< 11 U			
Trichlorofluoromethane	ug/kg	2.3e+006										< 11 U			
Vinyl Chloride	ug/kg	59	10									< 11 U			
Xylenes (total)	ug/kg	58000								<u> </u>		< 21 U			

O-TOO Demining		uu,	•••
Washington,	DC	200	19

						05054	05050	l ornen	05050	J 0500 50	J 0500 50	0550.55	0500.55	05504	05004
					Location ID Sample Date Sample ID	SED5A 11/8/2013 11:37:00 AM SED5A00N	SED5B 11/8/2013 12:30:00 PM SED5B00N	SED5B 6/20/2017 7:45:00 AM SED5B00AN	SED5C 11/11/2013 8:38:00 AM SED5C00N	SED6.5D 11/25/2013 8:10:00 AM SED6.5D00N	SED6.5D 6/9/2017 9:45:00 AM SED6.5D00EN	SED6.5E 11/25/2013 8:20:00 AM SED6.5E00N	SED6.5E 6/8/2017 10:00:00 AM SED6.5E00EN	SED6A 11/13/2013 1:39:00 PM SED6A00N	SED6A 6/8/2017 1:15:00 PM SED6A00EN
					Depth Type	0 - 0.5 ft N	0 - 0.5 ft N	0 - 0.33 ft N	0 - 0.5 ft N	0 - 0.5 ft N	0 - 0.33 ft N	0 - 0.5 ft N	0 - 0.33 ft N	0 - 0.5 ft N	0 - 0.33 ft N
		HHRA Screening	ERA Screening	BTV Statistic											
Analyte	Unit	Levels (a)	Levels (b)	Otatistic								.00011			
1,1'-Biphenyl	ug/kg	4700	1220									< 300 U			
1,2,4,5-Tetrachlorobenzene	ug/kg	2300 310000	10									< 300 U < 61 U			
2,2'-oxybis(1-Chloropropane) 2,3,4,6-Tetrachlorophenol	ug/kg ug/kg	190000	10									< 300 U			
2,4,5-Trichlorophenol	ug/kg	630000	10									< 300 U			
2,4,6-Trichlorophenol	ug/kg	6300	10									< 300 U			
2,4-Dichlorophenol	ug/kg	19000	10									< 61 U			
2,4-Dimethylphenol	ug/kg	130000	29									< 300 U			
2,4-Dinitrophenol	ug/kg	13000	6.21									< 1600 U			
2,4-Dinitrotoluene	ug/kg	1700	41.6									< 300 U			
2,6-Dinitrotoluene	ug/kg	360	41.6									< 300 U			
2-Chloronaphthalene	ug/kg	480000	250									< 61 U			
2-Chlorophenol	ug/kg	39000	55									< 300 U			
2-Methylnaphthalene	ug/kg	24000	20.2									74	-		
2-Methylphenol	ug/kg	320000	5.1									< 300 U			
2-Nitroaniline	ug/kg	63000										< 1600 U			
2-Nitrophenol	ug/kg	1.9e+006	13.3									< 300 U			
3,3'-Dichlorobenzidine	ug/kg	1200	127									< 300 U			
3-Nitroaniline	ug/kg	25000	404									< 1600 U			
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	ug/kg	510	104 1230									< 1600 U < 300 U			
4-Chloro-3-methylphenol	ug/kg ug/kg	630000	15000									< 300 U			
4-Chloroaniline	ug/kg ug/kg	2700	0.9									< 300 U			
4-Chlorophenyl-phenylether	ug/kg	2100	0.0									< 300 U			
4-Methylphenol	ug/kg	630000	5.1									55 J			
4-Nitroaniline	ug/kg	25000										< 1600 U			
4-Nitrophenol	ug/kg	1.9e+006	13.3									< 1600 U			
Acenaphthene	ug/kg	360000	6.71			31 J	18 J	< 230 U	80	57 J		< 61 U		84	
Acenaphthylene	ug/kg	360000	5.87			< 72 U	< 87 U	< 230 U	170	35 J		48 J		84	
Acetophenone	ug/kg	780000										44 J			
Anthracene	ug/kg	1.8e+006	10			71 J	58 J	< 230 U	210	60 J		89		130	
Atrazine	ug/kg	2400	0.2									< 300 U			
Benzaldehyde	ug/kg	170000										64 J			
Benzo(a)anthracene	ug/kg	1100	15.72	1603		370	370	420	630	190		400		390	
Benzo(a)pyrene	ug/kg	110	31.9	1700		450	440	520	780	190		460		430	
Benzo(b)fluoranthene	ug/kg	1100	190	2305	1	730	800	1100	1100	320		730		470	
Benzo(g,h,i)perylene	ug/kg	180000	170	1		640	630	680	830	190		530		370	1
Benzo(k)fluoranthene	ug/kg	11000	27.2	934		290	250	340	390	96 J		250		160	
bis-(2-chloroethoxy)methane	ug/kg	19000										< 300 U			
bis-(2-Chloroethyl)ether	ug/kg	230	3520				-					< 61 U			
bis-(2-Ethylhexyl)phthalate	ug/kg	39000	100	2306								1300			
Butylbenzylphthalate	ug/kg	290000	100									< 300 U			
Caprolactam	ug/kg	3.1e+006										< 1600 U			
Carbazole	ug/kg	240000	00.00	4004		750	700	202	202	200		60 J		470	
Chrysene	ug/kg	110000	26.83 6.22	1801		750	720	880	960	320 52 J		740		470	1
Dibenzo(a,h)anthracene Dibenzofuran	ug/kg ug/kg	7300	5100	<u>111</u>		<u>140</u>	96	<u>140 J</u>	<u>170</u>	5∠ J		<u>140</u> < 300 U		88	<u> </u>
Diethylphthalate	ug/kg ug/kg	5.1e+006	530	1	+ +							< 300 U		+	
Dimethylphthalate	ug/kg ug/kg	5.1e+006 5.1e+006	1000	1	1							< 300 U			1
Di-n-butylphthalate	ug/kg	630000	440		 							41 J			
Di-n-octylphthalate	ug/kg	63000	100		† †							< 300 U			
	ug/kg	240000	31.46		1	840	800	920	1100	370		1000		1000	1
Fluoranthene	ug/kg														

				•	Location ID	SED5A	SED5B	SED5B	SED5C	SED6.5D	SED6.5D	SED6.5E	SED6.5E	SED6A	SED6A
					Sample Date	11/8/2013 11:37:00 AM	11/8/2013 12:30:00 PM	6/20/2017 7:45:00 AM	11/11/2013 8:38:00 AM	11/25/2013 8:10:00 AM	6/9/2017 9:45:00 AM	11/25/2013 8:20:00 AM	6/8/2017 10:00:00 AM	11/13/2013 1:39:00 PM	6/8/2017 1:15:00 PM
					Sample ID	SED5A00N	SED5B00N	SED5B00AN	SED5C00N	SED6.5D00N	SED6.5D00EN	SED6.5E00N	SED6.5E00EN	SED6A00N	SED6A00EN
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
			- EDA		Туре	N	N	N	N	N	N	N	N	N	N
		HHRA Screening	ERA Screening	BTV											
Analyte	Unit	Levels (a)	Levels (b)	Statistic											
Hexachlorobenzene	ug/kg	210	1.4									< 61 U			
Hexachlorobutadiene	ug/kg	1200	26.5									< 61 U			
Hexachlorocyclo-pentadiene	ug/kg	180	901									< 300 U			
Hexachloroethane	ug/kg	1800	1027									< 300 U			
Indeno(1,2,3-cd)pyrene	ug/kg	1100	17.32	1446		500	480	510	620	140 J		420		290	
Isophorone	ug/kg	570000	432									< 300 U			
Naphthalene	ug/kg	3800	14.65			< 72 U	< 87 U	< 230 U	< 75 U	52 J		33 J		18 J	
Nitrobenzene	ug/kg	5100	145									< 610 U			
N-Nitroso-di-n-propylamine	ug/kg	78										< 61 U			
N-Nitrosodiphenylamine	ug/kg	110000	2680									< 300 U			
Pentachlorophenol	ug/kg	1000	10									< 300 U			
Phenanthrene	ug/kg	1.8e+006	18.73			300	260	450	560	190		370		610	
Phenol	ug/kg	1.9e+006	48									< 61 U			
Pyrene	ug/kg	180000	44.27			780	730	1200	1100	410		910		750	
BaP-TE	ug/kg	110				754	704	867	1190	308		758		635	
Total High-molecular-weight PAHs	ug/kg		193	19270		5500	5300	6700	7700	2300		5600		4400	
Total Low-molecular-weight PAHs	ug/kg		76.42			450	380	450	1100	460		590		1000	
Total PAHs (sum 16)	ug/kg		264.1			5900	5700	7200	8800	2700		6200		5400	

					Location ID	SED6B	SED6B	SED6B	SED6C	SED6C	SED7.5D	SED7.5D	SED7.5E	SED7.5E
					Sample Date Sample ID	11/13/2013 12:39:00 PM SED6B00N	11/13/2013 12:39:00 PM SED6B00R	6/8/2017 12:30:00 PM SED6B00EN	11/14/2013 1:33:00 PM SED6C00N	6/7/2017 10:00:00 AM SED6C00EN	11/25/2013 7:30:00 AM SED7.5D00N	6/9/2017 8:15:00 AM SED7.5D00EN	11/25/2013 10:30:00 AM SED7.5E00N	6/8/2017 9:15:00 AM SED7.5E00EN
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
					Туре	N	FD	N	N	N	N	N	N	N
		HHRA	ERA	BTV										
Analyte	Linit	Screening	Screening Levels (b)	Statistic										
Total Petroleum Hydrocarbons (C9-C44)	Unit mg/kg	Levels (a)	Levels (b)											
Diesel Range Organics (C10-C20)	mg/kg	96		64				37		88		79		100
Oil Range Organics (C20-C36)	mg/kg	23000		<u> </u>				370		600		590		860
1,1,1-Trichloroethane	ug/kg	810000	70			< 8.9 U	< 8.3 U	0.0						000
1,1,2,2-Tetrachloroethane	ug/kg	600	1360			< 8.9 U	< 8.3 U							
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	670000				< 8.9 U	< 8.3 U							
1,1,2-Trichloroethane	ug/kg	150	400			< 8.9 U	< 8.3 U							
1,1-Dichloroethane	ug/kg	3600	20			< 8.9 U	< 8.3 U							
1,1-Dichloroethene	ug/kg	23000	100			< 8.9 U	< 8.3 U							
1,2,3-Trichlorobenzene	ug/kg	6300	11			< 8.9 U	< 8.3 U							
1,2,4-Trichlorobenzene	ug/kg	5800	11			< 8.9 U	< 8.3 U							
1,2-Dibromo-3-chloropropane	ug/kg	5.3				< 8.9 U	< 8.3 U						· · · · · · · · · · · · · · · · · · ·	
1,2-Dibromoethane	ug/kg	36				< 8.9 U	< 8.3 U							
1,2-Dichlorobenzene	ug/kg	180000	30			< 8.9 U	< 8.3 U							
1,2-Dichloroethane	ug/kg	460	20			< 8.9 U	< 8.3 U							
1,2-Dichloropropane	ug/kg	1600	2			< 8.9 U	< 8.3 U							
1,3-Dichlorobenzene	ug/kg	2600	30			< 8.9 U	< 8.3 U							
1,4-Dichlorobenzene	ug/kg	2600	30			< 8.9 U	< 8.3 U							
1,4-Dioxane	ug/kg	5300	119			< 1800 U	< 1700 U							
2-Butanone 2-Hexanone	ug/kg	2.7e+006 20000	35000 58.2			< 8.9 U < 8.9 U	< 8.3 U < 8.3 U							
4-Methyl-2-pentanone	ug/kg ug/kg	3.3e+006	25.1		+	< 8.9 U	< 8.3 U							
Acetone	ug/kg	6.1e+006	65			< 36 U	20 J							
Benzene	ug/kg	1200	10			< 8.9 U	< 8.3 U							
Bromochloromethane	ug/kg	15000	10			< 8.9 U	< 8.3 U							
Bromodichloromethane	ug/kg	290				< 8.9 U	< 8.3 U							
Bromoform	ug/kg	19000	75000			< 8.9 U	< 8.3 U							
Bromomethane	ug/kg	680	1.37			< 8.9 U	< 8.3 U							
Carbon Disulfide	ug/kg	77000	0.851			< 8.9 U	< 8.3 U							
Carbon Tetrachloride	ug/kg	650	170			< 8.9 U	< 8.3 U							
Chlorobenzene	ug/kg	28000	30			< 8.9 U	< 8.3 U							
Chloroethane	ug/kg	1.4e+006				< 8.9 U	< 8.3 U							
Chloroform	ug/kg	320	20			1.1 J	< 8.3 U							
Chloromethane	ug/kg	11000				< 8.9 U	< 8.3 U							
cis-1,2-Dichloroethylene	ug/kg	16000	200			< 8.9 U	< 8.3 U							
cis-1,3-Dichloropropene	ug/kg	1800				< 8.9 U	< 8.3 U							
Cyclohexane	ug/kg	650000			 	< 8.9 U	< 8.3 U							
Dibromochloromethane	ug/kg	8300		-		< 8.9 U	< 8.3 U							
Dichlorodifluoromethane Ethylbenzene	ug/kg	8700 5800	30		 	< 8.9 U	< 8.3 U							
Ethylbenzene Isopropylbenzene	ug/kg ug/kg	190000	86	1	 	< 8.9 U < 8.9 U	< 8.3 U < 8.3 U							
m, p-Xylene	ug/kg ug/kg	55000	00			< 18 U	< 17 U							
Methyl Acetate	ug/kg ug/kg	7.8e+006				< 8.9 U	< 8.3 U							
Methyl tert-Butyl Ether (MTBE)	ug/kg	47000	100000		 	< 8.9 U	< 8.3 U							
Methylcyclohexane	ug/kg	650000	. 55550	1	 	< 8.9 U	< 8.3 U							
Methylene Chloride	ug/kg	35000	18		 	< 8.9 U	< 8.3 U							
o-Xylene	ug/kg	65000	89	Ì		< 8.9 U	< 8.3 U							
Styrene	ug/kg	600000	200	Ì		< 8.9 U	< 8.3 U							
Tetrachloroethylene	ug/kg	8100	2			< 8.9 U	< 8.3 U							
Toluene	ug/kg	490000	10		<u> </u>	< 8.9 U	< 8.3 U							
trans-1,2-Dichloroethene	ug/kg	160000	200			< 8.9 U	< 8.3 U							
trans-1,3-Dichloropropene	ug/kg	1800				< 8.9 U	< 8.3 U							
Trichloroethene	ug/kg	410				< 8.9 U	< 8.3 U							
Trichlorofluoromethane	ug/kg	2.3e+006				< 8.9 U	< 8.3 U							
Vinyl Chloride	ug/kg	59	10			< 8.9 U	< 8.3 U							
Xylenes (total)	ug/kg	58000				< 18 U	< 17 U							

										T				
					Location ID Sample Date	SED6B 11/13/2013 12:39:00 PM	SED6B 11/13/2013 12:39:00 PM	SED6B 6/8/2017 12:30:00 PM	SED6C 11/14/2013 1:33:00 PM	SED6C 6/7/2017 10:00:00 AM	SED7.5D 11/25/2013 7:30:00 AM	SED7.5D 6/9/2017 8:15:00 AM	SED7.5E 11/25/2013 10:30:00 AM	SED7.5E 6/8/2017 9:15:00 AM
					Sample ID	SED6B00N	SED6B00R	SED6B00EN	SED6C00N	SED6C00EN	SED7.5D00N	SED7.5D00EN	SED7.5E00N	SED7.5E00EN
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
					Type	N N	FD	N	N N	N N	N N	N N	N N	N
		HHRA	ERA	BTV										
.		Screening	Screening	Statistic										
Analyte	Unit	Levels (a)	Levels (b)			.000.11	. 200 11							
1,1'-Biphenyl	ug/kg	4700	1220			< 290 U	< 300 U							
1,2,4,5-Tetrachlorobenzene	ug/kg	2300	10			< 290 U	< 300 U							
2,2'-oxybis(1-Chloropropane)	ug/kg	310000				< 58 U	< 61 U							
2,3,4,6-Tetrachlorophenol	ug/kg	190000	10			< 290 U	< 300 U							
2,4,5-Trichlorophenol	ug/kg	630000	10			< 290 U	< 300 U							
2,4,6-Trichlorophenol	ug/kg	6300	10			< 290 U	< 300 U							
2,4-Dichlorophenol	ug/kg	19000	10			< 58 U	< 61 U							
2,4-Dimethylphenol	ug/kg	130000	29			< 290 U	< 300 U							
2,4-Dinitrophenol	ug/kg	13000	6.21			< 1500 U	< 1600 U							
2,4-Dinitrotoluene	ug/kg	1700	41.6			< 290 U	< 300 U							
2,6-Dinitrotoluene	ug/kg	360	41.6			< 290 U	< 300 U							
2-Chloronaphthalene	ug/kg	480000	250			< 58 U	< 61 U							
2-Chlorophenol	ug/kg	39000	55			< 290 U	< 300 U							
2-Methylnaphthalene	ug/kg	24000	20.2			19 J	19 J							
2-Methylphenol	ug/kg	320000	5.1			< 290 U	< 300 U							
2-Nitroaniline	ug/kg	63000				< 1500 U	< 1600 U							
2-Nitrophenol	ug/kg	1.9e+006	13.3			< 290 U	< 300 U							
3,3'-Dichlorobenzidine	ug/kg	1200	127			< 290 U	< 300 U							
3-Nitroaniline	ug/kg	25000				< 1500 U	< 1600 U							
4,6-Dinitro-2-methylphenol	ug/kg	510	104			< 1500 U	< 1600 U							
4-Bromophenyl-phenylether	ug/kg		1230			< 290 U	< 300 U							
4-Chloro-3-methylphenol	ug/kg	630000	15000			< 290 U	< 300 U							
4-Chloroaniline	ug/kg	2700	0.9			< 290 U	< 300 U							
4-Chlorophenyl-phenylether	ug/kg					< 290 U	< 300 U							
4-Methylphenol	ug/kg	630000	5.1			< 290 U	< 300 U							
4-Nitroaniline	ug/kg	25000				< 1500 U	< 1600 U							
4-Nitrophenol	ug/kg	1.9e+006	13.3			< 1500 U	< 1600 U							
Acenaphthene	ug/kg	360000	6.71			35 J	32 J		19 J		35 J		59	
Acenaphthylene	ug/kg	360000	5.87			64	59 J		61 J		28 J		47 J	
Acetophenone	ug/kg	780000				< 290 U	< 300 U							
Anthracene	ug/kg	1.8e+006	10			120	120		61 J		47 J		120	
Atrazine	ug/kg	2400	0.2			< 290 U	< 300 U							
Benzaldehyde	ug/kg	170000				250 J	250 J							
Benzo(a)anthracene	ug/kg	1100	15.72	1603		480	520		420 J		160		360	
Benzo(a)pyrene	ug/kg	110	31.9	1700		610	650		530 J		160		310	
Benzo(b)fluoranthene	ug/kg	1100	190	2305		850	910		850 J		290		500	
Benzo(g,h,i)perylene	ug/kg	180000	170			620	620		350 J		170		290	
Benzo(k)fluoranthene	ug/kg	11000	27.2	934		310	330		330 J		100		140	
bis-(2-chloroethoxy)methane	ug/kg	19000				< 290 U	< 300 U							
bis-(2-Chloroethyl)ether	ug/kg	230	3520			< 58 U	< 61 U							
bis-(2-Ethylhexyl)phthalate	ug/kg	39000	100	2306		1100	1200							
Butylbenzylphthalate	ug/kg	290000	100	2000		61 J	68 J							
Caprolactam	ug/kg	3.1e+006	,,,,			< 1500 U	< 1600 U							
Carbazole	ug/kg	240000				81	78							
Chrysene	ug/kg	110000	26.83	1801		800	840		850 J		270		490	
Dibenzo(a,h)anthracene	ug/kg	110	6.22	1111		140_	<u>150</u>		89 J		40 J		55	
Dibenzofuran	ug/kg ug/kg	7300	5100	111		< 290 U	< 300 U		03.0		70 0		33	
Diethylphthalate	ug/kg ug/kg	5.1e+006	530			< 290 U	< 300 U							
			1000			< 290 U	< 300 U							
Dimethylphthalate	ug/kg	5.1e+006				< 290 U 200 J	< 300 U					<u> </u>		
Di-n-butylphthalate	ug/kg	630000	440											
Di-n-octylphthalate	ug/kg	63000	100			100 J	43 J		4400 /		200		000	
Fluoranthene	ug/kg	240000	31.46			1400	1400		1100 J		320		800	
Fluorene	ug/kg	240000	10			41 J	51 J		44 J		44 J		110	

					Location ID	SED6B	SED6B	SED6B	SED6C	SED6C	SED7.5D	SED7.5D	SED7.5E	SED7.5E
					Sample Date		11/13/2013 12:39:00 PM	6/8/2017 12:30:00 PM	11/14/2013 1:33:00 PM	6/7/2017 10:00:00 AM	11/25/2013 7:30:00 AM	6/9/2017 8:15:00 AM	11/25/2013 10:30:00 AM	6/8/2017 9:15:00 AM
					Sample ID	SED6B00N	SED6B00R	SED6B00EN	SED6C00N	SED6C00EN	SED7.5D00N	SED7.5D00EN	SED7.5E00N	SED7.5E00EN
					Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
	-		- EDA	T	Туре	N	FD	N	N	N	N	N	N	N
		HHRA Screening	ERA Screening	BTV										
Analyte	Unit	Levels (a)	Levels (b)	Statistic										
Hexachlorobenzene	ug/kg	210	1.4			< 58 U	< 61 U							
Hexachlorobutadiene	ug/kg	1200	26.5			< 58 U	< 61 U							
Hexachlorocyclo-pentadiene	ug/kg	180	901			< 290 U	< 300 U							
Hexachloroethane	ug/kg	1800	1027			< 290 U	< 300 U							
ndeno(1,2,3-cd)pyrene	ug/kg	1100	17.32	1446		530	550		350 J		120		230	
Isophorone	ug/kg	570000	432			< 290 U	< 300 U							
Naphthalene	ug/kg	3800	14.65			17 J	17 J		22 J		47 J		94	
Nitrobenzene	ug/kg	5100	145			< 580 U	< 610 U							
N-Nitroso-di-n-propylamine	ug/kg	78				< 58 U	< 61 U							
N-Nitrosodiphenylamine	ug/kg	110000	2680			< 290 U	< 300 U							
Pentachlorophenol	ug/kg	1000	10			< 290 U	< 300 U							
Phenanthrene	ug/kg	1.8e+006	18.73			530	480		300 J		200		470	
Phenol	ug/kg	1.9e+006	48			< 58 U	< 61 U							
Pyrene	ug/kg	180000	44.27			900	890		860 J		340		730	
BaP-TE	ug/kg	110				940	1000		785		258		476	
Total High-molecular-weight PAHs	ug/kg		193	19270		6600	6900		5700		2000		3900	
Total Low-molecular-weight PAHs	ug/kg		76.42			810	760		510		400		900	
Total PAHs (sum 16)	ug/kg		264.1			7400	7600		6200		2400		4800	

					Location ID	SED7A	SED7A	SED7B	SED7B	SED7B	SED7D	SED7D	SED7E	SED7E
					Location ID Sample Date		6/9/2017 11:15:00 AM	11/13/2013 10:50:00 AM	11/13/2013 10:50:00 AM	6/7/2017 12:30:00 PM	11/25/2013 8:05:00 AM	6/9/2017 9:15:00 AM	11/25/2013 10:00:00 AM	6/8/2017 10:30:00 AM
					Sample ID		SED7A00EN	SED7B00N	SED7B00R	SED7B00EN	SED7D00N	SED7D00EN	SED7E00N	SED7E00EN
					Depth	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
		LUBA	ED.	ı	Туре	N	N	N	FD	N	N	N	N	N
		HHRA Screening	ERA Screening	BTV										1
Analyte	Unit	Levels (a)	Levels (b)	Statistic										i I
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	()	()											
Diesel Range Organics (C10-C20)	mg/kg	96		64			45 J			270		51		110 J
Oil Range Organics (C20-C36)	mg/kg	23000					460			830		500		790
1,1,1-Trichloroethane	ug/kg	810000	70					< 8.5 U	< 9.8 U					
1,1,2,2-Tetrachloroethane	ug/kg	600	1360					< 8.5 U	< 9.8 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	670000						< 8.5 U	< 9.8 U					
1,1,2-Trichloroethane	ug/kg	150	400					< 8.5 U	< 9.8 U					
1,1-Dichloroethane	ug/kg	3600	20					< 8.5 U	< 9.8 U					
1,1-Dichloroethene	ug/kg	23000	100					< 8.5 U	< 9.8 U					
1,2,3-Trichlorobenzene	ug/kg	6300	11					< 8.5 U	< 9.8 U					
1,2,4-Trichlorobenzene	ug/kg	5800	11					< 8.5 U	< 9.8 U					
1,2-Dibromo-3-chloropropane	ug/kg	5.3						< 8.5 U	< 9.8 U					
1,2-Dibromoethane	ug/kg	36						< 8.5 U	< 9.8 U					
1,2-Dichlorobenzene	ug/kg	180000	30					< 8.5 U	< 9.8 U					
1,2-Dichloroethane	ug/kg	460	20					< 8.5 U	< 9.8 U					
1,2-Dichloropropane	ug/kg	1600	2					< 8.5 U	< 9.8 U					
1,3-Dichlorobenzene	ug/kg	2600 2600	30 30					< 8.5 U < 8.5 U	< 9.8 U < 9.8 U					
1,4-Dichlorobenzene	ug/kg	5300	119					< 8.5 U < 1700 U	< 9.8 U					
1,4-Dioxane 2-Butanone	ug/kg ug/kg	2.7e+006	35000					< 1700 U	< 9.8 U					
2-Hexanone	ug/kg ug/kg	20000	58.2					< 8.5 U	< 9.8 U					
4-Methyl-2-pentanone	ug/kg ug/kg	3.3e+006	25.1					< 8.5 U	< 9.8 U					
Acetone	ug/kg	6.1e+006	65					< 34 U	< 39 U					
Benzene	ug/kg ug/kg	1200	10					< 8.5 U	< 9.8 U					
Bromochloromethane	ug/kg	15000	10					< 8.5 U	< 9.8 U					
Bromodichloromethane	ug/kg	290						< 8.5 U	< 9.8 U					
Bromoform	ug/kg	19000	75000					< 8.5 U	< 9.8 U					
Bromomethane	ug/kg	680	1.37					< 8.5 U	< 9.8 U					
Carbon Disulfide	ug/kg	77000	0.851					< 8.5 U	< 9.8 U					
Carbon Tetrachloride	ug/kg	650	170					< 8.5 U	< 9.8 U					
Chlorobenzene	ug/kg	28000	30					< 8.5 U	< 9.8 U					
Chloroethane	ug/kg	1.4e+006						< 8.5 U	< 9.8 U					
Chloroform	ug/kg	320	20					1.2 J	1.4 J					
Chloromethane	ug/kg	11000						< 8.5 U	< 9.8 U					
cis-1,2-Dichloroethylene	ug/kg	16000	200					< 8.5 U	< 9.8 U					
cis-1,3-Dichloropropene	ug/kg	1800						< 8.5 U	< 9.8 U					
Cyclohexane	ug/kg	650000						< 8.5 U	< 9.8 U					
Dibromochloromethane	ug/kg	8300						< 8.5 U	< 9.8 U					
Dichlorodifluoromethane	ug/kg	8700	20					< 8.5 U	< 9.8 U					
Ethylbenzene	ug/kg	5800	30	1				< 8.5 U < 8.5 U	< 9.8 U					
Isopropylbenzene	ug/kg	190000 55000	86					< 8.5 U < 17 U	< 9.8 U < 20 U					
m, p-Xylene Methyl Acetate	ug/kg ug/kg	7.8e+006						< 8.5 U	< 9.8 U					
Methyl tert-Butyl Ether (MTBE)	ug/kg ug/kg	47000	100000					< 8.5 U	< 9.8 U					
Methylcyclohexane	ug/kg ug/kg	650000	100000					< 8.5 U	< 9.8 U					
Methylene Chloride	ug/kg	35000	18					< 8.5 U	< 9.8 U					
o-Xylene	ug/kg	65000	89					< 8.5 U	< 9.8 U					
Styrene	ug/kg	600000	200	1				< 8.5 U	< 9.8 U					
Tetrachloroethylene	ug/kg	8100	2	1				< 8.5 U	< 9.8 U					
Toluene	ug/kg	490000	10					< 8.5 U	< 9.8 U					
trans-1,2-Dichloroethene	ug/kg	160000	200		1			< 8.5 U	< 9.8 U					
trans-1,3-Dichloropropene	ug/kg	1800						< 8.5 U	< 9.8 U					
Trichloroethene	ug/kg	410						< 8.5 U	< 9.8 U					
Trichlorofluoromethane	ug/kg	2.3e+006						< 8.5 U	< 9.8 U					
Vinyl Chloride	ug/kg	59	10					< 8.5 U	< 9.8 U					
Xylenes (total)	ug/kg	58000						< 17 U	< 20 U					
	-											1		

0-100	Demining		uu, itt
Was	hington,	DC	20019

Sample Date 11/13/2013 11:50:00 AM 6/9/2017 11:15:00 AM 11/13/2013 10:50:00 AM 6/7/2017 12:30:00 PM 11/25/2013 8:05:00 AM 6/9/2017 9:15:00 AM 11/25/2013 10:00:00 AM 6/8/2017 12:30:00 PM Sample ID SED7A00N SED7A00EN SED7B00R SED7B00EN SED7B00EN SED7D00N SED7D00N SED7D00EN SED7D00EN SED7E00N SED7E00N						Location ID	SED7A	SED7A	SED7B	SED7B	SED7B	SED7D	SED7D	SED7E	SED7E
Property Property															6/8/2017 10:30:00 AM
The column The															SED7E00EN
Add 1985															0 - 0.33 ft N
Angel			HHRA	ERA	DT\/	Туро				12	.,			.,	
1.0500															
13.65 13.6			. ,	. ,	Otationo				. 440.11						
22 cycle 1990 1990 1															
23.4	, , ,			10											
24.5-Terminghere				10											
24.0 24.0	•														
All Delivery Company				_											
2.40megrane	•														
Commitment Com															
24 Descriptions	2,4-Billetilyphenol	ug/kg	100000	23					2, 0	1 200 0					
Sectionscense	2,4-Dinitrophenol	ug/kg	13000	6.21					< 720 U	< 1500 U					
2000000000000000000000000000000000000	2,4-Dinitrotoluene	ug/kg	1700	41.6					< 140 U	< 280 U					
Schoolstopenary 1970 30000 56		ug/kg													
24th-spin-probleme	·														
Stablightering 1949 2000 51	·														
2-200-cmilling															
2380 period glob 19-006 13.3				5.1											
33-Self-robotheration 1950 1200 127															
Settle-careful	•														
43-50-line/governey/phermal Ug/Ng 510 104	- , -			127											
Alternoprophyshophyshorul Sphe 1289															
ACRIVENCE September Sept			510												
ACHIOsposition Apply 2700 0.9			22222												
### Chlorophery-pheny-pheny Compan															
64Mitysphenol			2700	0.9											
A-Intronaline			630000	F 1											
### ANTONING 19/90 19-006 13.3	4-Methylphenol	ug/kg	630000	5.1					< 140 0	05 J					
Acenaphthene Up/Rg 360000 6.71 20 J 34 34 J 35 J 46 J Acenaphthyne Up/Rg 360000 6.87 97 J 72 86 70 J 27 J Acetophenone Up/Rg 18 Berose 18 Berose 18 Berose 110 J 110 J 130 J Arrane Up/Rg 18 Berose 240 J 66 65 87 110 J 130 J Arrane Up/Rg 17000 2 10 J 66 65 87 110 J 130 J Benzadelykyd Up/Rg 1100 15.72 1803 290 200 240 J 480 490 Benzadelykyd Up/Rg 1100 15.72 1803 290 200* 240 J 480 490 Benzadelykyd Up/Rg 1100 15.72 1803 290 20° 240 J 480 490 Benzadelykymene Up/Rg 1100 15.72 1803 290 20° 240 J 560 860 850 Benzadelykymene Up/R	4-Nitroaniline	ug/kg	25000						< 720 U	< 1500 U					
Acenaphthree Ugkg 380000 6.71 20 34 34 34 35 46 Acenaphthree Ugkg 380000 8.87 37 72 86 70 27 Acetaphenone Ugkg 780000 10 66 65 87 110 130 127 130 Aratine Ugkg 1.08 1	4-Nitrophenol	ug/kg	1.9e+006	13.3					< 720 U	< 1500 U					
Acetophenone	Acenaphthene		360000	6.71			20 J		34	34 J		35 J		46 J	
Anthracene	Acenaphthylene	ug/kg	360000	5.87			37 J		72	86		70 J		27 J	
Arazene	Acetophenone	ug/kg	780000						< 140 U	< 280 U					
Benzo(a)prene	Anthracene	ug/kg	1.8e+006	10			66		65	87		110 J		130 J	
Benzo(a)anthracene	Atrazine	ug/kg	2400	0.2					< 140 U	< 280 U					
Benzo(a)pyrene	Benzaldehyde	ug/kg	170000						24 J	R					
Benzo(g/h.i)perylene	Benzo(a)anthracene	ug/kg	1100	15.72	1603		290		200	240		480		490	
Benzo(g)fluoranthene ug/kg 1100 190 2305 620 230° 360 860 850 860 860 860 860 860 860 860 860 860 86															
Benzo(g/h.i)perylene	Benzo(a)pyrene	ug/kg	110	31.9	1700		370		200 *	240		540		520	
Benzo(g,h,l)perylene ug/kg 180000 170 490 180° 240 470 470 470		3 3													
Benzo(k)fluoranthene ug/kg 11000 27.2 934 190 88 * 96 190 270					2305										
Dis-(2-chloroethoxy)methane Ug/kg 19000															
bis-(2-Chloroethyl)ether ug/kg 230 3520	()			27.2	934		190					190		270	
Dis-(2-Ethylhexyl)phthalate Ug/kg 3900 100 2306	,				ļļ										
Bulylbenzylphthalate ug/kg 290000 100															
Caprolactam ug/kg 3.1e+006 Carbazole < 720 U < 1500 U Carbazole < 720 U < 1500 U					2306										
Carbazole ug/kg 240000 Section 24 J < 57 U Section Sec				100											
Chrysene ug/kg 11000 26.83 1801 550 300 360 630 630 760 Dibenzo(a,h)anthracene ug/kg 110 6.22 111 110 31 * <57 U	-					-									
Dibenzo(a,h)anthracene ug/kg 110 6.22 111 110 31 * < 57 U 86 J 94 J Dibenzofuran ug/kg 7300 5100 < 140 U				26.02	1004		EE^					620		700	
Dibenzofuran ug/kg 7300 5100 < 140 U	-														
Diethylphthalate ug/kg 5.1e+006 530 < 140 U					<u> </u>		110					00 J		94 J	
Dimethylphthalate ug/kg 5.1e+006 1000 < 140 U					-										
Di-n-butylphthalate ug/kg 630000 440 24 J < 280 U					-										
	, i														
											1				
Fluoranthene ug/kg 240000 31.46 850 400 410 870 1200							850				1	870		1200	
Fluorene ug/kg 240000 10 31 J 34 <57 U 53 J 55 J					 	-									

_					Location ID	SED7A	SED7A	SED7B	SED7B	SED7B	SED7D	SED7D	SED7E	SED7E
					Sample Date		6/9/2017 11:15:00 AM				11/25/2013 8:05:00 AM		11/25/2013 10:00:00 AM	6/8/2017 10:30:00 AM
					Sample ID	SED7A00N	SED7A00EN	SED7B00N	SED7B00R	SED7B00EN	SED7D00N	SED7D00EN	SED7E00N	SED7E00EN
					Depth	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
		LILIDA	- FDA	T	Туре	N	N	N	FD	N	N	N	N	N
		HHRA Screening	ERA Screening	BTV										
Analyte	Unit	Levels (a)	Levels (b)	Statistic										
Hexachlorobenzene	ug/kg	210	1.4					< 29 U	< 57 U					
Hexachlorobutadiene	ug/kg	1200	26.5					< 29 U	< 57 U					
Hexachlorocyclo-pentadiene	ug/kg	180	901					< 140 U	< 280 U					
Hexachloroethane	ug/kg	1800	1027					< 140 U	< 280 U					
ndeno(1,2,3-cd)pyrene	ug/kg	1100	17.32	1446		410		130 *	180		370		380	
sophorone	ug/kg	570000	432					< 140 U	< 280 U					
Naphthalene	ug/kg	3800	14.65			13 J		19 J	24 J		46 J		31 J	
Nitrobenzene	ug/kg	5100	145					< 280 U	< 570 U					
N-Nitroso-di-n-propylamine	ug/kg	78						< 29 U	< 57 U					
N-Nitrosodiphenylamine	ug/kg	110000	2680					< 140 U	< 280 U					
Pentachlorophenol	ug/kg	1000	10					< 140 U	< 280 U					
Phenanthrene	ug/kg	1.8e+006	18.73			250		260	290		350		500	
Phenol	ug/kg	1.9e+006	48					< 29 U	< 57 U					
Pyrene	ug/kg	180000	44.27			520		420	500		950		1000	
BaP-TE	ug/kg	110				614		288	319		800		789	
Total High-molecular-weight PAHs	ug/kg		193	19270		4400		2200	2600		5400		6000	
Total Low-molecular-weight PAHs	ug/kg		76.42			420		480	520		660		790	
Total PAHs (sum 16)	ug/kg		264.1			4800		2700	3100		6100		6800	

										.==.					
					Location ID Sample Date	SED7E 6/22/2017 9:00:00 AM	SED7F 11/25/2013 12:00:00 PM	SED7F 6/8/2017 8:30:00 AM	SED7G 1/30/2014 2:30:00 PM	SED8.5B 11/13/2013 8:40:00 AM	SED8A 11/13/2013 10:05:00 AM	SED8A 6/9/2017 10:30:00 AM	SED8B 11/13/2013 9:17:00 AM	SED8B 6/9/2017 12:00:00 PM	SED8C 11/14/2013 12:36:00 PM
					Sample ID	SED7E00AN	SED7F00N	SED7F00EN	SED7G00N	SED8.5B00N	SED8A00N	SED8A00EN	SED8B00N	SED8B00EN	SED8C00N
					Depth	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft
		LILIDA	ED.		Туре	N	N	N	N	N	N	N	N	N	N
		HHRA Screening	ERA Screening	BTV											
Analyte	Unit	Levels (a)	Levels (b)	Statistic											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	. ,				3090									
Diesel Range Organics (C10-C20)	mg/kg	96		64		220 J		69				62		38 J	
Oil Range Organics (C20-C36)	mg/kg	23000				1100		610				620		400	
1,1,1-Trichloroethane	ug/kg	810000	70				< 14 U		< 5.8 U						< 11 U
1,1,2,2-Tetrachloroethane	ug/kg	600	1360				< 14 U		< 5.8 U						< 11 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	670000					< 14 U		< 5.8 U						< 11 U
1,1,2-Trichloroethane	ug/kg	150	400				< 14 U		< 5.8 U						< 11 U
1,1-Dichloroethane	ug/kg	3600	20				< 14 U		< 5.8 U						< 11 U
1,1-Dichloroethene	ug/kg	23000	100				< 14 U		< 5.8 U						< 11 U
1,2,3-Trichlorobenzene	ug/kg	6300	11				< 14 U		< 5.8 U						< 11 U
1,2,4-Trichlorobenzene	ug/kg	5800	11				< 14 U		< 5.8 U						< 11 U
1,2-Dibromo-3-chloropropane	ug/kg	5.3		1			< 14 U		< 5.8 U						< 11 U
1,2-Dibromoethane	ug/kg	36	20	ļ			< 14 U		< 5.8 U			1			< 11 U
1,2-Dichlorobenzene 1,2-Dichloroethane	ug/kg	180000 460	30 20		-		< 14 U < 14 U		< 5.8 U < 5.8 U			-			< 11 U < 11 U
1,2-Dichloropropane	ug/kg ug/kg	1600	20				< 14 U		< 5.8 U			-			< 11 U
1,3-Dichlorobenzene	ug/kg	2600	30				< 14 U		< 5.8 U						< 11 U
1,4-Dichlorobenzene	ug/kg	2600	30				< 14 U		< 5.8 U						< 11 U
1,4-Dioxane	ug/kg	5300	119				< 2900 U		< 1200 U						< 2200 U
2-Butanone	ug/kg	2.7e+006	35000				< 14 U		< 5.8 U						< 11 U
2-Hexanone	ug/kg	20000	58.2				< 14 U		< 5.8 U						< 11 U
4-Methyl-2-pentanone	ug/kg	3.3e+006	25.1				< 14 U		< 5.8 U						< 11 U
Acetone	ug/kg	6.1e+006	65				< 57 U		< 23 U						< 45 U
Benzene	ug/kg	1200	10				< 14 U		< 5.8 U						< 11 U
Bromochloromethane	ug/kg	15000					< 14 U		< 5.8 U						< 11 U
Bromodichloromethane	ug/kg	290					< 14 U		< 5.8 U						< 11 U
Bromoform	ug/kg	19000	75000				< 14 U		< 5.8 U						< 11 U
Bromomethane	ug/kg	680	1.37				< 14 U		< 5.8 U						< 11 U
Carbon Disulfide	ug/kg	77000	0.851				< 14 U		< 5.8 U						< 11 U
Carbon Tetrachloride	ug/kg	650	170				< 14 U		< 5.8 U						< 11 U
Chlorobenzene	ug/kg	28000	30				< 14 U		< 5.8 U						< 11 U
Chloroethane	ug/kg	1.4e+006	00				< 14 U		< 5.8 U						< 11 U
Chloroform	ug/kg	320	20				< 14 U		< 5.8 U						< 11 U
Chloromethane	ug/kg	11000	200				< 14 U < 14 U		< 5.8 U < 5.8 U						< 11 U < 11 U
cis-1,2-Dichloroethylene cis-1,3-Dichloropropene	ug/kg ug/kg	16000 1800	200				< 14 U		< 5.8 U						< 11 U
Cyclohexane	ug/kg ug/kg	650000					< 14 U		< 5.8 U						< 11 U
Dibromochloromethane	ug/kg ug/kg	8300					< 14 U		< 5.8 U						< 11 U
Dichlorodifluoromethane	ug/kg	8700					< 14 U		< 5.8 U						< 11 U
Ethylbenzene	ug/kg	5800	30				< 14 U		< 5.8 U						< 11 U
Isopropylbenzene	ug/kg	190000	86				< 14 U		< 5.8 U						< 11 U
m, p-Xylene	ug/kg	55000					< 29 U		< 12 U						< 22 U
Methyl Acetate	ug/kg	7.8e+006					< 14 U		< 5.8 U						< 11 U
Methyl tert-Butyl Ether (MTBE)	ug/kg	47000	100000				< 14 U		< 5.8 U						< 11 U
Methylcyclohexane	ug/kg	650000					< 14 U		< 5.8 U						< 11 U
Methylene Chloride	ug/kg	35000	18				< 14 U		< 5.8 U						< 11 U
o-Xylene	ug/kg	65000	89				< 14 U		< 5.8 U						< 11 U
Styrene	ug/kg	600000	200				< 14 U		< 5.8 U						< 11 U
Tetrachloroethylene	ug/kg	8100	2				< 14 U		< 5.8 U						< 11 U
Toluene	ug/kg	490000	10				< 14 U		< 5.8 U						< 11 U
trans-1,2-Dichloroethene	ug/kg	160000	200				< 14 U		< 5.8 U						< 11 U
trans-1,3-Dichloropropene	ug/kg	1800					< 14 U		< 5.8 U						< 11 U
Trichloroethene	ug/kg	410					< 14 U		< 5.8 U						< 11 U
Trichlorofluoromethane	ug/kg	2.3e+006					< 14 U		< 5.8 U						< 11 U
Vinyl Chloride	ug/kg	59	10				< 14 U		< 5.8 U						< 11 U
Xylenes (total)	ug/kg	58000					< 29 U		< 12 U			<u> </u>			< 22 U

3700	Demini	, ,,,,	au, n
Was	hington,	DC	2001

					Location ID	CED7E	SED7F	SED7F	SED7G	SED8.5B	CED0A	SED8A	SED8B	SED8B	SED8C
					Location ID Sample Date	SED7E 6/22/2017 9:00:00 AM				11/13/2013 8:40:00 AM	SED8A 11/13/2013 10:05:00 AM			6/9/2017 12:00:00 PM	11/14/2013 12:36:00 PM
					Sample ID	SED7E00AN	SED7F00N	SED7F00EN	SED7G00N	SED8.5B00N	SED8A00N	SED8A00EN	SED8B00N	SED8B00EN	SED8C00N
					Depth	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft
					Туре	N	N	N	N	N	N	N	N	N	N
		HHRA	ERA	BTV											
Analyte	Unit	Screening Levels (a)	Screening Levels (b)	Statistic											
1,1'-Biphenyl	ug/kg	4700	1220				< 300 U		< 200 U						< 150 U
1,2,4,5-Tetrachlorobenzene	ug/kg	2300	10	1			< 300 U		< 200 U						< 150 U
2,2'-oxybis(1-Chloropropane)	ug/kg	310000	10	+			< 60 U		< 41 U						< 31 U
2,3,4,6-Tetrachlorophenol	ug/kg	190000	10	+			< 300 U		< 200 U						< 150 U
2,4,5-Trichlorophenol	ug/kg	630000	10	1			< 300 U		< 200 U						< 150 U
2,4,6-Trichlorophenol	ug/kg	6300	10	+			< 300 U		< 200 U						< 150 U
2,4-Dichlorophenol	ug/kg	19000	10				< 60 U		< 41 U						< 31 U
2,4-Dimethylphenol	ug/kg	130000	29	+			< 300 U		< 200 U						< 150 U
2,4-Dimetryphenor	ug/kg	130000	29				3000		\ 200 U						V 150 O
2,4-Dinitrophenol	ug/kg	13000	6.21				< 1500 U		< 1000 U						< 790 U
2,4-Dinitrotoluene	ug/kg	1700	41.6				< 300 U		< 200 U						< 150 U
2,6-Dinitrotoluene	ug/kg	360	41.6				< 300 U		< 200 U						< 150 U
2-Chloronaphthalene	ug/kg	480000	250		1		< 60 U	1	< 41 U				 		< 31 U
2-Chlorophenol	ug/kg	39000	55	1	1		< 300 U		< 200 U				 		< 150 U
2-Methylnaphthalene	ug/kg	24000	20.2	1	1		67	1	68						33
2-Methylphenol	ug/kg	320000	5.1	† 	 		< 300 U	 	< 200 U						< 150 U
2-Nitroaniline	ug/kg	63000	0				< 1500 U		< 1000 U						< 790 U
2-Nitrophenol	ug/kg	1.9e+006	13.3	1			< 300 U		< 200 U						< 150 U
3,3'-Dichlorobenzidine	ug/kg	1200	127				< 300 U		< 200 U						< 150 U
3-Nitroaniline	ug/kg	25000	121				< 1500 U		< 1000 U						< 790 U
4,6-Dinitro-2-methylphenol	ug/kg	510	104	+			< 1500 U		< 1000 U						< 790 U
4-Bromophenyl-phenylether	ug/kg	310	1230	+			< 300 U		< 200 U						< 150 U
	ug/kg ug/kg	630000	15000	+			< 300 U		< 200 U						< 150 U
4-Chloro-3-methylphenol 4-Chloroaniline	ug/kg ug/kg	2700	0.9				< 300 U		< 200 U						< 150 U
	ug/kg ug/kg	2700	0.9	+			< 300 U		< 200 U						< 150 U
4-Chlorophenyl-phenylether		630000	5.1	-			< 300 U		110 J						< 150 U
4-Methylphenol	ug/kg	630000	5.1				< 300 0		110 J						< 150 U
4-Nitroaniline	ug/kg	25000					< 1500 U		< 1000 U						< 790 U
4-Nitrophenol	ug/kg	1.9e+006	13.3				< 1500 U		< 1000 U						< 790 U
Acenaphthene	ug/kg	360000	6.71			100	64		140	32 J	29 J		23 J		8.9 J
Acenaphthylene	ug/kg	360000	5.87			17 J	43 J		23 J	52 J	68 J		46 J		34
Acetophenone	ug/kg	780000					30 J		27 J						< 150 U
Anthracene	ug/kg	1.8e+006	10			200	140		210	94	110		72		49
Atrazine	ug/kg	2400	0.2				< 300 U		< 200 U						< 150 U
Benzaldehyde	ug/kg	170000					< 300 UJ		190 J						57 J
Benzo(a)anthracene	ug/kg	1100	15.72	1603		550	590		950	480	530		330		320
- (,	-5,9														
Benzo(a)pyrene	ug/kg	110	31.9	1700		440	600		890	500	710		420		390
Danier (IV) flore would		4400	400	0005	1	050	000		4000	000	4400		700		0/0/
Benzo(b)fluoranthene	ug/kg	1100	190	2305	1	650	860		1200	800	1100		730		240 J
Benzo(g,h,i)perylene	ug/kg	180000	170	604	 	310	640	1	780	650	870		580		300 J
Benzo(k)fluoranthene	ug/kg	11000	27.2	934	1	220	300		430	410	330		280		570
bis-(2-chloroethoxy)methane	ug/kg	19000	2525	1	1		< 300 U		< 200 U				ļ		< 150 U
bis-(2-Chloroethyl)ether	ug/kg	230	3520	2000	 		< 60 U	1	< 41 U				ļ		< 31 U
bis-(2-Ethylhexyl)phthalate	ug/kg	39000	100	2306	1		590 J		550						1300
Butylbenzylphthalate	ug/kg	290000	100	 	1		120 J		180 J						41 J
Caprolactam	ug/kg	3.1e+006	ļ	1	!		< 1500 U	ļ	< 1000 U				ļ		390 J
Carbazole	ug/kg	240000					100		250		46.5				30 J
Chrysene	ug/kg	110000	26.83	1801	 	620	890		1200	820	1000		660		530
Dibenzo(a,h)anthracene	ug/kg	110	6.22	<u>111</u>		84	<u>160</u>		<u>150</u>	<u>130</u>	<u>170</u>		79		< 31 U
Dibenzofuran	ug/kg	7300	5100	1			42 J		110 J				ļ		< 150 U
Diethylphthalate	ug/kg	5.1e+006	530		<u> </u>		< 300 U		< 200 U				ļ		35 J
Dimethylphthalate	ug/kg	5.1e+006	1000		1		< 300 U		< 200 U				ļ		< 150 U
Di-n-butylphthalate	ug/kg	630000	440				< 300 U		< 200 U						23 J
Di-n-octylphthalate	ug/kg	63000	100		1		< 300 U		150 J				ļ		< 150 U
Fluoranthene	ug/kg	240000	31.46			900	1300		2600	950	1300		660		670
Fluorene	ug/kg	240000	10		1	85	63	I	100	48 J	38 J		22 J		26 J

						05575	05575	05575	05070	0500.50	05004	05504	05000	OFFICE	05000
					Location ID	SED7E	SED7F	SED7F	SED7G	SED8.5B	SED8A	SED8A	SED8B	SED8B	SED8C
					Sample Date		11/25/2013 12:00:00 PM		1/30/2014 2:30:00 PM	11/13/2013 8:40:00 AM	11/13/2013 10:05:00 AM		11/13/2013 9:17:00 AM		11/14/2013 12:36:00 PM
					Sample ID	SED7E00AN	SED7F00N	SED7F00EN	SED7G00N	SED8.5B00N	SED8A00N	SED8A00EN	SED8B00N	SED8B00EN	SED8C00N
					Depth	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft
		HHRA	EDA.	T	Туре	N	N	N	N	N	N	N	N	N	N
		Screening	ERA Screening	BTV											
Analyte	Unit	3	Levels (b)	Statistic											
		Levels (a)	. ,				2011		. 44.11						24.11
Hexachlorobenzene	ug/kg	210	1.4				< 60 U		< 41 U						< 31 U
Hexachlorobutadiene	ug/kg	1200	26.5				< 60 U		< 41 U						< 31 U
Hexachlorocyclo-pentadiene	ug/kg	180	901				< 300 U		< 200 U						< 150 U
Hexachloroethane	ug/kg	1800	1027				< 300 U		< 200 U						< 150 U
Indeno(1,2,3-cd)pyrene	ug/kg	1100	17.32	1446		260	510		640	530	670		430		270 J
Isophorone	ug/kg	570000	432				< 300 U		< 200 U						< 150 U
Naphthalene	ug/kg	3800	14.65			24 J	38 J		95	29 J	< 77 U		17 J		22 J
Nitrobenzene	ug/kg	5100	145				< 600 U		< 400 U						< 310 U
N-Nitroso-di-n-propylamine	ug/kg	78					< 60 U		< 41 U						< 31 U
N-Nitrosodiphenylamine	ug/kg	110000	2680				< 300 U		< 200 U						< 150 U
Pentachlorophenol	ug/kg	1000	10				< 300 U		< 200 U						< 150 U
Phenanthrene	ug/kg	1.8e+006	18.73			910	560		2000	480	480		250		220
Phenol	ug/kg	1.9e+006	48				< 60 U		< 41 U						< 31 U
Pyrene	ug/kg	180000	44.27			1100	1100		2100	1000	1100		730		660
BaP-TE	ug/kg	110				673	960		1320	816	1110		651		479
Total High-molecular-weight PAHs	ug/kg		193	19270		5100	7000		11000	6300	7800		4900		4000
Total Low-molecular-weight PAHs	ug/kg		76.42			1300	910		2600	740	730		430		360
Total PAHs (sum 16)	ug/kg		264.1			6500	7900		14000	7000	8500		5300		4300

		· · ·	<u> </u>		Location ID	SED8C	SED8C	SED9.5B	SED9A	SED9B	SED9C	WSED1	WSED1	WSED2
					Sample Date Sample ID	11/14/2013 12:52:00 PM SED8C00R	6/7/2017 11:30:00 AM SED8C00EN	11/11/2013 12:14:00 PM SED9.5B00N	11/11/2013 9:47:00 AM SED9A00N	11/11/2013 11:23:00 AM SED9B00N	11/11/2013 10:43:00 AM SED9C00N	11/15/2013 11:14:00 AM WSED100N	11/15/2013 11:14:00 AM WSED100R	11/15/2013 12:13:00 PM WSED200N
					Depth	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
					Туре	FD	N	N	N	N	N	N	FD	N
		HHRA	ERA	BTV										
Amelida	1.124	Screening	Screening	Statistic										
Analyte	Unit	Levels (a)	Levels (b)											
Total Petroleum Hydrocarbons (C9-C44)		00		0.4			F0							
Diesel Range Organics (C10-C20)	mg/kg	96		<u>64</u>			50							
Oil Range Organics (C20-C36)	mg/kg	23000	70			< 14.11	490				z 11 II	~ 7 O I I	< 14.11	< 10.11
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ug/kg	810000	70			< 14 U < 14 U					< 11 U < 11 U	< 7.9 U < 7.9 U	< 14 U < 14 U	< 19 U < 19 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	600 670000	1360			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
1,1,2-Trichloroethane	ug/kg	150	400		+	< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
. ,	ug/kg				+	< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
1,1-Dichloroethane	ug/kg	3600	20								< 11 U	< 7.9 U	< 14 U	
1,1-Dichloroethene	ug/kg	23000	100			< 14 U < 14 U						< 7.9 U		< 19 U < 19 U
1,2,3-Trichlorobenzene	ug/kg	6300	11								< 11 U		< 14 U	
1,2,4-Trichlorobenzene	ug/kg	5800	11			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
1,2-Dibromo-3-chloropropane	ug/kg	5.3		 		< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
1,2-Dibromoethane	ug/kg	36	20	ļ	 	< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
1,2-Dichlorobenzene	ug/kg	180000	30	 	1	< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
1,2-Dichloroethane	ug/kg	460	20			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
1,2-Dichloropropane	ug/kg	1600	2		 	< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
1,3-Dichlorobenzene	ug/kg	2600	30		 	< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
1,4-Dichlorobenzene	ug/kg	2600	30			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
1,4-Dioxane	ug/kg	5300	119			< 2900 U					< 2300 U	< 1600 U	< 2800 U	< 3800 U
2-Butanone	ug/kg	2.7e+006	35000			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
2-Hexanone	ug/kg	20000	58.2			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
4-Methyl-2-pentanone	ug/kg	3.3e+006	25.1			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Acetone	ug/kg	6.1e+006	65			< 57 U					< 45 U	< 32 U	< 57 U	< 76 U
Benzene	ug/kg	1200	10			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Bromochloromethane	ug/kg	15000				< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Bromodichloromethane	ug/kg	290				< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Bromoform	ug/kg	19000	75000			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Bromomethane	ug/kg	680	1.37			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Carbon Disulfide	ug/kg	77000	0.851			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Carbon Tetrachloride	ug/kg	650	170			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Chlorobenzene	ug/kg	28000	30			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Chloroethane	ug/kg	1.4e+006				< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Chloroform	ug/kg	320	20			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Chloromethane	ug/kg	11000				< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
cis-1,2-Dichloroethylene	ug/kg	16000	200			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
cis-1,3-Dichloropropene	ug/kg	1800				< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Cyclohexane	ug/kg	650000		<u> </u>	1	< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Dibromochloromethane	ug/kg	8300		ļ		< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Dichlorodifluoromethane	ug/kg	8700		ļ	ļ	< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Ethylbenzene	ug/kg	5800	30	<u> </u>	1	< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Isopropylbenzene	ug/kg	190000	86	ļ		< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
m, p-Xylene	ug/kg	55000		ļ		< 29 U					< 23 U	< 16 U	< 28 U	< 38 U
Methyl Acetate	ug/kg	7.8e+006				< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Methyl tert-Butyl Ether (MTBE)	ug/kg	47000	100000	ļ		< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Methylcyclohexane	ug/kg	650000		ļ		< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Methylene Chloride	ug/kg	35000	18	ļ		< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
o-Xylene	ug/kg	65000	89	ļ		< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Styrene	ug/kg	600000	200			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Tetrachloroethylene	ug/kg	8100	2			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Toluene	ug/kg	490000	10			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
rans-1,2-Dichloroethene	ug/kg	160000	200			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
rans-1,3-Dichloropropene	ug/kg	1800				< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Trichloroethene	ug/kg	410				< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Trichlorofluoromethane	ug/kg	2.3e+006				< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Vinyl Chloride	ug/kg	59	10			< 14 U					< 11 U	< 7.9 U	< 14 U	< 19 U
Kylenes (total)	ug/kg	58000			<u></u>	< 29 U					< 23 U	< 16 U	< 28 U	< 38 U

						05500	05000	0500.50	05004	05000	05000	14/0551	WOED4	WOEDO
					Location ID Sample Date	SED8C 11/14/2013 12:52:00 PM	SED8C 6/7/2017 11:30:00 AM	SED9.5B 11/11/2013 12:14:00 PM	SED9A 11/11/2013 9:47:00 AM	SED9B 11/11/2013 11:23:00 AM	SED9C 11/11/2013 10:43:00 AM	WSED1 11/15/2013 11:14:00 AM	WSED1 11/15/2013 11:14:00 AM	WSED2 11/15/2013 12:13:00 PM
					Sample ID	SED8C00R	SED8C00EN	SED9.5B00N	SED9A00N	SED9B00N	SED9C00N	WSED100N	WSED100R	WSED200N
					Depth	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
					Туре	FD	N	N	N	N	N N	N	FD	N
		HHRA	ERA	BTV										
		Screening	Screening	Statistic										
Analyte	Unit	Levels (a)	Levels (b)	Statistic										
1,1'-Biphenyl	ug/kg	4700	1220			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
1,2,4,5-Tetrachlorobenzene	ug/kg	2300	10			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
2,2'-oxybis(1-Chloropropane)	ug/kg	310000				< 67 U					< 66 U	< 51 UJ	< 67 UJ	< 110 UJ
2,3,4,6-Tetrachlorophenol	ug/kg	190000	10			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
2,4,5-Trichlorophenol	ug/kg	630000	10			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
2,4,6-Trichlorophenol	ug/kg	6300	10			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
2,4-Dichlorophenol	ug/kg	19000	10			< 67 U					< 66 U	< 51 U	< 67 U	< 110 U
2,4-Dimethylphenol	ug/kg	130000	29			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
2,4-Dinitrophenol	ug/kg	13000	6.21			< 1700 U					< 1700 U	< 1300 UJ	< 1700 UJ	< 2700 UJ
2,4-Dinitrotoluene	ug/kg	1700	41.6			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
2,6-Dinitrotoluene	ug/kg	360	41.6			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
2-Chloronaphthalene	ug/kg	480000	250			< 67 U					< 66 U	< 51 U	< 67 U	< 110 U
2-Chlorophenol	ug/kg	39000	55			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
2-Methylnaphthalene	ug/kg	24000	20.2	 		23 J					9.2 J	54	21 J	22 J
2-Methylphenol	ug/kg ug/kg	320000	5.1	1		< 330 U				 	< 320 U	< 250 U	< 330 U	< 520 U
2-Methylphenol 2-Nitroaniline	ug/kg ug/kg	63000	3.1			< 1700 U				 	< 1700 U	< 1300 U	< 1700 U	< 2700 U
2-Nitroaniline 2-Nitrophenol	ug/kg ug/kg	1.9e+006	13.3			< 1700 U					< 1700 U < 320 U	< 1300 U < 250 U	< 1700 U < 330 U	< 2700 U
2-Nitrophenoi 3,3'-Dichlorobenzidine	ug/kg ug/kg	1.9e+006 1200	13.3			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
· ·			127											
3-Nitroaniline	ug/kg	25000	101			< 1700 U					< 1700 U	< 1300 U	< 1700 U	< 2700 U
4,6-Dinitro-2-methylphenol	ug/kg	510	104			< 1700 U					< 1700 U	< 1300 U	< 1700 U	< 2700 U
4-Bromophenyl-phenylether	ug/kg		1230			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
4-Chloro-3-methylphenol	ug/kg	630000	15000			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
4-Chloroaniline	ug/kg	2700	0.9			< 330 U					< 320 U	57 J	< 330 U	< 520 U
4-Chlorophenyl-phenylether	ug/kg					< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
4-Methylphenol	ug/kg	630000	5.1			< 330 U					< 320 U	110 J	< 330 U	< 520 U
4 NI24	//	05000				. 4700 11					. 4700 11	. 4000 11	. 4700 11	. 0700 11
4-Nitroaniline	ug/kg	25000	10.0			< 1700 U					< 1700 U	< 1300 U	< 1700 U	< 2700 U
4-Nitrophenol	ug/kg	1.9e+006	13.3			< 1700 U					< 1700 U	< 1300 U	< 1700 U	< 2700 U
Acenaphthene	ug/kg	360000	6.71			< 67 U		17 J	33 J	77 J	16 J	37 J	61 J	< 110 U
Acenaphthylene	ug/kg	360000	5.87			60 J		49 J	110	47 J	56 J	35 J	55 J	64 J
Acetophenone	ug/kg	780000				< 330 U					< 320 U	30 J	35 J	< 520 U
Anthracene	ug/kg	1.8e+006	10			77		87	120	120	95	49 J	280 J	120
Atrazine	ug/kg	2400	0.2			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
Benzaldehyde	ug/kg	170000				R					63 J	< 250 UJ	87 J	140 J
Benzo(a)anthracene	ug/kg	1100	15.72	1603		450		450	480	400	480	260 J	1000 J	690
Benzo(a)pyrene	ug/kg	110	31.9	1700		630		540	590	470	620	250 J	1100 J	790
Ponzo/h\fluoranthona	110/140	1100	190	2305		020 1		990	020	760	000	420 1	1800 J	1500
Benzo(b)fluoranthene	ug/kg			2305		920 J		880	830 670	760	990	430 J		
Benzo(g,h,i)perylene	ug/kg	180000	170	004		770 J		560	670	500	740	120 J	400 J	360
Benzo(k)fluoranthene	ug/kg	11000	27.2	934		410		200	330	250	290	89 J	500 J	500
bis-(2-chloroethoxy)methane	ug/kg	19000	2525			< 330 U				ļ	< 320 U	< 250 U	< 330 U	< 520 U
bis-(2-Chloroethyl)ether	ug/kg	230	3520	0000		< 67 U				ļ	< 66 U	< 51 U	< 67 U	< 110 U
bis-(2-Ethylhexyl)phthalate	ug/kg	39000	100	2306		1800					1500	1600	1300	1500
Butylbenzylphthalate	ug/kg	290000	100			84 J					< 320 U	62 J	110 J	< 520 U
Caprolactam	ug/kg	3.1e+006				< 1700 U					< 1700 U	< 1300 U	< 1700 U	< 2700 U
Carbazole	ug/kg	240000				75					90	< 51 U	170	96 J
Chrysene	ug/kg	110000	26.83	1801		750		790	770	700	880	400 J	1400 J	1300
Dibenzo(a,h)anthracene	ug/kg	110	6.22	<u>111</u>		<u>160</u>		<u>120</u>	<u>140</u>	89	<u>140</u>	< 51 U	<u>120</u>	<u>150</u>
Dibenzofuran	ug/kg	7300	5100			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
Diethylphthalate	ug/kg	5.1e+006	530			120 J					< 320 U	< 250 U	< 330 U	< 520 U
Dimethylphthalate	ug/kg	5.1e+006	1000			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
Di-n-butylphthalate	ug/kg	630000	440			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
Di-n-octylphthalate	ug/kg	63000	100			< 330 U					< 320 U	< 250 U	240 J	< 520 U
Fluoranthene	ug/kg	240000	31.46			970		920	1000	950	950	690 J	2700 J	1800
Fluorene	ug/kg	240000	10			33 J		22 J	43 J	50 J	32 J	61	91	52 J
<u> </u>	, , ,									1				

VOCs, SVOCs, and TPH Fractions Concentrations in Waterside Investigation Area Surface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

					Location ID	SED8C	SED8C	SED9.5B	SED9A	SED9B	SED9C	WSED1	WSED1	WSED2
					Sample Date	11/14/2013 12:52:00 PM	6/7/2017 11:30:00 AM	11/11/2013 12:14:00 PM	11/11/2013 9:47:00 AM	11/11/2013 11:23:00 AM	11/11/2013 10:43:00 AM	11/15/2013 11:14:00 AM	11/15/2013 11:14:00 AM	11/15/2013 12:13:00 PM
					Sample ID	SED8C00R	SED8C00EN	SED9.5B00N	SED9A00N	SED9B00N	SED9C00N	WSED100N	WSED100R	WSED200N
					Depth	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
	-	LUDA	- EDA	T	Туре	FD	N	N	N	N	N	N	FD	N
		HHRA Screening	ERA Screening	BTV										
Analyte	Unit	Levels (a)	Levels (b)	Statistic										
Hexachlorobenzene	ug/kg	210	1.4			< 67 U					< 66 U	< 51 U	< 67 U	< 110 U
Hexachlorobutadiene	ug/kg	1200	26.5			< 67 U					< 66 U	< 51 U	< 67 U	< 110 U
Hexachlorocyclo-pentadiene	ug/kg	180	901			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
Hexachloroethane	ug/kg	1800	1027			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
Indeno(1,2,3-cd)pyrene	ug/kg	1100	17.32	1446		620 J		430	550	410	570	120 J	440 J	380
Isophorone	ug/kg	570000	432			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
Naphthalene	ug/kg	3800	14.65			< 67 U		< 67 U	< 73 U	< 81 U	< 66 U	22 J	23 J	< 110 U
Nitrobenzene	ug/kg	5100	145			< 670 U					< 660 U	< 500 U	< 670 U	< 1100 U
N-Nitroso-di-n-propylamine	ug/kg	78				< 67 U					< 66 U	< 51 U	< 67 U	< 110 U
N-Nitrosodiphenylamine	ug/kg	110000	2680			< 330 U					< 320 U	< 250 U	< 330 U	< 520 U
Pentachlorophenol	ug/kg	1000	10			< 330 U					< 320 U	< 250 UJ	< 330 UJ	< 520 UJ
Phenanthrene	ug/kg	1.8e+006	18.73			310		370	420	470	390	360 J	1100 J	630
Phenol	ug/kg	1.9e+006	48			< 67 U					< 66 U	< 51 U	< 67 U	< 110 U
Pyrene	ug/kg	180000	44.27			930		920	840	810	1100	540 J	1600 J	1300
BaP-TE	ug/kg	110				994		839	920	719	968	332	1550	1200
Total High-molecular-weight PAHs	ug/kg		193	19270		6600		5800	6200	5300	6800	2900	11000	8800
Total Low-molecular-weight PAHs	ug/kg		76.42			480		550	730	760	590	560	1600	870
Total PAHs (sum 16)	ug/kg		264.1			7100		6400	6900	6100	7300	3500	13000	9600

Notes:

Bold values indicate detects. Highlighted values indicate exceedance of the Human Health Risk Assessment (HHRA) screening level.

Italicized values indicate exceedance of the Ecological Risk Assessment (ERA) screening level.

Underlined values indicate exceedance of the BTV Statistic.

EN= Essential Nutrient

AVS = Acid Volatile Sulfide SEM = Simultaneously Extracted Metals

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the
- sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N = Normal
- FD = Field Duplicate
- $\label{thm:compound} \mbox{HHRA and ERA screening values provided for detected compounds or compound sums where applicable.}$
- (a) RSL Table, May 2018 Residential Soil [ELCR = 1E-6, HQ=0.1]
- (b) Low Effect Ecological Screening Value
- mg/kg = milligrams per kilogram
- ug/kg = micrograms per kilogram

													Location ID	SED1.5B	SED1.5C	SED10A	SED10B	SED10C
													Sample Date	11/6/2013 12:25:00 PM	6/21/2017 8:15:00 AM	11/11/2013 1:00:00 PM	11/11/2013 1:59:00 PM	11/11/2013 3:00:00 PM
													Sample ID	SED1.5B00N	SED1.5C00AN	SED10A00N	SED10B00N	SED10C00N
													Depth	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
													Type	N	N	N	N	N
		HHRA	ERA										,,					
		Screening	Screening	BTV	Max	Min	Mean	Median	Max	Count	Count	Count						
Analyte	Unit	Levels (a)	Levels (b)	Statistic	Detect	Detect	Detect	Detect	Location	Detect	Reject	Total						
4,4'-DDD	ug/kg	190	3.54		68	0.76	7.5	4	SED4B	35		35					2.2 J	
4,4'-DDE	ug/kg	2000	3.16		56	1.4	12	6.3	SED7B	34		35					3.8 J	
4,4'-DDT	ug/kg	1900	1.19	2.8	1500	0.37	82	3.6	SED4B	19		35					1.7 J	
Aldrin	ug/kg	39	2		3	0.074	0.65	0.47	WSED1	20		35					0.35 J	
alpha-BHC	ug/kg	86	6		0.24	0.24	0.24	0.24	SED4B	1		35					< 0.38 U	
beta-BHC	ug/kg	300	5		2	0.29	0.92	0.87	SED7F	10		35					0.29 J	
cis-Chlordane	ug/kg	1700	0.03		18	1.2	7.2	6.6	WSED1	35		35					3.6 J	
delta-BHC	ug/kg	86	10		5.5	0.25	1.4	1	SED7F	13		35					< 0.38 UJ	
Dieldrin	ug/kg	34	1.9		4.9	0.26	2	1.8	SED7F	26		35					0.81 J	
Endosulfan I	ug/kg	47000	2.9		1.5	0.64	1.1	1.2	SED7G	3		35					< 0.38 U	
Endosulfan II	ug/kg	47000	14		5	0.13	0.92	0.6	SED7F	19		35					0.19 J	
Endosulfan Sulfate	ug/kg	47000	5.4		10	0.17	1.9	1.1	SED7F	20	1	35					0.60 J	
Endrin	ug/kg	1900	2.22		22	0.31	4	2.9	SED7F	22		35					1.9 J	
Endrin aldehyde	ug/kg	1900	2.22		2.1	0.16	0.96	0.92	SED7B	16		35					0.16 J	
Endrin ketone	ug/kg	1900	2.22		8	0.52	2.8	2.3	SED7F	15	1	35					1.5 J	
gamma-BHC (Lindane)	ug/kg	570	2.37		1.6	0.077	0.52	0.3	SED7G	17		35					0.28 J	
Heptachlor	ug/kg	130	10		7.1	0.21	1.9	1.3	WSED1	21		35					0.50 J	
Heptachlor Epoxide	ug/kg	70	0.6		6.2	0.12	1.4	1	SED7F	34		35					0.45 J	
Methoxychlor	ug/kg	32000	18.7		27	1.7	12	12	WSED2	20	1	35					5.7	
Toxaphene	ug/kg	490	0.1									35					< 15 U	
trans-Chlordane	ug/kg	1700	0.03		31	1.9	9.5	8.6	WSED1	30		35					5.6 J	
Aroclor-1016	ug/kg		26									70		< 4.3 U	< 3.6 U	< 10 U	< 7.6 U	< 7.8 U
Aroclor-1221	ug/kg		26									70		< 4.3 U	< 3.6 U	< 10 U	< 7.6 U	< 7.8 U
Aroclor-1232	ug/kg		26									70		< 4.3 U	< 3.6 U	< 10 U	< 7.6 U	< 7.8 U
Aroclor-1242	ug/kg		26									70		< 4.3 U	< 3.6 U	< 10 U	< 7.6 U	< 7.8 U
Aroclor-1248	ug/kg		26		890	29	180		SED7.5E	60		70		150 J	35 J+	< 10 U	35 J	46 J
Aroclor-1254	ug/kg		60		250	19	94		SED7.5E	18		70		< 4.3 U	32 J+	< 10 U	< 7.6 U	< 7.8 U
Aroclor-1260	ug/kg		26		1000	3.1	130	74	SED6.5D	69		70		84 J	20 J+	3.1 J	31 J	31 J
Aroclor-1262	ug/kg		26									70		< 4.3 U	< 3.6 U	< 10 U	< 7.6 U	< 7.8 U
Aroclor-1268	ug/kg		26									70		< 4.3 U	< 3.6 U	< 10 U	< 7.6 U	< 7.8 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	120	26	<u>182</u>	1900	3.1	320		SED7.5E	69		70		<u>230</u>	87	3.1	66	77
PCB congeners	ug/kg	120	26	423	11800	38	905.2	294	SED7.5E	32		32			180			

			Location	D SED1A	SED1B	SED1C	SED2.5B	SED2A	SED2B	SED2C	SED3.5B	SED3A	SED3B	SED3C
			Sample Da		11/6/2013 2:05:00 PM	11/7/2013 10:25:00 AM	11/7/2013 9:34:00 AM	11/6/2013 11:05:00 AM	11/5/2013 2:26:00 PM	11/6/2013 9:16:00 AM	11/12/2013 11:44:00 AM	11/7/2013 1:37:00 PM	11/8/2013 9:37:00 AM	11/7/2013 12:27:00 PM
			Sample		SED1B00N	SED1C00N	SED2.5B00N	SED2A00N	SED2B00N	SED2C00N	SED3.5B00N	SED3A00N	SED3B00N	SED3C00N
			Dep		0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
			De _F		0 - 0.5 It N	0 - 0.5 it N	0 - 0.5 it	0 - 0.5 it	0 - 0.5 it N	0 - 0.5 it N	0 - 0.5 it N	0 - 0.5 it N	0 - 0.5 it	0 - 0.5 it
	1	HHRA	I ERA I	DE IN	IN .	IN .	IN .	IN .	IN .	IN .	IN .	IN	IN	IN
Analyte	Unit	Screening Levels (a)	Screening Levels (b)											
4.4'-DDD	ua/ka	190	3.54		0.76 J					4.1 J				2.3 J
4.4'-DDE	ug/kg	2000	3.16		1.4					6.5 J				2.8 J
4,4'-DDT	ug/kg	1900	1.19		0.37 J					2.8 J				0.70 J
Aldrin	ug/kg	39	2		0.074 J					0.46 J				0.37 J
alpha-BHC	ug/kg	86	6		< 0.40 U					< 0.83 U				< 0.44 U
beta-BHC	ug/kg	300	5		< 0.40 U					0.58 J				< 0.44 U
cis-Chlordane	ug/kg	1700	0.03		1.4 J					6.4 J				4.3 J
delta-BHC	ug/kg	86	10		< 0.40 U					< 0.83 U				< 0.44 U
Dieldrin	ug/kg	34	1.9		0.26 J					1.5 J				0.62 J
Endosulfan I	ug/kg		2.9		< 0.40 U					< 0.83 U				< 0.44 U
Endosulfan II	ug/kg	47000	14		0.21 J					1.2				0.13 J
Endosulfan Sulfate	ug/kg	47000	5.4		0.17 J					1.5				0.22 J
Endrin	ug/kg	1900	2.22		0.31 J					5.3				1.3 J
Endrin aldehyde	ug/kg	1900	2.22		< 0.40 U					0.60 J				< 0.44 U
Endrin ketone	ug/kg	1900	2.22		0.52					2.4 J				2.3
gamma-BHC (Lindane)	ug/kg	570	2.37		0.077 J					0.20 J				0.21 J
Heptachlor	ug/kg	130	10		0.22 J					1.3 J				1.2
Heptachlor Epoxide	ug/kg	70	0.6		0.12 J					0.72 J				0.42 J
Methoxychlor	ug/kg	32000	18.7		1.7 J					13 J				7.8
Toxaphene	ug/kg	490	0.1		< 16 U					< 33 U				< 17 U
trans-Chlordane	ug/kg	1700	0.03		2.1					11				7.1
Aroclor-1016	ug/kg		26	< 11 U	< 8.1 U	< 6.9 U	< 7.4 U	< 5.4 U	< 4.5 U	< 4.2 U	< 6.1 U	< 8.4 U	< 5.7 U	< 8.7 U
Aroclor-1221	ug/kg		26	< 11 U	< 8.1 U	< 6.9 U	< 7.4 U	< 5.4 U	< 4.5 U	< 4.2 U	< 6.1 U	< 8.4 U	< 5.7 U	< 8.7 U
Aroclor-1232	ug/kg		26	< 11 U	< 8.1 U	< 6.9 U	< 7.4 U	< 5.4 U	< 4.5 U	< 4.2 U	< 6.1 U	< 8.4 U	< 5.7 U	< 8.7 U
Aroclor-1242	ug/kg		26	< 11 U	< 8.1 U	< 6.9 U	< 7.4 U	< 5.4 U	< 4.5 U	< 4.2 U	< 6.1 U	< 8.4 U	< 5.7 U	< 8.7 U
Aroclor-1248	ug/kg		26	95 J	50 J	71 J	53 J	150 J	76 J	130 J	33 J	< 8.4 U	32 J	130 J
Aroclor-1254	ug/kg		60	< 11 U	< 8.1 U	< 6.9 U	< 7.4 U	< 5.4 U	< 4.5 U	< 4.2 U	< 6.1 U	< 8.4 U	< 5.7 U	< 8.7 U
Aroclor-1260	ug/kg		26	51 J	28 J	38 J	23 J	81 J	33 J	97 J	17 J	< 8.4 U	10 J	59 J
Aroclor-1262	ug/kg		26	< 11 U	< 8.1 U	< 6.9 U	< 7.4 U	< 5.4 U	< 4.5 U	< 4.2 U	< 6.1 U	< 8.4 U	< 5.7 U	< 8.7 U
Aroclor-1268	ug/kg		26	< 11 U	< 8.1 U	< 6.9 U	< 7.4 U	< 5.4 U	< 4.5 U	< 4.2 U	< 6.1 U	< 8.4 U	< 5.7 U	< 8.7 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	120	26	150	78	110	76	230	110	230	50	< 8.4 U	42	<u>190</u>
PCB congeners	ug/kg	120	26					294						

				Location ID	SED3C	SED4.5B	SED4A	SED4B	SED4B	SED4C	SED5.5B	SED5A	SED5B	SED5B
				Sample Date	11/7/2013 12:27:00 PM	11/8/2013 10:16:00 AM	11/12/2013 1:33:00 PM	11/12/2013 12:13:00 PM	11/12/2013 12:13:00 PM	11/12/2013 2:09:00 PM	11/12/2013 2:53:00 PM	11/8/2013 11:37:00 AM	11/8/2013 12:30:00 PM	6/20/2017 7:45:00 AM
				Sample ID	SED3C00R	SED4.5B00N	SED4A00N	SED4B00N	SED4B00R	SED4C00N	SED5.5B00N	SED5A00N	SED5B00N	SED5B00AN
				Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft
				Type	FD	N N	N N	N N	FD FD	N N	N N	N N	N N	N N
		HHRA	ERA	.,,,-	. –	•			· -	• •				
		Screening	Screening											
Analyte	Unit	Levels (a)	Levels (b)											
4.4'-DDD	ua/ka	190	3.54		3.3 J			68 J	36 J					
4,4'-DDE	ua/ka	2000	3.16		3.4 J			24 J	26 J					
4.4'-DDT	ua/ka	1900	1.19		4.8 J			1500 J	1.4 J					
Aldrin	ua/ka	39	2		0.48			< 1.6 U	0.34 J					
alpha-BHC	ug/kg	86	6		< 0.45 U			< 1.6 U	0.24 J					
beta-BHC	ua/ka	300	5		< 0.45 U			1.1 J	1.1 J					
cis-Chlordane	ug/kg	1700	0.03		5.5 J			6.1 J	4.4 J					
delta-BHC	ug/kg	86	10		< 0.45 U			< 1.6 U	1.5 J					
Dieldrin	ug/kg	34	1.9		0.82 J			1.2 J	1.9 J					
Endosulfan I	ug/kg	47000	2.9		< 0.45 U			< 1.6 U	< 1.5 U					
Endosulfan II	ug/kg	47000	14		0.52 J			0.99 J	1.5					
Endosulfan Sulfate	ug/kg	47000	5.4		0.84 J			0.79 J	2.7					
Endrin	ug/kg	1900	2.22		1.5 J			3.1 J	4.4 J					
Endrin aldehyde	ug/kg	1900	2.22		0.56			0.83 J	< 1.5 U					
Endrin ketone	ug/kg	1900	2.22		2.3			0.91 J	1.9 J					
gamma-BHC (Lindane)	ug/kg	570	2.37		0.23 J			< 1.6 U	0.51 J					
Heptachlor	ug/kg	130	10		1.4			3.3	3.0					
Heptachlor Epoxide	ug/kg	70	0.6		0.47 J			1.5 J	1.3 J					
Methoxychlor	ug/kg	32000	18.7		8.5			11 J	12 J					
Toxaphene	ug/kg	490	0.1		< 18 U			< 62 U	< 60 U					
trans-Chlordane	ug/kg	1700	0.03		8.3			10	8.0					
Aroclor-1016	ug/kg		26		< 9.1 U	< 10 U	< 11 U	< 6.2 U	< 6.0 U	< 11 U	< 11 U	< 9.0 U	< 11 U	< 5.7 U
Aroclor-1221	ug/kg		26		< 9.1 U	< 10 U	< 11 U	< 6.2 U	< 6.0 U	< 11 U	< 11 U	< 9.0 U	< 11 U	< 5.7 U
Aroclor-1232	ug/kg		26		< 9.1 U	< 10 U	< 11 U	< 6.2 U	< 6.0 U	< 11 U	< 11 U	< 9.0 U	< 11 U	< 5.7 U
Aroclor-1242	ug/kg		26		< 9.1 U	< 10 U	< 11 U	< 6.2 U	< 6.0 U	< 11 U	< 11 U	< 9.0 U	< 11 U	< 5.7 U
Aroclor-1248	ug/kg		26		110 J	130 J	100 J	210 J	570 J	280 J	< 11 U	82 J	130 J	77 J+
Aroclor-1254	ug/kg		60		< 9.1 U	< 10 U	< 11 U	< 6.2 U	< 6.0 U	< 11 U	< 11 U	< 9.0 U	< 11 U	61 J+
Aroclor-1260	ug/kg		26		51 J	60 J	48 J	97 J	300 J	110 J	160 J	43 J	95 J	43 J+
Aroclor-1262	ug/kg		26		< 9.1 U	< 10 U	< 11 U	< 6.2 U	< 6.0 U	< 11 U	< 11 U	< 9.0 U	< 11 U	< 5.7 U
Aroclor-1268	ug/kg		26		< 9.1 U	< 10 U	< 11 U	< 6.2 U	< 6.0 U	< 11 U	< 11 U	< 9.0 U	< 11 U	< 5.7 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	120	26		160	190	150	310	870	390	160	130	230	180
PCB congeners	ua/ka	120	26					•					240	

				Location ID	SED5C	SED6.5D	SED6.5D	SED6.5E	SED6.5E	SED6A	SED6A	SED6B	SED6B	SED6B
				Sample Date	11/11/2013 8:38:00 AM	11/25/2013 8:10:00 AM	6/9/2017 9:45:00 AM	11/25/2013 8:20:00 AM	6/8/2017 10:00:00 AM	11/13/2013 1:39:00 PM	6/8/2017 1:15:00 PM	11/13/2013 12:39:00 PM	11/13/2013 12:39:00 PM	6/8/2017 12:30:00 PM
				Sample ID	SED5C00N	SED6.5D00N	SED6.5D00EN	SED6.5E00N	SED6.5E00EN	SED6A00N	SED6A00EN	SED6B00N	SED6B00R	SED6B00EN
				Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft
				Type	N	N	N	N	N	N	N	N	FD	N
		HHRA	ERA											
		Screening	Screening											
Analyte	Unit	Levels (a)	Levels (b)											
4,4'-DDD	ug/kg	190	3.54				4.4 J	2.4 J	4.0 J		3.3 J	3.7	4.9	1.8 J
4,4'-DDE	ug/kg	2000	3.16				5.8 J	3.5 J	6.1 J		6.5	4.3	5.0	3.9
4,4'-DDT	ug/kg	1900	1.19				< 0.93 U	1.9 J	< 1.0 U		< 1.2 U	3.7 J	5.1 J	< 0.82 U
Aldrin	ug/kg	39	2				< 0.93 U	0.25 J	< 1.0 U		< 1.2 U	0.72	1.0 J	< 0.82 U
alpha-BHC	ug/kg	86	6				< 0.93 U	< 0.76 U	< 1.0 U		< 1.2 U	< 0.72 U	< 0.76 U	< 0.82 U
beta-BHC	ug/kg	300	5				< 0.93 U	0.94 J	< 1.0 U		< 1.2 U	< 0.72 U	< 0.76 U	< 0.82 U
cis-Chlordane	ug/kg	1700	0.03				7.8	5.8	8.6		13	5.1 J	8.7 J	6.6
delta-BHC	ug/kg	86	10				< 0.93 U	1.7 J	< 1.0 U		< 1.2 U	0.27 J	0.76 J	< 0.82 U
Dieldrin	ug/kg	34	1.9				< 0.93 U	1.3 J	< 1.0 U		2.6 J	1.4 J	1.4 J	1.3 J
Endosulfan I	ug/kg	47000	2.9				< 0.93 U	< 0.76 U	< 1.0 U		< 1.2 U	< 0.72 U	0.64 J	< 0.82 U
Endosulfan II	ug/kg	47000	14				< 0.93 U	1.5 J	< 1.0 U		< 1.2 U	0.23 J	0.17 J	< 0.82 U
Endosulfan Sulfate	ug/kg	47000	5.4				< 0.93 U	2.9	< 1.0 U		< 1.2 U	0.93	0.44 J	< 0.82 U
Endrin	ug/kg	1900	2.22				< 0.93 U	5.5 J	< 1.0 U		0.68 J	1.3 J	2.9 J	< 0.82 U
Endrin aldehyde	ug/kg	1900	2.22				< 0.93 U	0.49 J	< 1.0 U		< 1.2 U	0.23 J	< 0.76 U	< 0.82 U
Endrin ketone	ug/kg	1900	2.22				< 0.93 U	2.7 J	< 1.0 U		< 1.2 U	2.3 J	2.2 J	< 0.82 U
gamma-BHC (Lindane)	ug/kg	570	2.37				< 0.93 U	0.40 J	< 1.0 U		< 1.2 U	1.1	0.83 J	< 0.82 U
Heptachlor	ug/kg	130	10				< 0.93 U	0.80 J	< 1.0 U		0.21 J	0.67 J	0.72 J	< 0.82 U
Heptachlor Epoxide	ug/kg	70	0.6				1.2 J	2.1 J	2.3 J		0.44 J	0.55 J	1.4 J	0.35 J
Methoxychlor	ug/kg	32000	18.7				< 0.93 U	7.0 J	< 1.0 U		< 1.2 U	12 J	7.6	< 0.82 U
Toxaphene	ug/kg	490	0.1				< 37 U	< 31 U	< 41 U		< 48 U	< 29 U	< 30 U	< 33 U
trans-Chlordane	ug/kg	1700	0.03				8.2	7.7	< 1.0 U		11	7.8	9.4	6.0
Aroclor-1016	ug/kg		26		< 9.3 U	< 8.0 U	< 4.7 U	< 7.6 U	< 5.1 U	< 5.5 U	< 6.0 U	< 7.2 U	< 7.6 U	< 4.1 U
Aroclor-1221	ug/kg		26		< 9.3 U	< 8.0 U	< 4.7 U	< 7.6 U	< 5.1 U	< 5.5 U	< 6.0 U	< 7.2 U	< 7.6 U	< 4.1 U
Aroclor-1232	ug/kg		26		< 9.3 U	< 8.0 U	< 4.7 U	< 7.6 U	< 5.1 U	< 5.5 U	< 6.0 U	< 7.2 U	< 7.6 U	< 4.1 U
Aroclor-1242	ug/kg		26		< 9.3 U	< 8.0 U	< 4.7 U	< 7.6 U	< 5.1 U	< 5.5 U	< 6.0 U	< 7.2 U	< 7.6 U	< 4.1 U
Aroclor-1248	ug/kg		26		510 J	770 J	< 4.7 U	240 J	56 J+	110 J	29 J+	63 J	63 J	49 J+
Aroclor-1254	ug/kg		60		< 9.3 U	< 8.0 U	81 J+	< 7.6 UJ	82 J+	< 5.5 U	23 J+	< 7.2 U	< 7.6 U	52 J+
Aroclor-1260	ug/kg		26		240 J	1000 J	81 J+	160 J	110 J+	33 J	17 J+	59 J	27 J	27 J+
Aroclor-1262	ug/kg		26		< 9.3 U	< 8.0 U	< 4.7 U	< 7.6 UJ	< 5.1 U	< 5.5 U	< 6.0 U	< 7.2 U	< 7.6 U	< 4.1 U
Aroclor-1268	ug/kg		26		< 9.3 U	< 8.0 U	< 4.7 U	< 7.6 UJ	< 5.1 U	< 5.5 U	< 6.0 U	< 7.2 U	< 7.6 U	< 4.1 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	120	26		<u>750</u>	1800	160	400	250	140	69	120	90	130
PCB congeners	ug/kg	120	26					<u>760</u>	_		180	210		

				Location ID	SED6C	SED6C	SED7.5D	SED7.5D	SED7.5E	SED7.5E	SED7A	SED7A	SED7B	SED7B
				Sample Date	11/14/2013 1:33:00 PM	6/7/2017 10:00:00 AM	11/25/2013 7:30:00 AM	6/9/2017 8:15:00 AM	11/25/2013 10:30:00 AM	6/8/2017 9:15:00 AM	11/13/2013 11:50:00 AM	6/9/2017 11:15:00 AM	11/13/2013 10:50:00 AM	11/13/2013 10:50:00 AM
				Sample ID	SED6C00N	SED6C00EN	SED7.5D00N	SED7.5D00EN	SED7.5E00N	SED7.5E00EN	SED7A00N	SED7A00EN	SED7B00N	SED7B00R
				Depth	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft
				Type	N	N	N	N	N	N	N	N	N	FD
		HHRA	ERA											
		Screening	Screening											
Analyte	Unit	Levels (a)	Levels (b)											
4,4'-DDD	ug/kg	190	3.54			6.3 J		3.5 J		4.4 J		2.5 J	8.9 J	5.2 J
4,4'-DDE	ug/kg	2000	3.16			20 J+		6.1 J		10 J		5.6	56	36
4,4'-DDT	ug/kg	1900	1.19			< 1.3 U		< 0.98 U		< 1.2 U		< 1.2 U	< 0.71 UJ	<u>3.6 J</u>
Aldrin	ug/kg	39	2			< 1.3 U		< 0.98 U		< 1.2 U		< 1.2 U	0.30 J	0.18 J
alpha-BHC	ug/kg	86	6			< 1.3 U		< 0.98 U		< 1.2 U		< 1.2 U	< 0.71 U	< 0.71 U
beta-BHC	ug/kg	300	5			< 1.3 U		< 0.98 U		< 1.2 U		< 1.2 U	1.1 J	0.74 J
cis-Chlordane	ug/kg	1700	0.03			10 J		9.4		9.6		6.7 J	3.2 J	1.2 J
delta-BHC	ug/kg	86	10			< 1.3 U		< 0.98 U		< 1.2 U		< 1.2 U	0.25 J	1.0 J
Dieldrin	ug/kg	34	1.9			3.5 J		< 0.98 U		< 1.2 U		2.1 J	3.2 J	2.0 J
Endosulfan I	ug/kg	47000	2.9			< 1.3 U		< 0.98 U		< 1.2 U		< 1.2 U	< 0.71 U	< 0.71 U
Endosulfan II	ug/kg	47000	14			< 1.3 U		< 0.98 U		< 1.2 U		< 1.2 U	1.3 J	0.75 J
Endosulfan Sulfate	ug/kg	47000	5.4			R		< 0.98 U		< 1.2 U		< 1.2 U	3.6 J	2.1 J
Endrin	ug/kg	1900	2.22			< 1.3 U		< 0.98 U		< 1.2 U		< 1.2 U	8.5 J	4.9 J
Endrin aldehyde	ug/kg	1900	2.22			< 1.3 U		< 0.98 U		< 1.2 U		< 1.2 U	1.1 J	2.1 J
Endrin ketone	ug/kg	1900	2.22			R		< 0.98 U		< 1.2 U		< 1.2 U	< 0.71 U	< 0.71 U
gamma-BHC (Lindane)	ug/kg	570	2.37			< 1.3 U		< 0.98 U		< 1.2 U		< 1.2 U	< 0.71 U	0.17 J
Heptachlor	ug/kg	130	10			< 1.3 U		< 0.98 U		< 1.2 U		< 1.2 U	4.8 J	1.8 J
Heptachlor Epoxide	ug/kg	70	0.6			1.1 J		1.8 J		4.9 J		0.41 J	1.8 J	0.89 J
Methoxychlor	ug/kg	32000	18.7			R		< 0.98 U		< 1.2 U		< 1.2 U	14 J	9.3 J
Toxaphene	ug/kg	490	0.1			< 50 U		< 39 U		< 47 U		< 49 U	< 29 U	< 28 U
trans-Chlordane	ug/kg	1700	0.03			14		9.5		< 1.2 U		9.4	3.5 J	3.1
Aroclor-1016	ug/kg		26		< 11 U	< 6.3 U	< 7.7 U	< 4.9 U	< 12 U	< 5.9 U	< 7.0 U	< 6.2 U	< 7.2 U	< 7.1 U
Aroclor-1221	ug/kg		26		< 11 U	< 6.3 U	< 7.7 U	< 4.9 U	< 12 U	< 5.9 U	< 7.0 U	< 6.2 U	< 7.2 U	< 7.1 U
Aroclor-1232	ug/kg		26		< 11 U	< 6.3 U	< 7.7 U	< 4.9 U	< 12 U	< 5.9 U	< 7.0 U	< 6.2 U	< 7.2 U	< 7.1 U
Aroclor-1242	ug/kg		26		< 11 U	< 6.3 U	< 7.7 U	< 4.9 U	< 12 U	< 5.9 U	< 7.0 U	< 6.2 U	< 7.2 U	< 7.1 U
Aroclor-1248	ug/kg		26		130 J	78 J+	390 J	120 J+	890 J	170 J+	< 7.0 U	< 6.2 U	340 J	320 J
Aroclor-1254	ug/kg		60		< 11 U	110 J+	< 7.7 U	170 J+	< 12 U	250 J+	< 7.0 U	37 J+	< 7.2 U	< 7.1 U
Aroclor-1260	ug/kg		26		110 J	100 J+	480 J	250 J+	970 J	360 J+	23	30 J+	160 J	160 J
Aroclor-1262	ug/kg		26		< 11 U	< 6.3 U	< 7.7 U	< 4.9 U	< 12 U	< 5.9 U	< 7.0 U	< 6.2 U	< 7.2 U	< 7.1 U
Aroclor-1268	ug/kg		26		< 11 U	< 6.3 U	< 7.7 U	< 4.9 U	< 12 U	< 5.9 U	< 7.0 U	< 6.2 U	< 7.2 U	< 7.1 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	120	26		240	290	870	540	1900	780	23	67	500	480
PCB congeners	ug/kg	120	26						11800	1400	-	-		

				Location ID	SED7B	SED7D	SED7D	SED7E	SED7E	SED7E	SED7F	SED7F	SED7G	SED8.5B
				Sample Date	6/7/2017 12:30:00 PM	11/25/2013 8:05:00 AM	6/9/2017 9:15:00 AM	11/25/2013 10:00:00 AM	6/8/2017 10:30:00 AM	6/22/2017 9:00:00 AM	11/25/2013 12:00:00 PM	6/8/2017 8:30:00 AM	1/30/2014 2:30:00 PM	11/13/2013 8:40:00 AM
				Sample ID	SED7B00EN	SED7D00N	SED7D00EN	SED7E00N	SED7E00EN	SED7E00AN	SED7F00N	SED7F00EN	SED7G00N	SED8.5B00N
				Depth	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft
				Type	N	N	N	N	N	N	N	N	N	N
		HHRA	ERA											
		Screening	Screening											
Analyte	Unit	Levels (a)	Levels (b)											
4,4'-DDD	ug/kg	190	3.54		8.1 J		3.2 J		3.5 J		12 J	3.4 J	9.0	
4,4'-DDE	ug/kg	2000	3.16		40		8.3		4.2 J		5.9 J	5.1 J	< 1.3 U	
4,4'-DDT	ug/kg	1900	1.19		< 1.1 U		< 1.0 U		< 0.73 U		<u>11 J</u>	< 0.96 U	0.91 J	
Aldrin	ug/kg	39	2		0.54 J		< 1.0 U		0.13 J		0.75 J	< 0.96 U	< 1.3 U	
alpha-BHC	ug/kg	86	6		< 1.1 U		< 1.0 U		< 0.73 U		< 1.9 U	< 0.96 U	< 1.3 U	
beta-BHC	ug/kg	300	5		< 1.1 U	· · · · · · · · · · · · · · · · · · ·	< 1.0 U		< 0.73 U		2.0 J	< 0.96 U	< 1.3 U	
cis-Chlordane	ug/kg	1700	0.03		1.8 J		9.9		7.7		10	8.0	1.7 J	
delta-BHC	ug/kg	86	10		< 1.1 U		< 1.0 U		< 0.73 U		5.5 J	< 0.96 U	2.4 J	
Dieldrin	ug/kg	34	1.9		< 1.1 U		2.0 J		< 0.73 U		4.9 J	< 0.96 U	2.3 J	
Endosulfan I	ug/kg	47000	2.9		< 1.1 U		< 1.0 U		< 0.73 U		1.2 J	< 0.96 U	1.5 J	
Endosulfan II	ug/kg	47000	14		< 1.1 U		< 1.0 U		< 0.73 U		5.0 J	< 0.96 U	< 1.3 U	
Endosulfan Sulfate	ug/kg	47000	5.4		< 1.1 U		< 1.0 U		< 0.73 U		10	< 0.96 U	3.6	
Endrin	ug/kg	1900	2.22		< 1.1 U		< 1.0 U		< 0.73 U		22 J	< 0.96 U	2.3 J	
Endrin aldehyde	ug/kg	1900	2.22		< 1.1 U		< 1.0 U		< 0.73 U		1.4 J	< 0.96 U	1.0 J	
Endrin ketone	ug/kg	1900	2.22		< 1.1 U		< 1.0 U		< 0.73 U		8.0 J	< 0.96 U	< 1.3 U	
gamma-BHC (Lindane)	ug/kg	570	2.37		< 1.1 U		< 1.0 U		< 0.73 U		0.77 J	< 0.96 U	1.6 J	
Heptachlor	ug/kg	130	10		< 1.1 U		< 1.0 U		< 0.73 U		1.0 J	< 0.96 U	0.65 J	
Heptachlor Epoxide	ug/kg	70	0.6		< 1.1 U		1.2 J		4.1 J		6.2 J	2.2 J	0.62 J	
Methoxychlor	ug/kg	32000	18.7		< 1.1 U		< 1.0 U		< 0.73 U		23 J	< 0.96 U	19 J	
Toxaphene	ug/kg	490	0.1		< 44 U		< 41 U		< 29 U		< 75 U	< 38 U	< 50 U	
trans-Chlordane	ug/kg	1700	0.03		< 1.1 U		9.3		< 0.73 U		8.2 J	< 0.96 U	1.9	
Aroclor-1016	ug/kg		26		< 5.5 U	< 7.4 U	< 5.1 U	< 7.2 U	< 3.7 U	< 2.9 UJ	< 7.5 U	< 4.8 U	< 5.0 U	< 8.8 U
Aroclor-1221	ug/kg		26	İ	< 5.5 U	< 7.4 U	< 5.1 U	< 7.2 U	< 3.7 U	< 2.9 U	< 7.5 U	< 4.8 U	< 5.0 U	< 8.8 U
Aroclor-1232	ug/kg		26		< 5.5 U	< 7.4 U	< 5.1 U	< 7.2 U	< 3.7 U	< 2.9 U	< 7.5 U	< 4.8 U	< 5.0 U	< 8.8 U
Aroclor-1242	ug/kg		26		< 5.5 U	< 7.4 U	< 5.1 U	< 7.2 U	< 3.7 U	< 2.9 U	< 7.5 U	< 4.8 U	< 5.0 U	< 8.8 U
Aroclor-1248	ug/kg		26	İ	66 J+	400 J	< 5.1 U	550 J	170 J+	200 J+	390 J	67 J+	100 J	76 J
Aroclor-1254	ug/kg		60	İ	130 J+	< 7.4 U	29 J+	< 7.2 UJ	170 J+	240 J	< 7.5 U	100 J+	< 5.0 U	< 8.8 U
Aroclor-1260	ug/kg		26	İ	270 J+	220 J	24 J+	410 J	290 J+	350 J+	380 J	130 J+	130 J	35 J
Aroclor-1262	ug/kg		26	İ	< 5.5 U	< 7.4 U	< 5.1 U	< 7.2 UJ	< 3.7 U	< 2.9 U	< 7.5 U	< 4.8 U	< 5.0 U	< 8.8 U
Aroclor-1268	ug/kg		26	İ	< 5.5 U	< 7.4 U	< 5.1 U	< 7.2 UJ	< 3.7 U	< 2.9 U	< 7.5 U	< 4.8 U	< 5.0 U	< 8.8 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	120	26		470	620	53	960	630	790	770	300	230	110
PCB congeners	ug/kg	120	26						980		1000			

				Location ID	SED8A	SED8A	SED8B	SED8B	SED8C	SED8C	SED8C	SED9.5B	SED9A	SED9B
				Sample Date	11/13/2013 10:05:00 AM	6/9/2017 10:30:00 AM	11/13/2013 9:17:00 AM	6/9/2017 12:00:00 PM	11/14/2013 12:36:00 PM	11/14/2013 12:52:00 PM	6/7/2017 11:30:00 AM	11/11/2013 12:14:00 PM	11/11/2013 9:47:00 AM	11/11/2013 11:23:00 AM
				Sample ID	SED8A00N	SED8A00EN	SED8B00N	SED8B00EN	SED8C00N	SED8C00R	SED8C00EN	SED9.5B00N	SED9A00N	SED9B00N
				Depth	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
				Туре	N	N	N	N	N	FD	N	N	N	N
		HHRA	ERA											
		Screening	Screening											
Analyte	Unit	Levels (a)	Levels (b)											
4,4'-DDD	ug/kg	190	3.54			2.5 J		2.1 J	9.3 J	3.9 J	5.1 J			
4,4'-DDE	ug/kg	2000	3.16			6.1		4.0	30 J	11 J	13			
4,4'-DDT	ug/kg	1900	1.19			< 1.1 U		1.8 J	<u>5.5 J</u>	< 0.84 UJ	< 1.1 U			
Aldrin	ug/kg	39	2			< 1.1 U		< 1.1 U	0.23 J	0.76 J	< 1.1 U			
alpha-BHC	ug/kg	86	6			< 1.1 U		< 1.1 U	< 0.78 U	< 0.84 U	< 1.1 U			
beta-BHC	ug/kg	300	5			< 1.1 U		< 1.1 U	0.79 J	0.54 J	< 1.1 U			
cis-Chlordane	ug/kg	1700	0.03			6.7 J		4.8 J	5.6 J	4.9 J	16			
delta-BHC	ug/kg	86	10			< 1.1 U		< 1.1 U	1.5 J	0.32 J	< 1.1 U			
Dieldrin	ug/kg	34	1.9			2.0 J		1.5 J	< 0.78 U	2.3	4.0			
Endosulfan I	ug/kg	47000	2.9			< 1.1 U		< 1.1 U	< 0.78 U	< 0.84 U	< 1.1 U			
Endosulfan II	ug/kg	47000	14			< 1.1 U		< 1.1 U	1.2 J	0.55 J	< 1.1 U			
Endosulfan Sulfate	ug/kg	47000	5.4			< 1.1 U		< 1.1 U	2.7	1.2	< 1.1 U			
Endrin	ug/kg	1900	2.22			< 1.1 U		0.49 J	5.4 J	2.5 J	< 1.1 U			
Endrin aldehyde	ug/kg	1900	2.22			< 1.1 U		< 1.1 U	1.3 J	0.61 J	< 1.1 U			
Endrin ketone	ug/kg	1900	2.22			< 1.1 U		< 1.1 U	< 0.78 U	1.8 J	< 1.1 U			
gamma-BHC (Lindane)	ug/kg	570	2.37			< 1.1 U		< 1.1 U	0.30 J	< 0.84 U	< 1.1 U			
Heptachlor	ug/kg	130	10			< 1.1 U		< 1.1 U	2.2 J	1.3 J	< 1.1 U			
Heptachlor Epoxide	ug/kg	70	0.6			0.80 J		0.39 J	1.9 J	0.84 J	0.85 J			
Methoxychlor	ug/kg	32000	18.7			< 1.1 U		< 1.1 U	12 J	11 J	< 1.1 U			
Toxaphene	ua/ka	490	0.1			< 46 U		< 44 U	< 31 U	< 34 U	< 43 U			
trans-Chlordane	ug/kg	1700	0.03			8.9		6.3	9.5	7.7	13			
Aroclor-1016	ug/kg		26		< 9.6 U	< 5.7 U	< 8.1 U	< 5.5 U	< 7.8 U	< 8.4 U	< 5.5 U	< 8.4 U	< 9.0 U	< 10 U
Aroclor-1221	ua/ka		26		< 9.6 U	< 5.7 U	< 8.1 U	< 5.5 U	< 7.8 U	< 8.4 U	< 5.5 U	< 8.4 U	< 9.0 U	< 10 U
Aroclor-1232	ua/ka		26		< 9.6 U	< 5.7 U	< 8.1 U	< 5.5 U	< 7.8 U	< 8.4 U	< 5.5 U	< 8.4 U	< 9.0 U	< 10 U
Aroclor-1242	ug/kg		26		< 9.6 U	< 5.7 U	< 8.1 U	< 5.5 U	< 7.8 U	< 8.4 U	< 5.5 U	< 8.4 U	< 9.0 U	< 10 U
Aroclor-1248	ug/kg	İ	26		110 J	< 5.7 U	69 J	< 5.5 U	380 J	290 J	64 J+	300 J	< 9.0 U	120 J
Aroclor-1254	ug/kg		60		< 9.6 U	32 J+	< 8.1 U	19 J+	< 7.8 U	< 8.4 U	81 J+	< 8.4 U	< 9.0 U	< 10 U
Aroclor-1260	ug/kg		26		46 J	27 J+	34 J	14 J+	210 J	120 J	110 J+	84 J	74 J	57 J
Aroclor-1262	ug/kg	İ	26		< 9.6 U	< 5.7 U	< 8.1 U	< 5.5 U	< 7.8 U	< 8.4 U	< 5.5 U	< 8.4 U	< 9.0 U	< 10 U
Aroclor-1268	ug/kg		26		< 9.6 U	< 5.7 U	< 8.1 U	< 5.5 U	< 7.8 U	< 8.4 U	< 5.5 U	< 8.4 U	< 9.0 U	< 10 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	120	26		160	59	100	33	590	410	260	380	74	180
PCB congeners	ug/kg	120	26		100		700	""	<u> </u>		200	170	,,	100

PCBs and Pesticides Concentrations in Waterside Investigation Area Surface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

				Location ID	SED9C	WSED1	WSED1	WSED2
				Sample Date	11/11/2013 10:43:00 AM	11/15/2013 11:14:00 AM	11/15/2013 11:14:00 AM	11/15/2013 12:13:00 PM
				Sample ID	SED9C00N	WSED100N	WSED100R	WSED200N
				Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
				Type	0 - 0.5 it N	N N	FD	0 - 0.5 it
		HHRA	ERA	туре	IN	IN	FD	IN .
		Screening	Screening					
Analyte	Unit	Levels (a)	Levels (b)					
4.4'-DDD	ua/ka	190	3.54		3.0 J	6.4 J	6.5 J	12 J
4.4'-DDE	ug/kg ug/kg	2000	3.16		7.1	8.0 J	7.3 J	12 J
4.4'-DDT	ug/kg	1900	1.19		2.5 J	4.0 J	4.8 J	7.2 J
Aldrin	ug/kg ug/kg	39	2		0.60 J	3.0 J	0.80 J	7.2 J
alpha-BHC	ug/kg ug/kg	86	6		< 0.82 U	< 0.63 U	< 0.83 U	< 1.3 U
beta-BHC	ug/kg ug/kg	300	5		< 0.82 U	< 0.63 U	< 0.83 U	< 1.3 U
cis-Chlordane	ug/kg ug/kg	1700	0.03		6.6 J	18 J	9.0 J	15 J
delta-BHC	ug/kg ug/kg	86	10		< 0.82 U	2.0 J	9.0 J 0.32 J	1.0 J
Dieldrin	ug/kg ug/kg	34	1.9		1.4 J	< 0.63 U	0.32 J 1.7 J	2.7 J
Endosulfan I	ug/kg ug/kg	47000	2.9		< 0.82 U	< 0.63 U	< 0.83 U	< 1.3 U
Endosulfan II	ug/kg ug/kg	47000	14		0.82 U	0.60 J	0.38 J	0.89 J
Endosulfan Sulfate	ug/kg ug/ka	47000	5.4		0.23 J 0.28 J	0.60 J 1.5	0.38 J 0.83 J	0.89 J 0.32 J
Endosulian Sullate Endrin		1900			2.9	6.7 J	0.63 J 1.8 J	3.2 J
	ug/kg	1900	2.22 2.22			1.4		
Endrin aldehyde Endrin ketone	ug/kg	1900	2.22		0.68 J 3.1	< 0.63 U	1.8 J 3.8 J	1.1 J 6.1 J
gamma-BHC (Lindane)	ug/kg ug/kg	570	2.22		0,23 J	0.05 U	0.30 J	1.4 J
Heptachlor	ug/kg ug/kg	130	10		1.5	7.1 J	0.30 J	3.8 J
Heptachlor Epoxide	ug/kg ug/kg	70	0.6		0.65 J	7.1 J 1.2 J	0.99 J	3.8 J 1.3 J
Methoxychlor	ug/kg ug/kg	32000	18.7		0.05 J 13	8.3 J	0.99 J 12 J	1.3 J 27 J
Toxaphene	ug/kg ug/kg	490	0.1		< 33 U	< 25 U	< 33 U	< 53 U
trans-Chlordane	ug/kg ug/kg	1700	0.03		11	31 J	13 J	24 J
Aroclor-1016	ug/kg ug/kg	1700	26		< 8.2 U	< 6.2 U	< 8.3 U	< 13 U
			_			< 6.2 U		
Aroclor-1221 Aroclor-1232	ug/kg ug/kg		26 26		< 8.2 U < 8.2 U	< 6.2 U	< 8.3 U < 8.3 U	< 13 U < 13 U
Aroclor-1232 Aroclor-1242			26		< 8.2 U	< 6.2 U	< 8.3 U	< 13 U
	ug/kg							
Aroclor 1254	ug/kg	-	26 60		120 J < 8.2 U	250 J < 6.2 U	86 J < 8.3 U	110 J < 13 U
Aroclor-1254	ug/kg						< 8.3 U	
Aroclor-1260	ug/kg		26 26		54 J < 8.2 U	77 J < 6.2 U	36 J < 8.3 U	63 J < 13 U
Aroclor-1262	ug/kg							
Aroclor-1268	ug/kg	400	26		< 8.2 U	< 6.2 U	< 8.3 U	< 13 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	120	26		170	330	120	170
PCB congeners	ug/kg	120	26			I		

Bold values indicate detects. Highlighted values indicate exceedance of the Human Health Risk Assessment (HHRA) screening level. Italicized values indicate exceedance of the Ecological Risk Assessment (ERA) screening level.

Underlined values indicate exceedance of the BTV Statistic.

BTV Statistic = Background threshold value statistic (95% upper tolerance limit) that is used to identify any COPCs for which concentrations are elevated relative to background. EN= Essential Nutrient

AVS = Acid Volatile Sulfide SEM = Simultaneously Extracted Metals

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. J- = The analyte was positively identified, the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the

sample and meet quality control criteria. The presence or absence of the analyte cannot be

verified. N = Normal

FD = Field Duplicate

HHRA and ERA screening values provided for detected compounds or compound sums where applicable.

(a) RSL Table, May 2018 Residential Soil [ELCR = 1E-6, HQ=0.1]

(b) Low Effect Ecological Screening Value

ug/kg = micrograms per kilogram

											Location ID	SED10B	SED1B	SED2C	SED3C	SED3C
											Sample Date	11/11/2013 1:59:00 PM	11/6/2013 2:05:00 PM	11/6/2013 9:16:00 AM	11/7/2013 12:27:00 PM	11/7/2013 12:27:00 PM
											Sample ID	SED10B00N	SED1B00N	SED2C00N	SED3C00N	SED3C00R
											Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
											Type	0 - 0.5 it	N N	0 - 0.0 it N	0 - 0.5 It	FD
	1	HHRA		1			I			1	Турс		IN .		- 11	1.0
		Screening	BTV	Max	Min	Mean	Median	Max	Count	Count						
Analyte	Unit	Levels (a)	Statistic	Detect	Detect	Detect			_	Total						
1.2.3.4.6.7.8-Heptachlorodibenzofuran	pg/g	2010.0 (4)	47	1080	0.237	65.8	18.7	SED7F	35	35		4.33 J	0.237 J	155	6.61 JN	13.7 JN
1.2.3.4.6.7.8-Heptachlorodibenzo-p-dioxin	pg/g		381	4100	8.42	246	75.2	SED7F	35	35		24.9	8,42	181	32.1 J	57.8 J
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g		3.0	151	0.08	7.78	1.44	SED7F	35	35		0.592 J	0.0800 JN	4.83 JN	0.705 JN	1.27 JN
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g		7.2	470	0.0902	25.3	2.29	SED7F	35	35		0.574 JN	0.0902 JN	128 J	1.32 JN	2.07 JN
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g		4.8	289	0.158	14.3	1.43	SED7F	35	35		0.479 JN	0.158 JN	12.8	0.663 J	1.16 J
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g		3.3	272	0.105	15.8	2.84	SED7F	35	35		1.13 JN	0.105 JN	35.8 JN	1.61 JN	2.05 JN
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pq/q		14	548	0.265	26.7	3.56	SED7F	35	35		1.18 J	0.265 J	17.9	1.31 JN	2.80 J
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g			24.3	0.0583	1.55	0.254	SED7F	28	35		0.0605 JN	< 0.0148 U	0.798 JN	0.0705 JN	0.121 JN
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pq/q		15	705	0.209	32.6	3.77	SED7F	35	35		1.33 J	0.209 JN	33.2 J	1.58 JN	3.09 J
1,2,3,7,8-PeCDF	pg/g		1.8	124	0.113	7.38	0.742	SED7F	34	35		0.193 JN	< 0.0177 U	17.1	0.450 JN	0.736 JN
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g		2.2	277	0.0426	13.7	1.23	SED7F	35	35		0.480 JN	0.0426 JN	10.5	0.400 JN	1.23 JN
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g		3.8	285	0.0737	16.1	1.89	SED7F	35	35		0.520 J	0.0737 JN	26.6 JN	0.610 J	1.19 JN
2,3,4,7,8-Pentachlorodibenzofuran	pg/g		2.6	217	0.345	14.6	2.26	SED7F	34	35		0.480 J	< 0.0156 U	28.3	0.998 JN	1.65 JN
2,3,7,8-Tetrachlorodibenzofuran	pg/g		3.1	56.7	0.127	4.65	1.5	SED7F	34	35		0.288 JN	< 0.0118 U	9.98	0.468 JN	0.825 JN
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g		0.68	38.2	0.0502	3.01	0.741	SED7F	26	35		0.0593 JN	< 0.0131 U	2.08 JN	< 0.0241 U	0.334 JN
Octachlorochlorodibenzofuran	pg/g		92	1000	0.514	71.6	25.5	SED7F	35	35		9.87 J	0.514 JN	39.0	13.8	21.7
Octachlorochlorodibenzo-p-dioxin	pg/g		12600	14700	338	2590	1800	SED7F	35	35		683 J	343	3180	617 J	1420 J
Total HpCDD	pg/g			7850	17.5	495	175	SED7F	35	35		58.6	17.5	373	77.0 J	130 J
Total HpCDF	pg/g			2170	0.626	134	41.7	SED7F	35	35		11.9 JN	0.626 JN	211 JN	19.5 JN	33.5 JN
Total HxCDD	pg/g			5930	2.86	294	35.3	SED7F	35	35		11.9 JN	2.86 JN	203	15.1 JN	29.7 JN
Total HxCDF	pg/g			2890	1.29	190	60.4	SED7F	35	35		19.3 JN	1.29 JN	472 JN	24.5 JN	41.1 JN
Total PeCDD	pg/g			6440	0.451	356	69.5	SED7F	35	35		4.57 JN	0.451 JN	310 JN	5.81 JN	97.3 JN
Total PeCDF	pg/g			2690	1.16	217	80.6	SED7F	35	35		29.7 JN	1.16 JN	591 JN	38.0 JN	62.1 JN
Total TCDD	pg/g			1650	0.711	87	8.17	SED7F	35	35		2.60 JN	0.711 JN	71.3 JN	3.84 JN	7.53 JN
Total TCDF	pg/g			2240	1.39	224	102	SED7F	35	35		42.2 JN	1.39 JN	593 JN	63.4 JN	102 JN
TCDD TEQ Bird	pg/g			815	0.147	46.7	7.44	SED7F	35	35		1.87	0.147	77.9	2.64	5.40
TCDD TEQ Fish	pg/g			713	0.199	38.4	5.32	SED7F	35	35		1.44	0.199	56.2	1.83	4.00
TCDD TEQ HH	pq/q	4.8	17	707	0.323	38	5.96	SED7F	35	35		1.75	0.323	52.5	2.06	4.57

			Location ID	SED4B	SED4B	SED6.5D	SED6.5E	SED6.5E	SED6A	SED6B	SED6B	SED6B	SED6C
			Sample Date	,	11/12/2013 12:13:00 PM	6/9/2017 9:45:00 AM	11/25/2013 8:20:00 AM	6/8/2017 10:00:00 AM	6/8/2017 1:15:00 PM	11/13/2013 12:39:00 PM	11/13/2013 12:39:00 PM	6/8/2017 12:30:00 PM	6/7/2017 10:00:00 AM
			Sample ID	SED4B00N	SED4B00R	SED6.5D00EN	SED6.5E00N	SED6.5E00EN	SED6A00EN	SED6B00N	SED6B00R	SED6B00EN	SED6C00EN
			Depth	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft
			Type	N	FD	N	N	N	N	N	FD	N	N
		HHRA											
		Screening											
Analyte	Unit	Levels (a)											
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g			34.4 J	11.0 J	23.3	307	65.8	6.56	16.3 JN	21.0 JN	4.79	25.1
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g			149 J	50.3 J	97.4	<u>1080</u>	237	43.5	47.2 J	105 J	38.2	143
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g			2.74 J	1.05 J	2.16	41.6	7.66	0.535 J	0.809 J	1.64 JN	0.37 J	2.14 JN
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g			7.26 JN	2.29 JN	4.9	158 JN	16.2	0.427 JN	1.57 J	1.67 J	0.416 JN	4.14
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g			2.38 J	0.930 J	4.59	83.5	14.8	0.624 J	0.861 J	1.19 JN	0.517 J	3.63
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g			11.4 JN	5.05 JN	5.37	85.4	17.4	0.607 J	1.93 JN	2.75 JN	0.502 J	4.63
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g			6.81	3.06 J	8.94	131	26.9	1.52 J	2.08 JN	3.42 J	1.19 J	7.98
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g			0.295 J	0.212 JN	0.385 JN	6.56	2.53 J	< 0.109 U	0.109 JN	0.141 JN	< 0.124 U	0.455 JN
1.2.3.7.8.9-Hexachlorodibenzo-p-dioxin	pa/a			5.99	2.59 J	7.44	196	23.5	1.48 J	2.42 JN	2.53 J	1.1 J	6.07
1,2,3,7,8-PeCDF	pg/g			1.95 J	0.747 JN	3.13 J	45.9	10.5 J	0.316 J	0.370 JN	0.360 JN	0.174 JN	2.09 J
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g			3.91 JN	0.786 JN	4.43	76.0	15.4	0.489 J	0.859 JN	0.997 JN	0.325 JN	3.18
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g			4.78	1.81 JN	7.04	81.3 JN	22.2	0.916 J	0.888 JN	0.900 J	0.808 J	6.01
2,3,4,7,8-Pentachlorodibenzofuran	pg/g			5.61 JN	2.05 JN	6.82 J	66.5	21.2 J	1.2 J	0.988 JN	1.01 JN	1 JN	8.32 J
2.3.7.8-Tetrachlorodibenzofuran	pa/a			6.38 JN	1.84 JN	2.29	25.6 JN	7.58	0.539 J	0.960 J	1,22	0.412	2.23
2.3.7.8-Tetrachlorodibenzo-p-dioxin	pg/g			2.71 JN	0.739 J	0.918	13.7	3.05	< 0.104 U	0.264 JN	0.256 JN	0.102 J	0.743
Octachlorochlorodibenzofuran	pg/g			50.8 J	18.5 J	25.5	289	83.9	16.8	18.7 J	46.4 JN	11.3	55.2
Octachlorochlorodibenzo-p-dioxin	pa/a			6000 J	1810 J	1070	8610 J	2420	1120	1440	2060	911	3790
Total HpCDD	pg/g			320 J	109 J	202	2040	483	102	111 J	210 J	102	293
Total HpCDF	pa/a			90.9 J	31.3 JN	46	597	132	16.8	30.9 JN	57.6 JN	12.5	64.6
Total HxCDD	pg/g			73.7 JN	28.2 JN	100	1500	293	17.9	23.4 JN	28.0 JN	15.8	86.2
Total HxCDF	pg/g			245 JN	98.6 JN	63.5	885 JN	198	12.5	37.6 JN	60.4 JN	10.6	77.6
Total PeCDD	pg/g			387 JN	124 JN	69.5	2160 JN	225	4.54	189 JN	65.3 JN	3.68	44.7
Total PeCDF	pg/g			540 JN	230 JN	71.5	970 JN	243	12.2	62.8 JN	64.8 JN	11.8	90.8
Total TCDD	pg/g			25.1 JN	8.17 JN	33.4	512 JN	114	1.39	5.06 JN	5.03 JN	1.9	20.2
Total TCDF	pg/g			965 JN	402 JN	59.7	849 JN	235	11	87.7 JN	100 JN	9.89	62.5
TCDD TEQ Bird	pg/g			23.1	7.12	18.1	250	58.7	2.88	4.23	4.95	2.36	17.9
TCDD TEQ Fish	pg/g			14.7	4.49	13.7	210	44.9	1.90	2.97	3.58	1.59	12.6
TCDD TEQ HH	pg/g	4.8		16.6	5.11	13.1	205	42.1	2.32	3.59	4.86	1.94	12.9

			Location ID	SED7.5D	SED7.5E	SED7A	SED7B	SED7B	SED7B	SED7D	SED7E	SED7F	SED7F
			Sample Date	6/9/2017 8:15:00 AM	6/8/2017 9:15:00 AM	6/9/2017 11:15:00 AM	11/13/2013 10:50:00 AM	11/13/2013 10:50:00 AM	6/7/2017 12:30:00 PM	6/9/2017 9:15:00 AM	6/8/2017 10:30:00 AM	11/25/2013 12:00:00 PM	6/8/2017 8:30:00 AM
			Sample ID	SED7.5D00EN	SED7.5E00EN	SED7A00EN	SED7B00N	SED7B00R	SED7B00EN	SED7D00EN	SED7E00EN	SED7F00N	SED7F00EN
			Depth	0 - 0.33 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.33 ft
			Type		N	N	N	FD	N	N	N	N	N
		HHRA	. , , p =	.,	.,	.,	.,	. 2	.,	.,			.,
		Screening											
Analyte	Unit	Levels (a)											
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g			93.6	66.7	20.6	3.84 J	6.80	31.4	<u>51</u>	61.1	1080	49.2
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g			<u>382</u>	244	154	20.9	36.5 J	61	254	204	4100 J	166
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g			<u>12</u>	<u>7.79</u>	1.44 J	0.535 JN	0.767 JN	1.03 J	<u>5.2</u>	6.2	<u>151 JN</u>	<u>5.58</u>
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g			<u>18.6</u>	<u>12.1</u>	1.64 J	0.750 JN	0.920 JN	1.46 J	<u>8.71</u>	<u>11.4</u>	470 JN	9.35
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g			19.6	14.5	1.99 J	0.305 JN	0.535 J	0.702 JN	9.6	10.4	289	10.6
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g			20.8	14.9	1.49 J	1.46 JN	2.56 JN	2.84	<u>10</u>	12	272 JN	10.5
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g			<u>40</u>	<u>26.4</u>	4.44	0.891 JN	1.52 JN	2.6	<u>20.1</u>	21.1	<u>548</u>	<u>19</u>
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g			<u>1 J</u>	1.19 J	0.0765 JN	0.0590 J	0.0871 JN	0.129 J	0.961 J	1.95	24.3 J	0.842 JN
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g			32.4	<u>21.1</u>	4.52	0.783 J	1.25 J	1.67 J	<u>16.5</u>	17.3	<u>705 J</u>	<u>15.1</u>
1,2,3,7,8-PeCDF	pg/g			10.1 J	7.29 J	0.568 J	0.233 JN	0.278 JN	0.627 J	4.54 J	6.09 J	124	4.99 J
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g			18.4	13.5	1.08 J	0.423 JN	0.462 JN	0.545 J	8.79	10.1	277 JN	9.72
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g			<u>29.5</u>	<u>20</u>	2.41	0.509 JN	0.806 J	<u>4.15</u>	13.9	18.9	<u>285</u>	<u>14.8</u>
2,3,4,7,8-Pentachlorodibenzofuran	pg/g			26.3 J	20.1 J	2.85 JN	0.490 JN	0.582 JN	8.2 J	13.7 J	22.7 J	217	14.8 J
2,3,7,8-Tetrachlorodibenzofuran	pg/g			<u>7.35</u>	<u>5.24</u>	1.1	0.527 JN	0.619 JN	1.43	3.93	5.06	<u>56.7</u>	3.56
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g			3.94	2.36	0.286 JN	< 0.0194 U	< 0.0227 U	0.597	1.65	1.93	38.2	1.6
Octachlorochlorodibenzofuran	pg/g			<u>129</u>	<u>95.7</u>	58.1	7.01 J	16.2	35.9	87.2	82.1	1000 JN	62.5
Octachlorochlorodibenzo-p-dioxin	pg/g			4570	2030	4440	628	927	2550	4370	1570	14700	1390
Total HpCDD	pg/g			758	540	443	44.7	78.8 J	125	578	414	7850 J	353
Total HpCDF	pg/g			197	141	55.1	11.7 JN	20.1 JN	69	114	127	2170 JN	102
Total HxCDD	pg/g			461	294	60.4	9.90 JN	13.6 JN	25.8	224	244	5930 JN	219
Total HxCDF	pg/g			248	186	36.6	33.1 JN	45.2 JN	63.9	132	181	2890 JN	128
Total PeCDD	pg/g			321	217	11.7	39.6 JN	53.3 JN	7.83	138	180	6440 JN	167
Total PeCDF	pg/g			259	209	33.6	62.5 JN	98.3 JN	80.6	136	208	2690 JN	136
Total TCDD	pg/g			152	102	5.27	1.80 JN	2.22 JN	3.01	61.9	87.3	1650 JN	70.8
Total TCDF	pg/g			212	159	23.7	114 JN	163 JN	39.1	98.6	150	2240 JN	105
TCDD TEQ Bird	pg/g			70.5	51.0	7.35	1.97	2.50	12.6	35.5	48.3	815	36.8
TCDD TEQ Fish	pg/g			55.8	40.3	5.34	1.28	1.74	7.24	27.5	35.0	713	29.2
TCDD TEQ HH	pq/q	4.8		53.7	37.5	7.11	1.55	2.20	6.83	27.5	32.0	707	26.9

			Location ID	SED7G	SED8A	SED8B	SED8C	SED8C	SED8C	SED9C	WSED1	WSED1
			Sample Date	1/30/2014 2:30:00 PM	6/9/2017 10:30:00 AM	6/9/2017 12:00:00 PM	11/14/2013 12:36:00 PM	11/14/2013 12:52:00 PM	6/7/2017 11:30:00 AM	11/11/2013 10:43:00 AM	11/15/2013 11:14:00 AM	11/15/2013 11:14:00 AM
			Sample ID	SED7G00N	SED8A00EN	SED8B00EN	SED8C00N	SED8C00R	SED8C00EN	SED9C00N	WSED100N	WSED100R
			Depth	0 - 0.5 ft	0 - 0.33 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.33 ft	0 - 0.5 ft	0 - 0.5 ft	0 - 0.5 ft
			Туре	N	N	N	N	FD	N	N	N	FD
		HHRA										
		Screening										
Analyte	Unit	Levels (a)										
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g			18.3 JN	6.98	13.5	7.04 JN	13.9 JN	21.4	2.73 J	29.0 J	11.6 JN
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g			48.9	61.7	85.6	36.8 J	64.6 J	125	13.8	136 J	40.0 J
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g			1.77 J	0.543 J	0.859 J	1.03 JN	1.31 JN	1.77 J	0.325 JN	2.82 J	0.725 JN
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g			2.39 J	0.705 J	1.13 J	1.40 JN	2.47 JN	2.75	0.351 JN	<u>7.40 J</u>	1.34 JN
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g			2.47 J	0.791 J	1.24 J	0.747 J	1.43 J	2.57	0.393 JN	3.67 J	0.959 JN
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g			3.65 JN	0.587 J	1.1 J	2.65 JN	4.43 JN	2.82	0.555 JN	6.20 JN	1.81 JN
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g			4.11 J	1.87 J	2.76	2.09 J	3.56 J	5.4	0.653 JN	8.47 J	2.09 J
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g			< 0.297 U	< 0.186 U	0.0583 JN	0.125 J	0.131 JN	< 0.242 U	< 0.0210 U	<u>0.501 J</u>	0.0849 JN
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g			6.05	1.65 JN	2.68	1.92 J	3.77 J	4.83	0.878 JN	10.2 J	2.47 J
1,2,3,7,8-PeCDF	pg/g			0.972 J	0.215 J	0.386 J	0.533 JN	0.699 JN	1.29 J	0.113 JN	2.26 JN	0.523 JN
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g			6.90 JN	0.562 J	0.713 J	0.924 JN	1.55 JN	1.71 JN	0.509 JN	4.53 JN	0.758 J
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g			3.05 J	0.907 JN	1.57 J	0.904 JN	1.46 J	4.06	0.339 JN	4.02 J	0.924 JN
2,3,4,7,8-Pentachlorodibenzofuran	pg/g			2.18 J	1.23 J	2.04 J	1.00 JN	1.95 JN	5.56 J	0.345 J	4.93 J	0.966 J
2,3,7,8-Tetrachlorodibenzofuran	pg/g			0.900 J	0.459 J	0.826 JN	0.766 JN	1.56	1.73	0.127 JN	3.07 J	0.699 J
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g			< 0.520 U	< 0.131 U	0.207 J	0.0502 JN	0.578 J	0.497	< 0.0150 U	1.05 JN	0.275 JN
Octachlorochlorodibenzofuran	pg/g			21.8	17.7	31.1	13.0 JN	19.2	47.2	4.21 J	39.6 JN	14.6 JN
Octachlorochlorodibenzo-p-dioxin	pg/g			341	1720	2810	973 J	1810 J	3660	338	3820 J	902 J
Total HpCDD	pg/g			101	140	192	81.2 J	144 J	267	32.4 JN	278 J	94.2 J
Total HpCDF	pg/g			36.9 JN	17	31.8	19.5 JN	33.6 JN	52.2	7.20 JN	68.0 J	23.2 JN
Total HxCDD	pg/g			49.2 JN	21.6	33.1	19.8 JN	35.3 JN	62.9	7.04 JN	88.2 JN	21.5 JN
Total HxCDF	pg/g			61.8 JN	13.7	23.3	41.0 JN	65.2 JN	48.9	9.97 JN	94.4 JN	32.0 JN
Total PeCDD	pg/g			553 JN	5.37	8.66	69.3 JN	96.2 JN	27.4	14.9 JN	279 JN	54.1 JN
Total PeCDF	pg/g			98.3 JN	12.6	22.9	74.5 JN	122 JN	57	13.7 JN	125 JN	44.1 JN
Total TCDD	pg/g			9.21 JN	0.931	4.03	5.15 JN	10.5 JN	12.9	1.40 JN	35.3 JN	4.99 JN
Total TCDF	pg/g			122 JN	9.49	17.8	122 JN	200 JN	41.7	21.3 JN	167 JN	76.9 JN
TCDD TEQ Bird	pg/g			12.0	3.03	5.08	3.77	7.44	12.0	1.31	17.7	3.74
TCDD TEQ Fish	pg/g		•	10.6	2.17	3.57	2.68	5.25	8.22	1.11	13.0	2.77
TCDD TEQ HH	pq/q	4.8		10.6	2.85	4.53	3.09	5.96	8.92	1.22	14.3	3.17

Dioxins and Furans Concentrations in Waterside Investigation Area Surface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Location ID	WSED2
			Sample Date	11/15/2013 12:13:00 PM
			Sample ID	WSED200N
			Depth	0 - 0.5 ft
			Type	N
		HHRA		
		Screening		
Analyte	Unit	Levels (a)		
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g			18.7 JN
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g			75.2
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g			1.58 JN
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g			2.54 JN
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g			1.97 JN
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g			3.55 JN
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g			3.64 J
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g			0.301 JN
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g			3.96 J
1,2,3,7,8-PeCDF	pg/g			1.25 JN
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g			1.65 JN
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g			1.89 J
2,3,4,7,8-Pentachlorodibenzofuran	pg/g			2.33 JN
2,3,7,8-Tetrachlorodibenzofuran	pg/g			1.96 JN
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g			< 0.0415 U
Octachlorochlorodibenzofuran	pg/g			23.6
Octachlorochlorodibenzo-p-dioxin	pg/g			1800
Total HpCDD	pg/g			175
Total HpCDF	pg/g			41.7 JN
Total HxCDD	pg/g			38.8 JN
Total HxCDF	pg/g			58.6 JN
Total PeCDD	pg/g			95.9 JN
Total PeCDF	pg/g			93.5 JN
Total TCDD	pg/g			10.4 JN
Total TCDF	pg/g			158 JN
TCDD TEQ Bird	pg/g			7.88
TCDD TEQ Fish	pg/g			5.32
TCDD TEQ HH	pg/g	4.8		5.87

Bold values indicate detects. Highlighted values indicate exceedance of the Human Health Risk Assessment (HHRA) screening level. Italicized values indicate exceedance of the Ecological Risk Assessment (ERA) screening level.

Underlined values indicate exceedance of the BTV Statistic.

EN= Essential Nutrient

AVS = Acid Volatile Sulfide SEM = Simultaneously Extracted Metals

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

 J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the

sample and meet quality control criteria. The presence or absence of the analyte cannot be

verified.

N = Normal

FD = Field Duplicate

HHRA and ERA screening values provided for detected compounds or compound sums where applicable

(a) RSL Table, May 2018 Residential Soil [ELCR = 1E-6, HQ=0.1]

pg/g = picograms per gram

												Location ID	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C
												Sample Date	6/21/2017 8:20:00 AM	6/21/2017 8:25:00 AM	6/21/2017 8:30:00 AM	6/21/2017 8:35:00 AM	6/21/2017 8:40:00 AM	6/21/2017 8:45:00 AM	6/21/2017 8:47:00 AM	6/21/2017 8:50:00 AM
												Sample ID	SED1.5C00BN	SED1.5C00CN	SED1.5C01AN	SED1.5C01BN	SED1.5C01CN	SED1.5C02AN	SED1.5C02AR	SED1.5C02BN
												Depth	0.33 - 0.67 ft	0.67 - 1 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft	2 - 2.33 ft	2.33 - 2.67 ft
												Туре	N	N	N	N	N	N	FD	N
					Max	Min	Mean	Median	Max	Count	Count									
Analyte	Unit	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total									
Total Organic Carbon	mg/kg	LKTOC	Т	7440-44-0	63000	4200	27000	20000	SED6.5E	16	16									
Cesium-137	pCi/g	HASL300,4.5.2.3	Т	10045-97-3	0.474	0.0204	0.111	0.0786	SED7E	30	65		0.0397	0.0593	0.045	0.0712	0.109	0.0939		0.0831
Radium-226	pCi/g	HASL300,4.5.2.3	Т	13982-63-3	2.12	0.431	1.21	1.26	SED1.5C	65	65		0.994	0.836	0.882	0.933	1.22	1.19		0.975
Polonium-210	pCi/g	PO-01-RC MOD	T	13981-52-7	2.89	0.259	1.27	1.21	SED1.5C	65	65		1.54	1.79	1.53	1.49	2.89 J	2.60 J		2.12
Aluminum	mg/kg	SW6020A	Т	7429-90-5	15000	1100	8000	8100	SED6.5E	83	83		6300	6500	6100	7200	11000	7200	7900	6700
Antimony	mg/kg	SW6020A	Т	7440-36-0	22	0.049	1.1	0.5	SED6.5E	82	83		0.48 J	0.55 J	0.46 J	2.5 J	0.50 J	0.48 J	0.43 J	0.58 J
Arsenic	mg/kg	SW6020A	Т	7440-38-2	27	0.95	6.7	5.4	SED7E	83	83		3.9	4.1	4.0	3.7	5.1	3.3 J	3.2 J	4.1 J
Barium	mg/kg	SW6020A	T	7440-39-3	220	14	89	92	SED6.5E	83	83		59	63	62	69	93	75	74	82
Beryllium	mg/kg	SW6020A	Т	7440-41-7	2.2	0.18	1.2	1.2	SED7E	83	83		0.90	0.97	0.94	1.0	1.4	1.1	1.2	1.0
Cadmium	mg/kg	SW6020A	Т	7440-43-9	60	0.13	2.4	1.2	SED6.5E	83	83		0.93	1.0	1.1	0.86	1.2	1.2	1.3	1.5
Calcium	mg/kg	SW6020A	T	7440-70-2	7100	320	1700	1500	SED7E	83	83		1800	1900	1800	2100	2800	2500	2700	2400
Chromium	mg/kg	SW6020A	Т	7440-47-3	200	5.2	50	37	SED5B	83	83		29 J	32 J	30 J	33 J	41 J	21 J	20 J	57 J
Cobalt	mg/kg	SW6020A	T	7440-48-4	27	2.5	12	12	SED1B	83	83		13	15	15	15	18	8.9 J-	8.5 J-	11 J-
Copper	mg/kg	SW6020A	T	7440-50-8	200	4.8	46	41	SED6.5E	83	83		37 J	46 J	41 J	39 J	50 J	31 J	29 J	41 J
Iron	mg/kg	SW6020A	T	7439-89-6	33000	3300	19000	18000	SED5B	83	83		15000	17000	16000	18000	25000	15000	14000	17000
Lead	mg/kg	SW6020A	T	7439-92-1	1800	6.7	120	75	SED6.5E	83	83		58	75	68	72	82	93	90	130
Magnesium	mg/kg	SW6020A	T	7439-95-4	4600	310	1700	1500	SED7E	83	83		2400	2600	2200	2800	3300	2500 J	2700 J	2500 J
Manganese	mg/kg	SW6020A	T	7439-96-5	500	36	230	220	SED5B	83	83		140 J	160 J	140 J	180 J	410 J	240	260	200
Nickel	mg/kg	SW6020A	T	7440-02-0	180	5.4	25	20	SED6.5E	83	83		26	30	28	29	35	20 J-	19 J-	25 J-
Potassium	mg/kg	SW6020A	T	7440-09-7	1400	120	830	890	SED1.5C	83	83		990	1100	920	1200	1300	1100	1200	1000
Selenium	mg/kg	SW6020A	T	7782-49-2	2.9	0.3	1.1	0.99	SED6.5E	82	83		0.71 J	0.85 J	0.92 J	0.82 J	1.2 J	0.61 J	0.65 J	0.70 J
Silver	mg/kg	SW6020A	T	7440-22-4	31	0.022	1.5	0.66	SED6.5E	83	83		0.26	0.32	0.29	0.27	0.46	0.40	0.50	0.72
Sodium	mg/kg	SW6020A	T	7440-23-5	570	17	110	81	SED1.5C	83	83		110	100	93	92	110	77	86	86
Thallium	mg/kg	SW6020A	T	7440-28-0	0.69	0.037	0.23	0.2	SED7E	83	83		0.16	0.16	0.16	0.16	0.22	0.20	0.19	0.22
Vanadium	mg/kg	SW6020A	T	7440-62-2	810	6.7	54	34	SED6.5E	83	83		30	33	30	32	43	21 J	20 J	61 J
Zinc	mg/kg	SW6020A	T	7440-66-6	3600	22	240	160	SED6.5E	83	83		270	220	210	190	220	160	150	220
Mercury	mg/kg	SW7471B	Т	7439-97-6	2.2	0.023	0.38	0.32	SED6.5E	83	83		0.14 J	0.14 J	0.15 J	0.18 J	0.24 J	0.18 J	0.19	0.23 J

		Location ID	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C
		Sample Date	6/21/2017 8:52:00 AM	6/21/2017 8:55:00 AM	6/21/2017 8:57:00 AM	6/21/2017 9:00:00 AM	6/21/2017 9:05:00 AM	6/21/2017 9:10:00 AM	6/21/2017 9:15:00 AM	6/21/2017 9:20:00 AM	6/21/2017 9:25:00 AM	6/21/2017 9:30:00 AM	6/21/2017 9:35:00 AM	6/21/2017 9:40:00 AM
		Sample ID	SED1.5C02BR	SED1.5C02CN	SED1.5C02CR	SED1.5C03AN	SED1.5C03BN	SED1.5C03CN	SED1.5C04AN	SED1.5C04BN	SED1.5C04CN	SED1.5C05AN	SED1.5C05BN	SED1.5C05CN
		Depth	2.33 - 2.67 ft	2.67 - 3 ft	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft	4 - 4.33 ft	4.33 - 4.67 ft	4.67 - 5 ft	5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft
		Туре	FD	N	FD	N	N	N	N	N	N	N	N	N
Analyte	Unit													
otal Organic Carl	oon mg/kg													
Cesium-137	pCi/g			0.066		0.0905	0.095	0.120	0.107	0.100	0.0741	0.0204	< 0.050 U	< 0.050 U
Radium-226	pCi/g			1.08		1.15	1.13	1.26	1.32	1.41	2.12	1.63	1.28	1.37
Polonium-210	pCi/g			2.18		1.88 J	2.08	2.23 J	1.50 J	1.22	1.21 J	1.02 J	1.00	0.976 J
Numinum	mg/kg		6800	8200	7500	8000	10000	9400	8100	6000	1800	3700	7100	6500
Antimony	mg/kg		0.63 J	0.58 J	0.59 J	0.63 J	0.69 J	0.81 J	0.69 J	0.64 J	0.31 J	1.7 J	0.26 J	0.33 J
Arsenic	mg/kg		3.7 J	4.0 J	3.6 J	5.6	5.4 J	5.1 J	5.7 J	6.9 J	5.0 J	8.6 J	4.4 J	4.8 J
Barium	mg/kg		81	87	85	86	120	98	110	100	42	75	68	69
Beryllium	mg/kg		1.2	1.2	1.2	1.2	1.4	1.3	1.2	0.91	0.51	0.85	0.92	0.94
Cadmium	mg/kg		1.4	2.0	1.7	1.7	2.3	2.3	2.2	1.9	0.30	0.39	0.34	0.42
Calcium	mg/kg		2400	2800	2500	2400	2600	1900	2000	1500	660	990	1000	1100
Chromium	mg/kg		38 J	22 J	19 J	39 J	29 J	40	22 J	18 J	11 J	9.5 J	8.6 J	15 J
Cobalt	mg/kg		9.6 J-	10 J-	8.8 J-	16	15 J-	15	11 J-	11 J-	5.5 J-	7.4 J-	6.3 J-	7.4 J-
Copper	mg/kg		35 J	41 J	36 J	51 J	47 J	56 J	37 J	33 J	14 J	24 J	20 J	33 J
ron	mg/kg		15000	17000	14000	19000	20000	24000	15000	11000	3800	9000	11000	12000
.ead	mg/kg		130	120	120	99	190	170	240	190	52	48	35	51
/lagnesium	mg/kg		2400 J	2900 J	2500 J	2800	3700 J	2900	2500 J	2000 J	410 J	650 J	1100 J	1000 J
/langanese	mg/kg		200	220	200	150 J	200	220	180	250	160	130	220	190
lickel	mg/kg		21 J-	26 J-	21 J-	36	34 J-	39	26 J-	22 J-	8.7 J-	10 J-	8.2 J-	8.8 J-
Potassium	mg/kg		1000	1100	1000	990	1400	1100	1100	910	250	410	780	710
Selenium	mg/kg		0.52 J	0.73 J	0.68 J	1.3 J	0.91 J	0.98	0.80 J	0.71 J	0.39 J	0.67 J	0.53 J	0.70 J
ilver	mg/kg	·	0.60	0.76	0.69	0.54	1.2	0.97	0.82	0.61	0.11	0.22	0.28	0.21
odium	mg/kg		81	94	83	91	100	81	84	71	62	58	64	570
hallium	mg/kg		0.24	0.21	0.21	0.19	0.24	0.20	0.22	0.18	0.070	0.12	0.17	0.17
anadium	mg/kg		42 J	24 J	22 J	45	36 J	51	27 J	26 J	23 J	25 J	12 J	23 J
linc	mg/kg		190	220	190	280	280	300	240	180	46	58	68	100
Mercury	mg/kg		0.25	0.26 J	0.24	0.22 J+	0.36 J	0.36 J	0.26 J	0.12 J	0.096	0.21	0.42	0.35

				T								<u></u>		_
		Location ID	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED10B	SED1B	SED2C	SED3C	SED3C	SED4B	SED5B	SED5B
		Sample Date	6/21/2017 9:45:00 AM	6/21/2017 9:50:00 AM	6/21/2017 9:55:00 AM	6/21/2017 10:00:00 AM	11/11/2013 1:59:00 PM	11/6/2013 3:05:00 PM	11/6/2013 9:54:00 AM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/12/2013 12:16:00 PM	6/20/2017 7:50:00 AM	6/20/2017 7:55:00 AM
		Sample ID	SED1.5C06AN	SED1.5C06BN	SED1.5C06CN	SED1.5C07AN	SED10B01N	SED1B01N	SED2C01N	SED3C01N	SED3C01R	SED4B01N	SED5B00BN	SED5B00CN
		Depth	6 - 6.33 ft	6.33 - 6.67 ft	6.67 - 7 ft	7 - 7.33 ft	1 - 3 ft	1 - 3 ft	1 - 3 ft	1 - 3 ft	1 - 3 ft	1 - 3 ft	0.33 - 0.67 ft	0.67 - 1 ft
		Туре	N	N	N	N	N	N	N	N	FD	N	N	N
Analyte	Unit													
Total Organic Carbon	n mg/kg						20000	55000	15000	30000 J	8400 J	19000 J		
Cesium-137	pCi/g		< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U							0.0643	< 0.050 U
Radium-226	pCi/g		1.33	1.08	1.23	0.773							0.765	1.12
Polonium-210	pCi/g		1.08	1.06	0.847	0.602							1.89	1.26 J
Aluminum	mg/kg		7700	10000	10000	8800	2200	14000	8100	7100	4600	4100	9200	8800
Antimony	mg/kg		0.30 J	0.28 J	0.40 J	0.34 J	0.15 J-	< 0.19 U	0.22 J-	0.43 J	0.14 J	0.14 J-	0.88	0.36
Arsenic	mg/kg		4.5 J	3.3 J	5.4 J	3.0 J	1.1 J-	1.8	2.5	2.1 J	1.2 J	2.5 J-	5.5	5.5
Barium	mg/kg		85	96	100	86	27	130	72	79 J	42 J	76	96	80
Beryllium	mg/kg		1.3	1.3	1.5	1.4	0.41	1.7	0.99	0.82	0.55	0.70	1.3	1.1
Cadmium	mg/kg		0.56	0.46	0.74	0.44	0.25	0.53	0.83	1.5 J	0.47 J	0.72	0.69	0.68
Calcium	mg/kg		1300	1400	1500	1500	1100	1300	1400	2300 J	880 J	1700	3600	1700
Chromium	mg/kg		9.5 J	12 J	20 J	9.0 J	12 J+	24	41 J+	30	18	37 J+	41	55
Cobalt	mg/kg		8.0 J-	7.8 J-	9.0 J-	7.2 J-	7.7	27	11	11	7.3	9.6	20	14
Copper	mg/kg		33 J	23 J	61 J	21 J	14	18	34 J+	33 J	14 J	25	57	39
Iron	mg/kg		13000	16000	20000	15000	9000	19000	21000	17000	12000	13000	28000	26000
Lead	mg/kg		44	43	68	46	28	15	87	150 J	62 J	95	49	50
Magnesium	mg/kg		1400 J	1700 J	1500 J	1500 J	1100	2600	1700	2700	2100	1200	3300	1800
Manganese	mg/kg		310	340	310	330	98 J+	250	200	230	180	160 J+	390	270
Nickel	mg/kg		10 J-	10 J-	12 J-	9.4 J-	13	32	18	26 J	15 J	14	36	21
Potassium	mg/kg		930	1200	1000	1100	590	980	950	960	1200	720	1100	1100
Selenium	mg/kg		0.75 J	0.61 J	0.82 J	0.57 J	0.32 J-	1.2	0.99	0.73	0.39	0.58 J-	1.2	1.3
Silver	mg/kg		0.41	0.25	0.35	0.24	0.046 J	0.087 J	0.81	0.61 J	0.20 J	0.39	0.24	0.67
Sodium	mg/kg		58	570	61	570	47	67	81	120	60	49	250	110
Thallium	mg/kg		0.19	0.23	0.25	0.20	0.077	0.17	0.19	0.14	0.12	0.13	0.19	0.18
Vanadium	mg/kg		13 J	17 J	30 J	14 J	10	19	30	28	18	22	40	40
Zinc	mg/kg		99	95	200	78	66 J	78	110	200 J	81 J	110 J	240	150
Mercury	mg/kg		0.44	0.44	0.56	0.41	0.026 J	0.064	0.18	0.16 J	0.078 J	0.15 J	0.23	0.32

		Location ID	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B
		Sample Date	6/20/2017 8:00:00 AM	6/20/2017 8:02:00 AM	6/20/2017 8:05:00 AM	6/20/2017 8:07:00 AM	6/20/2017 8:10:00 AM	6/20/2017 8:12:00 AM	6/20/2017 8:15:00 AM	6/20/2017 8:20:00 AM	6/20/2017 8:25:00 AM	6/20/2017 8:30:00 AM	6/20/2017 8:35:00 AM	6/20/2017 8:40:00 AM
		Sample ID	SED5B01AN	SED5B01AR	SED5B01BN	SED5B01BR	SED5B01CN	SED5B01CR	SED5B02AN	SED5B02BN	SED5B02CN	SED5B03AN	SED5B03BN	SED5B03CN
		Depth	1 - 1.33 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.33 - 1.67 ft	1.67 - 2 ft	1.67 - 2 ft	2 - 2.33 ft	2.33 - 2.67 ft	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft
		Type	N	FD	N	FD	N	FD	N	N	N	N	N	N
		- ''												
Analyte	Unit													
Total Organic Carbon	mg/kg													
Cesium-137	pCi/g		< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U
Radium-226	pCi/g		1.26	1.21	1.32	1.33	1.28	1.38	1.35	1.40	1.25	1.33	1.31	1.21
Polonium-210	pCi/g		1.27 J	1.17	1.45 J	1.19 J	0.937 J	1.13 J	1.31 J	1.61 J	1.15 J	1.06 J	1.15 J	1.34 J
Aluminum	mg/kg		13000		13000		12000		12000	13000	12000	13000	11000	10000
Antimony	mg/kg		0.54		0.47		0.41		0.32	0.39	0.38	0.52	0.46	0.60
Arsenic	mg/kg		9.1		7.9		7.4		6.6	8.0	7.6	8.5	6.7	3.0
Barium	mg/kg		140		130		110		86	110	100	110	97	99
Beryllium	mg/kg		1.5		1.5		1.4		1.5	1.6	1.5	1.6	1.3	1.3
Cadmium	mg/kg		1.8		1.4		1.3		0.73	1.2	1.2	1.7	1.3	1.1
Calcium	mg/kg		1500		1500		1500		1400	1200	1200	1200	1500	1300
Chromium	mg/kg		200		200		130		79	120	110	59	60	31
Cobalt	mg/kg		16		15		14		14	15	15	18	13	10
Copper	mg/kg		71		55		60		45	55	55	81	68	41
Iron	mg/kg		32000		30000		29000		33000	30000	29000	32000	27000	20000
Lead	mg/kg		86		80		68		47	60	57	73	70	69
Magnesium	mg/kg		1500		1500		1500		1500	1700	1500	1600	1300	1400
Manganese	mg/kg		300		290		280		260	190	220	270	360	290
Nickel	mg/kg		20		19		19		19	21	20	22	16	12
Potassium	mg/kg		990		980		990		1000	1100	970	1000	840	850
Selenium	mg/kg		1.9		1.8		1.5		1.7	2.7	2.4	1.5	1.6	0.64
Silver	mg/kg		2.9		2.1		1.7		0.82	1.5	1.4	2.0	1.6	1.1
Sodium	mg/kg		92		84		69		52	49	47	57	43	40
Thallium	mg/kg		0.26		0.26		0.22		0.21	0.24	0.23	0.25	0.21	0.21
Vanadium	mg/kg		55		55		47		48	51	49	50	40	33
Zinc	mg/kg		300		230		220		140	200	190	240	180	100
Mercury	mg/kg		0.77		0.69		0.51		0.30	0.41	0.41	0.52	0.56	0.43

		Location ID	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED6.5E	SED6.5E	SED6B	SED7B	SED7E
		Sample Date	6/20/2017 8:45:00 AM	6/20/2017 8:50:00 AM	6/20/2017 8:55:00 AM	6/20/2017 9:00:00 AM	6/20/2017 9:05:00 AM	6/20/2017 9:10:00 AM	6/20/2017 9:15:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:25:00 AM	11/13/2013 12:40:00 PM	11/13/2013 10:51:00 AM	6/22/2017 9:05:00 AM
		Sample ID	SED5B04AN	SED5B04BN	SED5B04CN	SED5B05AN	SED5B05BN	SED5B05CN	SED5B06AN	SED6.5E01N	SED6.5E01R	SED6B01N	SED7B01N	SED7E00BN
		Depth	4 - 4.33 ft	4.33 - 4.67 ft	4.67 - 5 ft	5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft	1 - 3 ft	1 - 3 ft	1 - 3 ft	1 - 3 ft	0.33 - 0.67 ft
		Type	N	N	N	N	N	N	N	N	FD	N	N	N
Analyte	Unit													
Total Organic Carbon	mg/kg									58000	63000	26000	42000	
Cesium-137	pCi/g		< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U					0.0477
Radium-226	pCi/g		1.25	1.41	1.20	0.902	0.682	0.606	0.431					1.30
Polonium-210	pCi/g		1.11	1.23 J	1.00 J	0.845	0.582	0.586	0.259 J					1.01
Aluminum	mg/kg		9100	9700	9000	12000	3700	4100	2100	15000	14000	8100	8100	1700
Antimony	mg/kg		0.50	0.40	0.43	0.48	0.091 J	0.11 J	0.049 J	22 J-	19 J-	0.46 J-	0.33 J-	0.45 J
Arsenic	mg/kg		6.3	5.8	5.7	6.7	1.7	1.9	0.95	13 J-	16 J-	3.2 J-	4.3 J-	3.3 J
Barium	mg/kg		94	96	90	110	40	44	22	210	220	98	100	27
Beryllium	mg/kg		1.4	1.4	1.3	1.7	0.64	0.69	0.41	1.2	1.3	1.1	1.2	0.34
Cadmium	mg/kg		0.91	0.78	0.71	0.80	0.20	0.22	0.13	60 J-	55 J-	1.3	1.0	0.58 J
Calcium	mg/kg		1300	1200	1200	1400	570	600	320	3300	3100	1600	1800	1200 J
Chromium	mg/kg		25	25	25	27	8.4	9.7	5.2	74	75	110	65	14
Cobalt	mg/kg		14	14	14	18	9.3	9.2	6.1	21	23	11	12	2.5
Copper	mg/kg		79	63	65	74	12	15	4.8	200	200	36	41	18 J
Iron	mg/kg		24000	23000	22000	27000	9000	9900	5500	26000	26000	20000	21000	3300
Lead	mg/kg		72	60	59	64	9.7	13	6.7	1800	1600	61	63	40
Magnesium	mg/kg		1300	1400	1300	1700	590	640	310	3900	3500	1500	1300	1300 J
Manganese	mg/kg		350	320	360	500	160	170	100	480	450	310	380	36
Nickel	mg/kg		17	18	16	21	9.2	9.3	5.4	150 J-	180 J-	16	15	25 J
Potassium	mg/kg		820	900	820	1000	350	380	200	1200	1100	900	710	200
Selenium	mg/kg	ĺ	0.82	1.2	1.1	1.2	0.37	0.42	0.33 J	2.9 J-	2.8 J-	1.1 J-	1.2 J-	0.42 J
Silver	mg/kg		0.95	0.53	0.59	0.51	0.072 J	0.080	0.022 J	31 J-	25 J-	1.4	0.91	0.19 J
Sodium	mg/kg		38	38	40	51	22 J	24 J	17 J	440	390	72	55	58 J
Thallium	mg/kg		0.20	0.20	0.18	0.23	0.073	0.080	0.042 J	0.34 J-	0.36 J-	0.20	0.24	0.12
Vanadium	mg/kg	ĺ	34	34	32	38	11	14	6.7	590	810	26	31	59 J
Zinc	mg/kg		180	160	160	190	43	49	22	3600	3300	150 J-	130 J-	55 J
Mercury	mg/kg		0.99	1.6	0.75	0.83	0.10	0.14	0.023	2.2 J	1.9 J	0.36 J-	0.37 J-	0.11 J

		Location ID	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
		Sample Date	6/22/2017 9:10:00 AM	6/22/2017 9:15:00 AM	6/22/2017 9:20:00 AM	6/22/2017 9:25:00 AM	6/22/2017 9:30:00 AM	6/22/2017 9:32:00 AM	6/22/2017 9:35:00 AM	6/22/2017 9:37:00 AM	6/22/2017 9:40:00 AM	6/22/2017 9:45:00 AM	6/22/2017 9:50:00 AM	6/22/2017 9:55:00 AM
		Sample ID	SED7E00CN	SED7E01AN	SED7E01BN	SED7E01CN	SED7E02AN	SED7E02AR	SED7E02BN	SED7E02BR	SED7E02CN	SED7E03AN	SED7E03BN	SED7E03CN
		Depth	0.67 - 1 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft	2 - 2.33 ft	2.33 - 2.67 ft	2.33 - 2.67 ft	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft
		Туре	N	N	N	N	N	FD	N	FD	N	N	N	N
Analyte	Unit													
Total Organic Carbon	0 0													
Cesium-137	pCi/g		0.071	0.270	0.283	0.268	0.474		0.211		0.120	0.121	0.0628	0.0481
Radium-226	pCi/g		0.816	1.52	2.01	1.34	1.29		1.47		1.22	1.16	1.37	1.33
Polonium-210	pCi/g		0.938	1.31	1.26 J	1.41 J	1.45 J		1.30		1.52 J	1.17	1.08	0.933
Aluminum	mg/kg		2200	7300	11000	11000	10000	10000	9600	10000	8300	9200	8300	5400
Antimony	mg/kg		0.58 J	0.89 J	0.82 J	0.87 J	0.71 J	0.55 J	0.76 J	0.70 J	0.79 J	0.53 J	1.0 J	1.4 J
Arsenic	mg/kg		6.0 J	21 J	27 J	25 J	13 J	12 J	13 J	14 J	10 J	9.5 J	11 J	13 J
Barium	mg/kg		39	93	110	100	110	110	110	110	98	96	100	100
Beryllium	mg/kg		0.40	1.6	2.2	2.0	1.6	1.7	1.5	1.7	1.3	1.5	1.4	1.1
Cadmium	mg/kg		0.75 J	1.1 J	1.6 J	1.4 J	1.7 J	1.6 J	1.8 J	1.7 J	1.4 J	1.3	2.0 J	1.2 J
Calcium	mg/kg		1600 J	1800 J	1400 J	1400 J	1400 J	1600 J	1600 J	1700 J	1500 J	1800 J	2000 J	1500 J
Chromium	mg/kg		11	45	85	87	85	72	99	71	110	69	84	53
Cobalt	mg/kg		2.9	11	18	17	13	14	13	13	11	12	12	11
Copper	mg/kg		33 J	63 J	71 J	66 J	53 J	51 J	64 J	65 J	47 J	53 J	60 J	44 J
Iron	mg/kg		4200	16000	24000	25000	26000	26000	23000	26000	20000	24000	22000	17000
Lead	mg/kg		70	93	140	140	110	110	110	130	88	110	120	120
Magnesium	mg/kg		1500 J	1500 J	1500 J	1600 J	1500 J	1400 J	1700 J	1700 J	1200 J	1500	1600 J	850 J
Manganese	mg/kg		49	120	200	200	220	200	190	210	160	220	200	210
Nickel	mg/kg		26 J	33 J	33 J	30 J	23 J	22 J	31 J	27 J	25 J	21	50 J	19 J
Potassium	mg/kg		210	590	800	840	890	920	790	880	680	780	670	510
Selenium	mg/kg		0.40 J	1.5 J	2.1 J	1.4 J	1.2 J	1.4 J	1.3 J	1.7 J	0.95 J	1.6 J	1.5 J	1.3 J
Silver	mg/kg		0.41 J	0.59 J	1.3 J	1.1 J	1.6 J	1.6 J	2.1 J	2.2 J	1.4 J	1.5 J	1.5 J	1.3 J
Sodium	mg/kg		81 J	130 J	150 J	140 J	130 J	120 J	130 J	130 J	92 J	110 J	110 J	85 J
Thallium	mg/kg		0.14	0.53	0.69	0.62	0.39	0.39	0.42	0.44	0.29	0.32	0.33	0.35
Vanadium	mg/kg		57 J	83 J	59 J	61 J	53 J	50 J	65 J	57 J	54 J	49	99 J	46 J
Zinc	mg/kg		78 J	150 J	230 J	240 J	200 J	190 J	220 J	210 J	170 J	150 J	210	150 J
Mercury	ma/ka		0.11 J	0.24 J	0.44 J	0.32 J	0.43 J	0.44 J	0.54 J	0.51 J	0.45 J	0.38 J	0.35 J	0.31 J

		Location ID	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
		Sample Date	6/22/2017 10:00:00 AM	6/22/2017 10:05:00 AM	6/22/2017 10:10:00 AM	6/22/2017 10:15:00 AM	6/22/2017 10:20:00 AM	6/22/2017 10:25:00 AM	6/22/2017 10:30:00 AM	6/22/2017 10:35:00 AM	6/22/2017 10:40:00 AM	6/22/2017 10:45:00 AM	6/22/2017 10:50:00 AM
		Sample ID	SED7E04AN	SED7E04BN	SED7E04CN	SED7E05AN	SED7E05BN	SED7E05CN	SED7E06AN	SED7E06BN	SED7E06CN	SED7E07AN	SED7E07BN
		Depth	4 - 4.33 ft	4.33 - 4.67 ft	4.67 - 5 ft	5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft	6.33 - 6.67 ft	6.67 - 7 ft	7 - 7.33 ft	7.33 - 7.67 ft
		Туре	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit												
Γotal Organic Carbon	mg/kg												
Cesium-137	pCi/g		0.0363	0.0442	< 0.050 U	0.0331	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U
Radium-226	pCi/g		1.09	0.828	1.27	1.42	1.30	1.34	1.41	1.26	1.18	0.905	1.10
Polonium-210	pCi/g		1.23	0.744	1.29 J	1.26 J	1.11 J	1.41 J	1.27 J	1.05 J	0.686 J	0.668 J	1.08 J
Aluminum	mg/kg		6600	6400	6500	9600	8200	8600	9500	8700	5200	7400	6000
Antimony	mg/kg		0.98 J	0.65 J	0.79 J	0.85 J	0.85 J	0.85 J	0.63 J	0.25 J	1.3 J	0.24 J	0.70 J
Arsenic	mg/kg		12 J	8.0 J	12 J	8.8 J	9.4 J	9.2 J	7.7 J	4.4 J	11 J	3.3 J	8.9 J
Barium	mg/kg		110	88	110	120	120	120	110	92	80	82	78
Beryllium	mg/kg		1.1	0.92	1.2	1.5	1.4	1.4	1.6	1.3	1.0	0.98	0.99
Cadmium	mg/kg		1.7 J	1.3 J	1.5 J	1.5 J	1.2 J	1.3 J	0.74 J	0.25 J	0.42 J	0.16 J	0.79 J
Calcium	mg/kg		1600 J	7100 J	1600 J	1800 J	1500 J	1600 J	1200 J	880 J	1000 J	710 J	1200 J
Chromium	mg/kg		69	67	140	150	100	72	39	21	23	19	41
Cobalt	mg/kg		10	8.6	9.4	13	12	13	14	15	11	8.8	12
Copper	mg/kg		53 J	49 J	48 J	46 J	45 J	48 J	55 J	18 J	26 J	17 J	40 J
ron	mg/kg		19000	17000	18000	24000	20000	22000	20000	17000	12000	14000	16000
_ead	mg/kg		110	76	75	81	81	89	85	30	170	27	69
Magnesium	mg/kg		1100 J	4600 J	930 J	1300 J	1100 J	1200 J	1200 J	1200 J	760 J	950 J	930 J
Manganese	mg/kg		240	250	200	350	220	320	290	300	160	210	280
Nickel	mg/kg		19 J	21 J	15 J	16 J	17 J	17 J	18 J	17 J	14 J	11 J	14 J
Potassium	mg/kg		600	540	580	820	720	760	700	610	450	530	570
Selenium	mg/kg		1.4 J	1.1 J	1.1 J	1.2 J	1.4 J	1.3 J	1.3 J	0.99 J	1.3 J	0.98 J	1.2 J
Silver	mg/kg	İ	1.9 J	1.6 J	2.4 J	1.7 J	1.2 J	1.1 J	0.53 J	0.13 J	0.23 J	0.12 J	0.66 J
Sodium	mg/kg	İ	86 J	73 J	75 J	87 J	85 J	81 J	100 J	99 J	86 J	91 J	75 J
- Thallium	mg/kg		0.33	0.20	0.35	0.29	0.28	0.29	0.24	0.20	0.27	0.16	0.22
/anadium	mg/kg		46 J	48 J	41 J	40 J	39 J	38 J	38 J	29 J	25 J	27 J	28 J
Zinc	mg/kg		180 J	160 J	160 J	160 J	160 J	160 J	140 J	51 J	81 J	41 J	120 J
Mercury	mg/kg		0.59 J	0.50 J	0.55 J	0.49 J	0.37 J	0.48 J	0.26 J	0.16 J	0.15 J	0.21 J	0.47 J

Inorganic Concentrations in Waterside Investigation Area Subsurface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

		Location ID	SED7E	SED7F	SED8C	SED9C	SED9C	WSED1	WSED2
		Sample Date	6/22/2017 10:55:00 AM	11/25/2013 12:00:00 PM	11/14/2013 12:52:00 PM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/15/2013 11:16:00 AM	11/15/2013 12:14:00 PM
		Sample ID	SED7E07CN	SED7F01N	SED8C01N	SED9C01N	SED9C01R	WSED101N	WSED201N
		Depth	7.67 - 8 ft	1 - 3 ft	1 - 3 ft	1 - 3 ft	1 - 3 ft	1 - 3 ft	1 - 3 ft
	1	Туре	N	N	N	N	FD	N	N
Analyte	Unit								
Total Organic Carbon	mg/kg			15000	18000	9700 J	4200 J	18000	28000
Cesium-137	pCi/g		< 0.050 U						
Radium-226	pCi/g		1.28						
Polonium-210	pCi/g		1.04 J						
Aluminum	mg/kg		7300	1100	7900	4000	2500	6900	5900
Antimony	mg/kg		0.45 J	0.81 J-	0.15 J-	0.22 J-	0.10 J-	0.38 J-	0.46 J-
Arsenic	mg/kg		5.3 J	2.0 J-	3.7 J-	2.0 J-	1.7 J-	2.4	4.0 J-
Barium	mg/kg		83	14	81	49 J+	26 J+	74	82
Beryllium	mg/kg		1.2	0.18	1.0	0.62	0.37	0.89	0.82 J
Cadmium	mg/kg		0.83 J	0.55 J-	1.3	0.66	0.39	1.3	1.7
Calcium	mg/kg		1000 J	2200	1400 J-	800 J-	480 J-	1600 J	1300
Chromium	mg/kg		42	17	60	33 J+	21 J+	30 J+	31
Cobalt	mg/kg		13	3.8	11	7.3 J	3.7 J	12	11
Copper	mg/kg		35 J	45	41	16	15	39	41
Iron	mg/kg		18000	8500	19000	11000	7300	17000	16000
Lead	mg/kg		48	35	94	98 J	57 J	130 J	160 J
Magnesium	mg/kg		1100 J	2300	1100	1300	910	2200	1900
Manganese	mg/kg		360	83	250	120	73	200	180
Nickel	mg/kg		15 J	58 J-	16	13	8.2	28	46 J-
Potassium	mg/kg		670	120	740	550	360	990	980
Selenium	mg/kg		0.96 J	0.63 J-	1.0 J-	0.30 J	< 0.36 U	0.85 J-	0.88 J-
Silver	mg/kg		0.63 J	0.15 J-	1.5	0.32	0.15	0.69 J	1.6 J
Sodium	mg/kg		80 J	55	51 J-	55	32	110	74
Thallium	mg/kg		0.19	0.037 J-	0.18 J-	0.10	0.063 J	0.14	0.17
Vanadium	mg/kg		28 J	110	30	20 J+	19 J+	28	91
Zinc	mg/kg		110 J	100	160	100 J+	65 J+	200 J	210
Mercury	mg/kg		0.31 J	0.055 J	0.37 J+	0.12	0.098	0.16	0.12

Notes

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the

sample and meet quality control criteria. The presence or absence of the analyte cannot be

verified. N = Normal

FD = Field Duplicate

mg/kg = milligrams per kilogram

pCi/g = picocuries per gram

													Location ID	SED1.5B	SED1.5B	SED1.5B	SED1.5B	SED1.5B	SED1.5B
													Sample Date	11/6/2013 12:13:00 PM	11/6/2013 12:13:00 PM	11/6/2013 12:13:00 PM	11/6/2013 12:13:00 PM	6/15/2017 10:10:00 AM	6/15/2017 10:20:00 AM
													Sample ID	SED1.5B01N	SED1.5B03N	SED1.5B05N	SED1.5B07N	SED1.5B02FN	SED1.5B04FN
													Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft
													Туре	N	N	N	N	N	N
Analyte	Unit	Method	Fraction	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count Detect	Count Reject	Count Total							
Total Petroleum Hydrocarbons (C9-C44)	mg/kg M	18015D	N	TPH	5860	37.6	2590	2700	SED7D	67		67						1910	2380
Gasoline Range Organics (C6-C10)		W8015B	N	8006-61-9	1500	1500	1500	1500	SED4.5B	1		1							
Diesel Range Organics (C10-C20)		W8015C DRO	N	C10C20	740	13	240	220	SED5B	68		68							
Oil Range Organics (C20-C36)		W8015C DRO	N	C20C36	2400	68	860	810	SED1.5C	68		68							
1,1,1-Trichloroethane		W8260B	N	71-55-6								17							
1,1,2,2-Tetrachloroethane		W8260B	N	79-34-5	2.7	2.7	2.7	2.7	SED4.5B	1		17							
1,1,2-Trichloro-1,2,2-trifluoroethane		W8260B	N	76-13-1								17							
1,1,2-Trichloroethane		W8260B	N	79-00-5								17							
1,1-Dichloroethane		W8260B	N	75-34-3								17							
1,1-Dichloroethane		N8260B	N	75-34-3	1		 	1	 	}		17	 						
1,2,3-Trichlorobenzene		W8260B W8260B	N	87-61-6					 				-				-		
1,2,4-Trichlorobenzene			N	120-82-1								17							
		N8260B	IN N	96-12-8								17							
1,2-Dibromo-3-chloropropane		W8260B	N		1		-	1	-			17							
1,2-Dibromoethane		N8260B	IN N	106-93-4	1		.	 	ļ	 		17							
1,2-Dichlorobenzene		N8260B	IN	95-50-1					_	ļ		17							
1,2-Dichloroethane		N8260B	N	107-06-2								17							
1,2-Dichloropropane		N8260B	N	78-87-5								17							
1,3-Dichlorobenzene		N8260B	N	541-73-1								17							
1,4-Dichlorobenzene		N8260B	N	106-46-7								17							
1,4-Dioxane		N8260B	N	123-91-1								17							
2-Butanone		W8260B	N	78-93-3	17	4.9	11	11	SED4.5B	2		17							
2-Hexanone		W8260B	N	591-78-6								17							
4-Methyl-2-pentanone	ug/kg SV	W8260B	N	108-10-1								17							
Acetone	ug/kg SV	W8260B	N	67-64-1	86	54	66	57	SED4.5B	3		17							
Benzene	ug/kg SV	W8260B	N	71-43-2								17							
Bromochloromethane	ug/kg SV	W8260B	N	74-97-5								17							
Bromodichloromethane	ug/kg SV	W8260B	N	75-27-4								17							
Bromoform	ug/kg SV	W8260B	N	75-25-2								17							
Bromomethane	ug/kg SV	W8260B	N	74-83-9								17							
Carbon Disulfide		W8260B	N	75-15-0								17							
Carbon Tetrachloride		W8260B	N	56-23-5								17							
Chlorobenzene		W8260B	N	108-90-7								17							
Chloroethane		W8260B	N	75-00-3								17							
Chloroform		W8260B	N	67-66-3	1.1	0.97	1	1	SED6B	2		17					1		
Chloromethane		W8260B	N	74-87-3				1		1		17	† †						
cis-1,2-Dichloroethylene		W8260B	N	156-59-2	1		 	1	 	1		17	 						
cis-1,3-Dichloropropene		W8260B	N	10061-01-5			 	1	 	1		17	 						
Cyclohexane		W8260B	N	110-82-7					 			17							
Dibromochloromethane		W8260B	N	124-48-1			-	1	-	1		17							
Dichlorodifluoromethane		W8260B	N	75-71-8			-		 			17	 						
Ethylbenzene		N8260B	N	100-41-4	1		 	1	 	}			 				-		
Isopropylbenzene		W8260B W8260B	N	98-82-8					 			17	-				-		
			N	XYLMP			 					17	 						
m, p-Xylene		W8260B W8260B	N	79-20-9					 			17	-				-		
Methyl Acetate			N		1		-	1	-			17							
Methyl tert-Butyl Ether (MTBE)		W8260B	IN	1634-04-4					_	ļ		17							
Methylcyclohexane		W8260B	N	108-87-2								17							
Methylene Chloride		W8260B	N	75-09-2								17							
o-Xylene		W8260B	N	95-47-6					ļ			17							
Styrene		N8260B	N	100-42-5					ļ			17							
Tetrachloroethylene		N8260B	N	127-18-4								17							
Toluene	ug/kg SV	W8260B	N	108-88-3			I			Ī		17					1	l	

0.00		,	۰., ـ ـ
Was	hington,	DC 2	20019

													Location ID Sample Date Sample ID Depth	SED1.5B 11/6/2013 12:13:00 PM SED1.5B01N 1 - 3 ft	SED1.5B 11/6/2013 12:13:00 PM SED1.5B03N 3 - 5 ft	SED1.5B 11/6/2013 12:13:00 PM SED1.5B05N 5 - 7 ft	SED1.5B 11/6/2013 12:13:00 PM SED1.5B07N 7 - 9 ft	SED1.5B 6/15/2017 10:10:00 AM SED1.5B02FN 2 - 3 ft	SED1.5B 6/15/2017 10:20:00 AM SED1.5B04FN 4 - 5 ft
													Туре	N	N	N	N	N	N
Analyte	Unit	Method	Fractio	on CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location		Count Reject								
trans-1,2-Dichloroethene	ug/kg	SW8260B	N	156-60-5								17							
trans-1,3-Dichloropropene	ug/kg	SW8260B	N	10061-02-6								17							
Trichloroethene	ug/kg	SW8260B	N	79-01-6								17							
Trichlorofluoromethane	ug/kg	SW8260B	N	75-69-4								17							
Vinyl Chloride	ug/kg	SW8260B	N	75-01-4								17							
Xylenes (total)	ug/kg	SW8260B	N	1330-20-7								17							
1,1'-Biphenyl	ug/kg	SW8270D LL	N	92-52-4	63	12	38	41	SED6.5E	5		17							
1,2,4,5-Tetrachlorobenzene	ug/kg	SW8270D LL	N	95-94-3	1		1			1		17							
2,2'-oxybis(1-Chloropropane)	ug/kg	SW8270D LL	N	108-60-1								17							
2,3,4,6-Tetrachlorophenol	ug/kg	SW8270D LL	N	58-90-2								17							
2,4,5-Trichlorophenol	ug/kg	SW8270D LL	N	95-95-4	1		1	1		1		17							
2,4,6-Trichlorophenol	ug/kg	SW8270D LL	N	88-06-2	1		1	1		1		17							
2,4-Dichlorophenol	ug/kg	SW8270D LL	N	120-83-2	1		1	1		1		17							
2,4-Dimethylphenol	ug/kg	SW8270D LL	N	105-67-9	44	22	31	29	SED3C	4		17							
2,4-Dinitrophenol	ug/kg	SW8270D LL	N	51-28-5	1		1			 		17							
2,4-Dinitrotoluene	ug/kg	SW8270D LL	N	121-14-2	1							17							
2,6-Dinitrotoluene	ug/kg	SW8270D LL	N	606-20-2	1		1			1		17							
2-Chloronaphthalene	ug/kg	SW8270D LL	N	91-58-7								17							
2-Chlorophenol	ug/kg	SW8270D LL	N	95-57-8								17							
2-Methylnaphthalene	ug/kg	SW8270D LL	N	91-57-6	240	4.6	65	51	SED6.5E	16		17							
2-Methylphenol	ug/kg	SW8270D LL	N	95-48-7				· ·	0220.02			17							
2-Nitroaniline	ug/kg	SW8270D LL	N	88-74-4								17							
2-Nitrophenol	ug/kg	SW8270D LL	N	88-75-5								17							
3,3'-Dichlorobenzidine	ug/kg	SW8270D LL	N	91-94-1	 	-	.	1	<u> </u>	 	1	17							
3-Nitroaniline	ug/kg	SW8270D LL	N	99-09-2	1	-				1	'	17							
4,6-Dinitro-2-methylphenol	ug/kg	SW8270D LL	N	534-52-1	 	-	.	1	<u> </u>	 		17							
4-Bromophenyl-phenylether	ug/kg	SW8270D LL	N	101-55-3	 	-	.	1	<u> </u>	 		17							
4-Chloro-3-methylphenol	ug/kg	SW8270D LL	N	59-50-7								17							
4-Chloroaniline	ug/kg ug/kg	SW8270D LL	N	106-47-8	64	13	43	51	SED3C	3									
4-Chlorophenyl-phenylether	ug/kg	SW8270D LL	N	7005-72-3	04	10	40	31	OLDOC			17 17							
4-Methylphenol	ug/kg ug/kg	SW8270D LL	N	106-44-5	930	26	230	51	SED6.5E	9									
4-Nitroaniline			N	100-44-3	930	20	230	31	SED0.3E	9		17							
4-Nitrophenol	ug/kg ug/kg	SW8270D LL SW8270D LL	N	100-01-6	+	-	-	1		1	 	17							
Acenaphthene	ug/kg ug/kg	SW8270D LL SW8270D LL	N	83-32-9	300	0.63	49	42	SED7E	229	 	17		60 J	46 J	32 J	15 J	26 J	71
<u>'</u>			N	208-96-8	280	1.1	79	61	SED7E SED5B	239		310		64 J	46 J 51 J	35 J	15 J	26 J 21 J	27 J
Acetophenone	ug/kg	SW8270D LL	N		+	.	 			+	<u> </u>	310		04 J	21.7	33 J	14 J	ZI J	21 J
Acetophenone	ug/kg	SW8270D LL	IN	98-86-2	39	11	31	37	SED3C WSED1			17							
Anthracene	ug/kg	SW8270D LL	N	120-12-7	2900	1.7	120	90	SED7E	253		310		180	120 J	100 J	36	43 J	97
Atrazine	ug/kg	SW8270D LL	N	1912-24-9								17							
Benzaldehyde	ug/kg	SW8270D LL	N	100-52-7	250	18	100	83	SED6B	9	3	17							
Benzo(a)anthracene	ug/kg	SW8270D LL	N	56-55-3	2100	1.8	290	240	SED1.5C	263		310		710	620	600	110	120	200
Benzo(a)pyrene	ug/kg	SW8270D LL	N	50-32-8	1500	3.8	300	260	SED7E SED1.5C	258		310		710	770	590	100	120	180
Benzo(b)fluoranthene	ug/kg	SW8270D LL	N	205-99-2	2100	4.9	390	320	SED7E SED1.5C	262		310		1000	1300	990	110	170	270
Benzo(g,h,i)perylene	ug/kg	SW8270D LL	N	191-24-2	1200	2.3	290	250	SED7E SED1.5C	260		310		860	870	750	100	100	140
Benzo(k)fluoranthene	ug/kg	SW8270D LL	N	207-08-9	780	1.5	150	120	SED7E	257		310		510	410	330	72	65	72
bis-(2-chloroethoxy)methane	ug/kg	SW8270D LL	N	111-91-1								17							
bis-(2-Chloroethyl)ether	ug/kg	SW8270D LL	N	111-44-4	1		1	1		1		17							
bis-(2-Ethylhexyl)phthalate	ug/kg	SW8270D LL	N	117-81-7	4200	120	990	500	WSED2	16		17							
Butylbenzylphthalate	ug/kg	SW8270D LL	N	85-68-7	170		82	73	WSED1	4		17	 						

													Location ID	SED1.5B	SED1.5B	SED1.5B	SED1.5B	SED1.5B	SED1.5B
													Sample Date	11/6/2013 12:13:00 PM	11/6/2013 12:13:00 PM	11/6/2013 12:13:00 PM	11/6/2013 12:13:00 PM	6/15/2017 10:10:00 AM	6/15/2017 10:20:00 AM
													Sample ID	SED1.5B01N	SED1.5B03N	SED1.5B05N	SED1.5B07N	SED1.5B02FN	SED1.5B04FN
													Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft
													Туре	N	N	N	N	N	N
					Max	Min	Mean	Median	Max	Count	Count								
Analyte	Unit	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Reject	Total							
Caprolactam	ug/kg	SW8270D LL	N	105-60-2								17							
Carbazole		SW8270D LL	N	86-74-8	120	9.8	51	38	SED4B	10		17							
Chrysene		SW8270D LL	N	218-01-9	1900	3.3	380	320	SED7E	263		310		1200	1300	920	140	150	290
Dibenzo(a,h)anthracene		SW8270D LL	N	53-70-3	320	2	68	55	SED1.5C	225		310		220	180	200	27	19 J	37 J
Dibenzofuran		SW8270D LL	N	132-64-9	49	15	34	37	SED3C	3		17							
Diethylphthalate		SW8270D LL	N	84-66-2								17							
Dimethylphthalate	ug/kg	SW8270D LL	N	131-11-3	13	13	13	13	SED10B	1		17							
Di-n-butylphthalate	ug/kg	SW8270D LL	N	84-74-2	42	42	42	42	SED7F	1		17							
Di-n-octylphthalate	ug/kg	SW8270D LL	N	117-84-0	82	32	57	57	SED7B	2		17							
Fluoranthene	ug/kg	SW8270D LL	N	206-44-0	4300	0.79	600	490	SED7E	274		310		1600	1900	1600	250	250	460
Fluorene	ug/kg	SW8270D LL	N	86-73-7	460	1.1	61	53	SED7E	238		310		88 J	89 J	77 J	19 J	26 J	65
Hexachlorobenzene	ug/kg	SW8270D LL	N	118-74-1								17							
Hexachlorobutadiene	ug/kg	SW8270D LL	N	87-68-3								17							
Hexachlorocyclo-pentadiene	ug/kg	SW8270D LL	N	77-47-4							1	17							
Hexachloroethane	ug/kg	SW8270D LL	N	67-72-1								17							
Indeno(1,2,3-cd)pyrene	ug/kg	SW8270D LL	N	193-39-5	1000	2.1	220	180	SED7E	259		310		660	720	530	88	77	110
Isophorone	ug/kg	SW8270D LL	N	78-59-1								17							
Naphthalene	ug/kg	SW8270D LL	N	91-20-3	240	0.77	46	40	SED7E	173		310		< 180 U	< 180 U	< 160 U	< 24 U	< 45 U	< 51 U
Nitrobenzene	ug/kg	SW8270D LL	N	98-95-3								17							
N-Nitroso-di-n-propylamine	ug/kg	SW8270D LL	N	621-64-7								17							
N-Nitrosodiphenylamine	ug/kg	SW8270D LL	N	86-30-6								17							
Pentachlorophenol	ug/kg	SW8270D LL	N	87-86-5								17							
Phenanthrene	ug/kg	SW8270D LL	N	85-01-8	3800	0.84	380	300	SED1.5C	267		310	İ	650	690	580	110	170	390
Phenol	ug/kg	SW8270D LL	N	108-95-2	89	51	70	70	SED6.5E	2		17							
Pyrene	ug/kg	SW8270D LL	N	129-00-0	3600	1.2	590	490	SED1.5C	277		310		1200	1300	1100	210	280	490
BaP-TE	ug/kg	SW8270D LL	N	BAP	2340	0.611	443	376	SED1.5C	265		310	İ	1170	1220	1010	159	177	276
Total High-molecular-weight PAHs		SW8270D LL	N	TOT-PAH-HMW	18000	2	3100	2600	SED7E	279				8700	9400	7600	1200	1400	2200
									SED1.5C			310	l						
Total Low-molecular-weight PAHs	ug/kg	SW8270D LL	N	TOT-PAH-LMW	5700	0.77	680	570	SED7E SED1.5C	271		310		1000	1000	820	190	290	650
Total PAHs (sum 16)	ug/kg	SW8270D LL	N	TOT-PAH	24000	0.04	3800	3200	SED1.5C	281		310		9700	10000	8400	1400	1600	2900

		ı		1		T	1	1	1	1	T		1
		Location ID	SED1.5B	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C
		Sample Date	6/15/2017 10:30:00 AM	6/21/2017 8:20:00 AM	6/21/2017 8:25:00 AM	6/21/2017 8:30:00 AM		6/21/2017 8:40:00 AM	6/21/2017 8:45:00 AM	6/21/2017 8:47:00 AM	6/21/2017 8:50:00 AM	6/21/2017 8:52:00 AM	6/21/2017 8:55:00 AM
		Sample ID	SED1.5B06FN	SED1.5C00BN	SED1.5C00CN	SED1.5C01AN	SED1.5C01BN	SED1.5C01CN	SED1.5C02AN	SED1.5C02AR	SED1.5C02BN	SED1.5C02BR	SED1.5C02CN
		Depth	6 - 7 ft	0.33 - 0.67 ft	0.67 - 1 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft	2 - 2.33 ft	2.33 - 2.67 ft	2.33 - 2.67 ft	2.67 - 3 ft
		Туре	N	N	N	N	N	N	N	FD	N	FD	N
Analyte	Unit												
Total Petroleum Hydrocarbons (C9-C44)	mg/kg		2790				2590						
Gasoline Range Organics (C6-C10)	ug/kg		2.00				2000						
Diesel Range Organics (C10-C20)	mg/kg			73 J	85 J	76 J	84 J	77 J	71 J	71 J	93 J	120 J	150
Oil Range Organics (C20-C36)	mg/kg			700	810	780	950	710	710	640	1000	1000	1300
1,1,1-Trichloroethane	ug/kg			100				1.0		0.0			
1,1,2,2-Tetrachloroethane	ug/kg												
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg												
1,1,2-Trichloroethane	ug/kg												
1,1-Dichloroethane	ug/kg												
1,1-Dichloroethene	ug/kg												
1,2,3-Trichlorobenzene	ug/kg												
1,2,4-Trichlorobenzene	ug/kg												
1,2-Dibromo-3-chloropropane	ug/kg												
1,2-Dibromoethane	ug/kg												
1,2-Dichlorobenzene	ug/kg												
1,2-Dichloroethane	ug/kg												
1,2-Dichloropropane	ug/kg												
1,3-Dichlorobenzene	ug/kg												
1,4-Dichlorobenzene	ug/kg												
1,4-Dioxane	ug/kg												
2-Butanone	ug/kg												
2-Hexanone	ug/kg												
4-Methyl-2-pentanone	ug/kg												
Acetone	ug/kg												
Benzene	ug/kg												
Bromochloromethane	ug/kg												
Bromodichloromethane	ug/kg												
Bromoform	ug/kg												
Bromomethane	ug/kg												
Carbon Disulfide	ug/kg												
Carbon Tetrachloride	ug/kg												
Chlorobenzene	ug/kg												
Chloroethane	ug/kg												
Chloroform	ug/kg												
Chloromethane	ug/kg												
cis-1,2-Dichloroethylene	ug/kg												
cis-1,3-Dichloropropene	ug/kg												
Cyclohexane	ug/kg												
Dibromochloromethane	ug/kg												
Dichlorodifluoromethane	ug/kg												
Ethylbenzene	ug/kg												
Isopropylbenzene	ug/kg												
m, p-Xylene	ug/kg												
Methyl Acetate	ug/kg												
Methyl tert-Butyl Ether (MTBE)	ug/kg												
Methylcyclohexane	ug/kg												
Methylene Chloride	ug/kg												
o-Xylene	ug/kg			1			1						
Styrene	ug/kg												
Tetrachloroethylene	ug/kg												
Toluene	ug/kg												
<u> </u>	59	1		1			1	1	1	1			1

			0554.55	0554.50	0=5/50	055/50	055/50	1 055/50	0=5/50	0=54.50	0=54.50	0554.50	0=5/-50
		Location ID	SED1.5B	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C
		Sample Date	6/15/2017 10:30:00 AM SED1.5B06FN	6/21/2017 8:20:00 AM SED1.5C00BN	6/21/2017 8:25:00 AM SED1.5C00CN	6/21/2017 8:30:00 AM SED1.5C01AN	6/21/2017 8:35:00 AM SED1.5C01BN	6/21/2017 8:40:00 AM SED1.5C01CN	6/21/2017 8:45:00 AM	6/21/2017 8:47:00 AM SED1.5C02AR	6/21/2017 8:50:00 AM SED1.5C02BN	6/21/2017 8:52:00 AM SED1.5C02BR	6/21/2017 8:55:00 AM SED1.5C02CN
		Sample ID Depth	6 - 7 ft	0.33 - 0.67 ft	0.67 - 1 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	SED1.5C02AN 2 - 2.33 ft	2 - 2.33 ft	2.33 - 2.67 ft	2.33 - 2.67 ft	2.67 - 3 ft
		Туре	0 - 7 IL N	0.33 - 0.67 II	0.67 - 1 It N	1 - 1.33 IL N	1.33 - 1.07 II N	1.67 - 2 It N	2 - 2.33 it N	2 - 2.33 it FD	2.33 - 2.07 II	2.33 - 2.07 II FD	2.67 - 3 It N
		Турс	11		14	IV.	11	TV .		1.5		15	IV.
Analyte	Unit												
trans-1,2-Dichloroethene	ug/kg												
trans-1,3-Dichloropropene	ug/kg												
Trichloroethene	ug/kg												
Trichlorofluoromethane	ug/kg												
Vinyl Chloride	ug/kg												
Xylenes (total)	ug/kg												
1,1'-Biphenyl	ug/kg												
1,2,4,5-Tetrachlorobenzene	ug/kg												
2,2'-oxybis(1-Chloropropane)	ug/kg												
2,3,4,6-Tetrachlorophenol	ug/kg												
2,4,5-Trichlorophenol	ug/kg												
2,4,6-Trichlorophenol	ug/kg										_		_
2,4-Dichlorophenol	ug/kg												
2,4-Dimethylphenol	ug/kg												
2,4-Dinitrophenol	ug/kg												
2,4-Dinitrotoluene	ug/kg												
2,6-Dinitrotoluene	ug/kg												
2-Chloronaphthalene	ug/kg												
2-Chlorophenol	ug/kg												
2-Methylnaphthalene	ug/kg												
2-Methylphenol	ug/kg												
2-Nitroaniline	ug/kg												
2-Nitrophenol	ug/kg												
3,3'-Dichlorobenzidine	ug/kg												
3-Nitroaniline	ug/kg												
4,6-Dinitro-2-methylphenol	ug/kg												
4-Bromophenyl-phenylether	ug/kg												
4-Chloro-3-methylphenol	ug/kg												
4-Chloroaniline	ug/kg												
4-Chlorophenyl-phenylether	ug/kg												
4-Methylphenol	ug/kg												
4-Nitroaniline	ug/kg												
4-Nitrophenol	ug/kg												
Acenaphthene	ug/kg		24 J	< 130 U	51 J	< 230 U	68 J	26 J	95 J	8.8 J	41 J	26 J	54 J
Acenaphthylene	ug/kg		< 50 U	< 130 U	51 J	< 230 U	47 J	23 J	< 100 UJ	9.2 J	44 J	14 J	44 J
Acetophenone	ug/kg												
Anthracene	ug/kg		41 J	120 J	150	150 J	200	68	160 J	23 J	130 J	62 J	150 J
Atrazine	ug/kg												
Benzaldehyde	ug/kg												
Benzo(a)anthracene	ug/kg		100	430	750	670	980	410	750 J	140 J	630 J	250 J	960 J
Benzo(a)pyrene	ug/kg		120	550	750	720	1000	410	780 J	180 J	750 J	280 J	980 J
Benzo(b)fluoranthene	ug/kg		140	880	1100	1200	1400	600	1100 J	280 J	1000 J	410 J	1300 J
Benzo(g,h,i)perylene	ug/kg		130	570	990	930	1100	510	870 J	240 J	820 J	310 J	1200 J
Benzo(k)fluoranthene	ug/kg		62	340	400	330	560	230	390 J	99 J	400 J	140 J	550 J
bis-(2-chloroethoxy)methane	ug/kg												
bis-(2-Chloroethyl)ether	ug/kg												
bis-(2-Ethylhexyl)phthalate	ug/kg												
Butylbenzylphthalate	ug/kg												

		Location ID	SED1.5B	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C
	;	Sample Date	6/15/2017 10:30:00 AM	6/21/2017 8:20:00 AM	6/21/2017 8:25:00 AM	6/21/2017 8:30:00 AM	6/21/2017 8:35:00 AM	6/21/2017 8:40:00 AM	6/21/2017 8:45:00 AM	6/21/2017 8:47:00 AM	6/21/2017 8:50:00 AM	6/21/2017 8:52:00 AM	6/21/2017 8:55:00 AM
		Sample ID	SED1.5B06FN	SED1.5C00BN	SED1.5C00CN	SED1.5C01AN	SED1.5C01BN	SED1.5C01CN	SED1.5C02AN	SED1.5C02AR	SED1.5C02BN	SED1.5C02BR	SED1.5C02CN
		Depth	6 - 7 ft	0.33 - 0.67 ft	0.67 - 1 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft	2 - 2.33 ft	2.33 - 2.67 ft	2.33 - 2.67 ft	2.67 - 3 ft
		Туре	N	N	N	N	N	N	N	FD	N	FD	N
Analyte	Unit												
Caprolactam	ug/kg												
Carbazole	ug/kg												
Chrysene	ug/kg		110	690	1100	1100	1300	530	950 J	230 J	900 J	330 J	1300 J
Dibenzo(a,h)anthracene	ug/kg		< 50 U	< 130 U	220	220 J	220	120	180 J	39 J	170 J	69 J	280 J
Dibenzofuran	ug/kg												
Diethylphthalate	ug/kg												
Dimethylphthalate	ug/kg												
Di-n-butylphthalate	ug/kg												
Di-n-octylphthalate	ug/kg												
Fluoranthene	ug/kg		200	1100	1600	1500	2000	790	1600 J	360 J	1300 J	590 J	1800 J
Fluorene	ug/kg		35 J	< 130 U	66 J	< 230 U	88 J	29 J	79 J	11 J	63 J	28 J	63 J
Hexachlorobenzene	ug/kg												
Hexachlorobutadiene	ug/kg												
Hexachlorocyclo-pentadiene	ug/kg												
Hexachloroethane	ug/kg												
Indeno(1,2,3-cd)pyrene	ug/kg		74	480	780	750	940	410	760 J	170 J	690 J	250 J	970 J
Isophorone	ug/kg												
Naphthalene	ug/kg		< 50 U	< 130 U	< 120 U	< 230 U	< 110 U	< 60 U	< 100 UJ	< 21 UJ	< 110 UJ	8.4 J	< 120 UJ
Nitrobenzene	ug/kg												
N-Nitroso-di-n-propylamine	ug/kg												
N-Nitrosodiphenylamine	ug/kg												
Pentachlorophenol	ug/kg												
Phenanthrene	ug/kg		160	270	710	740	1000	340	820 J	130 J	620 J	260 J	760 J
Phenol	ug/kg												
-	ug/kg		290	830	1600	1600	1900	740	1500 J	320 J	1300 J	470 J	1800 J
BaP-TE	ug/kg		152	733	1240	1210	1560	675	1230	279	1160	442	1590
Total High-molecular-weight PAHs	ug/kg		1200	5900	9300	9000	11000	4800	8900	2100	8000	3100	11000
Total Low-molecular-weight PAHs	ug/kg		260	390	1000	890	1400	490	1200	180	900	400	1100
Total PAHs (sum 16)	ug/kg		1500	6300	10000	9900	13000	5200	10000	2200	8900	3500	12000

		Location ID	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C
		Sample Date	6/21/2017 8:57:00 AM	6/21/2017 9:00:00 AM	6/21/2017 9:05:00 AM	6/21/2017 9:10:00 AM	6/21/2017 9:15:00 AM	6/21/2017 9:20:00 AM	6/21/2017 9:25:00 AM	6/21/2017 9:30:00 AM		6/21/2017 9:40:00 AM	6/21/2017 9:45:00 AM
		Sample ID	SED1.5C02CR	SED1.5C03AN	SED1.5C03BN	SED1.5C03CN	SED1.5C04AN	SED1.5C04BN	SED1.5C04CN	SED1.5C05AN	SED1.5C05BN	SED1.5C05CN	SED1.5C06AN
		Depth	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft	4 - 4.33 ft	4.33 - 4.67 ft	4.67 - 5 ft	5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft
		Туре	FD	N	N	N	N	N	N	N	N	N	N
Analyte	Unit												
Total Petroleum Hydrocarbons (C9-C44)	mg/kg				5010		2890					846	
Gasoline Range Organics (C6-C10)	ug/kg				3010		2030					040	
Diesel Range Organics (C10-C20)	mg/kg		150	300	360	240 J	310	280	96	130 J	34	40	63
Oil Range Organics (C20-C36)	mg/kg		960	2300	2400	1300	1100	950	360	1300	170	240	370
1,1,1-Trichloroethane	ug/kg		300	2300	2400	1500	1100	330	300	1000	170	240	370
1,1,2,2-Tetrachloroethane	ug/kg												
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg												
1,1,2-Trichloroethane	ug/kg												
1,1-Dichloroethane	ug/kg												
1,1-Dichloroethene	ug/kg												
1,2,3-Trichlorobenzene	ug/kg												
1,2,4-Trichlorobenzene	ug/kg												
1,2-Dibromo-3-chloropropane	ug/kg					 			 				
1,2-Dibromoethane	ug/kg					 			 				
1,2-Dichlorobenzene	ug/kg					 			 				
1,2-Dichloroethane	ug/kg					 			 				
1,2-Dichloropropane	ug/kg												
1,3-Dichlorobenzene	ug/kg												
1,4-Dichlorobenzene	ug/kg												
1,4-Dioxane	ug/kg												
2-Butanone	ug/kg												
2-Hexanone	ug/kg												
4-Methyl-2-pentanone	ug/kg												
Acetone	ug/kg												
Benzene	ug/kg												
Bromochloromethane	ug/kg												
Bromodichloromethane	ug/kg												
Bromoform	ug/kg												
Bromomethane	ug/kg												
Carbon Disulfide	ug/kg												
Carbon Tetrachloride	ug/kg												
Chlorobenzene	ug/kg												
Chloroethane	ug/kg												
Chloroform	ug/kg												
Chloromethane	ug/kg												
cis-1,2-Dichloroethylene	ug/kg					1							
cis-1,3-Dichloropropene	ug/kg												
Cyclohexane	ug/kg												
Dibromochloromethane	ug/kg												
Dichlorodifluoromethane	ug/kg												
Ethylbenzene	ug/kg												
Isopropylbenzene	ug/kg												
m, p-Xylene	ug/kg												
Methyl Acetate	ug/kg												
Methyl tert-Butyl Ether (MTBE)	ug/kg												
Methylcyclohexane	ug/kg												
Methylene Chloride	ug/kg												
o-Xylene	ug/kg												
Styrene	ug/kg												
Tetrachloroethylene	ug/kg												
Toluene	ug/kg												
				1		į.		1		1	1	1	

			0554.50	055/50	055450	050450	055450	0554.50	055450	0554.50	055/50	0554.50	055450
		Location ID	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C
		Sample Date	6/21/2017 8:57:00 AM SED1.5C02CR	6/21/2017 9:00:00 AM	6/21/2017 9:05:00 AM	6/21/2017 9:10:00 AM	6/21/2017 9:15:00 AM	6/21/2017 9:20:00 AM	6/21/2017 9:25:00 AM	6/21/2017 9:30:00 AM SED1.5C05AN	6/21/2017 9:35:00 AM	6/21/2017 9:40:00 AM	6/21/2017 9:45:00 AM SED1.5C06AN
		Sample ID		SED1.5C03AN	SED1.5C03BN	SED1.5C03CN	SED1.5C04AN	SED1.5C04BN	SED1.5C04CN		SED1.5C05BN	SED1.5C05CN	
		Depth	2.67 - 3 ft FD	3 - 3.33 ft N	3.33 - 3.67 ft N	3.67 - 4 ft N	4 - 4.33 ft N	4.33 - 4.67 ft N	4.67 - 5 ft N	5 - 5.33 ft N	5.33 - 5.67 ft	5.67 - 6 ft N	6 - 6.33 ft N
		Туре	FD	IN	IN	IN	IN	IN	IN	IN	N	IN	IN .
Analyte	Unit												
trans-1,2-Dichloroethene	ug/kg												
trans-1,3-Dichloropropene	ug/kg												
Trichloroethene	ug/kg												
Trichlorofluoromethane	ug/kg												
Vinyl Chloride	ug/kg												
Xylenes (total)	ug/kg												
1,1'-Biphenyl	ug/kg	+											
1,2,4,5-Tetrachlorobenzene													
	ug/kg												
2,2'-oxybis(1-Chloropropane)	ug/kg												
2,3,4,6-Tetrachlorophenol	ug/kg												
2,4,5-Trichlorophenol	ug/kg												
2,4,6-Trichlorophenol	ug/kg	ļ								ļ			ļ
2,4-Dichlorophenol	ug/kg												
2,4-Dimethylphenol	ug/kg									ļ			ļ
2,4-Dinitrophenol	ug/kg												
2,4-Dinitrotoluene	ug/kg												
2,6-Dinitrotoluene	ug/kg												
2-Chloronaphthalene	ug/kg												
2-Chlorophenol	ug/kg												
2-Methylnaphthalene	ug/kg												
2-Methylphenol	ug/kg												
2-Nitroaniline	ug/kg												
2-Nitrophenol	ug/kg												
3,3'-Dichlorobenzidine	ug/kg												
3-Nitroaniline	ug/kg												
4,6-Dinitro-2-methylphenol	ug/kg												
4-Bromophenyl-phenylether	ug/kg												
4-Chloro-3-methylphenol	ug/kg												
4-Chloroaniline	ug/kg												
4-Chlorophenyl-phenylether	ug/kg												
4-Methylphenol	ug/kg												
4-Nitroaniline	ug/kg												
4-Nitrophenol	ug/kg	+											
			20 J	77 1	44 J	4.3 J	62	60	46	00	20	200	150
Acenaphthylana	ug/kg		30 J	77 J < 230 U	< 130 U	4.3 J 5.6 J	62 64	60 44 J	46 15 J	89	28 24	280	
Acetaphanana	ug/kg		3U J	< 230 U	< 130 U	5.6 J	04	44 J	10 J	38	24	27	91
Acetophenone	ug/kg									ĺ			1
Anthrocono	ua/ka		70 J	160 J	93 J	9.3 J	190	140	89	160	110	1100	440
Arthracene	ug/kg		10 3	100 J	ลงา	3.3 J	130	140	03	100	110	1100	440
Atrazine	ug/kg												
Benzaldehyde	ug/kg		040 !	700 !	440	0.5	7/0	040	000	440	070	0/22	4000
Benzo(a)anthracene	ug/kg		240 J	720 J	440	65	710	610	230	440	270	2100	1300
Benzo(a)pyrene	ug/kg		240 J	580 J	450	67	690	540	200	380	260	1500	1000
Benzo(b)fluoranthene	ug/kg		340 J	910 J	690	97	900	730	260	460	320	2100	1200
20123(D)IIdoralidione	ug/kg		U-10 U	3.00	030	"	330	7.50	200	400	320	2100	1200
Benzo(g,h,i)perylene	ug/kg		220 J	570 J	430 J+	68	710	510	170	320	190	950	640
(0,7,7)			v]
Benzo(k)fluoranthene	ug/kg		130 J	440 J	270	40	330	260	84	180	94	630	560
bis-(2-chloroethoxy)methane	ug/kg												
bis-(2-Chloroethyl)ether	ug/kg												
bis-(2-Ethylhexyl)phthalate	ug/kg												
Butylbenzylphthalate	ug/kg												

		Location ID	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C
		Sample Date	6/21/2017 8:57:00 AM	6/21/2017 9:00:00 AM	6/21/2017 9:05:00 AM	6/21/2017 9:10:00 AM	6/21/2017 9:15:00 AM	6/21/2017 9:20:00 AM	6/21/2017 9:25:00 AM	6/21/2017 9:30:00 AM	6/21/2017 9:35:00 AM	6/21/2017 9:40:00 AM	6/21/2017 9:45:00 AM
		Sample ID	SED1.5C02CR	SED1.5C03AN	SED1.5C03BN	SED1.5C03CN	SED1.5C04AN	SED1.5C04BN	SED1.5C04CN	SED1.5C05AN	SED1.5C05BN	SED1.5C05CN	SED1.5C06AN
		Depth	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft	4 - 4.33 ft	4.33 - 4.67 ft	4.67 - 5 ft	5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft
		Туре	FD	N	N	N	N	N	N	N	N	N	N
Analyte	Unit												
Caprolactam	ug/kg												
Carbazole	ug/kg												
Chrysene	ug/kg		330 J	990 J	630	86	780	740	290	460	290	1700	1200
Dibenzo(a,h)anthracene	ug/kg		58 J	< 230 UJ	87 J	11	180	120	51	92	52	320	210
Dibenzofuran	ug/kg												
Diethylphthalate	ug/kg												
Dimethylphthalate	ug/kg												
Di-n-butylphthalate	ug/kg												
Di-n-octylphthalate	ug/kg												
Fluoranthene	ug/kg		680 J	1700 J	810 J	120	1300	1200	420	780	490	4100	2700
Fluorene	ug/kg		22 J	86 J	< 130 U	6.1 J	84	77	46	83	48	370	260
Hexachlorobenzene	ug/kg												
Hexachlorobutadiene	ug/kg												
Hexachlorocyclo-pentadiene	ug/kg												
Hexachloroethane	ug/kg												
Indeno(1,2,3-cd)pyrene	ug/kg		180 J	450 J	370	48	560	430	130	290	180	910	630
Isophorone	ug/kg												
Naphthalene	ug/kg		< 28 UJ	< 230 UJ	< 130 U	4.1 J	73	52	50	50	36	110	120
Nitrobenzene	ug/kg												
N-Nitroso-di-n-propylamine	ug/kg												
N-Nitrosodiphenylamine	ug/kg												
Pentachlorophenol	ug/kg												
Phenanthrene	ug/kg		300 J	830 J	450 J	61	840	790	410	610	330	3800	2500
Phenol	ug/kg												
Pyrene	ug/kg		450 J	1700 J	1000 J+	130	1100	1100	390	760	430	3600	2300
BaP-TE	ug/kg		376	793	690	99.5	1090	840	314	593	390	2340	1530
Total High-molecular-weight PAHs	ug/kg		2900	8100	5200	730	7300	6200	2200	4200	2600	18000	12000
Total Low-molecular-weight PAHs	ug/kg		440	1200	590	90	1300	1200	660	1000	580	5700	3600
Total PAHs (sum 16)	ug/kg		3300	9200	5800	820	8600	7400	2900	5200	3200	24000	15000

		Location ID	SED1.5C	SED1.5C	SED1.5C	SED10A	SED10A	SED10A	SED10A	SED10B	SED10B	SED10B
		Sample Date	6/21/2017 9:50:00 AM	6/21/2017 9:55:00 AM	6/21/2017 10:00:00 AM	11/11/2013 1:11:00 PM	11/11/2013 1:11:00 PM	11/11/2013 1:11:00 PM	11/11/2013 1:11:00 PM	11/11/2013 1:59:00 PM	11/11/2013 1:59:00 PM	11/11/2013 1:59:00 PM
		Sample ID	SED1.5C06BN	SED1.5C06CN	SED1.5C07AN	SED10A01N	SED10A03N	SED10A05N	SED10A07N	SED10B01N	SED10B03N	SED10B05N
		Depth	6.33 - 6.67 ft	6.67 - 7 ft	7 - 7.33 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 6 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg											
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg		18 J	38	26							
Oil Range Organics (C20-C36)	mg/kg		130	300	130							
1,1,1-Trichloroethane	ug/kg									< 6.1 U		
1,1,2,2-Tetrachloroethane	ug/kg									< 6.1 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg									< 6.1 U		
1,1,2-Trichloroethane	ug/kg									< 6.1 U		
1,1-Dichloroethane	ug/kg									< 6.1 U		
1,1-Dichloroethene	ug/kg									< 6.1 U		
1,2,3-Trichlorobenzene	ug/kg									< 6.1 U		
1,2,4-Trichlorobenzene	ug/kg									< 6.1 U		
1,2-Dibromo-3-chloropropane	ug/kg									< 6.1 U		
1,2-Dibromoethane	ug/kg									< 6.1 U		
1,2-Dichlorobenzene	ug/kg									< 6.1 U		
1,2-Dichloroethane	ug/kg									< 6.1 U		
1,2-Dichloropropane	ug/kg									< 6.1 U		
1,3-Dichlorobenzene	ug/kg									< 6.1 U		
1,4-Dichlorobenzene	ug/kg									< 6.1 U		
1,4-Dioxane	ug/kg									< 1200 U		
2-Butanone	ug/kg									< 6.1 U		
2-Hexanone	ug/kg									< 6.1 U		
4-Methyl-2-pentanone	ug/kg									< 6.1 U		
Acetone	ug/kg									< 25 U		
Benzene	ug/kg									< 6.1 U		
Bromochloromethane	ug/kg									< 6.1 U		
Bromodichloromethane	ug/kg									< 6.1 U		
Bromoform	ug/kg									< 6.1 U		
Bromomethane	ug/kg									< 6.1 U		
Carbon Disulfide	ug/kg									< 6.1 U		
Carbon Tetrachloride	ug/kg									< 6.1 U		
Chlorobenzene	ug/kg									< 6.1 U		
Chloroethane	ug/kg									< 6.1 U		
Chloroform	ug/kg ug/kg									< 6.1 U		
Chloromethane	ug/kg ug/kg									< 6.1 U		
cis-1,2-Dichloroethylene cis-1,3-Dichloropropene	ug/kg ug/kg	 								< 6.1 U		
Cyclohexane	ug/kg ug/kg									< 6.1 U		
Dibromochloromethane		 								< 6.1 U		
Dichlorodifluoromethane	ug/kg											
	ug/kg									< 6.1 U		
Ethylbenzene	ug/kg									< 6.1 U		
Isopropylbenzene	ug/kg									< 6.1 U		
m, p-Xylene	ug/kg									< 12 U		
Methyl Acetate	ug/kg									< 6.1 U		
Methyl tert-Butyl Ether (MTBE)	ug/kg									< 6.1 U		
Methylcyclohexane	ug/kg									< 6.1 U		
Methylene Chloride	ug/kg									< 6.1 U		
o-Xylene	ug/kg									< 6.1 U		
Styrene	ug/kg									< 6.1 U		
Tetrachloroethylene	ug/kg									< 6.1 U		
Toluene	ug/kg									< 6.1 U		

		Leastien ID	SED1.5C	SED1.5C	SED1.5C	CED40A	SED10A	CED40A	SED10A	SED10B	SED10B	SED10B
		Location ID	6/21/2017 9:50:00 AM	6/21/2017 9:55:00 AM	6/21/2017 10:00:00 AM	SED10A 11/11/2013 1:11:00 PM	11/11/2013 1:11:00 PM	SED10A 11/11/2013 1:11:00 PM	11/11/2013 1:11:00 PM	3ED10B 11/11/2013 1:59:00 PM	11/11/2013 1:59:00 PM	11/11/2013 1:59:00 PM
		Sample Date Sample ID	SED1.5C06BN	SED1.5C06CN	SED1.5C07AN	SED10A01N	SED10A03N	SED10A05N	SED10A07N	SED10B01N	SED10B03N	SED10B05N
		Depth	6.33 - 6.67 ft	6.67 - 7 ft	7 - 7.33 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 6 ft
		Туре	0.33 - 0.07 It N	0.07 - 7 It	7 - 7.33 it N	N N	N N	N N	7 - 9 IL N	N N	N N	N N
		- 7, -			•							
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg									< 6.1 U		
trans-1,3-Dichloropropene	ug/kg									< 6.1 U		
Trichloroethene	ug/kg									< 6.1 U		
Trichlorofluoromethane	ug/kg									< 6.1 U		
Vinyl Chloride	ug/kg									< 6.1 U		
Xylenes (total)	ug/kg									< 12 U		
1,1'-Biphenyl	ug/kg									< 110 U		
1,2,4,5-Tetrachlorobenzene	ug/kg									< 110 U		
2,2'-oxybis(1-Chloropropane)	ug/kg									< 23 U		
2,3,4,6-Tetrachlorophenol	ug/kg									< 110 U		
2,4,5-Trichlorophenol	ug/kg									< 110 U		
2,4,6-Trichlorophenol	ug/kg									< 110 U		
2,4-Dichlorophenol	ug/kg									< 23 U		
2,4-Dimethylphenol	ug/kg									< 110 U		
2,4-Dinitrophenol	ug/kg									< 590 U		
2,4-Dinitrotoluene	ug/kg									< 110 U		
2,6-Dinitrotoluene	ug/kg									< 110 U		
2-Chloronaphthalene	ug/kg									< 23 U		
2-Chlorophenol	ug/kg									< 110 U		
2-Methylnaphthalene	ug/kg									11 J		
2-Methylphenol	ug/kg									< 110 U		
2-Nitroaniline	ug/kg									< 590 U		
2-Nitrophenol	ug/kg									< 110 U		
3,3'-Dichlorobenzidine	ug/kg									< 110 U		
3-Nitroaniline	ug/kg									< 590 U		
4,6-Dinitro-2-methylphenol	ug/kg									< 590 U		
4-Bromophenyl-phenylether	ug/kg									< 110 U		
4-Chloro-3-methylphenol	ug/kg									< 110 U		
4-Chloroaniline	ug/kg									< 110 U		
4-Chlorophenyl-phenylether	ug/kg									< 110 U		
4-Methylphenol	ug/kg									< 110 U		
4-Nitroaniline	ug/kg									< 590 U		
4-Nitrophenol	ug/kg									< 590 U		
Acenaphthene	ug/kg		4.4 J	3.3 J	15	< 32 U	< 29 U	< 27 U	< 21 U	22 J	16 J	170
Acenaphthylene	ug/kg		4.5 J	2.4 J	11	< 32 U	< 29 U	< 27 U	< 21 U	36	16 J	79
Acetophenone	ug/kg									< 110 U		
Anthracene	ug/kg		21	9.8	49	< 32 U	< 29 U	< 27 U	< 21 U	90	48 J	170
Atrazine	ug/kg		- •			<u> </u>		<u> </u>		< 110 U		
Benzaldehyde	ug/kg									18 J		
Benzo(a)anthracene	ug/kg		63	32	160	< 32 U	< 29 U	< 27 U	< 21 U	400	280	620
Benzo(a)pyrene	ug/kg		74	32	160	< 32 U	< 29 U	< 27 U	< 21 U	470	330	630
	1-99							•		•	555	
Benzo(b)fluoranthene	ug/kg		89	38	200	< 32 U	< 29 U	< 27 U	< 21 U	590	440	820
Benzo(g,h,i)perylene	ug/kg		61	29	130	< 32 UJ	< 29 UJ	< 27 UJ	< 21 UJ	390	280 J	410 J
Benzo(k)fluoranthene	ug/kg		25	17	56	< 32 U	< 29 U	< 27 U	< 21 U	200	210	290
bis-(2-chloroethoxy)methane	ug/kg									< 110 U		
bis-(2-Chloroethyl)ether	ug/kg									< 23 U		
bis-(2-Ethylhexyl)phthalate	ug/kg									560		
Butylbenzylphthalate	ug/kg									< 110 U		

	Location ID	SED1.5C	SED1.5C	SED1.5C	SED10A	SED10A	SED10A	SED10A	SED10B	SED10B	SED10B
	Sample Date	6/21/2017 9:50:00 AM	6/21/2017 9:55:00 AM	6/21/2017 10:00:00 AM	11/11/2013 1:11:00 PM	11/11/2013 1:11:00 PM	11/11/2013 1:11:00 PM	11/11/2013 1:11:00 PM	11/11/2013 1:59:00 PM	11/11/2013 1:59:00 PM	11/11/2013 1:59:00 PM
	Sample ID	SED1.5C06BN	SED1.5C06CN	SED1.5C07AN	SED10A01N	SED10A03N	SED10A05N	SED10A07N	SED10B01N	SED10B03N	SED10B05N
	Depth	6.33 - 6.67 ft	6.67 - 7 ft	7 - 7.33 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 6 ft
	Туре	N	N	N	N	N	N	N	N	N	N
Analyte Unit											
Caprolactam ug/kg									< 590 U		
Carbazole ug/kg									44		
Chrysene ug/kg		67	37	160	< 32 U	< 29 U	< 27 U	< 21 U	610	360	730
Dibenzo(a,h)anthracene ug/kg		16	7.7	36	< 32 U	< 29 U	< 27 U	< 21 U	85	74	110
Dibenzofuran ug/kg								,	15 J		
Diethylphthalate ug/kg									< 110 U		
Dimethylphthalate ug/kg									13 J		
Di-n-butylphthalate ug/kg									< 110 U		
Di-n-octylphthalate ug/kg									< 110 U		
Fluoranthene ug/kg		110	54	300	< 32 U	< 29 U	< 27 U	< 21 U	950	600	1200
Fluorene ug/kg		7.9	4.8 J	24	< 32 U	< 29 U	< 27 U	< 21 U	36	16 J	210
Hexachlorobenzene ug/kg									< 23 U		
Hexachlorobutadiene ug/kg									< 23 U		
Hexachlorocyclo-pentadiene ug/kg									< 110 U		
Hexachloroethane ug/kg									< 110 U		
Indeno(1,2,3-cd)pyrene ug/kg		55	21	110	< 32 U	< 29 U	< 27 U	< 21 U	320	240	320
Isophorone ug/kg									< 110 U		
Naphthalene ug/kg		7.6	5.2	21	< 32 U	< 29 U	< 27 U	< 21 U	12 J	< 55 U	33 J
Nitrobenzene ug/kg									< 230 U		
N-Nitroso-di-n-propylamine ug/kg									< 23 U		
N-Nitrosodiphenylamine ug/kg									< 110 U		
Pentachlorophenol ug/kg									< 110 U		
Phenanthrene ug/kg		59	35	180	< 32 U	< 29 U	< 27 U	< 21 U	410	210	1200
Phenol ug/kg									< 23 U		
Pyrene ug/kg		100	53	280	< 32 U	< 29 U	< 27 U	< 21 U	730	480	1300
BaP-TE ug/kg		111	49.0	244	< 32.0 U	< 29.0 U	< 27.0 U	< 21.0 U	689	502	920
Total High-molecular-weight PAHs ug/kg		660	320	1600	< 32 U	< 29 U	< 27 U	< 21 U	4700	3300	6400
Total Low-molecular-weight PAHs ug/kg		100	61	300	< 32 U	< 29 U	< 27 U	< 21 U	610	310	1900
Total PAHs (sum 16) ug/kg		760	380	1900	< 32 U	< 29 U	< 27 U	< 21 U	5400	3600	8300

		Location ID	SED10C	SED10C	SED10C	SED10C	SED1A	SED1A	SED1A	SED1A	SED1B	SED1B	SED1B
		Sample Date	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 3:05:00 PM	11/6/2013 3:05:00 PM	11/6/2013 3:05:00 PM
		Sample ID	SED10C01N	SED10C03N	SED10C05N	SED10C07N	SED1A01N	SED1A03N	SED1A05N	SED1A07N	SED1B01N	SED1B03N	SED1B05N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
		Туре	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit												
Total Petroleum Hydrocarbons (C9-C44)	mg/kg												
Gasoline Range Organics (C6-C10)	ug/kg												
Diesel Range Organics (C10-C20)	mg/kg												
Oil Range Organics (C20-C36)	mg/kg												
1,1,1-Trichloroethane	ug/kg												
1,1,2,2-Tetrachloroethane	ug/kg												
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg												
1,1,2-Trichloroethane	ug/kg												
1,1-Dichloroethane	ug/kg												
1,1-Dichloroethene	ug/kg												
1,2,3-Trichlorobenzene	ug/kg												
1,2,4-Trichlorobenzene	ug/kg	+ +											
1,2-Dibromo-3-chloropropane	ug/kg	+ +											1
1,2-Dibromoethane	ug/kg	1											
1,2-Dibromoetriane 1,2-Dichlorobenzene	ug/kg	+ +											
1,2-Dichloroethane	ug/kg ug/kg	 											
1,2-Dichloropropane 1,3-Dichlorobenzene	ug/kg												
	ug/kg												
1,4-Dichlorobenzene	ug/kg												<u> </u>
1,4-Dioxane	ug/kg												
2-Butanone	ug/kg												
2-Hexanone	ug/kg												
4-Methyl-2-pentanone	ug/kg												
Acetone	ug/kg												
Benzene	ug/kg												
Bromochloromethane	ug/kg												
Bromodichloromethane	ug/kg												
Bromoform	ug/kg												
Bromomethane	ug/kg												
Carbon Disulfide	ug/kg												
Carbon Tetrachloride	ug/kg												
Chlorobenzene	ug/kg												
Chloroethane	ug/kg												
Chloroform	ug/kg												
Chloromethane	ug/kg												
cis-1,2-Dichloroethylene	ug/kg												
cis-1,3-Dichloropropene	ug/kg		·										
Cyclohexane	ug/kg												1
Dibromochloromethane	ug/kg												
Dichlorodifluoromethane	ug/kg												1
Ethylbenzene	ug/kg												
Isopropylbenzene	ug/kg												1
m, p-Xylene	ug/kg												
Methyl Acetate	ug/kg												
Methyl tert-Butyl Ether (MTBE)	ug/kg												1
Methylcyclohexane	ug/kg												ĺ
Methylene Chloride	ug/kg												1
o-Xylene	ug/kg												
Styrene	ug/kg												
Tetrachloroethylene	ug/kg												
Toluene	ug/kg												
	J. J	<u> </u>			I	I	ı	1		1	1	ı	 -

		Location ID	SED10C	SED10C	SED10C	SED10C	SED1A	SED1A	SED1A	SED1A	SED1B	SED1B	SED1B
		Sample Date	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 3:05:00 PM	11/6/2013 3:05:00 PM	11/6/2013 3:05:00 PM
		Sample ID	SED10C01N	SED10C03N	SED10C05N	SED10C07N	SED1A01N	SED1A03N	SED1A05N	SED1A07N	SED1B01N	SED1B03N	SED1B05N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
		Туре	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit												
trans-1,2-Dichloroethene	ug/kg												
trans-1,3-Dichloropropene	ug/kg												
Trichloroethene	ug/kg												
Trichlorofluoromethane	ug/kg												
Vinyl Chloride	ug/kg												
Xylenes (total)	ug/kg												
1,1'-Biphenyl	ug/kg										< 64 U		
1,2,4,5-Tetrachlorobenzene	ug/kg										< 64 U		
2,2'-oxybis(1-Chloropropane)	ug/kg										< 13 U		
2,3,4,6-Tetrachlorophenol	ug/kg										< 64 U		
2,4,5-Trichlorophenol	ug/kg										< 64 U		
2,4,6-Trichlorophenol	ug/kg										< 64 U		
2,4-Dichlorophenol	ug/kg										< 13 U		
2,4-Dimethylphenol	ug/kg										< 64 U		
2,4-Dinitrophenol	ug/kg	1									< 330 U		
2,4-Dinitrotoluene	ug/kg	1 1									< 64 U		
2,6-Dinitrotoluene	ug/kg										< 64 U		
2-Chloronaphthalene	ug/kg	1									< 13 U		
2-Chlorophenol	ug/kg	1									< 64 U		
2-Methylnaphthalene	ug/kg	1									< 13 U		
2-Methylphenol	ug/kg	 									< 64 U		
2-Nitroaniline	ug/kg	+									< 330 U		
2-Nitrophenol	ug/kg										< 64 U		
3,3'-Dichlorobenzidine	ug/kg	+ +									< 64 U		
3-Nitroaniline	ug/kg										< 330 U		
4,6-Dinitro-2-methylphenol	ug/kg										< 330 U		
4-Bromophenyl-phenylether	ug/kg	+ +									< 64 U		
4-Chloro-3-methylphenol	ug/kg	+									< 64 U		
4-Chloroaniline	ug/kg	+									< 64 U		
4-Chlorophenyl-phenylether	ug/kg	+ +									< 64 U		
4-Methylphenol	ug/kg ug/kg	+ +									< 64 U		
4-Nitroaniline	ug/kg ug/kg	-									< 330 U		
4-Nitrophenol		-									< 330 U		
Acenaphthene	ug/kg	-	29 J	54	170 J	140	15 J	2.2 J	< 13 U	< 17 U	< 13 U	< 13 U	< 11 U
•	ug/kg		24 J	37 J	170 J	100	25 J	4.1 J	< 13 U	< 17 U	< 13 U	< 13 U	
Acetaphanana	ug/kg	+ +	24 J	3/ J	130 J	100	20 J	4.1 J	\ 13 U	\ 1 <i>I</i> U		\ 13 U	< 11 U
Acetophenone	ug/kg										11 J		
Anthracene	ug/kg	 	58	110	220	240	58	8.4 J	< 13 U	< 17 U	< 13 U	< 13 U	< 11 U
Atrazine	ug/kg	+ +		110	220	2.70	30	0.70	- 10 0	- 17 0	< 64 U	1100	- 110
Benzaldehyde	ug/kg	+ +									83		
Benzo(a)anthracene	ug/kg	+ +	280	380	950	1000	200	40	4.0 J	< 17 U	6.0 J	< 13 U	< 11 U
Benzo(a)pyrene	ug/kg ug/kg	+ +	320	380	930	1100	190	37	4.0 J < 13 U	< 17 U	< 13 U	< 13 U	< 11 U
Delizo(a)pyrelie	ug/kg	1	320	360	930	1100	190	31	130	V 17 O	100	130	1110
Benzo(b)fluoranthene	ug/kg		440	470	1100	1300	290	48	4.9 J	< 17 U	< 13 U	< 13 U	< 11 U
Benzo(g,h,i)perylene	ug/kg		260 J	260 J	600 J	660 J	140	31	3.1 J	< 17 U	< 13 U	< 13 U	< 11 U
Benzo(k)fluoranthene	ug/kg	 	210	190	410	500	80	19	< 13 U	< 17 U	< 13 U	< 13 U	< 11 U
bis-(2-chloroethoxy)methane	ug/kg	+ +		.50						., 0	< 64 U		11.5
bis-(2-Chloroethyl)ether	ug/kg	+ +									< 13 U		
bis-(2-Ethylhexyl)phthalate	ug/kg	+ +									< 130 U		
Butylbenzylphthalate	ug/kg										10 J	ļ	

		Location ID	SED10C	SED10C	SED10C	SED10C	SED1A	SED1A	SED1A	SED1A	SED1B	SED1B	SED1B
		Sample Date	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 3:05:00 PM	11/6/2013 3:05:00 PM	11/6/2013 3:05:00 PM
		Sample ID	SED10C01N	SED10C03N	SED10C05N	SED10C07N	SED1A01N	SED1A03N	SED1A05N	SED1A07N	SED1B01N	SED1B03N	SED1B05N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
		Туре	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit												
Caprolactam	ug/kg										< 330 U		
Carbazole	ug/kg										< 13 U		
Chrysene	ug/kg		380	400	1100	1100	250	53	4.1 J	< 17 U	11 J	< 13 U	< 11 U
Dibenzo(a,h)anthracene	ug/kg		52 J	55	190	160	33	7.8 J	< 13 U	< 17 U	< 13 U	< 13 U	< 11 U
Dibenzofuran	ug/kg										< 64 U		
Diethylphthalate	ug/kg										< 64 U		
Dimethylphthalate	ug/kg										< 64 U		
Di-n-butylphthalate	ug/kg										< 64 U		
Di-n-octylphthalate	ug/kg										< 64 U		
Fluoranthene	ug/kg		640	700	1600	2200	450	78	6.1 J	2.6 J	9.0 J	2.5 J	< 11 U
Fluorene	ug/kg		33 J	52	190	150	29	5.3 J	< 13 U	< 17 U	< 13 U	< 13 U	< 11 U
Hexachlorobenzene	ug/kg										< 13 U		
Hexachlorobutadiene	ug/kg										< 13 U		
Hexachlorocyclo-pentadiene	ug/kg										< 64 U		
Hexachloroethane	ug/kg										< 64 U		
Indeno(1,2,3-cd)pyrene	ug/kg		250	220	520	530	130	28	2.4 J	< 17 U	< 13 U	< 13 U	< 11 U
Isophorone	ug/kg										< 64 U		
Naphthalene	ug/kg		12 J	22 J	60 J	52	< 27 U	< 11 U	< 13 U	< 17 U	< 13 U	< 13 U	< 11 U
Nitrobenzene	ug/kg										< 130 U		
N-Nitroso-di-n-propylamine	ug/kg										< 13 U		
N-Nitrosodiphenylamine	ug/kg										< 64 U		
Pentachlorophenol	ug/kg										< 64 U		
Phenanthrene	ug/kg		280	510	1300	1400	220	31	< 13 U	< 17 U	4.9 J	3.6 J	< 11 U
Phenol	ug/kg										< 13 U		
Pyrene	ug/kg		530	720	1700	1900	340	84	6.1 J	2.8 J	9.7 J	2.6 J	< 11 U
BaP-TE	ug/kg		471	544	1380	1550	286	56.6	1.13	< 17.0 U	0.611	< 13.0 U	< 11.0 U
Total High-molecular-weight PAHs	ug/kg		3400	3800	9100	10000	2100	430	31	5.4	36	5.1	< 11 U
Total Low-molecular-weight PAHs	ug/kg		440	790	2100	2100	350	51	< 13 U	< 17 U	4.9	3.6	< 11 U
Total PAHs (sum 16)	ug/kg		3800	4600	11000	13000	2500	480	31	5.4	41	8.7	< 11 U

		Location ID	SED1B	SED1C	SED1C	SED1C	SED1C	SED2.5B	SED2.5B	SED2.5B	SED2.5B	SED2A
		Sample Date	11/6/2013 3:05:00 PM	11/7/2013 10:16:00 AM	11/7/2013 10:16:00 AM	11/7/2013 10:16:00 AM	11/7/2013 10:16:00 AM	11/7/2013 9:20:00 AM	11/7/2013 9:20:00 AM	11/7/2013 9:20:00 AM	11/7/2013 9:20:00 AM	11/6/2013 10:45:00 AM
		Sample ID	SED1B07N	SED1C01N	SED1C03N	SED1C05N	SED1C07N	SED2.5B01N	SED2.5B03N	SED2.5B05N	SED2.5B07N	SED2A01N
		Depth	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg											
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg											
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
1,2,3-Trichlorobenzene	ug/kg											
1,2,4-Trichlorobenzene	ug/kg											
1,2-Dibromo-3-chloropropane	ug/kg											
1,2-Dibromoethane	ug/kg											
1,2-Dichlorobenzene	ug/kg											
1,2-Dichloroethane	ug/kg									_		
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg											
Chlorobenzene	ug/kg											
Chloroethane	ug/kg											
Chloroform	ug/kg											
Chloromethane	ug/kg											
cis-1,2-Dichloroethylene cis-1,3-Dichloropropene	ug/kg ug/kg											
Cyclohexane	ug/kg											
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg ug/kg											
Ethylbenzene	ug/kg ug/kg	 										
												
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl fort Buttl Ether (MTRE)	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg											
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg											
Tetrachloroethylene	ug/kg											
Toluene	ug/kg											

VOCs, SVOCs, and TPH Fractions Concentrations in Waterside Investigation Area Subsurface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

		Location ID Sample Date		SED1C 11/7/2013 10:16:00 AM	SED1C 11/7/2013 10:16:00 AM	SED1C 11/7/2013 10:16:00 AM	SED1C 11/7/2013 10:16:00 AM	SED2.5B 11/7/2013 9:20:00 AM	SED2.5B 11/7/2013 9:20:00 AM	SED2.5B 11/7/2013 9:20:00 AM	SED2.5B 11/7/2013 9:20:00 AM	SED2A 11/6/2013 10:45:00 AM
		Sample ID	SED1B07N	SED1C01N	SED1C03N	SED1C05N	SED1C07N	SED2.5B01N	SED2.5B03N	SED2.5B05N	SED2.5B07N	SED2A01N
		Depth Type	7 - 9 ft N	1 - 3 ft N	3 - 5 ft N	5 - 7 ft N	7 - 9 ft N	1 - 3 ft N	3 - 5 ft N	5 - 7 ft N	7 - 9 ft N	1 - 3 ft N
Analyte	Unit	.,,,-										
rans-1,2-Dichloroethene	ug/kg											
rans-1,3-Dichloropropene	ug/kg											
richloroethene	ug/kg											
richlorofluoromethane	ug/kg											
/inyl Chloride	ug/kg											
(ylenes (total)	ug/kg											
,1'-Biphenyl	ug/kg											
1,2,4,5-Tetrachlorobenzene												
	ug/kg											
2,2'-oxybis(1-Chloropropane)	ug/kg											
2,3,4,6-Tetrachlorophenol	ug/kg											
2,4,5-Trichlorophenol	ug/kg											
2,4,6-Trichlorophenol	ug/kg											
2,4-Dichlorophenol	ug/kg											
2,4-Dimethylphenol	ug/kg											
2,4-Dinitrophenol	ug/kg											
2,4-Dinitrotoluene	ug/kg											
2,6-Dinitrotoluene	ug/kg											
2-Chloronaphthalene	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene	ug/kg											
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg											
2-Nitrophenol	ug/kg											
3,3'-Dichlorobenzidine	ug/kg											
3-Nitroaniline	ug/kg											
4,6-Dinitro-2-methylphenol	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
4-Chlorophenyl-phenylether	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											45.11
Acenaphthene	ug/kg		< 5.1 U	34 J	34 J	52	25 J	33 J	65 J	27 J	49 J	< 15 U
Acenaphthylene	ug/kg		< 5.1 U	29 J	52 J	44 J	38	27 J	48 J	34	57	< 15 U
Acetophenone	ug/kg											
Anthracene	ug/kg		< 5.1 U	87 J	93	71	42	71 J	120	39	74	< 15 U
Atrazine	ug/kg											
Benzaldehyde	ug/kg											
Benzo(a)anthracene	ug/kg		< 5.1 U	400	260	210	130	330	520	140	210	< 15 U
Benzo(a)pyrene	ug/kg		< 5.1 U	430	270	210	140	390	620	150	210	< 15 U
50.120(4)(2)10110	39,119			700	2.0	-10	170		020	100	2.0	100
Benzo(b)fluoranthene	ug/kg		< 5.1 U	610	380	300	190	610	1000	200	260	< 15 U
Benzo(g,h,i)perylene	ug/kg		< 5.1 U	460	240	220	140	420	670	160	230	< 15 U
Benzo(k)fluoranthene	ug/kg		< 5.1 U	360	140	88	64	220	340	92	130	< 15 U
ois-(2-chloroethoxy)methane	ug/kg		3.1 0		. 10		<u></u>		3.0		.50	10.0
is-(2-Chloroethyl)ether	ug/kg ug/kg											
pis-(2-Ethylhexyl)phthalate	ug/kg											

Butylbenzylphthalate

ug/kg

	Location ID	SED1B	SED1C	SED1C	SED1C	SED1C	SED2.5B	SED2.5B	SED2.5B	SED2.5B	SED2A
	Sample Date	11/6/2013 3:05:00 PM	11/7/2013 10:16:00 AM	11/7/2013 10:16:00 AM	11/7/2013 10:16:00 AM	11/7/2013 10:16:00 AM	11/7/2013 9:20:00 AM	11/7/2013 9:20:00 AM	11/7/2013 9:20:00 AM	11/7/2013 9:20:00 AM	11/6/2013 10:45:00 AM
	Sample ID	SED1B07N	SED1C01N	SED1C03N	SED1C05N	SED1C07N	SED2.5B01N	SED2.5B03N	SED2.5B05N	SED2.5B07N	SED2A01N
	Depth	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft
	Туре	N	N	N	N	N	N	N	N	N	N
Analyte Unit											
Caprolactam ug/kg											
Carbazole ug/kg											
Chrysene ug/kg		< 5.1 U	570	380	300	190	580	930	210	300	< 15 U
Dibenzo(a,h)anthracene ug/kg		< 5.1 U	100 J	44 J	45 J	31	110 J	120	29 J	< 53 U	< 15 U
Dibenzofuran ug/kg											
Diethylphthalate ug/kg											
Dimethylphthalate ug/kg											
Di-n-butylphthalate ug/kg											
Di-n-octylphthalate ug/kg											
Fluoranthene ug/kg		< 5.1 U	860	620	510	290	920	1600	300	530	2.8 J
Fluorene ug/kg		< 5.1 U	47 J	65 J	68	29	47 J	90 J	28 J	76	< 15 U
Hexachlorobenzene ug/kg											
Hexachlorobutadiene ug/kg											
Hexachlorocyclo-pentadiene ug/kg											
Hexachloroethane ug/kg											
Indeno(1,2,3-cd)pyrene ug/kg		< 5.1 U	330	170	150	96	290	530	120	170	< 15 U
Isophorone ug/kg											
Naphthalene ug/kg		< 5.1 U	< 250 U	< 78 U	< 47 U	< 26 U	< 120 U	< 110 U	< 31 U	< 53 U	< 15 U
Nitrobenzene ug/kg											
N-Nitroso-di-n-propylamine ug/kg											
N-Nitrosodiphenylamine ug/kg											
Pentachlorophenol ug/kg											
Phenanthrene ug/kg		< 5.1 U	360	370	330	160	370	710	160	380	< 15 U
Phenol ug/kg											
Pyrene ug/kg		< 5.1 U	870	630	500	270	740	1200	290	470	4.3 J
BaP-TE ug/kg		< 5.10 U	668	397	322	213	626	949	226	276	< 15.0 U
Total High-molecular-weight PAHs ug/kg		< 5.1 U	5000	3100	2500	1500	4600	7500	1700	2500	7.1
Total Low-molecular-weight PAHs ug/kg		< 5.1 U	560	610	570	290	550	1000	290	640	< 15 U
Total PAHs (sum 16) ug/kg		< 5.1 U	5500	3700	3100	1800	5200	8600	2000	3100	7.1

_		T		1			I		T	1	T	T	
		Location ID	SED2A	SED2A	SED2A	SED2B	SED2B	SED2B	SED2B	SED2C	SED2C	SED2C	SED2C
		Sample Date	11/6/2013 10:45:00 AM	11/6/2013 10:45:00 AM	11/6/2013 10:45:00 AM	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/6/2013 9:54:00 AM	11/6/2013 9:54:00 AM	11/6/2013 9:54:00 AM	11/6/2013 9:54:00 AM
		Sample ID	SED2A03N	SED2A05N	SED2A07N	SED2B01N	SED2B03N	SED2B05N	SED2B07N	SED2C01N	SED2C03N	SED2C05N	SED2C07N
		Depth	3 - 5 ft N	5 - 7 ft N	7 - 9 ft N	1 - 3 ft	3 - 5 ft N	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
	1 1	Туре	IN	IN .	IN	N	IN	N	N	N	N	N	N
Analyte	Unit												
Total Petroleum Hydrocarbons (C9-C44)	mg/kg												
Gasoline Range Organics (C6-C10)	ug/kg												
Diesel Range Organics (C10-C20)	mg/kg												
Oil Range Organics (C20-C36)	mg/kg												
1,1,1-Trichloroethane	ug/kg									< 5.9 U			
1,1,2,2-Tetrachloroethane	ug/kg									< 5.9 U			
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg									< 5.9 U			
1,1,2-Trichloroethane	ug/kg									< 5.9 U			
1,1-Dichloroethane	ug/kg									< 5.9 U			
1,1-Dichloroethene	ug/kg									< 5.9 U			
1,2,3-Trichlorobenzene	ug/kg									< 5.9 U			
1,2,4-Trichlorobenzene	ug/kg	+								< 5.9 U			
1,2-Dibromo-3-chloropropane	ug/kg									< 5.9 U			
1,2-Dibromoethane	ug/kg									< 5.9 U			
1,2-Dichlorobenzene	ug/kg									< 5.9 U			
1,2-Dichloroethane	ug/kg									< 5.9 U			
1,2-Dichloropropane	ug/kg									< 5.9 U			
1,3-Dichlorobenzene	ug/kg									< 5.9 U			
1,4-Dichlorobenzene	ug/kg									< 5.9 U			
1,4-Dioxane	ug/kg									< 1200 U			
2-Butanone	ug/kg									4.9 J			
2-Hexanone	ug/kg									< 5.9 U			
4-Methyl-2-pentanone	ug/kg									< 5.9 U			
Acetone	ug/kg									54			
Benzene	ug/kg									< 5.9 U			
Bromochloromethane	ug/kg									< 5.9 U			
Bromodichloromethane	ug/kg									< 5.9 U			
Bromoform	ug/kg									< 5.9 U			
Bromomethane	ug/kg									< 5.9 U			
Carbon Disulfide	ug/kg									< 5.9 U			
Carbon Tetrachloride	ug/kg									< 5.9 U			
Chlorobenzene	ug/kg									< 5.9 U			
Chloroethane	ug/kg									< 5.9 U			
Chloroform	ug/kg									< 5.9 U			
Chloromethane	ug/kg									< 5.9 U			
cis-1,2-Dichloroethylene	ug/kg									< 5.9 U			
cis-1,3-Dichloropropene	ug/kg									< 5.9 U			*
Cyclohexane	ug/kg									< 5.9 U			
Dibromochloromethane	ug/kg									< 5.9 U			
Dichlorodifluoromethane	ug/kg									< 5.9 U			
Ethylbenzene	ug/kg									< 5.9 U			
Isopropylbenzene	ug/kg ug/kg									< 5.9 U			
m, p-Xylene	ug/kg ug/kg									< 12 U			
Methyl Acetate	ug/kg ug/kg									< 5.9 U			
Methyl tert-Butyl Ether (MTBE)	ug/kg ug/kg									< 5.9 U			
Methylcyclohexane	ug/kg ug/kg	-				 				< 5.9 U			
Methylene Chloride	ug/kg ug/kg									< 5.9 U			
o-Xylene						-				< 5.9 U			
	ug/kg ug/kg									< 5.9 U			
Styrene Tetrachloroethylene	ug/kg ug/kg					-				< 5.9 U			
Toluene	ug/kg					<u> </u>				< 5.9 U			

												-	
		Location ID	SED2A	SED2A	SED2A	SED2B	SED2B	SED2B	SED2B	SED2C	SED2C	SED2C	SED2C
		Sample Date	11/6/2013 10:45:00 AM	11/6/2013 10:45:00 AM	11/6/2013 10:45:00 AM	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/6/2013 9:54:00 AM	11/6/2013 9:54:00 AM	11/6/2013 9:54:00 AM	11/6/2013 9:54:00 AM
		Sample ID	SED2A03N	SED2A05N	SED2A07N	SED2B01N	SED2B03N	SED2B05N	SED2B07N	SED2C01N	SED2C03N	SED2C05N	SED2C07N
		Depth	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
	т і	Туре	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit												
trans-1,2-Dichloroethene	ug/kg									< 5.9 U			
trans-1,3-Dichloropropene	ug/kg									< 5.9 U			
Trichloroethene	ug/kg									< 5.9 U			
Trichlorofluoromethane	ug/kg									< 5.9 U			
Vinyl Chloride	ug/kg									< 5.9 U			
Xylenes (total)	ug/kg									< 12 U			
1,1'-Biphenyl	ug/kg									< 480 U			
1,2,4,5-Tetrachlorobenzene	ug/kg									< 480 U			
2,2'-oxybis(1-Chloropropane)	ug/kg									< 98 U			
2,3,4,6-Tetrachlorophenol	ug/kg									< 480 U			
2,4,5-Trichlorophenol	ug/kg									< 480 U			
2,4,6-Trichlorophenol	ug/kg									< 480 U			
2,4-Dichlorophenol	ug/kg									< 98 U			
2,4-Dimethylphenol	ug/kg									< 480 U			
2,4-Dinitrophenol	ug/kg									< 2500 U			
2,4-Dinitrotoluene	ug/kg									< 480 U			
2,6-Dinitrotoluene	ug/kg									< 480 U			
2-Chloronaphthalene	ug/kg									< 98 U			
2-Chlorophenol	ug/kg									< 480 U			
2-Methylnaphthalene	ug/kg									32 J			
2-Methylphenol	ug/kg									< 480 U			
2-Nitroaniline	ug/kg									< 2500 U			
2-Nitrophenol	ug/kg									< 480 U			
3,3'-Dichlorobenzidine	ug/kg									< 480 U			
3-Nitroaniline	ug/kg									< 2500 U			
4,6-Dinitro-2-methylphenol	ug/kg									< 2500 U			
4-Bromophenyl-phenylether	ug/kg									< 480 U			
4-Chloro-3-methylphenol	ug/kg									< 480 U			
4-Chloroaniline	ug/kg									< 480 U			
4-Chlorophenyl-phenylether	ug/kg									< 480 U			
4-Methylphenol	ug/kg									< 480 U			
4-Nitroaniline	ug/kg									< 2500 U			
4-Nitrophenol	ug/kg									< 2500 U			
Acenaphthene	ug/kg		< 14 U	< 12 U	< 8.8 U	< 99 U	< 83 U	39	< 27 U	79 J	100	55	69 J
Acenaphthylene	ug/kg		< 14 U	< 12 U	< 8.8 U	66 J	45 J	39	30	180	180	240	66 J
Acetophenone	ug/kg									< 480 U			
Anthracene	ug/kg		< 14 U	< 12 U	< 8.8 U	140	190	100	170	230	190	180	150 J
Atrazine	ug/kg									< 480 U			
Benzaldehyde	ug/kg									< 480 UJ			
Benzo(a)anthracene	ug/kg		< 14 U	< 12 U	< 8.8 U	640	740	330	440	650	420	300	< 200 U
Benzo(a)pyrene	ug/kg		< 14 U	< 12 U	< 8.8 U	690	740	290	370	650	370	340	560
Benzo(b)fluoranthene	ug/kg		< 14 U	< 12 U	< 8.8 U	1100	1100	370	430	760	420	390	560
Benzo(g,h,i)perylene	ug/kg		< 14 U	< 12 U	< 8.8 U	850	770	250	260	670	360	380	400
D (1)0	,		. 42.11	. 40.11	.0011	055	000	445	442	000	4/2	465	000
Benzo(k)fluoranthene	ug/kg		< 14 U	< 12 U	< 8.8 U	380	330	110	110	300	140	120	200
bis-(2-chloroethoxy)methane	ug/kg									< 480 U			
bis-(2-Chloroethyl)ether	ug/kg									< 98 U			
bis-(2-Ethylhexyl)phthalate	ug/kg									440 J			
Butylbenzylphthalate	ug/kg									< 480 U			

		Location ID	SED2A	SED2A	SED2A	SED2B	SED2B	SED2B	SED2B	SED2C	SED2C	SED2C	SED2C
		Sample Date	11/6/2013 10:45:00 AM	11/6/2013 10:45:00 AM	11/6/2013 10:45:00 AM	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/6/2013 9:54:00 AM	11/6/2013 9:54:00 AM	11/6/2013 9:54:00 AM	11/6/2013 9:54:00 AM
		Sample ID	SED2A03N	SED2A05N	SED2A07N	SED2B01N	SED2B03N	SED2B05N	SED2B07N	SED2C01N	SED2C03N	SED2C05N	SED2C07N
		Depth	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit												
Caprolactam	ug/kg									< 2500 U			
Carbazole	ug/kg									< 98 U			
Chrysene	ug/kg		< 14 U	< 12 U	< 8.8 U	980	990	360	440	820	470	440	< 200 U
Dibenzo(a,h)anthracene	ug/kg		< 14 U	< 12 U	< 8.8 U	150	150	93	54	130	82	74	130 J
Dibenzofuran	ug/kg									< 480 U			
Diethylphthalate	ug/kg									< 480 U			
Dimethylphthalate	ug/kg									< 480 U			
Di-n-butylphthalate	ug/kg									< 480 U			
Di-n-octylphthalate	ug/kg									< 480 U			
Fluoranthene	ug/kg		< 14 U	< 12 U	< 8.8 U	1800	2000	660	870	1200	840	650	1400
Fluorene	ug/kg		< 14 U	< 12 U	< 8.8 U	< 99 U	97	60	39	89 J	100	80	95 J
Hexachlorobenzene	ug/kg									< 98 U			
Hexachlorobutadiene	ug/kg									< 98 U			
Hexachlorocyclo-pentadiene	ug/kg									< 480 U			
Hexachloroethane	ug/kg									< 480 U			
Indeno(1,2,3-cd)pyrene	ug/kg		< 14 U	< 12 U	< 8.8 U	630	630	200	210	430	270	250	320
Isophorone	ug/kg									< 480 U			
Naphthalene	ug/kg		< 14 U	< 12 U	< 8.8 U	< 99 U	< 83 U	46	< 27 U	< 98 U	< 59 U	< 55 U	< 200 U
Nitrobenzene	ug/kg									< 980 U			
N-Nitroso-di-n-propylamine	ug/kg									< 98 U			
N-Nitrosodiphenylamine	ug/kg									< 480 U			
Pentachlorophenol	ug/kg									< 480 U			
Phenanthrene	ug/kg	1	< 14 U	< 12 U	< 8.8 U	460	790	350	420	660	650	400	520
Phenol	ug/kg	1								< 98 U			
Pyrene	ug/kg	1	< 14 U	< 12 U	< 8.8 U	1000	1200	470	670	1000	810	630	1200
BaP-TE	ug/kg	1	< 14.0 U	< 12.0 U	< 8.80 U	1080	1140	474	534	968	565	510	780
Total High-molecular-weight PAHs	ug/kg		< 14 U	< 12 U	< 8.8 U	8200	8700	3100	3900	6600	4200	3600	4800
Total Low-molecular-weight PAHs	ug/kg		< 14 U	< 12 U	< 8.8 U	670	1100	630	660	1200	1200	960	900
Total PAHs (sum 16)	ug/kg		< 14 U	< 12 U	< 8.8 U	8900	9800	3800	4500	7800	5400	4500	5700

		Location ID	SED3.5B	SED3.5B	SED3.5B	SED3.5B	SED3A	SED3A	SED3A	SED3A	SED3B	SED3B
		Sample Date	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/8/2013 8:47:00 AM	11/8/2013 8:47:00 AM
		Sample ID	SED3.5B01N	SED3.5B03N	SED3.5B05N	SED3.5B07N	SED3A01N	SED3A03N	SED3A05N	SED3A07N	SED3B01N	SED3B03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg											
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg											
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
1,2,3-Trichlorobenzene	ug/kg											
1,2,4-Trichlorobenzene	ug/kg											
1,2-Dibromo-3-chloropropane	ug/kg											
1,2-Dibromoethane	ug/kg											
1,2-Dichlorobenzene	ug/kg											
1,2-Dichloroethane	ug/kg											
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg											
Chlorobenzene	ug/kg											
Chloroethane	ug/kg											
Chloroform	ug/kg ug/kg											
Chloromethane	ug/kg ug/kg	 										
cis-1,2-Dichloroethylene												
cis-1,3-Dichloropropene	ug/kg ug/kg											
Cyclohexane	ug/kg ug/kg	 										
Dibromochloromethane	ug/kg ug/kg											
Dichlorodifluoromethane	ug/kg ug/kg											
												
Ethylbenzene	ug/kg											
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methylouglehevene	ug/kg											
Methylcyclohexane	ug/kg											1
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg											
Tetrachloroethylene	ug/kg											
Toluene	ug/kg											<u> </u>

·							T	1		1		
		Location ID	SED3.5B	SED3.5B	SED3.5B	SED3.5B	SED3A	SED3A	SED3A	SED3A	SED3B	SED3B
		Sample Date	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/8/2013 8:47:00 AM	11/8/2013 8:47:00 AM
		Sample ID	SED3.5B01N	SED3.5B03N	SED3.5B05N	SED3.5B07N	SED3A01N	SED3A03N	SED3A05N	SED3A07N	SED3B01N	SED3B03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
,	ug/kg										_	
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
-	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg ug/kg											
	ug/kg ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											
	ug/kg		63	1.5 J	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
	ug/kg		130	3.0 J	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
	ug/kg											
Anthracene	ug/kg		100	4.9 J	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
	ug/kg					0	1.00	0				5
	ug/kg											
	ug/kg		320	15	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
	ug/kg ug/kg	+	340	14	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	170	< 4.3 U
Delize(a)pyrene	ug/kg		340	14	14.00	14.40	17.00	17.20	17.00	0.20	170	14.00
Benzo(b)fluoranthene	ug/kg		360	20	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
Benzo(g,h,i)perylene	ug/kg		350	14	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
Benzo(k)fluoranthene	ug/kg		160	7.1	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
						I.		ı		I		

		Location ID	SED3.5B	SED3.5B	SED3.5B	SED3.5B	SED3A	SED3A	SED3A	SED3A	SED3B	SED3B
		Sample Date	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/8/2013 8:47:00 AM	11/8/2013 8:47:00 AM
		Sample ID	SED3.5B01N	SED3.5B03N	SED3.5B05N	SED3.5B07N	SED3A01N	SED3A03N	SED3A05N	SED3A07N	SED3B01N	SED3B03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg											
Carbazole	ug/kg											
Chrysene	ug/kg		380	19	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
Dibenzo(a,h)anthracene	ug/kg		54	4.5 J	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
Dibenzofuran	ug/kg											
Diethylphthalate	ug/kg											
Dimethylphthalate	ug/kg											
Di-n-butylphthalate	ug/kg											
Di-n-octylphthalate	ug/kg											
Fluoranthene	ug/kg		670	18	1.2 J	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
Fluorene	ug/kg		57	3.0 J	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
Hexachlorobenzene	ug/kg											
Hexachlorobutadiene	ug/kg											
Hexachlorocyclo-pentadiene	ug/kg											
Hexachloroethane	ug/kg											
Indeno(1,2,3-cd)pyrene	ug/kg		220	10	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
Isophorone	ug/kg											
Naphthalene	ug/kg		63	6.6	0.77 J	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
Nitrobenzene	ug/kg											
N-Nitroso-di-n-propylamine	ug/kg											
N-Nitrosodiphenylamine	ug/kg											
Pentachlorophenol	ug/kg											
Phenanthrene	ug/kg		330	17	< 4.9 U	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
Phenol	ug/kg											
Pyrene	ug/kg		900	29	2.5 J	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	2.4 J
BaP-TE	ug/kg		486	23.1	< 4.90 U	< 4.40 U	< 7.30 U	< 7.20 U	< 7.00 U	< 6.20 U	170	< 4.30 U
Total High-molecular-weight PAHs	ug/kg		3800	150	3.7	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	170	2.4
Total Low-molecular-weight PAHs	ug/kg		740	36	0.77	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	< 34 U	< 4.3 U
Total PAHs (sum 16)	ug/kg		4500	190	4.5	< 4.4 U	< 7.3 U	< 7.2 U	< 7.0 U	< 6.2 U	170	2.4

		Location ID	SED3B	SED3B	SED3C	SED3C	SED3C	SED3C	SED3C	SED3C	SED3C	SED3C
		Sample Date	11/8/2013 8:47:00 AM	11/8/2013 8:47:00 AM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM
		Sample ID	SED3B05N	SED3B07N	SED3C01N	SED3C01R	SED3C03N	SED3C03R	SED3C05N	SED3C05R	SED3C07N	SED3C07R
		Depth	5 - 7 ft	7 - 9 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	3 - 5 ft	5 - 7 ft	5 - 7 ft	7 - 9 ft	7 - 9 ft
		Туре	N	N	N	FD	N	FD	N	FD	N	FD
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg											
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg				< 45 U	< 10 U						
1,1,2,2-Tetrachloroethane	ug/kg				< 45 U	< 10 U						
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg				< 45 U	< 10 U						
1,1,2-Trichloroethane	ug/kg				< 45 U	< 10 U						
1,1-Dichloroethane	ug/kg				< 45 U	< 10 U						
1,1-Dichloroethene	ug/kg				< 45 U	< 10 U						
1,2,3-Trichlorobenzene	ug/kg				< 45 U	< 10 U	<u> </u>					
1,2,4-Trichlorobenzene	ug/kg				< 45 U	< 10 U	<u> </u>					
1,2-Dibromo-3-chloropropane	ug/kg				< 45 U	< 10 U	<u> </u>					
1,2-Dibromoethane	ug/kg				< 45 U	< 10 U	†	†				
1,2-Dichlorobenzene	ug/kg				< 45 U	< 10 U	1					
1,2-Dichloroethane	ug/kg				< 45 U	< 10 U						
1,2-Dichloropropane	ug/kg				< 45 U	< 10 U						
1,3-Dichlorobenzene	ug/kg				< 45 U	< 10 U						
1,4-Dichlorobenzene	ug/kg				< 45 U	< 10 U						
1,4-Dioxane	ug/kg				< 9000 U	< 2100 U						
2-Butanone	ug/kg				< 45 U	< 10 U						
2-Hexanone	ug/kg ug/kg				< 45 U	< 10 U						
4-Methyl-2-pentanone	ug/kg ug/kg				< 45 U	< 10 U						
Acetone					< 180 U	< 41 U						
Benzene	ug/kg				< 45 U	< 10 U						
Bromochloromethane	ug/kg				< 45 U	< 10 U						
	ug/kg				< 45 U							
Bromodichloromethane	ug/kg				< 45 U	< 10 U < 10 U						
Bromoform	ug/kg											
Bromomethane	ug/kg				< 45 U	< 10 U						
Carbon Disulfide	ug/kg				< 45 U	< 10 U						
Carbon Tetrachloride	ug/kg				< 45 U	< 10 U						
Chlorobenzene	ug/kg				< 45 U	< 10 U						
Chloroethane	ug/kg				< 45 U	< 10 U						
Chloroform	ug/kg	ļļ			< 45 U	< 10 U						
Chloromethane	ug/kg				< 45 U	< 10 U						
cis-1,2-Dichloroethylene	ug/kg				< 45 U	< 10 U						
cis-1,3-Dichloropropene	ug/kg				< 45 U	< 10 U						
Cyclohexane	ug/kg				< 45 U	< 10 U						
Dibromochloromethane	ug/kg				< 45 U	< 10 U	ļ					
Dichlorodifluoromethane	ug/kg				< 45 U	< 10 U						
Ethylbenzene	ug/kg				< 45 U	< 10 U						
Isopropylbenzene	ug/kg				< 45 U	< 10 U						
m, p-Xylene	ug/kg				< 90 U	< 21 U						
Methyl Acetate	ug/kg				< 45 U	< 10 U						
Methyl tert-Butyl Ether (MTBE)	ug/kg				< 45 U	< 10 U						
Methylcyclohexane	ug/kg				< 45 U	< 10 U						
Methylene Chloride	ug/kg				< 45 U	< 10 U						
o-Xylene	ug/kg				< 45 U	< 10 U						
Styrene	ug/kg				< 45 U	< 10 U						
Tetrachloroethylene	ug/kg				< 45 U	< 10 U						
Toluene	ug/kg				< 45 U	< 10 U						
						1	1			1		

			05000	OFDOD	05500	05000	05000	05000	05500	05000	05500	05500
		Location ID Sample Date	SED3B 11/8/2013 8:47:00 AM	SED3B 11/8/2013 8:47:00 AM	SED3C 11/7/2013 12:14:00 PM	SED3C 11/7/2013 12:14:00 PM	SED3C 11/7/2013 12:14:00 PM	SED3C 11/7/2013 12:14:00 PM	SED3C 11/7/2013 12:14:00 PM	SED3C 11/7/2013 12:14:00 PM	SED3C 11/7/2013 12:14:00 PM	SED3C 11/7/2013 12:14:00 PM
		Sample Date Sample ID	SED3B05N	SED3B07N	SED3C01N	SED3C01R	SED3C03N	SED3C03R	SED3C05N	SED3C05R	SED3C07N	SED3C07R
		Depth	5 - 7 ft	7 - 9 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	3 - 5 ft	5 - 7 ft	5 - 7 ft	7 - 9 ft	7 - 9 ft
		Type	N N	7 - 9 IL N	N N	FD	N N	FD	N N	FD FD	N N	FD
		.,,,,,	.,	.,	.,		.,		.,	. 5	.,	. 5
Analyte	Unit				45.1	40.11						
trans-1,2-Dichloroethene	ug/kg				< 45 U	< 10 U						
trans-1,3-Dichloropropene	ug/kg				< 45 U	< 10 U						
Trichloroethene	ug/kg				< 45 U	< 10 U						
Trichlorofluoromethane	ug/kg				< 45 U	< 10 U						
Vinyl Chloride	ug/kg				< 45 U	< 10 U						
Xylenes (total)	ug/kg				< 90 U	< 21 U						
1,1'-Biphenyl	ug/kg				41 J	< 110 U						
1,2,4,5-Tetrachlorobenzene	ug/kg				< 240 U	< 110 U						
2,2'-oxybis(1-Chloropropane)	ug/kg				< 49 U	< 23 U						
2,3,4,6-Tetrachlorophenol	ug/kg				< 240 U	< 110 U						
2,4,5-Trichlorophenol	ug/kg				< 240 U	< 110 U						
2,4,6-Trichlorophenol	ug/kg				< 240 U	< 110 U						
2,4-Dichlorophenol	ug/kg				< 49 U	< 23 U						
2,4-Dimethylphenol	ug/kg				44 J	< 110 U						
2,4-Dinitrophenol	ug/kg				< 1200 U	< 590 U						
2,4-Dinitrotoluene	ug/kg				< 240 U	< 110 U						
2,6-Dinitrotoluene	ug/kg				< 240 U	< 110 U						
2-Chloronaphthalene	ug/kg				< 49 U	< 23 U						
2-Chlorophenol	ug/kg				< 240 U	< 110 U						
2-Methylnaphthalene	ug/kg				100	4.6 J						
2-Methylphenol	ug/kg				< 240 U	< 110 U						
2-Nitroaniline	ug/kg				< 1200 U	< 590 U						
2-Nitrophenol	ug/kg				< 240 U	< 110 U						
3,3'-Dichlorobenzidine	ug/kg				< 240 U	< 110 U						
3-Nitroaniline	ug/kg				< 1200 U	< 590 U						
4,6-Dinitro-2-methylphenol	ug/kg				< 1200 U	< 590 U						
4-Bromophenyl-phenylether	ug/kg				< 240 U	< 110 U						
4-Chloro-3-methylphenol	ug/kg				< 240 U	< 110 U						
4-Chloroaniline	ug/kg				64 J	< 110 U						
4-Chlorophenyl-phenylether	ug/kg				< 240 U	< 110 U						
4-Methylphenol	ug/kg				130 J	< 110 U						
4-Nitroaniline	ug/kg				< 1200 U	< 590 U						
4-Nitrophenol	ug/kg				< 1200 U	< 590 U						
Acenaphthene	ug/kg		< 4.8 U	< 4.8 U	100	11 J	42	110	50	52	43	47
Acenaphthylene	ug/kg		< 4.8 U	< 4.8 U	100	23	58	130	74	76	49	60
Acetophenone	ug/kg				39 J	< 110 U						
Anthracene	ug/kg		< 4.8 U	< 4.8 U	210	28	100 J	300 J	100	110	56	69
Atrazine	ug/kg				< 240 U	< 110 U						
Benzaldehyde	ug/kg				240 J	< 110 UJ						
Benzo(a)anthracene	ug/kg		< 4.8 U	< 4.8 U	590 J	73 J	260 J	560 J	220	210	92	130
Benzo(a)pyrene	ug/kg		< 4.8 U	< 4.8 U	570 J	78 J	280 J	540 J	220	220	95	130
	١٠٠								-	-	-	
Benzo(b)fluoranthene	ug/kg		< 4.8 U	< 4.8 U	760 J	84 J	370 J	620 J	270	280	130	150
Benzo(g,h,i)perylene	ug/kg		< 4.8 U	< 4.8 U	610 J	78 J	320	500	230	230	100	130
Benzo(k)fluoranthene	ug/kg		< 4.8 U	< 4.8 U	270 J	46 J	130	220	89	83	38	65
bis-(2-chloroethoxy)methane	ug/kg				< 240 U	< 110 U						
bis-(2-Chloroethyl)ether	ug/kg				< 49 U	< 23 U						
bis-(2-Ethylhexyl)phthalate	ug/kg				2300 J	120 J						
Butylbenzylphthalate	ug/kg				120 J	< 110 U						

		Location ID	SED3B	SED3B	SED3C	SED3C	SED3C	SED3C	SED3C	SED3C	SED3C	SED3C
		Sample Date	11/8/2013 8:47:00 AM	11/8/2013 8:47:00 AM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM
		Sample ID	SED3B05N	SED3B07N	SED3C01N	SED3C01R	SED3C03N	SED3C03R	SED3C05N	SED3C05R	SED3C07N	SED3C07R
		Depth	5 - 7 ft	7 - 9 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	3 - 5 ft	5 - 7 ft	5 - 7 ft	7 - 9 ft	7 - 9 ft
		Туре	N	N	N	FD	N	FD	N	FD	N	FD
Analyte	Unit											
Caprolactam	ug/kg				< 1200 U	< 590 U						
Carbazole	ug/kg	i			110	9.8 J						
Chrysene	ug/kg	i	< 4.8 U	< 4.8 U	740 J	83 J	380 J	640 J	280	290	120	150
Dibenzo(a,h)anthracene	ug/kg	i	< 4.8 U	< 4.8 U	130	17 J*	51	120	58	39	20 J	32
Dibenzofuran	ug/kg	i			49 J	< 110 U						
Diethylphthalate	ug/kg				< 240 U	< 110 U						
Dimethylphthalate	ug/kg				< 240 U	< 110 U						
Di-n-butylphthalate	ug/kg				< 240 U	< 110 U						
Di-n-octylphthalate	ug/kg				32 J	< 110 U*						
Fluoranthene	ug/kg		1.2 J	< 4.8 U	1700 J	180 J	730 J	1700 J	640	630	250 J	350 J
Fluorene	ug/kg		< 4.8 U	< 4.8 U	120	12 J	59	130	61	63	54	55
Hexachlorobenzene	ug/kg				< 49 U	< 23 U						
Hexachlorobutadiene	ug/kg				< 49 U	< 23 U						
Hexachlorocyclo-pentadiene	ug/kg				< 240 U	< 110 U						
Hexachloroethane	ug/kg				< 240 U	< 110 U						
Indeno(1,2,3-cd)pyrene	ug/kg		< 4.8 U	< 4.8 U	480 J	65 J	230 J	420 J	170	170	77	100
Isophorone	ug/kg				< 240 U	< 110 U						
Naphthalene	ug/kg		< 4.8 U	< 4.8 U	85	< 23 U	< 27 U	< 50 U	< 25 U	< 26 U	< 25 U	< 24 U
Nitrobenzene	ug/kg				< 490 U	< 230 U						
N-Nitroso-di-n-propylamine	ug/kg				< 49 U	< 23 U						
N-Nitrosodiphenylamine	ug/kg				< 240 U	< 110 U						
Pentachlorophenol	ug/kg				< 240 U	< 110 U						
Phenanthrene	ug/kg		< 4.8 U	< 4.8 U	830 J	89 J	320 J	890 J	360	330	200 J	250 J
Phenol	ug/kg			_	< 49 U	< 23 U						
Pyrene	ug/kg		2.0 J	2.3 J	980 J	110 J	440 J	890 J	360	380	160	230
BaP-TE	ug/kg		< 4.80 U	< 4.80 U	886	118	419	823	345	326	145	201
Total High-molecular-weight PAHs	ug/kg		3.2	2.3	6800	810	3200	6200	2500	2500	1100	1500
Total Low-molecular-weight PAHs	ug/kg		< 4.8 U	< 4.8 U	1400	160	580	1600	650	630	400	480
Total PAHs (sum 16)	ug/kg		3.2	2.3	8300	980	3800	7800	3200	3200	1500	1900

		Location ID	SED4.5B	SED4.5B	SED4.5B	SED4.5B	SED4A	SED4A	SED4A	SED4A	SED4B	SED4B
		Sample Date	11/8/2013 10:16:00 AM	11/8/2013 10:16:00 AM	11/8/2013 10:16:00 AM	11/8/2013 10:16:00 AM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 12:16:00 PM	11/12/2013 12:16:00 PM
		Sample ID	SED4.5B01N	SED4.5B03N	SED4.5B05N	SED4.5B07N	SED4A01N	SED4A03N	SED4A05N	SED4A07N	SED4B01N	SED4B03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
	T T	Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg											
Gasoline Range Organics (C6-C10)	ug/kg		1500 J									
Diesel Range Organics (C10-C20)	mg/kg		370									
Oil Range Organics (C20-C36)	mg/kg		810									
1,1,1-Trichloroethane	ug/kg		< 7.8 U								< 7.1 U	
1,1,2,2-Tetrachloroethane	ug/kg		2.7 J								< 7.1 U	
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg		< 7.8 U								< 7.1 U	
1,1,2-Trichloroethane	ug/kg		< 7.8 U								< 7.1 U	
1,1-Dichloroethane	ug/kg		< 7.8 U								< 7.1 U	
1,1-Dichloroethene	ug/kg		< 7.8 U								< 7.1 U	
1,2,3-Trichlorobenzene	ug/kg		< 7.8 U								< 7.1 U	
1,2,4-Trichlorobenzene	ug/kg		< 7.8 U								< 7.1 U	
1,2-Dibromo-3-chloropropane	ug/kg		< 7.8 U								< 7.1 U	
1,2-Dibromoethane	ug/kg		< 7.8 U								< 7.1 U	
1,2-Dichlorobenzene	ug/kg		< 7.8 U								< 7.1 U	
1,2-Dichloroethane	ug/kg		< 7.8 U								< 7.1 U	
1,2-Dichloropropane	ug/kg		< 7.8 U								< 7.1 U	
1,3-Dichlorobenzene	ug/kg		< 7.8 U								< 7.1 U	
1,4-Dichlorobenzene	ug/kg		< 7.8 U								< 7.1 U	
1,4-Dioxane	ug/kg		< 1600 U								< 1400 U	
2-Butanone	ug/kg		17								< 7.1 U	
2-Hexanone	ug/kg		< 7.8 U								< 7.1 U	
4-Methyl-2-pentanone	ug/kg		< 7.8 U								< 7.1 U	
Acetone	ug/kg		86								< 29 U	
Benzene	ug/kg		< 7.8 U								< 7.1 U	
Bromochloromethane	ug/kg		< 7.8 U								< 7.1 U	
Bromodichloromethane	ug/kg		< 7.8 U								< 7.1 U	
Bromoform	ug/kg		< 7.8 U								< 7.1 U	
Bromomethane	ug/kg		< 7.8 U								< 7.1 U	
Carbon Disulfide	ug/kg		< 7.8 U								< 7.1 U	
Carbon Tetrachloride	ug/kg		< 7.8 U								< 7.1 U	
Chlorobenzene	ug/kg		< 7.8 U								< 7.1 U	
Chloroethane	ug/kg		< 7.8 U								< 7.1 U	
Chloroform	ug/kg		< 7.8 U								< 7.1 U	
Chloromethane	ug/kg		< 7.8 U								< 7.1 U	
cis-1,2-Dichloroethylene	ug/kg		< 7.8 U								< 7.1 U	
cis-1,3-Dichloropropene	ug/kg		< 7.8 U								< 7.1 U	
Cyclohexane	ug/kg		< 7.8 U								< 7.1 U	
Dibromochloromethane	ug/kg		< 7.8 U								< 7.1 U	
Dichlorodifluoromethane	ug/kg		< 7.8 U								< 7.1 U	
Ethylbenzene	ug/kg		< 7.8 U								< 7.1 U	
Isopropylbenzene	ug/kg		< 7.8 U								< 7.1 U	
m, p-Xylene	ug/kg		< 16 U								< 14 U	
Methyl Acetate	ug/kg		< 7.8 U								< 7.1 U	
Methyl tert-Butyl Ether (MTBE)	ug/kg		< 7.8 U								< 7.1 U	
Methylcyclohexane	ug/kg		< 7.8 U								< 7.1 U	
Methylene Chloride	ug/kg		< 7.8 U								< 7.1 U	
o-Xylene	ug/kg		< 7.8 U								< 7.1 U	
Styrene	ug/kg		< 7.8 U								< 7.1 U	
Tetrachloroethylene	ug/kg		< 7.8 U								< 7.1 U	
i eu aomoroeu i yiene	ug/kg											

							1	•		1		
		Location ID	SED4.5B	SED4.5B	SED4.5B	SED4.5B	SED4A	SED4A	SED4A	SED4A	SED4B	SED4B
		Sample Date	11/8/2013 10:16:00 AM	11/8/2013 10:16:00 AM	11/8/2013 10:16:00 AM	11/8/2013 10:16:00 AM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 12:16:00 PM	11/12/2013 12:16:00 PM
		Sample ID	SED4.5B01N	SED4.5B03N	SED4.5B05N	SED4.5B07N	SED4A01N	SED4A03N	SED4A05N	SED4A07N	SED4B01N	SED4B03N
		Depth Type	1 - 3 ft N	3 - 5 ft N	5 - 7 ft N	7 - 9 ft N	1 - 3 ft N	3 - 5 ft N	5 - 7 ft N	7 - 9 ft N	1 - 3 ft N	3 - 5 ft N
		Турс		14	14	14	· · ·	11	IN .		14	
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg		< 7.8 U								< 7.1 U	
trans-1,3-Dichloropropene	ug/kg		< 7.8 U								< 7.1 U	
Trichloroethene	ug/kg		< 7.8 U								< 7.1 U	
Trichlorofluoromethane	ug/kg		< 7.8 U								< 7.1 U	
Vinyl Chloride	ug/kg		< 7.8 U								< 7.1 U	
Xylenes (total)	ug/kg		< 16 U								< 14 U	
1,1'-Biphenyl	ug/kg										12 J	
1,2,4,5-Tetrachlorobenzene	ug/kg										< 130 U	
2,2'-oxybis(1-Chloropropane)	ug/kg										< 26 U	
2,3,4,6-Tetrachlorophenol	ug/kg										< 130 U	
2,4,5-Trichlorophenol	ug/kg										< 130 U	
2,4,6-Trichlorophenol	ug/kg										< 130 U	
2,4-Dichlorophenol	ug/kg										< 26 U	
2,4-Dimethylphenol	ug/kg										33 J	
2,4-Dinitrophenol	ug/kg										< 650 U	
2,4-Dinitrotoluene	ug/kg										< 130 U	
2,6-Dinitrotoluene	ug/kg										< 130 U	
2-Chloronaphthalene	ug/kg										< 26 U	
2-Chlorophenol	ug/kg										< 130 U	
2-Methylnaphthalene	ug/kg										69	
2-Methylphenol	ug/kg										< 130 U	
2-Nitroaniline	ug/kg										< 650 U	
2-Nitrophenol	ug/kg										< 130 U	
3,3'-Dichlorobenzidine	ug/kg										< 130 U	
3-Nitroaniline	ug/kg										< 650 U	
4,6-Dinitro-2-methylphenol	ug/kg										< 650 U	
4-Bromophenyl-phenylether	ug/kg										< 130 U	
4-Chloro-3-methylphenol	ug/kg										< 130 U	
4-Chloroaniline	ug/kg										< 130 U	
4-Chlorophenyl-phenylether	ug/kg										< 130 U	
4-Methylphenol	ug/kg										27 J	
4-Nitroaniline	ug/kg										< 650 U	
4-Nitrophenol	ug/kg										< 650 U	
Acenaphthene	ug/kg		56	13 J	< 25 U	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	170	32
Acenaphthylene	ug/kg		160	37	< 25 U	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	140	110
Acetophenone	ug/kg										< 130 U	
Anthracene	ug/kg		120	30	< 25 U	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	360	82
Atrazine	ug/kg										< 130 U	
Benzaldehyde	ug/kg				·						24 J	
Benzo(a)anthracene	ug/kg		330	110	13 J	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	1000	220
Benzo(a)pyrene	ug/kg		350	120	11 J	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	1000	200
Benzo(b)fluoranthene	ug/kg		400	110	27	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	1100	220
Benzo(g,h,i)perylene	ug/kg		360	95	< 25 U	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	890	190
Benzo(k)fluoranthene	ug/kg		140	120	< 25 U	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	470	95
bis-(2-chloroethoxy)methane	ug/kg		-	-							< 130 U	<u> </u>
bis-(2-Chloroethyl)ether	ug/kg										< 26 U	
bis-(2-Ethylhexyl)phthalate	ug/kg										330	
Butylbenzylphthalate	ug/kg										< 130 U	

		Location ID	SED4.5B	SED4.5B	SED4.5B	SED4.5B	SED4A	SED4A	SED4A	SED4A	SED4B	SED4B
	S	Sample Date	11/8/2013 10:16:00 AM	11/8/2013 10:16:00 AM	11/8/2013 10:16:00 AM	11/8/2013 10:16:00 AM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 12:16:00 PM	11/12/2013 12:16:00 PM
		Sample ID	SED4.5B01N	SED4.5B03N	SED4.5B05N	SED4.5B07N	SED4A01N	SED4A03N	SED4A05N	SED4A07N	SED4B01N	SED4B03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
	ı	Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
,	ug/kg										< 650 U	
-	ug/kg										120	
	ug/kg		410	160	13 J	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	1200	270
-	ug/kg		68	22 J	< 25 U	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	190	50
	ug/kg										< 130 U	
	ug/kg										< 130 U	
	ug/kg										< 130 U	
	ug/kg										< 130 U	
	ug/kg										< 130 U	
Fluoranthene	ug/kg		800	220	16 J	< 4.5 U	6.9 J	< 33 U	< 28 U	< 25 U	2500	500
Fluorene	ug/kg		82	31	< 25 U	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	170	52
Hexachlorobenzene	ug/kg										< 26 U	
Hexachlorobutadiene	ug/kg										< 26 U	
Hexachlorocyclo-pentadiene I	ug/kg										< 130 U	
Hexachloroethane	ug/kg										< 130 U	
Indeno(1,2,3-cd)pyrene	ug/kg		210	79	< 25 U	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	690	120
Isophorone	ug/kg										< 130 U	
Naphthalene ı	ug/kg		55	< 27 U	< 25 U	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	60	32
Nitrobenzene	ug/kg										< 260 U	
N-Nitroso-di-n-propylamine	ug/kg										< 26 U	
N-Nitrosodiphenylamine ı	ug/kg										< 130 U	
Pentachlorophenol I	ug/kg										< 130 U	
Phenanthrene	ug/kg		480	130	11 J	0.84 J	< 33 U	< 33 U	< 28 U	< 25 U	1700	340
Phenol	ug/kg										< 26 U	
Pyrene	ug/kg		1000	250	21 J	< 4.5 U	< 33 U	< 33 U	< 28 U	< 25 U	1900	550
BaP-TE (ug/kg		514	173	15.0	< 4.50 U	< 33.0 U	< 33.0 U	< 28.0 U	< 25.0 U	1470	307
Total High-molecular-weight PAHs	ug/kg		4100	1300	100	< 4.5 U	6.9	< 33 U	< 28 U	< 25 U	11000	2400
Total Low-molecular-weight PAHs	ug/kg		950	240	11	0.84	< 33 U	< 33 U	< 28 U	< 25 U	2600	650
Total PAHs (sum 16)	ug/kg		5000	1500	110	0.84	6.9	< 33 U	< 28 U	< 25 U	14000	3100

Bank-Look 10 10 10 10 10 10 10 1								7	1		•		
Service 1968 1969			Location ID	SED4B	SED4B	SED4B	SED4B	SED4B	SED4C	SED4C	SED4C	SED4C	SED4C
Type 1-7 1-18			· ·										
March Marc													
Aug.													
March Marc			туре	IN	IN	IN	IN						
March Marc	Analyte	Unit											
Sealer Segue (Security (Security 1972) 949 1	·	_				2080	3500	2660					3070
See See See See See See See See See See													
Files													
1.1 Intersectable Sept.													
12.5 Plane Article 12.5 Pl	1,1,1-Trichloroethane												
1575 tables of any set of the s	1,1,2,2-Tetrachloroethane												
12-501 convolume	1,1,2-Trichloro-1,2,2-trifluoroethane												
Decisioned 1918	1,1,2-Trichloroethane												
Schelinsbrane 9/9	1,1-Dichloroethane												
2.3-Thirtostevaleure	1,1-Dichloroethene												
Alternationaries glob	1,2,3-Trichlorobenzene												
Salameneshare 9kg	1,2,4-Trichlorobenzene												
2-50-terronomations 19-06	1,2-Dibromo-3-chloropropane												
2-Schrosteranses 909	1,2-Dibromoethane												
2-Dankbordwinger	1,2-Dichlorobenzene												
2-Data (1998) 1998	1,2-Dichloroethane												
Scheinscheinschein Spring	1,2-Dichloropropane												
# Districtorserver # Districtors	1,3-Dichlorobenzene												
4-Sourane	1,4-Dichlorobenzene												
Bulanne	1,4-Dioxane												
Headman Wind	2-Butanone												
Methys/eptratories g/sg	2-Hexanone												
Common C	4-Methyl-2-pentanone												
Part	Acetone												
Part Part	Benzene	ug/kg											
remoferm	Bromochloromethane	ug/kg											
remonethane ug/kg	Bromodichloromethane	ug/kg											
arbon Delurifie	Bromoform	ug/kg											
arbon Tetachloride	Bromomethane	ug/kg											
Nicrothane 19/8	Carbon Disulfide	ug/kg											
Distribution Sign	Carbon Tetrachloride	ug/kg											
Name	Chlorobenzene	ug/kg											
A	Chloroethane	ug/kg											
s-1,2-Dichloroethylene	Chloroform	ug/kg											
s-1,3-Dichloropropene	Chloromethane												
yclohexane	cis-1,2-Dichloroethylene												
Description of the control of the	cis-1,3-Dichloropropene												
ichlorodifluoromethane	Cyclohexane												
thylbenzene	Dibromochloromethane												
Composition Composition	Dichlorodifluoromethane												
In the control of t	Ethylbenzene												
lethyl Acetate ug/kg Image: setting lethyl Ether (MTBE) ug/kg Image: setting lethyl Ether (MTBE)	Isopropylbenzene												
lethyl tert-Butyl Ether (MTBE) lug/kg<	m, p-Xylene												
lethylcyclohexane lug/kg land land land land land land land land	Methyl Acetate												
lethylene Chloride Ug/kg Ug/kg S S S S S S S S S S S S S S S S S S S	Methyl tert-Butyl Ether (MTBE)												
-Xylene ug/kg los los los los los los los los los los	Methylcyclohexane												
tyrene ug/kg la la la la la la la la la la la la la	Methylene Chloride												
etrachloroethylene ug/kg	o-Xylene												
	Styrene												
oluene ug/kg	Tetrachloroethylene												
	Toluene	ug/kg											

		Location ID	SED4B	SED4B	SED4B	SED4B	SED4B	SED4C	SED4C	SED4C	SED4C	SED4C
		Sample Date	11/12/2013 12:16:00 PM	11/12/2013 12:16:00 PM	6/15/2017 8:40:00 AM	6/15/2017 8:50:00 AM	6/15/2017 9:00:00 AM	11/12/2013 2:09:00 PM	11/12/2013 2:09:00 PM	11/12/2013 2:09:00 PM	11/12/2013 2:09:00 PM	6/14/2017 1:40:00 PM
		Sample ID	SED4B05N	SED4B07N	SED4B02FN	SED4B04FN	SED4B06FN	SED4C01N	SED4C03N	SED4C05N	SED4C07N	SED4C02FN
		Depth Type	5 - 7 ft N	7 - 9 ft N	2 - 3 ft N	4 - 5 ft N	6 - 7 ft N	1 - 3 ft N	3 - 5 ft N	5 - 7 ft N	7 - 9 ft N	2 - 3 ft N
		Турс	14	14	14	14		14	14	14	11	14
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											
trans-1,3-Dichloropropene	ug/kg											
Trichloroethene	ug/kg											
Trichlorofluoromethane	ug/kg											
Vinyl Chloride	ug/kg											
Xylenes (total)	ug/kg											
1,1'-Biphenyl	ug/kg											
1,2,4,5-Tetrachlorobenzene	ug/kg											
2,2'-oxybis(1-Chloropropane)	ug/kg											
2,3,4,6-Tetrachlorophenol	ug/kg											
2,4,5-Trichlorophenol	ug/kg											
2,4,6-Trichlorophenol	ug/kg											
2,4-Dichlorophenol	ug/kg											
2,4-Dimethylphenol	ug/kg											
2,4-Dinitrophenol	ug/kg											
2,4-Dinitrotoluene	ug/kg											
2,6-Dinitrotoluene	ug/kg											
2-Chloronaphthalene	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene	ug/kg											
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg											
2-Nitrophenol	ug/kg											
3,3'-Dichlorobenzidine	ug/kg											
3-Nitroaniline	ug/kg											
4,6-Dinitro-2-methylphenol	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
4-Chlorophenyl-phenylether	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											
Acenaphthene			34	8.1 J	64 J	41 J	2.8 J	23 J	35	72	38	61 J
Acenaphthylene	ug/kg		100	17 J	90	120	9.3	40	99	170	91	91 J
	ug/kg		100	If J	30	120	3.3	40	33	170	3/1	217
Acetophenone	ug/kg											
Anthracene	ug/kg		100	15 J	81	100	7.0	42	69	160	81	90 J
Atrazine	ug/kg											
Benzaldehyde	ug/kg											
Benzo(a)anthracene	ug/kg		270	48	180	210	13	140	210	450	240	230
Benzo(a)pyrene	ug/kg		290	50	180	210	14	170	220	510	290 *	270
V // 2	33											
Benzo(b)fluoranthene	ug/kg		340	81	210	230	16	220	290	530	330 *	370
Benzo(g,h,i)perylene	ug/kg		300	57	150	180	13	150	210	580	280 *	290
Benzo(k)fluoranthene	ug/kg		110	19 J	75	110	6.9	57	79	160	130 *	110 J
bis-(2-chloroethoxy)methane	ug/kg											
bis-(2-Chloroethyl)ether	ug/kg											
bis-(2-Ethylhexyl)phthalate	ug/kg											
Butylbenzylphthalate	ug/kg	1										

		Location ID	SED4B	SED4B	SED4B	SED4B	SED4B	SED4C	SED4C	SED4C	SED4C	SED4C
		Sample Date	11/12/2013 12:16:00 PM	11/12/2013 12:16:00 PM	6/15/2017 8:40:00 AM	6/15/2017 8:50:00 AM	6/15/2017 9:00:00 AM	11/12/2013 2:09:00 PM	11/12/2013 2:09:00 PM	11/12/2013 2:09:00 PM	11/12/2013 2:09:00 PM	6/14/2017 1:40:00 PM
		Sample ID	SED4B05N	SED4B07N	SED4B02FN	SED4B04FN	SED4B06FN	SED4C01N	SED4C03N	SED4C05N	SED4C07N	SED4C02FN
		Depth	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft
	•	Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg											
Carbazole	ug/kg											
Chrysene	ug/kg		340	65	210	260	17	190	280	530	370	320
Dibenzo(a,h)anthracene	ug/kg		58	11 J	38 J	39 J	2.7 J	36	41	82	54 *	< 140 U
Dibenzofuran	ug/kg											
Diethylphthalate	ug/kg											
Dimethylphthalate	ug/kg											
Di-n-butylphthalate	ug/kg											
Di-n-octylphthalate	ug/kg											
Fluoranthene	ug/kg		560	76	450	550	33	250	340	940	510	640
Fluorene	ug/kg		46	8.9 J	66 J	55 J	4.1 J	28	49	79	49	71 J
Hexachlorobenzene	ug/kg											
Hexachlorobutadiene	ug/kg											
Hexachlorocyclo-pentadiene	ug/kg											
Hexachloroethane	ug/kg											
Indeno(1,2,3-cd)pyrene	ug/kg		200	46	120	140	9.6	120	140	300	180 *	210
Isophorone	ug/kg											
Naphthalene	ug/kg		60	9.4 J	< 74 U	34 J	3.4 J	18 J	39	75	64	< 140 U
Nitrobenzene	ug/kg											
N-Nitroso-di-n-propylamine	ug/kg											
N-Nitrosodiphenylamine	ug/kg											
Pentachlorophenol	ug/kg											
Phenanthrene	ug/kg		310	39	370	370	19	220	270	580	290	330
Phenol	ug/kg		_							_		
Pyrene	ug/kg		600	91	410	530	32	370	510	1600	650	570
BaP-TE	ug/kg		430	78.8	270	308	20.6	255	326	722	421	352
Total High-molecular-weight PAHs	ug/kg		3100	540	2000	2500	160	1700	2300	5700	3000	3000
Total Low-molecular-weight PAHs	ug/kg		650	97	670	720	46	370	560	1100	610	640
Total PAHs (sum 16)	ug/kg		3700	640	2700	3200	200	2100	2900	6800	3600	3700

		Location ID	SED4C	SED4C	SED4C	SED5.5B	SED5.5B	SED5.5B	SED5.5B	SED5A	SED5A	SED5A
		Sample Date	6/14/2017 1:50:00 PM	6/14/2017 2:00:00 PM	6/14/2017 2:10:00 PM	11/12/2013 2:49:00 PM	11/12/2013 2:49:00 PM	11/12/2013 2:49:00 PM	11/13/2013 2:49:00 PM	11/8/2013 11:18:00 AM	11/8/2013 11:18:00 AM	11/8/2013 11:18:00 AM
		Sample ID	SED4C04FN	SED4C06FN	SED4C08FN	SED5.5B01N	SED5.5B03N	SED5.5B07N	SED5.5B05N	SED5A01N	SED5A03N	SED5A05N
		Depth	4 - 5 ft	6 - 7 ft	8 - 9 ft	1 - 3 ft	3 - 5 ft	7 - 9 ft	5 - 7 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg		1970	2870	2700							
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg											
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
1,2,3-Trichlorobenzene	ug/kg											
1,2,4-Trichlorobenzene	ug/kg ug/kg											
1,2-Dibromo-3-chloropropane	ug/kg ug/kg											
1,2-Dibromoethane												
1,2-Dichlorobenzene	ug/kg											
	ug/kg											
1,2-Dichloroethane	ug/kg											
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg											
Chlorobenzene	ug/kg											
Chloroethane	ug/kg											
Chloroform	ug/kg											
Chloromethane	ug/kg											
cis-1,2-Dichloroethylene	ug/kg											
cis-1,3-Dichloropropene	ug/kg											
Cyclohexane	ug/kg											
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg											
Ethylbenzene												
	ug/kg											
sopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg											
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg	,										
				i — —	i ————	i ————————————————————————————————————						
Tetrachloroethylene Toluene	ug/kg ug/kg											

		Location ID	SED4C	SED4C	SED4C	SED5.5B	SED5.5B	SED5.5B	SED5.5B	SED5A	SED5A	SED5A
		Sample Date	6/14/2017 1:50:00 PM	6/14/2017 2:00:00 PM	6/14/2017 2:10:00 PM	11/12/2013 2:49:00 PM	11/12/2013 2:49:00 PM	11/12/2013 2:49:00 PM	11/13/2013 2:49:00 PM	11/8/2013 11:18:00 AM	11/8/2013 11:18:00 AM	11/8/2013 11:18:00 AM
		Sample ID	SED4C04FN	SED4C06FN	SED4C08FN	SED5.5B01N	SED5.5B03N	SED5.5B07N	SED5.5B05N	SED5A01N	SED5A03N	SED5A05N
		Depth	4 - 5 ft	6 - 7 ft	8 - 9 ft	1 - 3 ft	3 - 5 ft	7 - 9 ft	5 - 7 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
		Type	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											
trans-1,3-Dichloropropene	ug/kg											
Trichloroethene	ug/kg											
Trichlorofluoromethane	ug/kg											
Vinyl Chloride	ug/kg											
Xylenes (total)	ug/kg											
1,1'-Biphenyl	ug/kg											
1,2,4,5-Tetrachlorobenzene	ug/kg											
2,2'-oxybis(1-Chloropropane)	ug/kg											
2,3,4,6-Tetrachlorophenol	ug/kg											
2,4,5-Trichlorophenol	ug/kg											
2,4,6-Trichlorophenol	ug/kg											
2,4-Dichlorophenol	ug/kg											
2,4-Dimethylphenol	ug/kg											
2,4-Dinitrophenol	ug/kg											
2,4-Dinitrotoluene	ug/kg											
2,6-Dinitrotoluene	ug/kg											
2-Chloronaphthalene	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene	ug/kg											
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg											
2-Nitrophenol	ug/kg											
3,3'-Dichlorobenzidine	ug/kg											
3-Nitroaniline	ug/kg											
4,6-Dinitro-2-methylphenol	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
4-Chlorophenyl-phenylether	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											
Acenaphthene	ug/kg		60	67 J	80	29	35	< 23 U	16 J	44	40	48
Acenaphthylene	ug/kg		160	210	200	110	95	< 23 U	33	100	98	130
Acetophenone	ug/kg			210	230			. 20 0		.50		.50
, asseptioned	ug/Ng											
Anthracene	ug/kg		140	160	180	68	76	< 23 U	47	63	71	110
Atrazine	ug/kg					· · · · · · · · · · · · · · · · · · ·	-		-			
Benzaldehyde	ug/kg											
Benzo(a)anthracene	ug/kg		290	290	410	160	220	19 J	130	250	200	240
Benzo(a)pyrene	ug/kg	-	300	320	500	190	270 *	< 23 U	140	270	210	290
(//)	-39		-24				=- •			- -		
Benzo(b)fluoranthene	ug/kg		330	380	550	240	250 *	18 J	180	280	230	290
Benzo(g,h,i)perylene	ug/kg		280	290	560	190	320 *	< 23 U	120	290	280	350
Benzo(k)fluoranthene	ug/kg		140	140	160	77	130 *	< 23 U	49	150	77	140
bis-(2-chloroethoxy)methane	ug/kg											
bis-(2-Chloroethyl)ether	ug/kg											
bis-(2-Ethylhexyl)phthalate	ug/kg											
Butylbenzylphthalate	ug/kg											

		Location ID	SED4C	SED4C	SED4C	SED5.5B	SED5.5B	SED5.5B	SED5.5B	SED5A	SED5A	SED5A
		Sample Date		6/14/2017 2:00:00 PM	6/14/2017 2:10:00 PM	11/12/2013 2:49:00 PM	11/12/2013 2:49:00 PM	11/12/2013 2:49:00 PM	11/13/2013 2:49:00 PM	11/8/2013 11:18:00 AM	11/8/2013 11:18:00 AM	11/8/2013 11:18:00 AM
		Sample ID		SED4C06FN	SED4C08FN	SED5.5B01N	SED5.5B03N	SED5.5B07N	SED5.5B05N	SED5A01N	SED5A03N	SED5A05N
		Depth	4 - 5 ft	6 - 7 ft	8 - 9 ft	1 - 3 ft	3 - 5 ft	7 - 9 ft	5 - 7 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg											
Carbazole	ug/kg											
Chrysene	ug/kg		380	420	490	240	270	21 J	160	350	250	320
Dibenzo(a,h)anthracene	ug/kg		67	65 J	88	33	56 *	< 23 U	31	57	46	46
Dibenzofuran	ug/kg											
Diethylphthalate	ug/kg											
Dimethylphthalate	ug/kg											
Di-n-butylphthalate	ug/kg											
Di-n-octylphthalate	ug/kg											
Fluoranthene	ug/kg		810	720	1200	310	440	19 J	260	490	440	620
Fluorene	ug/kg		95	82	98	35	39	< 23 U	21 J	59	46	75
Hexachlorobenzene	ug/kg											
Hexachlorobutadiene	ug/kg											
Hexachlorocyclo-pentadiene	ug/kg											
Hexachloroethane	ug/kg											
Indeno(1,2,3-cd)pyrene	ug/kg		190	220	310	150	180 *	< 23 U	100	200	150	200
Isophorone	ug/kg											
Naphthalene	ug/kg		45 J	74 J	86	35	41	< 23 U	24 J	30	35	77
Nitrobenzene	ug/kg											
N-Nitroso-di-n-propylamine	ug/kg											
N-Nitrosodiphenylamine	ug/kg											
Pentachlorophenol	ug/kg											
Phenanthrene	ug/kg		580	450	560	190	250	13 J	120	380	270	370
Phenol	ug/kg											
Pyrene	ug/kg		730	730	1300	380	600	24	190	540	570	740
BaP-TE	ug/kg		450	476	717	279	393	3.72	213	402	315	411
Total High-molecular-weight PAHs	ug/kg		3500	3600	5600	2000	2700	100	1400	2900	2500	3200
Total Low-molecular-weight PAHs	ug/kg		1100	1000	1200	470	540	13	260	680	560	810
Total PAHs (sum 16)	ug/kg		4600	4600	6800	2400	3300	110	1600	3600	3000	4000

								_				
		Location ID	SED5A	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B
		Sample Date	11/8/2013 11:18:00 AM	11/8/2013 12:14:00 PM	11/8/2013 12:14:00 PM	11/8/2013 12:14:00 PM			6/19/2017 2:30:00 PM	6/19/2017 2:40:00 PM	6/20/2017 7:50:00 AM	6/20/2017 7:55:00 AM
		Sample ID	SED5A07N	SED5B01N	SED5B03N	SED5B05N	SED5B07N	SED5B02FN	SED5B04FN	SED5B06FN	SED5B00BN	SED5B00CN
		Depth	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	0.33 - 0.67 ft	0.67 - 1 ft
	1 1	Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg							3000	1610	37.6		
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg										120 J-	210 J-
Oil Range Organics (C20-C36)	mg/kg										1200 J-	910 J-
1,1,1-Trichloroethane	ug/kg											
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
1,2,3-Trichlorobenzene	ug/kg											
1,2,4-Trichlorobenzene	ug/kg						 					
1,2-Dibromo-3-chloropropane	ug/kg						 					
1,2-Dibromoethane	ug/kg						 					
1,2-Dichlorobenzene	ug/kg											
1,2-Dichloroethane	ug/kg						 					
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene												
1,4-Dichlorobenzene	ug/kg											
1,4-Dicrilorobertzerie	ug/kg											
2-Butanone	ug/kg											-
	ug/kg											
2-Hexanone	ug/kg											l
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											l
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg											
Chlorobenzene	ug/kg											
Chloroethane	ug/kg											
Chloroform	ug/kg											
Chloromethane	ug/kg											
cis-1,2-Dichloroethylene	ug/kg											
cis-1,3-Dichloropropene	ug/kg											
Cyclohexane	ug/kg											
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg											
Ethylbenzene	ug/kg											
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg						ļ					
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg											
Tetrachloroethylene	ug/kg											
Toluene	ug/kg											1

VOCs, SVOCs, and TPH Fractions Concentrations in Waterside Investigation Area Subsurface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

		Location ID	SED5A	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B
		Sample Date	11/8/2013 11:18:00 AM	11/8/2013 12:14:00 PM	11/8/2013 12:14:00 PM	11/8/2013 12:14:00 PM	11/8/2013 12:14:00 PM			6/19/2017 2:40:00 PM	6/20/2017 7:50:00 AM	6/20/2017 7:55:00 AM
		Sample ID	SED5A07N	SED5B01N	SED5B03N	SED5B05N	SED5B07N	SED5B02FN	SED5B04FN	SED5B06FN	SED5B00BN	SED5B00CN
		Depth	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	0.33 - 0.67 ft	0.67 - 1 ft
	1	Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											
trans-1,3-Dichloropropene	ug/kg											
Trichloroethene	ug/kg											
Trichlorofluoromethane	ug/kg											
Vinyl Chloride	ug/kg											
Xylenes (total)	ug/kg											
1,1'-Biphenyl	ug/kg											
1,2,4,5-Tetrachlorobenzene	ug/kg											
2,2'-oxybis(1-Chloropropane)	ug/kg											
2,3,4,6-Tetrachlorophenol	ug/kg											
2,4,5-Trichlorophenol	ug/kg											
2,4,6-Trichlorophenol	ug/kg											
2,4-Dichlorophenol	ug/kg											
2,4-Dimethylphenol	ug/kg											
2,4-Dinitrophenol	ug/kg											
2,4-Dinitrotoluene	ug/kg ug/kg								-			
2,6-Dinitrotoluene												
2-Chloronaphthalene	ug/kg											
-	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene	ug/kg											
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg											
2-Nitrophenol	ug/kg											
3,3'-Dichlorobenzidine	ug/kg											
3-Nitroaniline	ug/kg											
4,6-Dinitro-2-methylphenol	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
4-Chlorophenyl-phenylether	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											
Acenaphthene	ug/kg		< 4.4 U	66	7.4 J	< 4.1 U	< 4.2 U	77	50	< 4.5 U	< 210 U	34 J
Acenaphthylene	ug/kg		< 4.4 U	120	< 24 U	< 4.1 U	< 4.2 U	260	100	< 4.5 U	< 210 U	99
Acetophenone	ug/kg											
Anthracene	ug/kg		< 4.4 U	130	24	< 4.1 U	< 4.2 U	240	140	1.7 J	< 210 U	130
Atrazine	ug/kg		-	**		-	-		-	-		
Benzaldehyde	ug/kg											
Benzo(a)anthracene	ug/kg		< 4.4 U	370	73	< 4.1 U	< 4.2 U	380	290	4.5	300	280
Benzo(a)pyrene	ug/kg		< 4.4 U	350	79	< 4.1 U	< 4.2 U	380	280	4.4 J	330	310
26.126(4)\$3.6.16	ag/iig		0	300		5	2 0		100	4.40		0.0
Benzo(b)fluoranthene	ug/kg		< 4.4 U	380	94	< 4.1 U	< 4.2 U	500	430	6.8	620	390
Benzo(g,h,i)perylene	ug/kg		< 4.4 U	320	70	< 4.1 U	< 4.2 U	370	250	3.9 J	430	290
Benzo(k)fluoranthene	ug/kg		< 4.4 U	140	46	< 4.1 U	< 4.2 U	160	140	1.5 J	220	180
bis-(2-chloroethoxy)methane	ug/kg											
bis-(2-Chloroethyl)ether	ug/kg											
bis-(2-Ethylhexyl)phthalate	ug/kg											
Butylbenzylphthalate	ug/kg	i i										

Benning Road Facilty RI Report

		Location ID	SED5A	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B
	S	Sample Date	11/8/2013 11:18:00 AM	11/8/2013 12:14:00 PM	11/8/2013 12:14:00 PM	11/8/2013 12:14:00 PM	11/8/2013 12:14:00 PM		6/19/2017 2:30:00 PM	6/19/2017 2:40:00 PM	6/20/2017 7:50:00 AM	6/20/2017 7:55:00 AM
		Sample ID	SED5A07N	SED5B01N	SED5B03N	SED5B05N	SED5B07N	SED5B02FN	SED5B04FN	SED5B06FN	SED5B00BN	SED5B00CN
		Depth	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	0.33 - 0.67 ft	0.67 - 1 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg											
Carbazole	ug/kg											
Chrysene	ug/kg		< 4.4 U	430	96	< 4.1 U	< 4.2 U	490	370	4.6	520	380
Dibenzo(a,h)anthracene	ug/kg		< 4.4 U	65	12 J	< 4.1 U	< 4.2 U	69	67	< 4.5 U	< 210 U	64
Dibenzofuran	ug/kg											
Diethylphthalate	ug/kg											
Dimethylphthalate	ug/kg											
Di-n-butylphthalate	ug/kg											
Di-n-octylphthalate	ug/kg											
Fluoranthene	ug/kg		< 4.4 U	790	120	< 4.1 U	1.4 J	710	580	5.8	590	510
Fluorene	ug/kg		< 4.4 U	58	8.5 J	< 4.1 U	< 4.2 U	85	70	< 4.5 U	< 210 U	54
Hexachlorobenzene	ug/kg											
Hexachlorobutadiene	ug/kg											
Hexachlorocyclo-pentadiene	ug/kg											
Hexachloroethane	ug/kg											
Indeno(1,2,3-cd)pyrene	ug/kg		< 4.4 U	240	60	< 4.1 U	< 4.2 U	250	200	< 4.5 U	310	210
Isophorone	ug/kg											
Naphthalene	ug/kg		< 4.4 U	61	< 24 U	< 4.1 U	< 4.2 U	69	67	< 4.5 U	< 210 U	26 J
Nitrobenzene	ug/kg											
N-Nitroso-di-n-propylamine	ug/kg											
N-Nitrosodiphenylamine	ug/kg											
Pentachlorophenol	ug/kg											
Phenanthrene	ug/kg		< 4.4 U	500	67	< 4.1 U	< 4.2 U	500	350	4.6	270	410
Phenol	ug/kg											
Pyrene	ug/kg		< 4.4 U	810	120	< 4.1 U	1.5 J	1000	600	8.9	680	700
BaP-TE	ug/kg		< 4.40 U	516	114	< 4.10 U	< 4.20 U	564	441	5.55	456	464
Total High-molecular-weight PAHs	ug/kg		< 4.4 U	3900	770	< 4.1 U	2.9	4300	3200	40	4000	3300
Total Low-molecular-weight PAHs	ug/kg		< 4.4 U	940	110	< 4.1 U	< 4.2 U	1200	780	6.3	270	750
Total PAHs (sum 16)	ug/kg		< 4.4 U	4800	880	< 4.1 U	2.9	5500	4000	47	4300	4100

		Location ID	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B
		Sample Date	6/20/2017 8:00:00 AM	6/20/2017 8:05:00 AM	6/20/2017 8:10:00 AM	6/20/2017 8:15:00 AM	6/20/2017 8:20:00 AM	6/20/2017 8:25:00 AM	6/20/2017 8:30:00 AM	6/20/2017 8:35:00 AM		6/20/2017 8:45:00 AM	6/20/2017 8:50:00 AM
		Sample ID	SED5B01AN	SED5B01BN	SED5B01CN	SED5B02AN	SED5B02BN	SED5B02CN	SED5B03AN	SED5B03BN	SED5B03CN	SED5B04AN	SED5B04BN
		Depth	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft	2.33 - 2.67 ft	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft	4 - 4.33 ft	4.33 - 4.67 ft
	_	Туре	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit												
Total Petroleum Hydrocarbons (C9-C44)	mg/kg			3970							2940		
Gasoline Range Organics (C6-C10)	ug/kg			50.0							2040		
Diesel Range Organics (C10-C20)	mg/kg		370 J-	590 J-	540 J-	290 J-	550 J-	690 J-	600 J-	450 J-	740 J-	510 J-	320 J-
Oil Range Organics (C20-C36)	mg/kg		1000 J-	1500 J-	1200 J-	760 J-	1300 J-	1700 J-	1900 J-	1200 J-	2200 J-	1400 J-	1300 J-
1,1,1-Trichloroethane	ug/kg												
1,1,2,2-Tetrachloroethane	ug/kg												
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg												
1,1,2-Trichloroethane	ug/kg												
1,1-Dichloroethane	ug/kg												
1,1-Dichloroethene	ug/kg												
1,2,3-Trichlorobenzene	ug/kg												
1,2,4-Trichlorobenzene	ug/kg												
1,2-Dibromo-3-chloropropane	ug/kg												
1,2-Dibromoethane	ug/kg												
1,2-Dichlorobenzene	ug/kg												
1,2-Dichloroethane	ug/kg												
1,2-Dichloropropane	ug/kg												
1,3-Dichlorobenzene	ug/kg												
1,4-Dichlorobenzene	ug/kg												
1,4-Dioxane	ug/kg												
2-Butanone	ug/kg												
2-Hexanone	ug/kg												
4-Methyl-2-pentanone	ug/kg												
Acetone	ug/kg												
Benzene	ug/kg												
Bromochloromethane	ug/kg												
Bromodichloromethane	ug/kg												
Bromoform	ug/kg												
Bromomethane	ug/kg												
Carbon Disulfide	ug/kg												
Carbon Tetrachloride	ug/kg												
Chlorobenzene	ug/kg												
Chloroethane	ug/kg												
Chloroform	ug/kg												
Chloromethane	ug/kg												
cis-1,2-Dichloroethylene	ug/kg												
cis-1,3-Dichloropropene	ug/kg												
Cyclohexane	ug/kg												
Dibromochloromethane	ug/kg												
Dichlorodifluoromethane	ug/kg												
Ethylbenzene	ug/kg												
Isopropylbenzene	ug/kg												
m, p-Xylene	ug/kg												
Methyl Acetate	ug/kg												
Methyl tert-Butyl Ether (MTBE)	ug/kg												
Methylcyclohexane	ug/kg												
Methylene Chloride	ug/kg												
o-Xylene	ug/kg												
Styrene	ug/kg												
Tetrachloroethylene	ug/kg												
Toluene													
oluene	ug/kg												

		Location ID	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B
		Sample Date	6/20/2017 8:00:00 AM	6/20/2017 8:05:00 AM	6/20/2017 8:10:00 AM	6/20/2017 8:15:00 AM		6/20/2017 8:25:00 AM	6/20/2017 8:30:00 AM	6/20/2017 8:35:00 AM	6/20/2017 8:40:00 AM	6/20/2017 8:45:00 AM	6/20/2017 8:50:00 AM
		Sample ID	SED5B01AN	SED5B01BN	SED5B01CN	SED5B02AN	SED5B02BN	SED5B02CN	SED5B03AN	SED5B03BN	SED5B03CN	SED5B04AN	SED5B04BN
		Depth	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft	2.33 - 2.67 ft	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft	4 - 4.33 ft	4.33 - 4.67 ft
		Туре	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit												
trans-1,2-Dichloroethene	ug/kg												
trans-1,3-Dichloropropene	ug/kg												
Trichloroethene	ug/kg												
Trichlorofluoromethane	ug/kg												
Vinyl Chloride	ug/kg												
Xylenes (total)	ug/kg												
1,1'-Biphenyl	ug/kg												
1,2,4,5-Tetrachlorobenzene	ug/kg												
2,2'-oxybis(1-Chloropropane)	ug/kg												
2,3,4,6-Tetrachlorophenol	ug/kg												
2,4,5-Trichlorophenol	ug/kg												
2,4,6-Trichlorophenol	ug/kg												
2,4-Dichlorophenol	ug/kg												
2,4-Dimethylphenol	ug/kg												
2,4-Dinitrophenol	ug/kg												
2,4-Dinitrotoluene	ug/kg												
2,6-Dinitrotoluene	ug/kg												
2-Chloronaphthalene	ug/kg												
2-Chlorophenol	ug/kg												
2-Methylnaphthalene	ug/kg												
2-Methylphenol	ug/kg												
2-Nitroaniline	ug/kg												
2-Nitrophenol	ug/kg												
3,3'-Dichlorobenzidine	ug/kg												
3-Nitroaniline	ug/kg												
4,6-Dinitro-2-methylphenol	ug/kg												
4-Bromophenyl-phenylether	ug/kg												
4-Chloro-3-methylphenol	ug/kg												
4-Chloroaniline	ug/kg												
4-Chlorophenyl-phenylether	ug/kg												
4-Methylphenol	ug/kg												
4-Nitroaniline	ug/kg												
4-Nitrophenol	ug/kg												
Acenaphthene	ug/kg		< 60 U	75	67	38	72	72	95	60	81	64	37
Acenaphthylene	ug/kg		280	230	190	160	260	230	190	160	170	120	88
Acetophenone	ug/kg												
Anthracene	ug/kg		240	200	190	120	210	180	230	140	200	140	110
Atrazine	ug/kg												
Benzaldehyde	ug/kg												
Benzo(a)anthracene	ug/kg		400	310	300	220	350	350	380	260	400	280	240
Benzo(a)pyrene	ug/kg		390	310	300	240	340	350	420	310	450	300	250
Benzo(b)fluoranthene	ug/kg		520	390	400	310	450	400	490	410	520	350	320
Benzo(g,h,i)perylene	ug/kg		380	300	280	250	350	350	460	310	430	270	230
Benzo(k)fluoranthene	ug/kg		230	170	140	110	140	190	190	130	150	160	120
bis-(2-chloroethoxy)methane	ug/kg												
bis-(2-Chloroethyl)ether	ug/kg												
bis-(2-Ethylhexyl)phthalate	ug/kg												
Butylbenzylphthalate	ug/kg												
				1				ı		i .		i .	1

		Location ID	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B
		Sample Date	6/20/2017 8:00:00 AM	6/20/2017 8:05:00 AM	6/20/2017 8:10:00 AM	6/20/2017 8:15:00 AM	6/20/2017 8:20:00 AM	6/20/2017 8:25:00 AM	6/20/2017 8:30:00 AM	6/20/2017 8:35:00 AM	6/20/2017 8:40:00 AM	6/20/2017 8:45:00 AM	6/20/2017 8:50:00 AM
		Sample ID	SED5B01AN	SED5B01BN	SED5B01CN	SED5B02AN	SED5B02BN	SED5B02CN	SED5B03AN	SED5B03BN	SED5B03CN	SED5B04AN	SED5B04BN
		Depth	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft	2.33 - 2.67 ft	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft	4 - 4.33 ft	4.33 - 4.67 ft
		Туре	N	N	N	N	N	N	N	N	N	N	N
Analyte	Unit												
Caprolactam	ug/kg												
Carbazole	ug/kg												
Chrysene	ug/kg		550	440	390	300	460	430	440	330	420	330	270
Dibenzo(a,h)anthracene	ug/kg		79	66	68	44	64	69	70	51	< 26 U	< 25 U	37
Dibenzofuran	ug/kg												
Diethylphthalate	ug/kg												
Dimethylphthalate	ug/kg												
Di-n-butylphthalate	ug/kg												
Di-n-octylphthalate	ug/kg												
Fluoranthene	ug/kg		800	640	600	420	700	700	900	450	940	610	470
Fluorene	ug/kg		88	59	58	39	80	66	100	61	93	50	40
Hexachlorobenzene	ug/kg												
Hexachlorobutadiene	ug/kg												
Hexachlorocyclo-pentadiene	ug/kg												
Hexachloroethane	ug/kg												
Indeno(1,2,3-cd)pyrene	ug/kg		270	210	200	170	240	230	280	190	250	170	140
Isophorone	ug/kg												
Naphthalene	ug/kg		74	58	51	44	57	59	67	64	87	68	55
Nitrobenzene	ug/kg												
N-Nitroso-di-n-propylamine	ug/kg												
N-Nitrosodiphenylamine	ug/kg												
Pentachlorophenol	ug/kg												
Phenanthrene	ug/kg		650	470	400	260	460	450	590	330	560	350	280
Phenol	ug/kg					_						_	
Pyrene	ug/kg		1100	770	690	510	930	920	1100	660	1300	680	560
BaP-TE	ug/kg		591	469	460	355	510	519	607	449	569	382	358
Total High-molecular-weight PAHs	ug/kg		4700	3600	3400	2600	4000	4000	4700	3100	4900	3200	2600
Total Low-molecular-weight PAHs	ug/kg		1300	1100	960	660	1100	1100	1300	820	1200	790	610
Total PAHs (sum 16)	ug/kg		6100	4700	4300	3200	5200	5000	6000	3900	6100	3900	3200

		Location ID	SED5B	SED5B	SED5B	SED5B	SED5B	SED5C	SED5C	SED5C	SED5C	SED5C
		Sample Date	6/20/2017 8:55:00 AM	6/20/2017 9:00:00 AM	6/20/2017 9:05:00 AM	6/20/2017 9:10:00 AM	6/20/2017 9:15:00 AM	11/11/2013 8:37:00 AM	11/11/2013 8:37:00 AM			6/14/2017 11:25:00 AM
		Sample ID	SED5B04CN	SED5B05AN	SED5B05BN	SED5B05CN	SED5B06AN	SED5C01N	SED5C03N	SED5C05N	SED5C07N	SED5C02FN
		Depth	4.67 - 5 ft	5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft
	1	Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg											2250
Gasoline Range Organics (C6-C10)	ug/kg											2230
Diesel Range Organics (C10-C20)	mg/kg		300 J-	260 J-	28 J-	32 J-	13 J-					
Oil Range Organics (C20-C36)	mg/kg		940 J-	770 J-	160 J-	140 J-	68 J-					
1,1,1-Trichloroethane	ug/kg		340 0	7700-	100 0	1400	000					
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
·												
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ug/kg											
	ug/kg											
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ug/kg											
•	ug/kg											
1,2-Dichlorobenzene	ug/kg											
1,2-Dichloroethane	ug/kg											
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg											
Chlorobenzene	ug/kg											
Chloroethane	ug/kg											
Chloroform	ug/kg											
Chloromethane	ug/kg											
cis-1,2-Dichloroethylene	ug/kg											
cis-1,3-Dichloropropene	ug/kg											
Cyclohexane	ug/kg											
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg											
Ethylbenzene	ug/kg											
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg											
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg											
Tetrachloroethylene	ug/kg											
Toluene	ug/kg											
	-9'''8						I					

										1		
		Location ID	SED5B	SED5B	SED5B	SED5B	SED5B	SED5C	SED5C	SED5C	SED5C	SED5C
		Sample Date Sample ID	6/20/2017 8:55:00 AM SED5B04CN	6/20/2017 9:00:00 AM SED5B05AN	6/20/2017 9:05:00 AM SED5B05BN	6/20/2017 9:10:00 AM SED5B05CN	6/20/2017 9:15:00 AM SED5B06AN	11/11/2013 8:37:00 AM SED5C01N	11/11/2013 8:37:00 AM SED5C03N	11/11/2013 8:37:00 AM SED5C05N	11/11/2013 8:37:00 AM SED5C07N	6/14/2017 11:25:00 AM SED5C02FN
		Depth	4.67 - 5 ft	5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft
		Туре	4.07 - 5 It N	N N	N	0.07 - 0 It	N	N N	N	N N	N N	N N
		.,,,,	.,	.,				.,	.,		.,	.,
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											
trans-1,3-Dichloropropene	ug/kg											
Trichloroethene	ug/kg											
Trichlorofluoromethane	ug/kg											
Vinyl Chloride	ug/kg											
Xylenes (total)	ug/kg											
1,1'-Biphenyl	ug/kg											< 130 U
1,2,4,5-Tetrachlorobenzene	ug/kg											< 130 U
2,2'-oxybis(1-Chloropropane)	ug/kg											< 26 U
2,3,4,6-Tetrachlorophenol	ug/kg											< 130 U
2,4,5-Trichlorophenol	ug/kg											< 130 U
2,4,6-Trichlorophenol	ug/kg											< 130 U
2,4-Dichlorophenol	ug/kg											< 26 U
2,4-Dimethylphenol	ug/kg											< 130 U
2,4-Dinitrophenol	ug/kg											< 1300 U
2,4-Dinitrotoluene	ug/kg											< 130 U
2,6-Dinitrotoluene	ug/kg											< 130 U
2-Chloronaphthalene	ug/kg											< 26 U
2-Chlorophenol	ug/kg											< 130 U
2-Methylnaphthalene	ug/kg											38
2-Methylphenol	ug/kg											< 130 U
2-Nitroaniline	ug/kg											< 670 U
2-Nitrophenol	ug/kg											< 130 U
3,3'-Dichlorobenzidine	ug/kg											< 130 U
3-Nitroaniline	ug/kg											< 670 U
4,6-Dinitro-2-methylphenol	ug/kg											< 670 U
4-Bromophenyl-phenylether	ug/kg											< 130 U
4-Chloro-3-methylphenol	ug/kg											< 130 U
4-Chloroaniline	ug/kg											< 130 U
4-Chlorophenyl-phenylether	ug/kg											< 130 U
4-Methylphenol	ug/kg											< 130 U
4-Nitroaniline	ug/kg											< 670 U
4-Nitrophenol	ug/kg											< 670 U
Acenaphthene	ug/kg		36	21	< 4.7 U	< 4.8 U	< 4.5 U	67	50	25 J	6.8 J	27
Acenaphthylene	ug/kg		79	57	2.8 J	2.3 J	< 4.5 U	140	190	41	19 J	100
Acetophenone	ug/kg	 				=:		- 14				< 260 U
	5,1,8											
Anthracene	ug/kg		96	79	4.0 J	4.3 J	< 4.5 U	130	130	43	24 J	63
Atrazine	ug/kg											< 260 U
Benzaldehyde	ug/kg											< 260 U
Benzo(a)anthracene	ug/kg	† †	220	190	12	12	4.0 J	270	370	150	69	150
Benzo(a)pyrene	ug/kg	†	220	190	12	10	3.8 J	290	400	170	84	170
			-								-	
Benzo(b)fluoranthene	ug/kg		320	270	16	14	5.3	340	430	240	90	180
Benzo(g,h,i)perylene	ug/kg		200	160	9.2	7.6	3.1 J	280	410	110 J	72	140
Benzo(k)fluoranthene	ug/kg		120	87	5.1	5.2	1.9 J	110	170	84	37	79
bis-(2-chloroethoxy)methane	ug/kg											< 130 U
bis-(2-Chloroethyl)ether	ug/kg	†										< 26 U
bis-(2-Ethylhexyl)phthalate	ug/kg	†										320
Butylbenzylphthalate	ug/kg											< 130 U

		Location ID	SED5B	SED5B	SED5B	SED5B	SED5B	SED5C	SED5C	SED5C	SED5C	SED5C
		Sample Date	6/20/2017 8:55:00 AM	6/20/2017 9:00:00 AM	6/20/2017 9:05:00 AM	6/20/2017 9:10:00 AM	6/20/2017 9:15:00 AM	11/11/2013 8:37:00 AM	11/11/2013 8:37:00 AM	11/11/2013 8:37:00 AM	11/11/2013 8:37:00 AM	6/14/2017 11:25:00 AM
		Sample ID	SED5B04CN	SED5B05AN	SED5B05BN	SED5B05CN	SED5B06AN	SED5C01N	SED5C03N	SED5C05N	SED5C07N	SED5C02FN
		Depth	4.67 - 5 ft	5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg											< 670 U
Carbazole	ug/kg											< 26 U
Chrysene	ug/kg		270	230	14	16	4.7	340	440	200	90	200
Dibenzo(a,h)anthracene	ug/kg		46	39	2.4 J	< 4.8 U	< 4.5 U	54	83	24 J	22 J	< 26 U
Dibenzofuran	ug/kg											< 130 U
Diethylphthalate	ug/kg											< 130 U
Dimethylphthalate	ug/kg											< 130 U
Di-n-butylphthalate	ug/kg											< 130 U
Di-n-octylphthalate	ug/kg											< 130 U
Fluoranthene	ug/kg		430	340	17	13	3.9 J	510	640	330	130	350
Fluorene	ug/kg		32	33	< 4.7 U	2.0 J	< 4.5 U	65	61	35	11 J	40
Hexachlorobenzene	ug/kg											< 26 U
Hexachlorobutadiene	ug/kg											< 26 U
Hexachlorocyclo-pentadiene	ug/kg											< 130 U
Hexachloroethane	ug/kg											< 130 U
Indeno(1,2,3-cd)pyrene	ug/kg		140	120	7.6	7.1	2.4 J	200	280	93	62	110
Isophorone	ug/kg											< 130 U
Naphthalene	ug/kg		56	39	2.8 J	2.3 J	< 4.5 U	< 43 U	< 62 U	< 38 U	< 26 U	25 J
Nitrobenzene	ug/kg											< 260 U
N-Nitroso-di-n-propylamine	ug/kg											< 26 U
N-Nitrosodiphenylamine	ug/kg											< 130 U
Pentachlorophenol	ug/kg											< 670 U
Phenanthrene	ug/kg		260	200	11	13	3.3 J	400	350	160	62	220
Phenol	ug/kg											< 130 U
Pyrene	ug/kg		460	360	23	22	8.2	600	750	380	110	350
BaP-TE	ug/kg		335	288	18.0	13.4	4.99	426	593	243	129	215
Total High-molecular-weight PAHs	ug/kg		2400	2000	120	110	37	3000	4000	1800	770	1700
Total Low-molecular-weight PAHs	ug/kg		560	430	21	24	3.3	800	780	300	120	480
Total PAHs (sum 16)	ug/kg		3000	2400	140	130	41	3800	4800	2100	890	2200

				-	-	-						
		Location ID	SED5C	SED5C	SED5C	SED6.5D	SED6.5D	SED6.5D	SED6.5D	SED6.5D	SED6.5D	SED6.5D
		Sample Date	6/14/2017 11:35:00 AM	6/14/2017 11:45:00 AM	6/14/2017 11:55:00 AM	11/25/2013 8:10:00 AM	11/25/2013 8:10:00 AM	1/29/2014 12:35:00 PM	1/29/2014 12:35:00 PM	6/27/2017 10:10:00 AM	6/27/2017 10:20:00 AM	6/27/2017 10:30:00 AM
		Sample ID	SED5C04FN	SED5C06FN	SED5C08FN	SED6.5D01N	SED6.5D03N	SED6.5D05N	SED6.5D07N	SED6.5D02FN	SED6.5D04FN	SED6.5D06FN
		Depth	4 - 5 ft	6 - 7 ft	8 - 9 ft	1 - 3 ft	3 - 4 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg		3740	4320	1610					1510	383	134
Gasoline Range Organics (C6-C10)	ug/kg		V	.020								
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg											
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
1,2,3-Trichlorobenzene	ug/kg											
1,2,4-Trichlorobenzene	ug/kg											
1,2-Dibromo-3-chloropropane	ug/kg											
1,2-Dibromoethane	ug/kg											
1,2-Dichlorobenzene	ug/kg											
1,2-Dichloroethane	ug/kg											
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg ug/kg											
Chlorobenzene	ug/kg											
Chloroethane	ug/kg											
Chloroform	ug/kg ug/kg											
Chloromethane	ug/kg ug/kg											
cis-1,2-Dichloroethylene cis-1,3-Dichloropropene	ug/kg ug/kg											
Cyclohexane	ug/kg ug/kg											
Dibromochloromethane	ug/kg ug/kg											
Dichlorodifluoromethane	ug/kg ug/kg											
Ethylbenzene	ug/kg ug/kg											
Isopropylbenzene												
	ug/kg ug/kg											
m, p-Xylene	ug/kg ug/kg											
Methyl Acetate Methyl tert-Butyl Ether (MTBE)												
Methylcyclohexane	ug/kg											
	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg											
Tetrachloroethylene	ug/kg											
Toluene	ug/kg											

				T			T		T	T		
		Location ID	SED5C	SED5C	SED5C	SED6.5D	SED6.5D	SED6.5D	SED6.5D	SED6.5D	SED6.5D	SED6.5D
		Sample Date	6/14/2017 11:35:00 AM		6/14/2017 11:55:00 AM	11/25/2013 8:10:00 AM	11/25/2013 8:10:00 AM	1/29/2014 12:35:00 PM	1/29/2014 12:35:00 PM	6/27/2017 10:10:00 AM	6/27/2017 10:20:00 AM	6/27/2017 10:30:00 AM
		Sample ID	SED5C04FN	SED5C06FN	SED5C08FN	SED6.5D01N	SED6.5D03N	SED6.5D05N	SED6.5D07N	SED6.5D02FN	SED6.5D04FN	SED6.5D06FN
		Depth	4 - 5 ft	6 - 7 ft	8 - 9 ft	1 - 3 ft	3 - 4 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft
	-	Туре	N	N	N	N	N	N	N	N	N	N
Analida	Unit											
,												
·	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
2,6-Dinitrotoluene	ug/kg											
2-Chloronaphthalene	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene	ug/kg											
2-Methylphenol	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg		39	49 J	9.6 J	< 26 U	< 88 U	3.6 J	< 31 U	5.4 J	2.5 J	< 5.3 U
	ug/kg		140	99	28	20 J	71 J	4.7 J	< 31 U	15	3.8 J	< 5.3 U
	ug/kg ug/kg		עדו		20	200	7.0	7.7 0			0.00	- 0.0 0
, totaphonoro	-9/N9											
Anthracene u	ug/kg		100	91	38	< 26 U	75 J	6.2 J	< 31 U	17	5.6 J	< 5.3 U
	ug/kg											
	ug/kg											
	ug/kg	1	240	260	130	72	160	11 J	< 31 U	41	17	< 5.3 U
	ug/kg		280	290	140	63	150	8.8 J	< 31 U	38	19	< 5.3 U
(%)/6)/-5/-5	a		200	250	170			5.5 0	313		"	5.0 0
Benzo(b)fluoranthene	ug/kg		320	390	180	93	220	10 J	< 31 U	52	21	< 5.3 U
Benzo(g,h,i)perylene	ug/kg		300	290	110	48	150	5.9 J	< 31 U	45	19	< 5.3 U
Benzo(k)fluoranthene	ug/kg		100	120	67	32	80 J	5.5 J	< 31 U	17	11	< 5.3 U
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
, ,	-J9			l			L				<u> </u>	

		Location ID	SED5C	SED5C	SED5C	SED6.5D	SED6.5D	SED6.5D	SED6.5D	SED6.5D	SED6.5D	SED6.5D
		Sample Date	6/14/2017 11:35:00 AM	6/14/2017 11:45:00 AM	6/14/2017 11:55:00 AM	11/25/2013 8:10:00 AM	11/25/2013 8:10:00 AM	1/29/2014 12:35:00 PM	1/29/2014 12:35:00 PM	6/27/2017 10:10:00 AM	6/27/2017 10:20:00 AM	6/27/2017 10:30:00 AM
		Sample ID	SED5C04FN	SED5C06FN	SED5C08FN	SED6.5D01N	SED6.5D03N	SED6.5D05N	SED6.5D07N	SED6.5D02FN	SED6.5D04FN	SED6.5D06FN
		Depth	4 - 5 ft	6 - 7 ft	8 - 9 ft	1 - 3 ft	3 - 4 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg											
Carbazole	ug/kg											
Chrysene	ug/kg		290	340	160	96	230	9.0 J	< 31 U	56	24	< 5.3 U
Dibenzo(a,h)anthracene	ug/kg		55	72	32	11 J	29 J	< 27 U	< 31 U	11	< 6.4 U	< 5.3 U
Dibenzofuran	ug/kg		33	12	32	113	23 3	\210	V310	11	V 0.4 O	V 3.5 U
Diethylphthalate	ug/kg											
Dimethylphthalate	ug/kg											
Di-n-butylphthalate	ug/kg											
Di-n-octylphthalate	ug/kg											
Fluoranthene			540	590	280	170	350	< 27 U	< 31 U	76	38	4.6 J
Fluorene	ug/kg		44	80	16 J	21 J	71 J	4.2 J	< 31 U	9.9	4.1 J	4.6 J
Hexachlorobenzene	ug/kg		44	80	10 J	Z1 J	/1 J	4.2 J	< 31 0	9.9	4.1 J	< 5.3 U
Hexachlorobutadiene	ug/kg											
	ug/kg											
Hexachlorocyclo-pentadiene Hexachloroethane	ug/kg											
	ug/kg		190	210	95	40	98	0.0.1	< 31 U	20	16	< 5.3 U
Indeno(1,2,3-cd)pyrene	ug/kg		190	210	95	40	98	6.8 J	< 31 U	32	16	< 5.3 U
Isophorone	ug/kg		40		40.1	44.1		4 07 11	4 04 11	40	221	.5011
Naphthalene	ug/kg		40	61	19 J	11 J	37 J	< 27 U	< 31 U	12	3.9 J	< 5.3 U
Nitrobenzene	ug/kg											
N-Nitroso-di-n-propylamine	ug/kg											
N-Nitrosodiphenylamine	ug/kg											
Pentachlorophenol	ug/kg											
Phenanthrene	ug/kg		260	270	120	64	180	< 27 U	< 31 U	39	15	2.4 J
Phenol	ug/kg								2411			
Pyrene	ug/kg		630	590	220	170	390	17 J	< 31 U	75	29	2.8 J
BaP-TE	ug/kg		411	450	213	94.9	228	11.6	< 31.0 U	61.7	24.5	< 5.30 U
Total High-molecular-weight PAHs	ug/kg		2900	3200	1400	800	1900	74	< 31 U	440	190	7.4
Total Low-molecular-weight PAHs	ug/kg		620	650	230	120	430	19	< 31 U	98	35	2.4
Total PAHs (sum 16)	ug/kg		3600	3800	1600	910	2300	93	< 31 U	540	230	9.8

					T	T	T					
1		Location ID	SED6.5D	SED6.5E	SED6.5E	SED6.5E	SED6.5E	SED6.5E	SED6A	SED6A	SED6A	SED6B
		Sample Date	6/27/2017 10:40:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:25:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:20:00 AM	11/13/2013 1:40:00 PM	11/13/2013 1:40:00 PM	11/13/2013 1:40:00 PM	11/13/2013 12:40:00 PM
		Sample ID	SED6.5D08FN	SED6.5E01N	SED6.5E01R	SED6.5E03N	SED6.5E05N	SED6.5E07N	SED6A01N	SED6A03N	SED6A05N	SED6B01N
		Depth	8 - 9 ft	1 - 3 ft N	1 - 3 ft FD	3 - 5 ft N	5 - 7 ft N	7 - 8 ft N	1 - 3 ft	3 - 5 ft	5 - 7 ft N	1 - 3 ft N
	1 1	Туре	N	IN .	FD	N N	N	IN .	N	N	N	IN
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg		77.8									
Gasoline Range Organics (C6-C10)	ug/kg		77.0									
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
1,1,2,2-Tetrachloroethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
1,1,2-Trichloroethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
1,1-Dichloroethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
1,1-Dichloroethene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
1,2,3-Trichlorobenzene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
1,2,4-Trichlorobenzene	ug/kg ug/kg			< 9.8 U	< 10 U							< 8.1 U
1,2-Dibromo-3-chloropropane	ug/kg ug/kg			< 9.8 U	< 10 U							< 8.1 U
1,2-Dibromoethane	ug/kg ug/kg			< 9.8 U	< 10 U							< 8.1 U
1.2-Dichlorobenzene	ug/kg ug/kg			< 9.8 U	< 10 U							< 8.1 U
1.2-Dichloroethane				< 9.8 U	< 10 U							< 8.1 U
	ug/kg											
1,2-Dichloropropane	ug/kg			< 9.8 U < 9.8 U	< 10 U < 10 U							< 8.1 U
1,3-Dichlorobenzene	ug/kg			< 9.8 U	< 10 U							< 8.1 U < 8.1 U
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg			< 2000 U	< 2000 U							< 1600 U
2-Butanone	ug/kg			< 9.8 U	< 10 U							< 8.1 U
2-Hexanone	ug/kg			< 9.8 U	< 10 U							< 8.1 U
4-Methyl-2-pentanone	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Acetone	ug/kg			< 39 U	< 40 U							< 32 U
Benzene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Bromochloromethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Bromodichloromethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Bromoform	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Bromomethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Carbon Disulfide	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Carbon Tetrachloride	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Chlorobenzene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Chloroethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Chloroform	ug/kg			< 9.8 U	< 10 U							1.1 J
Chloromethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
cis-1,2-Dichloroethylene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
cis-1,3-Dichloropropene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Cyclohexane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Dibromochloromethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Dichlorodifluoromethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Ethylbenzene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Isopropylbenzene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
m, p-Xylene	ug/kg			< 20 U	< 20 U							< 16 U
Methyl Acetate	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Methyl tert-Butyl Ether (MTBE)	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Methylcyclohexane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Methylene Chloride	ug/kg			< 9.8 U	< 10 U							< 8.1 U
o-Xylene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Styrene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
,												
Tetrachloroethylene	ug/kg			< 9.8 U	< 10 U							< 8.1 U

		Location ID	SED6.5D	SED6.5E	SED6.5E	SED6.5E	SED6.5E	SED6.5E	SED6A	SED6A	SED6A	SED6B
		Sample Date	6/27/2017 10:40:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:25:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:20:00 AM	11/13/2013 1:40:00 PM	11/13/2013 1:40:00 PM	11/13/2013 1:40:00 PM	11/13/2013 12:40:00 PM
		Sample ID	SED6.5D08FN	SED6.5E01N	SED6.5E01R	SED6.5E03N	SED6.5E05N	SED6.5E07N	SED6A01N	SED6A03N	SED6A05N	SED6B01N
		Depth	8 - 9 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 8 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	1 - 3 ft
		Туре	N	N	FD	N	N	N	N	N	N	N
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
trans-1,3-Dichloropropene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Trichloroethene	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Trichlorofluoromethane	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Vinyl Chloride	ug/kg			< 9.8 U	< 10 U							< 8.1 U
Xylenes (total)	ug/kg			< 20 U	< 20 U							< 16 U
1,1'-Biphenyl	ug/kg			54 J	63 J							< 270 U
1,2,4,5-Tetrachlorobenzene	ug/kg			< 180 U	< 350 U							< 270 U
2,2'-oxybis(1-Chloropropane)	ug/kg			< 36 U	< 71 U							< 54 U
2,3,4,6-Tetrachlorophenol	ug/kg			< 180 U	< 350 U							< 270 U
2,4,5-Trichlorophenol	ug/kg			< 180 U	< 350 U							< 270 U
2,4,6-Trichlorophenol	ug/kg			< 180 U	< 350 U							< 270 U
2,4-Dichlorophenol	ug/kg			< 36 U	< 71 U							< 54 U
2,4-Dimethylphenol	ug/kg			< 180 U	< 350 U							< 270 U
2,4-Dinitrophenol	ug/kg			< 910 U	< 1800 U							< 1400 U
2,4-Dinitrotoluene	ug/kg			< 180 U	< 350 U							< 270 U
2,6-Dinitrotoluene	ug/kg			< 180 U	< 350 U							< 270 U
2-Chloronaphthalene	ug/kg			< 36 U	< 71 U							< 54 U
2-Chlorophenol	ug/kg			< 180 U	< 350 U							< 270 U
2-Methylnaphthalene	ug/kg			160	240							98
2-Methylphenol	ug/kg			< 180 U	< 350 U							< 270 U
2-Nitroaniline	ug/kg			< 910 U	< 1800 U							< 1400 U
2-Nitrophenol	ug/kg			< 180 U	< 350 U							< 270 U
3,3'-Dichlorobenzidine	ug/kg ug/kg			< 180 U	< 350 U							< 270 U
3-Nitroaniline	ug/kg			< 910 U	< 1800 U							< 1400 U
4,6-Dinitro-2-methylphenol	ug/kg ug/kg			< 910 U	< 1800 U							< 1400 U
4-Bromophenyl-phenylether	ug/kg ug/kg			< 180 U	< 350 U							< 270 U
4-Chloro-3-methylphenol				< 180 U	< 350 U							< 270 U
4-Chloroaniline	ug/kg ug/kg			< 180 U	< 350 U							< 270 U
4-Chlorophenyl-phenylether				< 180 U	< 350 U							< 270 U
4-Methylphenol	ug/kg			530	930							43 J
4-Nitroaniline	ug/kg ug/kg			< 910 U	< 1800 U							< 1400 U
4-Nitrophenol Acenaphthene	ug/kg		< 5.3 U	< 910 U 29 J	< 1800 U 64 J	60	38	7.5 J	15 J	180	< 33 U	< 1400 U 85
'	ug/kg		< 5.3 U	29 J 36	86	62 57	140	7.5 J 28	32	270	< 33 U	170
Acenaphthylene	ug/kg		< 5.3 U			5/	140	20	32	270	< 33 U	
Acetophenone	ug/kg			< 180 U	< 350 U							< 270 U
Anthracene	ug/kg		2.1 J	34 J	< 71 U	76	94	22 J	30	390	4.0 J	180
Atrazine	ug/kg		2.10	< 180 U	< 350 U	.0	•			550	7.00	< 270 U
Benzaldehyde	ug/kg			88 J	< 350 UJ							250 J
Benzo(a)anthracene	ug/kg		5.6	94	200	230	280	71	53	630	11 J	340
Benzo(a)pyrene	ug/kg ug/kg		5.2 J	92	120	240	290	63	61	730	11 J	370
2525(α/ρ)10110	ug/Ng		J.2 J	32	120	270	230		V1	7.50	12.0	510
Benzo(b)fluoranthene	ug/kg		7.4	130	290	270	360	88	69	730	12 J	470
Benzo(g,h,i)perylene	ug/kg		4.8 J	62	100	190	330	67	63	1100	13 J	370 J
Benzo(k)fluoranthene	ug/kg		2.6 J	46	86	140	110	49	23 J	260	< 33 U	120
bis-(2-chloroethoxy)methane	ug/kg			< 180 U	< 350 U							< 270 U
bis-(2-Chloroethyl)ether	ug/kg			< 36 U	< 71 U							< 54 U
bis-(2-Ethylhexyl)phthalate	ug/kg			1100 J	1900 J							150 J
Butylbenzylphthalate	ug/kg			< 180 U	< 350 U							< 270 U

	L	Location ID	SED6.5D	SED6.5E	SED6.5E	SED6.5E	SED6.5E	SED6.5E	SED6A	SED6A	SED6A	SED6B
	Sai	ample Date	6/27/2017 10:40:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:25:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:20:00 AM	11/13/2013 1:40:00 PM	11/13/2013 1:40:00 PM	11/13/2013 1:40:00 PM	11/13/2013 12:40:00 PM
	;	Sample ID	SED6.5D08FN	SED6.5E01N	SED6.5E01R	SED6.5E03N	SED6.5E05N	SED6.5E07N	SED6A01N	SED6A03N	SED6A05N	SED6B01N
		Depth	8 - 9 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 8 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	1 - 3 ft
		Туре	N	N	FD	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg			< 910 U	< 1800 U							< 1400 U
Carbazole	ug/kg			< 36 U	< 71 U							33 J
Chrysene	ug/kg		7.7	190 J	510 J	280	380	92	68	730	13 J	470
Dibenzo(a,h)anthracene	ug/kg		< 5.3 U	< 36 U	< 71 U	43	63	< 27 U	10 J	130	< 33 U	77
Dibenzofuran	ug/kg		0.0 0	< 180 U	< 350 U			2. 0			000	37 J
Diethylphthalate	ug/kg			< 180 U	< 350 U							< 270 U
Dimethylphthalate	ug/kg			< 180 U	< 350 U							< 270 U
Di-n-butylphthalate	ug/kg			< 180 U	< 350 U							< 270 U
Di-n-octylphthalate	ug/kg			< 180 U	< 350 U							< 270 U
Fluoranthene	ug/kg		9.5	300 J	820 J	390	570	130	140	1900	20 J	900
Fluorene	ug/kg		< 5.3 U	49	130	39	59	17 J	18 J	180	< 33 U	74
Hexachlorobenzene	ug/kg			< 36 U	< 71 U							< 54 U
Hexachlorobutadiene	ug/kg			< 36 U	< 71 U							< 54 U
Hexachlorocyclo-pentadiene	ug/kg			< 180 U	< 350 U							< 270 U
Hexachloroethane	ug/kg			< 180 U	< 350 U							< 270 U
Indeno(1,2,3-cd)pyrene	ug/kg		5.9	45	78	190	200	50	45	540	9.6 J	270
Isophorone	ug/kg			< 180 U	< 350 U							< 270 U
Naphthalene	ug/kg		< 5.3 U	79	130	56	72	16 J	7.9 J	130	< 33 U	68
Nitrobenzene	ug/kg			< 360 U	< 710 U							< 540 U
N-Nitroso-di-n-propylamine	ug/kg			< 36 U	< 71 U							< 54 U
N-Nitrosodiphenylamine	ug/kg			< 180 U	< 350 U							< 270 U
Pentachlorophenol	ug/kg			< 180 U	< 350 U							< 270 U
Phenanthrene	ug/kg		5.0 J	250 J	480 J	240	280	67	84	1000	7.5 J	470
Phenol	ug/kg			51	89							< 54 U
Pyrene	ug/kg		8.1	330 J	710 J	460	690	140	120	1900	16 J	700
BaP-TE	ug/kg		7.12	120	178	354	438	84.5	88.0	1050	15.3	557
Total High-molecular-weight PAHs	ug/kg		57	1300	2900	2400	3300	750	650	8700	110	4100
Total Low-molecular-weight PAHs	ug/kg		7.1	480	890	530	680	160	190	2200	12	1000
Total PAHs (sum 16)	ug/kg		64	1800	3800	3000	4000	910	840	11000	120	5100

		Location ID	SED6B	SED6B	SED6B	SED6C	SED6C	SED6C	SED6C	SED6C	SED7.5D	SED7.5D
		Sample Date	11/13/2013 12:40:00 PM	11/13/2013 12:40:00 PM	11/13/2013 12:40:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/25/2013 7:30:00 AM	11/25/2013 7:30:00 AM
		Sample ID	SED6B03N	SED6B05N	SED6B07N	SED6C01N	SED6C 2'	SED6C03N	SED6C05N	SED6C07N	SED7.5D01N	SED7.5D03N
		Depth	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	2 - 2.5 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg											
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg						< 9.6 U					
1,1,2,2-Tetrachloroethane	ug/kg						< 9.6 U					
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg						< 9.6 U					
1,1,2-Trichloroethane	ug/kg						< 9.6 U					
1,1-Dichloroethane	ug/kg						< 9.6 U					
1,1-Dichloroethene	ug/kg						< 9.6 U					
1,2,3-Trichlorobenzene	ug/kg						< 9.6 U					
1,2,4-Trichlorobenzene	ug/kg						< 9.6 U					
1,2-Dibromo-3-chloropropane	ug/kg						< 9.6 U					
1,2-Dibromoethane	ug/kg						< 9.6 U					
1,2-Dichlorobenzene	ug/kg						< 9.6 U					
1,2-Dichloroethane	ug/kg ug/kg						< 9.6 U					
1,2-Dichloropropane	ug/kg						< 9.6 U					
1,3-Dichlorobenzene	ug/kg						< 9.6 U					
1,4-Dichlorobenzene	ug/kg ug/kg						< 9.6 U					
1,4-Dioxane	ug/kg ug/kg						< 1900 U					
2-Butanone	ug/kg ug/kg						< 9.6 U					
2-Hexanone	ug/kg ug/kg						< 9.6 U					
4-Methyl-2-pentanone	ug/kg ug/kg						< 9.6 U					
Acetone	ug/kg ug/kg						< 39 U					
Benzene	ug/kg ug/kg						< 9.6 U					
Bromochloromethane	ug/kg ug/kg						< 9.6 U					
Bromodichloromethane	ug/kg ug/kg						< 9.6 U					
Bromoform							< 9.6 U					
Bromomethane	ug/kg						< 9.6 U					
Carbon Disulfide	ug/kg											
Carbon Disulfide Carbon Tetrachloride	ug/kg						< 9.6 U < 9.6 U					
	ug/kg						< 9.6 U					
Chlorobenzene	ug/kg											
Chloroethane	ug/kg						< 9.6 U					
Chloroform	ug/kg						< 9.6 U					
Chloromethane	ug/kg						< 9.6 U					
cis-1,2-Dichloroethylene	ug/kg						< 9.6 U					
cis-1,3-Dichloropropene	ug/kg						< 9.6 U					
Cyclohexane	ug/kg						< 9.6 U					
Dibromochloromethane	ug/kg						< 9.6 U					
Dichlorodifluoromethane	ug/kg						< 9.6 U					
Ethylbenzene	ug/kg						< 9.6 U					
Isopropylbenzene	ug/kg						< 9.6 U					
m, p-Xylene	ug/kg						< 19 U					
Methyl Acetate	ug/kg						< 9.6 U					
Methyl tert-Butyl Ether (MTBE)	ug/kg						< 9.6 U					
Methylcyclohexane	ug/kg						< 9.6 U					
Methylene Chloride	ug/kg						< 9.6 U					
o-Xylene	ug/kg						< 9.6 U					
Styrene	ug/kg						< 9.6 U					
Tetrachloroethylene	ug/kg						< 9.6 U					
Toluene	ug/kg				·		< 9.6 U					

		Location ID	SED6B	SED6B	SED6B	SED6C	SED6C	SED6C	SED6C	SED6C	SED7.5D	SED7.5D
		Sample Date	11/13/2013 12:40:00 PM	11/13/2013 12:40:00 PM	11/13/2013 12:40:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/25/2013 7:30:00 AM	11/25/2013 7:30:00 AM
		Sample ID	SED6B03N	SED6B05N	SED6B07N	SED6C01N	SED6C 2'	SED6C03N	SED6C05N	SED6C07N	SED7.5D01N	SED7.5D03N
		Depth	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	2 - 2.5 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg						< 9.6 U					
trans-1,3-Dichloropropene	ug/kg						< 9.6 U					
Trichloroethene	ug/kg						< 9.6 U					
Trichlorofluoromethane	ug/kg						< 9.6 U					
Vinyl Chloride	ug/kg						< 9.6 U					
Xylenes (total)	ug/kg						< 19 U					
1,1'-Biphenyl	ug/kg											
1,2,4,5-Tetrachlorobenzene	ug/kg											
2,2'-oxybis(1-Chloropropane)	ug/kg											
2,3,4,6-Tetrachlorophenol	ug/kg											
2,4,5-Trichlorophenol	ug/kg											
2,4,6-Trichlorophenol	ug/kg											
2,4-Dichlorophenol	ug/kg											
2,4-Dimethylphenol	ug/kg											
2,4-Dinitrophenol	ug/kg											
2,4-Dinitrotoluene	ug/kg											
2,6-Dinitrotoluene	ug/kg											
2-Chloronaphthalene	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene	ug/kg											
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg											
2-Nitrophenol	ug/kg											
3,3'-Dichlorobenzidine	ug/kg											
3-Nitroaniline	ug/kg ug/kg											
4,6-Dinitro-2-methylphenol												
	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
4-Chlorophenyl-phenylether	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											
Acenaphthene	ug/kg		55	5.0 J	< 28 U	18 J		56	7.9 J	< 31 U	44 J	47 J
Acenaphthylene	ug/kg		100	12 J	< 28 U	40 J		190	25 J	< 31 U	56 J	81 J
Acetophenone	ug/kg											
Anthracene	ug/kg		140	16 J	2.8 J	57		150	30	< 31 U	80	94 J
Atrazine	ug/kg											
Benzaldehyde	ug/kg											
Benzo(a)anthracene	ug/kg		290	57	6.9 J	320		470	93	< 31 U	170	210
Benzo(a)pyrene	ug/kg		320	57	< 28 U	450		470	89	< 31 U	160	230
Benzo(b)fluoranthene	ug/kg		340	69	10 J	700		530	150	< 31 U	280	370
Benzo(g,h,i)perylene	ug/kg		300	44	8.2 J	520		340	97	< 31 U	170	230
Benzo(k)fluoranthene	ug/kg		150	22	< 28 U	320		200	64	< 31 U	72	110 J
bis-(2-chloroethoxy)methane	ug/kg											
bis-(2-Chloroethyl)ether	ug/kg											
bis-(2-Ethylhexyl)phthalate	ug/kg											
Butylbenzylphthalate	ug/kg											

		Location ID	SED6B	SED6B	SED6B	SED6C	SED6C	SED6C	SED6C	SED6C	SED7.5D	SED7.5D
		Sample Date	11/13/2013 12:40:00 PM	11/13/2013 12:40:00 PM	11/13/2013 12:40:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/14/2013 1:34:00 PM	11/25/2013 7:30:00 AM	11/25/2013 7:30:00 AM
		Sample ID	SED6B03N	SED6B05N	SED6B07N	SED6C01N	SED6C 2'	SED6C03N	SED6C05N	SED6C07N	SED7.5D01N	SED7.5D03N
		Depth	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	2 - 2.5 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg											
Carbazole	ug/kg				70.1	200		242	440	.0411	222	0.40
Chrysene	ug/kg		360	71	7.3 J	630		640	140	< 31 U	260	340
Dibenzo(a,h)anthracene	ug/kg		57	12 J	< 28 U	120		70	39	< 31 U	38 J	53 J
Dibenzofuran	ug/kg											
Diethylphthalate	ug/kg											
Dimethylphthalate	ug/kg											
Di-n-butylphthalate	ug/kg											
Di-n-octylphthalate	ug/kg											
Fluoranthene	ug/kg		700	130	16 J	850		1000	190	< 31 U	340	450
Fluorene	ug/kg		59	6.8 J	< 28 U	22 J		110	15 J	< 31 U	88	75 J
Hexachlorobenzene	ug/kg											
Hexachlorobutadiene	ug/kg											
Hexachlorocyclo-pentadiene	ug/kg											
Hexachloroethane	ug/kg											
Indeno(1,2,3-cd)pyrene	ug/kg		210	39	7.3 J	460		260	85	< 31 U	110	180
Isophorone	ug/kg											
Naphthalene	ug/kg		54	6.7 J	< 28 U	13 J		75	16 J	< 31 U	69	78 J
Nitrobenzene	ug/kg											
N-Nitroso-di-n-propylamine	ug/kg											
N-Nitrosodiphenylamine	ug/kg											
Pentachlorophenol	ug/kg											
Phenanthrene	ug/kg		330	40	8.6 J	240		680	82	< 31 U	280	360
Phenol	ug/kg											
Pyrene	ug/kg		620	100	15 J	680		1200	220	< 31 U	370	510
BaP-TE	ug/kg		463	85.8	2.43	722		669	162	< 31.0 U	255	360
Total High-molecular-weight PAHs	ug/kg		3300	600	71	5100		5200	1200	< 31 U	2000	2700
Total Low-molecular-weight PAHs	ug/kg		740	87	11	390		1300	180	< 31 U	620	740
Total PAHs (sum 16)	ug/k~		4100	690	82	5400		6400	1300	< 31 U	2600	3400
TOTAL FALLS (SUITE 10)	ug/kg		4100	บษบ	82	5400	1	0400	1300	< 31 U	2000	3400

		Location ID	SED7.5D	SED7.5E	SED7.5E	SED7.5E	SED7.5E	SED7A	SED7A	SED7A	SED7A	SED7B
		Sample Date	11/25/2013 7:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM	11/13/2013 11:52:00 AM	11/13/2013 11:52:00 AM	11/13/2013 11:52:00 AM	11/13/2013 11:52:00 AM	11/13/2013 10:51:00 AM
		Sample ID	SED7.5D05N	SED7.5E01N	SED7.5E03N	SED7.5E05N	SED7.5E07N	SED7A01N	SED7A03N	SED7A05N	SED7A07N	SED7B01N
		Depth	5 - 6.8 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft
		Туре	N	N	N	N N	N N	N N	N	N N	N	N
		,,										
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg											
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg											< 8.2 U
1,1,2,2-Tetrachloroethane	ug/kg											< 8.2 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											< 8.2 U
1,1,2-Trichloroethane	ug/kg											< 8.2 U
1,1-Dichloroethane	ug/kg											< 8.2 U
1,1-Dichloroethene	ug/kg											< 8.2 U
1,2,3-Trichlorobenzene	ug/kg											< 8.2 U
1,2,4-Trichlorobenzene	ug/kg											< 8.2 U
1,2-Dibromo-3-chloropropane	ug/kg											< 8.2 U
1,2-Dibromoethane	ug/kg											< 8.2 U
1,2-Dichlorobenzene	ug/kg											< 8.2 U
1,2-Dichloroethane	ug/kg											< 8.2 U
1,2-Dichloropropane	ug/kg											< 8.2 U
1,3-Dichlorobenzene	ug/kg											< 8.2 U
1,4-Dichlorobenzene	ug/kg											< 8.2 U
1,4-Dioxane	ug/kg											< 1600 U
2-Butanone	ug/kg											< 8.2 U
2-Hexanone	ug/kg											< 8.2 U
4-Methyl-2-pentanone	ug/kg											< 8.2 U
Acetone	ug/kg											< 33 U
Benzene	ug/kg											< 8.2 U
Bromochloromethane	ug/kg											< 8.2 U
Bromodichloromethane	ug/kg											< 8.2 U
Bromoform	ug/kg											< 8.2 U
Bromomethane	ug/kg											< 8.2 U
Carbon Disulfide	ug/kg											< 8.2 U
Carbon Tetrachloride	ug/kg											< 8.2 U
Chlorobenzene	ug/kg											< 8.2 U
Chloroethane	ug/kg											< 8.2 U
Chloroform	ug/kg											0.97 J
Chloromethane	ug/kg	+										< 8.2 U
cis-1,2-Dichloroethylene	ug/kg											< 8.2 U
cis-1,3-Dichloropropene	ug/kg											< 8.2 U
Cyclohexane	ug/kg											< 8.2 U
Dibromochloromethane	ug/kg											< 8.2 U
Dichlorodifluoromethane	ug/kg											< 8.2 U
Ethylbenzene	ug/kg ug/kg	+										< 8.2 U
	ug/kg ug/kg											< 8.2 U
lsopropylbenzene m, p-Xylene	ug/kg ug/kg	+										< 16 U
Methyl Acetate	ug/kg ug/kg	+										< 8.2 U
Methyl tert-Butyl Ether (MTBE)		+										< 8.2 U
	ug/kg											< 8.2 U
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											< 8.2 U
o-Xylene	ug/kg											< 8.2 U
Styrene	ug/kg											< 8.2 U
Tetrachloroethylene	ug/kg											< 8.2 U
Toluene	ug/kg						1					< 8.2 U

		Location ID	SED7.5D	SED7.5E	SED7.5E	SED7.5E	SED7.5E	SED7A	SED7A	SED7A	SED7A	SED7B
		Sample Date	11/25/2013 7:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM	11/13/2013 11:52:00 AM	11/13/2013 11:52:00 AM	11/13/2013 11:52:00 AM	3ED7A 11/13/2013 11:52:00 AM	11/13/2013 10:51:00 AM
		Sample ID	SED7.5D05N	SED7.5E01N	SED7.5E03N	SED7.5E05N	SED7.5E07N	SED7A01N	SED7A03N	SED7A05N	SED7A07N	SED7B01N
		Depth	5 - 6.8 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft
		Type	N N	N N	N N	N N	N N	N N	N N	N N	N	N N
		1,750					.,	''	''			.,
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											< 8.2 U
trans-1,3-Dichloropropene	ug/kg											< 8.2 U
Trichloroethene	ug/kg											< 8.2 U
Trichlorofluoromethane	ug/kg											< 8.2 U
Vinyl Chloride	ug/kg											< 8.2 U
Xylenes (total)	ug/kg											< 16 U
1,1'-Biphenyl	ug/kg											< 130 U
1,2,4,5-Tetrachlorobenzene	ug/kg											< 130 U
2,2'-oxybis(1-Chloropropane)	ug/kg											< 27 U
2,3,4,6-Tetrachlorophenol	ug/kg											< 130 U
2,4,5-Trichlorophenol	ug/kg											< 130 U
2,4,6-Trichlorophenol	ug/kg											< 130 U
2,4-Dichlorophenol	ug/kg											< 27 U
2,4-Dimethylphenol	ug/kg											22 J
2,4-Dinitrophenol	ug/kg											< 680 U
2,4-Dinitrotoluene	ug/kg											< 130 U
2,6-Dinitrotoluene	ug/kg											< 130 U
2-Chloronaphthalene	ug/kg											< 27 U
2-Chlorophenol	ug/kg											< 130 U
2-Methylnaphthalene	ug/kg											45
2-Methylphenol	ug/kg	1										< 130 U
2-Nitroaniline	ug/kg											< 680 U
2-Nitrophenol	ug/kg											< 130 U
3,3'-Dichlorobenzidine	ug/kg											< 130 U
3-Nitroaniline	ug/kg											< 680 U
4,6-Dinitro-2-methylphenol	ug/kg											< 680 U
4-Bromophenyl-phenylether	ug/kg											< 130 U
4-Chloro-3-methylphenol	ug/kg											< 130 U
4-Chloroaniline	ug/kg											< 130 U
4-Chlorophenyl-phenylether	ug/kg											< 130 U
4-Methylphenol	ug/kg											26 J
4-Nitroaniline	ug/kg											< 680 U
4-Nitrophenol	ug/kg	+										< 680 U
Acenaphthene	ug/kg	+	69 J	24 J	25 J	16 J	8.4 J	94	88	58	83	28
Acenaphthylene	ug/kg	+	110 J	15 J	19 J	72	15 J	190	200	90	96	68
Asstanlanana		 	1103	133	193	12	13.0	190	200	30	30	
Acetophenone	ug/kg											< 130 U
Anthracene	ug/kg	1	110 J	18 J	37	51	9.9 J	200	210	100	140	51
Atrazine	ug/kg	+	1.00	.50	Ų,	V 1	0.00	200	210	100	1-10	< 130 U
Benzaldehyde	ug/kg	+										R R
Benzo(a)anthracene	ug/kg	+	300	65	98	160	38	310	380	170	270	180
Benzo(a)pyrene	ug/kg ug/kg	+ -	320	54	88	150	33	310	460	210	260	210
201120(4)(2)10110	ug/kg		320	34	00	130	33	310	700	210	200	210
Benzo(b)fluoranthene	ug/kg	†	430	87	140	200	57	370	460	250	340	260
	39											
Benzo(g,h,i)perylene	ug/kg		280	59	83	140	41	320	590	280	230	170
Benzo(k)fluoranthene	ug/kg		190	46	60	74	24 J	160	190	100	120	64
bis-(2-chloroethoxy)methane	ug/kg	1										< 130 U
bis-(2-Chloroethyl)ether	ug/kg											< 27 U
bis-(2-Ethylhexyl)phthalate	ug/kg	1										150 J
Butylbenzylphthalate	ug/kg											< 130 U
£				•				•	•			

		Location ID	SED7.5D	SED7.5E	SED7.5E	SED7.5E	SED7.5E	SED7A	SED7A	SED7A	SED7A	SED7B
		Sample Date	11/25/2013 7:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM	11/13/2013 11:52:00 AM	11/13/2013 11:52:00 AM	11/13/2013 11:52:00 AM	11/13/2013 11:52:00 AM	11/13/2013 10:51:00 AM
		Sample ID	SED7.5D05N	SED7.5E01N	SED7.5E03N	SED7.5E05N	SED7.5E07N	SED7A01N	SED7A03N	SED7A05N	SED7A07N	SED7B01N
		Depth	5 - 6.8 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg											< 680 U
Carbazole	ug/kg											< 27 U
Chrysene	ug/kg		400	110	170	230	53	440	480	250	380	260
Dibenzo(a,h)anthracene	ug/kg		58 J	< 28 U	35	33	< 28 U	62	77	42	66	31
Dibenzofuran	ug/kg											< 130 U
Diethylphthalate	ug/kg											< 130 U
Dimethylphthalate	ug/kg											< 130 U
Di-n-butylphthalate	ug/kg											< 130 U
Di-n-octylphthalate	ug/kg											82 J
Fluoranthene	ug/kg		520	150	260	330	74	820	1000	480	760	340
Fluorene	ug/kg		84 J	29	46	22 J	< 28 U	110	95	70	120	41
Hexachlorobenzene	ug/kg											< 27 U
Hexachlorobutadiene	ug/kg											< 27 U
Hexachlorocyclo-pentadiene	ug/kg											< 130 U
Hexachloroethane	ug/kg											< 130 U
Indeno(1,2,3-cd)pyrene	ug/kg		210	47	72	92	24 J	240	340	170	180	120
Isophorone	ug/kg											< 130 U
Naphthalene	ug/kg		61 J	28	47	32	7.8 J	56	68	60	83	38
Nitrobenzene	ug/kg											< 270 U
N-Nitroso-di-n-propylamine	ug/kg											< 27 U
N-Nitrosodiphenylamine	ug/kg											< 130 U
Pentachlorophenol	ug/kg											< 130 U
Phenanthrene	ug/kg		370	82	160	170	51	580	490	280	580	250
Phenol	ug/kg											< 27 U
Pyrene	ug/kg		620	150	240	420	95	660	1100	420	600	460
BaP-TE	ug/kg		474	74.5	155	229	45.2	466	657	312	407	298
Total High-molecular-weight PAHs	ug/kg		3300	770	1200	1800	440	3700	5100	2400	3200	2100
Total Low-molecular-weight PAHs	ug/kg		800	200	330	360	92	1200	1200	660	1100	480
Total PAHs (sum 16)	ug/kg		4100	960	1600	2200	530	4900	6200	3000	4300	2600

		Location ID	SED7B	SED7B	SED7B	SED7D	SED7D	SED7D	SED7D	SED7D	SED7D	SED7D
		Sample Date	11/13/2013 10:51:00 AM				11/25/2013 8:05:00 AM	11/25/2013 8:05:00 AM	11/25/2013 8:05:00 AM	6/27/2017 12:00:00 PM	6/27/2017 12:10:00 PM	6/27/2017 12:20:00 PM
		Sample ID	SED7B03N	SED7B05N	SED7B07N	SED7D01N	SED7D03N	SED7D05N	SED7D07N	SED7D02FN	SED7D04FN	SED7D06FN
		Depth	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg									2890	5860	3040
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg											
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
1,2,3-Trichlorobenzene	ug/kg											
1,2,4-Trichlorobenzene	ug/kg											
1,2-Dibromo-3-chloropropane	ug/kg											
1,2-Dibromoethane	ug/kg											
1,2-Dichlorobenzene	ug/kg											
1,2-Dichloroethane	ug/kg											
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg ug/kg											
Carbon Disulfide	ug/kg ug/kg											
Carbon Tetrachloride	ug/kg ug/kg											
Chlorobenzene	ug/kg ug/kg											
Chloroethane												
Chloroform	ug/kg											
Chloromethane	ug/kg											
	ug/kg											
cis-1,2-Dichloroethylene cis-1,3-Dichloropropene	ug/kg ug/kg											
Cyclohexane												
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg	-										
	ug/kg											
Ethylbenzene	ug/kg											
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg											
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg											
Tetrachloroethylene	ug/kg											
Toluene	ug/kg											

		Leastien ID	CED7D	CED7D	SED7B	CED7D	CED7D	CED7D	CED7D	CED7D	CED7D	SED7D
		Location ID Sample Date	SED7B 11/13/2013 10:51:00 AM	SED7B 11/13/2013 10:51:00 AM		SED7D 11/25/2013 8:05:00 AM	SED7D 11/25/2013 8:05:00 AM	SED7D 11/25/2013 8:05:00 AM	SED7D 11/25/2013 8:05:00 AM	SED7D 6/27/2017 12:00:00 PM	SED7D 6/27/2017 12:10:00 PM	6/27/2017 12:20:00 PM
		Sample ID	SED7B03N	SED7B05N	SED7B07N	SED7D01N	SED7D03N	SED7D05N	SED7D07N	SED7D02FN	SED7D04FN	SED7D06FN
		Depth	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft
		Туре	N	N	N	N	N	N N	N	N	N	N N
		,										
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											
trans-1,3-Dichloropropene	ug/kg											
Trichloroethene	ug/kg											
Trichlorofluoromethane	ug/kg											
Vinyl Chloride	ug/kg											
Xylenes (total)	ug/kg											
1,1'-Biphenyl	ug/kg											
1,2,4,5-Tetrachlorobenzene	ug/kg											
2,2'-oxybis(1-Chloropropane)	ug/kg											
2,3,4,6-Tetrachlorophenol	ug/kg											
2,4,5-Trichlorophenol	ug/kg											
2,4,6-Trichlorophenol	ug/kg											
2,4-Dichlorophenol	ug/kg											
2,4-Dimethylphenol	ug/kg											
2,4-Dinitrophenol	ug/kg											
2,4-Dinitrotoluene	ug/kg											
2,6-Dinitrotoluene	ug/kg											
2-Chloronaphthalene	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene	ug/kg											
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg											
2-Nitrophenol	ug/kg											
3,3'-Dichlorobenzidine	ug/kg											
3-Nitroaniline	ug/kg											
4,6-Dinitro-2-methylphenol	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
4-Chlorophenyl-phenylether	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											
Acenaphthene	ug/kg		1.4 J	< 6.3 U	< 27 U	50 J	47 J	76 J	81 J	6.5 J	42	24
Acenaphthylene	ug/kg		3.2 J	< 6.3 U	< 27 U	63 J	99	170	210	34	99	92
Acetophenone	ug/kg											
Anthracene	ug/kg		5.5	< 6.3 U	< 27 U	120 J	130	190	190	31	100	81
Atrazine	ug/kg											
Benzaldehyde	ug/kg		·									
Benzo(a)anthracene	ug/kg		25	1.8 J	< 27 U	280	320	420	380	93	170	170
Benzo(a)pyrene	ug/kg		31	< 6.3 U	< 27 U	270	350	490	400	110	160	190
Benzo(b)fluoranthene	ug/kg		37	6.9	< 27 U	510	530	660	490	150	240	230
Benzo(g,h,i)perylene	ug/kg		32	2.3 J	< 27 U	270	330	430	380	110	160	190
Benzo(k)fluoranthene	ug/kg		14	1.6 J	< 27 U	140	190	220	210	57	40	75
bis-(2-chloroethoxy)methane	ug/kg											
bis-(2-Chloroethyl)ether	ug/kg											1
bis-(2-Ethylhexyl)phthalate	ug/kg											1
Butylbenzylphthalate	ug/kg											

		Location ID	SED7B	SED7B	SED7B	SED7D	SED7D	SED7D	SED7D	SED7D	SED7D	SED7D
		Sample Date	11/13/2013 10:51:00 AM	11/13/2013 10:51:00 AM	11/13/2013 10:51:00 AM	11/25/2013 8:05:00 AM	11/25/2013 8:05:00 AM	11/25/2013 8:05:00 AM	11/25/2013 8:05:00 AM	6/27/2017 12:00:00 PM	6/27/2017 12:10:00 PM	6/27/2017 12:20:00 PM
		Sample ID	SED7B03N	SED7B05N	SED7B07N	SED7D01N	SED7D03N	SED7D05N	SED7D07N	SED7D02FN	SED7D04FN	SED7D06FN
		Depth	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Amaka	Unit											
Analyte Caprolactam	ug/kg											
	ug/kg		22	3.3 J	< 27 U	450	480	610	500	140	220	220
	ug/kg		33									
	ug/kg		5.9	< 6.3 U	< 27 U	62 J	83 J	90 J	76 J	25	41	45
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg		41	2.8 J	3.2 J	690	620	820	740	190	430	460
	ug/kg		2.6 J	< 6.3 U	< 27 U	110 J	59 J	87 J	92 J	18	66	31
	ug/kg											
	ug/kg											
	ug/kg											
	ug/kg											
Indeno(1,2,3-cd)pyrene	ug/kg		20	2.1 J	< 27 U	200	230	310	260	85	120	130
Isophorone	ug/kg											
Naphthalene	ug/kg		3.9 J	< 6.3 U	< 27 U	110 J	65 J	78 J	87 J	20	50	42
Nitrobenzene	ug/kg											
N-Nitroso-di-n-propylamine	ug/kg											
N-Nitrosodiphenylamine	ug/kg											
Pentachlorophenol	ug/kg											
	ug/kg	İ	21	2.4 J	< 27 U	440	360	510	510	90	330	230
	ug/kg	İ										
	ug/kg	İ	54	5.2 J	2.8 J	620	670	940	840	180	350	380
	ug/kg	İ	45.3	1.10	< 27.0 U	433	543	722	592	169	255	289
	ug/kg		290	26	6.0	3500	3800	5000	4300	1100	1900	2100
Total Low-molecular-weight PAHs	ug/kg		38	2.4	< 27 U	890	760	1100	1200	200	690	500
Total PAHs (sum 16)	ug/kg		330	28	6.0	4400	4600	6100	5400	1300	2600	2600

		Location ID	SED7D	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
		Sample Date	6/27/2017 12:30:00 PM	11/25/2013 10:00:00 AM	11/25/2013 10:00:00 AM	11/25/2013 10:00:00 AM	6/22/2017 9:05:00 AM	6/22/2017 9:10:00 AM	6/22/2017 9:15:00 AM	6/22/2017 9:20:00 AM	6/22/2017 9:25:00 AM	6/22/2017 9:30:00 AM
		Sample ID	SED7D08FN	SED7E01N	SED7E03N	SED7E05N	SED7E00BN	SED7E00CN	SED7E01AN	SED7E01BN	SED7E01CN	SED7E02AN
		Depth	8 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 6 ft	0.33 - 0.67 ft	0.67 - 1 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg		1090								3120	
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg						180 J	170 J	210 J	360	270 J	420
Oil Range Organics (C20-C36)	mg/kg						820	890	950	940	810	890
1,1,1-Trichloroethane	ug/kg											
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg ug/kg											
1,2,3-Trichlorobenzene	ug/kg ug/kg											
1,2,4-Trichlorobenzene	ug/kg ug/kg											
1,2-Dibromo-3-chloropropane	ug/kg ug/kg											
1,2-Dibromoethane												
1,2-Dibromoetnane 1,2-Dichlorobenzene	ug/kg											
,	ug/kg											
1,2-Dichloroethane	ug/kg											
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg											
Chlorobenzene	ug/kg											
Chloroethane	ug/kg											
Chloroform	ug/kg											
Chloromethane	ug/kg											
cis-1,2-Dichloroethylene	ug/kg											
cis-1,3-Dichloropropene	ug/kg											
Cyclohexane	ug/kg											
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg											
Ethylbenzene	ug/kg											
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg											
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg											
Tetrachloroethylene	ug/kg											
Toluene	ug/kg											
	59				l	I .	I.	I	1	l		

							T	T		T		
		Location ID	SED7D	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
		Sample Date	6/27/2017 12:30:00 PM	11/25/2013 10:00:00 AM	11/25/2013 10:00:00 AM	11/25/2013 10:00:00 AM	6/22/2017 9:05:00 AM	6/22/2017 9:10:00 AM	6/22/2017 9:15:00 AM	6/22/2017 9:20:00 AM	6/22/2017 9:25:00 AM	6/22/2017 9:30:00 AM
		Sample ID	SED7D08FN	SED7E01N	SED7E03N	SED7E05N	SED7E00BN	SED7E00CN	SED7E01AN	SED7E01BN	SED7E01CN	SED7E02AN
		Depth	8 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 6 ft	0.33 - 0.67 ft	0.67 - 1 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft
	1	Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											
trans-1,3-Dichloropropene	ug/kg											
Trichloroethene	ug/kg											
Trichlorofluoromethane	ug/kg											
Vinyl Chloride	ug/kg											
Xylenes (total)	ug/kg											
1,1'-Biphenyl	ug/kg											
1,2,4,5-Tetrachlorobenzene	ug/kg											
2,2'-oxybis(1-Chloropropane)	ug/kg											
2,3,4,6-Tetrachlorophenol	ug/kg											
2,4,5-Trichlorophenol	ug/kg											
2,4,6-Trichlorophenol	ug/kg											
2,4-Dichlorophenol	ug/kg											
2,4-Dimethylphenol	ug/kg											
2,4-Dinitrophenol	ug/kg											
2,4-Dinitrotoluene	ug/kg											
2,6-Dinitrotoluene	ug/kg											
2-Chloronaphthalene	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene												
	ug/kg											
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg											
2-Nitrophenol	ug/kg											
3,3'-Dichlorobenzidine	ug/kg											
3-Nitroaniline	ug/kg											
4,6-Dinitro-2-methylphenol	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
4-Chlorophenyl-phenylether	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											
Acenaphthene	ug/kg		11	240	52 J	70 J	19 J	8.7 J	90	< 30 U	< 29 U	< 30 U
Acenaphthylene	ug/kg		31	40 J	84 J	120 J	< 44 U	9.1 J	24 J	37	21 J	36
Acetophenone	ug/kg											
Anthracene	ualka		38	400	110 J	130 J	54	20 J	210	36	24 J	37
	ug/kg		30	400	1103	130 J	34	20 J	210	30	Z4 J	31
Atrazine	ug/kg											
Benzaldehyde	ug/kg		400	4500	240	202	202	70	400	00	F^	00.1
Benzo(a)anthracene	ug/kg		120	1500	240	280	200	73	490	82	50	80 J
Benzo(a)pyrene	ug/kg		120	1500	270	330	190	65	420	87	52	91 J
Benzo(b)fluoranthene	ug/kg		160	2100	400	410	280	100	560	120	79	130 J
Benzo(g,h,i)perylene	ug/kg		110	1200	270	320	180	57	300	81	54	91 J
Benzo(k)fluoranthene	ug/kg		64	780	140 J	230	95	43	220	48	31	32
bis-(2-chloroethoxy)methane	ug/kg		-						-		-	
ois-(2-Chloroethyl)ether	ug/kg											
bis-(2-Ethylhexyl)phthalate	ug/kg											
\= ==:,ex,.,p	~9′′′9			1	I .	i e	Ī	I	1	I		i

	Location		SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
	Sample		11/25/2013 10:00:00 AM	11/25/2013 10:00:00 AM	11/25/2013 10:00:00 AM	6/22/2017 9:05:00 AM	6/22/2017 9:10:00 AM	6/22/2017 9:15:00 AM	6/22/2017 9:20:00 AM	6/22/2017 9:25:00 AM	6/22/2017 9:30:00 AM
	Samp		SED7E01N	SED7E03N	SED7E05N	SED7E00BN	SED7E00CN	SED7E01AN	SED7E01BN	SED7E01CN	SED7E02AN
		epth 8 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 6 ft	0.33 - 0.67 ft	0.67 - 1 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft
		Гуре N	N	N	N	N	N	N	N	N	N
Analyte	Unit										
Caprolactam	ug/kg										
Carbazole	ug/kg										
Chrysene	ug/kg	140	1900	400	440	240	100	540	120	80	120 J
Dibenzo(a,h)anthracene	ug/kg	23	230	61 J	60 J	47	11 J	78	< 30 U	12 J	17 J
Dibenzofuran	ug/kg										
Diethylphthalate	ug/kg										
Dimethylphthalate	ug/kg										
Di-n-butylphthalate	ug/kg										
Di-n-octylphthalate	ug/kg										
Fluoranthene	ug/kg	260	4300	540	550	330	140	1200	140	83	140 J
Fluorene	ug/kg	19	210	62 J	63 J	18 J	13 J	97	14 J	13 J	17 J
Hexachlorobenzene	ug/kg										
Hexachlorobutadiene	ug/kg										
Hexachlorocyclo-pentadiene	ug/kg										
Hexachloroethane	ug/kg										
Indeno(1,2,3-cd)pyrene	ug/kg	92	1000	200	230	130	46	250	54	38	58 J
Isophorone	ug/kg										
Naphthalene	ug/kg	26	110 J	67 J	60 J	< 44 U	11 J	50	21 J	16 J	20 J
Nitrobenzene	ug/kg										
N-Nitroso-di-n-propylamine	ug/kg										
N-Nitrosodiphenylamine	ug/kg										
Pentachlorophenol	ug/kg										
Phenanthrene	ug/kg	110	3000	320	370	210	87	1100	100	67	100 J
Phenol	ug/kg		_		_						
Pyrene	ug/kg	160	3200	580	690	400	170	1100	190	120	190 J
BaP-TE	ug/kg	181	2200	417	485	299	98.4	631	113	81.1	135
Total High-molecular-weight PAHs	ug/kg	1200	18000	3100	3500	2100	810	5200	920	600	950
Total Low-molecular-weight PAHs	ug/kg	240	4000	700	810	300	150	1600	210	140	210
Total PAHs (sum 16)	ug/kg	1500	22000	3800	4400	2400	950	6700	1100	740	1200

		Location ID	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
		Sample Date	6/22/2017 9:32:00 AM	6/22/2017 9:35:00 AM	6/22/2017 9:37:00 AM	6/22/2017 9:40:00 AM		6/22/2017 9:50:00 AM	6/22/2017 9:55:00 AM	6/22/2017 10:00:00 AM	6/22/2017 10:05:00 AM	6/22/2017 10:10:00 AM
		Sample ID	SED7E02AR	SED7E02BN	SED7E02BR	SED7E02CN	SED7E03AN	SED7E03BN	SED7E03CN	SED7E04AN	SED7E04BN	SED7E04CN
		Depth	2 - 2.33 ft	2.33 - 2.67 ft	2.33 - 2.67 ft	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft	4 - 4.33 ft	4.33 - 4.67 ft	4.67 - 5 ft
	1 1	Туре	FD	N	FD	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg									5080		
Gasoline Range Organics (C6-C10)	ug/kg									3000		
Diesel Range Organics (C10-C20)	mg/kg		340	280 J	400	160	360	370	330	270 J	330	410
Oil Range Organics (C20-C36)	mg/kg		800	800	970	370	750	750	790	680	870	1000
1,1,1-Trichloroethane	ug/kg				0.0	0.0	100	100	100		0.0	1000
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
1,2,3-Trichlorobenzene	ug/kg											
1,2,4-Trichlorobenzene	ug/kg ug/kg											
1,2-Dibromo-3-chloropropane	ug/kg											
1,2-Dibromoethane	ug/kg											
1,2-Dichlorobenzene	ug/kg											
1,2-Dichloroethane	ug/kg											
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane												
2-Butanone	ug/kg											
	ug/kg											
2-Hexanone 4-Methyl-2-pentanone	ug/kg											
	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide Carbon Tetrachloride	ug/kg											
	ug/kg											
Chlorobenzene	ug/kg											
Chloroform	ug/kg											
Chloromothono	ug/kg											
Chloromethane	ug/kg											
cis-1,2-Dichloroethylene	ug/kg											
cis-1,3-Dichloropropene	ug/kg											
Cyclohexane	ug/kg											
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg											
Ethylbenzene	ug/kg											
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg											
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg											
Tetrachloroethylene	ug/kg											
Toluene	ug/kg											

							T			T	1	
		Location ID	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
		Sample Date Sample ID	6/22/2017 9:32:00 AM SED7E02AR	6/22/2017 9:35:00 AM SED7E02BN	6/22/2017 9:37:00 AM SED7E02BR	6/22/2017 9:40:00 AM	6/22/2017 9:45:00 AM SED7E03AN	6/22/2017 9:50:00 AM SED7E03BN	6/22/2017 9:55:00 AM SED7E03CN	6/22/2017 10:00:00 AM SED7E04AN	6/22/2017 10:05:00 AM SED7E04BN	6/22/2017 10:10:00 AM SED7E04CN
		Depth	2 - 2.33 ft	2.33 - 2.67 ft	2.33 - 2.67 ft	SED7E02CN 2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft	4 - 4.33 ft	4.33 - 4.67 ft	4.67 - 5 ft
		Туре	2 - 2.33 ii FD	2.33 - 2.07 It N	2.33 - 2.07 II FD	2.67 - 3 ft N	N N	3.33 - 3.07 II	3.67 - 4 It N	4 - 4.33 IL N	4.55 - 4.67 II	4.67 - 5 IL N
		.,,,,,		.,		.,						
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											
trans-1,3-Dichloropropene	ug/kg											
Trichloroethene	ug/kg											
Trichlorofluoromethane	ug/kg											
Vinyl Chloride	ug/kg											
Xylenes (total)	ug/kg											
1,1'-Biphenyl	ug/kg											
1,2,4,5-Tetrachlorobenzene	ug/kg											
2,2'-oxybis(1-Chloropropane)	ug/kg											
2,3,4,6-Tetrachlorophenol	ug/kg											
2,4,5-Trichlorophenol	ug/kg											
2,4,6-Trichlorophenol	ug/kg											
2,4-Dichlorophenol	ug/kg											
2,4-Dimethylphenol	ug/kg											
2,4-Dinitrophenol	ug/kg											
2,4-Dinitrotoluene	ug/kg											
2,6-Dinitrotoluene	ug/kg											
2-Chloronaphthalene	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene	ug/kg											
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg											
2-Nitrophenol	ug/kg											
3,3'-Dichlorobenzidine	ug/kg											
3-Nitroaniline	ug/kg											
4,6-Dinitro-2-methylphenol												
	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
4-Chlorophenyl-phenylether	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											
Acenaphthene	ug/kg		24	< 29 U	20 J	26	< 22 U	26	55	210	21	12 J
Acenaphthylene	ug/kg		46	67	58	69	67	68	43	180	43	43
Acetophenone	ug/kg											
Anthracene	ug/kg		67	97	87	65	81	67	90	560	51	36
Atrazine	ug/kg										- ·	
Benzaldehyde	ug/kg							 				
Benzo(a)anthracene	ug/kg		180 J	160	180	190	240	210 J	240	800	150	74
	ug/kg ug/kg		220 J	180	240	210	280	200	220	330	140	77
Benzo(a)pyrene	ug/kg		220 J	100	240	210	200	200	220	330	140	· · ·
Benzo(b)fluoranthene	ug/kg		300 J	240	330	280	360	260 J	300	600	190	110
Benzo(g,h,i)perylene	ug/kg		270 J	170	270	220	290	210 J	210	400	150	110
Benzo(k)fluoranthene	ug/kg		90	79	100	81	170	85	74	220	43	20
bis-(2-chloroethoxy)methane	ug/kg											
bis-(2-Chloroethyl)ether	ug/kg						 	 		1		
bis-(2-Ethylhexyl)phthalate	ug/kg											
Butylbenzylphthalate	ug/kg									 		

		Location ID	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
		Sample Date	6/22/2017 9:32:00 AM	6/22/2017 9:35:00 AM	6/22/2017 9:37:00 AM	6/22/2017 9:40:00 AM	6/22/2017 9:45:00 AM	6/22/2017 9:50:00 AM	6/22/2017 9:55:00 AM	6/22/2017 10:00:00 AM	6/22/2017 10:05:00 AM	6/22/2017 10:10:00 AM
		Sample ID	SED7E02AR	SED7E02BN	SED7E02BR	SED7E02CN	SED7E03AN	SED7E03BN	SED7E03CN	SED7E04AN	SED7E04BN	SED7E04CN
		Depth	2 - 2.33 ft	2.33 - 2.67 ft	2.33 - 2.67 ft	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft	4 - 4.33 ft	4.33 - 4.67 ft	4.67 - 5 ft
		Туре	FD	N	FD	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg											
Carbazole	ug/kg											
Chrysene	ug/kg		230 J	240	270	240	340	240 J	290	710	190	110
Dibenzo(a,h)anthracene	ug/kg		50	38	67	53	75	49 J	52	100	27	22
Dibenzofuran	ug/kg											
Diethylphthalate	ug/kg											
Dimethylphthalate	ug/kg											
Di-n-butylphthalate	ug/kg											
Di-n-octylphthalate	ug/kg											
Fluoranthene	ug/kg		310 J	300	350	390	470 J-	350	430	1500	330	160
Fluorene	ug/kg		45	32	35	41	55	39	44	290	25	21
Hexachlorobenzene	ug/kg											
Hexachlorobutadiene	ug/kg											
Hexachlorocyclo-pentadiene	ug/kg											
Hexachloroethane	ug/kg											
Indeno(1,2,3-cd)pyrene	ug/kg		190 J	120	180	170	230	150	160	360	120	71
Isophorone	ug/kg											
Naphthalene	ug/kg		26	32	32	32	25	42	34	79	19	24
Nitrobenzene	ug/kg											
N-Nitroso-di-n-propylamine	ug/kg											
N-Nitrosodiphenylamine	ug/kg											
Pentachlorophenol	ug/kg											
Phenanthrene	ug/kg		200 J	210	230	230	240	220 J	290	1800	180	100
Phenol	ug/kg											
Pyrene	ug/kg		410 J	350	420	380	500 J	470 J	420	1300	290	160
BaP-TE	ug/kg		338	271	377	328	440	312	343	609	214	125
Total High-molecular-weight PAHs	ug/kg		2300	1900	2400	2200	3000	2200	2400	6300	1600	910
Total Low-molecular-weight PAHs	ug/kg		410	440	460	460	470	460	560	3100	340	240
Total PAHs (sum 16)	ug/kg		2700	2300	2900	2700	3400	2700	3000	9400	2000	1200

		Location ID	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7F
		Sample Date	6/22/2017 10:15:00 AM	6/22/2017 10:20:00 AM	6/22/2017 10:25:00 AM	6/22/2017 10:30:00 AM	6/22/2017 10:35:00 AM	6/22/2017 10:40:00 AM	6/22/2017 10:45:00 AM	6/22/2017 10:50:00 AM	6/22/2017 10:55:00 AM	11/25/2013 12:00:00 PM
		Sample ID	SED7E05AN	SED7E05BN	SED7E05CN	SED7E06AN	SED7E06BN	SED7E06CN	SED7E07AN	SED7E07BN	SED7E07CN	SED7F01N
		Depth	5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft	6.33 - 6.67 ft	6.67 - 7 ft	7 - 7.33 ft	7.33 - 7.67 ft	7.67 - 8 ft	1 - 3 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg							611				
Gasoline Range Organics (C6-C10)	ug/kg							V				
Diesel Range Organics (C10-C20)	mg/kg		200 J	240 J	330	65	51	140	62	230	140	
Oil Range Organics (C20-C36)	mg/kg		520	650	1000	230	150	420	170	670	430	
1,1,1-Trichloroethane	ug/kg		320	000	1000	250	100	720	170	070	450	
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg ug/kg											
1,1-Dichloroethane												
1,1-Dichloroethane	ug/kg											
	ug/kg											
1,2,3-Trichlorobenzene	ug/kg							ļ				
1,2,4-Trichlorobenzene	ug/kg							 				
1,2-Dibromo-3-chloropropane	ug/kg							-				
1,2-Dibromoethane	ug/kg							-				
1,2-Dichlorobenzene	ug/kg											
1,2-Dichloroethane	ug/kg											
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg											
Chlorobenzene	ug/kg											
Chloroethane	ug/kg											
Chloroform	ug/kg											
Chloromethane	ug/kg											
cis-1,2-Dichloroethylene	ug/kg											
cis-1,3-Dichloropropene	ug/kg		·									
Cyclohexane	ug/kg											
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg											
Ethylbenzene	ug/kg											
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg											
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg											
Tetrachloroethylene	ug/kg											
Toluene	ug/kg											

_				1		1	1	•	1	1	1	
		Location ID	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7F
		Sample Date	6/22/2017 10:15:00 AM	6/22/2017 10:20:00 AM	6/22/2017 10:25:00 AM	6/22/2017 10:30:00 AM	6/22/2017 10:35:00 AM	6/22/2017 10:40:00 AM	6/22/2017 10:45:00 AM	6/22/2017 10:50:00 AM	6/22/2017 10:55:00 AM	
		Sample ID	SED7E05AN	SED7E05BN	SED7E05CN	SED7E06AN	SED7E06BN	SED7E06CN	SED7E07AN	SED7E07BN	SED7E07CN	SED7F01N
		Depth	5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft	6.33 - 6.67 ft	6.67 - 7 ft	7 - 7.33 ft	7.33 - 7.67 ft	7.67 - 8 ft	1 - 3 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											
trans-1,3-Dichloropropene												
	ug/kg											
Trichloroethene	ug/kg											
Trichlorofluoromethane	ug/kg											
Vinyl Chloride	ug/kg											
Xylenes (total)	ug/kg											. 000 11
1,1'-Biphenyl	ug/kg											< 200 U
1,2,4,5-Tetrachlorobenzene	ug/kg											< 200 U
2,2'-oxybis(1-Chloropropane)	ug/kg											< 41 U
2,3,4,6-Tetrachlorophenol	ug/kg											< 200 U
2,4,5-Trichlorophenol	ug/kg											< 200 U
2,4,6-Trichlorophenol	ug/kg											< 200 U
2,4-Dichlorophenol	ug/kg											< 41 U
2,4-Dimethylphenol	ug/kg											< 200 U
2,4-Dinitrophenol	ug/kg											< 1000 U
2,4-Dinitrotoluene	ug/kg											< 200 U
2,6-Dinitrotoluene	ug/kg											< 200 U
2-Chloronaphthalene	ug/kg											< 41 U
2-Chlorophenol	ug/kg											< 200 U
2-Methylnaphthalene	ug/kg											17 J
2-Methylphenol	ug/kg											< 200 U
2-Nitroaniline	ug/kg											< 1000 U
2-Nitrophenol	ug/kg											< 200 U
3,3'-Dichlorobenzidine	ug/kg											< 200 U
3-Nitroaniline	ug/kg											< 1000 U
4,6-Dinitro-2-methylphenol	ug/kg											< 1000 U
4-Bromophenyl-phenylether	ug/kg											< 200 U
4-Chloro-3-methylphenol	ug/kg											< 200 U
4-Chloroaniline	ug/kg											< 200 U
4-Chlorophenyl-phenylether	ug/kg											< 200 U
4-Methylphenol	ug/kg											< 200 U
4-Nitroaniline	ug/kg											< 1000 U
4-Nitrophenol	ug/kg											< 1000 U
Acenaphthene	ug/kg		18 J	23	21	8.9 J	4.1 J	300	2.7 J	21	5.9	< 41 U
Acenaphthylene	ug/kg		57	65	120	34	3.9 J	43	5.7	45	21	18 J
Acetophenone	ug/kg				120	J	0.30	70	9.7	77		< 200 U
, recropilenone	ug/kg						ĺ					~ 200 U
Anthracene	ug/kg		51	67	100	37	5.3 J	2900	11	58	24	42
Atrazine	ug/kg			,	.30	<u> </u>			• • • • • • • • • • • • • • • • • • • •			< 200 U
Benzaldehyde	ug/kg							 				< 200 UJ
Benzo(a)anthracene	ug/kg		110	160	220	85	20	710	28	160	74	180
Benzo(a)pyrene	ug/kg ug/kg		120	150	240	83	20	520	26	180	80	180
υσιτεσ(α)ργιστίο	ug/kg		120	130	24 0	03	20	320	20	100	00	100
Benzo(b)fluoranthene	ug/kg		150	180	290	120	26	560	35	230	110	210
Benzo(g,h,i)perylene	ug/kg		150	180	290	110	23	370	23	190	79	150
Benzo(k)fluoranthene	ug/kg		50	80	94	34	9.3	280	11	84	27	120
bis-(2-chloroethoxy)methane	ug/kg					-	3.0		• • • • • • • • • • • • • • • • • • • •		·	< 200 U
bis-(2-Chloroethyl)ether	ug/kg							 				< 41 U
bis-(2-Ethylhexyl)phthalate	ug/kg							 				920
							1	1				
Butylbenzylphthalate	ug/kg						<u> </u>					< 200 U

	Location I	D SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7F
	Sample Dat	e 6/22/2017 10:15:00 AM	6/22/2017 10:20:00 AM	6/22/2017 10:25:00 AM	6/22/2017 10:30:00 AM	6/22/2017 10:35:00 AM	6/22/2017 10:40:00 AM	6/22/2017 10:45:00 AM	6/22/2017 10:50:00 AM	6/22/2017 10:55:00 AM	11/25/2013 12:00:00 PM
	Sample I	D SED7E05AN	SED7E05BN	SED7E05CN	SED7E06AN	SED7E06BN	SED7E06CN	SED7E07AN	SED7E07BN	SED7E07CN	SED7F01N
	Dept	h 5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft	6.33 - 6.67 ft	6.67 - 7 ft	7 - 7.33 ft	7.33 - 7.67 ft	7.67 - 8 ft	1 - 3 ft
	Тур	e N	N	N	N	N	N	N	N	N	N
,	Unit										4400011
	/kg										< 1000 U
	/kg										42
	/kg	150	190	280	110	25	670	34	210	91	270
	/kg	14 J	30	44	23	4.0 J	110	5.4	43	17	< 41 U
	/kg										< 200 U
	/kg										< 200 U
	/kg										< 200 U
	/kg										42 J
	/kg										< 200 U
	/kg	210	270	410	170	33	1400	51	320	140	430
Fluorene ug	/kg	23	29	41	15	3.6 J	460	4.5	25	9.9	20 J
	/kg										< 41 U
	/kg										< 41 U
	/kg										< 200 U
Hexachloroethane ug	/kg										< 200 U
Indeno(1,2,3-cd)pyrene ug	/kg	99	130	220	85	17	340	17	140	61	130
Isophorone ug	/kg										< 200 U
Naphthalene uç	/kg	33	28	45	17	3.5 J	240	4.8	36	13	< 41 U
Nitrobenzene ug	/kg										< 410 U
N-Nitroso-di-n-propylamine uç	/kg										< 41 U
N-Nitrosodiphenylamine ug	/kg										< 200 U
Pentachlorophenol ug	/kg										< 200 U
Phenanthrene ug	/kg	120	150	220	75	19	1800	24	160	63	200
	/kg										< 41 U
Pyrene ug	/kg	240	310	460	170	36	1200	59	420	160	340
	/kg	171	228	358	135	30.4	794	39.5	277	122	233
	/kg	1300	1700	2500	990	210	6200	290	2000	840	2000
Total Low-molecular-weight PAHs uç	/kg	300	360	550	190	39	5700	53	350	140	280
Total PAHs (sum 16)	/kg	1600	2000	3100	1200	250	12000	340	2300	980	2300

		Location ID	SED7F	SED7F	SED7F	SED7F	SED7G	SED7G	SED7G	SED7G	SED7G	SED8.5B	SED8.5B
		Sample Date	12/3/2013 1:30:00 PM	1/29/2014 1:30:00 PM	1/29/2014 1:30:00 PM	1/29/2014 1:30:00 PM	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	11/13/2013 8:37:00 AM	11/13/2013 8:37:00 AM
		Sample ID	SED7F01N2 1 - 3 ft	SED7F03N 3 - 5 ft	SED7F05N	SED7F07N 7 - 9 ft	SED7G01N 1 - 3 ft	SED7G01R 1 - 3 ft	SED7G03N 3 - 5 ft	SED7G05N 5 - 7 ft	SED7G07N 7 - 9 ft	SED8.5B01N 1 - 3 ft	SED8.5B03N
		Depth Type	1 - 3 π N	3-5π N	5 - 7 ft N	7-9π N	1-3π N	1 - 3 π FD	3-5π N	5 - 7 π N	7 - 9 π N	1 - 3 π N	3 - 5 ft N
		Турс	14	IV		11	14	1.5	IV.	14	14	14	14
Analyte	Unit												1
Total Petroleum Hydrocarbons (C9-C44)	mg/kg												
Gasoline Range Organics (C6-C10)	ug/kg												
Diesel Range Organics (C10-C20)	mg/kg												
Oil Range Organics (C20-C36)	mg/kg												
1,1,1-Trichloroethane	ug/kg		< 6.5 U										
1,1,2,2-Tetrachloroethane	ug/kg		< 6.5 U										
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg		< 6.5 U										
1,1,2-Trichloroethane	ug/kg		< 6.5 U										
1,1-Dichloroethane	ug/kg		< 6.5 U										
1,1-Dichloroethene	ug/kg		< 6.5 U										
1,2,3-Trichlorobenzene	ug/kg		< 6.5 U										
1,2,4-Trichlorobenzene	ug/kg		< 6.5 U										
1,2-Dibromo-3-chloropropane	ug/kg		< 6.5 U										
1,2-Dibromoethane	ug/kg		< 6.5 U										
1,2-Dichlorobenzene	ug/kg		< 6.5 U										
1,2-Dichloroethane	ug/kg		< 6.5 U										
1,2-Dichloropropane	ug/kg		< 6.5 U										
1,3-Dichlorobenzene	ug/kg		< 6.5 U										
1,4-Dichlorobenzene	ug/kg		< 6.5 U										
1,4-Dioxane	ug/kg		< 1300 U										
2-Butanone	ug/kg		< 6.5 U										
2-Hexanone	ug/kg		< 6.5 U										
4-Methyl-2-pentanone	ug/kg		< 6.5 U										
Acetone	ug/kg		< 26 U										
Benzene	ug/kg		< 6.5 U < 6.5 U										
Bromochloromethane	ug/kg		< 6.5 U										
Bromodichloromethane	ug/kg ug/kg		< 6.5 U										
Bromoform Bromomethane			< 6.5 U										
Carbon Disulfide	ug/kg		< 6.5 U										
Carbon Tetrachloride	ug/kg ug/kg		< 6.5 U										<u> </u>
Chlorobenzene	ug/kg		< 6.5 U										
Chloroethane	ug/kg		< 6.5 U										
Chloroform	ug/kg		< 6.5 U										
Chloromethane	ug/kg		< 6.5 U										
cis-1,2-Dichloroethylene	ug/kg		< 6.5 U										
cis-1,3-Dichloropropene	ug/kg		< 6.5 U										
Cyclohexane	ug/kg		< 6.5 U										
Dibromochloromethane	ug/kg		< 6.5 U										
Dichlorodifluoromethane	ug/kg		< 6.5 U										
Ethylbenzene	ug/kg		< 6.5 U										
Isopropylbenzene	ug/kg		< 6.5 U										
m, p-Xylene	ug/kg		< 13 U										
Methyl Acetate	ug/kg		< 6.5 U										
Methyl tert-Butyl Ether (MTBE)	ug/kg		< 6.5 U										
Methylcyclohexane	ug/kg		< 6.5 U										
Methylene Chloride	ug/kg		< 6.5 U										
o-Xylene	ug/kg		< 6.5 U										
Styrene	ug/kg		< 6.5 U										
Tetrachloroethylene	ug/kg		< 6.5 U										
Toluene	ug/kg		< 6.5 U										

		Location ID	SED7F	SED7F	SED7F	SED7F	SED7G	SED7G	SED7G	SED7G	SED7G	SED8.5B	SED8.5B
		Sample Date	12/3/2013 1:30:00 PM	1/29/2014 1:30:00 PM	1/29/2014 1:30:00 PM	1/29/2014 1:30:00 PM	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	11/13/2013 8:37:00 AM	11/13/2013 8:37:00 AM
		Sample ID	SED7F01N2	SED7F03N	SED7F05N	SED7F07N	SED7G01N	SED7G01R	SED7G03N	SED7G05N	SED7G07N	SED8.5B01N	SED8.5B03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Type	N N	N N	N N	N N	N N	FD	N N	N N	7 - 9 it N	N N	N N
		. , , , , ,						· -					
Analyte	Unit												
trans-1,2-Dichloroethene	ug/kg		< 6.5 U										
trans-1,3-Dichloropropene	ug/kg		< 6.5 U										
Trichloroethene	ug/kg		< 6.5 U										
Trichlorofluoromethane	ug/kg		< 6.5 U										
Vinyl Chloride	ug/kg		< 6.5 U										
Xylenes (total)	ug/kg		< 13 U										
1,1'-Biphenyl	ug/kg												
1,2,4,5-Tetrachlorobenzene	ug/kg												
2,2'-oxybis(1-Chloropropane)	ug/kg												
2,3,4,6-Tetrachlorophenol	ug/kg												
2,4,5-Trichlorophenol	ug/kg												
2,4,6-Trichlorophenol	ug/kg												
2,4-Dichlorophenol	ug/kg											1	
2,4-Dimethylphenol	ug/kg								1				
2,4-Dinitrophenol	ug/kg												
2,4-Dinitrotoluene	ug/kg												
2,6-Dinitrotoluene	ug/kg												
2-Chloronaphthalene	ug/kg												
2-Chlorophenol	ug/kg												
2-Methylnaphthalene													
	ug/kg												
2-Methylphenol	ug/kg												
2-Nitroaniline	ug/kg												
2-Nitrophenol	ug/kg												
3,3'-Dichlorobenzidine	ug/kg												
3-Nitroaniline	ug/kg												
4,6-Dinitro-2-methylphenol	ug/kg												
4-Bromophenyl-phenylether	ug/kg												
4-Chloro-3-methylphenol	ug/kg												
4-Chloroaniline	ug/kg												
4-Chlorophenyl-phenylether	ug/kg												
4-Methylphenol	ug/kg												
4-Nitroaniline	ug/kg												
4-Nitrophenol	ug/kg												
Acenaphthene	ug/kg			54 J	11 J	< 26 U	3.0 J	< 23 U	< 25 U	< 20 U	< 4.6 U	15 J	< 4.2 U
Acenaphthylene	ug/kg			72	43 J	< 26 U	< 24 U	< 23 U	< 25 U	< 20 U	< 4.6 U	20 J	< 4.2 U
Acetophenone	ug/kg												
Anthracene	ug/kg			140 J	46 J	6.6 J	< 24 U	< 23 U	< 25 U	< 20 U	< 4.6 U	48	< 4.2 U
Atrazine	ug/kg												
Benzaldehyde	ug/kg												
Benzo(a)anthracene	ug/kg			340 J	120	22 J	10 J	< 23 U	< 25 U	< 20 U	< 4.6 U	180	< 4.2 U
Benzo(a)pyrene	ug/kg			300 J	120	20 J	12 J	< 23 U	< 25 U	< 20 U	< 4.6 U	220	< 4.2 U
Benzo(b)fluoranthene	ug/kg			300 J	150	17 J	10 J	< 23 U	< 25 U	< 20 U	< 4.6 U	370	< 4.2 U
Penze(g b i)pendenc				220 1	400	45 '	44 '	Z 00 II	2 OF 11	< 2011	~ A C II	270	< 4 O U
Benzo(g,h,i)perylene	ug/kg			220 J	120	15 J	11 J	< 23 U	< 25 U	< 20 U	< 4.6 U	270	< 4.2 U
Benzo(k)fluoranthene	ug/kg			170 J	57	18 J	4.9 J	< 23 U	< 25 U	< 20 U	< 4.6 U	110	< 4.2 U
bis-(2-chloroethoxy)methane	ug/kg]	
bis-(2-Chloroethyl)ether	ug/kg												
bis-(2-Ethylhexyl)phthalate	ug/kg												
Butylbenzylphthalate	ug/kg								<u> </u>			<u> </u>	

		Location ID	SED7F	SED7F	SED7F	SED7F	SED7G	SED7G	SED7G	SED7G	SED7G	SED8.5B	SED8.5B
		Sample Date	12/3/2013 1:30:00 PM	1/29/2014 1:30:00 PM		1/29/2014 1:30:00 PM	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM		1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	11/13/2013 8:37:00 AM	11/13/2013 8:37:00 AM
		Sample ID	SED7F01N2	SED7F03N	SED7F05N	SED7F07N	SED7G01N	SED7G01R	SED7G03N	SED7G05N	SED7G07N	SED8.5B01N	SED8.5B03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	FD	N	N	N	N	N
Analyte	Unit												
Caprolactam	ug/kg												
Carbazole	ug/kg												
Chrysene	ug/kg			340 J	150	26	11 J	< 23 U	< 25 U	< 20 U	< 4.6 U	360	< 4.2 U
Dibenzo(a,h)anthracene	ug/kg			62	31 J	4.2 J	< 24 U	< 23 U	< 25 U	< 20 U	< 4.6 U	40	< 4.2 U
Dibenzofuran	ug/kg												
Diethylphthalate	ug/kg												
Dimethylphthalate	ug/kg												
Di-n-butylphthalate	ug/kg												
Di-n-octylphthalate	ug/kg												
Fluoranthene	ug/kg			620 J	220	30	< 24 U	< 23 U	< 25 U	< 20 U	< 4.6 U	430	3.9 J
Fluorene	ug/kg			58 J	26 J	< 26 U	< 24 U	< 23 U	< 25 U	< 20 U	< 4.6 U	17 J	< 4.2 U
Hexachlorobenzene	ug/kg												
Hexachlorobutadiene	ug/kg												
Hexachlorocyclo-pentadiene	ug/kg												
Hexachloroethane	ug/kg												
Indeno(1,2,3-cd)pyrene	ug/kg			180 J	87	14 J	8.0 J	< 23 U	< 25 U	< 20 U	< 4.6 U	220	< 4.2 U
Isophorone	ug/kg												
Naphthalene	ug/kg			61 J	< 52 U	< 26 U	< 24 U	< 23 U	< 25 U	< 20 U	< 4.6 U	< 27 U	< 4.2 U
Nitrobenzene	ug/kg												
N-Nitroso-di-n-propylamine	ug/kg												
N-Nitrosodiphenylamine	ug/kg												
Pentachlorophenol	ug/kg												
Phenanthrene	ug/kg			410 J	87	< 26 U	< 24 U	< 23 U	< 25 U	< 20 U	< 4.6 U	210	3.2 J
Phenol	ug/kg												
Pyrene	ug/kg			650 J	280	39	18 J	< 23 U	< 25 U	< 20 U	< 4.6 U	450	5.4
BaP-TE	ug/kg			446	187	29.7	14.9	< 23.0 U	< 25.0 U	< 20.0 U	< 4.60 U	338	< 4.20 U
Total High-molecular-weight PAHs	ug/kg			3200	1300	210	85	< 23 U	< 25 U	< 20 U	< 4.6 U	2700	9.3
Total Low-molecular-weight PAHs	ug/kg			800	210	6.6	3.0	< 23 U	< 25 U	< 20 U	< 4.6 U	310	3.2
Total PAHs (sum 16)	ug/kg			4000	1500	210	88	< 23 U	< 25 U	< 20 U	< 4.6 U	3000	13

		Location ID	SED8.5B	SED8.5B	SED8A	SED8A	SED8A	SED8A	SED8B	SED8B	SED8B	SED8B
		Sample Date	11/13/2013 8:37:00 AM	11/13/2013 8:37:00 AM	11/13/2013 10:06:00 AM	11/13/2013 10:06:00 AM	11/13/2013 10:06:00 AM	11/13/2013 10:06:00 AM	11/13/2013 9:18:00 AM	11/13/2013 9:18:00 AM	11/13/2013 9:18:00 AM	11/13/2013 9:18:00 AM
		Sample ID	SED8.5B05N	SED8.5B07N	SED8A01N	SED8A03N	SED8A05N	SED8A07N	SED8B01N	SED8B03N	SED8B05N	SED8B07N
		Depth	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg											
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg											
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
1,2,3-Trichlorobenzene	ug/kg											
1,2,4-Trichlorobenzene	ug/kg											
1,2-Dibromo-3-chloropropane	ug/kg											
1,2-Dibromoethane	ug/kg											
1,2-Dichlorobenzene	ug/kg											
1,2-Dichloroethane	ug/kg											
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg											
Chlorobenzene	ug/kg											
Chloroethane	ug/kg											
Chloroform	ug/kg											
Chloromethane	ug/kg											
cis-1,2-Dichloroethylene	ug/kg											
cis-1,3-Dichloropropene	ug/kg											
Cyclohexane	ug/kg											
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg											
Ethylbenzene	ug/kg											
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg											
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg											
Tetrachloroethylene	ug/kg											
Toluene	ug/kg											

Separation			1				1						
Secretary Secr			Location ID	SED8.5B	SED8.5B	SED8A	SED8A	SED8A	SED8A	SED8B	SED8B	SED8B	SED8B
Page 17 7 8 1.38 2.68 6.78 7.98 1.38 3.68 5.78 7.98 1.38 3.68 5.78 7.98 1.38 3.68 5.78 7.98 1.38 3.68 5.78 7.98 1.38 3.68 5.78 7.98 3.68 5.78 7.98 3.68 5.78 7.98 3.68 5.78 5													
Analoh 18			•										
Major Majo			-										
March Marc			Туре	N	N	N	N	N	N	N	N	N	N
March Marc	Amaluta	Limit											
Control Cont	,												
Controlled Con													
Institutional Content													
April													
According Spice													
Composer Composer													
13.45 Finderinscharen 13.45													
2 consist Chargeogree 93-2													
23.4.5.**********************************													
2.5.1													
Z.A. Friendipstered Qs		ug/kg											
2.4 Centemorphismal (1974) 2.4 Centemorphismal (1974) 2.5 Centemorphismal (ug/kg											
24 Demonstration 20 24 Demonstration 20 24 Demonstration 20 24 Demonstration 20 24 Demonstration 20 24 Demonstration 20 24 Demonstration 20 24 Demonstration 20 24 Demonstration 20 24 Demonstration 20 24 Demonstration 20 20 20 20 20 20 20 2		ug/kg											
24.Drosophened 19/9	2,4-Dichlorophenol	ug/kg											
2.4Dresopated 9/98													
Comment Comm	2,4-Dinitrophenol												
76.50 mentionane 90/19													
SCHOOLOGIPHONE SAPE	2,6-Dinitrotoluene												
Schlorishier 1948													
200													
200													
24Norparisine													
23AFrogenant 1946													
33-50-chrotropandine 19/8													
Salticanime													
46-Binnope-methyphenol													
48/cmopheny-lychenylother uykg													
ACDITIONS - MEMBERS - ME													
4-Chicopheny-hery-hery-hery-hery-hery-hery-hery-her													
### Achterophericy-benylether Image: Control of the control of t													
4-Methylphenol Ug/kg Image: Control of the properties of the pr													
A-Nitrophenia 49/kg													
Anthrophene Ug/kg													
Acenaphthene Ug/kg 0.63 J < 4.2 U 40 J 26 1.0 J < 4.8 U 65 49 J < 6.6 U < 4.5 U Acenaphthylene Ug/kg 1.5 J < 4.2 U													
Acetaphthylene ug/kg 1.5 J < 4.2 U 73 75 1.1 J < 4.8 U 60 J 84 < 6.6 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U < 4.5 U													
Actophenone													
Anthracene ug/kg 2.1 J < 4.2 U 100 77 4.4 < 4.8 U 180 120 < 6.6 U < 4.5 U				1.5 J	< 4.2 U	73	75	1.1 J	< 4.8 U	60 J	84	< 6.6 U	< 4.5 U
Atrazine	Acetophenone	ug/kg											
Atrazine	Anthropone	ua/les		24 !	< 4.011	100	77	4.4	~ A O I I	400	100	- C C I I	- A F 11
Benzaldehyde Ug/kg				Z.1 J	< 4.∠ U	100	11	4.4	< 4.0 U	180	120	< 0.0 U	₹4.5 U
Benzo(a)anthracene ug/kg													
Benzo(a)pyrene ug/kg 7.4 <4.2 U 350 230 * 9.2 <4.8 U 900 360 <6.6 U <4.5 U					. 40.11	• • • • • • • • • • • • • • • • • • • •	465	4.	.40.11	7		46.	. 45.1
Benzo(b)fluoranthene ug/kg 12 <4.2 U 340 220 * 11 <4.8 U 1100 440 8.1 <4.5 U													
Benzo(g,h,i)perylene	Benzo(a)pyrene	ug/kg		7.4	< 4.2 U	350	230 *	9.2	< 4.8 U	900	360	< 6.6 U	< 4.5 U
Benzo(k)fluoranthene ug/kg 3.6 J < 4.2 U 380 99 * 5.6 < 4.8 U 530 220 2.7 J < 4.5 U	Benzo(b)fluoranthene	ug/kg		12	< 4.2 U	340	220 *	11	< 4.8 U	1100	440	8.1	< 4.5 U
bis-(2-chloroethoxy)methane	Benzo(g,h,i)perylene	ug/kg		7.5	< 4.2 U	320	210 *	6.9	< 4.8 U	950	390	< 6.6 U	< 4.5 U
bis-(2-chloroethoxy)methane	Benzo(k)fluoranthene	ug/kg		3.6 J	< 4.2 U	380	99 *	5.6	< 4.8 U	530	220	2.7 J	< 4.5 U
bis-(2-Chloroethyl)ether ug/kg	bis-(2-chloroethoxy)methane												
bis-(2-Ethylhexyl)phthalate ug/kg													
	Butylbenzylphthalate	ug/kg											

		Location ID	SED8.5B	SED8.5B	SED8A	SED8A	SED8A	SED8A	SED8B	SED8B	SED8B	SED8B
		Sample Date	11/13/2013 8:37:00 AM	11/13/2013 8:37:00 AM	11/13/2013 10:06:00 AM	11/13/2013 10:06:00 AM	11/13/2013 10:06:00 AM	11/13/2013 10:06:00 AM	11/13/2013 9:18:00 AM	11/13/2013 9:18:00 AM	11/13/2013 9:18:00 AM	11/13/2013 9:18:00 AM
		Sample ID	SED8.5B05N	SED8.5B07N	SED8A01N	SED8A03N	SED8A05N	SED8A07N	SED8B01N	SED8B03N	SED8B05N	SED8B07N
		Depth	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg											
Carbazole	ug/kg											
Chrysene	ug/kg		8.2	< 4.2 U	540	250	10	< 4.8 U	1100	460	3.8 J	< 4.5 U
Dibenzo(a,h)anthracene	ug/kg		2.4 J	< 4.2 U	85	38 *	2.0 J	< 4.8 U	150	78	< 6.6 U	< 4.5 U
Dibenzofuran	ug/kg											
Diethylphthalate	ug/kg											
Dimethylphthalate	ug/kg											
Di-n-butylphthalate	ug/kg											
Di-n-octylphthalate	ug/kg											
Fluoranthene	ug/kg		9.8	< 4.2 U	740	330	17	< 4.8 U	1800	720	4.1 J	< 4.5 U
Fluorene	ug/kg		1.1 J	< 4.2 U	55	39	1.6 J	< 4.8 U	67	68	< 6.6 U	< 4.5 U
Hexachlorobenzene	ug/kg											
Hexachlorobutadiene	ug/kg											
Hexachlorocyclo-pentadiene	ug/kg											
Hexachloroethane	ug/kg											
Indeno(1,2,3-cd)pyrene	ug/kg		6.3	< 4.2 U	290	140 *	7.2	< 4.8 U	700	260	< 6.6 U	< 4.5 U
Isophorone	ug/kg											
Naphthalene	ug/kg		< 4.3 U	< 4.2 U	20 J	36	1.4 J	< 4.8 U	16 J	30 J	< 6.6 U	< 4.5 U
Nitrobenzene	ug/kg											
N-Nitroso-di-n-propylamine	ug/kg											
N-Nitrosodiphenylamine	ug/kg											
Pentachlorophenol	ug/kg											
Phenanthrene	ug/kg		8.0	< 4.2 U	410	160	11	1.4 J	830	470	3.5 J	< 4.5 U
Phenol	ug/kg											
Pyrene	ug/kg		13	< 4.2 U	730	470	19	< 4.8 U	1600	720	6.5 J	< 4.5 U
BaP-TE	ug/kg		12.2	< 4.20 U	538	324	14.2	< 4.80 U	1310	547	1.24	< 4.50 U
Total High-molecular-weight PAHs	ug/kg		76	< 4.2 U	4100	2200	99	< 4.8 U	9600	4000	29	< 4.5 U
Total Low-molecular-weight PAHs	ug/kg		13	< 4.2 U	700	410	21	1.4	1200	820	3.5	< 4.5 U
Total PAHs (sum 16)	ug/kg		89	< 4.2 U	4800	2600	120	1.4	11000	4800	33	< 4.5 U
	~9/ \\ 9			0	.500			1		.500		0

		1	05500	05500	05000	05500	0550 55	0550 55	0500 50	0500 50	05504	OEDO4
		Location ID	SED8C 11/14/2013 12:52:00 PM	SED8C 11/14/2013 12:52:00 PM	SED8C	SED8C	SED9.5B	SED9.5B	SED9.5B	SED9.5B	SED9A	SED9A
		Sample Date Sample ID	11/14/2013 12:52:00 PM SED8C01N	11/14/2013 12:52:00 PM SED8C03N	11/14/2013 12:52:00 PM SED8C05N	11/14/2013 12:52:00 PM SED8C07N	11/11/2013 12:09:00 PM SED9.5B01N	11/11/2013 12:09:00 PM SED9.5B03N	11/11/2013 12:09:00 PM SED9.5B05N	11/11/2013 12:09:00 PM SED9.5B07N	11/11/2013 9:45:00 AM SED9A01N	11/11/2013 9:45:00 AN SED9A03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N N	N N	N N	7 - 9 it N	N N	N N	N N	7 - 9 it	N N	N N
		1,700		.,		.,	''	''	.,	.,	.,	
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg											
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg		< 7.5 U									
1,1,2,2-Tetrachloroethane	ug/kg		< 7.5 U									
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg		< 7.5 U									
1,1,2-Trichloroethane	ug/kg		< 7.5 U									
1,1-Dichloroethane	ug/kg		< 7.5 U									
1,1-Dichloroethene	ug/kg		< 7.5 U									
1,2,3-Trichlorobenzene	ug/kg		< 7.5 U									
1,2,4-Trichlorobenzene	ug/kg		< 7.5 U									
1,2-Dibromo-3-chloropropane	ug/kg		< 7.5 U									
1,2-Dibromoethane	ug/kg		< 7.5 U									
1,2-Dichlorobenzene	ug/kg		< 7.5 U									
1,2-Dichloroethane	ug/kg		< 7.5 U									
1,2-Dichloropropane	ug/kg		< 7.5 U									
1,3-Dichlorobenzene	ug/kg		< 7.5 U									
1,4-Dichlorobenzene	ug/kg		< 7.5 U									
1,4-Dioxane	ug/kg		< 1500 U									
2-Butanone	ug/kg		< 7.5 U									
2-Hexanone	ug/kg		< 7.5 U									
4-Methyl-2-pentanone	ug/kg		< 7.5 U									
Acetone	ug/kg		< 30 U									
Benzene	ug/kg ug/kg		< 7.5 U									
Bromochloromethane	ug/kg		< 7.5 U									
Bromodichloromethane	ug/kg ug/kg		< 7.5 U									
Bromoform	ug/kg ug/kg		< 7.5 U									
Bromomethane	ug/kg ug/kg		< 7.5 U									
Carbon Disulfide	ug/kg ug/kg		< 7.5 U									
Carbon Tetrachloride	ug/kg ug/kg		< 7.5 U									
Chlorobenzene			< 7.5 U									
Chloroethane	ug/kg		< 7.5 U									
Chloroform	ug/kg ug/kg		< 7.5 U									
Chloromethane	ug/kg ug/kg		< 7.5 U									
cis-1,2-Dichloroethylene cis-1,3-Dichloropropene	ug/kg		< 7.5 U									
	ug/kg		< 7.5 U									
Cyclohexane Dibromochloromethane	ug/kg											
	ug/kg		< 7.5 U									
Dichlorodifluoromethane	ug/kg		< 7.5 U									
Ethylbenzene	ug/kg		< 7.5 U									
Isopropylbenzene	ug/kg		< 7.5 U									
m, p-Xylene	ug/kg		< 15 U									
Methyl Acetate	ug/kg		< 7.5 U									
Methyl tert-Butyl Ether (MTBE)	ug/kg		< 7.5 U									
Methylcyclohexane	ug/kg		< 7.5 U									
Methylene Chloride	ug/kg		< 7.5 U									
o-Xylene	ug/kg		< 7.5 U									
Styrene	ug/kg		< 7.5 U									
Tetrachloroethylene	ug/kg		< 7.5 U									
Toluene	ug/kg		< 7.5 U				1	1				

		Location ID	SED8C	SED8C	SED8C	SED8C	SED9.5B	SED9.5B	SED9.5B	SED9.5B	SED9A	SED9A
		Sample Date	11/14/2013 12:52:00 PM	11/14/2013 12:52:00 PM	11/14/2013 12:52:00 PM	11/14/2013 12:52:00 PM	11/11/2013 12:09:00 PM	11/11/2013 12:09:00 PM	11/11/2013 12:09:00 PM	11/11/2013 12:09:00 PM	11/11/2013 9:45:00 AM	11/11/2013 9:45:00 AM
		Sample ID	SED8C01N	SED8C03N	SED8C05N	SED8C07N	SED9.5B01N	SED9.5B03N	SED9.5B05N	SED9.5B07N	SED9A01N	SED9A03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg		< 7.5 U									
trans-1,3-Dichloropropene	ug/kg		< 7.5 U									
Trichloroethene	ug/kg		< 7.5 U									
Trichlorofluoromethane	ug/kg		< 7.5 U									
Vinyl Chloride	ug/kg		< 7.5 U									
Xylenes (total)	ug/kg		< 15 U									
1,1'-Biphenyl	ug/kg		< 130 U									
1,2,4,5-Tetrachlorobenzene	ug/kg		< 130 U									
2,2'-oxybis(1-Chloropropane)	ug/kg		< 27 U									
2,3,4,6-Tetrachlorophenol	ug/kg		< 130 U									
2,4,5-Trichlorophenol	ug/kg ug/kg		< 130 U									
2,4,6-Trichlorophenol	ug/kg ug/kg		< 130 U									
2,4-Dichlorophenol	ug/kg ug/kg		< 27 U									
2,4-Dimethylphenol	ug/kg		24 J									
2,4-Dinitrophenol	ug/kg ug/kg		< 670 U			 						1
2,4-Dinitrophenol	ug/kg ug/kg		< 130 U									
2,6-Dinitrotoluene	ug/kg ug/kg		< 130 U									
2-Chloronaphthalene			< 27 U									
2-Chlorophenol	ug/kg ug/kg		< 130 U									
2-Methylnaphthalene	ug/kg ug/kg		78									
			< 130 U									
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg		< 670 U									
2-Nitrophenol	ug/kg		< 130 U									
3,3'-Dichlorobenzidine	ug/kg		< 130 U									
3-Nitroaniline	ug/kg		< 670 U									
4,6-Dinitro-2-methylphenol	ug/kg		< 670 U									
4-Bromophenyl-phenylether	ug/kg		< 130 U									
4-Chloro-3-methylphenol	ug/kg		< 130 U									
4-Chloroaniline	ug/kg		51 J									
4-Chlorophenyl-phenylether	ug/kg		< 130 U									
4-Methylphenol	ug/kg		32 J									
4-Nitroaniline	ug/kg		< 670 U									
4-Nitrophenol	ug/kg		< 670 U									
Acenaphthene	ug/kg		77	32 J	25 J	< 30 UJ	20 J	28 J	55	120	45	< 4.4 U
Acenaphthylene	ug/kg		120	110 J	41 J	< 30 UJ	18 J	26 J	54	88	150	< 4.4 U
Acetophenone	ug/kg		< 130 U									
Anthracene	ug/kg		130	62 J	67 J	18 J	36	50 J	89	90	160	< 4.4 U
Atrazine	ug/kg	ĺ	< 130 U									
Benzaldehyde	ug/kg	İ	86 J									
Benzo(a)anthracene	ug/kg	İ	540	230 J	230 J	48 J	110	150	380	290	340	< 4.4 U
Benzo(a)pyrene	ug/kg		220	240 J	200 J	< 30 UJ	120	170	430	300	400	< 4.4 U
Benzo(b)fluoranthene	ug/kg		440	260 J	260 J	< 30 UJ	140	240	520	350	430	< 4.4 U
Benzo(g,h,i)perylene	ug/kg		230	210 J	170 J	30 J	75	150 J	290 J	220 J	430	< 4.4 U
Benzo(k)fluoranthene	ug/kg		530	100 J	88 J	< 30 UJ	54	65	180	130	170	< 4.4 U
bis-(2-chloroethoxy)methane	ug/kg		< 130 U			1000	j .	3-	1.50			0
bis-(2-Chloroethyl)ether	ug/kg ug/kg		< 27 U									
bis-(2-Ethylhexyl)phthalate	ug/kg		1200			 						
Butylbenzylphthalate	ug/kg		< 130 U			 	 	-	-	 		

	Location ID	SED8C	SED8C	SED8C	SED8C	SED9.5B	SED9.5B	SED9.5B	SED9.5B	SED9A	SED9A
	Sample Date	11/14/2013 12:52:00 PM	11/14/2013 12:52:00 PM	11/14/2013 12:52:00 PM	11/14/2013 12:52:00 PM	11/11/2013 12:09:00 PM	11/11/2013 12:09:00 PM	11/11/2013 12:09:00 PM	11/11/2013 12:09:00 PM	11/11/2013 9:45:00 AM	11/11/2013 9:45:00 AM
	Sample ID	SED8C01N	SED8C03N	SED8C05N	SED8C07N	SED9.5B01N	SED9.5B03N	SED9.5B05N	SED9.5B07N	SED9A01N	SED9A03N
	Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
	Туре	N	N	N	N	N	N	N	N	N	N
Analyte U											
Caprolactam ug/k		< 670 U									
Carbazole ug/k		32									
Chrysene ug/k		780	310 J	280 J	46 J	150	190	440	360	400	< 4.4 U
Dibenzo(a,h)anthracene ug/k		< 27 U	48 J	49 J	< 30 UJ	< 24 U	45 J	79	73	71	< 4.4 U
Dibenzofuran ug/k		< 130 U									
Diethylphthalate ug/k		< 130 U									
Dimethylphthalate ug/k		< 130 U									
Di-n-butylphthalate ug/k		< 130 U									
Di-n-octylphthalate ug/k		< 130 U									
Fluoranthene ug/k	g	1300	500 J	430 J	85 J	200	260	680	670	710	0.79 J
Fluorene ug/k	g	89	45 J	27 J	< 30 UJ	15 J	30 J	63	140	51	< 4.4 U
Hexachlorobenzene ug/k	g	< 27 U									
Hexachlorobutadiene ug/k	g	< 27 U									
Hexachlorocyclo-pentadiene ug/k	g	< 130 U									
Hexachloroethane ug/k	g	< 130 U									
Indeno(1,2,3-cd)pyrene ug/k	g	230	150 J	150 J	28 J	73	99	250	180	290	< 4.4 U
Isophorone ug/k	g	< 130 U									
Naphthalene ug/k	g	55	32 J	31 J	< 30 UJ	< 24 U	< 52 U	< 46 U	< 53 U	< 51 U	< 4.4 U
Nitrobenzene ug/k	g	< 260 U									
N-Nitroso-di-n-propylamine ug/k	g	< 27 U									
N-Nitrosodiphenylamine ug/k	g	< 130 U									
Pentachlorophenol ug/k		< 130 U									
Phenanthrene ug/k		840	300 J	260 J	49 J	160	200	470	680	320	1.2 J
Phenol ug/k		< 27 U									
Pyrene ug/k		1300	590 J	420 J	97 J	210	320	750	730	770	1.2 J
BaP-TE ug/k		347	353	314	7.65	153	265	626	457	579	< 4.40 U
Total High-molecular-weight PAHs ug/k		5600	2600	2300	330	1100	1700	4000	3300	4000	2.0
Total Low-molecular-weight PAHs ug/k	9	1300	580	450	67	250	330	730	1100	730	1.2
	I	l	ĺ	1	ĺ	1				ĺ	ĺ

		Location ID	SED9A	SED9B	SED9B	SED9B	SED9C	SED9C	SED9C	SED9C	SED9C	SEDREF01
		Sample Date	11/11/2013 9:45:00 AM	11/11/2013 11:18:00 AM	11/11/2013 11:18:00 AM	11/11/2013 11:18:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	6/19/2017 12:40:00 PM
		Sample ID	SED9A05N	SED9B01N	SED9B03N	SED9B05N	SED9C01N	SED9C01R	SED9C03N	SED9C05N	SED9C07N	SEDREF0102N
		Depth	5 - 7 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft
		Туре	N	N	N	N	N	FD	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg											1050
Gasoline Range Organics (C6-C10)	ug/kg											1030
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg						< 6.6 U	< 6.2 U				
1,1,2,2-Tetrachloroethane	ug/kg						< 6.6 U	< 6.2 U				
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg						< 6.6 U	< 6.2 U				
1,1,2-Trichloroethane	ug/kg						< 6.6 U	< 6.2 U				
1,1-Dichloroethane	ug/kg						< 6.6 U	< 6.2 U				
1,1-Dichloroethene	ug/kg						< 6.6 U	< 6.2 U				
1,2,3-Trichlorobenzene							< 6.6 U	< 6.2 U				
	ug/kg						< 6.6 U					
1,2,4-Trichlorobenzene	ug/kg	 					< 6.6 U	< 6.2 U < 6.2 U				
1,2-Dibromo-3-chloropropane	ug/kg	 					< 6.6 U	< 6.2 U				
1,2-Dibromoethane 1,2-Dichlorobenzene	ug/kg						< 6.6 U	< 6.2 U				
•	ug/kg											
1,2-Dichloroethane	ug/kg						< 6.6 U	< 6.2 U				
1,2-Dichloropropane	ug/kg						< 6.6 U	< 6.2 U				
1,3-Dichlorobenzene	ug/kg						< 6.6 U	< 6.2 U				
1,4-Dichlorobenzene	ug/kg						< 6.6 U	< 6.2 U				
1,4-Dioxane	ug/kg						< 1300 U	< 1200 U				
2-Butanone	ug/kg						< 6.6 U	< 6.2 U				
2-Hexanone	ug/kg						< 6.6 U	< 6.2 U				
4-Methyl-2-pentanone	ug/kg						< 6.6 U	< 6.2 U				
Acetone	ug/kg						57	< 25 U				
Benzene	ug/kg						< 6.6 U	< 6.2 U				
Bromochloromethane	ug/kg						< 6.6 U	< 6.2 U				
Bromodichloromethane	ug/kg						< 6.6 U	< 6.2 U				
Bromoform	ug/kg						< 6.6 U	< 6.2 U				
Bromomethane	ug/kg						< 6.6 U	< 6.2 U				
Carbon Disulfide	ug/kg						< 6.6 U	< 6.2 U				
Carbon Tetrachloride	ug/kg						< 6.6 U	< 6.2 U				
Chlorobenzene	ug/kg						< 6.6 U	< 6.2 U				
Chloroethane	ug/kg						< 6.6 U	< 6.2 U				
Chloroform	ug/kg						< 6.6 U	< 6.2 U				
Chloromethane	ug/kg						< 6.6 U	< 6.2 U				
cis-1,2-Dichloroethylene	ug/kg						< 6.6 U	< 6.2 U				
cis-1,3-Dichloropropene	ug/kg						< 6.6 U	< 6.2 U				
Cyclohexane	ug/kg						< 6.6 U	< 6.2 U				
Dibromochloromethane	ug/kg						< 6.6 U	< 6.2 U				
Dichlorodifluoromethane	ug/kg						< 6.6 U	< 6.2 U				
Ethylbenzene	ug/kg						< 6.6 U	< 6.2 U				
Isopropylbenzene	ug/kg						< 6.6 U	< 6.2 U				
m, p-Xylene	ug/kg						< 13 U	< 12 U				
Methyl Acetate	ug/kg						< 6.6 U	< 6.2 U				
Methyl tert-Butyl Ether (MTBE)	ug/kg						< 6.6 U	< 6.2 U				
Methylcyclohexane	ug/kg						< 6.6 U	< 6.2 U				
Methylene Chloride	ug/kg	i i					< 6.6 U	< 6.2 U				
o-Xylene	ug/kg	1					< 6.6 U	< 6.2 U				
Styrene	ug/kg	1					< 6.6 U	< 6.2 U				
Tetrachloroethylene	ug/kg	1					< 6.6 U	< 6.2 U				
Toluene	ug/kg	†					< 6.6 U	< 6.2 U				
	~9/119	<u> </u>		<u>I</u>		<u> </u>	5.0 0	J.2 0			<u>I</u>	

		Location ID	SED9A	SED9B	SED9B	SED9B	SED9C	SED9C	SED9C	SED9C	SED9C	SEDREF01
		Sample Date	11/11/2013 9:45:00 AM	11/11/2013 11:18:00 AM	11/11/2013 11:18:00 AM	11/11/2013 11:18:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	6/19/2017 12:40:00 PM
		Sample ID	SED9A05N	SED9B01N	SED9B03N	SED9B05N	SED9C01N	SED9C01R	SED9C03N	SED9C05N	SED9C07N	SEDREF0102N
		Depth	5 - 7 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft
		Туре	N N	N N	N N	N N	N N	FD	N N	N N	7 - 9 10	2-31t N
		Турс	14				IN.	1.0	11			14
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg						< 6.6 U	< 6.2 U				
trans-1,3-Dichloropropene	ug/kg						< 6.6 U	< 6.2 U				
Trichloroethene	ug/kg						< 6.6 U	< 6.2 U				
Trichlorofluoromethane	ug/kg						< 6.6 U	< 6.2 U				
Vinyl Chloride	ug/kg						< 6.6 U	< 6.2 U				
Xylenes (total)	ug/kg						< 13 U	< 12 U				
1,1'-Biphenyl	ug/kg						< 130 U	< 120 U				
1,2,4,5-Tetrachlorobenzene	ug/kg						< 130 U	< 120 U				
2,2'-oxybis(1-Chloropropane)	ug/kg						< 26 U	< 25 U				
2,3,4,6-Tetrachlorophenol	ug/kg						< 130 U	< 120 U				
2,4,5-Trichlorophenol	ug/kg						< 130 U	< 120 U				
2,4,6-Trichlorophenol	ug/kg						< 130 U	< 120 U				
2,4-Dichlorophenol	ug/kg						< 26 U	< 25 U				
2,4-Dimethylphenol	ug/kg						< 130 U	< 120 U				
2,4-Dinitrophenol	ug/kg						< 660 U	< 630 U				
2,4-Dinitrotoluene	ug/kg						< 130 U	< 120 U				
2,6-Dinitrotoluene	ug/kg						< 130 U	< 120 U				
2-Chloronaphthalene	ug/kg						< 26 U	< 25 U				
2-Chlorophenol	ug/kg						< 130 U	< 120 U				
2-Methylnaphthalene	ug/kg						11 J	20 J				
2-Methylphenol	ug/kg						< 130 U	< 120 U				
2-Nitroaniline	ug/kg						< 660 U	< 630 U				
2-Nitrophenol	ug/kg ug/kg						< 130 U	< 120 U				
3,3'-Dichlorobenzidine	ug/kg ug/kg						< 130 U	< 120 U				
3-Nitroaniline	ug/kg ug/kg						< 660 U	< 630 U				
4,6-Dinitro-2-methylphenol	ug/kg ug/kg						< 660 U	< 630 U				
4-Bromophenyl-phenylether	ug/kg ug/kg						< 130 U	< 120 U				
							< 130 U	< 120 U				
4-Chloro-3-methylphenol	ug/kg							13 J				
4-Chloroaniline	ug/kg						< 130 U					
4-Chlorophenyl-phenylether	ug/kg						< 130 U	< 120 U				
4-Methylphenol	ug/kg						< 130 U	< 120 U				
4-Nitroaniline	ug/kg						< 660 U	< 630 U				
4-Nitrophenol	ug/kg						< 660 U	< 630 U				
Acenaphthene	ug/kg		< 4.4 U	32 J	17 J	< 4.2 U	12 J	< 25 U	83	110	38	42 J
Acenaphthylene	ug/kg		< 4.4 U	53 J	61	< 4.2 U	29	32	140	110	100	32 J
Acetophenone	ug/kg						< 130 U	< 120 U				
Anthracene	ug/kg		< 4.4 U	63	48	< 4.2 U	37	30	160	110	82	100
Atrazine	ug/kg ug/kg		` + U	03	70	` 1 .2 U	< 130 U	< 120 U	100	110	02	100
							R R	R R				
Benzaldehyde	ug/kg		< 4.4 U	310	120	< 4.2 U		100	520	280	180	320
Benzo(a)pyrene	ug/kg		< 4.4 U			< 4.2 U	92			290		
Benzo(a)pyrene	ug/kg		> 4.4 U	420	130	\ 4.2 U	120	110	520	290	200	310
Benzo(b)fluoranthene	ug/kg		< 4.4 U	600	170	< 4.2 U	80	140	590	350	220	460
Benzo(g,h,i)perylene	ug/kg	T	< 4.4 U	450	110	< 4.2 U	93	110	400	270	180	270
Benzo(k)fluoranthene	ug/kg		< 4.4 U	250	51	< 4.2 U	120	60	230	130	94	170
bis-(2-chloroethoxy)methane	ug/kg						< 130 U	< 120 U				
bis-(2-Chloroethyl)ether	ug/kg						< 26 U	< 25 U				
bis-(2-Ethylhexyl)phthalate	ug/kg						440	430				
Butylbenzylphthalate	ug/kg						< 130 U	26 J				
L	, ,			I	l	1	I.	· -				1

		Location ID	SED9A	SED9B	SED9B	SED9B	SED9C	SED9C	SED9C	SED9C	SED9C	SEDREF01
		Sample Date	11/11/2013 9:45:00 AM	11/11/2013 11:18:00 AM	11/11/2013 11:18:00 AM	11/11/2013 11:18:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	6/19/2017 12:40:00 PM
		Sample ID	SED9A05N	SED9B01N	SED9B03N	SED9B05N	SED9C01N	SED9C01R	SED9C03N	SED9C05N	SED9C07N	SEDREF0102N
		Depth	5 - 7 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft
		Туре	N	N	N	N	N	FD	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg						< 660 U	< 630 U				
Carbazole	ug/kg						13 J	< 25 U				
Chrysene	ug/kg		< 4.4 U	590	170	< 4.2 U	140	150	670	440	240	390
Dibenzo(a,h)anthracene	ug/kg		< 4.4 U	73	27	< 4.2 U	20 J	28	110	58	45	55
Dibenzofuran	ug/kg						< 130 U	< 120 U				
Diethylphthalate	ug/kg						< 130 U	< 120 U				
Dimethylphthalate	ug/kg						< 130 U	< 120 U				
Di-n-butylphthalate	ug/kg						< 130 U	< 120 U				
Di-n-octylphthalate	ug/kg						< 130 U	< 120 U				
Fluoranthene	ug/kg		< 4.4 U	770	240	2.4 J	130	140	970	650	370	550
Fluorene	ug/kg		< 4.4 U	34 J	16 J	< 4.2 U	< 26 U	9.6 J	100	160	43	30 J
Hexachlorobenzene	ug/kg						< 26 U	< 25 U				
Hexachlorobutadiene	ug/kg						< 26 U	< 25 U				
Hexachlorocyclo-pentadiene	ug/kg						< 130 U	< 120 U				
Hexachloroethane	ug/kg						< 130 U	< 120 U				
Indeno(1,2,3-cd)pyrene	ug/kg		< 4.4 U	350	85	< 4.2 U	83	77	320	190	120	200
Isophorone	ug/kg						< 130 U	< 120 U				
Naphthalene	ug/kg		< 4.4 U	< 60 U	< 23 U	< 4.2 U	< 26 U	< 25 U	< 31 U	< 39 U	< 29 U	< 45 U
Nitrobenzene	ug/kg						< 260 U	< 250 U				
N-Nitroso-di-n-propylamine	ug/kg						< 26 U	< 25 U				
N-Nitrosodiphenylamine	ug/kg						< 130 U	< 120 U				
Pentachlorophenol	ug/kg						< 130 U	< 120 U				
Phenanthrene	ug/kg		< 4.4 U	310	140	2.4 J	130	130	850	830	330	460
Phenol	ug/kg						< 26 U	< 25 U				
Pyrene	ug/kg		< 4.4 U	710	270	3.2 J	230	220	1000	720	440	720
BaP-TE	ug/kg		< 4.40 U	622	195	< 4.20 U	167	170	776	432	298	465
Total High-molecular-weight PAHs	ug/kg		< 4.4 U	4500	1400	5.6	1100	1100	5300	3400	2100	3400
Total Low-molecular-weight PAHs	ug/kg		< 4.4 U	490	280	2.4	210	200	1300	1300	590	660
Total PAHs (sum 16)	ug/kg		< 4.4 U	5000	1700	8.0	1300	1300	6700	4700	2700	4100

		Location ID	SEDREF01	SEDREF02	SEDREF02	SEDREF02	SEDREF02	SEDREF03	SEDREF03	SEDREF03	SEDREF03	SEDREF03
		Sample Date	6/19/2017 12:50:00 PM	6/15/2017 11:55:00 AM	6/15/2017 11:57:00 AM	6/15/2017 12:05:00 PM	6/15/2017 12:15:00 PM	6/15/2017 2:10:00 PM	6/15/2017 2:20:00 PM	6/15/2017 2:30:00 PM		
		Sample ID	SEDREF0104N	SEDREF0202N	SEDREF0202R	SEDREF0204N	SEDREF0206N	SEDREF0302N	SEDREF0304N	SEDREF0306N	SEDREF0306R	SEDREF0308N
		Depth	4 - 5 ft	2 - 3 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	6 - 7 ft	8 - 9 ft
		Туре	N	N	FD	N	N	N	N	N	FD	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg		1240	5060	4770	3660	2320	2000	1070	360	228	188
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg											
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
1,2,3-Trichlorobenzene	ug/kg											
1,2,4-Trichlorobenzene	ug/kg											
1,2-Dibromo-3-chloropropane	ug/kg											
1,2-Dibromoethane	ug/kg											
1,2-Dichlorobenzene	ug/kg											
1,2-Dichloroethane	ug/kg											
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg											
Chlorobenzene	ug/kg											
Chloroethane	ug/kg											
Chloroform	ug/kg											
Chloromethane	ug/kg											
cis-1,2-Dichloroethylene	ug/kg											
cis-1,3-Dichloropropene	ug/kg											
Cyclohexane	ug/kg											
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg											
Ethylbenzene	ug/kg											
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg											
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg	 									<u> </u>	
o-Xylene	ug/kg	+									†	<u> </u>
Styrene	ug/kg											
Tetrachloroethylene	ug/kg	+										
Toluene	ug/kg	 										
··-	~ອ…ອ				1	l		ı	l .	l .	1	

		Location ID	SEDREF01	SEDREF02	SEDREF02	SEDREF02	SEDREF02	SEDREF03	SEDREF03	SEDREF03	SEDREF03	SEDREF03
		Sample Date	6/19/2017 12:50:00 PM	6/15/2017 11:55:00 AM	6/15/2017 11:57:00 AM	6/15/2017 12:05:00 PM	6/15/2017 12:15:00 PM	6/15/2017 2:10:00 PM	6/15/2017 2:20:00 PM	6/15/2017 2:30:00 PM	6/15/2017 2:32:00 PM	6/15/2017 2:40:00 PM
		Sample ID	SEDREF0104N	SEDREF0202N	SEDREF0202R	SEDREF0204N	SEDREF0206N	SEDREF0302N	SEDREF0304N	SEDREF0306N	SEDREF0306R	SEDREF0308N
		Depth	4 - 5 ft	2 - 3 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	6 - 7 ft	8 - 9 ft
		Туре	N	N	FD	N	N	N	N	N	FD	N
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											
trans-1,3-Dichloropropene	ug/kg											
Trichloroethene	ug/kg											
Trichlorofluoromethane	ug/kg											
Vinyl Chloride	ug/kg											
Xylenes (total)	ug/kg											
1,1'-Biphenyl	ug/kg											
1,2,4,5-Tetrachlorobenzene	ug/kg											
2,2'-oxybis(1-Chloropropane)	ug/kg											
2,3,4,6-Tetrachlorophenol	ug/kg											
2,4,5-Trichlorophenol	ug/kg											
2,4,6-Trichlorophenol	ug/kg											
2,4-Dichlorophenol	ug/kg											
2,4-Dimethylphenol	ug/kg											
2,4-Dinitrophenol	ug/kg											
2,4-Dinitrotoluene	ug/kg											
2,6-Dinitrotoluene	ug/kg											
2-Chloronaphthalene	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene	ug/kg											
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg											
2-Nitrophenol	ug/kg											
3,3'-Dichlorobenzidine	ug/kg											
3-Nitroaniline	ug/kg											
4,6-Dinitro-2-methylphenol	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
4-Chlorophenyl-phenylether	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											
Acenaphthene	ug/kg		51	< 58 U	27 J	41 J	22 J	22 J	15	< 13 U	< 12 U	< 13 U
Acenaphthylene	ug/kg		94	23 J	31 J	29 J	14 J	27	16	< 13 U	< 12 U	< 13 U
Acetophenone	ug/kg				-		-		-		-	
A - 4b			450	4- 1	22	22	10	2.4	40		40.1	. 4021
Anthracene	ug/kg		150	47 J	63	63	43	34	49	7.8 J	4.3 J	< 13 U
Atrazine	ug/kg											
Benzaldehyde	ug/kg		100	0/2	955	465	465	450	450			
Benzo(a)anthracene	ug/kg		420	340	280	190	130	170	170	41	21	< 13 U
Benzo(a)pyrene	ug/kg		400	340	300	200	120	160	190	46	22	< 13 U
Benzo(b)fluoranthene	ug/kg		510	500	490	280	140	190	240	45	24	< 13 U
Benzo(g,h,i)perylene	ug/kg		300	350	350	210	110	160	150	33	18	< 13 U
Benzo(k)fluoranthene	ug/kg		180	180	140	76	66	78	79	25	12	< 13 U
bis-(2-chloroethoxy)methane	ug/kg											
bis-(2-Chloroethyl)ether	ug/kg									<u>†</u>		
bis-(2-Ethylhexyl)phthalate	ug/kg											
Butylbenzylphthalate	ug/kg											

	Location ID	SEDREF01	SEDREF02	SEDREF02	SEDREF02	SEDREF02	SEDREF03	SEDREF03	SEDREF03	SEDREF03	SEDREF03
	Sample Date	6/19/2017 12:50:00 PM	6/15/2017 11:55:00 AM	6/15/2017 11:57:00 AM	6/15/2017 12:05:00 PM	6/15/2017 12:15:00 PM	6/15/2017 2:10:00 PM	6/15/2017 2:20:00 PM	6/15/2017 2:30:00 PM	6/15/2017 2:32:00 PM	6/15/2017 2:40:00 PM
	Sample ID	SEDREF0104N	SEDREF0202N	SEDREF0202R	SEDREF0204N	SEDREF0206N	SEDREF0302N	SEDREF0304N	SEDREF0306N	SEDREF0306R	SEDREF0308N
	Depth	4 - 5 ft	2 - 3 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	6 - 7 ft	8 - 9 ft
	Туре	N	N	FD	N	N	N	N	N	FD	N
Analyte Unit											
Caprolactam ug/kg											
Carbazole ug/kg											
Chrysene ug/kg		470	450	400	240	140	210	230	46	28	< 13 U
Dibenzo(a,h)anthracene ug/kg		77	76	67	42 J	< 25 U	39	47	11 J	6.7 J	< 13 U
Dibenzofuran ug/kg		- 11	70	07	72.0	1200	33	71	110	0.7 3	100
Diethylphthalate ug/kg											
Dimethylphthalate ug/kg											
Di-n-butylphthalate ug/kg											
Di-n-octylphthalate ug/kg											
Fluoranthene ug/kg		800	600	530	420	200	190	280	57	30	< 13 U
Fluorene ug/kg		56	33 J	38 J	54	< 25 U	23 J	29	< 13 U	< 12 U	< 13 U
Hexachlorobenzene ug/kg		30	33 3	30 J	54	\ 25 U	23 J	29	\ 13 U	< 12 U	V 13 U
Hexachlorobutadiene ug/kg											
Hexachlorocyclo-pentadiene ug/kg											
3 3		260	280	230	140	00	120	140	0.5	40	< 13 U
Indeno(1,2,3-cd)pyrene ug/kg		260	280	230	140	88	120	140	25	16	< 13 U
Isophorone ug/kg			. 50.11	. 50.11					. 40 11	. 40.11	. 40.11
Naphthalene ug/kg		46	< 58 U	< 58 U	18 J	12 J	15 J	24	< 13 U	< 12 U	< 13 U
Nitrobenzene ug/kg											
N-Nitroso-di-n-propylamine ug/kg											
N-Nitrosodiphenylamine ug/kg											
Pentachlorophenol ug/kg											
Phenanthrene ug/kg		580	270	250	320	150 J	160	140	22	13	< 13 U
Phenol ug/kg											
Pyrene ug/kg		870	660	610	500	300	340	350	73 J	39 J	< 13 U
BaP-TE ug/kg		598	530	469	304	157	248	293	68.4	34.9	< 13.0 U
Total High-molecular-weight PAHs ug/kg		4300	3800	3400	2300	1300	1700	1900	400	220	< 13 U
Total Low-molecular-weight PAHs ug/kg	1	980	370	410	530	240	280	270	30	17	< 13 U
Total PAHs (sum 16) ug/kg		5300	4100	3800	2800	1500	1900	2100	430	230	< 13 U

		Location ID	SEDREF04	SEDREF04	SEDREF04	SEDREF04	SEDREF04	SEDREF05	SEDREF05	SEDREF05	SEDREF05	SEDREF05
		Sample Date	6/16/2017 8:40:00 AM	6/16/2017 8:50:00 AM	6/16/2017 8:52:00 AM	6/16/2017 9:00:00 AM	6/16/2017 9:10:00 AM	6/16/2017 10:25:00 AM	6/16/2017 10:35:00 AM			6/16/2017 10:55:00 AM
		Sample ID	SEDREF0402N	SEDREF0404N	SEDREF0404R	SEDREF0406N	SEDREF0408N	SEDREF0502N	SEDREF0504N	SEDREF0504R	SEDREF0506N	SEDREF0508N
		Depth	2 - 3 ft	4 - 5 ft	4 - 5 ft	6 - 7 ft	8 - 9 ft	2 - 3 ft	4 - 5 ft	4 - 5 ft	6 - 7 ft	8 - 9 ft
		Туре	N	N	FD	N	N	N	N	FD	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg		1490	1880	2580	3240 J+	4660	2330	3380	3670	834	549
Gasoline Range Organics (C6-C10)	ug/kg											
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg											
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
1,2,3-Trichlorobenzene	ug/kg											
1,2,4-Trichlorobenzene	ug/kg	 										
1,2-Dibromo-3-chloropropane	ug/kg	 										
1,2-Dibromoethane	ug/kg	 										
1,2-Diblomoetriane	ug/kg ug/kg											
1,2-Dichloroethane	ug/kg ug/kg	 										
*												
1,2-Dichloropropane 1,3-Dichlorobenzene	ug/kg											
•	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg											
Chlorobenzene	ug/kg											
Chloroethane	ug/kg											
Chloroform	ug/kg											
Chloromethane	ug/kg											
cis-1,2-Dichloroethylene	ug/kg											
cis-1,3-Dichloropropene	ug/kg											
Cyclohexane	ug/kg											
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg											
Ethylbenzene	ug/kg											
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg											
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg											
Styrene	ug/kg											
Tetrachloroethylene	ug/kg											
Toluene	ug/kg	1										
	5 5											

			T		1		1			1		
		Location ID	SEDREF04	SEDREF04	SEDREF04	SEDREF04	SEDREF04	SEDREF05	SEDREF05	SEDREF05	SEDREF05	SEDREF05
		Sample Date	6/16/2017 8:40:00 AM	6/16/2017 8:50:00 AM	6/16/2017 8:52:00 AM	6/16/2017 9:00:00 AM	6/16/2017 9:10:00 AM	6/16/2017 10:25:00 AM	6/16/2017 10:35:00 AM	6/16/2017 10:37:00 AM	6/16/2017 10:45:00 AM	6/16/2017 10:55:00 AM
		Sample ID	SEDREF0402N	SEDREF0404N	SEDREF0404R	SEDREF0406N	SEDREF0408N	SEDREF0502N	SEDREF0504N	SEDREF0504R	SEDREF0506N	SEDREF0508N
		Depth Type	2 - 3 ft N	4 - 5 ft N	4 - 5 ft FD	6 - 7 ft N	8 - 9 ft N	2 - 3 ft N	4 - 5 ft N	4 - 5 ft FD	6 - 7 ft N	8 - 9 ft N
		Туре	IN	IN	10	IN .	IN .	14	IN	10	IN	IN .
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											
trans-1,3-Dichloropropene	ug/kg											
Trichloroethene	ug/kg											
Trichlorofluoromethane	ug/kg											
Vinyl Chloride	ug/kg											
Xylenes (total)	ug/kg											
1,1'-Biphenyl	ug/kg											
1,2,4,5-Tetrachlorobenzene	ug/kg											
2,2'-oxybis(1-Chloropropane)	ug/kg											
2,3,4,6-Tetrachlorophenol	ug/kg											
2,4,5-Trichlorophenol	ug/kg											
2,4,6-Trichlorophenol	ug/kg											
2,4-Dichlorophenol	ug/kg											
2,4-Dimethylphenol	ug/kg											
2,4-Dinitrophenol	ug/kg											
2,4-Dinitrotoluene	ug/kg											
2,6-Dinitrotoluene	ug/kg											
2-Chloronaphthalene	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene	ug/kg											
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg											
2-Nitrophenol	ug/kg											
3,3'-Dichlorobenzidine	ug/kg											
3-Nitroaniline	ug/kg											
4,6-Dinitro-2-methylphenol	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
4-Chlorophenyl-phenylether	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											
Acenaphthene	ug/kg		24	60	49	39 J	17	64	46 J	48	27	11
Acenaphthylene	ug/kg		29	95	86	170	41	250	97	150	35	19
Acetophenone	ug/kg	- T										
					45-	15-				4		
Anthracene	ug/kg		59	110	130	160	41	230	99	140	73	44
Atrazine	ug/kg											
Benzaldehyde	ug/kg											
Benzo(a)anthracene	ug/kg		160	270	450	320	110	600	380	500	260	190
Benzo(a)pyrene	ug/kg		170	260	430	380	120	540	370	490	220	180
Benzo(b)fluoranthene	ug/kg		240	290 J	550 J	430	170	570	470	640	280	200
Benzo(g,h,i)perylene	ug/kg		180	270	360	330 J	120	460	330	480	190	130
Benzo(k)fluoranthene	ug/kg	 	84	130	170	200	44	320	250	200	120	76
bis-(2-chloroethoxy)methane			U+	130	170	200	7*	320	230	200	120	70
bis-(2-Chloroethyl)ether	ug/kg ug/kg											
bis-(2-Ethylhexyl)phthalate	ug/kg ug/kg											
Butylbenzylphthalate	ug/kg ug/kg											

	Location ID	SEDREF04	SEDREF04	SEDREF04	SEDREF04	SEDREF04	SEDREF05	SEDREF05	SEDREF05	SEDREF05	SEDREF05
	Sample Date	6/16/2017 8:40:00 AM	6/16/2017 8:50:00 AM	6/16/2017 8:52:00 AM	6/16/2017 9:00:00 AM	6/16/2017 9:10:00 AM	6/16/2017 10:25:00 AM	6/16/2017 10:35:00 AM	6/16/2017 10:37:00 AM	6/16/2017 10:45:00 AM	6/16/2017 10:55:00 AM
	Sample ID	SEDREF0402N	SEDREF0404N	SEDREF0404R	SEDREF0406N	SEDREF0408N	SEDREF0502N	SEDREF0504N	SEDREF0504R	SEDREF0506N	SEDREF0508N
	Depth	2 - 3 ft	4 - 5 ft	4 - 5 ft	6 - 7 ft	8 - 9 ft	2 - 3 ft	4 - 5 ft	4 - 5 ft	6 - 7 ft	8 - 9 ft
	Туре	N	N	FD	N	N	N	N	FD	N	N
Analyte Unit											
Caprolactam ug/kg											
Carbazole ug/kg											
Chrysene ug/kg		220	320	470	400	130	680	450	570	260	210
Dibenzo(a,h)anthracene ug/kg		41	55 J	88	82	32	130	77	100	58	40
Dibenzofuran ug/kg											
Diethylphthalate ug/kg											
Dimethylphthalate ug/kg											
Di-n-butylphthalate ug/kg											
Di-n-octylphthalate ug/kg											
Fluoranthene ug/kg		220	490	820	590	240	960	680	800	480	310
Fluorene ug/kg		< 22 U	46 J	52	52 J	23	120	60	71	40	23
Hexachlorobenzene ug/kg											
Hexachlorobutadiene ug/kg											
Hexachlorocyclo-pentadiene ug/kg											
Hexachloroethane ug/kg											
Indeno(1,2,3-cd)pyrene ug/kg		130	190 J	320 J	260	94	370	260	340	170	110
Isophorone ug/kg											
Naphthalene ug/kg		16 J	31 J	23	53	22	71	50 J	82	37	15
Nitrobenzene ug/kg											
N-Nitroso-di-n-propylamine ug/kg											
N-Nitrosodiphenylamine ug/kg											
Pentachlorophenol ug/kg											
Phenanthrene ug/kg		190	340	440	380	120	650	320	390	250	140
Phenol ug/kg											
Pyrene ug/kg		300	470	670	720	210	1300	680	980	400	310
BaP-TE ug/kg		265	392	652	565	190	828	561	741	350	271
Total High-molecular-weight PAHs ug/kg		1700	2700	4300	3700	1300	5900	3900	5100	2400	1800
Total Low-molecular-weight PAHs ug/kg		320	680	780	850	260	1400	670	880	460	250
Total PAHs (sum 16) ug/kg	+	2100	3400	5100	4600	1500	7300	4600	6000	2900	2000

		Location ID	SEDREF06	SEDREF06	SEDREF06	SEDREF06	SEDREF07	SEDREF07	SEDREF07	SEDREF07	SEDREF08	SEDREF08
		Sample Date	6/16/2017 12:10:00 PM	6/16/2017 12:20:00 PM	6/16/2017 12:30:00 PM	6/16/2017 12:40:00 PM	6/16/2017 1:40:00 PM	6/16/2017 1:50:00 PM		6/16/2017 2:10:00 PM	6/19/2017 10:20:00 AM	
		Sample ID	SEDREF0602N	SEDREF0604N	SEDREF0606N	SEDREF0608N	SEDREF0702N	SEDREF0704N	SEDREF0706N	SEDREF0708N	SEDREF0802N	SEDREF0804N
		Depth	2 - 3 ft	4 - 5 ft	6 - 7 ft	8 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	8 - 9 ft	2 - 3 ft	4 - 5 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg		4380	2510	4320	3210	3100	3030	2140	4630	4250	3500
Gasoline Range Organics (C6-C10)	ug/kg									1000		
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg											
1,1,2,2-Tetrachloroethane	ug/kg											
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg											
1,1,2-Trichloroethane	ug/kg											
1,1-Dichloroethane	ug/kg											
1,1-Dichloroethene	ug/kg											
1,2,3-Trichlorobenzene	ug/kg											
1,2,4-Trichlorobenzene	ug/kg	 						<u> </u>				
1,2-Dibromo-3-chloropropane	ug/kg	1										
1,2-Dibromoethane	ug/kg	1										
1,2-Dichlorobenzene	ug/kg	 						<u> </u>				
1,2-Dichloroethane	ug/kg	 						<u> </u>				
1,2-Dichloropropane	ug/kg											
1,3-Dichlorobenzene	ug/kg											
1,4-Dichlorobenzene	ug/kg											
1,4-Dioxane	ug/kg											
2-Butanone	ug/kg											
2-Hexanone	ug/kg											
4-Methyl-2-pentanone	ug/kg											
Acetone	ug/kg											
Benzene	ug/kg											
Bromochloromethane	ug/kg											
Bromodichloromethane	ug/kg											
Bromoform	ug/kg											
Bromomethane	ug/kg											
Carbon Disulfide	ug/kg											
Carbon Tetrachloride	ug/kg											
Chlorobenzene	ug/kg	1										
Chloroethane	ug/kg											
Chloroform	ug/kg											
Chloromethane	ug/kg											
cis-1,2-Dichloroethylene	ug/kg											
cis-1,3-Dichloropropene	ug/kg											
Cyclohexane	ug/kg											
Dibromochloromethane	ug/kg											
Dichlorodifluoromethane	ug/kg											
Ethylbenzene	ug/kg											
Isopropylbenzene	ug/kg											
m, p-Xylene	ug/kg											
Methyl Acetate	ug/kg											
Methyl tert-Butyl Ether (MTBE)	ug/kg											
Methylcyclohexane	ug/kg											
Methylene Chloride	ug/kg											
o-Xylene	ug/kg	1										
Styrene	ug/kg	 						<u>†</u>				
Tetrachloroethylene	ug/kg	1						1				
Toluene	ug/kg	1						1				
	J						1	1	1	1		

-		1					T	T	•	•	1	1
		Location ID	SEDREF06	SEDREF06	SEDREF06	SEDREF06	SEDREF07	SEDREF07	SEDREF07	SEDREF07	SEDREF08	SEDREF08
		Sample Date	6/16/2017 12:10:00 PM	6/16/2017 12:20:00 PM	6/16/2017 12:30:00 PM	6/16/2017 12:40:00 PM SEDREF0608N	6/16/2017 1:40:00 PM	6/16/2017 1:50:00 PM	6/16/2017 2:00:00 PM	6/16/2017 2:10:00 PM	6/19/2017 10:20:00 AM	
		Sample ID	SEDREF0602N	SEDREF0604N 4 - 5 ft	SEDREF0606N 6 - 7 ft		SEDREF0702N	SEDREF0704N	SEDREF0706N	SEDREF0708N	SEDREF0802N	SEDREF0804N 4 - 5 ft
		Depth Type	2 - 3 ft N	4 - 5 π N	6-7π N	8 - 9 ft N	2 - 3 ft N	4 - 5 ft N	6 - 7 ft N	8 - 9 ft N	2 - 3 ft N	4 - 5 π N
		Турс	11	14	14	14	IN IN		IN .	11	14	14
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg											
trans-1,3-Dichloropropene	ug/kg											
Trichloroethene	ug/kg											
Trichlorofluoromethane	ug/kg											
Vinyl Chloride	ug/kg											
Xylenes (total)	ug/kg											
1,1'-Biphenyl	ug/kg											
1,2,4,5-Tetrachlorobenzene	ug/kg											
2,2'-oxybis(1-Chloropropane)	ug/kg											
2,3,4,6-Tetrachlorophenol	ug/kg											
2,4,5-Trichlorophenol	ug/kg											
2,4,6-Trichlorophenol	ug/kg											
2,4-Dichlorophenol	ug/kg											
2,4-Dimethylphenol	ug/kg											
2,4-Dinitrophenol	ug/kg											
2,4-Dinitrotoluene	ug/kg											
2,6-Dinitrotoluene	ug/kg											
2-Chloronaphthalene	ug/kg											
2-Chlorophenol	ug/kg											
2-Methylnaphthalene	ug/kg											
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg											
2-Nitrophenol	ug/kg											
3,3'-Dichlorobenzidine	ug/kg											
3-Nitroaniline	ug/kg											
4,6-Dinitro-2-methylphenol	ug/kg											
4-Bromophenyl-phenylether	ug/kg											
4-Chloro-3-methylphenol	ug/kg											
4-Chloroaniline	ug/kg											
4-Chlorophenyl-phenylether	ug/kg											
4-Methylphenol	ug/kg											
4-Nitroaniline	ug/kg											
4-Nitrophenol	ug/kg											
Acenaphthene	ug/kg		92	60	68	68	83 J	87 J	46	75	120 J	66
Acenaphthylene	ug/kg	+	160	200	180	120	64 J	80 J	120	250	170	170
Acetophenone	ug/kg		.50	_30	.50	.20	3.70					
- r ··-·	-5'''8											
Anthracene	ug/kg		180	130	170	130	130	170	120	210	220	170
Atrazine	ug/kg											
Benzaldehyde	ug/kg											
Benzo(a)anthracene	ug/kg		370	410	460	380	710	720	260	500	400	350
Benzo(a)pyrene	ug/kg	+	370	380	540	390	850	810	260	700	400	340
(),)	-33		-	- 34		-30						
Benzo(b)fluoranthene	ug/kg		440	430	630	520	1400	1300	320	800	450	400
Benzo(g,h,i)perylene	ug/kg		390	400	700	380	1000	910	290	850	460	390
Benzo(k)fluoranthene	ug/kg		150	210	250	170	480	520	110	270	200	130
bis-(2-chloroethoxy)methane	ug/kg		-	-				-	-			
bis-(2-Chloroethyl)ether	ug/kg											
bis-(2-Ethylhexyl)phthalate	ug/kg											
Butylbenzylphthalate	ug/kg											

VOCs, SVOCs, and TPH Fractions Concentrations in Waterside Investigation Area Subsurface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

		Location ID	SEDREF06	SEDREF06	SEDREF06	SEDREF06	SEDREF07	SEDREF07	SEDREF07	SEDREF07	SEDREF08	SEDREF08
	Sa	Sample Date	6/16/2017 12:10:00 PM	6/16/2017 12:20:00 PM	6/16/2017 12:30:00 PM	6/16/2017 12:40:00 PM	6/16/2017 1:40:00 PM	6/16/2017 1:50:00 PM	6/16/2017 2:00:00 PM	6/16/2017 2:10:00 PM	6/19/2017 10:20:00 AM	6/19/2017 10:30:00 AM
		Sample ID	SEDREF0602N	SEDREF0604N	SEDREF0606N	SEDREF0608N	SEDREF0702N	SEDREF0704N	SEDREF0706N	SEDREF0708N	SEDREF0802N	SEDREF0804N
		Depth	2 - 3 ft	4 - 5 ft	6 - 7 ft	8 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	8 - 9 ft	2 - 3 ft	4 - 5 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
, and the second	ıg/kg											
-	ıg/kg											
	ıg/kg		400	470	530	450	1100	1100	320	670	490	450
	ıg/kg		< 59 U	88	120	100	200	180	52	140	< 130 U	81
	ıg/kg		1000		120	100	200	100	<u> </u>	140	1000	0.
	ıg/kg											
•	ıg/kg											
3.1	ıg/kg											
3.1	ıg/kg											
· .	ıg/kg		530	540	740	620	1800	1800	440	960	780	570
	ıg/kg		120	82	83	76	100 J	70 J	51	120	140	75
	ıg/kg		-	·		-			-		-	-
	ıg/kg											
	ıg/kg											
	ıg/kg											
	ıg/kg		260	250	420	300	830	740	210	560	320	300
	ıg/kg											
	ıg/kg		70	71	93	84	< 110 U	< 110 U	40	150	71 J	58
	ıg/kg											
	ıg/kg											
N-Nitrosodiphenylamine u	ıg/kg											
Pentachlorophenol u	ıg/kg											
	ıg/kg		460	380	360	350	720	720	270	510	750	390
	ıg/kg											
	ıg/kg		740	730	1200	670	1500	1400	500	1100	940	810
BaP-TE u	ıg/kg		479	580	814	612	1350	1270	392	1030	519	528
Total High-molecular-weight PAHs	ıg/kg		3700	3900	5600	4000	9900	9500	2800	6600	4400	3800
Total Low-molecular-weight PAHs	ıg/kg		1100	920	950	830	1100	1100	650	1300	1500	930
Total PAHs (sum 16)	ıg/kg		4700	4800	6500	4800	11000	11000	3400	7900	5900	4800

VOCs, SVOCs, and TPH Fractions Concentrations in Waterside Investigation Area Subsurface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

				1				T				
		Location ID	SEDREF08	SEDREF08	WSED1	WSED1	WSED1	WSED1	WSED2	WSED2	WSED2	WSED2
		Sample Date	6/19/2017 10:40:00 AM	6/19/2017 10:50:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 12:14:00 PM	11/15/2013 12:14:00 PM	11/15/2013 12:14:00 PM	11/15/2013 12:14:00 PM
		Sample ID	SEDREF0806N	SEDREF0808N	WSED101N	WSED103N	WSED105N	WSED107N	WSED201N	WSED203N	WSED205N	WSED207N
		Depth	6 - 7 ft	8 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
	-	Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Total Petroleum Hydrocarbons (C9-C44)	mg/kg		3560	4060								
Gasoline Range Organics (C6-C10)	ug/kg		3300	4000								
Diesel Range Organics (C10-C20)	mg/kg											
Oil Range Organics (C20-C36)	mg/kg											
1,1,1-Trichloroethane	ug/kg				< 6.8 U				< 7.0 U			
1,1,2,2-Tetrachloroethane	ug/kg				< 6.8 U				< 7.0 U			
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg				< 6.8 U				< 7.0 U			
1,1,2-Trichloroethane	ug/kg				< 6.8 U				< 7.0 U			
1,1-Dichloroethane	ug/kg				< 6.8 U				< 7.0 U			
1,1-Dichloroethene	ug/kg				< 6.8 U				< 7.0 U			
1,2,3-Trichlorobenzene					< 6.8 U				< 7.0 U			
	ug/kg				< 6.8 U				< 7.0 U			
1,2,4-Trichlorobenzene	ug/kg	 			< 6.8 U				< 7.0 U			
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ug/kg				< 6.8 U				< 7.0 U			
1,2-Dibromoetnane 1,2-Dichlorobenzene	ug/kg				< 6.8 U				< 7.0 U			
•	ug/kg											
1,2-Dichloroethane	ug/kg				< 6.8 U				< 7.0 U			
1,2-Dichloropropane	ug/kg				< 6.8 U				< 7.0 U			
1,3-Dichlorobenzene	ug/kg				< 6.8 U				< 7.0 U			
1,4-Dichlorobenzene	ug/kg				< 6.8 U				< 7.0 U			
1,4-Dioxane	ug/kg				< 1400 U				< 1400 U			
2-Butanone	ug/kg				< 6.8 U				< 7.0 U			
2-Hexanone	ug/kg				< 6.8 U				< 7.0 U			
4-Methyl-2-pentanone	ug/kg				< 6.8 U				< 7.0 U			
Acetone	ug/kg				< 27 U				< 28 U			
Benzene	ug/kg				< 6.8 U				< 7.0 U			
Bromochloromethane	ug/kg				< 6.8 U				< 7.0 U			
Bromodichloromethane	ug/kg				< 6.8 U				< 7.0 U			
Bromoform	ug/kg				< 6.8 U				< 7.0 U			
Bromomethane	ug/kg				< 6.8 U				< 7.0 U			
Carbon Disulfide	ug/kg				< 6.8 U				< 7.0 U			
Carbon Tetrachloride	ug/kg				< 6.8 U				< 7.0 U			
Chlorobenzene	ug/kg				< 6.8 U				< 7.0 U			
Chloroethane	ug/kg				< 6.8 U				< 7.0 U			
Chloroform	ug/kg				< 6.8 U				< 7.0 U			
Chloromethane	ug/kg				< 6.8 U				< 7.0 U			
cis-1,2-Dichloroethylene	ug/kg				< 6.8 U				< 7.0 U			
cis-1,3-Dichloropropene	ug/kg				< 6.8 U				< 7.0 U			
Cyclohexane	ug/kg				< 6.8 U				< 7.0 U			
Dibromochloromethane	ug/kg				< 6.8 U				< 7.0 U			
Dichlorodifluoromethane	ug/kg				< 6.8 U				< 7.0 U			
Ethylbenzene	ug/kg	†			< 6.8 U				< 7.0 U			
Isopropylbenzene	ug/kg	†			< 6.8 U				< 7.0 U			
m, p-Xylene	ug/kg	1		1	< 14 U				< 14 U			
Methyl Acetate	ug/kg	†			< 6.8 U				< 7.0 U			
Methyl tert-Butyl Ether (MTBE)	ug/kg	†			< 6.8 U				< 7.0 U			
Methylcyclohexane	ug/kg	 			< 6.8 U				< 7.0 U			
Methylene Chloride	ug/kg	+			< 6.8 U				< 7.0 U			
o-Xylene	ug/kg	+			< 6.8 U				< 7.0 U			
Styrene	ug/kg	1		1	< 6.8 U				< 7.0 U			
Tetrachloroethylene	ug/kg	1			< 6.8 U				< 7.0 U			
Toluene	ug/kg	1		-	< 6.8 U			-	< 7.0 U			
I Oluelle	ug/kg			1	\ 0.0 U	<u> </u>	<u> </u>		~ 1.0 U			

VOCs, SVOCs, and TPH Fractions Concentrations in Waterside Investigation Area Subsurface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

		Location ID	SEDREF08	SEDREF08	WSED1	WSED1	WSED1	WSED1	WSED2	WSED2	WSED2	WSED2
			6/19/2017 10:40:00 AM	6/19/2017 10:50:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 12:14:00 PM	11/15/2013 12:14:00 PM	11/15/2013 12:14:00 PM	11/15/2013 12:14:00 PM
		Sample ID	SEDREF0806N	SEDREF0808N	WSED101N	WSED103N	WSED105N	WSED107N	WSED201N	WSED203N	WSED205N	WSED207N
		Depth	6 - 7 ft	8 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
trans-1,2-Dichloroethene	ug/kg				< 6.8 U				< 7.0 U			
trans-1,3-Dichloropropene	ug/kg				< 6.8 U				< 7.0 U			
Trichloroethene	ug/kg				< 6.8 U				< 7.0 U			
Trichlorofluoromethane	ug/kg				< 6.8 U				< 7.0 U			
Vinyl Chloride	ug/kg				< 6.8 U				< 7.0 U			
Xylenes (total)	ug/kg				< 14 U				< 14 U			
1,1'-Biphenyl	ug/kg				21 J				< 250 U			
1,2,4,5-Tetrachlorobenzene	ug/kg				< 230 U				< 250 UJ			
2,2'-oxybis(1-Chloropropane)	ug/kg				< 47 UJ				< 51 U			
2,3,4,6-Tetrachlorophenol	ug/kg	1 1			< 230 U				< 250 UJ			
2,4,5-Trichlorophenol	ug/kg	†			< 230 U				< 250 U			
2,4,6-Trichlorophenol	ug/kg	† †			< 230 U				< 250 U			
2,4-Dichlorophenol	ug/kg	 			< 47 U				< 51 U			
2,4-Dimethylphenol	ug/kg	 			< 230 U				< 250 U			
2,4-Dinitrophenol	ug/kg	+			< 1200 UJ				< 1300 UJ			
2,4-Dinitrotoluene	ug/kg	+ +			< 230 U				< 250 U			
2,6-Dinitrotoluene	ug/kg	+ +			< 230 U				< 250 U			
2-Chloronaphthalene	ug/kg	+ +			< 47 U				< 51 U			
2-Chlorophenol	ug/kg	+ +			< 230 U				< 250 U			
2-Methylnaphthalene		-			59				56			
	ug/kg	+			< 230 U				< 250 U			
2-Methylphenol	ug/kg											
2-Nitroaniline	ug/kg				< 1200 U				< 1300 U			
2-Nitrophenol	ug/kg				< 230 U				< 250 U			
3,3'-Dichlorobenzidine	ug/kg				R				< 250 U			
3-Nitroaniline	ug/kg				< 1200 U				< 1300 U			
4,6-Dinitro-2-methylphenol	ug/kg				< 1200 U				< 1300 U			
4-Bromophenyl-phenylether	ug/kg				< 230 U				< 250 U			
4-Chloro-3-methylphenol	ug/kg				< 230 U				< 250 U			
4-Chloroaniline	ug/kg				< 230 U				< 250 U			
4-Chlorophenyl-phenylether	ug/kg				< 230 U				< 250 UJ			
4-Methylphenol	ug/kg				300				51 J			
4-Nitroaniline	ug/kg				< 1200 U				< 1300 U			
4-Nitrophenol	ug/kg				< 1200 U				< 1300 U			
Acenaphthene	ug/kg		70	100	25 J	46 J	< 50 U	22 J	76	83	50 J	77
Acenaphthylene	ug/kg		200	270	32 J	32 J	32 J	32 J	76	96	62	92
Acetophenone	ug/kg	1			39 J				35 J			
Anthracene	ug/kg		170	270	67	98	49 J	44 J	170	100	110	150
Atrazine	ug/kg				< 230 U				< 250 U			
Benzaldehyde	ug/kg				60 J				62 J			
Benzo(a)anthracene	ug/kg		510	560	290 J	410	220	180	420	360	320	490
Benzo(a)pyrene	ug/kg		530	670	280 J	320	220 J	170 J	380	370	300	440
Benzo(b)fluoranthene	ug/kg		650	850	420 J	440	380 J	240 J	530	430	390	540
Benzo(g,h,i)perylene	ug/kg	j T	650	690	100 J	120	86 J	58 J	380	310	300	450
D (I.) fl Al		 	04.0	200	400 !	400	400 !	440.1	400	000	000	000
Benzo(k)fluoranthene	ug/kg		210	330	180 J	160	120 J	110 J	180	200	200	230
bis-(2-chloroethoxy)methane	ug/kg	1			< 230 U				< 250 U			
bis-(2-Chloroethyl)ether	ug/kg	 			< 47 U				< 51 U			
bis-(2-Ethylhexyl)phthalate	ug/kg				1300 J				4200 J			
Butylbenzylphthalate	ug/kg	1		1	170 J				< 250 UJ			

VOCs, SVOCs, and TPH Fractions Concentrations in Waterside Investigation Area Subsurface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

	<u>-</u>	Location ID		SEDREF08	WSED1	WSED1	WSED1	WSED1	WSED2	WSED2	WSED2	WSED2
		Sample Date	6/19/2017 10:40:00 AM	6/19/2017 10:50:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 12:14:00 PM	11/15/2013 12:14:00 PM	11/15/2013 12:14:00 PM	11/15/2013 12:14:00 PM
		Sample ID	SEDREF0806N	SEDREF0808N	WSED101N	WSED103N	WSED105N	WSED107N	WSED201N	WSED203N	WSED205N	WSED207N
		Depth	6 - 7 ft	8 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N	N	N	N	N
Analyte	Unit											
Caprolactam	ug/kg				< 1200 U				< 1300 UJ			
Carbazole	ug/kg				26 J				79			
Chrysene	ug/kg		600	690	420 J	460	320	260	570	480	450	640
Dibenzo(a,h)anthracene	ug/kg		140	110	28 J	24 J	< 50 U	< 52 U	71	88	53	95
Dibenzofuran	ug/kg				< 230 U				< 250 U			
Diethylphthalate	ug/kg				< 230 U				< 250 U			
Dimethylphthalate	ug/kg				< 230 U				< 250 U			
Di-n-butylphthalate	ug/kg				< 230 U				< 250 U			
Di-n-octylphthalate	ug/kg				< 230 U				< 250 UJ			
Fluoranthene	ug/kg		810	980	760 J	940	510	430	860	750	760	1000
Fluorene	ug/kg		110	130	56	53	48 J	45 J	100	110	68	110
Hexachlorobenzene	ug/kg				< 47 U				< 51 U			
Hexachlorobutadiene	ug/kg				< 47 U				< 51 UJ			
Hexachlorocyclo-pentadiene	ug/kg				R				< 250 UJ			
Hexachloroethane	ug/kg				< 230 U				< 250 U			
Indeno(1,2,3-cd)pyrene	ug/kg		450	410	110 J	120	80 J	61 J	270	230	210	270
Isophorone	ug/kg				< 230 U				< 250 U			
Naphthalene	ug/kg		85	170	31 J	15 J	19 J	18 J	44 J	39 J	33 J	63
Nitrobenzene	ug/kg				< 470 U				< 510 U			
N-Nitroso-di-n-propylamine	ug/kg				< 47 U				< 51 U			
N-Nitrosodiphenylamine	ug/kg				< 230 U				< 250 U			
Pentachlorophenol	ug/kg				< 230 UJ				< 250 UJ			
Phenanthrene	ug/kg		470	640	350 J	490	230	240	780	670	540	720
Phenol	ug/kg				< 47 U				< 51 U			
Pyrene	ug/kg		1100	1700	570 J	740	410	370	1000	830	730	1100
BaP-TE	ug/kg		834	966	392	443	290	219	575	562	447	668
Total High-molecular-weight PAHs	ug/kg		5700	7000	3200	3700	2300	1900	4700	4000	3700	5300
Total Low-molecular-weight PAHs	ug/kg		1100	1600	560	730	380	400	1200	1100	860	1200
Total PAHs (sum 16)	ug/kg		6800	8600	3700	4500	2700	2300	5900	5100	4600	6500

Notes:

Bold values indicate detects.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

N = Normal

FD = Field Duplicate

mg/kg = milligrams per kilogram

ug/kg = micrograms per kilogram

Table 4-37 PCB Concentrations in Waterside Investigation Area Subsurface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

												Location ID	SED1.5B	SED1.5B
												Sample Date	11/6/2013 12:13:00 PM	11/6/2013 12:13:00 PM
												Sample ID	SED1.5B01N	SED1.5B03N
												Depth	1 - 3 ft	3 - 5 ft
										•		Type	N	N
					Max	Min	Mean	Median	Max	Count	Count			
Analyte	Unit	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Total			
Aroclor-1016	ug/kg	SW8082A LL	N	12674-11-2							310		< 3.7 U	< 3.6 U
Aroclor-1221	ug/kg	SW8082A LL	N	11104-28-2							310		< 3.7 U	< 3.6 U
Aroclor-1232	ug/kg	SW8082A LL	N	11141-16-5							310		< 3.7 U	< 3.6 U
Aroclor-1242	ug/kg	SW8082A LL	N	53469-21-9							310		< 3.7 U	< 3.6 U
Aroclor-1248	ug/kg	SW8082A LL	N	12672-29-6	4700	2.1	230	120	WSED2	138	310		86 J	82 J
Aroclor-1254	ug/kg	SW8082A LL	N	11097-69-1	310	2.3	100	84	SED7E	69	310		< 3.7 U	< 3.6 U
Aroclor-1260	ug/kg	SW8082A LL	N	11096-82-5	1600	0.98	120	51	WSED2	231	310		50 J	47 J
Aroclor-1262	ug/kg	SW8082A LL	N	37324-23-5							310		< 3.7 U	< 3.6 U
Aroclor-1268	ug/kg	SW8082A LL	N	11100-14-4	42	1.5	14	10	SEDREF06	27	310		< 3.7 U	< 3.6 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	SW8082A LL	N	TOT-PCB-ARO-C	6300	0.98	290	140	WSED2	235	310		140	130

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED1.5B	SED1.5B	SED1.5B	SED1.5B	SED1.5B	SED1.5C
		Sample Date	11/6/2013 12:13:00 PM	11/6/2013 12:13:00 PM	6/15/2017 10:10:00 AM	6/15/2017 10:20:00 AM	6/15/2017 10:30:00 AM	6/21/2017 8:20:00 AM
		Sample ID	SED1.5B05N	SED1.5B07N	SED1.5B02FN	SED1.5B04FN	SED1.5B06FN	SED1.5C00BN
		Depth	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	0.33 - 0.67 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.3 U	< 3.0 U	< 2.8 U	< 3.2 U	< 3.1 U	< 3.2 U
Aroclor-1221	ug/kg		< 3.3 U	< 3.0 U	< 2.8 U	< 3.2 U	< 3.1 U	< 3.2 U
Aroclor-1232	ug/kg		< 3.3 U	< 3.0 U	< 2.8 U	< 3.2 U	< 3.1 U	< 3.2 U
Aroclor-1242	ug/kg		< 3.3 U	< 3.0 U	< 2.8 U	< 3.2 U	< 3.1 U	< 3.2 U
Aroclor-1248	ug/kg		150 J	120 J	92 J+	77 J+	71 J+	41 J+
Aroclor-1254	ug/kg		< 3.3 U	< 3.0 U	58 J+	64 J+	54 J+	76 J+
Aroclor-1260	ug/kg		73 J	53 J	32 J+	35 J+	29 J+	30 J+
Aroclor-1262	ug/kg		< 3.3 U	< 3.0 U	< 2.8 U	< 3.2 U	< 3.1 U	< 3.2 U
Aroclor-1268	ug/kg		< 3.3 U	< 3.0 U	< 2.8 U	< 3.2 U	< 3.1 U	< 3.2 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		220	170	180	180	150	150

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C
		Sample Date	6/21/2017 8:25:00 AM	6/21/2017 8:30:00 AM	6/21/2017 8:35:00 AM	6/21/2017 8:40:00 AM	6/21/2017 8:45:00 AM	6/21/2017 8:47:00 AM	6/21/2017 8:50:00 AM
		Sample ID	SED1.5C00CN	SED1.5C01AN	SED1.5C01BN	SED1.5C01CN	SED1.5C02AN	SED1.5C02AR	SED1.5C02BN
		Depth	0.67 - 1 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft	2 - 2.33 ft	2.33 - 2.67 ft
		Туре	N	N	N	N	N	FD	N
Analyte	Unit								
Aroclor-1016	ug/kg		< 3.6 U	< 3.5 U	< 3.4 U	< 3.7 U	< 3.2 U	< 3.3 U	< 3.5 U
Aroclor-1221	ug/kg		< 3.6 U	< 3.5 U	< 3.4 U	< 3.7 U	< 3.2 U	< 3.3 U	< 3.5 U
Aroclor-1232	ug/kg		< 3.6 U	< 3.5 U	< 3.4 U	< 3.7 U	< 3.2 U	< 3.3 U	< 3.5 U
Aroclor-1242	ug/kg		< 3.6 U	< 3.5 U	< 3.4 U	< 3.7 U	< 3.2 U	< 3.3 U	< 3.5 U
Aroclor-1248	ug/kg		72 J+	82 J+	63 J+	62 J+	59 J	23 J	78 J
Aroclor-1254	ug/kg		72 J+	57 J+	84 J+	62 J+	71 J	39 J	120 J
Aroclor-1260	ug/kg		35 J+	27 J+	34 J+	40 J+	42 J	16 J	56 J
Aroclor-1262	ug/kg		< 3.6 U	< 3.5 U	< 3.4 U	< 3.7 U	< 3.2 U	< 3.3 U	< 3.5 U
Aroclor-1268	ug/kg		< 3.6 U	< 3.5 U	< 3.4 U	< 3.7 U	< 3.2 U	< 3.3 U	< 3.5 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		180	170	180	160	170	78	250

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		ID	0504.50	0504.50	0504.50	050450	0504.50	0504.50	0554.50
		Location ID		SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C
		Sample Date	6/21/2017 8:52:00 AM	6/21/2017 8:55:00 AM	6/21/2017 8:57:00 AM	6/21/2017 9:00:00 AM	6/21/2017 9:05:00 AM	6/21/2017 9:10:00 AM	6/21/2017 9:15:00 AM
		Sample ID	SED1.5C02BR	SED1.5C02CN	SED1.5C02CR	SED1.5C03AN	SED1.5C03BN	SED1.5C03CN	SED1.5C04AN
		Depth	2.33 - 2.67 ft	2.67 - 3 ft	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft	4 - 4.33 ft
		Туре	FD	N	FD	N	N	N	N
Analyte	Unit								
Aroclor-1016	ug/kg		< 3.4 U	< 3.7 U	< 3.4 U	< 3.5 U	< 4.1 U	< 3.4 U	< 3.3 U
Aroclor-1221	ug/kg		< 3.4 U	< 3.7 U	< 3.4 U	< 3.5 U	< 4.1 U	< 3.4 U	< 3.3 U
Aroclor-1232	ug/kg		< 3.4 U	< 3.7 U	< 3.4 U	< 3.5 U	< 4.1 U	< 3.4 U	< 3.3 U
Aroclor-1242	ug/kg		< 3.4 U	< 3.7 U	< 3.4 U	< 3.5 U	< 4.1 U	< 3.4 U	< 3.3 U
Aroclor-1248	ug/kg		24 J	79 J	32 J	120 J+	130 J+	51 J+	210 J+
Aroclor-1254	ug/kg		48 J	85 J	50 J	120 J+	150 J+	66 J+	240 J+
Aroclor-1260	ug/kg		17 J	47 J	19 J	61 J+	81 J+	34 J+	100 J+
Aroclor-1262	ug/kg		< 3.4 U	< 3.7 U	< 3.4 U	< 3.5 U	< 4.1 U	< 3.4 U	< 3.3 U
Aroclor-1268	ug/kg		< 3.4 U	< 3.7 U	< 3.4 U	< 3.5 U	< 4.1 U	< 3.4 U	< 3.3 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		89	210	100	300	360	150	550

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C	SED1.5C
		Sample Date	6/21/2017 9:20:00 AM	6/21/2017 9:25:00 AM	6/21/2017 9:30:00 AM	6/21/2017 9:35:00 AM	6/21/2017 9:40:00 AM	6/21/2017 9:45:00 AM	6/21/2017 9:50:00 AM
		Sample ID	SED1.5C04BN	SED1.5C04CN	SED1.5C05AN	SED1.5C05BN	SED1.5C05CN	SED1.5C06AN	SED1.5C06BN
		Depth	4.33 - 4.67 ft	4.67 - 5 ft	5 - 5.33 ft	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft	6.33 - 6.67 ft
	1 1	Туре	N	N	N	N	N	N	N
Analyte	Unit								
Aroclor-1016	ug/kg		< 3.2 U	< 3.0 U	< 3.0 U	< 3.1 U	< 3.2 U	< 2.9 U	< 3.2 U
Aroclor-1221	ug/kg		< 3.2 U	< 3.0 U	< 3.0 U	< 3.1 U	< 3.2 U	< 2.9 U	< 3.2 U
Aroclor-1232	ug/kg		< 3.2 U	< 3.0 U	< 3.0 U	< 3.1 U	< 3.2 U	< 2.9 U	< 3.2 U
Aroclor-1242	ug/kg		< 3.2 U	< 3.0 U	< 3.0 U	< 3.1 U	< 3.2 U	< 2.9 U	< 3.2 U
Aroclor-1248	ug/kg		210 J+	88 J+	22 J+	5.5 J+	2.1 J+	< 2.9 U	< 3.2 U
Aroclor-1254	ug/kg		230 J+	81 J+	34 J+	6.5 J+	4.6 J+	2.3 J	< 3.2 U
Aroclor-1260	ug/kg		89 J+	38 J+	17 J+	4.4 J+	4.4 J+	2.4 J	< 3.2 U
Aroclor-1262	ug/kg		< 3.2 U	< 3.0 U	< 3.0 U	< 3.1 U	< 3.2 U	< 2.9 U	< 3.2 U
Aroclor-1268	ug/kg		< 3.2 U	< 3.0 U	< 3.0 U	< 3.1 U	< 3.2 U	< 2.9 U	< 3.2 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		530	210	73	16	11	4.7	< 3.2 U

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED1.5C	SED1.5C	SED10A	SED10A	SED10A	SED10A
		Sample Date	6/21/2017 9:55:00 AM	6/21/2017 10:00:00 AM	11/11/2013 1:11:00 PM	11/11/2013 1:11:00 PM	11/11/2013 1:11:00 PM	11/11/2013 1:11:00 PM
		Sample ID	SED1.5C06CN	SED1.5C07AN	SED10A01N	SED10A03N	SED10A05N	SED10A07N
		Depth	6.67 - 7 ft	7 - 7.33 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
	ug/kg		< 3.3 U	< 3.0 U	< 8.1 U	< 7.3 U	< 6.8 U	< 5.2 U
Aroclor-1221	ug/kg		< 3.3 U	< 3.0 U	< 8.1 U	< 7.3 U	< 6.8 U	< 5.2 U
Aroclor-1232	ug/kg		< 3.3 U	< 3.0 U	< 8.1 U	< 7.3 U	< 6.8 U	< 5.2 U
Aroclor-1242	ug/kg		< 3.3 U	< 3.0 U	< 8.1 U	< 7.3 U	< 6.8 U	< 5.2 U
Aroclor-1248	ug/kg		< 3.3 U	< 3.0 U	< 8.1 U	< 7.3 U	< 6.8 U	< 5.2 U
Aroclor-1254	ug/kg		< 3.3 U	< 3.0 U	< 8.1 U	< 7.3 U	< 6.8 U	< 5.2 U
Aroclor-1260	ug/kg		< 3.3 U	< 3.0 U	< 8.1 U	< 7.3 U	< 6.8 U	< 5.2 U
Aroclor-1262	ug/kg		< 3.3 U	< 3.0 U	< 8.1 U	< 7.3 U	< 6.8 U	< 5.2 U
Aroclor-1268	ug/kg		< 3.3 U	< 3.0 U	< 8.1 U	< 7.3 U	< 6.8 U	< 5.2 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		< 3.3 U	< 3 U	< 8.1 U	< 7.3 U	< 6.8 U	< 5.2 U

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED10B	SED10B	SED10B	SED10C	SED10C	SED10C	SED10C
		Sample Date	11/11/2013 1:59:00 PM	11/11/2013 1:59:00 PM	11/11/2013 1:59:00 PM	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM	11/11/2013 2:55:00 PM
		Sample ID	SED10B01N	SED10B03N	SED10B05N	SED10C01N	SED10C03N	SED10C05N	SED10C07N
		Depth	1 - 3 ft	3 - 5 ft	5 - 6 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N	N
Analyte	Unit								
Aroclor-1016	ug/kg		< 5.8 U	< 6.8 U	< 6.2 U	< 6.7 U	< 5.7 U	< 5.7 U	< 6.2 U
Aroclor-1221	ug/kg		< 5.8 U	< 6.8 U	< 6.2 U	< 6.7 U	< 5.7 U	< 5.7 U	< 6.2 U
Aroclor-1232	ug/kg		< 5.8 U	< 6.8 U	< 6.2 U	< 6.7 U	< 5.7 U	< 5.7 U	< 6.2 U
Aroclor-1242	ug/kg		< 5.8 U	< 6.8 U	< 6.2 U	< 6.7 U	< 5.7 U	< 5.7 U	< 6.2 U
Aroclor-1248	ug/kg		94 J	37 J	< 6.2 U	< 6.7 U	400 J	100 J	< 6.2 U
Aroclor-1254	ug/kg		< 5.8 U	< 6.8 U	< 6.2 U	< 6.7 U	< 5.7 U	< 5.7 U	< 6.2 U
Aroclor-1260	ug/kg		29 J	31 J	120 J	93	140 J	68 J	79
Aroclor-1262	ug/kg		< 5.8 U	< 6.8 U	< 6.2 U	< 6.7 U	< 5.7 U	< 5.7 U	< 6.2 U
Aroclor-1268	ug/kg		< 5.8 U	< 6.8 U	< 6.2 U	< 6.7 U	< 5.7 U	< 5.7 U	< 6.2 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		120	68	120	93	540	170	79

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED1A	SED1A	SED1A	SED1A	SED1B	SED1B	SED1B
		Sample Date	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 1:42:00 PM	11/6/2013 3:05:00 PM	11/6/2013 3:05:00 PM	11/6/2013 3:05:00 PM
		Sample ID	SED1A01N	SED1A03N	SED1A05N	SED1A07N	SED1B01N	SED1B03N	SED1B05N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
		Type	N	N	N	N	N	N	N
Analyte	Unit								
Aroclor-1016	ug/kg		< 6.8 U	< 6.7 U	< 8.2 U	< 10 U	< 8.1 U	< 8.0 U	< 7.0 U
Aroclor-1221	ug/kg		< 6.8 U	< 6.7 U	< 8.2 U	< 10 U	< 8.1 U	< 8.0 U	< 7.0 U
Aroclor-1232	ug/kg		< 6.8 U	< 6.7 U	< 8.2 U	< 10 U	< 8.1 U	< 8.0 U	< 7.0 U
Aroclor-1242	ug/kg		< 6.8 U	< 6.7 U	< 8.2 U	< 10 U	< 8.1 U	< 8.0 U	< 7.0 U
Aroclor-1248	ug/kg		5.6 J	< 6.7 U	< 8.2 U	< 10 U	< 8.1 U	< 8.0 U	< 7.0 U
Aroclor-1254	ug/kg		< 6.8 U	< 6.7 U	< 8.2 U	< 10 U	< 8.1 U	< 8.0 U	< 7.0 U
Aroclor-1260	ug/kg		2.5 J	< 6.7 U	< 8.2 U	< 10 U	< 8.1 U	< 8.0 U	< 7.0 U
Aroclor-1262	ug/kg		< 6.8 U	< 6.7 U	< 8.2 U	< 10 U	< 8.1 U	< 8.0 U	< 7.0 U
Aroclor-1268	ug/kg		< 6.8 U	< 6.7 U	< 8.2 U	< 10 U	< 8.1 U	< 8.0 U	< 7.0 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		8.1	< 6.7 U	< 8.2 U	< 10 U	< 8.1 U	< 8.0 U	< 7.0 U

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED1B	SED1C	SED1C	SED1C	SED1C	SED2.5B
		Sample Date	11/6/2013 3:05:00 PM	11/7/2013 10:16:00 AM	11/7/2013 10:16:00 AM	11/7/2013 10:16:00 AM	11/7/2013 10:16:00 AM	11/7/2013 9:20:00 AM
		Sample ID	SED1B07N	SED1C01N	SED1C03N	SED1C05N	SED1C07N	SED2.5B01N
		Depth	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.3 U	< 7.7 U	< 9.8 U	< 5.9 U	< 6.4 U	< 7.6 U
Aroclor-1221	ug/kg		< 6.3 U	< 7.7 U	< 9.8 U	< 5.9 U	< 6.4 U	< 7.6 U
Aroclor-1232	ug/kg		< 6.3 U	< 7.7 U	< 9.8 U	< 5.9 U	< 6.4 U	< 7.6 U
Aroclor-1242	ug/kg		< 6.3 U	< 7.7 U	< 9.8 U	< 5.9 U	< 6.4 U	< 7.6 U
Aroclor-1248	ug/kg		< 6.3 U	330 J	460 J	400 J	600 J	87 J
Aroclor-1254	ug/kg		< 6.3 U	< 7.7 U	< 9.8 U	< 5.9 U	< 6.4 U	< 7.6 U
Aroclor-1260	ug/kg		< 6.3 U	100 J	200 J	150 J	170 J	43 J
Aroclor-1262	ug/kg		< 6.3 U	< 7.7 U	< 9.8 U	< 5.9 U	< 6.4 U	< 7.6 U
Aroclor-1268	ug/kg		< 6.3 U	< 7.7 U	< 9.8 U	< 5.9 U	< 6.4 U	< 7.6 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		< 6.3 U	430	660	550	770	130

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED2.5B	SED2.5B	SED2.5B	SED2A	SED2A	SED2A	SED2A
		Sample Date	11/7/2013 9:20:00 AM	11/7/2013 9:20:00 AM	11/7/2013 9:20:00 AM	11/6/2013 10:45:00 AM	11/6/2013 10:45:00 AM	11/6/2013 10:45:00 AM	11/6/2013 10:45:00 AM
		Sample ID	SED2.5B03N	SED2.5B05N	SED2.5B07N	SED2A01N	SED2A03N	SED2A05N	SED2A07N
		Depth	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N	N
Analyte	Unit								
Aroclor-1016	ug/kg		< 6.6 U	< 7.8 U	< 6.6 U	< 4.7 U	< 4.3 U	< 3.8 U	< 2.7 U
Aroclor-1221	ug/kg		< 6.6 U	< 7.8 U	< 6.6 U	< 4.7 U	< 4.3 U	< 3.8 U	< 2.7 U
Aroclor-1232	ug/kg		< 6.6 U	< 7.8 U	< 6.6 U	< 4.7 U	< 4.3 U	< 3.8 U	< 2.7 U
Aroclor-1242	ug/kg		< 6.6 U	< 7.8 U	< 6.6 U	< 4.7 U	< 4.3 U	< 3.8 U	< 2.7 U
Aroclor-1248	ug/kg		120 J	750 J	350 J	< 4.7 U	< 4.3 U	< 3.8 U	< 2.7 U
Aroclor-1254	ug/kg		< 6.6 U	< 7.8 U	< 6.6 U	< 4.7 U	< 4.3 U	< 3.8 U	< 2.7 U
Aroclor-1260	ug/kg		54 J	250 J	130 J	< 4.7 U	< 4.3 U	< 3.8 U	< 2.7 U
Aroclor-1262	ug/kg		< 6.6 U	< 7.8 U	< 6.6 U	< 4.7 U	< 4.3 U	< 3.8 U	< 2.7 U
Aroclor-1268	ug/kg		< 6.6 U	< 7.8 U	< 6.6 U	< 4.7 U	< 4.3 U	< 3.8 U	< 2.7 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		170	1000	480	< 4.7 U	< 4.3 U	< 3.8 U	< 2.7 U

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED2B	SED2B	SED2B	SED2B	SED2C	SED2C
		Sample Date	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/5/2013 2:54:00 PM	11/6/2013 9:54:00 AM	11/6/2013 9:54:00 AM
		Sample ID	SED2B01N	SED2B03N	SED2B05N	SED2B07N	SED2C01N	SED2C03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 4.1 U	< 3.4 U	< 3.2 U	< 3.3 U	< 3.1 U	< 3.7 U
Aroclor-1221	ug/kg		< 4.1 U	< 3.4 U	< 3.2 U	< 3.3 U	< 3.1 U	< 3.7 U
Aroclor-1232	ug/kg		< 4.1 U	< 3.4 U	< 3.2 U	< 3.3 U	< 3.1 U	< 3.7 U
Aroclor-1242	ug/kg		< 4.1 U	< 3.4 U	< 3.2 U	< 3.3 U	< 3.1 U	< 3.7 U
Aroclor-1248	ug/kg		57 J	59 J	15 J	< 3.3 U	200 J	220 J
Aroclor-1254	ug/kg		< 4.1 U	< 3.4 U	< 3.2 U	< 3.3 U	< 3.1 U	< 3.7 U
Aroclor-1260	ug/kg		40 J	48 J	7.4 J	< 3.3 U	260 J	250 J
Aroclor-1262	ug/kg		< 4.1 U	< 3.4 U	< 3.2 U	< 3.3 U	< 3.1 U	< 3.7 U
Aroclor-1268	ug/kg		< 4.1 U	< 3.4 U	< 3.2 U	< 3.3 U	< 3.1 U	< 3.7 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		97	110	22	< 3.3 U	460	470

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED2C	SED2C	SED3.5B	SED3.5B	SED3.5B	SED3.5B
		Sample Date	11/6/2013 9:54:00 AM	11/6/2013 9:54:00 AM	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM	11/12/2013 11:41:00 AM
		Sample ID	SED2C05N	SED2C07N	SED3.5B01N	SED3.5B03N	SED3.5B05N	SED3.5B07N
		Depth	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.4 U	< 3.1 U	< 6.7 U	< 6.7 U	< 6.2 U	< 5.5 U
Aroclor-1221	ug/kg		< 3.4 U	< 3.1 U	< 6.7 U	< 6.7 U	< 6.2 U	< 5.5 U
Aroclor-1232	ug/kg		< 3.4 U	< 3.1 U	< 6.7 U	< 6.7 U	< 6.2 U	< 5.5 U
Aroclor-1242	ug/kg		< 3.4 U	< 3.1 U	< 6.7 U	< 6.7 U	< 6.2 U	< 5.5 U
Aroclor-1248	ug/kg		230 J	15 J	< 6.7 U	< 6.7 U	< 6.2 U	< 5.5 U
Aroclor-1254	ug/kg		< 3.4 U	< 3.1 U	< 6.7 U	< 6.7 U	< 6.2 U	< 5.5 U
Aroclor-1260	ug/kg		220 J	6.3 J	28 J	< 6.7 U	< 6.2 U	< 5.5 U
Aroclor-1262	ug/kg		< 3.4 U	< 3.1 U	< 6.7 U	< 6.7 U	< 6.2 U	< 5.5 U
Aroclor-1268	ug/kg		< 3.4 U	< 3.1 U	< 6.7 U	< 6.7 U	< 6.2 U	< 5.5 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		450	21	28	< 6.7 U	< 6.2 U	< 5.5 U

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED3A	SED3A	SED3A	SED3A	SED3B	SED3B	SED3B
		Sample Date	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/7/2013 1:16:00 PM	11/8/2013 8:47:00 AM	11/8/2013 8:47:00 AM	11/8/2013 8:47:00 AM
		Sample ID	SED3A01N	SED3A03N	SED3A05N	SED3A07N	SED3B01N	SED3B03N	SED3B05N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
		Туре	N	N	N	N	N	N	N
Analyte	Unit								
Aroclor-1016	ug/kg		< 9.0 U	< 9.0 U	< 8.7 U	< 7.7 U	< 8.5 U	< 5.3 U	< 5.9 U
Aroclor-1221	ug/kg		< 9.0 U	< 9.0 U	< 8.7 U	< 7.7 U	< 8.5 U	< 5.3 U	< 5.9 U
Aroclor-1232	ug/kg		< 9.0 U	< 9.0 U	< 8.7 U	< 7.7 U	< 8.5 U	< 5.3 U	< 5.9 U
Aroclor-1242	ug/kg		< 9.0 U	< 9.0 U	< 8.7 U	< 7.7 U	< 8.5 U	< 5.3 U	< 5.9 U
Aroclor-1248	ug/kg		< 9.0 U	< 9.0 U	< 8.7 U	< 7.7 U	< 8.5 U	< 5.3 U	< 5.9 U
Aroclor-1254	ug/kg		< 9.0 U	< 9.0 U	< 8.7 U	< 7.7 U	< 8.5 U	< 5.3 U	< 5.9 U
Aroclor-1260	ug/kg		< 9.0 U	< 9.0 U	< 8.7 U	< 7.7 U	1.4 J	< 5.3 U	< 5.9 U
Aroclor-1262	ug/kg		< 9.0 U	< 9.0 U	< 8.7 U	< 7.7 U	< 8.5 U	< 5.3 U	< 5.9 U
Aroclor-1268	ug/kg		< 9.0 U	< 9.0 U	< 8.7 U	< 7.7 U	< 8.5 U	< 5.3 U	< 5.9 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		< 9.0 U	< 9.0 U	< 8.7 U	< 7.7 U	1.4	< 5.3 U	< 5.9 U

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED3B	SED3C	SED3C	SED3C	SED3C	SED3C
		Sample Date	11/8/2013 8:47:00 AM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM
		Sample ID	SED3B07N	SED3C01N	SED3C01R	SED3C03N	SED3C03R	SED3C05N
		Depth	7 - 9 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	3 - 5 ft	5 - 7 ft
		Туре	N	N	FD	N	FD	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.0 U	< 6.1 U	< 5.7 U	< 6.8 U	< 6.2 U	< 6.2 U
Aroclor-1221	ug/kg		< 6.0 U	< 6.1 U	< 5.7 U	< 6.8 U	< 6.2 U	< 6.2 U
Aroclor-1232	ug/kg		< 6.0 U	< 6.1 U	< 5.7 U	< 6.8 U	< 6.2 U	< 6.2 U
Aroclor-1242	ug/kg		< 6.0 U	< 6.1 U	< 5.7 U	< 6.8 U	< 6.2 U	< 6.2 U
Aroclor-1248	ug/kg		< 6.0 U	290 J	120 J	460 J	390 J	390 J
Aroclor-1254	ug/kg		< 6.0 U	< 6.1 U	< 5.7 U	< 6.8 U	< 6.2 U	< 6.2 U
Aroclor-1260	ug/kg		9.6	140 J	50 J	210 J	180 J	170 J
Aroclor-1262	ug/kg		< 6.0 U	< 6.1 U	< 5.7 U	< 6.8 U	< 6.2 U	< 6.2 U
Aroclor-1268	ug/kg		< 6.0 U	< 6.1 U	< 5.7 U	< 6.8 U	< 6.2 U	< 6.2 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		9.6	430	170	670	570	560

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED3C	SED3C	SED3C	SED4.5B	SED4.5B	SED4.5B
		Sample Date	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/7/2013 12:14:00 PM	11/8/2013 10:16:00 AM	11/8/2013 10:16:00 AM	11/8/2013 10:16:00 AM
		Sample ID	SED3C05R	SED3C07N	SED3C07R	SED4.5B01N	SED4.5B03N	SED4.5B05N
		Depth	5 - 7 ft	7 - 9 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
	1	Туре	FD	N	FD	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.5 U	< 6.1 U	< 5.9 U	< 6.6 U	< 6.8 U	< 6.2 U
Aroclor-1221	ug/kg		< 6.5 U	< 6.1 U	< 5.9 U	< 6.6 U	< 6.8 U	< 6.2 U
Aroclor-1232	ug/kg		< 6.5 U	< 6.1 U	< 5.9 U	< 6.6 U	< 6.8 U	< 6.2 U
Aroclor-1242	ug/kg		< 6.5 U	< 6.1 U	< 5.9 U	< 6.6 U	< 6.8 U	< 6.2 U
Aroclor-1248	ug/kg		440 J	1200 J	860 J	110 J	3.2 J	< 6.2 U
Aroclor-1254	ug/kg		< 6.5 U	< 6.1 U	< 5.9 U	< 6.6 U	< 6.8 U	< 6.2 U
Aroclor-1260	ug/kg		160 J	280 J	180 J	56 J	4.0 J	1.0 J
Aroclor-1262	ug/kg		< 6.5 U	< 6.1 U	< 5.9 U	< 6.6 U	< 6.8 U	< 6.2 U
Aroclor-1268	ug/kg		< 6.5 U	< 6.1 U	< 5.9 U	< 6.6 U	< 6.8 U	< 6.2 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		600	1500	1000	170	7.2	1.0

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED4.5B	SED4A	SED4A	SED4A	SED4A	SED4B
		Sample Date	11/8/2013 10:16:00 AM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 1:32:00 PM	11/12/2013 12:16:00 PM
		Sample ID	SED4.5B07N	SED4A01N	SED4A03N	SED4A05N	SED4A07N	SED4B01N
		Depth	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 5.6 U	< 8.2 U	< 8.1 U	< 7.0 U	< 6.3 U	< 6.4 U
Aroclor-1221	ug/kg		< 5.6 U	< 8.2 U	< 8.1 U	< 7.0 U	< 6.3 U	< 6.4 U
Aroclor-1232	ug/kg		< 5.6 U	< 8.2 U	< 8.1 U	< 7.0 U	< 6.3 U	< 6.4 U
Aroclor-1242	ug/kg		< 5.6 U	< 8.2 U	< 8.1 U	< 7.0 U	< 6.3 U	< 6.4 U
Aroclor-1248	ug/kg		< 5.6 U	< 8.2 U	< 8.1 U	< 7.0 U	< 6.3 U	240 J
Aroclor-1254	ug/kg		< 5.6 U	< 8.2 U	< 8.1 U	< 7.0 U	< 6.3 U	< 6.4 U
Aroclor-1260	ug/kg		< 5.6 U	< 8.2 U	< 8.1 U	< 7.0 U	< 6.3 U	86 J
Aroclor-1262	ug/kg		< 5.6 U	< 8.2 U	< 8.1 U	< 7.0 U	< 6.3 U	< 6.4 U
Aroclor-1268	ug/kg		< 5.6 U	< 8.2 U	< 8.1 U	< 7.0 U	< 6.3 U	< 6.4 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		< 5.6 U	< 8.2 U	< 8.1 U	< 7.0 U	< 6.3 U	330

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED4B	SED4B	SED4B	SED4B	SED4B	SED4B
		Sample Date	11/12/2013 12:16:00 PM	11/12/2013 12:16:00 PM	11/12/2013 12:16:00 PM	6/15/2017 8:40:00 AM	6/15/2017 8:50:00 AM	6/15/2017 9:00:00 AM
	Sample ID			SED4B05N	SED4B07N	SED4B02FN	SED4B04FN	SED4B06FN
		Depth	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.4 U	< 6.2 U	< 6.1 U	< 3.0 U	< 3.1 U	< 2.8 U
Aroclor-1221	ug/kg		< 6.4 U	< 6.2 U	< 6.1 U	< 3.0 U	< 3.1 U	< 2.8 U
Aroclor-1232	ug/kg		< 6.4 U	< 6.2 U	< 6.1 U	< 3.0 U	< 3.1 U	< 2.8 U
Aroclor-1242	ug/kg		< 6.4 U	< 6.2 U	< 6.1 U	< 3.0 U	< 3.1 U	< 2.8 U
Aroclor-1248	ug/kg		< 6.4 U	< 6.2 U	< 6.1 U	14 J+	73 J+	< 2.8 U
Aroclor-1254	ug/kg		< 6.4 U	< 6.2 U	< 6.1 U	58 J+	44 J+	< 2.8 U
Aroclor-1260	ug/kg		38 J	30 J	6.3	26 J+	23 J+	< 2.8 U
Aroclor-1262	ug/kg		< 6.4 U	< 6.2 U	< 6.1 U	< 3.0 U	< 3.1 U	< 2.8 U
Aroclor-1268	ug/kg		< 6.4 U	< 6.2 U	< 6.1 U	< 3.0 U	< 3.1 U	< 2.8 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		38	30	6.3	98	140	< 2.8 U

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED4C	SED4C	SED4C	SED4C	SED4C	SED4C
		Sample Date	11/12/2013 2:09:00 PM	11/12/2013 2:09:00 PM	11/12/2013 2:09:00 PM	11/12/2013 2:09:00 PM	6/14/2017 1:40:00 PM	6/14/2017 1:50:00 PM
		Sample ID	SED4C01N	SED4C03N	SED4C05N	SED4C07N	SED4C02FN	SED4C04FN
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft
		Type	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.9 U	< 6.5 U	< 6.4 U	< 6.1 U	< 3.5 U	< 3.4 U
Aroclor-1221	ug/kg		< 6.9 U	< 6.5 U	< 6.4 U	< 6.1 U	< 3.5 U	< 3.4 U
Aroclor-1232	ug/kg		< 6.9 U	< 6.5 U	< 6.4 U	< 6.1 U	< 3.5 U	< 3.4 U
Aroclor-1242	ug/kg		< 6.9 U	< 6.5 U	< 6.4 U	< 6.1 U	< 3.5 U	< 3.4 U
Aroclor-1248	ug/kg		590 J	< 6.5 U	< 6.4 U	< 6.1 U	110 J+	21 J+
Aroclor-1254	ug/kg		< 6.9 U	< 6.5 U	< 6.4 U	< 6.1 U	94 J+	77 J+
Aroclor-1260	ug/kg		210 J	48 J	25 J	16 J	61 J+	58 J+
Aroclor-1262	ug/kg		< 6.9 U	< 6.5 U	< 6.4 U	< 6.1 U	< 3.5 U	< 3.4 U
Aroclor-1268	ug/kg		< 6.9 U	< 6.5 U	< 6.4 U	< 6.1 U	< 3.5 U	< 3.4 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		800	48	25	16	270	160

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED4C	SED4C	SED5.5B	SED5.5B	SED5.5B	SED5.5B
		Sample Date	6/14/2017 2:00:00 PM	6/14/2017 2:10:00 PM	11/12/2013 2:49:00 PM	11/12/2013 2:49:00 PM	11/12/2013 2:49:00 PM	11/13/2013 2:49:00 PM
		Sample ID	SED4C06FN	SED4C08FN	SED5.5B01N	SED5.5B03N	SED5.5B07N	SED5.5B05N
		Depth	6 - 7 ft	8 - 9 ft	1 - 3 ft	3 - 5 ft	7 - 9 ft	5 - 7 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.3 U	< 3.1 U	< 6.4 U	< 6.4 U	< 5.8 U	< 6.5 U
Aroclor-1221	ug/kg		< 3.3 U	< 3.1 U	< 6.4 U	< 6.4 U	< 5.8 U	< 6.5 U
Aroclor-1232	ug/kg		< 3.3 U	< 3.1 U	< 6.4 U	< 6.4 U	< 5.8 U	< 6.5 U
Aroclor-1242	ug/kg		< 3.3 U	< 3.1 U	< 6.4 U	< 6.4 U	< 5.8 U	< 6.5 U
Aroclor-1248	ug/kg		< 3.3 U	< 3.1 U	< 6.4 U	< 6.4 U	< 5.8 U	< 6.5 U
Aroclor-1254	ug/kg		< 3.3 U	< 3.1 U	< 6.4 U	< 6.4 U	< 5.8 U	< 6.5 U
Aroclor-1260	ug/kg		17	< 3.1 U	41 J	43 J	< 5.8 U	3.3 J
Aroclor-1262	ug/kg		< 3.3 U	< 3.1 U	< 6.4 U	< 6.4 U	< 5.8 U	< 6.5 U
Aroclor-1268	ug/kg		< 3.3 U	< 3.1 U	< 6.4 U	< 6.4 U	< 5.8 U	< 6.5 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		17	< 3.1 U	41	43	< 5.8 U	3.3

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED5A	SED5A	SED5A	SED5A	SED5B	SED5B
		Sample Date	11/8/2013 11:18:00 AM	11/8/2013 11:18:00 AM	11/8/2013 11:18:00 AM	11/8/2013 11:18:00 AM	11/8/2013 12:14:00 PM	11/8/2013 12:14:00 PM
		Sample ID	SED5A01N	SED5A03N	SED5A05N	SED5A07N	SED5B01N	SED5B03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.5 U	< 6.4 U	< 6.2 U	< 5.5 U	< 6.2 U	< 6.0 U
Aroclor-1221	ug/kg		< 6.5 U	< 6.4 U	< 6.2 U	< 5.5 U	< 6.2 U	< 6.0 U
Aroclor-1232	ug/kg		< 6.5 U	< 6.4 U	< 6.2 U	< 5.5 U	< 6.2 U	< 6.0 U
Aroclor-1242	ug/kg		< 6.5 U	< 6.4 U	< 6.2 U	< 5.5 U	< 6.2 U	< 6.0 U
Aroclor-1248	ug/kg		290 J	30 J	12 J	< 5.5 U	99 J	< 6.0 U
Aroclor-1254	ug/kg		< 6.5 U	< 6.4 U	< 6.2 U	< 5.5 U	< 6.2 U	< 6.0 U
Aroclor-1260	ug/kg		190 J	26 J	27 J	< 5.5 U	66 J	3.1 J
Aroclor-1262	ug/kg		< 6.5 U	< 6.4 U	< 6.2 U	< 5.5 U	< 6.2 U	< 6.0 U
Aroclor-1268	ug/kg		< 6.5 U	< 6.4 U	< 6.2 U	< 5.5 U	< 6.2 U	< 6.0 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		480	56	39	< 5.5 U	170	3.1

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B
		Sample Date	11/8/2013 12:14:00 PM	11/8/2013 12:14:00 PM	6/19/2017 2:20:00 PM	6/19/2017 2:30:00 PM	6/19/2017 2:40:00 PM	6/20/2017 7:50:00 AM
		Sample ID	SED5B05N	SED5B07N	SED5B02FN	SED5B04FN	SED5B06FN	SED5B00BN
		Depth	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	0.33 - 0.67 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 5.1 U	< 5.2 U	< 3.3 UJ	< 3.1 UJ	< 2.8 U	< 5.1 U
Aroclor-1221	ug/kg		< 5.1 U	< 5.2 U	< 3.3 UJ	< 3.1 UJ	< 2.8 U	< 5.1 U
Aroclor-1232	ug/kg		< 5.1 U	< 5.2 U	< 3.3 UJ	< 3.1 UJ	< 2.8 U	< 5.1 U
Aroclor-1242	ug/kg		< 5.1 U	< 5.2 U	< 3.3 UJ	< 3.1 UJ	< 2.8 U	< 5.1 U
Aroclor-1248	ug/kg		< 5.1 U	< 5.2 U	< 3.3 UJ	< 3.1 UJ	< 2.8 U	82 J+
Aroclor-1254	ug/kg		< 5.1 U	< 5.2 U	< 3.3 UJ	< 3.1 UJ	< 2.8 U	69 J+
Aroclor-1260	ug/kg		< 5.1 U	< 5.2 U	27 J+	14 J+	< 2.8 U	49 J+
Aroclor-1262	ug/kg		< 5.1 U	< 5.2 U	< 3.3 U	< 3.1 U	< 2.8 U	< 5.1 U
Aroclor-1268	ug/kg		< 5.1 U	< 5.2 U	5.7 J+	9.6 J+	< 2.8 U	< 5.1 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		< 5.1 U	< 5.2 U	33	24	< 2.8 U	200

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B
		Sample Date	6/20/2017 7:55:00 AM	6/20/2017 8:00:00 AM	6/20/2017 8:05:00 AM	6/20/2017 8:10:00 AM	6/20/2017 8:15:00 AM	6/20/2017 8:20:00 AM	6/20/2017 8:25:00 AM
		Sample ID	SED5B00CN	SED5B01AN	SED5B01BN	SED5B01CN	SED5B02AN	SED5B02BN	SED5B02CN
		Depth	0.67 - 1 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft	2 - 2.33 ft	2.33 - 2.67 ft	2.67 - 3 ft
		Туре	N	N	N	N	N	N	N
Analyte	Unit								
Aroclor-1016	ug/kg		< 3.4 U	< 3.7 U	< 3.5 U	< 3.3 U	< 3.1 U	< 3.2 U	< 3.3 U
Aroclor-1221	ug/kg		< 3.4 U	< 3.7 U	< 3.5 U	< 3.3 U	< 3.1 U	< 3.2 U	< 3.3 U
Aroclor-1232	ug/kg		< 3.4 U	< 3.7 U	< 3.5 U	< 3.3 U	< 3.1 U	< 3.2 U	< 3.3 U
Aroclor-1242	ug/kg		< 3.4 U	< 3.7 U	< 3.5 U	< 3.3 U	< 3.1 U	< 3.2 U	< 3.3 U
Aroclor-1248	ug/kg		25	46	< 3.5 U	< 3.3 U	< 3.1 U	< 3.2 U	< 3.3 U
Aroclor-1254	ug/kg		< 3.4 U	< 3.7 U	< 3.5 U	< 3.3 U	< 3.1 U	< 3.2 U	< 3.3 U
Aroclor-1260	ug/kg		72	120 J+	85	58 J+	28	26 J+	43 J+
Aroclor-1262	ug/kg		< 3.4 U	< 3.7 U	< 3.5 U	< 3.3 U	< 3.1 U	< 3.2 U	< 3.3 U
Aroclor-1268	ug/kg		< 3.4 U	20 J+	< 3.5 U	9.8 J+	< 3.1 U	5.1 J+	10 J+
PCB, Total Aroclors (AECOM Calc)	ug/kg		97	190	85	68	28	31	53

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B	SED5B
		Sample Date	6/20/2017 8:30:00 AM	6/20/2017 8:35:00 AM	6/20/2017 8:40:00 AM	6/20/2017 8:45:00 AM	6/20/2017 8:50:00 AM	6/20/2017 8:55:00 AM	6/20/2017 9:00:00 AM
		Sample ID	SED5B03AN	SED5B03BN	SED5B03CN	SED5B04AN	SED5B04BN	SED5B04CN	SED5B05AN
		Depth	3 - 3.33 ft	3.33 - 3.67 ft	3.67 - 4 ft	4 - 4.33 ft	4.33 - 4.67 ft	4.67 - 5 ft	5 - 5.33 ft
		Туре	N	N	N	N	N	N	N
Analyte	Unit								
Aroclor-1016	ug/kg		< 3.4 U	< 3.2 U	< 3.2 U	< 3.2 U	< 3.1 U	< 3.2 U	< 3.1 U
Aroclor-1221	ug/kg		< 3.4 U	< 3.2 U	< 3.2 U	< 3.2 U	< 3.1 U	< 3.2 U	< 3.1 U
Aroclor-1232	ug/kg		< 3.4 U	< 3.2 U	< 3.2 U	< 3.2 U	< 3.1 U	< 3.2 U	< 3.1 U
Aroclor-1242	ug/kg		< 3.4 U	< 3.2 U	< 3.2 U	< 3.2 U	< 3.1 U	< 3.2 U	< 3.1 U
Aroclor-1248	ug/kg		< 3.4 U	< 3.2 U	< 3.2 U	< 3.2 U	< 3.1 U	< 3.2 U	< 3.1 U
Aroclor-1254	ug/kg		< 3.4 U	< 3.2 U	< 3.2 U	< 3.2 U	< 3.1 U	< 3.2 U	< 3.1 U
Aroclor-1260	ug/kg		35 J+	45 J+	33 J+	25 J+	16 J+	14 J+	< 3.1 U
Aroclor-1262	ug/kg		< 3.4 U	< 3.2 U	< 3.2 U	< 3.2 U	< 3.1 U	< 3.2 U	< 3.1 U
Aroclor-1268	ug/kg		8.0 J+	9.5 J+	12 J+	14 J+	9.5 J+	10 J+	< 3.1 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		43	55	45	39	26	24	< 3.1 U

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED5B	SED5B	SED5B	SED5C	SED5C	SED5C
		Sample Date	6/20/2017 9:05:00 AM	6/20/2017 9:10:00 AM	6/20/2017 9:15:00 AM	11/11/2013 8:37:00 AM	11/11/2013 8:37:00 AM	11/11/2013 8:37:00 AM
		Sample ID	SED5B05BN	SED5B05CN	SED5B06AN	SED5C01N	SED5C03N	SED5C05N
		Depth	5.33 - 5.67 ft	5.67 - 6 ft	6 - 6.33 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.0 U	< 3.0 U	< 2.8 U	< 6.7 U	< 6.8 U	< 6.6 U
Aroclor-1221	ug/kg		< 3.0 U	< 3.0 U	< 2.8 U	< 6.7 U	< 6.8 U	< 6.6 U
Aroclor-1232	ug/kg		< 3.0 U	< 3.0 U	< 2.8 U	< 6.7 U	< 6.8 U	< 6.6 U
Aroclor-1242	ug/kg		< 3.0 U	< 3.0 U	< 2.8 U	< 6.7 U	< 6.8 U	< 6.6 U
Aroclor-1248	ug/kg		< 3.0 U	< 3.0 U	< 2.8 U	< 6.7 U	< 6.8 U	3.1 J
Aroclor-1254	ug/kg		< 3.0 U	< 3.0 U	< 2.8 U	< 6.7 U	< 6.8 U	< 6.6 U
Aroclor-1260	ug/kg		< 3.0 U	< 3.0 U	< 2.8 U	120 J	43 J	5.4 J
Aroclor-1262	ug/kg		< 3.0 U	< 3.0 U	< 2.8 U	< 6.7 U	< 6.8 U	< 6.6 U
Aroclor-1268	ug/kg		< 3.0 U	< 3.0 U	< 2.8 U	< 6.7 U	< 6.8 U	< 6.6 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		< 3 U	< 3 U	< 2.8 U	120	43	8.5

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED5C	SED5C	SED5C	SED5C	SED5C	SED6.5D
		Sample Date	11/11/2013 8:37:00 AM	6/14/2017 11:25:00 AM	6/14/2017 11:35:00 AM	6/14/2017 11:45:00 AM	6/14/2017 11:55:00 AM	11/25/2013 8:10:00 AM
		Sample ID	SED5C07N	SED5C02FN	SED5C04FN	SED5C06FN	SED5C08FN	SED6.5D01N
		Depth	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	8 - 9 ft	1 - 3 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.5 U	< 3.3 U	< 3.3 U	< 3.3 U	< 3.1 U	< 6.4 U
Aroclor-1221	ug/kg		< 6.5 U	< 3.3 U	< 3.3 U	< 3.3 U	< 3.1 U	< 6.4 U
Aroclor-1232	ug/kg		< 6.5 U	< 3.3 U	< 3.3 U	< 3.3 U	< 3.1 U	< 6.4 U
Aroclor-1242	ug/kg		< 6.5 U	< 3.3 U	< 3.3 U	< 3.3 U	< 3.1 U	< 6.4 U
Aroclor-1248	ug/kg		< 6.5 U	< 3.3 U	< 3.3 U	< 3.3 U	< 3.1 U	< 6.4 U
Aroclor-1254	ug/kg		< 6.5 U	50 J+	< 3.3 U	< 3.3 U	< 3.1 U	< 6.4 U
Aroclor-1260	ug/kg		3.6 J	51 J+	5.5	< 3.3 U	< 3.1 U	70
Aroclor-1262	ug/kg		< 6.5 U	< 3.3 U	< 3.3 U	< 3.3 U	< 3.1 U	< 6.4 U
Aroclor-1268	ug/kg		< 6.5 U	< 3.3 U	< 3.3 U	< 3.3 U	< 3.1 U	< 6.4 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		3.6	100	5.5	< 3.3 U	< 3.1 U	70

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED6.5D	SED6.5D	SED6.5D	SED6.5D	SED6.5D	SED6.5D
		Sample Date	11/25/2013 8:10:00 AM	1/29/2014 12:35:00 PM	1/29/2014 12:35:00 PM	6/27/2017 10:10:00 AM	6/27/2017 10:20:00 AM	6/27/2017 10:30:00 AM
		Sample ID	SED6.5D03N	SED6.5D05N	SED6.5D07N	SED6.5D02FN	SED6.5D04FN	SED6.5D06FN
		Depth	3 - 4 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 7.3 U	< 6.7 U	< 7.7 U	< 3.4 U	< 4.0 U	< 3.2 U
Aroclor-1221	ug/kg		< 7.3 U	< 6.7 U	< 7.7 U	< 3.4 U	< 4.0 U	< 3.2 U
Aroclor-1232	ug/kg		< 7.3 U	< 6.7 U	< 7.7 U	< 3.4 U	< 4.0 U	< 3.2 U
Aroclor-1242	ug/kg		< 7.3 U	< 6.7 U	< 7.7 U	< 3.4 U	< 4.0 U	< 3.2 U
Aroclor-1248	ug/kg		310 J	< 6.7 U	< 7.7 U	< 3.4 U	< 4.0 U	< 3.2 U
Aroclor-1254	ug/kg		< 7.3 U	< 6.7 U	< 7.7 U	21 J+	3.4 J+	< 3.2 U
Aroclor-1260	ug/kg		380 J	< 6.7 U	< 7.7 U	22 J+	4.1 J+	< 3.2 U
Aroclor-1262	ug/kg		< 7.3 U	< 6.7 U	< 7.7 U	< 3.4 U	< 4.0 U	< 3.2 U
Aroclor-1268	ug/kg		< 7.3 U	< 6.7 U	< 7.7 U	< 3.4 U	< 4.0 U	< 3.2 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		690	< 6.7 U	< 7.7 U	43	7.5	< 3.2 U

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED6.5D	SED6.5E	SED6.5E	SED6.5E	SED6.5E	SED6.5E
		Sample Date	6/27/2017 10:40:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:25:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:20:00 AM	11/25/2013 8:20:00 AM
		Sample ID	SED6.5D08FN	SED6.5E01N	SED6.5E01R	SED6.5E03N	SED6.5E05N	SED6.5E07N
		Depth	8 - 9 ft	1 - 3 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 8 ft
		Туре	N	N	FD	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.3 U	< 8.9 U	< 8.9 U	< 5.7 U	< 6.8 U	< 6.7 U
Aroclor-1221	ug/kg		< 3.3 U	< 8.9 U	< 8.9 U	< 5.7 U	< 6.8 U	< 6.7 U
Aroclor-1232	ug/kg		< 3.3 U	< 8.9 U	< 8.9 U	< 5.7 U	< 6.8 U	< 6.7 U
Aroclor-1242	ug/kg		< 3.3 U	< 8.9 U	< 8.9 U	< 5.7 U	< 6.8 U	< 6.7 U
Aroclor-1248	ug/kg		< 3.3 U	950 J	890 J	180 J	38 J	27 J
Aroclor-1254	ug/kg		< 3.3 U	< 8.9 U	< 8.9 U	< 5.7 U	< 6.8 U	< 6.7 U
Aroclor-1260	ug/kg		< 3.3 U	470 J	430 J	140 J	29 J	17 J
Aroclor-1262	ug/kg		< 3.3 U	< 8.9 U	< 8.9 U	< 5.7 U	< 6.8 U	< 6.7 U
Aroclor-1268	ug/kg		< 3.3 U	< 8.9 U	< 8.9 U	< 5.7 U	< 6.8 U	< 6.7 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		< 3.3 U	1400	1300	320	67	44

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED6A	SED6A	SED6A	SED6B	SED6B	SED6B
		Sample Date	11/13/2013 1:40:00 PM	11/13/2013 1:40:00 PM	11/13/2013 1:40:00 PM	11/13/2013 12:40:00 PM	11/13/2013 12:40:00 PM	11/13/2013 12:40:00 PM
		Sample ID	SED6A01N	SED6A03N	SED6A05N	SED6B01N	SED6B03N	SED6B05N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.1 U	< 6.2 U	< 8.1 U	< 6.8 U	< 6.4 U	< 5.5 U
Aroclor-1221	ug/kg		< 6.1 U	< 6.2 U	< 8.1 U	< 6.8 U	< 6.4 U	< 5.5 U
Aroclor-1232	ug/kg		< 6.1 U	< 6.2 U	< 8.1 U	< 6.8 U	< 6.4 U	< 5.5 U
Aroclor-1242	ug/kg		< 6.1 U	< 6.2 U	< 8.1 U	< 6.8 U	< 6.4 U	< 5.5 U
Aroclor-1248	ug/kg		< 6.1 U	< 6.2 U	< 8.1 U	< 6.8 U	< 6.4 U	< 5.5 U
Aroclor-1254	ug/kg		< 6.1 U	< 6.2 U	< 8.1 U	< 6.8 U	< 6.4 U	< 5.5 U
Aroclor-1260	ug/kg		38 J	29 J	< 8.1 U	58 J	12 J	1.2 J
Aroclor-1262	ug/kg		< 6.1 U	< 6.2 U	< 8.1 U	< 6.8 U	< 6.4 U	< 5.5 U
Aroclor-1268	ug/kg		< 6.1 U	< 6.2 U	< 8.1 U	< 6.8 U	< 6.4 U	< 5.5 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		38	29	< 8.1 U	58	12	1.2

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID Sample Date Sample ID Depth	SED6B 11/13/2013 12:40:00 PM SED6B07N 7 - 9 ft	SED6C 11/14/2013 1:34:00 PM SED6C01N 1 - 3 ft	SED6C 11/14/2013 1:34:00 PM SED6C03N 3 - 5 ft	SED6C 11/14/2013 1:34:00 PM SED6C05N 5 - 7 ft	SED6C 11/14/2013 1:34:00 PM SED6C07N 7 - 9 ft	SED7.5D 11/25/2013 7:30:00 AM SED7.5D01N 1 - 3 ft
		Туре	N	N N	N N	N N	N N	N N
Analyte	Unit							
Aroclor-1016	ug/kg		< 7.0 U	< 7.1 U	< 6.7 U	< 6.7 U	< 7.7 U	< 8.3 U
Aroclor-1221	ug/kg		< 7.0 U	< 7.1 U	< 6.7 U	< 6.7 U	< 7.7 U	< 8.3 U
Aroclor-1232	ug/kg		< 7.0 U	< 7.1 U	< 6.7 U	< 6.7 U	< 7.7 U	< 8.3 U
Aroclor-1242	ug/kg		< 7.0 U	< 7.1 U	< 6.7 U	< 6.7 U	< 7.7 U	< 8.3 U
Aroclor-1248	ug/kg		< 7.0 U	160 J	< 6.7 U	< 6.7 U	< 7.7 U	320 J
Aroclor-1254	ug/kg		< 7.0 U	< 7.1 U	< 6.7 U	< 6.7 U	< 7.7 U	< 8.3 U
Aroclor-1260	ug/kg		< 7.0 U	230 J	< 6.7 U	< 6.7 U	< 7.7 U	520 J
Aroclor-1262	ug/kg		< 7.0 U	< 7.1 U	< 6.7 U	< 6.7 U	< 7.7 U	< 8.3 U
Aroclor-1268	ug/kg		< 7.0 U	< 7.1 U	< 6.7 U	< 6.7 U	< 7.7 U	< 8.3 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		< 7.0 U	390	< 6.7 U	< 6.7 U	< 7.7 U	840

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED7.5D	SED7.5D	SED7.5E	SED7.5E	SED7.5E	SED7.5E
		Sample Date	11/25/2013 7:30:00 AM	11/25/2013 7:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM	11/25/2013 10:30:00 AM
		Sample ID	SED7.5D03N	SED7.5D05N	SED7.5E01N	SED7.5E03N	SED7.5E05N	SED7.5E07N
		Depth	3 - 5 ft	5 - 6.8 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 7.8 U	< 7.2 U	< 6.9 U	< 7.3 U	< 7.6 U	< 6.9 U
Aroclor-1221	ug/kg		< 7.8 U	< 7.2 U	< 6.9 U	< 7.3 U	< 7.6 U	< 6.9 U
Aroclor-1232	ug/kg		< 7.8 U	< 7.2 U	< 6.9 U	< 7.3 U	< 7.6 U	< 6.9 U
Aroclor-1242	ug/kg		< 7.8 U	< 7.2 U	< 6.9 U	< 7.3 U	< 7.6 U	< 6.9 U
Aroclor-1248	ug/kg		390 J	190 J	270 J	300 J	16 J	5.4 J
Aroclor-1254	ug/kg		< 7.8 U	< 7.2 U	< 6.9 U	< 7.3 U	< 7.6 U	< 6.9 U
Aroclor-1260	ug/kg		610 J	250 J	400 J	570 J	25 J	8.5 J
Aroclor-1262	ug/kg		< 7.8 U	< 7.2 U	< 6.9 U	< 7.3 U	< 7.6 U	< 6.9 U
	ug/kg		< 7.8 U	< 7.2 U	< 6.9 U	< 7.3 U	< 7.6 U	< 6.9 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		1000	440	670	870	41	14

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED7A	SED7A	SED7A	SED7A	SED7B	SED7B
		Sample Date	11/13/2013 11:52:00 AM	11/13/2013 11:52:00 AM	11/13/2013 11:52:00 AM	11/13/2013 11:52:00 AM	11/13/2013 10:51:00 AM	11/13/2013 10:51:00 AM
		Sample ID	SED7A01N	SED7A03N	SED7A05N	SED7A07N	SED7B01N	SED7B03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.6 U	< 6.5 U	< 6.7 U	< 6.9 U	< 6.7 U	< 6.4 U
Aroclor-1221	ug/kg		< 6.6 U	< 6.5 U	< 6.7 U	< 6.9 U	< 6.7 U	< 6.4 U
Aroclor-1232	ug/kg		< 6.6 U	< 6.5 U	< 6.7 U	< 6.9 U	< 6.7 U	< 6.4 U
Aroclor-1242	ug/kg		< 6.6 U	< 6.5 U	< 6.7 U	< 6.9 U	< 6.7 U	< 6.4 U
Aroclor-1248	ug/kg		< 6.6 U	< 6.5 U	< 6.7 U	< 6.9 U	< 6.7 U	< 6.4 U
Aroclor-1254	ug/kg		< 6.6 U	< 6.5 U	< 6.7 U	< 6.9 U	< 6.7 U	< 6.4 U
Aroclor-1260	ug/kg		38 J	37 J	18 J	6.7 J	120 J	2.0 J
Aroclor-1262	ug/kg		< 6.6 U	< 6.5 U	< 6.7 U	< 6.9 U	< 6.7 U	< 6.4 U
Aroclor-1268	ug/kg		< 6.6 U	< 6.5 U	< 6.7 U	< 6.9 U	< 6.7 U	< 6.4 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		38	37	18	6.7	120	2.0

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED7B	SED7B	SED7D	SED7D	SED7D	SED7D
		Sample Date	11/13/2013 10:51:00 AM	11/13/2013 10:51:00 AM	11/25/2013 8:05:00 AM	11/25/2013 8:05:00 AM	11/25/2013 8:05:00 AM	11/25/2013 8:05:00 AM
		Sample ID	SED7B05N	SED7B07N	SED7D01N	SED7D03N	SED7D05N	SED7D07N
		Depth	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 7.8 U	< 6.8 U	< 7.8 U	< 7.8 U	< 7.9 U	< 7.7 U
Aroclor-1221	ug/kg		< 7.8 U	< 6.8 U	< 7.8 U	< 7.8 U	< 7.9 U	< 7.7 U
Aroclor-1232	ug/kg		< 7.8 U	< 6.8 U	< 7.8 U	< 7.8 U	< 7.9 U	< 7.7 U
Aroclor-1242	ug/kg		< 7.8 U	< 6.8 U	< 7.8 U	< 7.8 U	< 7.9 U	< 7.7 U
Aroclor-1248	ug/kg		< 7.8 U	< 6.8 U	490 J	490 J	270 J	230 J
Aroclor-1254	ug/kg		< 7.8 U	< 6.8 U	< 7.8 U	< 7.8 U	< 7.9 U	< 7.7 U
Aroclor-1260	ug/kg		< 7.8 U	< 6.8 U	800 J	610 J	370 J	320 J
Aroclor-1262	ug/kg		< 7.8 U	< 6.8 U	< 7.8 U	< 7.8 U	< 7.9 U	< 7.7 U
Aroclor-1268	ug/kg		< 7.8 U	< 6.8 U	< 7.8 U	< 7.8 U	< 7.9 U	< 7.7 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		< 7.8 U	< 6.8 U	1300	1100	640	550

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED7D	SED7D	SED7D	SED7D	SED7E	SED7E
		Sample Date	6/27/2017 12:00:00 PM	6/27/2017 12:10:00 PM	6/27/2017 12:20:00 PM	6/27/2017 12:30:00 PM	11/25/2013 10:00:00 AM	11/25/2013 10:00:00 AM
		Sample ID	SED7D02FN	SED7D04FN	SED7D06FN	SED7D08FN	SED7E01N	SED7E03N
		Depth	2 - 3 ft	4 - 5 ft	6 - 7 ft	8 - 9 ft	1 - 3 ft	3 - 5 ft
	1	Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.5 U	< 3.5 U	< 3.2 U	< 3.1 U	< 6.5 U	< 7.4 U
Aroclor-1221	ug/kg		< 3.5 U	< 3.5 U	< 3.2 U	< 3.1 U	< 6.5 U	< 7.4 U
Aroclor-1232	ug/kg		< 3.5 U	< 3.5 U	< 3.2 U	< 3.1 U	< 6.5 U	< 7.4 U
Aroclor-1242	ug/kg		< 3.5 U	< 3.5 U	< 3.2 U	< 3.1 U	< 6.5 U	< 7.4 U
Aroclor-1248	ug/kg		450 J+	< 3.5 U	< 3.2 U	< 3.1 U	240 J	700 J
Aroclor-1254	ug/kg		250 J+	280 J+	< 3.2 U	< 3.1 U	< 6.5 U	< 7.4 U
Aroclor-1260	ug/kg		340 J+	300 J+	42 J+	2.5 J+	270 J	810 J
Aroclor-1262	ug/kg		< 3.5 U	< 3.5 U	< 3.2 U	< 3.1 U	< 6.5 U	< 7.4 U
Aroclor-1268	ug/kg		< 3.5 U	< 3.5 U	< 3.2 U	2.8 J+	< 6.5 U	< 7.4 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		1000	580	42	5.3	510	1500

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
		Sample Date	11/25/2013 10:00:00 AM	6/22/2017 9:05:00 AM	6/22/2017 9:10:00 AM	6/22/2017 9:15:00 AM	6/22/2017 9:20:00 AM	6/22/2017 9:25:00 AM
		Sample ID	SED7E05N	SED7E00BN	SED7E00CN	SED7E01AN	SED7E01BN	SED7E01CN
		Depth	5 - 6 ft	0.33 - 0.67 ft	0.67 - 1 ft	1 - 1.33 ft	1.33 - 1.67 ft	1.67 - 2 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 7.8 U	< 2.7 UJ	< 2.8 UJ	< 3.1 UJ	< 3.8 UJ	< 3.6 UJ
Aroclor-1221	ug/kg		< 7.8 U	< 2.7 U	< 2.8 U	< 3.1 U	< 3.8 U	< 3.6 U
Aroclor-1232	ug/kg		< 7.8 U	< 2.7 U	< 2.8 U	< 3.1 U	< 3.8 U	< 3.6 U
Aroclor-1242	ug/kg		< 7.8 U	< 2.7 U	< 2.8 U	< 3.1 U	< 3.8 U	< 3.6 U
Aroclor-1248	ug/kg		470 J	140 J+	150 J+	120 J+	120 J+	230 J+
Aroclor-1254	ug/kg		< 7.8 U	190 J	230 J	190 J	190 J	310 J
Aroclor-1260	ug/kg		480 J	320 J+	400 J+	400 J+	390 J+	550 J+
Aroclor-1262	ug/kg		< 7.8 U	< 2.7 U	< 2.8 U	< 3.1 U	< 3.8 U	< 3.6 U
Aroclor-1268	ug/kg		< 7.8 U	< 2.7 U	< 2.8 U	< 3.1 U	< 3.8 U	< 3.6 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		950	650	780	710	700	1100

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		I ID	05075	OED ZE	CED7E	05075	OED3E	CED7E	CED7E
		Location ID	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
		Sample Date	6/22/2017 9:30:00 AM	6/22/2017 9:32:00 AM	6/22/2017 9:35:00 AM	6/22/2017 9:37:00 AM	6/22/2017 9:40:00 AM	6/22/2017 9:45:00 AM	6/22/2017 9:50:00 AM
		Sample ID	SED7E02AN	SED7E02AR	SED7E02BN	SED7E02BR	SED7E02CN	SED7E03AN	SED7E03BN
		Depth	2 - 2.33 ft	2 - 2.33 ft	2.33 - 2.67 ft	2.33 - 2.67 ft	2.67 - 3 ft	3 - 3.33 ft	3.33 - 3.67 ft
		Туре	N	FD	N	FD	N	N	N
Analyte	Unit								
Aroclor-1016	ug/kg		< 3.8 UJ	< 3.6 U	< 3.6 UJ	< 3.7 U	< 3.4 UJ	< 3.5 UJ	< 3.4 U
Aroclor-1221	ug/kg		< 3.8 U	< 3.6 U	< 3.6 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U
Aroclor-1232	ug/kg		< 3.8 U	< 3.6 U	< 3.6 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U
Aroclor-1242	ug/kg		< 3.8 U	< 3.6 U	< 3.6 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U
Aroclor-1248	ug/kg		79 J	< 3.6 UJ	170 J	< 3.7 UJ	52 J+	< 3.5 U	< 3.4 U
Aroclor-1254	ug/kg		120 J	140 J	230 J	220 J	86 J	120 J	89 J
Aroclor-1260	ug/kg		200 J+	230 J+	370 J+	360 J+	140 J+	230 J+	180 J+
Aroclor-1262	ug/kg		< 3.8 U	< 3.6 U	< 3.6 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U
Aroclor-1268	ug/kg		< 3.8 U	< 3.6 U	< 3.6 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		400	370	770	580	280	350	270

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
		Sample Date	6/22/2017 9:55:00 AM	6/22/2017 10:00:00 AM	6/22/2017 10:05:00 AM	6/22/2017 10:10:00 AM	6/22/2017 10:15:00 AM	6/22/2017 10:20:00 AM
		Sample ID	SED7E03CN	SED7E04AN	SED7E04BN	SED7E04CN	SED7E05AN	SED7E05BN
		Depth	3.67 - 4 ft	4 - 4.33 ft	4.33 - 4.67 ft	4.67 - 5 ft	5 - 5.33 ft	5.33 - 5.67 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.0 UJ	< 3.5 UJ	< 3.2 UJ	< 3.2 UJ	< 3.6 UJ	< 3.4 UJ
Aroclor-1221	ug/kg		< 3.0 U	< 3.5 UJ	< 3.2 U	< 3.2 U	< 3.6 U	< 3.4 U
Aroclor-1232	ug/kg		< 3.0 U	< 3.5 UJ	< 3.2 U	< 3.2 U	< 3.6 U	< 3.4 U
Aroclor-1242	ug/kg		< 3.0 U	< 3.5 UJ	< 3.2 U	< 3.2 U	< 3.6 U	< 3.4 U
Aroclor-1248	ug/kg		74 J+	< 3.5 UJ	< 3.2 U	< 3.2 U	< 3.6 U	< 3.4 U
Aroclor-1254	ug/kg		110 J	230 J	200 J	110 J	< 3.6 UJ	45 J
Aroclor-1260	ug/kg		160 J+	210 J+	270 J+	170 J+	380	67 J+
Aroclor-1262	ug/kg		< 3.0 U	< 3.5 UJ	< 3.2 U	< 3.2 U	< 3.6 U	< 3.4 U
Aroclor-1268	ug/kg		< 3.0 U	< 3.5 UJ	< 3.2 U	< 3.2 U	< 3.6 U	< 3.4 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		340	440	470	280	380	110

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED7E	SED7E	SED7E	SED7E	SED7E	SED7E
		Sample Date	6/22/2017 10:25:00 AM	6/22/2017 10:30:00 AM	6/22/2017 10:35:00 AM	6/22/2017 10:40:00 AM	6/22/2017 10:45:00 AM	6/22/2017 10:50:00 AM
		Sample ID	SED7E05CN	SED7E06AN	SED7E06BN	SED7E06CN	SED7E07AN	SED7E07BN
		Depth	5.67 - 6 ft	6 - 6.33 ft	6.33 - 6.67 ft	6.67 - 7 ft	7 - 7.33 ft	7.33 - 7.67 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.5 UJ	< 3.5 UJ	< 3.3 UJ	< 3.3 UJ	< 2.7 U	< 3.0 U
Aroclor-1221	ug/kg		< 3.5 UJ	< 3.5 U	< 3.3 UJ	< 3.3 UJ	< 2.7 U	< 3.0 U
Aroclor-1232	ug/kg		< 3.5 UJ	< 3.5 U	< 3.3 UJ	< 3.3 UJ	< 2.7 U	< 3.0 U
Aroclor-1242	ug/kg		< 3.5 UJ	< 3.5 U	< 3.3 UJ	< 3.3 UJ	< 2.7 U	< 3.0 U
Aroclor-1248	ug/kg		< 3.5 UJ	< 3.5 U	< 3.3 UJ	< 3.3 UJ	< 2.7 U	< 3.0 U
Aroclor-1254	ug/kg		48 J	9.2 J	2.3 J	20 J	6.3 J	31 J
Aroclor-1260	ug/kg		56 J+	11 J+	2.4 J	17 J+	5.6 J+	31 J+
Aroclor-1262	ug/kg		< 3.5 UJ	< 3.5 U	< 3.3 UJ	< 3.3 UJ	< 2.7 U	< 3.0 U
Aroclor-1268	ug/kg		< 3.5 UJ	< 3.5 U	< 3.3 UJ	< 3.3 UJ	< 2.7 U	< 3.0 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		100	20	4.7	37	12	62

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED7E	SED7F	SED7F	SED7F	SED7F	SED7G
		Sample Date	6/22/2017 10:55:00 AM	11/25/2013 12:00:00 PM	1/29/2014 1:30:00 PM	1/29/2014 1:30:00 PM	1/29/2014 1:30:00 PM	1/30/2014 3:00:00 PM
		Sample ID	SED7E07CN	SED7F01N	SED7F03N	SED7F05N	SED7F07N	SED7G01N
		Depth	7.67 - 8 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.1 U	< 5.1 U	< 5.4 U	< 6.5 U	< 6.4 U	< 5.8 U
Aroclor-1221	ug/kg		< 3.1 U	< 5.1 U	< 5.4 U	< 6.5 U	< 6.4 U	< 5.8 U
Aroclor-1232	ug/kg		< 3.1 U	< 5.1 U	< 5.4 U	< 6.5 U	< 6.4 U	< 5.8 U
Aroclor-1242	ug/kg		< 3.1 U	< 5.1 U	< 5.4 U	< 6.5 U	< 6.4 U	< 5.8 U
Aroclor-1248	ug/kg		< 3.1 U	180 J	32 J	4.4 J	< 6.4 U	3.1 J
Aroclor-1254	ug/kg		19 J	< 5.1 U	< 5.4 U	< 6.5 U	< 6.4 U	< 5.8 U
Aroclor-1260	ug/kg		20 J+	230 J	18 J	8.7 J	< 6.4 U	4.1 J
Aroclor-1262	ug/kg		< 3.1 U	< 5.1 U	< 5.4 U	< 6.5 U	< 6.4 U	< 5.8 U
Aroclor-1268	ug/kg		< 3.1 U	< 5.1 U	< 5.4 U	< 6.5 U	< 6.4 U	< 5.8 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		39	410	50	13	< 6.4 U	7.2

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED7G	SED7G	SED7G	SED7G	SED8.5B	SED8.5B
		Sample Date	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	1/30/2014 3:00:00 PM	11/13/2013 8:37:00 AM	11/13/2013 8:37:00 AM
		Sample ID	SED7G01R	SED7G03N	SED7G05N	SED7G07N	SED8.5B01N	SED8.5B03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	FD	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 5.7 U	< 6.1 U	< 5.1 U	< 5.7 U	< 6.8 U	< 5.2 U
Aroclor-1221	ug/kg		< 5.7 U	< 6.1 U	< 5.1 U	< 5.7 U	< 6.8 U	< 5.2 U
Aroclor-1232	ug/kg		< 5.7 U	< 6.1 U	< 5.1 U	< 5.7 U	< 6.8 U	< 5.2 U
Aroclor-1242	ug/kg		< 5.7 U	< 6.1 U	< 5.1 U	< 5.7 U	< 6.8 U	< 5.2 U
Aroclor-1248	ug/kg		9.1 J	< 6.1 U	< 5.1 U	< 5.7 U	59 J	2.3 J
Aroclor-1254	ug/kg		< 5.7 U	< 6.1 U	< 5.1 U	< 5.7 U	< 6.8 U	< 5.2 U
Aroclor-1260	ug/kg		13 J	< 6.1 U	< 5.1 U	< 5.7 U	28 J	< 5.2 U
Aroclor-1262	ug/kg		< 5.7 U	< 6.1 U	< 5.1 U	< 5.7 U	< 6.8 U	< 5.2 U
Aroclor-1268	ug/kg		< 5.7 U	< 6.1 U	< 5.1 U	< 5.7 U	< 6.8 U	< 5.2 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		22	< 6.1 U	< 5.1 U	< 5.7 U	87	2.3

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED8.5B	SED8.5B	SED8A	SED8A	SED8A	SED8A
		Sample Date	11/13/2013 8:37:00 AM	11/13/2013 8:37:00 AM	11/13/2013 10:06:00 AM	11/13/2013 10:06:00 AM	11/13/2013 10:06:00 AM	11/13/2013 10:06:00 AM
		Sample ID	SED8.5B05N	SED8.5B07N	SED8A01N	SED8A03N	SED8A05N	SED8A07N
		Depth	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 5.3 U	< 5.3 U	< 6.3 U	< 5.6 U	< 5.3 U	< 5.9 U
Aroclor-1221	ug/kg		< 5.3 U	< 5.3 U	< 6.3 U	< 5.6 U	< 5.3 U	< 5.9 U
Aroclor-1232	ug/kg		< 5.3 U	< 5.3 U	< 6.3 U	< 5.6 U	< 5.3 U	< 5.9 U
Aroclor-1242	ug/kg		< 5.3 U	< 5.3 U	< 6.3 U	< 5.6 U	< 5.3 U	< 5.9 U
Aroclor-1248	ug/kg		< 5.3 U	< 5.3 U	160 J	< 5.6 U	< 5.3 U	< 5.9 U
Aroclor-1254	ug/kg		< 5.3 U	< 5.3 U	< 6.3 U	< 5.6 U	< 5.3 U	< 5.9 U
Aroclor-1260	ug/kg		0.98 J	< 5.3 U	77 J	6.9 J	< 5.3 U	< 5.9 U
Aroclor-1262	ug/kg		< 5.3 U	< 5.3 U	< 6.3 U	< 5.6 U	< 5.3 U	< 5.9 U
Aroclor-1268	ug/kg		< 5.3 U	< 5.3 U	< 6.3 U	< 5.6 U	< 5.3 U	< 5.9 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		0.98	< 5.3 U	240	6.9	< 5.3 U	< 5.9 U

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED8B	SED8B	SED8B	SED8B	SED8C	SED8C
		Sample Date	11/13/2013 9:18:00 AM	11/13/2013 9:18:00 AM	11/13/2013 9:18:00 AM	11/13/2013 9:18:00 AM	11/14/2013 12:52:00 PM	11/14/2013 12:52:00 PM
		Sample ID	SED8B01N	SED8B03N	SED8B05N	SED8B07N	SED8C01N	SED8C03N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 7.6 U	< 6.3 U	< 8.3 U	< 5.6 U	< 6.6 U	< 6.1 U
Aroclor-1221	ug/kg		< 7.6 U	< 6.3 U	< 8.3 U	< 5.6 U	< 6.6 U	< 6.1 U
Aroclor-1232	ug/kg		< 7.6 U	< 6.3 U	< 8.3 U	< 5.6 U	< 6.6 U	< 6.1 U
Aroclor-1242	ug/kg		< 7.6 U	< 6.3 U	< 8.3 U	< 5.6 U	< 6.6 U	< 6.1 U
Aroclor-1248	ug/kg		56 J	120 J	< 8.3 U	< 5.6 U	< 6.6 U	< 6.1 U
Aroclor-1254	ug/kg		< 7.6 U	< 6.3 U	< 8.3 U	< 5.6 U	< 6.6 U	< 6.1 U
Aroclor-1260	ug/kg		24 J	45 J	< 8.3 U	< 5.6 U	310 J	77 J
Aroclor-1262	ug/kg		< 7.6 U	< 6.3 U	< 8.3 U	< 5.6 U	< 6.6 U	< 6.1 U
Aroclor-1268	ug/kg		< 7.6 U	< 6.3 U	< 8.3 U	< 5.6 U	< 6.6 U	< 6.1 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		80	170	< 8.3 U	< 5.6 U	310	77

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED8C	SED8C	SED9.5B	SED9.5B	SED9.5B	SED9.5B
		Sample Date	11/14/2013 12:52:00 PM	11/14/2013 12:52:00 PM	11/11/2013 12:09:00 PM	11/11/2013 12:09:00 PM	11/11/2013 12:09:00 PM	11/11/2013 12:09:00 PM
		Sample ID	SED8C05N	SED8C07N	SED9.5B01N	SED9.5B03N	SED9.5B05N	SED9.5B07N
		Depth	5 - 7 ft	7 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.6 U	< 7.5 U	< 6.1 U	< 6.5 U	< 5.8 U	< 6.6 U
Aroclor-1221	ug/kg		< 6.6 U	< 7.5 U	< 6.1 U	< 6.5 U	< 5.8 U	< 6.6 U
Aroclor-1232	ug/kg		< 6.6 U	< 7.5 U	< 6.1 U	< 6.5 U	< 5.8 U	< 6.6 U
Aroclor-1242	ug/kg		< 6.6 U	< 7.5 U	< 6.1 U	< 6.5 U	< 5.8 U	< 6.6 U
Aroclor-1248	ug/kg		< 6.6 U	< 7.5 U	180 J	260 J	< 5.8 U	< 6.6 U
Aroclor-1254	ug/kg		< 6.6 U	< 7.5 U	< 6.1 U	< 6.5 U	< 5.8 U	< 6.6 U
Aroclor-1260	ug/kg		3.3 J	< 7.5 U	73 J	190 J	180 J	150 J
Aroclor-1262	ug/kg	1	< 6.6 U	< 7.5 U	< 6.1 U	< 6.5 U	< 5.8 U	< 6.6 U
Aroclor-1268	ug/kg	1	< 6.6 U	< 7.5 U	< 6.1 U	< 6.5 U	< 5.8 U	< 6.6 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		3.3	< 7.5 U	250	450	180	150

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED9A	SED9A	SED9A	SED9B	SED9B	SED9B
		Sample Date	11/11/2013 9:45:00 AM	11/11/2013 9:45:00 AM	11/11/2013 9:45:00 AM	11/11/2013 11:18:00 AM	11/11/2013 11:18:00 AM	11/11/2013 11:18:00 AM
		Sample ID	SED9A01N	SED9A03N	SED9A05N	SED9B01N	SED9B03N	SED9B05N
		Depth	1 - 3 ft	3 - 5 ft	5 - 7 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.6 U	< 5.5 U	< 0.54 U	< 7.4 U	< 5.7 U	< 0.53 U
Aroclor-1221	ug/kg		< 6.6 U	< 5.5 U	< 0.54 U	< 7.4 U	< 5.7 U	< 0.53 U
Aroclor-1232	ug/kg		< 6.6 U	< 5.5 U	< 0.54 U	< 7.4 U	< 5.7 U	< 0.53 U
Aroclor-1242	ug/kg		< 6.6 U	< 5.5 U	< 0.54 U	< 7.4 U	< 5.7 U	< 0.53 U
Aroclor-1248	ug/kg		< 6.6 U	< 5.5 U	< 0.54 U	140 J	41 J	< 0.53 U
Aroclor-1254	ug/kg		< 6.6 U	< 5.5 U	< 0.54 U	< 7.4 U	< 5.7 U	< 0.53 U
Aroclor-1260	ug/kg		11 J	< 5.5 U	< 0.54 U	55 J	11 J	14
Aroclor-1262	ug/kg		< 6.6 U	< 5.5 U	< 0.54 U	< 7.4 U	< 5.7 U	< 0.53 U
Aroclor-1268	ug/kg		< 6.6 U	< 5.5 U	< 0.54 U	< 7.4 U	< 5.7 U	< 0.53 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		11	< 5.5 U	< 0.54 U	200	52	14

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SED9C	SED9C	SED9C	SED9C	SED9C	SEDREF01
		Sample Date	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	11/11/2013 10:34:00 AM	6/19/2017 12:40:00 PM
		Sample ID	SED9C01N	SED9C01R	SED9C03N	SED9C05N	SED9C07N	SEDREF0102N
		Depth	1 - 3 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	2 - 3 ft
		Туре	N	FD	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 6.5 U	< 6.1 U	< 6.6 U	< 7.0 U	< 5.8 U	< 2.8 U
Aroclor-1221	ug/kg		< 6.5 U	< 6.1 U	< 6.6 U	< 7.0 U	< 5.8 U	< 2.8 U
Aroclor-1232	ug/kg		< 6.5 U	< 6.1 U	< 6.6 U	< 7.0 U	< 5.8 U	< 2.8 UJ
Aroclor-1242	ug/kg		< 6.5 U	< 6.1 U	< 6.6 U	< 7.0 U	< 5.8 U	< 2.8 UJ
Aroclor-1248	ug/kg		370 J	230 J	330 J	370 J	< 5.8 U	110 J+
Aroclor-1254	ug/kg		< 6.5 U	< 6.1 U	< 6.6 U	< 7.0 U	< 5.8 U	94 J+
Aroclor-1260	ug/kg		120 J	74 J	200 J	250 J	57 J	45 J+
Aroclor-1262	ug/kg		< 6.5 U	< 6.1 U	< 6.6 U	< 7.0 U	< 5.8 U	< 2.8 UJ
Aroclor-1268	ug/kg		< 6.5 U	< 6.1 U	< 6.6 U	< 7.0 U	< 5.8 U	< 2.8 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		490	300	530	620	57	250

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SEDREF01	SEDREF02	SEDREF02	SEDREF02	SEDREF02	SEDREF03
		Sample Date	6/19/2017 12:50:00 PM	6/15/2017 11:55:00 AM	6/15/2017 11:57:00 AM	6/15/2017 12:05:00 PM	6/15/2017 12:15:00 PM	6/15/2017 2:10:00 PM
		Sample ID	SEDREF0104N	SEDREF0202N	SEDREF0202R	SEDREF0204N	SEDREF0206N	SEDREF0302N
		Depth	4 - 5 ft	2 - 3 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	2 - 3 ft
		Туре	N	N	FD	N	N	N
A b - 4 -	1.1							
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.0 U	< 3.7 U	< 3.6 U	< 3.1 U	< 3.1 U	< 3.2 U
Aroclor-1221	ug/kg		< 3.0 U	< 3.7 U	< 3.6 U	< 3.1 U	< 3.1 U	< 3.2 U
Aroclor-1232	ug/kg		< 3.0 UJ	< 3.7 U	< 3.6 U	< 3.1 U	< 3.1 U	< 3.2 U
Aroclor-1242	ug/kg		< 3.0 UJ	< 3.7 U	< 3.6 U	< 3.1 U	< 3.1 U	< 3.2 U
Aroclor-1248	ug/kg		< 3.0 U	44 J+	65 J+	130 J+	140 J+	160 J+
Aroclor-1254	ug/kg		< 3.0 U	100 J+	120 J+	99 J+	91 J+	130 J+
Aroclor-1260	ug/kg		12 J+	44 J+	52 J+	42 J+	48 J+	93 J+
Aroclor-1262	ug/kg		< 3.0 UJ	< 3.7 U	< 3.6 U	< 3.1 U	< 3.1 U	< 3.2 U
Aroclor-1268	ug/kg		1.5 J+	< 3.7 U	< 3.6 U	< 3.1 U	< 3.1 U	< 3.2 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		14	190	240	270	280	380

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SEDREF03	SEDREF03	SEDREF03	SEDREF03	SEDREF04	SEDREF04	SEDREF04
		Sample Date	6/15/2017 2:20:00 PM	6/15/2017 2:30:00 PM	6/15/2017 2:32:00 PM	6/15/2017 2:40:00 PM	6/16/2017 8:40:00 AM	6/16/2017 8:50:00 AM	6/16/2017 8:52:00 AM
		Sample ID	SEDREF0304N	SEDREF0306N	SEDREF0306R	SEDREF0308N	SEDREF0402N	SEDREF0404N	SEDREF0404R
		Depth	4 - 5 ft	6 - 7 ft	6 - 7 ft	8 - 9 ft	2 - 3 ft	4 - 5 ft	4 - 5 ft
		Type	N	N	FD	N	N	N	FD
Analyte	Unit								
Aroclor-1016	ug/kg		< 3.1 U	< 4.0 U	< 7.4 U	< 8.3 U	< 2.8 U	< 3.5 U	< 3.4 U
Aroclor-1221	ug/kg		< 3.1 U	< 4.0 U	< 7.4 U	< 8.3 U	< 2.8 U	< 3.5 U	< 3.4 U
Aroclor-1232	ug/kg		< 3.1 U	< 4.0 U	< 7.4 U	< 8.3 U	< 2.8 U	< 3.5 U	< 3.4 U
Aroclor-1242	ug/kg		< 3.1 U	< 4.0 U	< 7.4 U	< 8.3 U	< 2.8 U	< 3.5 U	< 3.4 U
Aroclor-1248	ug/kg		8.4 J+	< 4.0 U	< 7.4 U	< 8.3 U	660 J+	< 3.5 U	< 3.4 U
Aroclor-1254	ug/kg		8.9 J+	< 4.0 U	< 7.4 U	< 8.3 U	210 J+	210 J+	200 J+
Aroclor-1260	ug/kg		3.8 J+	< 4.0 U	< 7.4 U	< 8.3 U	190 J+	300 J+	230 J+
Aroclor-1262	ug/kg		< 3.1 U	< 4.0 U	< 7.4 U	< 8.3 U	< 2.8 U	< 3.5 U	< 3.4 U
Aroclor-1268	ug/kg		< 3.1 U	< 4.0 U	< 7.4 U	< 8.3 U	< 2.8 U	< 3.5 U	< 3.4 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		21	< 4 U	< 7.4 U	< 8.3 U	1100	510	430

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SEDREF04	SEDREF04	SEDREF05	SEDREF05	SEDREF05	SEDREF05
		Sample Date	6/16/2017 9:00:00 AM	6/16/2017 9:10:00 AM	6/16/2017 10:25:00 AM	6/16/2017 10:35:00 AM	6/16/2017 10:37:00 AM	6/16/2017 10:45:00 AM
		Sample ID	SEDREF0406N	SEDREF0408N	SEDREF0502N	SEDREF0504N	SEDREF0504R	SEDREF0506N
		Depth	6 - 7 ft	8 - 9 ft	2 - 3 ft	4 - 5 ft	4 - 5 ft	6 - 7 ft
		Туре	N	N	N	N	FD	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.3 U	< 3.2 U	< 3.3 U	< 3.6 U	< 3.3 U	< 3.3 U
Aroclor-1221	ug/kg		< 3.3 U	< 3.2 U	< 3.3 U	< 3.6 U	< 3.3 U	< 3.3 U
Aroclor-1232	ug/kg		< 3.3 U	< 3.2 U	< 3.3 U	< 3.6 U	< 3.3 U	< 3.3 U
Aroclor-1242	ug/kg		< 3.3 U	< 3.2 U	< 3.3 U	< 3.6 U	< 3.3 U	< 3.3 U
Aroclor-1248	ug/kg		< 3.3 U	< 3.2 U	< 3.3 U	< 3.6 U	< 3.3 U	< 3.3 U
Aroclor-1254	ug/kg		< 3.3 U	< 3.2 U	42 J+	< 3.6 U	< 3.3 U	< 3.3 U
Aroclor-1260	ug/kg		66 J+	23 J+	65 J+	< 3.6 U	< 3.3 U	10 J+
Aroclor-1262	ug/kg		< 3.3 U	< 3.2 U	< 3.3 U	< 3.6 U	< 3.3 U	< 3.3 U
Aroclor-1268	ug/kg		10 J+	25 J+	< 3.3 U	< 3.6 U	< 3.3 U	6.4 J+
PCB, Total Aroclors (AECOM Calc)	ug/kg		76	48	110	< 3.6 U	< 3.3 U	16

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SEDREF05	SEDREF06	SEDREF06	SEDREF06	SEDREF06	SEDREF07
		Sample Date	6/16/2017 10:55:00 AM	6/16/2017 12:10:00 PM	6/16/2017 12:20:00 PM	6/16/2017 12:30:00 PM	6/16/2017 12:40:00 PM	6/16/2017 1:40:00 PM
		Sample ID	SEDREF0508N	SEDREF0602N	SEDREF0604N	SEDREF0606N	SEDREF0608N	SEDREF0702N
		Depth	8 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft	8 - 9 ft	2 - 3 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.2 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U	< 3.5 U
Aroclor-1221	ug/kg		< 3.2 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U	< 3.5 U
Aroclor-1232	ug/kg		< 3.2 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U	< 3.5 U
Aroclor-1242	ug/kg		< 3.2 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U	< 3.5 U
Aroclor-1248	ug/kg		< 3.2 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U	92
Aroclor-1254	ug/kg		< 3.2 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U	< 3.5 U
Aroclor-1260	ug/kg		< 3.2 U	690 J+	72 J+	26 J	36 J+	50 J+
Aroclor-1262	ug/kg		< 3.2 U	< 3.7 U	< 3.4 U	< 3.5 U	< 3.4 U	< 3.5 U
Aroclor-1268	ug/kg		< 3.2 U	42 J	7.2 J+	< 3.5 U	22 J+	8.8 J+
PCB, Total Aroclors (AECOM Calc)	ug/kg		< 3.2 U	730	79	26	58	150

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SEDREF07	SEDREF07	SEDREF07	SEDREF08	SEDREF08	SEDREF08
		Sample Date	6/16/2017 1:50:00 PM	6/16/2017 2:00:00 PM	6/16/2017 2:10:00 PM	6/19/2017 10:20:00 AM	6/19/2017 10:30:00 AM	6/19/2017 10:40:00 AM
		Sample ID	SEDREF0704N	SEDREF0706N	SEDREF0708N	SEDREF0802N	SEDREF0804N	SEDREF0806N
		Depth	4 - 5 ft	6 - 7 ft	8 - 9 ft	2 - 3 ft	4 - 5 ft	6 - 7 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.3 U	< 3.4 U	< 3.5 U	< 4.0 U	< 3.6 U	< 3.3 U
Aroclor-1221	ug/kg		< 3.3 U	< 3.4 U	< 3.5 U	< 4.0 U	< 3.6 U	< 3.3 U
Aroclor-1232	ug/kg		< 3.3 U	< 3.4 U	< 3.5 U	< 4.0 UJ	< 3.6 UJ	< 3.3 UJ
Aroclor-1242	ug/kg		< 3.3 U	< 3.4 U	< 3.5 U	< 4.0 UJ	< 3.6 UJ	< 3.3 UJ
Aroclor-1248	ug/kg		93	< 3.4 U	< 3.5 U	< 4.0 U	< 3.6 U	< 3.3 U
Aroclor-1254	ug/kg		< 3.3 U	< 3.4 U	< 3.5 U	< 4.0 U	< 3.6 U	< 3.3 U
Aroclor-1260	ug/kg		48	61 J+	< 3.5 U	450 J+	130 J+	< 3.3 U
Aroclor-1262	ug/kg		< 3.3 U	< 3.4 U	< 3.5 U	< 4.0 UJ	< 3.6 UJ	< 3.3 UJ
Aroclor-1268	ug/kg		< 3.3 U	7.8 J+	32	33 J+	12 J+	12 J+
PCB, Total Aroclors (AECOM Calc)	ug/kg		140	69	32	480	140	12

Table 4-37
PCB Concentrations in Waterside Investigation Area Subsurface Sediment
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

		Location ID	SEDREF08	WSED1	WSED1	WSED1	WSED1	WSED2
		Sample Date	6/19/2017 10:50:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 11:16:00 AM	11/15/2013 12:14:00 PM
		Sample ID	SEDREF0808N	WSED101N	WSED103N	WSED105N	WSED107N	WSED201N
		Depth	8 - 9 ft	1 - 3 ft	3 - 5 ft	5 - 7 ft	7 - 9 ft	1 - 3 ft
		Туре	N	N	N	N	N	N
Analyte	Unit							
Aroclor-1016	ug/kg		< 3.3 U	< 5.9 UJ	< 6.3 U	< 6.2 U	< 6.5 UJ	< 6.3 U
Aroclor-1221	ug/kg		< 3.3 U	< 5.9 UJ	< 6.3 U	< 6.2 U	< 6.5 UJ	< 6.3 U
Aroclor-1232	ug/kg		< 3.3 UJ	< 5.9 UJ	< 6.3 U	< 6.2 U	< 6.5 UJ	< 6.3 U
Aroclor-1242	ug/kg		< 3.3 UJ	< 5.9 UJ	< 6.3 U	< 6.2 U	< 6.5 UJ	< 6.3 U
Aroclor-1248	ug/kg		< 3.3 U	62 J	66 J	160 J	110 J	260 J
Aroclor-1254	ug/kg		< 3.3 U	< 5.9 UJ	< 6.3 U	< 6.2 U	< 6.5 UJ	< 6.3 U
Aroclor-1260	ug/kg		< 3.3 U	54 J	51 J	120 J	45 J	170 J
Aroclor-1262	ug/kg		< 3.3 UJ	< 5.9 UJ	< 6.3 U	< 6.2 U	< 6.5 UJ	< 6.3 U
Aroclor-1268	ug/kg		22 J+	< 5.9 UJ	< 6.3 U	< 6.2 U	< 6.5 UJ	< 6.3 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		22	120	120	280	160	430

Table 4-37 PCB Concentrations in Waterside Investigation Area Subsurface Sediment Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			1410=50	11/0550	1110550
		Location ID	WSED2	WSED2	WSED2
		Sample Date	11/15/2013 12:14:00 PM	11/15/2013 12:14:00 PM	11/15/2013 12:14:00 PM
		Sample ID	WSED203N	WSED205N	WSED207N
		Depth	3 - 5 ft	5 - 7 ft	7 - 9 ft
		Туре	N	N	N
Analyte	Unit				
Aroclor-1016	ug/kg		< 6.6 U	< 6.5 U	< 120 U
Aroclor-1221	ug/kg		< 6.6 U	< 6.5 U	< 120 U
Aroclor-1232	ug/kg		< 6.6 U	< 6.5 U	< 120 U
Aroclor-1242	ug/kg		< 6.6 U	< 6.5 U	< 120 U
Aroclor-1248	ug/kg		770 J	230 J	4700 J
Aroclor-1254	ug/kg		< 6.6 U	< 6.5 U	< 120 U
Aroclor-1260	ug/kg		260 J	100 J	1600 J
Aroclor-1262	ug/kg		< 6.6 U	< 6.5 U	< 120 U
Aroclor-1268	ug/kg		< 6.6 U	< 6.5 U	< 120 U
PCB, Total Aroclors (AECOM Calc)	ug/kg		1000	330	6300

Notes:

Bold values indicate detects.

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- N = Normal
- FD = Field Duplicate
- ug/kg = micrograms per kilogram

											Location ID	SED6.5D	SED6.5E	SED6A	SED6B	SED6C	SED7.5D	SED7.5E
											Sample ID		PW6.5E00EN	PW6A00EN	PW6B00EN	PW6C00EN	PW7.5D00EN	PW7.5E00EN
											Sample Date	7/26/2017 9:50:00 AM	7/26/2017 8:50:00 AM	7/26/2017 9:20:00 AM	7/26/2017 9:10:00 AM	7/26/2017 8:00:00 AM	7/26/2017 9:30:00 AM	7/26/2017 8:40:00 AM
											Туре	N N	N	N	N	N	N	N
Amalia	11	:4	Frantis a OAO	Max	Min	Mean	Median	Max	Count	Count Co								
Analyte 1-Methylnaphthalene	Un ug/l		Fraction CAS D 90-12-0	Detect	Detect	Detect	Detect	Location	Detect	Reject To		< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U
2-Methylnaphthalene	ug/l	_			-					1		< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U
Acenaphthene	ug/l			0.15	0.15	0.15	0.15	SED7B	1	1 1		< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U
Acenaphthylene	ug/l									1		< 9 U	< 9 U	< 9 U	< 9 U	< 9 U	< 9 U	< 9 U
Anthracene	ug/l	D7363-13	D 120-12-7							1		< 0.61 U	< 0.61 U	< 0.61 U	< 0.61 U	< 0.61 U	< 0.61 U	< 0.61 U
Benzo(a)anthracene	ug/l	D7363-13	D 56-55-3							1	5	< 0.066 U	< 0.066 U	< 0.066 U	< 0.066 U	< 0.066 U	< 0.066 U	< 0.066 U
Benzo(a)pyrene	ug/l	D7363-13	D 50-32-8							1	5	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U
Benzo(b,k)fluoranthene	ug/l	D7363-13	D BKBFLANTH							1	5	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U
Benzo(e)pyrene	ug/l									1	5	< 0.028 U	< 0.028 U	< 0.028 U	< 0.028 U	< 0.028 U	< 0.028 U	< 0.028 U
Benzo(g,h,i)perylene	ug/l										5	< 0.013 U	< 0.013 U	< 0.013 U	< 0.013 U	< 0.013 U	< 0.013 U	< 0.013 U
C1-Chrysenes	ug/l								_	1		< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U
C1-Fluorenes	ug/l			0.88	0.17	0.44	0.26	SED7B	3	1		< 0.41 U	0.26 JN	< 0.41 U	< 0.41 U	< 0.41 U	< 0.41 U	< 0.41 U
C1-Phenanthrene/anthracenes	ug/l			0.19	0.03	0.11	0.11	SED7B	2	1		< 0.22 U	0.03 JN	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U
C1-Pyrene/fluoranthenes	ug/l									1		< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U
C2-Chrysenes C2-Fluorenes	ug/l ug/l	_		0.68	0.29	0.49	0.49	SED7B	2	1		< 0.014 U < 0.16 U	< 0.014 U 0.29 JN	< 0.014 U < 0.16 U	< 0.014 U < 0.16 U	< 0.014 U < 0.16 U	< 0.014 U < 0.16 U	< 0.014 U < 0.16 U
C2-Pluoreries C2-Naphthalenes	ug/i ug/l			1.48	0.29	0.49	0.49	SED7B SED7B	6	1		< 0.16 U	0.29 JN 0.2 JN	< 0.16 U	< 0.16 U	< 0.16 U	0.17 JN	< 0.16 U
C2-Phenanthrene/anthracenes	ug/l			0.23	0.15	0.392	0.175	SED7B	3	1		< 0.09 U	0.2 JN 0.1 JN	< 0.09 U	< 0.09 U	< 0.09 U	< 0.09 U	< 0.09 U
C3-Chrysenes	ug/l		D 218-01-9C3	0.20	0.00	0.10	0.1	OLDID		1		< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U
C3-Fluorenes	ug/l									1		< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U
C3-Naphthalenes	ug/l	_		4.06	0.06	0.391	0.11	SED7B	15	1		0.12 JN	0.34 JN	0.06 JN	0.08 JN	0.18 JN	0.1 JN	0.18 JN
C3-Phenanthrene/anthracenes	ug/l			0.2	0.08	0.15	0.17	SED7B	3	1	-	< 0.04 U	0.17 JN	< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U
C4-Chrysenes	ug/l	D7363-13	D 218-01-9C4							1		< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
C4-Naphthalenes	ug/l	D7363-13	D NPHC4	3.62	0.16	0.733	0.38	SED7B	10	1	5	0.34 JN	0.92 JN	< 0.12 U	< 0.12 U	0.46 JN	< 0.12 U	0.34 JN
C4-Phenanthrenes/anthracenes	ug/l	D7363-13	D PATAC4							1	5	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U
Chrysene	ug/l	D7363-13	D 218-01-9							1	5	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U
Dibenzo(a,h)anthracene	ug/l	D7363-13	D 53-70-3							1	5	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U
Fluoranthene	ug/l	D7363-13	D 206-44-0	0.09	0.01	0.03	0.02	SED7B	15	1	5	0.01 J	0.02 J	0.02 J	0.02 J	0.03 J	0.02 J	0.03 J
Fluorene	ug/l			0.13	0.13	0.13	0.13	SED7B	1	1		< 1.2 U	< 1.2 U	< 1.2 U	< 1.2 U	< 1.2 U	< 1.2 U	< 1.2 U
Indeno(1,2,3-cd)pyrene	ug/l									1		< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U
Naphthalene	ug/l			0.22	0.1	0.13	0.12	SED6.5D	13	1		0.22 J	0.1 J	0.11 J	0.13 J	0.11 J	0.12 J	< 5.7 U
Perylene	ug/l		D 198-55-0	0.04	0.04	0.04	0.04	OED7D	4	1		< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U
Phenanthrene	ug/l			0.31	0.31	0.31	0.31	SED7B	1	1		< 0.56 U 0.02 J	< 0.56 U 0.03 J	< 0.56 U 0.02 J	< 0.56 U 0.02 J	< 0.56 U 0.04 J	< 0.56 U 0.03 J	< 0.56 U 0.03 J
Pyrene Total High malacular weight DAHa	ug/l	_		0.12	0.02	0.031 0.057	0.02	SED7B SED7B	15 15	1	5	0.02 3	0.05	0.02 3	0.02 3	0.04 3	0.05	0.03 3
Total High-molecular-weight PAHs Total Low-molecular-weight PAHs	ug/l ug/l				0.03	0.037	0.04	SED7B	13	1 1	5 -	0.03	0.05	0.04	0.13	0.07	0.03	0.06
Total PAHs (sum 16)	ug/l			0.95	0.05	0.17	0.12	SED7B	15	1		0.25	0.1	0.15	0.17	0.18	0.12	0.06
PCB-104	%	E1668C	D 56558-16-8	99.91964		92.97321	95.28571	SED8B	15	1		99.630357143	99.464285714	82.321428571	94.696428571	98.982142857	93.035714286	98.982142857
PCB-121	%	E1668C	D 56558-18-0	99.85609	54.61255	84.33727	87.82288	SED8B	15	1	5	98.118081181	96.789667897	60.147601476	84.501845018	94.79704797	81.180811808	96.236162362
PCB-14	%	E1668C	D 34883-41-5	100	94.09091	98.83212	99.7	SED6.5E	15	<u> </u>	,	99.927272727	100	97.090909091	99.6	99.822727273	99.181818182	99.872727273
								SED7E		1	5							
PCB-142	%	E1668C	D 41411-61-4	99.85666	52.90102	83.6628	86.68942	SED8B	15	1	5	97.645051195	96.313993174	56.996587031	84.641638225	94.061433447	83.61774744	95.90443686
PCB-155	%	E1668C	D 33979-03-2	99.59398		78.36391	79.69925		15	1	5	95.939849624	93.684210526	45.864661654	77.443609023	88.947368421	78.345864662	93.458646617
PCB-184	%	E1668C	D 74472-48-3	97.35714					15	1		90	82.142857143	28.571428571	66.428571429	78.571428571	67.857142857	90.714285714
PCB-192	%	E1668C	D 74472-51-8	97.14286			65	SED8B	15	1		89.285714286	80.714285714	28.571428571	63.571428571	77.857142857	64.285714286	90
PCB-204	%	E1668C	D 74472-52-9	81.90476	9.52381	51.77778	52.38095		15	1		74.761904762	63.33333333	9.523809524	47.619047619	58.095238095	52.380952381	77.142857143
PCB-36	%	E1668C	D 38444-87-0	100	83.52941	96.05294		SED6.5E	15	1		99.894117647	100	90	97.823529412	99.747058824	96.411764706	99.782352941
PCB-78	%	E1668C	D 70362-49-1	99.89286	75.64935	92.57273	95.03247	SED8B	15 15	1		99.571428571	99.24025974	80.519480519	94.350649351	98.831168831	92.305194805	98.928571429
Decachlorobiphenyl (PCB-209)		E1668C	S 2051-24-3 S 25512-42-9	12	5.2	7.1 44	6.6	SED7E	15 15	1		5.2 J 13 J	6.5 J 14 J	8.7 J 88	5.5 J 28	6.6 J 16 J	5.6 J	7.0 J 30
Dichlorobiphenyl Heptachlorobiphenyl		E1668C	S 28655-71-2	150 3100	250	1500	28 1600	SED8A SED7E	15 15	1		13 J 850	14 J 1400	2100	1100	970	33 1600	1700
Hexachlorobiphenyl		E1668C	S 26601-64-9	3200	300	1100	890	SED7E SED7E	15		5	890	1300	880	480	680	1200	1700
Monochlorobiphenyl		E1668C	S 27323-18-8	16	0.33	3.3	0.64	SED8B	11	1 1		0.64 J	< 1.7 U	< 0.064 U	6.6 J	0.33 J	< 1.1 U	2.2 J
Nonachlorobiphenyl		E1668C	S 53742-07-7	97	5.3	20	12	SED7E	15	1	-	15	23	8.2 J	7.2 J	12	15	40
		E1668C	S 55722-26-4	1900	430	1200	1100	SED6A	15	 	5	660	960	1900	1100	960	1200	850
Octachlorobiphenyl			S TOT-PCB-ARO		1700	5600	6000	SED7E	15	1		3600	5600	6800	3700	3700	6000	6600
Octachlorobiphenyl PCB, Total Aroclors (Lab provided)	ng/c	E1668C	3 IOI-FOD-AINO	11000	1700	0000						i	1		1	1	1	
		E1668C	S 2051-60-7	3.4	0.33	1.2	0.5	SED8B	11	2 1	5	0.37 JN	R	< 0.045 U	2.3 J	0.33 JN	R	1.0 J
PCB, Total Aroclors (Lab provided)	ng/g					1		4	11 1	1		0.37 JN < 0.28 U	R < 0.81 U	< 0.045 U < 0.53 U	2.3 J < 0.40 U	0.33 JN < 0.55 U	R < 1.2 U	1.0 J < 0.48 U
PCB, Total Aroclors (Lab provided) PCB-1	ng/g	E1668C	S 2051-60-7	3.4	0.33	1.2	0.5	SED8B		2 1								

											Location ID	SED6.5D	SED6.5E	SED6A	SED6B	SED6C	SED7.5D	SED7.5E
											Sample ID	PW6.5D00EN	PW6.5E00EN	PW6A00EN	PW6B00EN	PW6C00EN	PW7.5D00EN	PW7.5E00EN
											Sample Date			7/26/2017 9:20:00 AM	7/26/2017 9:10:00 AM	7/26/2017 8:00:00 AM	7/26/2017 9:30:00 AM	7/26/2017 8:40:00 AM
											Туре	N	N	N	N	N	N	N
			Max	Min	Mean	Median	Max	Count	Count	Count								
Analyte	Unit Method	Fraction CAS	Detect	Detect	Detect	Detect	Location	Detect	Reject	Total								
PCB-102	ng/g E1668C	S 68194-06-9	9	1.1	3.9	3	SED7E	12		15		3.2 JN	5.7	< 0.056 U	1.5	2.8	5.0	6.5
PCB-103 PCB-104	ng/g E1668C ng/g E1668C	S 60145-21-3 S 56558-16-8	6.5	0.65 1.5	2.5	2.4	SED7E SED8A	8		15		1.3 J 6.9 J	2.0 JN 10 J	< 0.058 U	< 0.058 U	1.2 JN	2.7 JN	2.9 JN 19
PCB-104	ng/g E1668C ng/g E1668C	S 32598-14-4	480 55	1.5	130 25	88 24	SED7E	15 15		15		6.9 J 24	32	330 16	99 18	19 18	130 24	39
PCB-106	ng/g E1668C	S 70424-69-0	16	0.94	6.6	5.4	SED8A	13		15		0.94 J	1.4 J	14	5.6 J	2.1 J	5.4 J	1.7 J
. 02 .00	ingry 2.0000	10.2.000		0.01	0.0	0.1	SED7B			15		0.0.0			0.00		55	•
PCB-107	ng/g E1668C	S 70424-68-9	18	0.97	6.3	5.3	SED7E	15		15		8.3	8.7 J	0.97 JN	3.8 JN	5.3 J	6.3 J	12
PCB-108	ng/g E1668C	S 70362-41-3	7.7	0.7	2.9	2.5	SED7E	15		15		3.1 J	4.1 J	1.5 J	2.1 J	2.5 J	3.3 J	5.9 J
PCB-109	ng/g E1668C	S 74472-35-8	140	17	57	56	SED7E	15		15		56	89	24 JN	30	46	70	93
PCB-11	ng/g E1668C	S 2050-67-1	6.4	2.7	4.2	4	SED8A	15		15		2.7 J	3.7 JN	5.7 J	3.4 JN	3.9 JN	3.8 JN	3.0 J
PCB-110	ng/g E1668C	S 38380-03-9	250	28	98	90	SED7E	15		15		99	160	46	48	76	120	160
PCB-111	ng/g E1668C	S 39635-32-0	1.0	0.07	0.00	2.0	05575			15		< 0.023 U	< 0.030 U	< 0.041 U	< 0.041 U	< 0.063 U	< 0.091 U	< 0.041 U
PCB-112	ng/g E1668C	S 74472-36-9	1.8	0.27	0.93	0.9	SED7E	8		15		0.59 JN	1.4 J	< 0.043 U 46	< 0.043 U	< 0.066 U	0.42 JN	1.2 J
PCB-113 PCB-114	ng/g E1668C ng/g E1668C	S 68194-10-5 S 74472-37-0	340 4.5	30 0.55	120	110	SED7E SED7E	15 13		15		110 1.8 J	190 2.3 JN	46 < 0.17 U	52 1.4 JN	90 1.4 JN	150 1.9 JN	200 3.1 J
PCB-114 PCB-115	ng/g E1668C	S 74472-37-0 S 74472-38-1	250	0.55 28	1.9 98	1.6 90	SED7E SED7E	15		15 15		1.8 J 99	2.3 JN 160	< 0.17 U	1.4 JN 48	1.4 JN 76	1.9 JN 120	3.1 J 160
PCB-116	ng/g E1668C	S 18259-05-7	45	4.9	17	15	SED7E	15		15		17	27	6.9	12	15	21	28
PCB-117	ng/g E1668C	S 68194-11-6	45	4.9	17	15	SED7E	15		15		17	27	6.9	12	15	21	28
PCB-118	ng/g E1668C	S 31508-00-6	180	22	70	65	SED7E	15		15		73	92	33	46	61	71	120
PCB-119	ng/g E1668C	S 56558-17-9	140	17	57	56	SED7E	15		15		56	89	24 JN	30	46	70	93
PCB-12	ng/g E1668C	S 2974-92-7								15		< 0.25 U	< 0.74 U	< 0.48 U	< 0.36 U	< 0.50 U	< 1.1 U	< 0.43 U
PCB-120	ng/g E1668C	S 68194-12-7	1.3	1.3	1.3	1.3	SED7.5E	1		15		< 0.024 U	< 0.030 U	< 0.042 U	< 0.041 U	< 0.064 U	< 0.092 U	1.3 J
PCB-121	ng/g E1668C	S 56558-18-0	410	1.3	140	110	SED7B	15		15		17	29	360	140	47	170	34
PCB-122	ng/g E1668C	S 76842-07-4	1.9	0.6	1.1	1.1	SED7E	13		15		0.68 JN	1.3 JN	0.89 J	0.92 JN	0.99 JN	1.3 J	1.6 JN
PCB-123	ng/g E1668C	S 65510-44-3	4.1	0.5	1.5	1.3	SED7E	14		15		1.8 J	1.9 JN	0.54 JN	0.68 J	1.3 JN	1.6 J	2.3 J
PCB-124	ng/g E1668C	S 70424-70-3	7.7	0.7	2.9	2.5	SED7E	15		15		3.1	4.1	1.5	2.1	2.5	3.3	5.9
PCB-125 PCB-126	ng/g E1668C	S 74472-39-2 S 57465-28-8	140	17	57	56	SED7E	15		15		56 < 0.16 U	89 0.50 J	24 JN < 0.19 U	30 < 0.14 U	46 < 0.25 U	70 < 0.22 U	93 2.6 J
PCB-127	ng/g E1668C ng/g E1668C	S 39635-33-1	2.6	0.38	1.2	0.5	SED7.5E	3		15 15		< 0.16 U	< 0.25 U	< 0.19 U	< 0.14 U	< 0.23 U	< 0.22 U	< 0.32 U
PCB-128	ng/g E1668C	S 38380-07-3	58	2.7	17	13	SED7E	14		15		18	23	< 0.23 U	5.1 JN	12	17	30
PCB-129	ng/g E1668C	S 55215-18-4	620	31	170	140	SED7E	15		15		180	250	47	49	120	180	330
PCB-13	ng/g E1668C	S 2974-90-5								15		< 0.25 U	< 0.74 U	< 0.48 U	< 0.36 U	< 0.50 U	< 1.1 U	< 0.43 U
PCB-130	ng/g E1668C	S 52663-66-8	33	1.4	9.4	6.4	SED7E	15		15		10	15	2.5 J	2.9 J	6.4 J	10	19
PCB-131	ng/g E1668C	S 61798-70-7								15		< 0.37 U	< 0.55 U	< 0.32 U	< 0.22 U	< 0.44 U	< 0.59 U	< 0.91 U
PCB-132	ng/g E1668C	S 38380-05-1	140	7.1	42	36	SED7E	15		15		41	58	13 J	13	29	47	78
PCB-133	ng/g E1668C	S 35694-04-3	12	0.96	3.8	3.1	SED7E	12		15		3.5 J	4.8 J	< 0.29 U	1.2 J	2.4 J	3.9 J	5.9 J
PCB-134	ng/g E1668C	S 52704-70-8	29	1.1	7.8	5.6	SED7E	15		15		8.2 J	10 JN	1.6 JN	2.1 J	5.1 J	8.3	15
PCB-135	ng/g E1668C	S 52744-13-5	300	8.5	79	64	SED7E	15		15		69	110	14	18	52	99	150
PCB-136 PCB-137	ng/g E1668C	S 38411-22-2 S 35694-06-5	64 18	2.5 0.94	18	15 4.4	SED7E SED7E	15 14		15		15 6.8 J	25 8.5 J	3.2 JN 1.5 JN	4.2 JN 2.4 J	11 4.0 JN	21 5.8 J	33 10
PCB-137	ng/g E1668C ng/g E1668C	S 35065-28-2	620	31	5.9 170	140	SED7E	15		15 15		180	250	1.5 JN 47	49	120	180	330
PCB-139	ng/g E1668C	S 56030-56-9	7.9	0.8	3.2	2.8	SED7E	6		15		2.6 J	3.0 JN	< 0.26 U	0.88 JN	< 0.36 U	< 0.48 U	< 0.74 U
PCB-14	ng/g E1668C	S 34883-41-5	130	1.6	30	7	SED8A	13		15		1.6 JN	< 0.63 U	64	8.8 J	3.9 J	18	2.8 J
PCB-140	ng/g E1668C	S 59291-64-4	7.9	0.8	3.2	2.8	SED7E	6		15		2.6	3.0 JN	< 0.26 U	0.88 JN	< 0.36 U	< 0.48 U	< 0.74 U
PCB-141	ng/g E1668C	S 52712-04-6	160	6.3	42	32	SED7E	15		15		43	64	8.1 J	9.8	25	48	80
PCB-142	ng/g E1668C	S 41411-61-4	460	1.4	160	130	SED8A	15		15		23	36	420	150	58	160	40
PCB-143	ng/g E1668C	S 68194-15-0	29	1.1	7.8	5.6	SED7E	15		15		8.2	10 JN	1.6 JN	2.1	5.1	8.3	15
PCB-144	ng/g E1668C	S 68194-14-9	35	0.99	9	6.6	SED7E	15		15		8.5	14	1.5 JN	1.9 JN	4.9 JN	11	19
PCB-145	ng/g E1668C	S 74472-40-5		<u> </u>						15		< 0.035 U	< 0.039 U	< 0.050 U	< 0.038 U	< 0.080 U	< 0.093 U	< 0.028 U
PCB-146	ng/g E1668C	S 51908-16-8	130	2	37	27	SED7E	15		15		35	53	17	12	25	42	70
PCB-147	ng/g E1668C	S 68194-13-8	630	28	170	140	SED7E	15		15		160	250	39	39	110	190	320
PCB-148	ng/g E1668C	S 74472-41-6	0.9	0.32	0.65	0.66	SED7F	6		15		0.32 J	0.66 J 250	< 0.070 U	< 0.054 U 39	< 0.11 U	0.61 JN	0.66 J
PCB-149 PCB-15	ng/g E1668C ng/g E1668C	S 38380-04-0 S 2050-68-2	630 8.2	28	170 4.4	140 3.7	SED7E SED7F	15 15		15		160 3.1 J	250 3.7 JN	39 4.6 J	39 4.3 J	110 3.8 J	190 4.2 JN	320 7.4 J
PCB-150	ng/g E1668C	S 68194-08-1	2	0.25	0.84	0.72	SED7F SED7E	8	1	15 15		0.25 JN	0.43 JN	4.6 J 0.70 J	< 0.037 U	< 0.076 U	4.2 JN 0.74 JN	0.73 JN
PCB-151	ng/g E1668C	S 52663-63-5	300	8.5	79	64	SED7E	15		15		69	0.43 JN 110	14	18	52	99	150
PCB-152	ng/g E1668C	S 68194-09-2	0.78	0.083	0.38	0.32	SED8A	5	1	15		< 0.036 U	< 0.040 U	< 0.051 U	< 0.039 U	< 0.082 U	< 0.095 U	0.27 JN
PCB-153	ng/g E1668C	S 35065-27-1	750	29	200	150	SED7E	15		15		200	300	42	46	130	210	390
PCB-154	ng/g E1668C	S 60145-22-4	16	0.73	3	1.6	SED7E	15		15		1.4 J	2.3 JN	1.6 JN	0.82 J	1.8 JN	2.9 JN	7.0 JN
	1 - 5					L		1				1	1	i		1		

											1					1	1	
											Location ID	SED6.5D	SED6.5E	SED6A	SED6B	SED6C	SED7.5D	SED7.5E
											Sample ID	PW6.5D00EN	PW6.5E00EN	PW6A00EN	PW6B00EN	PW6C00EN	PW7.5D00EN	PW7.5E00EN
										Sa	ample Date Type	7/26/2017 9:50:00 AM N	7/26/2017 8:50:00 AM N	7/26/2017 9:20:00 AM N	7/26/2017 9:10:00 AM N	7/26/2017 8:00:00 AM N	7/26/2017 9:30:00 AM N	7/26/2017 8:40:00 AM N
			Max	Min	Mean	Median	Max	Count	Count	Count	i ype	IN	IN	IN	IN	IN	IN	IN
Analyte	Unit Method	Fraction CAS	Detect	Detect	Detect	Detect	Location	Detect	Reject	Total								
PCB-155	ng/g E1668C	S 33979-03-2	240	1.8	96	90	SED7B	15				18	28	240	100	49	96	29
							SED8A											
							SED6A			15								
PCB-156	ng/g E1668C	S 38380-08-4	53	11	22	19	SED7E	15		15		17 JN	23 JN	15 JN	12 JN	15 JN	19 JN	29
PCB-157 PCB-158	ng/g E1668C ng/g E1668C	S 69782-90-7 S 74472-42-7	53 60	2.5	22 17	19 14	SED7E SED7E	15 15		15		17 JN 18	23 JN 25	15 JN 3.4 JN	12 JN 5.2 J	15 JN 12	19 JN 18	29 31
PCB-159	ng/g E1668C	S 39635-35-3	9.7	0.54	2.9	2.1	SED7E SED7E	11		15 15		1.6 JN	3.7 J	< 0.20 U	< 0.13 U	1.2 J	2.5 J	4.5 J
PCB-16	ng/g E1668C	S 38444-78-9	24	2.3	8.1	4.7	SED7E	15		15		5.3 J	18	3.1 J	2.3 JN	4.7 JN	15 JN	15
PCB-160	ng/g E1668C	S 41411-62-5	620	31	170	140	SED7E	15		15		180	250	47	49	120	180	330
PCB-161	ng/g E1668C	S 74472-43-8	8.4	1.5	5	5	SED8A	2		15		< 0.22 U	< 0.33 U	< 0.20 U	< 0.13 U	< 0.27 U	< 0.35 U	< 0.55 U
PCB-162	ng/g E1668C	S 39635-34-2	1	1	1	1	SED7.5E	1		15		< 0.22 U	< 0.33 U	< 0.19 U	< 0.13 U	< 0.26 U	< 0.35 U	1.0 J
PCB-163	ng/g E1668C	S 74472-44-9	620	31	170	140	SED7E	15		15		180	250	47	49	120	180	330
PCB-164	ng/g E1668C	S 74472-45-0	38	1.8	11	8.8	SED7E	15		15		11	17	3.4 J	3.0 J	7.5 J	12	20
PCB-165	ng/g E1668C	S 74472-46-1							<u> </u>	15		< 0.25 U	< 0.38 U	< 0.22 U	< 0.15 U	< 0.30 U	< 0.40 U	< 0.62 U
PCB-166	ng/g E1668C	S 41411-63-6	58	2.7	17	13	SED7E	14		15		18	23	< 0.23 U	5.1 JN	12	17	30
PCB-167	ng/g E1668C	S 52663-72-6	22	0.97	6.1	3.9	SED7E	15		15		7.4 J	9.3 J	1.7 J	2.1 J	3.7 JN	6.2 J	12
PCB-168	ng/g E1668C	S 59291-65-5	750	29	200	150	SED7E	15		15		200	300	42	46	130	210	390
PCB-169 PCB-17	ng/g E1668C ng/g E1668C	S 32774-16-6 S 37680-66-3	51	5.1	18	13	SED7E	15	 	15 15	-	< 0.16 U	< 0.25 U	< 0.14 U	< 0.091 U 9.5	< 0.19 U	< 0.25 U	< 0.39 U 29
PCB-170	ng/g E1668C	S 35065-30-6	250	6.1	56	38	SED7E	15		15		50	82	9.8 J	11	32	60	120
PCB-171	ng/g E1668C	S 52663-71-5	88	3.6	25	17	SED7E	12		15		19	29	< 0.11 U	3.6 J	11 JN	23	44
PCB-172	ng/g E1668C	S 52663-74-8	68	3.6	19	12	SED7E	11		15		12	21	< 0.11 U	< 0.11 U	7.0 J	15 JN	32
PCB-173	ng/g E1668C	S 68194-16-1	88	3.6	25	17	SED7E	12		15		19	29	< 0.11 U	3.6	11 JN	23	44
PCB-174	ng/g E1668C	S 38411-25-5	320	7.9	72	48	SED7E	15		15		63	110	10 J	11	41	83	160
PCB-175	ng/g E1668C	S 40186-70-7	17	0.75	6	5	SED7E	7		15		3.0 J	5.0 J	< 0.10 U	< 0.099 U	< 0.16 U	3.5 JN	7.0 JN
PCB-176	ng/g E1668C	S 52663-65-7	43	2.2	12	8.8	SED7E	12		15		8.4	14	< 0.077 U	2.2 JN	5.1 JN	10 JN	19
PCB-177	ng/g E1668C	S 52663-70-4	180	5	47	28	SED7E	13		15		35	61	< 0.11 U	6.7 J	24	46	91
PCB-178	ng/g E1668C	S 52663-67-9	81	4.6	24	17	SED7E	11		15		17	28	< 0.11 U	< 0.11 U	10 J	21	39
PCB-179	ng/g E1668C	S 52663-64-6	150	3.8	37	26	SED7E	14		15		29	52	5.3 J	5.6 J	20	40	73
PCB-18 PCB-180	ng/g E1668C ng/g E1668C	S 37680-65-2 S 35065-29-3	74 800	9.2	27 180	18 110	SED7E SED7E	15 15		15		18 160	50 250	14 JN 29	11 J 31	19 J 100	53 190	46 410
PCB-181	ng/g E1668C	S 74472-47-2	600	10	100	110	SEDIE	10		15 15		< 0.083 U	< 0.059 U	< 0.10 U	< 0.098 U	< 0.16 U	< 0.20 U	< 0.17 U
PCB-182	ng/g E1668C	S 60145-23-5	1.4	1.4	1.4	1.4	SED7.5E	1		15		< 0.080 U	< 0.057 U	< 0.098 U	< 0.095 U	< 0.16 U	< 0.19 U	1.4 JN
PCB-183	ng/g E1668C	S 52663-69-1	280	6.3	65	40	SED7E	14		15		57	89	7.4 J	11	36	67	130
PCB-184	ng/g E1668C	S 74472-48-3	1000	37	440	450	SED6A	15		15		140	250	1000	470	300	450	130
PCB-185	ng/g E1668C	S 52712-05-7	280	6.3	65	40	SED7E	14		15		57	89	7.4	11	36	67	130
PCB-186	ng/g E1668C	S 74472-49-4								15		< 0.066 U	< 0.047 U	< 0.081 U	< 0.078 U	< 0.13 U	< 0.16 U	< 0.13 U
PCB-187	ng/g E1668C	S 52663-68-0	500	10	110	64	SED7E	15		15		97	160	16	19	64	120	240
PCB-188	ng/g E1668C	S 74487-85-7								15		< 0.061 U	< 0.043 U	< 0.074 U	< 0.075 U	< 0.12 U	< 0.15 U	< 0.12 U
PCB-189	ng/g E1668C	S 39635-31-9	9.1	0.26	2	1.2	SED7E	14		15		1.7 J	2.9 J	0.42 J	0.41 J	1.1 J	1.7 J	4.2 J
PCB-19	ng/g E1668C	S 38444-73-4	9.2	1.4	3.5	3.1	SED7E	15		15		2.5 J	3.7 J	3.9 J	2.9 JN	3.1 J	3.7 JN	5.8 J
PCB-190 PCB-191	ng/g E1668C	S 41411-64-7 S 74472-50-7	59 16	2.2	14 5.2	8.1 4.1	SED7E SED7E	13 9	 	15 15	-	11 3.1 J	19 4.1 JN	< 0.074 U < 0.077 U	2.6 J < 0.074 U	7.2 JN < 0.12 U	12 JN 4.8 J	28 8.4 J
PCB-191	ng/g E1668C	S 74472-51-8	1000	40	460	490	SED/E SED6A	15	 	15 15		150	4.1 JN 270	1000	510	310	500	140
PCB-193	ng/g E1668C	S 69782-91-8	800	18	180	110	SED7E	15	 	15		160	250	29	31	100	190	410
PCB-194	ng/g E1668C	S 35694-08-7	170	2	32	16	SED7E	15	† †	15		27	40	3.8 J	4.6 J	17	30	77
PCB-195	ng/g E1668C	S 52663-78-2	65	1.2	13	6.1	SED7E	15		15		11	17	1.2 JN	2.0 J	6.1 JN	12	33
PCB-196	ng/g E1668C	S 42740-50-1	90	2.3	22	12	SED7E	12	1	15		15	22	< 0.11 U	2.3 JN	9.7 J	19	44
PCB-197	ng/g E1668C	S 33091-17-7	16	3.6	10	10	SED7B	15				4.8 JN	8.5 J	16	10	7.1 JN	11	7.7 J
							SED8A SED6A											
DOD 400	n=/- F10000	0 00104 17 0	000	4.0	40	00		4.4		15		20	F.4	40 101	40 111	64	,,	400
PCB-198 PCB-199	ng/g E1668C ng/g E1668C	S 68194-17-2 S 52663-75-9	200	4.2 4.2	42 42	22	SED7E SED7E	14 14	 	15		33 33	51 51	4.2 JN 4.2 JN	4.9 JN 4.9 JN	21 21	41	100 100
PCB-199	ng/g E1668C	S 2051-61-8	7.3	0.27	2.7	2.6	SED/E SED8B	5	 	15 15	-	0.27 JN	< 0.81 U	4.2 JN < 0.054 U	4.9 JN 2.6 J	< 0.095 U	41 < 0.57 U	0.83 JN
PCB-20	ng/g E1668C	S 38444-84-7	120	20	50	40	SED7E	15	 	15 15		40	59	36	2.0 3	40	52	100
PCB-200	ng/g E1668C	S 52663-73-7	21	1.4	6.1	4.3	SED7E	12		15		4.2 J	5.3 JN	3.9 JN	< 0.048 U	3.0 JN	4.4 JN	11
PCB-201	ng/g E1668C	S 40186-71-8	25	1.5	8.1	5.5	SED7E	8	†	15		4.3 J	6.1 J	< 0.076 U	< 0.049 U	3.1 J	4.8 J	12
PCB-202	ng/g E1668C	S 2136-99-4	38	2.8	10	6.8	SED7E	11		15		6.8 J	11	< 0.085 U	< 0.055 U	4.8 J	8.3	20
PCB-203	ng/g E1668C	S 52663-76-0	120	3	27	13	SED7E	13		15		20	29	< 0.099 U	4.2 J	13	24	58
PCB-204	ng/g E1668C	S 74472-52-9	1900	380	1000	1000	SED6A	15		15		530	770	1900	1100	880	1000	480

										Location II	SED6.5D	SED6.5E	SED6A	SED6B	SED6C	SED7.5D	SED7.5E
										Sample II		PW6.5E00EN	PW6A00EN	PW6B00EN	PW6C00EN	PW7.5D00EN	PW7.5E00EN
										Sample Date			7/26/2017 9:20:00 AM	7/26/2017 9:10:00 AM	7/26/2017 8:00:00 AM	7/26/2017 9:30:00 AM	7/26/2017 8:40:00 AM
										Тур	e N	N	N	N	N	N	N
		5	Max	Min	Mean	Median	Max	Count	Count	Count							
PCB-205	Unit Method ng/g E1668C	Fraction CAS S 74472-53-0	Detect	Detect 0.33	Detect 2	Detect 1	Location SED7E	Detect 11	Reject	Total	1.0 JN	2.0 J	< 0.22 U	0.33 JN	0.72 J	1.9 J	3.7 J
PCB-206	ng/g E1668C	S 40186-72-9	67	0.89	11	5	SED7E	15		15 15	8.3	13	1.3 JN	1.8 J	5.2 J	8.4	25
PCB-207	ng/g E1668C	S 52663-79-3	11	3.3	5.3	4.6	SED7E	15		15	4.0 J	4.6 JN	6.2 J	4.5 J	4.7 J	4.6 J	6.2 J
PCB-208	ng/g E1668C	S 52663-77-1	18	0.81	3.8	2	SED7E	13		15	2.5 J	4.8 J	0.81 JN	0.84 JN	2.0 J	2.1 J	8.4 J
PCB-21	ng/g E1668C	S 55702-46-0	35	5.5	14	11	SED7E	15		15	11	19	7.6 JN	6.8 J	11	17	27
PCB-22	ng/g E1668C	S 38444-85-8	29	3.9	11	8	SED7E	15		15	9.3	16	6.8 J	5.5 J	8.0 J	12	24
PCB-23	ng/g E1668C	S 55720-44-0								15	< 0.11 U	< 0.19 U	< 0.19 U	< 0.13 U	< 0.19 U	< 0.21 U	< 0.22 U
PCB-24	ng/g E1668C	S 55702-45-9	1.8	0.1	0.77	0.59	SED7.5D	13		15	0.44 J 3.4 J	1.6 J 3.3 JN	0.50 JN	0.26 J 3.3 J	0.59 JN 3.8 J	1.8 J 4.5 J	1.3 J 7.2 J
PCB-25 PCB-26	ng/g E1668C ng/g E1668C	S 55712-37-3 S 38444-81-4	12 23	1.6 2.7	4.3 8.1	3.5 5.8	SED7E SED7E	15 15		15	3.4 J 5.8 J	3.3 JN 8.0 J	3.0 JN 6.5 J	3.3 J 4.8 J	5.6 J	4.5 J 8.2 J	7.2 J 15
PCB-27	ng/g E1668C	S 38444-76-7	8.1	0.9	3.3	2.4	SED7E	15		15 15	2.4 J	5.4 J	2.7 J	2.2 JN	2.3 JN	5.6 JN	5.1 J
PCB-28	ng/g E1668C	S 7012-37-5	120	20	50	40	SED7E	15		15	40	59	36	29	40	52	100
PCB-29	ng/g E1668C	S 15862-07-4	23	2.7	8.1	5.8	SED7E	15		15	5.8	8.0	6.5	4.8	5.6	8.2	15
PCB-3	ng/g E1668C	S 2051-62-9	5.6	0.37	2.5	2	SED8B	4		15	< 0.061 U	< 0.53 U	< 0.064 U	1.7 JN	< 0.11 U	< 0.39 U	0.37 JN
PCB-30	ng/g E1668C	S 35693-92-6	74	9.2	27	18	SED7E	15		15	18	50	14 JN	11	19	53	46
PCB-31	ng/g E1668C	S 16606-02-3	84	14	34	27	SED7E	15		15	28	40	24 J	20	27	35	65
PCB-32	ng/g E1668C	S 38444-77-8	36	4.4	15	9.8	SED7E	15		15	10	29	9.8 J	8.8 J	9.5 JN	26 JN	25
PCB-33	ng/g E1668C	S 38444-86-9	35	5.5	14	11 0.57	SED7E	15		15	11	19	7.6 JN	6.8	11 < 0.10 H	17	27
PCB-34 PCB-35	ng/g E1668C ng/g E1668C	S 37680-68-5 S 37680-69-6	0.64	0.49	0.57 0.45	0.57 0.35	SED7.5E SED7F	6	+ +	15 15	< 0.12 U 0.40 J	0.49 J < 0.19 U	< 0.19 U < 0.19 U	< 0.14 U < 0.13 U	< 0.19 U 0.34 JN	< 0.22 U < 0.21 U	0.64 J < 0.22 U
PCB-36	ng/g E1668C	S 38444-87-0	280	1.6	72	37	SED8A	14		15	1.8 J	< 0.18 U	170	37	4.3 J	61	3.7 J
PCB-37	ng/g E1668C	S 38444-90-5	20	3.3	9.1	7.1	SED7.5E	15		15	8.2 J	13	5.8 J	5.0 J	7.1 J	11	20
PCB-38	ng/g E1668C	S 53555-66-1								15	< 0.12 U	< 0.19 U	< 0.19 U	< 0.14 U	< 0.20 U	< 0.22 U	< 0.23 U
PCB-39	ng/g E1668C	S 38444-88-1	0.87	0.29	0.64	0.71	SED7B	7		15	0.29 J	< 0.17 U	< 0.17 U	< 0.12 U	< 0.18 U	0.72 J	0.71 J
PCB-4	ng/g E1668C	S 13029-08-8	12	2	5.2	4.6	SED7E	9		15	2.0 JN	< 3.0 U	5.9 J	4.6 JN	< 0.69 U	< 4.4 U	5.3 JN
PCB-40	ng/g E1668C	S 38444-93-8	89	8.5	30	21	SED7E	15		15	26	40	16	14	21	32	54
PCB-41	ng/g E1668C	S 52663-59-9	89	8.5	30	21	SED7E	15		15	26	40	16	14	21	32	54
PCB-42	ng/g E1668C	S 36559-22-5	43	4.7	15	11	SED7E	15		15	13	19	8.1 J	6.8 J	11	16	28
PCB-43	ng/g E1668C	S 70362-46-8	6.2	0.7	2.5	2	SED7E	14		15	1.9 J	2.5 JN	1.4 JN	1.2 JN	2.0 J 46	2.8 JN	4.9 J
PCB-44 PCB-45	ng/g E1668C ng/g E1668C	S 41464-39-5 S 70362-45-7	190 44	28 4.1	64 13	46 8.4	SED7E SED7E	15 15	-	15 15	52 10	71	43 7.5 J	33 5.0 JN	8.4 J	66 13	110 22
PCB-46	ng/g E1668C	S 41464-47-5	8.6	1	2.9	2.2	SED7E	14		15	2.5 JN	2.7 J	1.5 J	1.2 J	1.9 J	3.0 J	5.1 J
PCB-47	ng/g E1668C	S 2437-79-8	190	28	64	46	SED7E	15		15	52	71	43	33	46	66	110
PCB-48	ng/g E1668C	S 70362-47-9	37	3.1	13	9.5	SED7E	15		15	11	18	5.4 JN	5.7 J	9.5 J	13	26
PCB-49	ng/g E1668C	S 41464-40-8	120	19	42	34	SED7E	15		15	35	47	27	22	34	44	77
PCB-5	ng/g E1668C	S 16605-91-7								15	< 0.28 U	< 0.83 U	< 0.54 U	< 0.40 U	< 0.56 U	< 1.2 U	< 0.48 U
PCB-50	ng/g E1668C	S 62796-65-0	27	2.8	8.8	6.3	SED7E	15		15	7.1 J	7.4 J	6.1 J	4.9 J	6.3 J	7.4 J	15
PCB-51 PCB-52	ng/g E1668C	S 68194-04-7	44	4.1	13	8.4	SED7E	15		15	10	13	7.5	5.0 JN	8.4	13	22
PCB-52	ng/g E1668C ng/g E1668C	S 35693-99-3 S 41464-41-9	190 27	32 2.8	71 8.8	59 6.3	SED7E SED7E	15 15		15	62 7.1	76 7.4	48 6.1	38 4.9	59 6.3	70 7.4	120 15
PCB-53	ng/g E1668C ng/g E1668C	S 15968-05-5	0.92	0.18	0.43	0.34	SED7E	10	+ +	15 15	0.20 J	< 0.018 U	0.30 J	0.18 JN	< 0.019 U	0.79 JN	0.54 J
PCB-55	ng/g E1668C	S 74338-24-2	2.3	0.31	1.1	0.82	SED7E	12		15	0.34 J	1.6 JN	< 0.068 U	0.51 JN	0.49 JN	1.4 J	2.1 JN
PCB-56	ng/g E1668C	S 41464-43-1	42	7.4	18	14	SED7E	15		15	16	26	11 J	9.2	14	19	32
PCB-57	ng/g E1668C	S 70424-67-8	1.9	0.92	1.4	1.4	SED7E	2		15	< 0.039 U	< 0.059 U	< 0.069 U	< 0.047 U	< 0.074 U	< 0.10 U	0.92 JN
PCB-58	ng/g E1668C	S 41464-49-7	2.6	0.17	0.75	0.35	SED7D	10		15	0.32 J	< 0.059 U	1.2 J	< 0.048 U	0.26 JN	< 0.10 U	0.38 JN
PCB-59	ng/g E1668C	S 74472-33-6	17	1.8	5.9	4.5	SED7E	15		15	5.6 J	8.1 J	2.8 JN	3.0 J	4.5 J	6.3 J	11
PCB-6	ng/g E1668C	S 25569-80-6	5.5	1.2	2.8	2.3	SED7E	4		15	< 0.25 U	< 0.73 U	< 0.47 U	1.2 J	< 0.49 U	< 1.1 U	2.8 J
PCB-60	ng/g E1668C	S 33025-41-1	21	3.2	9	6	SED7E	15		15	8.3	14	5.7 J	5.8 J	6.0 J	9.9	16
PCB-61 PCB-62	ng/g E1668C ng/g E1668C	S 33284-53-6 S 54230-22-7	200 17	33 1.8	82 5.9	70 4.5	SED7E SED7E	15 15		15	77 5.6	110 8.1	49 2.8 JN	46 3.0	70 4.5	85 6.3	140 11
PCB-62	ng/g E1668C	S 74472-34-7	7.6	0.9	2.6	2.3	SED7E SED7E	15	+ +	15 15	5.6 2.4 J	8.1 3.9 J	2.8 JN 1.7 J	3.0 1.6 J	4.5 2.3 J	6.3 2.8 J	4.2 JN
PCB-64	ng/g E1668C	S 52663-58-8	63	10	24	19	SED7E	15		15	21	32	15	11	19	25	4.2 514
PCB-65	ng/g E1668C	S 33284-54-7	190	28	64	46	SED7E	15		15	52	71	43	33	46	66	110
PCB-66	ng/g E1668C	S 32598-10-0	110	21	47	41	SED7E	15		15	42	64	28	29	41	51	81
PCB-67	ng/g E1668C	S 73575-53-8	5.4	0.75	2.1	1.7	SED7E	13		15	1.8 J	3.1 J	0.98 J	0.87 JN	1.2 J	1.7 JN	3.8 J
PCB-68	ng/g E1668C	S 73575-52-7	2.6	0.4	0.93	0.78	SED7E	13		15	0.59 J	< 0.052 U	0.64 JN	0.78 J	0.52 JN	1.0 J	1.0 JN
PCB-69	ng/g E1668C	S 60233-24-1	120	19	42	34	SED7E	15		15	35	47	27	22	34	44	77
PCB-7	ng/g E1668C	S 33284-50-3								15	< 0.25 U	< 0.75 U	< 0.49 U	< 0.36 U	< 0.51 U	< 1.1 U	< 0.44 U
PCB-70	ng/g E1668C	S 32598-11-1	200	33	82	70	SED7E	15		15	77	110 40	49 16	46 14	70 21	85 32	140 54
PCB-71	ng/g E1668C	S 41464-46-4	89	8.5	30	21	SED7E	15		15	26						

PCB-72	Unit Method ng/g E1668C	Fraction CAS S 41464-42-0 S 74338-23-1 S 32690-93-0 S 32598-12-2 S 70362-48-0 S 32598-13-3 S 70362-49-1 S 41464-48-6 S 34883-43-7 S 33284-52-5 S 70362-50-4 S 52663-62-4 S 60145-20-2 S 52663-60-2 S 55512-69-1 S 38890-02-8 S 55215-17-3 S 73575-57-2 S 34883-39-1	Max Detect 2.7 6.2 200 17 200 10 250 1.9 11 2 0.91 23 180 42 45 140 140	Min Detect 0.42 0.7 33 1.8 33 1.2 1.1 0.16 2.7 0.28 0.91 2.3 17 4.7 4.9 17	Mean Detect 1.1 2.5 82 5.9 82 3.8 76 0.87 5.7 1.1 0.91 9.2 65 16 17	Median Detect 0.88 2 70 4.5 70 2.8 51 0.86 5.5 0.79 0.91 7.7 55 15	Max Location SED7E SED7E SED7E SED7E SED7E SED7E SED8A SED7B SED7E SED8A SED7E SED8A SED8A SED8A SED8A SED8A	Count Detect 7 14 15 15 15 15 15 15 15 15 16 14 7 1 14 15 15 15 15 15 15 15 15 15 15 15 15 15	Count Reject	Location ID Sample ID Sample Date Type Count Total 15 15 15 15 15 15 15 15 15 15 15 15 15	SED6.5D PW6.5D00EN 7/26/2017 9:50:00 AM N 0.64 J 1.9 77 5.6 77 3.9 J 4.4 J 0.16 JN 3.5 J < 0.034 U < 0.037 U	SED6.5E PW6.5E00EN 7/26/2017 8:50:00 AM N 0.86 J 2.5 JN 110 8.1 110 5.0 J 7.8 J 0.95 J 6.3 J < 0.050 U < 0.054 U 13 JN	SED6A PW6A00EN 7/26/2017 9:20:00 AM N < 0.068 U 1.4 JN 49 2.8 JN 49 2.6 J 200 < 0.061 U 7.3 J 1.9 J < 0.063 U 4.0 J	SED6B PW6B00EN 7/26/2017 9:10:00 AM N < 0.046 U 1.2 JN 46 3.0 46 2.1 J 58 < 0.041 U 5.2 JN 0.79 J < 0.043 U 4.6 JN	SED6C PW6C00EN 7/26/2017 8:00:00 AM N <0.073 U 2.0 70 4.5 70 2.8 J 12 <0.065 U 4.7 JN <0.064 U <0.068 U 5.3 JN	SED7.5D PW7.5D00EN 7/26/2017 9:30:00 AM N 0.88 JN 2.8 JN 85 6.3 85 4.1 J 79 < 0.090 U 7.2 J 0.41 J < 0.094 U	SED7.5E PW7.5E00EN 7/26/2017 8:40:00 AM N 1.1 JN 4.9 140 11 140 6.4 J 11 1.2 J 8.5 J < 0.046 U < 0.047 U
PCB-72	ng/g E1668C ng/g E1668C	\$ \text{41464-42-0}\$ \\ \text{74338-23-1}\$ \\ \text{32690-93-0}\$ \\ \text{32598-12-2}\$ \\ \text{70362-48-0}\$ \\ \text{32598-13-3}\$ \\ \text{70362-49-1}\$ \\ \text{53483-43-7}\$ \\ \text{33284-52-5}\$ \\ \text{70362-50-4}\$ \\ \text{52663-62-4}\$ \\ \text{5510-45-4}\$ \\ \text{55312-69-1}\$ \\ \text{338380-02-8}\$ \\ \text{55215-17-3}\$ \\ \text{73575-57-2}\$ \end{assume}	Detect 2.7 6.2 200 17 200 10 250 1.9 11 2 0.91 23 180 42 45 140 140 47	Detect 0.42 0.7 33 1.8 33 1.2 1.1 0.16 2.7 0.28 0.91 2.3 17 4.7 4.9	Detect 1.1 2.5 82 5.9 82 3.8 76 0.87 5.7 1.1 0.91 9.2 65 16 17	Detect 0.88 2 70 4.5 70 2.8 51 0.86 5.5 0.79 0.91 7.7 55 15	Location SED7E SED7E SED7E SED7E SED7E SED7E SED7E SED7E SED8A SED7E SED8A SED8A SED7E SED8A SED7E SED8A	Detect 7 14 15 15 15 15 15 15 15 15 15 15 15 15 15		Sample Date Type Count Total 15 15 15 15 15 15 15 15 15 15 15 15 15	7/26/2017 9:50:00 AM N 0.64 J 1.9 77 5.6 77 3.9 J 4.4 J 0.16 JN 3.5 J < 0.034 U < 0.037 U	7/26/2017 8:50:00 AM N 0.86 J 2.5 JN 110 8.1 110 5.0 J 7.8 J 0.95 J 6.3 J < 0.050 U < 0.054 U	7/26/2017 9:20:00 AM N < 0.068 U 1.4 JN 49 2.8 JN 49 2.6 J 200 < 0.061 U 7.3 J 1.9 J < 0.063 U	7/26/2017 9:10:00 AM N < 0.046 U 1.2 JN 46 3.0 46 2.1 J 58 < 0.041 U 5.2 JN 0.79 J < 0.043 U	7/26/2017 8:00:00 AM N < 0.073 U 2.0 70 4.5 70 2.8 J 12 < 0.065 U 4.7 JN < 0.064 U < 0.068 U	7/26/2017 9:30:00 AM N 0.88 JN 2.8 JN 85 6.3 85 4.1 J 79 < 0.090 U 7.2 J 0.41 J < 0.094 U	7/26/2017 8:40:00 AM N 1.1 JN 4.9 140 11 140 6.4 J 11 1.2 J 8.5 J < 0.046 U
PCB-72 PCB-73 PCB-73 PCB-74 PCB-75 PCB-76 PCB-76 PCB-77 PCB-88 PCB-80 PCB-82 PCB-83 PCB-83 PCB-84 PCB-85 PCB-85 PCB-86 PCB-87 PCB-86 PCB-87 PCB-87 PCB-88 PCB-89 PCB-89 PCB-89 PCB-99 PCB-99 PCB-90 PCB-91 PCB-91 PCB-73 PCB-73 PCB-74 PCB-75 PCB-75 PCB-75 PCB-76 PCB-77 PCB-76 PCB-76 PCB-76 PCB-77 PCB-76 PCB-77 PCB-76 PCB-77 PCB-76 PCB-77 PCB-76 PCB-77 PC	ng/g E1668C ng/g E1668C	\$ \text{41464-42-0}\$ \\ \text{74338-23-1}\$ \\ \text{32690-93-0}\$ \\ \text{32598-12-2}\$ \\ \text{70362-48-0}\$ \\ \text{32598-13-3}\$ \\ \text{70362-49-1}\$ \\ \text{53483-43-7}\$ \\ \text{33284-52-5}\$ \\ \text{70362-50-4}\$ \\ \text{52663-62-4}\$ \\ \text{5510-45-4}\$ \\ \text{55312-69-1}\$ \\ \text{338380-02-8}\$ \\ \text{55215-17-3}\$ \\ \text{73575-57-2}\$ \end{assume}	Detect 2.7 6.2 200 17 200 10 250 1.9 11 2 0.91 23 180 42 45 140 140 47	Detect 0.42 0.7 33 1.8 33 1.2 1.1 0.16 2.7 0.28 0.91 2.3 17 4.7 4.9	Detect 1.1 2.5 82 5.9 82 3.8 76 0.87 5.7 1.1 0.91 9.2 65 16 17	Detect 0.88 2 70 4.5 70 2.8 51 0.86 5.5 0.79 0.91 7.7 55 15	Location SED7E SED7E SED7E SED7E SED7E SED7E SED7E SED7E SED8A SED7E SED8A SED8A SED7E SED8A SED7E SED8A	Detect 7 14 15 15 15 15 15 15 15 15 15 15 15 15 15		Type Count Total 15 15 15 15 15 15 15 15 15 1	N 0.64 J 1.9 77 5.6 77 3.9 J 4.4 J 0.16 JN 3.5 J < 0.034 U < 0.037 U	N 0.86 J 2.5 JN 110 8.1 110 5.0 J 7.8 J 0.95 J 6.3 J < 0.050 U < 0.054 U	N < 0.068 U 1.4 JN 49 2.8 JN 49 2.6 J 200 < 0.061 U 7.3 J 1.9 J < 0.063 U	N < 0.046 U 1.2 JN 46 3.0 46 2.1 J 58 < 0.041 U 5.2 JN 0.79 J < 0.043 U	N < 0.073 U 2.0 70 4.5 70 2.8 J 12 < 0.065 U 4.7 JN < 0.064 U < 0.068 U	N 0.88 JN 2.8 JN 85 6.3 85 4.1 J 79 <0.090 U 7.2 J 0.41 J <0.094 U	N 1.1 JN 4.9 140 11 140 6.4 J 11 1.2 J 8.5 J < 0.046 U
PCB-72 PCB-73 PCB-73 PCB-74 PCB-75 PCB-76 PCB-76 PCB-77 PCB-78 PCB-80 PCB-80 PCB-81 PCB-82 PCB-83 PCB-83 PCB-84 PCB-85 PCB-86 PCB-86 PCB-87 PCB-86 PCB-87 PCB-88 PCB-86 PCB-86 PCB-86 PCB-87 PCB-86 PCB-87 PCB-88 PCB-89 PCB-89 PCB-90 PCB-91 PCB-92	ng/g E1668C ng/g E1668C	\$ \text{41464-42-0}\$ \\ \text{74338-23-1}\$ \\ \text{32690-93-0}\$ \\ \text{32598-12-2}\$ \\ \text{70362-48-0}\$ \\ \text{32598-13-3}\$ \\ \text{70362-49-1}\$ \\ \text{53483-43-7}\$ \\ \text{33284-52-5}\$ \\ \text{70362-50-4}\$ \\ \text{52663-62-4}\$ \\ \text{5510-45-4}\$ \\ \text{55312-69-1}\$ \\ \text{338380-02-8}\$ \\ \text{55215-17-3}\$ \\ \text{73575-57-2}\$ \end{assume}	Detect 2.7 6.2 200 17 200 10 250 1.9 11 2 0.91 23 180 42 45 140 140 47	Detect 0.42 0.7 33 1.8 33 1.2 1.1 0.16 2.7 0.28 0.91 2.3 17 4.7 4.9	Detect 1.1 2.5 82 5.9 82 3.8 76 0.87 5.7 1.1 0.91 9.2 65 16 17	Detect 0.88 2 70 4.5 70 2.8 51 0.86 5.5 0.79 0.91 7.7 55 15	Location SED7E SED7E SED7E SED7E SED7E SED7E SED7E SED7E SED8A SED7E SED8A SED8A SED7E SED8A SED7E SED8A	Detect 7 14 15 15 15 15 15 15 15 15 15 15 15 15 15		Count Total 15 15 15 15 15 15 15 15 15 15 15 15 15	0.64 J 1.9 77 5.6 77 3.9 J 4.4 J 0.16 JN 3.5 J < 0.034 U < 0.037 U	0.86 J 2.5 JN 110 8.1 110 5.0 J 7.8 J 0.95 J 6.3 J < 0.050 U < 0.054 U	< 0.068 U 1.4 JN 49 2.8 JN 49 2.6 J 200 <0.061 U 7.3 J 1.9 J < 0.063 U	< 0.046 U 1.2 JN 46 3.0 46 2.1 J 58 < 0.041 U 5.2 JN 0.79 J < 0.043 U	< 0.073 U 2.0 70 4.5 70 2.8 J 12 < 0.065 U 4.7 JN < 0.064 U < 0.068 U	0.88 JN 2.8 JN 85 6.3 85 4.1 J 79 <0.090 U 7.2 J 0.41 J <0.094 U	1.1 JN 4.9 140 11 140 6.4 J 11 1.2 J 8.5 J < 0.046 U
PCB-72 PCB-73 PCB-73 PCB-74 PCB-75 PCB-76 PCB-76 PCB-77 PCB-78 PCB-80 PCB-80 PCB-81 PCB-82 PCB-83 PCB-83 PCB-84 PCB-85 PCB-86 PCB-86 PCB-87 PCB-86 PCB-87 PCB-88 PCB-86 PCB-86 PCB-86 PCB-87 PCB-86 PCB-87 PCB-88 PCB-89 PCB-89 PCB-90 PCB-91 PCB-92	ng/g E1668C ng/g E1668C	\$ \text{41464-42-0}\$ \\ \text{74338-23-1}\$ \\ \text{32690-93-0}\$ \\ \text{32598-12-2}\$ \\ \text{70362-48-0}\$ \\ \text{32598-13-3}\$ \\ \text{70362-49-1}\$ \\ \text{53483-43-7}\$ \\ \text{33284-52-5}\$ \\ \text{70362-50-4}\$ \\ \text{52663-62-4}\$ \\ \text{5510-45-4}\$ \\ \text{55312-69-1}\$ \\ \text{338380-02-8}\$ \\ \text{55215-17-3}\$ \\ \text{73575-57-2}\$ \end{assume}	Detect 2.7 6.2 200 17 200 10 250 1.9 11 2 0.91 23 180 42 45 140 140 47	Detect 0.42 0.7 33 1.8 33 1.2 1.1 0.16 2.7 0.28 0.91 2.3 17 4.7 4.9	Detect 1.1 2.5 82 5.9 82 3.8 76 0.87 5.7 1.1 0.91 9.2 65 16 17	Detect 0.88 2 70 4.5 70 2.8 51 0.86 5.5 0.79 0.91 7.7 55 15	Location SED7E SED7E SED7E SED7E SED7E SED7E SED7E SED7E SED8A SED7E SED8A SED8A SED7E SED8A SED7E SED8A	Detect 7 14 15 15 15 15 15 15 15 15 15 15 15 15 15		Total 15 15 15 15 15 15 15 15 15 1	1.9 77 5.6 77 3.9 J 4.4 J 0.16 JN 3.5 J < 0.034 U < 0.037 U	2.5 JN 110 8.1 110 5.0 J 7.8 J 0.95 J 6.3 J < 0.050 U < 0.054 U	1.4 JN 49 2.8 JN 49 2.6 J 200 <0.061 U 7.3 J 1.9 J <0.063 U	1.2 JN 46 3.0 46 2.1 J 58 <0.041 U 5.2 JN 0.79 J <0.043 U	2.0 70 4.5 70 2.8 J 12 < 0.065 U 4.7 JN < 0.064 U < 0.068 U	2.8 JN 85 6.3 85 4.1 J 79 <0.090 U 7.2 J 0.41 J <0.094 U	4.9 140 11 140 6.4 J 11 1.2 J 8.5 J < 0.046 U
PCB-73 PCB-74 PCB-75 PCB-76 PCB-77 PCB-78 PCB-88 PCB-82 PCB-83 PCB-84 PCB-85 PCB-86 PCB-87 PCB-86 PCB-87 PCB-87 PCB-87 PCB-88 PCB-89 PCB-89 PCB-99 PCB-90 PCB-91 PCB-91 PCB-79 PC	ng/g E1668C ng/g E1668C	\$ 74338-23-1 \$ 32690-93-0 \$ 32598-12-2 \$ 70362-48-0 \$ 32598-13-3 \$ 70362-49-1 \$ 41464-48-6 \$ 34883-43-7 \$ 33284-52-5 \$ 70362-50-4 \$ 52663-62-4 \$ 60145-20-2 \$ 52663-60-2 \$ 65510-45-4 \$ 55312-69-1 \$ 38380-02-8 \$ 55215-17-3 \$ 73575-57-2	6.2 200 17 200 10 250 1.9 11 2 2 0.91 23 180 42 45 140 140 47	0.7 33 1.8 33 1.2 1.1 0.16 2.7 0.28 0.91 2.3 17 4.7 4.9 17	2.5 82 5.9 82 3.8 76 0.87 5.7 1.1 0.91 9.2 65 16	2 70 4.5 70 2.8 51 0.86 5.5 0.79 0.91 7.7 55	SEDTE SEDTE SEDTE SEDTE SEDTE SEDBA SEDTE SEDBA SEDTE SEDBA SEDBA SEDBA SEDBA SEDBA	14 15 15 15 15 15 15 16 14 7 1 14 15		15 15 15 15 15 15 15 15 15 15 15 15 15 1	1.9 77 5.6 77 3.9 J 4.4 J 0.16 JN 3.5 J < 0.034 U < 0.037 U	2.5 JN 110 8.1 110 5.0 J 7.8 J 0.95 J 6.3 J < 0.050 U < 0.054 U	1.4 JN 49 2.8 JN 49 2.6 J 200 <0.061 U 7.3 J 1.9 J <0.063 U	1.2 JN 46 3.0 46 2.1 J 58 <0.041 U 5.2 JN 0.79 J <0.043 U	2.0 70 4.5 70 2.8 J 12 < 0.065 U 4.7 JN < 0.064 U < 0.068 U	2.8 JN 85 6.3 85 4.1 J 79 <0.090 U 7.2 J 0.41 J <0.094 U	4.9 140 11 140 6.4 J 11 1.2 J 8.5 J < 0.046 U
PCB-74 PCB-75 PCB-76 PCB-77 PCB-78 PCB-78 PCB-89 PCB-89 PCB-89 PCB-99 PCB-99 PCB-99 PCB-89 PCB-99 PCB-99 PCB-99 PCB-99 PCB-99 PCB-90 PCB-91 PCB-75 PCB-75 PCB-75 PCB-90 PCB-91 PCB-75 PCB-75 PCB-75 PCB-90 PCB-91 PCB-75 PCB-75 PCB-90 PCB-91 PCB-91 PCB-75 PCB-75 PCB-91 PCB-91 PCB-75 PCB-75 PCB-91 PCB-91 PCB-92 PCB-91 PCB-91 PCB-96 PCB-75 PCB-75 PCB-96 PCB-97 PCB-91 PCB-97 PC	ng/g E1668C ng/g E1668C	S 32690-93-0 S 32598-12-2 S 70362-48-0 S 32598-13-3 S 70362-49-1 S 41464-48-6 S 34883-43-7 S 33284-52-5 S 70362-50-4 S 52663-62-4 S 60145-20-2 S 52663-60-2 S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	200 17 200 10 250 1.9 11 2 0.91 23 180 42 45 140 140 47	33 1.8 33 1.2 1.1 0.16 2.7 0.28 0.91 2.3 17 4.7 4.9 17	82 5.9 82 3.8 76 0.87 5.7 1.1 0.91 9.2 65 16 17	70 4.5 70 2.8 51 0.86 5.5 0.79 0.91 7.7 55	SED7E SED7E SED7E SED8A SED7B SED7E SED7E SED7E SED7E SED8A SED7E SED8A SED8A SED8A SED8A	15 15 15 15 15 15 6 14 7 1 14 15		15 15 15 15 15 15 15 15 15 15 15 15	77 5.6 77 3.9 J 4.4 J 0.16 JN 3.5 J < 0.034 U < 0.037 U	110 8.1 110 5.0 J 7.8 J 0.95 J 6.3 J < 0.050 U < 0.054 U	49 2.8 JN 49 2.6 J 200 <0.061 U 7.3 J 1.9 J <0.063 U	46 3.0 46 2.1 J 58 < 0.041 U 5.2 JN 0.79 J < 0.043 U	70 4.5 70 2.8 J 12 <0.065 U 4.7 JN <0.064 U <0.068 U	85 6.3 85 4.1 J 79 < 0.090 U 7.2 J 0.41 J < 0.094 U	140 11 140 6.4 J 11 1.2 J 8.5 J < 0.046 U
PCB-75 PCB-76 PCB-77 PCB-78 PCB-79 PCB-8 PCB-80 PCB-81 PCB-82 PCB-83 PCB-84 PCB-85 PCB-86 PCB-86 PCB-86 PCB-87 PCB-87 PCB-87 PCB-88 PCB-89 PCB-90 PCB-91 PCB-91 PCB-92 PCB-77 PCB-77 PCB-77 PCB-77 PCB-91 PCB-91 PCB-77 PCB-77 PCB-91 PCB-91 PCB-91 PCB-91 PCB-77 PCB-77 PCB-91 PCB-91 PCB-91 PCB-92 PCB-91 PCB-91 PCB-91 PCB-91 PCB-97 PCB-77 PCB-77 PCB-91 PCB-91 PCB-92 PCB-91 PCB-92 PCB-91 PCB	ng/g E1668C ng/g E1668C	S 32598-12-2 S 70362-48-0 S 32598-13-3 S 70362-49-1 S 41464-48-6 S 34883-43-7 S 33284-52-5 S 70362-50-4 S 52663-62-4 S 60145-20-2 S 52663-60-2 S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	17 200 10 250 1.9 11 2 0.91 23 180 42 45 140 140	1.8 33 1.2 1.1 0.16 2.7 0.28 0.91 2.3 17 4.7 4.9 17	5.9 82 3.8 76 0.87 5.7 1.1 0.91 9.2 65 16	4.5 70 2.8 51 0.86 5.5 0.79 0.91 7.7 55 15	SED7E SED7E SED8A SED7B SED7E SED7E SED7E SED8A SED7E SED8A SED8A SED8A SED8A SED7E	15 15 15 15 6 14 7 1 14 15		15 15 15 15 15 15 15 15 15 15 15	5.6 77 3.9 J 4.4 J 0.16 JN 3.5 J < 0.034 U < 0.037 U	8.1 110 5.0 J 7.8 J 0.95 J 6.3 J < 0.050 U < 0.054 U	2.8 JN 49 2.6 J 200 <0.061 U 7.3 J 1.9 J <0.063 U	3.0 46 2.1 J 58 < 0.041 U 5.2 JN 0.79 J < 0.043 U	4.5 70 2.8 J 12 < 0.065 U 4.7 JN < 0.064 U < 0.068 U	6.3 85 4.1 J 79 < 0.090 U 7.2 J 0.41 J < 0.094 U	11 140 6.4 J 11 1.2 J 8.5 J < 0.046 U
PCB-76 PCB-77 PCB-78 PCB-79 PCB-8 PCB-80 PCB-81 PCB-82 PCB-83 PCB-83 PCB-84 PCB-85 PCB-86 PCB-86 PCB-87 PCB-88 PCB-88 PCB-89 PCB-9 PCB-90 PCB-91 PCB-91 PCB-77 PCB-91 PCB-91 PCB-91 PCB-91 PCB-91 PCB-77 PCB-77 PCB-91 PCB-91 PCB-91 PCB-91 PCB-91 PCB-91 PCB-97 PCB-	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 70362-48-0 S 32598-13-3 S 70362-49-1 S 41464-48-6 S 34883-43-7 S 33284-52-5 S 70362-50-4 S 52663-62-4 S 60145-20-2 S 52663-60-2 S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	200 10 250 1.9 11 2 0.91 23 180 42 45 140 140 47	33 1.2 1.1 0.16 2.7 0.28 0.91 2.3 17 4.7 4.9	82 3.8 76 0.87 5.7 1.1 0.91 9.2 65 16	70 2.8 51 0.86 5.5 0.79 0.91 7.7 55	SEDTE SED8A SED7B SED7E SED7E SED8A SED7E SED8A SED8A SED8A SED7E SED7E	15 15 15 6 14 7 1 14 15		15 15 15 15 15 15 15 15 15 15	77 3.9 J 4.4 J 0.16 JN 3.5 J < 0.034 U < 0.037 U	110 5.0 J 7.8 J 0.95 J 6.3 J < 0.050 U < 0.054 U	49 2.6 J 200 < 0.061 U 7.3 J 1.9 J < 0.063 U	46 2.1 J 58 < 0.041 U 5.2 JN 0.79 J < 0.043 U	70 2.8 J 12 < 0.065 U 4.7 JN < 0.064 U < 0.068 U	85 4.1 J 79 < 0.090 U 7.2 J 0.41 J < 0.094 U	140 6.4 J 11 1.2 J 8.5 J < 0.046 U
PCB-77 PCB-78 PCB-79 PCB-8 PCB-80 PCB-81 PCB-82 PCB-83 PCB-84 PCB-85 PCB-86 PCB-86 PCB-87 PCB-88 PCB-88 PCB-89 PCB-9 PCB-90 PCB-91 PCB-92 PCB-91 PCB-92 PCB-78 PCB-78 PCB-90 PCB-91 PCB-92 PCB-78 PCB-78 PCB-90 PCB-91 PCB-92 PCB-91 PCB-92 PCB-78 PCB-78 PCB-90 PCB-91 PCB-92 PCB-90 PCB-91 PCB-92 PCB-90 PCB-91 PCB-92 PCB-90 PCB-91 PCB-92 PCB-90 PCB-91 PCB-92 PCB-90 PCB-91 PCB-92 PCB-90 PCB-91 PCB-92 PCB-90 PCB-91 PCB-92 PCB-90 PCB-90 PCB-90 PCB-90 PCB-91 PCB-92	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 32598-13-3 S 70362-49-1 S 41464-48-6 S 34883-43-7 S 33284-52-5 S 70362-50-4 S 52663-62-4 S 60145-20-2 S 52663-60-2 S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	10 250 1.9 11 2 0.91 23 180 42 45 140 140	1.2 1.1 0.16 2.7 0.28 0.91 2.3 17 4.7 4.9	3.8 76 0.87 5.7 1.1 0.91 9.2 65 16	2.8 51 0.86 5.5 0.79 0.91 7.7 55	SED7E SED8A SED7B SED7E SED7E SED8A SED8A SED8A SED7E SED7E	15 15 6 14 7 1 14 15		15 15 15 15 15 15 15 15	3.9 J 4.4 J 0.16 JN 3.5 J < 0.034 U < 0.037 U	5.0 J 7.8 J 0.95 J 6.3 J < 0.050 U < 0.054 U	2.6 J 200 < 0.061 U 7.3 J 1.9 J < 0.063 U	2.1 J 58 < 0.041 U 5.2 JN 0.79 J < 0.043 U	2.8 J 12 < 0.065 U 4.7 JN < 0.064 U < 0.068 U	4.1 J 79 < 0.090 U 7.2 J 0.41 J < 0.094 U	6.4 J 11 1.2 J 8.5 J < 0.046 U
PCB-78	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 70362-49-1 S 41464-48-6 S 34883-43-7 S 33284-52-5 S 70362-50-4 S 52663-62-4 S 60145-20-2 S 52663-60-2 S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	250 1.9 1.1 2 0.91 23 180 42 45 140 140 47	1.1 0.16 2.7 0.28 0.91 2.3 17 4.7 4.9	76 0.87 5.7 1.1 0.91 9.2 65 16	51 0.86 5.5 0.79 0.91 7.7 55 15	SED8A SED7B SED7E SED7E SED8A SED8A SED7E SED7E	15 6 14 7 1 14 15		15 15 15 15 15 15	4.4 J 0.16 JN 3.5 J < 0.034 U < 0.037 U	7.8 J 0.95 J 6.3 J < 0.050 U < 0.054 U	<0.061 U 7.3 J 1.9 J < 0.063 U	58 < 0.041 U 5.2 JN 0.79 J < 0.043 U	< 0.065 U 4.7 JN < 0.064 U < 0.068 U	79 < 0.090 U 7.2 J 0.41 J < 0.094 U	11 1.2 J 8.5 J < 0.046 U
PCB-79 PCB-8 PCB-80 PCB-81 PCB-82 PCB-83 PCB-84 PCB-85 PCB-86 PCB-85 PCB-86 PCB-87 PCB-88 PCB-89 PCB-9 PCB-90 PCB-91 PCB-92 PCB-92 PCB-92 PCB-90 PCB-92 PCB-88	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	\$ 41464-48-6 \$ 34883-43-7 \$ 33284-52-5 \$ 70362-50-4 \$ 52663-62-4 \$ 60145-20-2 \$ 52663-60-2 \$ 65510-45-4 \$ 55312-69-1 \$ 38380-02-8 \$ 55215-17-3 \$ 73575-57-2	1.9 11 2 0.91 23 180 42 45 140 140	0.16 2.7 0.28 0.91 2.3 17 4.7 4.9	0.87 5.7 1.1 0.91 9.2 65 16	0.86 5.5 0.79 0.91 7.7 55	SED7B SED7E SED7E SED8A SED8A SED7E SED7E	6 14 7 1 14 15		15 15 15 15 15	0.16 JN 3.5 J < 0.034 U < 0.037 U	0.95 J 6.3 J < 0.050 U < 0.054 U	< 0.061 U 7.3 J 1.9 J < 0.063 U	< 0.041 U 5.2 JN 0.79 J < 0.043 U	< 0.065 U 4.7 JN < 0.064 U < 0.068 U	< 0.090 U 7.2 J 0.41 J < 0.094 U	1.2 J 8.5 J < 0.046 U
PCB-8	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 34883-43-7 S 33284-52-5 S 70362-50-4 S 52663-62-4 S 60145-20-2 S 52663-60-2 S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	11 2 0.91 23 180 42 45 140 140	2.7 0.28 0.91 2.3 17 4.7 4.9	5.7 1.1 0.91 9.2 65 16 17	5.5 0.79 0.91 7.7 55 15	SED7E SED8A SED8A SED7E SED7E	14 7 1 14 15		15 15 15 15 15	3.5 J < 0.034 U < 0.037 U	6.3 J < 0.050 U < 0.054 U	7.3 J 1.9 J < 0.063 U	5.2 JN 0.79 J < 0.043 U	4.7 JN < 0.064 U < 0.068 U	7.2 J 0.41 J < 0.094 U	8.5 J < 0.046 U
PCB-8 PCB-80 PCB-80 PCB-81 PCB-82 PCB-83 PCB-83 PCB-84 PCB-85 PCB-86 PCB-86 PCB-86 PCB-87 PCB-88 PCB-89 PCB-99 PCB-90 PCB-91 PCB-92 PCB-92	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 33284-52-5 S 70362-50-4 S 52663-62-4 S 60145-20-2 S 52663-60-2 S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	2 0.91 23 180 42 45 140 140	0.28 0.91 2.3 17 4.7 4.9	1.1 0.91 9.2 65 16 17	0.79 0.91 7.7 55 15	SED8A SED8A SED7E SED7E	7 1 14 15		15 15 15 15	< 0.034 U < 0.037 U	< 0.050 U < 0.054 U	1.9 J < 0.063 U	0.79 J < 0.043 U	< 0.064 U < 0.068 U	0.41 J < 0.094 U	< 0.046 U
PCB-81 n. PCB-82 n. PCB-83 n. PCB-84 n. PCB-85 n. PCB-86 n. PCB-87 n. PCB-87 n. PCB-89 n. PCB-90 n. PCB-90 n. PCB-91 n. PCB-91 n. PCB-92	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 70362-50-4 S 52663-62-4 S 60145-20-2 S 52663-60-2 S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	0.91 23 180 42 45 140 140 47	0.91 2.3 17 4.7 4.9	0.91 9.2 65 16 17	0.91 7.7 55 15	SED8A SED7E SED7E	1 14 15		15 15	< 0.037 U	< 0.054 U	< 0.063 U	< 0.043 U	< 0.068 U	< 0.094 U	
PCB-82 n. PCB-83 n. PCB-84 n. PCB-85 n. PCB-86 n. PCB-87 n. PCB-88 n. PCB-89 n. PCB-9 n. PCB-90 n. PCB-91 n. PCB-91 n. PCB-92	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 52663-62-4 S 60145-20-2 S 52663-60-2 S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	23 180 42 45 140 140 47	2.3 17 4.7 4.9 17	9.2 65 16 17	7.7 55 15	SED7E SED7E	14 15		15							< 0.047 U
PCB-83	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 60145-20-2 S 52663-60-2 S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	180 42 45 140 140 47	17 4.7 4.9 17	65 16 17	55 15	SED7E	15		+		13 JN	4.0 J	4.6 JN	5.3 JN	14	
PCB-84 n. PCB-85 n. PCB-86 n. PCB-87 n. PCB-88 n. PCB-89 n. PCB-9 n. PCB-91 n. PCB-91 n. PCB-92	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 52663-60-2 S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	42 45 140 140 47	4.7 4.9 17	16 17	15				1	8.5	1				11	16
PCB-85 n. PCB-86 n. PCB-87 n. PCB-88 n. PCB-89 n. PCB-9 n. PCB-91 n. PCB-92 n.	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 65510-45-4 S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	45 140 140 47	4.9 17	17		SED7E			15	64	99	30	37	55	78	110
PCB-86 n. PCB-87 n. PCB-88 n. PCB-89 n. PCB-9 n. PCB-90 n. PCB-91 n. PCB-92 n.	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 55312-69-1 S 38380-02-8 S 55215-17-3 S 73575-57-2	140 140 47	17		15	-	15		15	17	24 JN	8.2 J	7.3 J	11 JN	19	28
PCB-87	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	\$ 38380-02-8 \$ 55215-17-3 \$ 73575-57-2	140 47	1	57	15	SED7E	15		15	17	27	6.9 J	12	15	21	28
PCB-88 n. PCB-89 n. PCB-9 n. PCB-91 n. PCB-92	ng/g E1668C ng/g E1668C ng/g E1668C ng/g E1668C	S 55215-17-3 S 73575-57-2	47	17		56	SED7E	15		15	56	89	24 JN	30	46	70	93
PCB-89 n. PCB-9 n. PCB-90 n. PCB-91 n. PCB-92 n. PCB-92	ng/g E1668C ng/g E1668C ng/g E1668C	S 73575-57-2	_		57	56	SED7E	15		15	56	89	24 JN	30	46	70	93
PCB-9 n: PCB-90 n: PCB-91 n: PCB-92	ng/g E1668C ng/g E1668C			3.1	15	11	SED7E	15		15	14	22	6.9 J	7.5 J	11	20	25 1.8 J
PCB-90 n: PCB-91 n: PCB-92 n:	ng/g E1668C	5 34003-39-1	1.8	0.69	1.2	1.2	SED7.5E	2		15	< 0.038 U	< 0.048 U	< 0.066 U	< 0.066 U	< 0.10 U	< 0.15 U	
PCB-91 n:		S 68194-07-0	340	30	120	110	SED7E	15		15	< 0.26 U	< 0.76 U	< 0.50 U 46	< 0.37 U	< 0.52 U 90	< 1.1 U 150	< 0.45 U 200
PCB-92	119/9	S 68194-05-8	47	3.1	15	110	SED7E	15		15	14	22	6.9	7.5	11	20	25
	ng/g E1668C	S 52663-61-3	65	6.3	22	21	SED7E	15		15 15	21	32	9.0 JN	11	16	29	36
	ng/g E1668C	S 73575-56-1	8.3	0.44	2.9	1.8	SED7F	12		15	1.6 JN	5.5 J	2.3 J	< 0.058 U	1.3 JN	4.4 JN	1.9 J
	ng/g E1668C	S 73575-55-0	4.1	0.46	2.2	1.9	SED7E	3		15	< 0.038 U	< 0.048 U	< 0.066 U	< 0.066 U	< 0.10 U	< 0.15 U	< 0.066 U
	ng/g E1668C	S 38379-99-6	210	19	75	70	SED7E	15		15	70	110	30	29	55	89	120
	ng/g E1668C	S 73575-54-9	2.2	0.35	1.4	1.6	SED7E	3		15	< 0.028 U	< 0.036 U	< 0.050 U	< 0.050 U	< 0.076 U	< 0.11 U	< 0.049 U
PCB-97 n	ng/g E1668C	S 41464-51-1	140	17	57	56	SED7E	15		15	56	89	24 JN	30	46	70	93
PCB-98	ng/g E1668C	S 60233-25-2	9	1.1	3.9	3	SED7E	12		15	3.2 JN	5.7 J	< 0.056 U	1.5 J	2.8 J	5.0 J	6.5 J
PCB-99 n	ng/g E1668C	S 38380-01-7	180	17	65	55	SED7E	15		15	64	99	30	37	55	78	110
Pentachlorobiphenyl ne	ng/g E1668C	S 25429-29-2	1700	300	890	960	SED7E	15		15	620	960	970	560	550	1000	1100
Tetrachlorobiphenyl n	ng/g E1668C	S 26914-33-0	1300	250	540	480	SED7E	15		15	410	580	480	300	370	560	830
	ng/g E1668C	S 25323-68-6	530	110	280	310	SED7E	15		15	160	300	310	150	160	340	390
Decachlorobiphenyl (PCB-209)	pg/l E1668C	D 2051-24-3	0.1	0.0015	0.022	0.01	SED6A SED7B	15		45	0.0062 J	0.01 J	0.1 J	0.0049 J	0.01 J	0.006 J	0.011 J
PCB, TOTAL pr	pg/l E1668C	D PCB	10000	1600	3800	2800	SED7E	15		15 15	2800	4600	2600	2600	2500	4300	6400
	pg/l E1668C	D TOT-PCB-LAB	10000	1600	3800	2800	SED7E	15		15	2800	4600	2600	2600	2500	4300	6400
	pg/I E1668C	D 2051-60-7	650	63	220	95	SED8B	11	2	15	71 JN	R	< 8.6 U	440 J	63 JN	R	190 J
	pg/I E1668C	D 33146-45-1	69	69	69	69	SED7E	1		15	< 18 U	< 51 U	< 33 U	< 25 U	< 35 U	< 76 U	< 30 U
	pg/l E1668C	D 39485-83-1	8.4	0.45	3	2.1	SED7F	12		15	1.5 JN	5.3	2.9	< 0.059 U	1.3 JN	4.6 JN	1.8
PCB-101 p	pg/l E1668C	D 37680-73-2	220	21	84	70	SED7E	15		15	70	120	43	36	59	110	130
PCB-102 p.	pg/l E1668C	D 68194-06-9	8.6	1.1	3.8	3	SED7E	12		15	3.1 JN	5.5	< 0.071 U	1.5	2.7	5.2	6.3
	pg/l E1668C	D 60145-21-3	6.2	0.62	2.4	2.3	SED7E	8		15	1.3 J	1.9 JN	< 0.073 U	< 0.059 U	1.2 JN	2.8 JN	2.8 JN
I .	pg/l E1668C	D 32598-14-4	23	4.6	12	10	SED7E	15		15	10	14	10	8.4	7.8	11	17
LF.	pg/I E1668C	D 70424-69-0	1.1	0.096	0.44	0.34	SED7D	12		15	0.096 J	0.18 J	< 0.13 U	0.45 J	0.11 J	0.13 J	0.28 J
	pg/I E1668C	D 70424-68-9	7.6	0.68	2.9	2.8	SED7E	15		15	3.5	3.7 J	0.68 JN	1.8 JN	2.3 J	3.1 J	5.2
	pg/I E1668C	D 70362-41-3	3.3	0.46	1.4	1.2	SED7E	15		15	1.3	1.8	1.1	1	1.1	1.6	2.5
	pg/l E1668C	D 74472-35-8	89	12	40	36	SED7E	15		15	36	57	22 JN	21	30	50	60
PCB-11 p	pg/l E1668C	D 2050-67-1	44	21	32	30	SED6A SED8A	15		15	21 J	29 JN	44 J	27 JN	31 JN	29 JN	24 J
PCB-110 p	pg/I E1668C	D 38380-03-9	160	19	69	63	SED7E	15		15	63	100	43	33	50	85	100
	pg/l E1668C	D 39635-32-0	1.00		- 55	- 50	52572	.0		15	< 0.0098 U	< 0.013 U	< 0.029 U	< 0.02 U	< 0.028 U	< 0.044 U	< 0.018 U
	pg/l E1668C	D 74472-36-9	1.1	0.19	0.6	0.58	SED7E	8		15	0.38 JN	0.9 J	< 0.04 U	< 0.02 U	< 0.043 U	0.3 JN	0.77 J
	pg/l E1668C	D 68194-10-5	220	21	84	70	SED7E	15		15	70	120	43	36	59	110	130
	pg/l E1668C	D 74472-37-0	1.9	0.39	0.88	0.82	SED7E	13		15	0.77 J	0.99 JN	< 0.12 U	0.67 JN	0.62 JN	0.93 JN	1.3 J
	pg/l E1668C	D 74472-38-1	160	19	69	63	SED7E	15		15	63	100	43	33	50	85	100
	pg/l E1668C	D 18259-05-7	29	3.7	12	11	SED7E	15		15	11	17	6.4	8.4	9.8	15	18
	pg/I E1668C	D 68194-11-6	29	3.7	12	11	SED7E	15		15	11	17	6.4	8.4	9.8	15	18
	pg/I E1668C	D 31508-00-6	76	11	33	31	SED7E	15		15	31	39	23	22	27	35	52

												Location ID	SED6.5D	SED6.5E	SED6A	SED6B	SED6C	SED7.5D	SED7.5E
												Sample ID	PW6.5D00EN	PW6.5E00EN	PW6A00EN	PW6B00EN	PW6C00EN	PW7.5D00EN	PW7.5E00EN
												Sample Date	7/26/2017 9:50:00 AM		7/26/2017 9:20:00 AM	7/26/2017 9:10:00 AM	7/26/2017 8:00:00 AM	7/26/2017 9:30:00 AM	7/26/2017 8:40:00 AM
												Туре	N	N	N	N	N	N	N
				Max	Min	Mean	Median	Max	Count	Count	Count								
Analyte	Uni		Fraction CAS	Detect	Detect	Detect	Detect	Location	Detect	Reject	Total		00		00 IN	24	20		
PCB-119	pg/l	E1668C	D 56558-17-9	89	12	40	36	SED7E	15		15		36	57 < 5.9 U	22 JN	21 < 2.9 U	30 < 4 U	50 < 8.8 U	60
PCB-12 PCB-120	pg/l	E1668C	D 2974-92-7 D 68194-12-7	0.56	0.56	0.56	0.56	SED7.5E	1		15		< 2 U < 0.01 U	< 0.013 U	< 3.9 U < 0.03 U	< 2.9 U < 0.02 U	< 4 U < 0.028 U	< 8.8 U < 0.045 U	< 3.4 U 0.56 J
PCB-122	pg/l	E1668C	D 76842-07-4	0.81	0.36	0.55	0.62	SED7E	13		15 15		0.29 JN	0.56 JN	0.63 J	0.44 JN	0.44 JN	0.63 J	0.69 JN
PCB-123	pg/l	E1668C	D 65510-44-3	1.7	0.24	0.68	0.62	SED7E	14		15		0.77 J	0.81 JN	0.38 JN	0.33 J	0.57 JN	0.78 J	0.99 J
PCB-124	pg/l	E1668C	D 70424-70-3	3.3	0.46	1.4	1.2	SED7E	15		15		1.3	1.8	1.1	1	1.1	1.6	2.5
PCB-125	pg/l	E1668C	D 74472-39-2	89	12	40	36	SED7E	15		15		36	57	22 JN	21	30	50	60
PCB-126	pg/l	E1668C	D 57465-28-8	0.75	0.12	0.34	0.14	SED7.5E	3		15		< 0.045 U	0.14 J	< 0.1 U	< 0.047 U	< 0.075 U	< 0.074 U	0.75 J
PCB-127	pg/l	E1668C	D 39635-33-1								15		< 0.043 U	< 0.072 U	< 0.097 U	< 0.047 U	< 0.069 U	< 0.071 U	< 0.092 U
PCB-128	pg/l	E1668C	D 38380-07-3	11	0.61	3.7	3.4	SED7E	14		15		3.4	4.4	< 0.096 U	1.2 JN	2.4	3.9	5.7
PCB-129	pg/l	E1668C	D 55215-18-4	120	7.7	39	34	SED7E	15		15		34	48	20	11	24	41	62
PCB-13	pg/l	E1668C	D 2974-90-5								15		< 2 U	< 5.9 U	< 3.9 U	< 2.9 U	< 4 U	< 8.8 U	< 3.4 U
PCB-130	pg/l	E1668C	D 52663-66-8	6.1	0.32	2	1.9	SED7E	15		15		1.9	2.9	1 J	0.66 J	1.3 J	2.3	3.6
PCB-131	pg/l	E1668C	D 61798-70-7								15		< 0.096 U	< 0.15 U	< 0.16 U	< 0.067 U	< 0.12 U	< 0.18 U	< 0.24 U
PCB-132	pg/l	E1668C	D 38380-05-1	36	2	12	11	SED7E	15		15		11	15	5.7 J	3.8	7.9	14	20
PCB-133	pg/l	E1668C	D 35694-04-3	2.2	0.17	0.79	0.65	SED7E	12		15		0.65 J	0.92 J	< 0.12 U	0.27 J	0.48 J	0.89 J	1.1 J
PCB-134	pg/l	E1668C	D 52704-70-8	7.5	0.34	2.3	1.9	SED7E	15		15		2.1	2.6 JN	0.82 JN	0.64	1.4	2.6	3.9
PCB-135	pg/l	E1668C	D 52744-13-5	78	2.5	23	18	SED7E	15		15		18	29	6.7	5.4	14	31	39
PCB-136	pg/l	E1668C	D 38411-22-2	14	0.68	4.8	3.4	SED7E	15		15		3.4	5.8	1.5 JN	1.1 JN	2.7	5.8	7.6
PCB-137	pg/l	E1668C	D 35694-06-5	3.3	0.21	1.3	1.3	SED7E	14		15		1.3 J	1.6 J	0.62 JN	0.55 J	0.8 JN	1.3 J	1.9
PCB-138	pg/l	E1668C	D 35065-28-2	120	7.7	39	34	SED7E	15		15		34	48	20	11	24	41	62
PCB-139	pg/l	E1668C	D 56030-56-9	2	0.2	0.86	0.74	SED7E	6		15		0.68	0.79 JN	< 0.13 U	0.27 JN	< 0.099 U	< 0.15 U	< 0.19 U
PCB-140	pg/l	E1668C	D 59291-64-4	2	0.2	0.86	0.74	SED7E	6		15		0.68 8	0.79 JN	< 0.13 U	0.27 JN	< 0.099 U	< 0.15 U	< 0.19 U
PCB-141 PCB-143	pg/l	E1668C	D 52712-04-6 D 68194-15-0	7.5	1.4 0.34	9.1	1.9	SED7E SED7E	15 15		15		2.1	12 2.6 JN	3.4 J 0.82 JN	2.2 0.64	5 1.4	2.6	15 3.9
PCB-144	pg/l	E1668C	D 68194-14-9	9.1	0.34	2.7	2.2	SED7E	15		15		2.1	3.7	0.82 JN 0.77 JN	0.58 JN	1.4 1.3 JN	3.4	5.9
PCB-145	pg/l	E1668C	D 74472-40-5	9.1	0.41	2.1	2.2	SLD/L	13		15 15		< 0.008 U	< 0.0091 U	< 0.023 U	< 0.01 U	< 0.019 U	< 0.026 U	< 0.0064 U
PCB-146	pg/l	E1668C	D 51908-16-8	24	1.5	7.8	6.9	SED7E	14		15		6.4	10	3.7	2	4.7	8.9	13
PCB-147	pg/l	E1668C	D 68194-13-8	160	8.6	51	42	SED7E	15		15		42	66	20	12	30	59	84
PCB-148	pg/l	E1668C	D 74472-41-6	0.27	0.083	0.18	0.18	SED7F	6		15		0.083 J	0.17 J	< 0.036 U	< 0.017 U	< 0.03 U	0.19 JN	0.17 J
PCB-149	pg/l	E1668C	D 38380-04-0	160	8.6	51	42	SED7E	15		15		42	66	20	12	30	59	84
PCB-15	pg/l	E1668C	D 2050-68-2	65	18	35	30	SED7F	15		15		25 J	29 JN	37 J	34 J	30 J	34 JN	59 J
PCB-150	pg/l	E1668C	D 68194-08-1	0.45	0.05	0.18	0.14	SED7E	8		15		0.05 JN	0.089 JN	0.12 J	< 0.01 U	< 0.018 U	0.16 JN	0.16 JN
PCB-151	pg/l	E1668C	D 52663-63-5	78	2.5	23	18	SED7E	15		15		18	29	6.7	5.4	14	31	39
PCB-152	pg/l	E1668C	D 68194-09-2	0.044	0.0032	0.027	0.03	SED7.5E	4				< 0.0082 U	< 0.0093 U	< 0.024 U	< 0.011 U	< 0.02 U	< 0.026 U	0.044 JN
								SED7F			15								
PCB-153	pg/l	E1668C	D 35065-27-1	140	7.3	42	37	SED7E	15		15		37	58	17	10	26	48	74
PCB-154	pg/l	E1668C	D 60145-22-4	4.1	0.22	0.88	0.61	SED7E	15		15		0.36 J	0.61 JN	0.82 JN	0.25 J	0.49 JN	0.9 JN	1.8 JN
PCB-156	pg/l	E1668C	D 38380-08-4	7	1.4	3.3	2.8	SED7E	15		15		2.2 JN	3.1 JN	2.8 JN	1.6 JN	2 JN	2.8 JN	3.8
PCB-157 PCB-158	pg/l	E1668C	D 69782-90-7 D 74472-42-7	7	1.4 0.73	3.3	2.8 3.4	SED7E SED7E	15 15	-	15		2.2 JN 3.4	3.1 JN 4.8	2.8 JN 1.4 JN	1.6 JN 1.2 J	2 JN 2.4	2.8 JN 4.1	3.8 5.8
PCB-150 PCB-159	pg/l		D 39635-35-3	1.3	0.73	0.45	0.42	SED7E SED7E	11	-	15		0.21 JN	4.8 0.52 J	1.4 JN < 0.068 U	1.2 J < 0.022 U	0.18 J	4.1 0.42 J	5.8 0.61 J
PCB-16	pg/l	E1668C	D 38444-78-9	250	24	82	48	SED7E SED7E	15	-	15 15		0.21 JN 54 J	180	32 J	24 JN	48 JN	150 JN	150
PCB-160	pg/l	E1668C	D 41411-62-5	120	7.7	39	34	SED7E	15	1	15 15		34	48	20	24 JN 11	48 JN 24	41	62
PCB-161	pg/l		D 74472-43-8	3.2	0.58	1.9	1.9	SED8A	2	 	15		< 0.041 U	< 0.063 U	< 0.083 U	< 0.03 U	< 0.054 U	< 0.08 U	< 0.1 U
PCB-162	pg/l		D 39635-34-2	0.14	0.14	0.14	0.14	SED7.5E	1		15		< 0.029 U	< 0.046 U	< 0.065 U	< 0.022 U	< 0.038 U	< 0.059 U	0.14 J
PCB-163		E1668C	D 74472-44-9	120	7.7	39	34	SED7E	15		15		34	48	20	11	24	41	62
PCB-164	pg/l		D 74472-45-0	7	0.43	2.4	2.1	SED7E	15		15		2.1	3.3	1.4 J	0.68 J	1.5 J	2.7	3.8
PCB-165	pg/l		D 74472-46-1								15		< 0.047 U	< 0.073 U	< 0.091 U	< 0.034 U	< 0.06 U	< 0.092 U	< 0.12 U
PCB-166	pg/l		D 41411-63-6	11	0.61	3.7	3.4	SED7E	14		15		3.4	4.4	< 0.096 U	1.2 JN	2.4	3.9	5.7
PCB-167	pg/l	E1668C	D 52663-72-6	2.9	0.17	0.98	0.94	SED7E	15		15		0.99 J	1.3 J	0.58 J	0.36 J	0.54 JN	1.1 J	1.6
PCB-168	pg/l	E1668C	D 59291-65-5	140	7.3	42	37	SED7E	15		15		37	58	17	10	26	48	74
PCB-169	pg/l	E1668C	D 32774-16-6								15		< 0.015 U	< 0.026 U	< 0.039 U	< 0.012 U	< 0.02 U	< 0.032 U	< 0.038 U
PCB-17	pg/l	E1668C	D 37680-66-3	520	54	190	130	SED7E	15		15		110	350	130 J	97	140	330	300
PCB-170	pg/l	E1668C	D 35065-30-6	15	0.77	4.2	3	SED7E	15		15		3	5.4	2.1 J	0.92	2.2	4.9	7.1
PCB-171	pg/l	E1668C	D 52663-71-5	6.8	0.38	2.3	2.1	SED7E	12		15		1.5	2.5	< 0.027 U	0.38	0.97 JN	2.4	3.5
PCB-172	pg/l		D 52663-74-8	4	0.2	1.3	1.2	SED7E	11		15		0.71	1.4	< 0.023 U	< 0.0092 U	0.48 J	1.2 JN	1.9
PCB-173		E1668C	D 68194-16-1	6.8	0.38	2.3	2.1	SED7E	12		15		1.5	2.5	< 0.027 U	0.38	0.97 JN	2.4	3.5
PCB-174		E1668C	D 38411-25-5	25	0.97	7	4.9	SED7E	15		15		4.9	9.3	2.5 J	1.2	3.6	8.6	13
PCB-175	pg/l	E1668C	D 40186-70-7	1.3	0.055	0.5	0.42	SED7E	7		15		0.23 J	0.42 J	< 0.025 U	< 0.01 U	< 0.014 U	0.36 JN	0.55 JN

-														1	T		T.		
												Location ID	SED6.5D	SED6.5E	SED6A	SED6B	SED6C	SED7.5D	SED7.5E
												Sample ID Sample Date	PW6.5D00EN 7/26/2017 9:50:00 AM	PW6.5E00EN 7/26/2017 8:50:00 AM	PW6A00EN 7/26/2017 9:20:00 AM	PW6B00EN 7/26/2017 9:10:00 AM	PW6C00EN 7/26/2017 8:00:00 AM	PW7.5D00EN 7/26/2017 9:30:00 AM	PW7.5E00EN 7/26/2017 8:40:00 AM
												Type	N	N	N	N	N	N	N
					Max	Min	Mean	Median	Max	Count	Count Count	,,							
	Analyte	Unit	Method Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Reject Total								
PCB-176		pg/l	E1668C D	52663-65-7	2.8	0.14	0.96	0.81	SED7E	12	15		0.55	1 50	< 0.017 U	0.2 JN	0.38 JN	0.89 JN	1.3
PCB-177 PCB-178		pg/l pg/l	E1668C D E1668C D	52663-70-4 52663-67-9	14 6.3	0.53	4.4 2.2	3.3 1.9	SED7E SED7E	13 11	15 15		2.7 1.3	5.2 2.4	< 0.027 U < 0.027 U	0.71 J < 0.012 U	2.1 0.88 J	4.8 2.2	7.2 3.1
PCB-179		pg/l		52663-64-6	9.8	0.35	3	2.3	SED7E	14	15		1.9	3.8	1.2 J	0.51 J	1.5	3.6	4.8
PCB-18		pg/l		37680-65-2	760	97	280	180	SED7E	15	15		180	510	140 JN	110	190	550	470
PCB-180		pg/l	E1668C D	35065-29-3	47	2.1	13	9.5	SED7E	15	15		9.5	16	6.2	2.6	6.8	15	24
PCB-181		pg/l	E1668C D	74472-47-2							15		< 0.0065 U	< 0.005 U	< 0.025 U	< 0.01 U	< 0.014 U	< 0.021 U	< 0.013 U
PCB-182		pg/l		60145-23-5	0.11	0.11	0.11	0.11	SED7.5E	1	15		< 0.0062 U	< 0.0048 U	< 0.024 U	< 0.01 U	< 0.014 U	< 0.02 U	0.11 JN
PCB-183		pg/l		52663-69-1	22	0.67	6.1	4.5	SED7E	14	15		4.4 4.4	7.5 7.5	1.8	1.2	3.2 3.2	7	10
PCB-185 PCB-186		pg/l pg/l	E1668C D E1668C D	52712-05-7 74472-49-4	22	0.67	6.1	4.5	SED7E	14	15 15		< 0.0043 U	< 0.0034 U	1.8 < 0.018 U	1.2 < 0.0071 U	< 0.0098 U	< 0.014 U	10 < 0.0086 U
PCB-187		pg/l	E1668C D	52663-68-0	39	1.5	10	7.6	SED7E	15	15		7.6	14	4	2	5.6	12	19
PCB-188		pg/l	E1668C D	74487-85-7							15		< 0.004 U	< 0.0031 U	< 0.017 U	< 0.0068 U	< 0.009 U	< 0.013 U	< 0.008 U
PCB-189		pg/l	E1668C D	39635-31-9	0.41	0.027	0.12	0.076	SED7E	14	15		0.076 J	0.15 J	0.076 J	0.027 J	0.058 J	0.11 J	0.19 J
PCB-19		pg/l	E1668C D	38444-73-4	190	29	73	63	SED7E	15	15		51 J	76 J	80 J	59 JN	63 J	76 JN	120 J
PCB-190		pg/l		41411-64-7	3.5	0.18	0.99	0.76	SED7E	13	15		0.65	1.2	< 0.016 U	0.22 J	0.49 JN	0.97 JN	1.7
PCB-191		pg/l	E1668C D	74472-50-7	0.94	0.054	0.35	0.27	SED7E	9	15		0.18 J	0.27 JN	< 0.016 U	< 0.0062 U	< 0.0082 U	0.39 J	0.5 J
PCB-193 PCB-194		pg/l pg/l	E1668C D E1668C D	69782-91-8 35694-08-7	47 3.4	2.1 0.12	13 0.83	9.5 0.54	SED7E SED7E	15 15	15 15		9.5 0.54	16 0.99	6.2 0.44 J	2.6 0.15 J	6.8 0.43	15 0.92	24 1.5
PCB-195		pg/l	E1668C D	52663-78-2	1.6	0.063	0.42	0.28	SED7E	15	15		0.28	0.51	0.16 JN	0.08 J	0.43 0.19 JN	0.45	0.83
PCB-196		pg/l		42740-50-1	2.3	0.092	0.68	0.56	SED7E	12	15		0.38	0.67	< 0.015 U	0.092 JN	0.3 J	0.71	1.1
PCB-197		pg/l	E1668C D	33091-17-7	0.18	0.0018	0.052	0.038	SED7E	8	15		0.012 JN	0.03 J	< 0.01 U	< 0.0018 U	< 0.0032 U	0.036	0.074 J
PCB-198		pg/l	E1668C D	68194-17-2	4.6	0.18	1.2	0.85	SED7E	14	15		0.75	1.4	0.53 JN	0.18 JN	0.6	1.4	2.3
PCB-199		pg/l		52663-75-9	4.6	0.18	1.2	0.85	SED7E	14	15		0.75	1.4	0.53 JN	0.18 JN	0.6	1.4	2.3
PCB-2		pg/l	E1668C D	2051-61-8	180	6.5	66	62	SED8B	5	15		6.5 JN	< 19 U	< 1.3 U	62 J	< 2.3 U	< 14 U	20 JN
PCB-20		pg/l	E1668C D	38444-84-7	620	110	260	210	SED7E	15	15		210	300	190	150	210	270	510 0.21
PCB-200 PCB-201		pg/l pg/l	E1668C D E1668C D	52663-73-7 40186-71-8	0.43	0.026	0.15 0.23	0.11	SED7E SED7E	11 8	15 15		0.074 J 0.11 J	0.11 JN 0.18 J	0.13 JN < 0.01 U	< 0.0016 U < 0.002 U	0.048 JN 0.096 J	0.091 JN 0.18 J	0.21
PCB-202		pg/l	E1668C D	2136-99-4	0.03	0.05	0.27	0.10	SED7E	11	15		0.11 J	0.183	< 0.01 U	< 0.002 U	0.13 J	0.26	0.41
PCB-203		pg/l		52663-76-0	3	0.12	0.83	0.55	SED7E	13	15		0.5	0.88	< 0.013 U	0.17 J	0.4	0.9	1.5
PCB-205		pg/l	E1668C D	74472-53-0	0.16	0.0061	0.048	0.028	SED7E	11	15		0.02 JN	0.05 J	< 0.026 U	0.011 JN	0.018 J	0.058 J	0.074 J
PCB-206		pg/l	E1668C D	40186-72-9	0.6	0.025	0.13	0.096	SED7E	15	15		0.073	0.16	0.097 JN	0.029 J	0.063 J	0.12	0.21
PCB-207		pg/l	E1668C D	52663-79-3	0.065	0.0069	0.023	0.014	SED7E	13	15		0.014 J	0.014 JN	0.038 J	0.0078 J	0.015 J	0.011 J	0.03 J
PCB-208		pg/l		52663-77-1	0.13	0.0093	0.041	0.029	SED7E	13	15		0.018 J	0.048 J	0.054 JN	0.011 JN	0.02 J	0.025 J	0.058 J
PCB-21 PCB-22		pg/l pg/l		55702-46-0 38444-85-8	180 150	30 22	71 57	56 41	SED7E SED7E	15 15	15		56 48	97 82	40 JN 36 J	35 28 J	56 41 J	89 63	140 120
PCB-23		pg/l		55720-44-0	130	22	31	41	3LD/L	13	15 15		< 0.56 U	< 0.97 U	< 1 U	< 0.67 U	< 0.98 U	< 1.1 U	< 1.1 U
PCB-24		pg/l	E1668C D	55702-45-9	19	1.1	7.8	6	SED7.5D	13	15		4.5 J	16 J	5.1 JN	2.7 J	6 JN	19 J	13 J
PCB-25		pg/l	E1668C D	55712-37-3	62	8.9	22	18	SED7E	15	15		17 J	17 JN	16 JN	17 J	20 J	23 J	37 J
PCB-26		pg/l	E1668C D	38444-81-4	120	15	42	30	SED7E	15	15		30	41	34	25	29	43	77
PCB-27		pg/l	E1668C D	38444-76-7	83	9.5	34	25	SED7E	15	15		25 J	55 J	28 J	23 JN	24 JN	58 JN	52 J
PCB-28			E1668C D	7012-37-5	620	110	260	210	SED7E	15	15		210	300	190	150	210	270	510
PCB-29 PCB-3		pg/l	E1668C D E1668C D	15862-07-4 2051-62-9	120 130	15 8.8	42 58	30 47	SED7E SED8B	15	15		30 < 1.5 U	41 < 13 U	34 < 1.5 U	25	29 < 2.6 U	43 < 9.4 U	77 8.8 JN
PCB-30		pg/l pg/l		35693-92-6	760	97	280	180	SED8B SED7E	4 15	15 15		180	< 13 U	< 1.5 U	41 JN 110	< 2.6 U	< 9.4 U	8.8 JN 470
PCB-31		pg/l	E1668C D	16606-02-3	430	77	180	140	SED7E	15	15		140	210	130 J	100	140	180	330
PCB-32		pg/l		38444-77-8	370	46	150	100	SED7E	15	15		100	300	100 J	90 J	97 JN	270 JN	260
PCB-33		pg/l	E1668C D	38444-86-9	180	30	71	56	SED7E	15	15		56	97	40 JN	35	56	89	140
PCB-34	-	pg/l		37680-68-5	3.3	2.5	2.9	2.9	SED7.5E	2	15		< 0.62 U	2.5 J	< 1 U	< 0.72 U	< 0.98 U	< 1.1 U	3.3 J
PCB-35		pg/l	E1668C D	37680-69-6	2.6	0.75	1.2	0.91	SED7F	6	15		1 J	< 0.49 U	< 0.53 U	< 0.34 U	0.88 JN	< 0.56 U	< 0.57 U
PCB-37		pg/l	E1668C D	38444-90-5	52	9.9	24	18	SED7.5E	15	15		21 J	33	16 J	13 J	18 J	29	52
PCB-38 PCB-39		pg/l		53555-66-1 38444-88-1	1 Ω	0.62	11	0.99	SED7E	6	15		< 0.31 U	< 0.49 U < 0.44 U	< 0.53 U < 0.48 U	< 0.37 U < 0.32 U	< 0.52 U < 0.46 U	< 0.59 U	< 0.59 U
PCB-39 PCB-4		pg/l pg/l	E1668C D	13029-08-8	1.8 760	0.62 130	1.1 330	290	SED7E SED7E	9	15 15		0.71 J 130 JN	< 0.44 U < 190 U	< 0.48 U 370 J	< 0.32 U 290 JN	< 0.46 U	1 J < 280 U	1.7 J 330 JN
PCB-40		pg/l		38444-93-8	210	24	71	49	SED7E	15	15		61	94	42	290 JN 34	49	78	130
PCB-41		pg/l		52663-59-9	210	24	71	49	SED7E	15	15		61	94	42	34	49	78	130
PCB-42		pg/l	E1668C D	36559-22-5	100	13	35	26	SED7E	15	15		31	45	21 J	16 J	26	39	66
PCB-43		pg/l	E1668C D	70362-46-8	15	1.5	5.9	4.6	SED7E	14	15		4.5	5.9 JN	3 JN	2.7 JN	4.7	6.6 JN	12
PCB-44		pg/l	E1668C D	41464-39-5	450	66	150	110	SED7E	15	15		120	170	110	78	110	160	260
PCB-45		pg/l	E1668C D	70362-45-7	180	17	52	33	SED7E	15	15		40	52	31	20 JN	33	53	88

											Location ID	SED6.5D	SED6.5E	SED6A	SED6B	SED6C	SED7.5D	SED7.5E
											Sample ID	PW6.5D00EN	PW6.5E00EN	PW6A00EN	PW6B00EN	PW6C00EN	PW7.5D00EN	PW7.5E00EN
											Sample Date	7/26/2017 9:50:00 AM	7/26/2017 8:50:00 AM	7/26/2017 9:20:00 AM	7/26/2017 9:10:00 AM	7/26/2017 8:00:00 AM	7/26/2017 9:30:00 AM	7/26/2017 8:40:00 AM
											Туре	N	N	N	N	N	N	N
			Max	Min	Mean	Median	Max	Count	Count	Count	.,,,,,				.,		.,	
Analyte	Unit Method	Fraction CAS	Detect	Detect	Detect	Detect	Location	Detect	Reject	Total								
PCB-46	pg/I E1668C	D 41464-47-5	34	4	12	8.8	SED7E	14		15		10 JN	11 J	6.2 J	4.8 J	7.6 J	12 J	20 J
PCB-47	pg/I E1668C	D 2437-79-8	450	66	150	110	SED7E	15		15		120	170	110	78	110	160	260
PCB-48	pg/I E1668C	D 70362-47-9	87	8.6	30	22	SED7E	15		15		26	42	14 JN	14 J	22 J	32	61
PCB-49	pg/I E1668C	D 41464-40-8	280	48	100	80	SED7E	15		15		82	110	70	53	80	110	180
PCB-5	pg/I E1668C	D 16605-91-7								15		< 6.3 U	< 19 U	< 12 U	< 9 U	< 13 U	< 27 U	< 11 U
PCB-50	pg/I E1668C	D 62796-65-0	110	11	36	25	SED7E	15		15		28	29	25	20	25	30	60
PCB-51	pg/I E1668C	D 68194-04-7	180	17	52	33	SED7E	15		15		40	52	31	20 JN	33	53	88
PCB-52	pg/I E1668C	D 35693-99-3	450	77	170	150	SED7E	15		15		150	180	120	91	140	170	280
PCB-53	pg/I E1668C	D 41464-41-9	110	11	36	25	SED7E	15		15		28	29	25	20	25	30	60
PCB-54	pg/I E1668C	D 15968-05-5	3.7	0.72	1.7	1.4	SED7E	10		15		0.81 J	< 0.073 U	1.2 J	0.72 JN	< 0.078 U	3.3 JN	2.2 J
PCB-55	pg/I E1668C	D 74338-24-2	3.3	0.44	1.6	1.3	SED7E	12		15		0.48 J	2.3 JN	< 0.12 U	0.75 JN	0.7 JN	2.1 J	3 JN
PCB-56	pg/I E1668C	D 41464-43-1	59	11	26	20	SED7E	15		15		23	37	17 J	13	20	28	46
PCB-57	pg/I E1668C	D 70424-67-8	2.7	1.3	2	2	SED7E	2		15		< 0.055 U	< 0.084 U	< 0.12 U	< 0.07 U	< 0.11 U	< 0.15 U	1.3 JN
PCB-58	pg/I E1668C	D 41464-49-7	4	0.25	1.1	0.5	SED7D	10		15		0.45 J	< 0.084 U	2 J	< 0.071 U	0.37 JN	< 0.15 U	0.54 JN
PCB-59	pg/I E1668C	D 74472-33-6	40	5	14	11	SED7E	15		15		13	19	7.3 JN	7.2	11	15	26
PCB-6	pg/I E1668C	D 25569-80-6	120	27	63	52	SED7E	4		15		< 5.6 U	< 16 U	< 11 U	27 J	< 11 U	< 25 U	63 J
PCB-60	pg/I E1668C	D 33025-41-1	30	2.8	12	8.4	SED7E	15		15		12	20	7 J	8 J	8.4 J	14	23
PCB-61	pg/I E1668C	D 33284-53-6	280	52	120	100	SED7E	15		15		110	160	84	68	100	130	200
PCB-62	pg/I E1668C	D 54230-22-7	40	5	14	11	SED7E	15		15		13	19	7.3 JN	7.2	11	15	26
PCB-63	pg/I E1668C	D 74472-34-7	11	1.4	3.9	3.3	SED7E	15		15		3.4 J	5.5 J	2.9 J	2.4 J	3.3 J	4.2 J	6 JN
PCB-64	pg/I E1668C	D 52663-58-8	150	26	58	45	SED7E	15		15		49	75	39	26	45	61	100
PCB-65	pg/I E1668C	D 33284-54-7	450	66	150	110	SED7E	15		15		120	170	110	78	110	160	260
PCB-66	pg/I E1668C	D 32598-10-0	160	31	70	59	SED7E	15		15		60	91	48	43	59	77	120
PCB-67	pg/I E1668C	D 73575-53-8	7.6	1.1	3	2.6	SED7E	13		15		2.6 J	4.4 J	1.7 J	1.3 JN	1.7 J	2.6 JN	5.4 J
PCB-68	pg/I E1668C	D 73575-52-7	3.7	0.5	1.3	1.1	SED7E	13		15		0.83 J	< 0.074 U	0.65 JN	1.1 J	0.72 JN	1.4 J	1.4 JN
PCB-69	pg/I E1668C	D 60233-24-1	280	48	100	80	SED7E	15		15		82	110	70	53	80	110	180
PCB-7	pg/I E1668C	D 33284-50-3								15		< 5.6 U	< 17 U	< 11 U	< 8.1 U	< 11 U	< 25 U	< 9.9 U
PCB-70	pg/I E1668C	D 32598-11-1	280	52	120	100	SED7E	15		15		110	160	84	68	100	130	200
PCB-71	pg/I E1668C	D 41464-46-4	210	24	71	49	SED7E	15		15		61	94	42	34	49	78	130
PCB-72	pg/I E1668C	D 41464-42-0	3.8	0.59	1.6	1.3	SED7E	7		15		0.91 J	1.2 J	< 0.12 U	< 0.068 U	< 0.1 U	1.3 JN	1.6 JN
PCB-73	pg/I E1668C	D 74338-23-1	15	1.5	5.9	4.6	SED7E	14		15		4.5	5.9 JN	3 JN	2.7 JN	4.7	6.6 JN	12
PCB-74	pg/I E1668C	D 32690-93-0	280	52	120	100	SED7E	15		15		110	160	84	68	100	130	200
PCB-75	pg/I E1668C	D 32598-12-2	40	5	14	11	SED7E	15		15		13	19	7.3 JN	7.2	11	15	26
PCB-76	pg/I E1668C	D 70362-48-0	280	52	120	100	SED7E	15		15		110	160	84	68	100	130	200
PCB-77	pg/l E1668C	D 32598-13-3	8.4	1.2	3.4	3	SED7E	15		15		3.3 J	4.2 J	3 J	1.9 J	2.4 J	3.8 J	5.4 J
PCB-79	pg/l E1668C	D 41464-48-6	1.6	0.13	0.74	0.74	SED7E	6		15		0.13 JN	0.8 J	< 0.069 U	< 0.037 U	< 0.055 U	< 0.082 U	1 J
PCB-8	pg/l E1668C	D 34883-43-7	250	61	130	130	SED7E	14		15		78 J	140 J	160 J	120 JN	110 JN	160 J	190 J
PCB-80	pg/I E1668C	D 33284-52-5	0.8	0.3	0.6	0.72	SED7D	5		15		< 0.029 U	< 0.042 U	0.77 J	0.4 J	< 0.055 U	< 0.082 U	< 0.039 U
PCB-81	pg/l E1668C	D 70362-50-4								15		< 0.031 U	< 0.045 U	< 0.072 U	< 0.039 U	< 0.058 U	< 0.086 U	< 0.04 U
PCB-82	pg/l E1668C	D 52663-62-4	15	1.6	6.4	6	SED7E	14		15		5.4	8.3 JN	3.7 J	3.2 JN	3.5 JN	7.8	10
PCB-83	pg/l E1668C	D 60145-20-2	110	13	45	41	SED7E	15		15		41	63	28	26	36	55	71
PCB-84	pg/l E1668C	D 52663-60-2	40	4.8	17	16	SED7E	15		15		16	23 JN	10 J	7.5 J	11 JN	20	27
PCB-85	pg/l E1668C	D 65510-45-4	29	3.7	12	11	SED7E	15		15		11	17	6.4	8.4	9.8	15	18
PCB-86	pg/l E1668C	D 55312-69-1	89	12	40	36	SED7E	15		15		36	57	22 JN	21	30	50	60
PCB-87	pg/l E1668C	D 38380-02-8	89	12	40	36	SED7E	15		15		36	57	22 JN	21	30	50	60
PCB-88	pg/l E1668C	D 55215-17-3	45	3.2	15	13	SED7E	15		15		13	21	8.7	7.7	11	21	24
PCB-89	pg/l E1668C	D 73575-57-2	1.7	0.66	1.2	1.2	SED7.5E	2		15		< 0.037 U	< 0.046 U	< 0.083 U	< 0.068 U	< 0.097 U	< 0.16 U	1.7 J
PCB-9	pg/l E1668C	D 34883-39-1						-	-	15		< 5.8 U	< 17 U	< 11 U	< 8.3 U	< 12 U	< 25 U	< 10 U
	J. - 12200	1 12.22.20.	ı	1	1	1	1	l	1	10			1	1				

												Location ID	SED6.5D	SED6.5E	SED6A	SED6B	SED6C	SED7.5D	SED7.5E
												Sample ID	PW6.5D00EN	PW6.5E00EN	PW6A00EN	PW6B00EN	PW6C00EN	PW7.5D00EN	PW7.5E00EN
												Sample Date	7/26/2017 9:50:00 AM	7/26/2017 8:50:00 AM	7/26/2017 9:20:00 AM	7/26/2017 9:10:00 AM	7/26/2017 8:00:00 AM	7/26/2017 9:30:00 AM	7/26/2017 8:40:00 AM
	-		, ,	1	1				1			Туре	N	N	N	N	N	N	N
				Max	Min	Mean	Median	Max	Count	Count	Count								
Analyte	Uni		Fraction CAS	Detect	Detect	Detect	Detect	Location	Detect	Reject	Total								
PCB-90	pg/l		D 68194-07-0	220	21	84	70	SED7E	15		15		70	120	43	36	59	110	130
PCB-91	pg/l		D 68194-05-8	45	3.2	15	13	SED7E	15		15		13	21	8.7	7.7	11	21	24
PCB-92	pg/l		D 52663-61-3	41	4.4	15	13	SED7E	15		15		13	20	8.4 JN	7.7	10	21	23
PCB-93	pg/l	_	D 73575-56-1	8.4	0.45	3	2.1	SED7F	12		15		1.5 JN	5.3	2.9	< 0.059 U	1.3 JN	4.6 JN	1.8
PCB-94	pg/l		D 73575-55-0	3.9	0.44	2.1	1.9	SED7E	3		15		< 0.037 U	< 0.046 U	< 0.083 U	< 0.068 U	< 0.097 U	< 0.16 U	< 0.064 U
PCB-95	pg/l	E1668C	D 38379-99-6	200	19	78	67	SED7E	15		15		67	110	38	30	54	93	120
PCB-96	pg/l	E1668C	D 73575-54-9	2	0.31	1.3	1.5	SED7E	3		15		< 0.025 U	< 0.032 U	< 0.06 U	< 0.048 U	< 0.069 U	< 0.11 U	< 0.044 U
PCB-97	pg/l	E1668C	D 41464-51-1	89	12	40	36	SED7E	15		15		36	57	22 JN	21	30	50	60
PCB-98	pg/l		D 60233-25-2	8.6	1.1	3.8	3	SED7E	12		15		3.1 JN	5.5	< 0.071 U	1.5	2.7	5.2	6.3
PCB-99	pg/l	_	D 38380-01-7	110	13	45	41	SED7E	15		15		41	63	28	26	36	55	71
Ammonia	mg/l	_	N 7664-41-7	32	3.5	13	9.5	SED7A	15		15		5.4	11	22	24	13	7.2	5.0
Particulate Organic Carbon	mg/l	_	N PTOC	5.2	0.52	1.5	0.74	SED6A	15	ļ	15		4.2	1.9	5.2	0.58 J	0.95 J	1.2 J	0.72 J
Hardness (as CaCO3)	mg/l			510	190	290	260	SED7A	15	ļ	15		210	240	390	400	280	190	190
HARDNESS CALCIUM (AS CACO3)	mg/l			370	130	210	170	SED7A	15	ļ	15		150	160	290	290	200	140	130
HARDNESS MAGNESIUM (AS CACO3)	mg/l			140	59	84	81	SED7A	15	ļ	15		70	81	99	110	80	60	59
Hardness (as CaCO3)	mg/l	_	T HARD	540	190	290	260	SED7A	15	ļ	15		200	240	370	400	300	200	190
HARDNESS CALCIUM (AS CACO3)	mg/l	SM2340B	T HARDCA	400	130	210	170	SED7A	15		15		140	160	270	300	210	140	130
HARDNESS MAGNESIUM (AS CACO3)	mg/l		T HARDMG	140	58	83	82	SED7A	15		15		66	78	95	100	86	62	58
Dissolved Organic Carbon	mg/l	_	D DOC	140	6.2	31	15	SED8B	15	ļ	15		7.9	20	15	78	26	7.4	6.2
Aluminum	ug/l	SW6020A									15		< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U
Antimony	ug/l	SW6020A									15		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Arsenic	ug/l			3.3	1.1	1.7	1.4	SED8B	14		15		1.3	1.1	2.5	2.1	1.1	1.1	< 1.0 U
Barium	ug/l	SW6020A	D 7440-39-3	180	74	110	92	SED8B	15				92	90	130	98	74	92	120
								SED7A			15								
Beryllium	ug/l	_									15		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cadmium	ug/l										15		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Calcium	ug/l			150000	51000	83000	69000	SED7A	15		15		58000	65000	120000	120000	80000	54000	51000
Chromium	ug/l			0.99	0.38	0.51	0.47	SED7B	13		15		0.46 J	< 2.0 U	0.49 J	< 2.0 U	0.46 J	0.38 J	0.38 J
Cobalt	ug/l			19	0.3	6.2	3.6	SED7A	15		15		1.0	0.81	15	9.2	5.5	2.0	0.30 J
Copper	ug/l										15		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Iron	ug/l	_		67000	4400	19000	7200	SED7A	15		15		6700	7200	61000	17000	4400	6700	5700
Lead	ug/l										15		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Magnesium	ug/l	SW6020A		35000	14000	20000	20000	SED7A	15		15		17000	20000	24000	26000	20000	14000	14000
Manganese	ug/l	_		11000	1300	4300	2800	SED7A	15		15		1800	2300	9000	7100	4100	1800	1300
Nickel	ug/l	SW6020A	D 7440-02-0	3.8	0.89	1.9	1.6	SED7A	15		15		1.6	1.5	2.6	2.4	1.8	1.3	0.89 J
Potassium	ug/l	SW6020A	D 7440-09-7	10000	5300	6800	6300	SED8B SED7A	15				5600	6500	7800	8400	6000	5500	5300
Calamium	/1	CMCOOOA	D 7700 40 0					SEDIA			15		2 F O I I	2 F O I I	4 F O I I	4 F O I I	4 F O I I	4 F O I I	4 F O I I
Selenium	ug/l			-	 					 	15		< 5.0 U < 1.0 U	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U	< 5.0 U < 1.0 U
Silver	ug/l	_		E7000	42000	E0000	40000	CED74	15	 	15	 	49000					\$1.0 U	
Sodium Thallium	ug/l	SW6020A SW6020A	D 7440-23-5 D 7440-28-0	57000	42000	50000	49000	SED7A	15	 	15	 	49000 < 1.0 U	46000 < 1.0 U	56000 < 1.0 U	53000 < 1.0 U	48000 < 1.0 U	51000 < 1.0 U	47000 < 1.0 U
Vanadium	ug/l ug/l	SW6020A		0.92	0.6	0.7	0.68	SED7F	8	1	15	 	< 1.0 U	0.69 J	< 1.0 U	< 1.0 U	0.66 J	< 1.0 U	< 1.0 ∪ 0.68 J
Zinc	·			6.4	2.9	3.7	3.3	SED/F SED6A	8	1	15	 	< 5.0 U	< 5.0 U	6.4	3.1 J	2.9 J	< 5.0 U	< 5.0 U
Aluminum	ug/l ug/l			360	2.9	100	81	SED7.5D		1	15	 	95	160	81	3.1 J 42	2.9 J 77	360	69
Antimony	ug/l		T 7440-36-0	3.3	3.3	3.3	3.3	SED7.5D	15	 	15	 	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Arsenic	ug/I		T 7440-38-2	7.1	1.6	4.4	4.5	SED7B SED7A	15	1	15	 	3.5	3.8	5.1	6.0	4.5	4.5	1.6
Barium			T 7440-38-2	340	96	170	140	SED7A	15	1	15	 	110	3.8 140	240	230	140	140	1.6
	ug/l ug/l	_	T 7440-39-3	340	90	170	140	JEDIA	10	1	15	 	< 1.0 U	140 < 1.0 U	< 1.0 U	< 1.0 U	140 < 1.0 U	140 < 1.0 U	160 < 1.0 U
Beryllium Cadmium	ug/l	_	T 7440-41-7	0.11	0.1	0.11	0.11	SED7F	2	1	15	 	< 1.0 U	< 1.0 U	< 1.0 U	0.10 J	< 1.0 U	< 1.0 U	< 1.0 U
Calcium	ug/l		T 7440-70-2	160000		83000	70000	SED7A	15	1	15	 	55000	65000	110000	120000	86000	55000	52000
			T 7440-70-2	5.4	52000			SED7A SED7B	15	1	15	 	0.91 J	0.91 J	110000 1.0 J	0.64 J	1.2 J	1.9 J	0.64 J
Chromium Cobalt	ug/l ug/l		T 7440-48-4	23	0.51 0.44	7.3	0.91	SED7B SED7A	15	1	15	 	1.3	1.2	1.0 3	0.64 J 11	6.9	2.7	0.64 J 0.44 J
	ug/l	_	T 7440-46-4	6.5	1.1	3	2.7	SED7A SED7.5D	15	1	15	 	2.7	2.6	2.0	1.3 J	3.1	6.5	0.44 J 2.7
Copper Iron		SW6020A	T 7439-89-6	110000	13000	44000	27000	SED7.5D	15	1	15	 	21000	2.6	100000	66000	30000	26000	18000
Lead	ug/l					2.7				1	15	 	21000	7.1	1.1	0.50 J	2.6	6.8	1.5
	ug/l	_	T 7439-92-1	7.1	0.5		2.1	SED6.5E	15 15	1	15	 	16000		23000	25000			1.5
Magnesium	ug/l	_	T 7439-95-4 T 7439-96-5	35000 13000	14000 1300	20000 4600	20000 3000	SED7A SED7A	15 15	1	15	 	1700	19000 2300	9300	7500 7500	21000 4500	15000	1300
Manganese Nickel	ug/l		T 7440-02-0	4.8	1.4	2.7	2.6	SED7A	15 15	1	15	 	2.6	2.5	3.1	2.8	2.7	1800 2.6	1.5
Potassium	ug/l ug/l	_	T 7440-02-0	11000	5200	6900	6400	SED7A	15	 	15	 	5200	6400	7600	8300	6400	5600	5400
Selenium		_	T 7782-49-2	11000	3200	0900	0400	JEDIA	10	1	15	 	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U
Selemann	ug/l	SVVOUZUA	1102-49-2	_1							15	l	\ 0.0 U	> 5.0 €	\ 0.0 ∪	່ > ວ.0 ປ	> 5.0 €	> 5.0 €	< 5.0 €

													Location ID	SED6.5D	SED6.5E	SED6A	SED6B	SED6C	SED7.5D	SED7.5E
													Sample ID	PW6.5D00EN	PW6.5E00EN	PW6A00EN	PW6B00EN	PW6C00EN	PW7.5D00EN	PW7.5E00EN
													Sample Date	7/26/2017 9:50:00 AM	7/26/2017 8:50:00 AM	7/26/2017 9:20:00 AM	7/26/2017 9:10:00 AM	7/26/2017 8:00:00 AM	7/26/2017 9:30:00 AM	7/26/2017 8:40:00 AM
													Туре	N	N	N	N	N	N	N
					Max	Min	Mean	Median	Max	Count	Count	Count								
Analyte	Unit M	ethod	Fraction	CAS	Detect	Detect	Detect	Detect	Location	Detect	Reject	Total								
Silver	ug/l SW	6020A	T	7440-22-4								15		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l SW	6020A	T	7440-23-5	58000	41000	49000	50000	SED7A	15		15		45000	45000	55000	51000	51000	51000	48000
Thallium	ug/l SW	6020A	T	7440-28-0								15		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vanadium	ug/l SW	6020A	T	7440-62-2	5.2	0.97	2.2	1.8	SED7.5D	15		15		2.6	3.2	1.2	0.97 J	1.8	5.2	2.6
Zinc	ug/l SW	6020A	T	7440-66-6	13	3.9	7.6	7.2	SED7.5D	14		15		8.1	9.0	4.9 J	4.4 J	11	13	7.5
Mercury	ug/l SW	7470A	D	7439-97-6								15		< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U
Mercury	ug/l SW	7470A	T	7439-97-6								15		< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U

					1		T		T	T
		Location ID	SED7A	SED7B	SED7D	SED7E	SED7F	SED8A	SED8B	SED8C
		Sample ID	PW7A00EN	PW7B00EN	PW7D00EN	PW7E00EN	PW7F00EN	PW8A00EN	PW8B00EN	PW8C00EN
		Sample Date	7/26/2017 10:10:00 AM	7/26/2017 8:20:00 AM	7/26/2017 9:40:00 AM	7/26/2017 9:00:00 AM	7/26/2017 8:30:00 AM	7/26/2017 10:00:00 AM	7/26/2017 10:20:00 AM	7/26/2017 8:10:00 AM
		Туре	N	N	N	N	N	N	N	N
Analyte	Unit									
1-Methylnaphthalene	ug/l		< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U
2-Methylnaphthalene	ug/l		< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U	< 2.4 U
Acenaphthene	ug/l		< 1.6 U	0.15 J	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U
Acenaphthylene	ug/l		< 9 U	< 9 U	< 9 U	< 9 U	< 9 U	< 9 U	< 9 U	< 9 U
Anthracene	ug/l		< 0.61 U	< 0.61 U	< 0.61 U	< 0.61 U	< 0.61 U	< 0.61 U	< 0.61 U	< 0.61 U
Benzo(a)anthracene	ug/l		< 0.066 U	< 0.066 U	< 0.066 U	< 0.066 U	< 0.066 U	< 0.066 U	< 0.066 U	< 0.066 U
Benzo(a)pyrene	ug/l		< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U
Benzo(b,k)fluoranthene	ug/l		< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U	< 0.019 U
Benzo(e)pyrene	ug/l		< 0.028 U	< 0.028 U	< 0.028 U	< 0.028 U	< 0.028 U	< 0.028 U	< 0.028 U	< 0.028 U
Benzo(g,h,i)perylene	ug/l		< 0.013 U	< 0.013 U	< 0.013 U	< 0.013 U	< 0.013 U	< 0.013 U	< 0.013 U	< 0.013 U
C1-Chrysenes	ug/l		< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U	< 0.025 U
C1-Fluorenes	ug/l		< 0.41 U	0.88 JN	< 0.41 U	0.17 JN	< 0.41 U	< 0.41 U	< 0.41 U	< 0.41 U
C1-Phenanthrene/anthracenes	ug/l		< 0.22 U	0.19 JN	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U	< 0.22 U
C1-Pyrene/fluoranthenes	ug/l		< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U	< 0.14 U
C2-Chrysenes	ug/l		< 0.014 U	< 0.014 U	< 0.014 U	< 0.014 U	< 0.014 U	< 0.014 U	< 0.014 U	< 0.014 U
C2-Fluorenes	ug/l		< 0.16 U	0.68 JN	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U	< 0.16 U
C2-Naphthalenes	ug/l		0.15 JN	1.48 JN	< 0.89 U	0.17 JN	< 0.89 U	< 0.89 U	0.18 JN	< 0.89 U
C2-Phenanthrene/anthracenes	ug/l		< 0.09 U	0.23 JN	< 0.09 U	0.06 JN	< 0.09 U	< 0.09 U	< 0.09 U	< 0.09 U
C3-Chrysenes	ug/l		< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U	< 0.005 U
C3-Fluorenes	ug/l		< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U
C3-Naphthalenes	ug/l		0.07 JN	4.06 JN	0.08 JN	0.19 JN	0.09 JN	0.11 JN	0.11 JN	0.1 JN
C3-Phenanthrene/anthracenes	ug/l		< 0.04 U	0.2 JN	< 0.04 U	< 0.04 U	< 0.04 U	< 0.04 U	0.08 JN	< 0.04 U
C4-Chrysenes	ug/l		< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U	< 0.002 U
C4-Naphthalenes	ug/l		0.16 JN	3.62 JN	< 0.12 U	0.41 JN	0.43 JN	< 0.12 U	0.3 JN	0.35 JN
C4-Phenanthrenes/anthracenes	ug/l		< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U
Chrysene	ug/l		< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U	< 0.06 U
Dibenzo(a,h)anthracene	ug/l		< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U
Fluoranthene	ug/l		0.02 J	0.09 J	0.02 J	0.02 J	0.02 J	0.02 J	0.02 J	0.03 J
Fluorene	ug/l		< 1.2 U	0.13 J	< 1.2 U	< 1.2 U	< 1.2 U	< 1.2 U	< 1.2 U	< 1.2 U
Indeno(1,2,3-cd)pyrene	ug/l		< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U	< 0.008 U
Naphthalene	ug/l		0.13 J	0.15 J	< 5.7 U	0.1 J	0.11 J	0.13 J	0.12 J	0.12 J
Perylene	ug/l		< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U	< 0.026 U
Phenanthrene	ug/l		< 0.56 U	0.31 J	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U
Pyrene	ug/l		0.02 J	0.12 J	0.03 J	0.02 J	0.02 J	0.02 J	0.02 J	0.03 J
Total High-molecular-weight PAHs	ug/l		0.04	0.21	0.05	0.04	0.04	0.04	0.04	0.06
Total Low-molecular-weight PAHs	ug/l		0.13	0.74	< 9 U	0.1	0.11	0.13	0.12	0.12
Total PAHs (sum 16)	ug/l		0.17	0.95	0.05	0.1	0.15	0.17	0.16	0.18
PCB-104	%		94.910714286	77.5	89.821428571	99.619642857	96.142857143	74.285714286	99.919642857	95.285714286
PCB-121	%		85.608856089	54.612546125	78.966789668	98.228782288	87.822878229	57.933579336	99.856088561	90.258302583
PCB-14	%		99.7	94.5454545	99.318181818	100	99.759090909	94.090909091	99.890909091	99.681818182
PCB-142	%		84.641638225	56.996587031	76.450511945	98.054607509	86.689419795	52.901023891	99.85665529	90.170648464
PCB-155	%		77.443609023	45.864661654	70.676691729	96.390977444	79.69924812	45.864661654	99.593984962	86.240601504
PCB-184	%		65.714285714	32.142857143	57.142857143	91.428571429	67.142857143	32.857142857	97.357142857	79.285714286
PCB-192	%		65	30.714285714	57.857142857	90.714285714	65	32.857142857	97.142857143	77.857142857
PCB-204	%		47.619047619	19.047619048	42.857142857	74.285714286	42.857142857	23.80952381	81.904761905	61.428571429
PCB-36	%		97.823529412	85.294117647	94.647058824	99.876470588	98.411764706	83.529411765	99.905882353	97.647058824
PCB-78	%		94.5454545	75.649350649	89.285714286	99.464285714	95.324675325	75.649350649	99.892857143	95.032467532
Decachlorobiphenyl (PCB-209)	ng/g		5.2 J	11 J	7.3 J	12 JN	7.8 J	5.7 J	5.4 JN	7.5 J
Dichlorobiphenyl	ng/g		19 J	130	27	42	31	150	19 J	20 J
Heptachlorobiphenyl	ng/g		1000	2300	1600	3100	2100	1900	250	820
Hexachlorobiphenyl	ng/g		410	1500	1100	3200	1900	860	300	500
Monochlorobiphenyl	ng/g		0.39 J	< 0.13 U	0.42 J	1.3 J	7.0 J	0.50 J	16	0.46 J
Nonachlorobiphenyl	ng/g		5.9 J	11 J	12	97	25	5.3 J	8.6 J	10 J
Octachlorobiphenyl	ng/g		1100	1800	1300	1300	1400	1600	430	870
. ,	ng/g		3400	8000	6000	11000	7800	6400	1700	3200
PCB, Total Aroclors (Lab provided)								0.50.1	3.4 J	0.46 JN
PCB, Total Aroclors (Lab provided) PCB-1	ng/g		0.39 J	< 0.11 U	0.42 JN	1.3 JN	2.2 J	0.50 J		
PCB, Total Aroclors (Lab provided) PCB-1 PCB-10	ng/g ng/g		< 0.45 U	< 0.72 U	< 0.62 U	1.1 JN	< 0.49 U	< 0.51 U	< 0.40 U	< 0.80 U
PCB, Total Aroclors (Lab provided) PCB-1	ng/g									

					T	7	7			
		Location ID	SED7A	SED7B	SED7D	SED7E	SED7F	SED8A	SED8B	SED8C
		Sample ID	PW7A00EN	PW7B00EN	PW7D00EN	PW7E00EN	PW7F00EN	PW8A00EN	PW8B00EN	PW8C00EN
		Sample Date	7/26/2017 10:10:00 AM	7/26/2017 8:20:00 AM	7/26/2017 9:40:00 AM	7/26/2017 9:00:00 AM	7/26/2017 8:30:00 AM	7/26/2017 10:00:00 AM	7/26/2017 10:20:00 AM	7/26/2017 8:10:00 AM
		Туре	N	N	N	N	N	N	N	N
Analyte	Unit		4.4.101		22.11	22.11	50.00	.0.057.11		40.00
PCB-102	ng/g		1.1 JN	< 0.061 U	2.6 JN	9.0 JN	5.6 JN	< 0.057 U	2.0	1.3 JN
PCB-103	ng/g		< 0.048 U	< 0.063 U	< 0.078 U	6.5 J	2.7 JN	< 0.059 U	0.65 J	< 0.10 U
PCB-104	ng/g		95	420	190	7.1 JN	72	480	1.5 JN	88
PCB-105	ng/g		10 JN	27	27	55	38	14 JN	15	16
PCB-106	ng/g		5.5 J	16	8.9 J	< 0.37 U	5.0 J	16	< 0.13 U	3.4 J
PCB-107			1.7 JN	4.0 J	6.4 JN	18	10	1.5 J	3.5 J	3.8 JN
PCB-107	ng/g			4.0 J 2.2 JN			2.5 JN		3.5 J 1.8 J	
	ng/g		0.96 J 17	2.2 JN 58	2.8 J 56	7.7 J 140	2.5 JN 95	0.70 JN	1.8 J 28	1.7 J
PCB-109	ng/g					5.2 J		17		31
PCB-11	ng/g		3.2 JN 28	4.0 JN	4.0 J		5.3 J	6.4 J 29	4.0 JN	5.3 JN 52
PCB-110	ng/g			110	90	250	160	-	48	
PCB-111	ng/g		< 0.034 U	< 0.044 U	< 0.055 U	< 0.057 U	< 0.039 U	< 0.041 U	< 0.039 U	< 0.070 U
PCB-112	ng/g		0.27 JN	< 0.047 U	< 0.057 U	1.8 JN	1.3 J	< 0.043 U	0.45 J	< 0.074 U
PCB-113	ng/g		30	140	110	340	200	31	50	60
PCB-114	ng/g		< 0.22 U	1.2 J	1.6 JN	4.5 J	2.5 J	0.55 JN	1.1 JN	1.2 J
PCB-115	ng/g		28	110	90	250	160	29	48	52
PCB-116	ng/g		5.3	13	16	45	30	4.9	9.9	10
PCB-117	ng/g		5.3	13	16	45	30	4.9	9.9	10
PCB-118	ng/g		24	65	68	180	110	22	44	43
PCB-119	ng/g		17	58	56	140	95	17	28	31
PCB-12	ng/g		< 0.41 U	< 0.65 U	< 0.56 U	< 0.72 U	< 0.45 U	< 0.46 U	< 0.36 U	< 0.73 U
PCB-120	ng/g		< 0.034 U	< 0.045 U	< 0.055 U	< 0.058 U	< 0.040 U	< 0.042 U	< 0.039 U	< 0.071 U
PCB-121	ng/g		130	410	190	16	110	380	1.3 JN	88
PCB-122	ng/g		< 0.27 U	1.1 J	1.2 J	1.9 JN	1.4 JN	< 0.16 U	0.60 JN	0.65 JN
PCB-123	ng/g		0.50 JN	0.69 JN	1.3 J	4.1 J	2.0 J	< 0.14 U	0.92 JN	1.1 JN
PCB-124	ng/g		0.96	2.2 JN	2.8	7.7	2.5 JN	0.70 JN	1.8	1.7
PCB-125	ng/g		17	58	56	140	95	17	28	31
PCB-126	ng/g		< 0.26 U	< 0.27 U	< 0.25 U	< 0.37 U	0.38 JN	< 0.15 U	< 0.13 U	< 0.23 U
PCB-127	ng/g		< 0.23 U	< 0.27 U	< 0.23 U	< 0.37 U	< 0.29 U	< 0.14 U	< 0.13 U	< 0.22 U
PCB-128	ng/g		2.7 JN	13 J	13	58	31	3.0 J	7.1 J	7.0 JN
PCB-129	ng/g		34	160	140	620	330	31	68	71
PCB-13	ng/g		< 0.41 U	< 0.65 U	< 0.56 U	< 0.72 U	< 0.45 U	< 0.46 U	< 0.36 U	< 0.73 U
PCB-130	ng/g		1.4 JN	6.2 J	8.1 J	33	17	1.5 JN	3.9 J	3.6 J
PCB-131	ng/g		< 0.35 U	< 0.51 U	< 0.46 U	< 1.3 U	< 0.64 U	< 0.24 U	< 0.25 U	< 0.36 U
PCB-132	ng/g		7.1 JN	48	36	140	81	9.9 J	14	16
PCB-133	ng/g		< 0.31 U	< 0.46 U	2.6 JN	12 J	6.1 J	1.3 JN	0.96 J	1.5 J
PCB-134	ng/g		1.1 JN	7.2 J	5.6 JN	29	17	1.4 JN	2.6 J	2.6 JN
PCB-135	ng/g		8.5 JN	77	64	300	160	9.9 JN	20	27
PCB-136	ng/g		2.5 J	25	15	64	35	2.8 JN	4.9 J	6.0 J
PCB-137	ng/g		0.94 JN	3.9 J	4.8 J	18	9.6 JN	< 0.19 U	3.4 J	2.8 J
PCB-138	ng/g		34	160	140	620	330	31	68	71
PCB-139	ng/g		< 0.28 U	< 0.41 U	< 0.37 U	7.9 J	4.1 J	< 0.19 U	0.80 J	< 0.29 U
PCB-14	ng/g		6.6 J	120	15	< 0.61 U	5.3 J	130	2.4 JN	7.0 J
PCB-140	ng/g		< 0.28 U	< 0.41 U	< 0.37 U	7.9	4.1	< 0.19 U	0.80	< 0.29 U
PCB-141	ng/g		6.3 J	40	32	160	82	6.5 JN	12	15
PCB-142	ng/g		150	420	230	19	130	460	1.4 J	96
PCB-143	ng/g		1.1 JN	7.2	5.6 JN	29	17	1.4 JN	2.6	2.6 JN
PCB-144	ng/g		1.4 J	8.9 JN	6.6 JN	35	17	0.99 JN	1.6 JN	3.4 J
PCB-145	ng/g		< 0.035 U	< 0.051 U	< 0.075 U	< 0.068 U	< 0.046 U	< 0.040 U	< 0.025 U	< 0.073 U
PCB-146	ng/g		9.7 J	27	35	130	70	2.0 JN	12	16
PCB-147	ng/g		28	180	140	630	330	30	53	61
PCB-148	ng/g		< 0.049 U	< 0.072 U	< 0.11 U	0.75 JN	0.90 J	< 0.057 U	< 0.035 U	< 0.10 U
PCB-149	ng/g		28	180	140	630	330	30	53	61
PCB-15	ng/g		3.7 JN	2.2 J	3.6 JN	6.9 J	8.2 JN	3.7 J	3.3 JN	3.3 JN
PCB-150	ng/g		< 0.033 U	< 0.049 U	0.46 JN	2.0 J	1.4 JN	< 0.039 U	< 0.024 U	< 0.070 U
PCB-151	ng/g		8.5 JN	77	64	300	160	9.9 JN	20	27
PCB-152	ng/g		0.32 J	< 0.053 U	< 0.077 U	< 0.070 U	0.46 J	0.78 J	0.083 JN	< 0.075 U
PCB-153	ng/g		32	160	150	750	360	29	68	76
PCB-154	ng/g		0.73 JN	1.4 JN	2.6 J	16	1.8 JN	1.6 J	1.4 JN	1.6 J

		Location ID	SED7A	SED7B	SED7D	SED7E	SED7F	SED8A	SED8B	SED8C
		Sample ID	PW7A00EN	PW7B00EN	PW7D00EN	PW7E00EN	PW7F00EN	PW8A00EN	PW8B00EN	PW8C00EN
		Sample Date	7/26/2017 10:10:00 AM	7/26/2017 8:20:00 AM	7/26/2017 9:40:00 AM	7/26/2017 9:00:00 AM	7/26/2017 8:30:00 AM	7/26/2017 10:00:00 AM	7/26/2017 10:20:00 AM	7/26/2017 8:10:00 AM
		Туре	N	N	N	N	N	N	N	N
Anglyta	Unit									
Analyte PCB-155	ng/g		100	240	130	16	90	240	1.8 J	61
1 05 100	119/9		100	240	100		30	240	1.00	ļ
PCB-156	ng/g		13 JN	24 JN	25 JN	53	35 JN	21 JN	11 JN	15 JN
PCB-157	ng/g		13 JN	24 JN	25 JN	53	35 JN	21 JN	11 JN	15 JN
PCB-158	ng/g		3.2 J	15	14	60	31	2.5 J	7.3 J	5.6 JN
PCB-159	ng/g		< 0.21 U	2.1 J	1.6 JN	9.7 J	3.3 JN	< 0.14 U	0.54 J	0.87 JN
PCB-16	ng/g		2.7 JN	2.3 J	8.9 JN	24	11	2.8 JN	2.7 JN	3.0 JN
PCB-160	ng/g		34	160	140	620	330	31	68	71
PCB-161 PCB-162	ng/g		< 0.21 U < 0.21 U	1.5 JN < 0.30 U	< 0.28 U < 0.27 U	< 0.78 U < 0.77 U	< 0.39 U < 0.38 U	8.4 J < 0.14 U	< 0.15 U < 0.15 U	< 0.22 U < 0.21 U
PCB-163	ng/g ng/g		34	160	140	620	330	31	68	71
PCB-163	ng/g		1.9 J	10 J	8.8 J	38	22	1.8 J	3.8 J	4.4 J
PCB-165	ng/g		< 0.24 U	< 0.35 U	< 0.32 U	< 0.88 U	< 0.44 U	< 0.16 U	< 0.17 U	< 0.25 U
PCB-166	ng/g		2.7 JN	13	13	58	31	3.0	7.1	7.0 JN
PCB-167	ng/g		0.99 JN	3.9 JN	5.0 J	22	12	0.97 J	2.5 JN	2.3 JN
PCB-168	ng/g		32	160	150	750	360	29	68	76
PCB-169	ng/g		< 0.15 U	< 0.22 U	< 0.20 U	< 0.56 U	< 0.28 U	< 0.10 U	< 0.11 U	< 0.15 U
PCB-17	ng/g		8.9 J	5.1 JN	20	51	20	8.3 J	9.6 J	10 J
PCB-170	ng/g		9.3 J	41	38	250	100	6.1 JN	16	18
PCB-171	ng/g		< 0.10 U	15	15	88	38	< 0.11 U	5.5 J	7.0 J
PCB-172	ng/g		< 0.10 U	7.3 J	9.0 J	68	25	< 0.11 U	3.6 J	4.5 J
PCB-173	ng/g		< 0.10 U	15	15	88	38	< 0.11 U	5.5	7.0
PCB-174	ng/g		9.2 J	52	48	320	130	7.9 J	18	24
PCB-175 PCB-176	ng/g		< 0.094 U < 0.071 U	< 0.14 U	< 0.14 U	17 43	5.8 JN 18	< 0.10 U < 0.075 U	0.75 JN 2.3 J	< 0.085 U
PCB-177	ng/g ng/g		5.0 J	28	28	180	77	< 0.075 U	12	3.0 3
PCB-178	ng/g		< 0.10 U	9.1 J	12	81	35	< 0.11 U	4.6 JN	5.9 J
PCB-179	ng/g		3.8 JN	27	25	150	66	< 0.080 U	8.4 J	11
PCB-18	ng/g		11 J	9.2 J	31	74	35	10 J	11 J	12 J
PCB-180	ng/g		25	110	110	800	310	18	49	61
PCB-181	ng/g		< 0.094 U	< 0.14 U	< 0.13 U	< 0.14 U	< 0.098 U	< 0.099 U	< 0.055 U	< 0.085 U
PCB-182	ng/g		< 0.091 U	< 0.14 U	< 0.13 U	< 0.13 U	< 0.094 U	< 0.096 U	< 0.054 U	< 0.082 U
PCB-183	ng/g		6.3 J	41	39	280	110	< 0.098 U	18	21
PCB-184	ng/g		480	950	600	120	460	940	37	290
PCB-185	ng/g		6.3	41	39	280	110	< 0.098 U	18	21
PCB-186	ng/g		< 0.075 U	< 0.11 U	< 0.11 U	< 0.11 U	< 0.078 U	< 0.079 U	< 0.044 U	< 0.068 U
PCB-187	ng/g		14	61	68	500	200	10 J	29	37
PCB-188 PCB-189	ng/g		< 0.070 U < 0.48 U	< 0.10 U	< 0.097 U 0.90 JN	< 0.10 U 9.1 J	< 0.073 U 2.7 JN	< 0.073 U 0.26 JN	< 0.040 U 0.66 J	< 0.064 U 0.69 J
PCB-109	ng/g ng/g		2.0 J	1.2 JN 1.4 JN	0.90 JN 3.4 J	9.1 J 9.2 JN	2.7 JN 4.3 JN	0.26 JN 2.6 J	0.66 J 2.5 J	0.69 J 2.2 JN
PCB-190	ng/g		2.2 JN	8.0 J	8.1 J	59 59	16 JN	< 0.072 U	3.4 JN	4.7 J
PCB-191	ng/g		< 0.071 U	< 0.11 U	2.2 JN	16	6.1 J	< 0.075 U	1.0 JN	1.2 JN
PCB-192	ng/g		490	970	590	130	490	940	40	310
PCB-193	ng/g		25	110	110	800	310	18	49	61
PCB-194	ng/g		3.5 J	14	16	170	50	2.0 JN	9.9 J	11
PCB-195	ng/g		1.6 J	6.0 J	6.7 JN	65	24	1.2 J	2.9 JN	4.2 JN
PCB-196	ng/g		< 0.11 U	7.1 JN	9.8 J	90	29	< 0.062 U	5.6 J	5.4 JN
PCB-197	ng/g		9.5 JN	16	12	13 J	12	16	3.6 J	7.3 J
DCP 100	m m /		E 2 I	46	20	200	CE.	< 0.063 U	4.4	42 151
PCB-198 PCB-199	ng/g ng/g		5.3 J 5.3	16 16	22 22	200	65 65	< 0.063 U < 0.063 U	14 14	13 JN 13 JN
PCB-2	ng/g		< 0.056 U	< 0.12 U	< 0.11 U	< 0.12 U	2.6 JN	< 0.063 U	7.3 JN	< 0.10 U
PCB-20	ng/g		28	20 J	61	120	2.6 JN 85	25	7.3 JN 30	31
PCB-200	ng/g		1.4 JN	4.6 J	3.8 J	21	8.8 J	< 0.042 U	1.7 J	< 0.079 U
PCB-201	ng/g		< 0.077 U	< 0.12 U	< 0.086 U	25	7.9 J	< 0.043 U	1.5 J	< 0.081 U
PCB-202	ng/g		< 0.086 U	2.8 J	3.9 J	38	13	< 0.049 U	2.8 J	3.2 J
PCB-203	ng/g		3.0 JN	9.2 J	12	120	36	< 0.056 U	7.7 J	8.4 J
						•	1200		•	

			05074	05070	05575	05075	05575	05504	OFROR	05000
		Location ID	SED7A	SED7B	SED7D	SED7E	SED7F	SED8A	SED8B	SED8C
		Sample ID	PW7A00EN	PW7B00EN	PW7D00EN	PW7E00EN	PW7F00EN	PW8A00EN	PW8B00EN	PW8C00EN
		Sample Date	7/26/2017 10:10:00 AM	7/26/2017 8:20:00 AM	7/26/2017 9:40:00 AM	7/26/2017 9:00:00 AM	7/26/2017 8:30:00 AM	7/26/2017 10:00:00 AM	7/26/2017 10:20:00 AM	7/26/2017 8:10:00 AM
		Туре	N	N	N	N	N	N	N	N
Analyte	Unit									
PCB-205	ng/g		< 0.26 U	< 0.40 U	0.74 J	8.0 J	2.7 J	< 0.11 U	0.36 JN	0.54 J
PCB-206	ng/g		2.0 J	4.2 J	5.0 J	67	13	0.89 JN	3.6 JN	4.2 J
PCB-207	ng/g		3.8 JN	5.5 J	5.4 J	11 J	7.5 J	4.4 JN	3.3 J	4.4 J
PCB-208	ng/g		< 0.43 U	1.5 JN	1.8 JN	18	4.1 J	< 0.18 U	1.7 J	1.4 J
PCB-21	ng/g		7.7 J	5.5 J	17	35	22	5.9 J	6.2 J	7.5 J
PCB-22	ng/g		5.4 J	3.9 J	14	29	17 JN	4.3 J	5.2 J	6.0 J
PCB-23	ng/g		< 0.15 U	< 0.23 U	< 0.19 U	< 0.26 U	< 0.19 U	< 0.15 U	< 0.10 U	< 0.16 U
PCB-24	ng/g		0.37 J	< 0.12 U	0.81 J	1.4 JN	0.60 JN	0.10 JN	0.23 JN	< 0.11 U
PCB-25	ng/g		2.9 J	1.6 J	4.7 J	12 J	5.2 JN	2.9 J	3.5 J	3.5 J
PCB-26	ng/g		4.9 J	2.7 J	9.5 J	23	12	4.6 J	5.1 J	5.8 J
PCB-27	ng/g		2.0 J	0.90 JN	2.9 JN	8.1 J	3.9 J	1.4 JN	2.1 J	1.8 JN
PCB-28	ng/g		28	20	61	120	85	25	30	31
PCB-29 PCB-3	ng/g		4.9 < 0.065 U	2.7 < 0.13 U	9.5 < 0.15 U	23 < 0.14 U	12	4.6	5.1	5.8 < 0.12 U
PCB-30	ng/g		< 0.065 U				2.2 J 35	< 0.13 U	5.6 J	
PCB-30 PCB-31	ng/g		11 19 J	9.2 14 J	31 44	74 84	35 55	10 18 J	11 20	12 22
PCB-31	ng/g ng/g		19 J 7.0 JN	14 J 4.4 JN	15	36	19	18 J 6.9 J	7.5 J	9.1 J
PCB-32 PCB-33	ng/g		7.0 JN 7.7	4.4 JN 5.5	15	35	22	5.9	7.5 J 6.2	9.1 J 7.5
PCB-34	ng/g		< 0.15 U	< 0.24 U	< 0.20 U	< 0.27 U	< 0.19 U	< 0.16 U	< 0.11 U	< 0.17 U
PCB-35	ng/g		0.32 JN	< 0.24 U	< 0.20 U	< 0.26 U	1.0 J	< 0.15 U	0.29 J	0.36 J
PCB-36	ng/g		37	250	91	2.1 J	27	280	1.6 JN	40
PCB-37	ng/g		4.4 J	3.3 J	9.5 J	18	18	4.1 J	4.3 J	4.9 J
PCB-38	ng/g		< 0.15 U	< 0.24 U	< 0.20 U	< 0.27 U	< 0.20 U	< 0.16 U	< 0.11 U	< 0.17 U
PCB-39	ng/g		< 0.14 U	0.87 J	0.78 J	0.71 J	< 0.17 U	< 0.14 U	< 0.096 U	0.41 J
PCB-4	ng/g		< 0.54 U	< 0.89 U	< 0.94 U	12 JN	3.9 JN	4.1 JN	4.7 J	4.1 JN
PCB-40	ng/g		12	8.5 J	38	89	51	12	15	15
PCB-41	ng/g		12	8.5	38	89	51	12	15	15
PCB-42	ng/g		5.8 J	4.7 JN	18	43	26	5.9 JN	7.4 J	7.7 J
PCB-43	ng/g		0.70 JN	< 0.10 U	2.8 J	6.2 J	4.2 J	1.6 JN	1.4 J	1.3 JN
PCB-44	ng/g		28	32	76	190	100	35	38	37
PCB-45	ng/g		5.4 J	4.1 J	14 JN	44	26	5.7 J	7.2 J	6.8 J
PCB-46	ng/g		1.0 J	< 0.14 U	3.6 JN	8.6 J	5.3 J	1.1 J	1.5 J	1.3 JN
PCB-47	ng/g		28	32	76	190	100	35	38	37
PCB-48	ng/g		4.2 JN	3.1 JN	18	37	20	4.6 J	6.0 J	6.5 JN
PCB-49	ng/g		20 < 0.46 U	19 < 0.73 U	51 < 0.63 U	120 < 0.81 U	69 < 0.50 U	19	25	25 < 0.81 U
PCB-5 PCB-50	ng/g		4.2 J	2.8 JN	11	27	< 0.50 U	< 0.52 U 5.0 J	< 0.40 U 5.8 J	5.2 JN
PCB-50	ng/g		5.4	4.1	14 JN	44	26	5.7	7.2	6.8
PCB-52	ng/g ng/g		32	54	85	190	110	32	40	45
PCB-53	ng/g		4.2	2.8 JN	11	27	17	5.0	5.8	5.2 JN
PCB-54	ng/g		< 0.0065 U	< 0.014 U	0.38 JN	0.92 JN	0.50 JN	0.25 JN	0.22 JN	< 0.018 U
PCB-55	ng/g		0.78 J	< 0.079 U	0.86 JN	2.3 JN	1.5 J	< 0.042 U	0.31 JN	0.76 J
PCB-56	ng/g		7.4 J	9.6 J	23	42	28	9.2 J	8.6 J	10 J
PCB-57	ng/g		< 0.064 U	< 0.080 U	< 0.049 U	1.9 JN	< 0.068 U	< 0.042 U	< 0.031 U	< 0.099 U
PCB-58	ng/g		< 0.065 U	0.24 JN	2.6 J	1.3 J	0.83 JN	< 0.043 U	0.21 JN	0.17 JN
PCB-59	ng/g		2.1 J	1.8 JN	7.4 J	17	10	2.5 J	3.0 JN	2.8 JN
PCB-6	ng/g		< 0.40 U	< 0.64 U	< 0.56 U	5.5 JN	1.8 JN	< 0.46 U	< 0.35 U	< 0.72 U
PCB-60	ng/g		3.2 JN	3.9 JN	13	21 JN	14	3.7 J	5.4 J	4.7 J
PCB-61	ng/g		35	54	100	200	130	33	46	48
PCB-62	ng/g		2.1	1.8 JN	7.4	17	10	2.5	3.0 JN	2.8 JN
PCB-63	ng/g		0.98 JN	0.94 JN	3.2 J	7.6 J	4.1 J	0.90 JN	1.6 J	1.5 J
PCB-64	ng/g		11	10 J	30	63	41	10 J	13	14
PCB-65	ng/g		28	32	76	190	100	35	38	37
PCB-66	ng/g		21	23	57	110	78	21	29	28
PCB-67	ng/g		0.75 J	< 0.069 U	2.2 J	5.4 J	3.3 J	< 0.037 U	0.78 J	0.77 JN
PCB-68 PCB-69	ng/g ng/g		0.40 J 20	< 0.071 U	1.3 JN 51	2.6 J 120	1.2 J 69	0.95 J 19	0.62 JN 25	0.47 JN 25
	ng/g									
			< 0.4111	< 0.66.11	< 0.5711	< 0.73 1	< 0.4511	< 0.47 II	< 0.3811	< N 73 II
PCB-09 PCB-7 PCB-70	ng/g ng/g		< 0.41 U 35	< 0.66 U	< 0.57 U 100	< 0.73 U 200	< 0.45 U 130	< 0.47 U	< 0.36 U 46	< 0.73 U 48

		Location ID	SED7A	SED7B	SED7D	SED7E	SED7F	SED8A	SED8B	SED8C
		Sample ID	PW7A00EN	PW7B00EN	PW7D00EN	PW7E00EN	PW7F00EN	PW8A00EN	PW8B00EN	PW8C00EN
		Sample Date	7/26/2017 10:10:00 AM	7/26/2017 8:20:00 AM	7/26/2017 9:40:00 AM	7/26/2017 9:00:00 AM	7/26/2017 8:30:00 AM	7/26/2017 10:00:00 AM	7/26/2017 10:20:00 AM	7/26/2017 8:10:00 AM
		Туре	N	N	N	N	N	N	N	N
Analyte	Unit									
PCB-72	ng/g		< 0.063 U	< 0.078 U	< 0.048 U	2.7 J	1.2 J	< 0.041 U	0.42 JN	< 0.097 U
PCB-73	ng/g		0.70 JN	< 0.10 U	2.8	6.2	4.2	1.6 JN	1.4	1.3 JN
PCB-74	ng/g		35	54	100	200	130	33	46	48
PCB-75	ng/g		2.1	1.8 JN	7.4	17	10	2.5	3.0 JN	2.8 JN
PCB-76	ng/g		35	54	100	200	130	33	46	48
PCB-77	ng/g		1.3 J	1.9 JN	4.0 J	10 J	7.8 J	1.2 JN	1.8 J	2.0 J
PCB-78	ng/g		56	250	110	5.5 J	48	250	1.1 J	51
PCB-79	ng/g		< 0.056 U	< 0.070 U	< 0.043 U	1.9 J	< 0.060 U	< 0.037 U	0.26 JN	0.77 J
PCB-8	ng/g		5.7 J	3.4 JN	4.4 J	11 J	6.3 J	2.7 J	4.2 J	< 0.66 U
PCB-80	ng/g		0.28 JN	< 0.069 U	1.4 JN	< 0.10 U	< 0.059 U	2.0 JN	< 0.027 U	0.58 JN
PCB-81	ng/g		< 0.058 U	< 0.073 U	< 0.046 U	< 0.12 U	< 0.066 U	0.91 JN	< 0.032 U	< 0.092 U
PCB-82	ng/g		2.3 JN	6.8 J	9.4 J	23	16	< 0.068 U	3.9 J	5.2 J
PCB-83	ng/g		18	50	60	180	110	17	33	37
PCB-84	ng/g		4.7 J	15 JN	17	42	30	5.6 J	7.4 J	8.2 J
PCB-85	ng/g		5.3 J	13 J	16	45	30	4.9 J	9.9 J	10 J
PCB-86	ng/g		17	58	56	140	95	17	28	31
PCB-87	ng/g		17	58	56	140	95	17	28	31
PCB-88	ng/g		3.1 JN	10 J	14	47	28	4.4 J	5.9 JN	7.7 J
PCB-89	ng/g		< 0.054 U	< 0.072 U	< 0.088 U	< 0.092 U	< 0.064 U	< 0.066 U	0.69 J	< 0.11 U
PCB-9	ng/g		< 0.42 U	< 0.68 U	< 0.58 U	< 0.75 U	< 0.46 U	< 0.48 U	< 0.37 U	< 0.75 U
PCB-90	ng/g		30	140	110	340	200	31	50	60
PCB-91	ng/g		3.1 JN	10	14	47	28	4.4	5.9 JN	7.7
PCB-92	ng/g		6.3 J	22	22	65	36	6.8 J	9.1 J	12
PCB-93	ng/g		0.44 JN	1.7 J	< 0.078 U	5.4 JN	8.3 J	< 0.059 U	1.3 J	0.92 JN
PCB-94	ng/g		< 0.054 U	< 0.071 U	< 0.088 U	4.1 J	1.9 JN	< 0.066 U	0.46 JN	< 0.11 U
PCB-95	ng/g		19	100	72	210	130	23	29	38
PCB-96	ng/g		< 0.041 U	< 0.054 U	< 0.066 U	2.2 J	1.6 J	< 0.050 U	0.35 JN	< 0.085 U
PCB-97	ng/g		17	58	56	140	95	17	28	31
PCB-98	ng/g		1.1 JN	< 0.061 U	2.6 JN	9.0 JN	5.6 JN	< 0.057 U	2.0 J	1.3 JN
PCB-99	ng/g		18	50	60	180	110	17	33	37
Pentachlorobiphenyl	ng/g		400	1500	960	1700	1200	1000	300	510
Tetrachlorobiphenyl	ng/g		250	480	680	1300	800	460	260	320
Trichlorobiphenyl	ng/g		140	330	330	530	340	380	110	160
Decachlorobiphenyl (PCB-209)	pg/l		0.0031 J	0.1 J	0.016 J	0.024 JN	0.019 J	0.0015 J	0.0074 JN	0.013 J
DOD TOTAL			1000			10000	****			0.100
PCB, TOTAL	pg/l		1600	2300	3800	10000	6000	2000	3000	2100
PCB, Total Congeners (Provided by Lab)	pg/l		1600	2300	3800	10000	6000	2000	3000	2100
PCB-1	pg/l		74 J	< 21 U	80 JN	250 JN	420 J	95 J	650 J	88 JN
PCB-10 PCB-100	pg/l		< 28 U 0.45 JN	< 45 U 2.3	< 39 U < 0.084 U	69 JN 5.2 JN	< 31 U 8.4	< 32 U < 0.079 U	< 25 U 1.2	< 50 U 0.92 JN
PCB-100	pg/l		0.45 JN 21	130	< 0.084 U 81	5.2 JN 220	140	< 0.079 U	32	0.92 JN 40
PCB-101 PCB-102	pg/l pg/l		1.1 JN	< 0.081 U	81 2.8 JN	8.6 JN	140 5.6 JN	< 0.077 U	1.9	1.3 JN
PCB-102	pg/l		< 0.049 U	< 0.081 U	< 0.084 U	6.2 J	2.7 JN	< 0.077 U	0.62 J	< 0.1 U
PCB-105	pg/l		4.6 JN	18	14	23	18	8.8 JN	6.3	7.2
PCB-105	pg/l		0.47 J	0.95	1.1 J	< 0.16 U	0.4 J	0.0 JN	< 0.054 U	0.14 J
PCB-100	pg/l		0.47 J 0.81 JN	2.8 J	3.3 JN	7.6	4.7	1.1 J	1.5 J	1.7 JN
PCB-108	pg/l		0.46	1.6 JN	1.4	3.3	1.2 JN	0.49 JN	0.75	0.78
PCB-109	pg/l		12	56	41	89	65	16	18	21
PCB-11	pg/l		25 JN	26 JN	30 J	41 J	42 J	44 J	32 JN	42 JN
	. 5					-	-	-		
PCB-110	pg/l		19	110	67	160	110	28	30	35
PCB-111	pg/l		< 0.016 U	< 0.031 U	< 0.028 U	< 0.024 U	< 0.018 U	< 0.029 U	< 0.016 U	< 0.032 U
PCB-112	pg/l		0.19 JN	< 0.045 U	< 0.042 U	1.1 JN	0.89 J	< 0.042 U	0.28 J	< 0.05 U
PCB-113	pg/l		21	130	81	220	140	30	32	40
PCB-114	pg/l		< 0.11 U	0.85 J	0.82 JN	1.9 J	1.2 J	0.39 JN	0.46 JN	0.55 J
DOD 445	pg/l		19	110	67	160	110	28	30	35
PCB-115	1 5									
PCB-116	pg/l		3.7	13	12	29	21	4.7	6.3	6.7
			3.7 3.7 11	13 13	12 12	29 29	21 21 52	4.7 4.7	6.3 6.3 18	6.7 6.7

							-		T	T
		Location ID	SED7A	SED7B	SED7D	SED7E	SED7F	SED8A	SED8B	SED8C
		Sample ID	PW7A00EN	PW7B00EN	PW7D00EN	PW7E00EN	PW7F00EN	PW8A00EN	PW8B00EN	PW8C00EN
		Sample Date	7/26/2017 10:10:00 AM	7/26/2017 8:20:00 AM	7/26/2017 9:40:00 AM	7/26/2017 9:00:00 AM	7/26/2017 8:30:00 AM	7/26/2017 10:00:00 AM	7/26/2017 10:20:00 AM	7/26/2017 8:10:00 AM
	1 1	Туре	N	N	N	N	N	N	N	N
Analyte	Unit									
PCB-119	pg/l		12	56	41	89	65	16	18	21
PCB-12	pg/l		< 3.3 U	< 5.4 U	< 4.5 U	< 5.7 U	< 3.6 U	< 3.9 U	< 2.9 U	< 5.8 U
PCB-120	pg/l		< 0.016 U	< 0.032 U	< 0.028 U	< 0.025 U	< 0.019 U	< 0.03 U	< 0.016 U	< 0.032 U
PCB-122	pg/l		< 0.13 U	0.78 J	0.62 J	0.81 JN	0.66 JN	< 0.11 U	0.25 JN	0.3 JN
PCB-123	pg/l		0.24 JN	0.49 JN	0.67 J	1.7 J	0.94 J	< 0.099 U	0.39 JN	0.5 JN
PCB-124	pg/l		0.46	1.6 JN	1.4	3.3	1.2 JN	0.49 JN	0.75	0.78
PCB-125	pg/l		12	56	41	89	65	16	18	21
PCB-126	pg/l		< 0.086 U	< 0.14 U	< 0.09 U	< 0.1 U	0.12 JN	< 0.077 U	< 0.036 U	< 0.071 U
PCB-127	pg/l		< 0.076 U	< 0.14 U	< 0.083 U	< 0.1 U	< 0.095 U	< 0.072 U	< 0.036 U	< 0.068 U
PCB-128	pg/l		0.61 JN	5	3.3	11	7	1.1	1.3	1.5 JN
PCB-129	pg/l		7.7	62	35	120	74	12	12	15
PCB-13	pg/l		< 3.3 U	< 5.4 U	< 4.5 U	< 5.7 U	< 3.6 U	< 3.9 U	< 2.9 U	< 5.8 U
PCB-130	pg/l		0.32 JN	2.4 J	2 J	6.1	3.8	0.56 JN	0.7 J	0.75 J
PCB-131	pg/l		< 0.11 U	< 0.25 U	< 0.15 U	< 0.34 U	< 0.19 U	< 0.12 U	< 0.063 U	< 0.1 U
PCB-132	pg/l		2 JN	23	12	36	24	3.9 J	3.5	4.4
PCB-133	pg/l		< 0.07 U	< 0.18 U	0.65 JN	2.2 J	1.4 J	0.49 JN	0.17 J	0.31 J
PCB-134	pg/l		0.34 JN	3.5	1.9 JN	7.5	5.1	0.68 JN	0.66	0.74 JN
PCB-135	pg/l		2.5 JN	37	21	78	48	4.4 JN	5.1	7.6
PCB-136	pg/l		0.68 J	11	4.5	14	9.4	1.2 JN	1.1 J	1.5 J
PCB-137	pg/l		0.21 JN	1.5 J	1.2 J	3.3	2.2 JN	< 0.071 U	0.61 J	0.58 J
PCB-138	pg/l		7.7	62	35	120	74	12	12	15
PCB-139	pg/l		< 0.086 U	< 0.2 U	< 0.12 U	2	1.2	< 0.092 U	0.2	< 0.083 U
PCB-140	pg/l		< 0.086 U	< 0.2 U	< 0.12 U	2	1.2	< 0.092 U	0.2	< 0.083 U
PCB-141	pg/l		1.4 J	15	8	30	18	2.4 JN	2.2	3.1
PCB-143	pg/l		0.34 JN	3.5	1.9 JN	7.5	5.1	0.68 JN	0.66	0.74 JN
PCB-144	pg/l		0.43 J	4.4 JN	2.2 JN	9.1	5.1	0.48 JN	0.41 JN	0.97 J
PCB-145	pg/l		< 0.0095 U	< 0.023 U	< 0.022 U	< 0.015 U	< 0.012 U	< 0.017 U	< 0.0055 U	< 0.018 U
PCB-146	pg/l		1.5 J	7.4	7.7	24	15	< 0.071 U	2.1	2.9
PCB-147	pg/l		8.6	88	47	160	100	14	13	17
PCB-148	pg/l		< 0.015 U	< 0.035 U	< 0.037 U	0.19 JN	0.27 J	< 0.027 U	< 0.0089 U	< 0.028 U
PCB-149	pg/l		8.6	88	47	160	100	14	13	17
PCB-15 PCB-150	pg/l		29 JN < 0.0089 U	18 J < 0.022 U	29 JN	55 J	65 JN	31 J < 0.017 U	26 JN < 0.0053 U	26 JN < 0.018 U
PCB-150	pg/l		2.5 JN	37	0.072 JN 21	0.45 J 78	0.33 JN 48	4.4 JN	5.1	7.6
PCB-131	pg/l pg/l		0.0032 J	< 0.024 U	< 0.023 U	< 0.016 U	0.044 J	< 0.018 U	0.015 JN	< 0.019 U
F CD-132	pg/i		0.0032 3	V 0.024 O	V 0.023 0	V 0.010 O	0.044 3	V 0.010 O	0.013 JN	V 0.019 0
PCB-153	pg/l		7.3	62	38	140	81	11	12	16
PCB-154	pg/l		0.22 JN	0.69 JN	0.87 J	4.1	0.54 JN	0.77 J	0.35 JN	0.46 J
PCB-156	pg/l		1.7 JN	5.4 JN	4.1 JN	7	5.4 JN	4.4 JN	1.4 JN	2 JN
PCB-157	pg/l		1.7 JN	5.4 JN	4.1 JN	7	5.4 JN	4.4 JN	1.4 JN	2 JN
PCB-158	pg/l		0.73 J	5.8	3.5	11	7	0.94 J	1.3 J	1.2 JN
PCB-159	pg/l		< 0.036 U	0.64 J	0.3 JN	1.3 J	0.56 JN	< 0.041 U	0.069 J	0.13 JN
PCB-16	pg/l		28 JN	24 J	92 JN	250	110	30 JN	28 JN	31 JN
PCB-160	pg/l		7.7	62	35	120	74	12	12	15
PCB-161	pg/l		< 0.048 U	0.58 JN	< 0.07 U	< 0.14 U	< 0.088 U	3.2 J	< 0.027 U	< 0.046 U
PCB-162	pg/l		< 0.036 U	< 0.092 U	< 0.051 U	< 0.1 U	< 0.064 U	< 0.041 U	< 0.019 U	< 0.032 U
PCB-163	pg/l		7.7	62	35	120	74	12	12	15
PCB-164	pg/l		0.43 J	3.9 J	2.2 J	7	4.9	0.68 J	0.68 J	0.91 J
PCB-165	pg/l		< 0.054 U	< 0.14 U	< 0.08 U	< 0.16 U	< 0.099 U	< 0.06 U	< 0.031 U	< 0.052 U
PCB-166	pg/l		0.61 JN	5	3.3	11	7	1.1	1.3	1.5 JN
PCB-167	pg/l		0.17 JN	1.2 JN	0.94 J	2.9	2	0.28 J	0.32 JN	0.35 JN
PCB-168	pg/l		7.3	62	38	140	81	11	12	16
PCB-169	pg/l		< 0.019 U	< 0.053 U	< 0.029 U	< 0.054 U	< 0.036 U	< 0.023 U	< 0.01 U	< 0.017 U
PCB-17	pg/l		91 J	54 JN	210	520	200	89 J	98 J	100 J
PCB-170	pg/l		0.77 J	7	3.6	15	8.3	0.98 JN	0.87	1.3
PCB-171	pg/l		< 0.011 U	3.1	1.8	6.8	4	< 0.022 U	0.4	0.63
PCB-172	pg/l		< 0.0083 U	1.3 J	0.85 J	4	2.1	< 0.018 U	0.2 J	0.31 J
PCB-173	pg/l		< 0.011 U	3.1	1.8	6.8	4	< 0.022 U	0.4	0.63
PCB-174	pg/l		0.97 J	11	5.7	25	14	1.6 J	1.3	2.2
PCB-175	pg/l		< 0.0099 U	< 0.029 U	< 0.017 U	1.3	0.61 JN	< 0.02 U	0.055 JN	< 0.0077 U

		Location ID	SED7A	SED7B	SED7D	SED7E	SED7F	SED8A	SED8B	SED8C
			PW7A00EN	PW7B00EN	PW7D00EN	PW7E00EN	PW7F00EN	PW8A00EN	PW8B00EN	PW8C00EN
		Sample ID Sample Date	7/26/2017 10:10:00 AM	7/26/2017 8:20:00 AM	7/26/2017 9:40:00 AM	7/26/2017 9:00:00 AM	7/26/2017 8:30:00 AM	7/26/2017 10:00:00 AM	7/26/2017 10:20:00 AM	7/26/2017 8:10:00 AM
		Type	N	N	N	N	N	N	N	N
		. , , p =	.,				.,			
Analyte	Unit									
PCB-176	pg/l		< 0.0065 U	1.7 J	0.73 J	2.8	1.6	< 0.013 U	0.14 J	0.23 J
PCB-177	pg/l		0.53 J	5.8	3.3	14	8.1	< 0.022 U	0.87	1.4
PCB-178	pg/l		< 0.011 U	1.9 J	1.4	6.3	3.7	< 0.022 U	0.33 JN	0.53 J
PCB-179	pg/l		0.35 JN	5	2.6	9.8	6	< 0.014 U	0.51 J	0.85
PCB-18	pg/l		110	97 19	320	760	360 26	110 2.9	110 2.7	120
PCB-180 PCB-181	pg/l		2.1 < 0.0099 U	< 0.029 U	10 < 0.015 U	47 < 0.011 U	< 0.01 U	< 0.019 U	< 0.004 U	4.2 < 0.0077 U
PCB-181	pg/l pg/l		< 0.0099 U	< 0.029 U	< 0.015 U	< 0.011 U	< 0.0099 U	< 0.019 U	< 0.004 U	< 0.0077 U
PCB-183	pg/l		0.67	8.5	4.6	22	12	< 0.019 U	1.3	1.9
PCB-185	pg/l		0.67	8.5	4.6	22	12	< 0.019 U	1.3	1.9
PCB-186	pg/l		< 0.0068 U	< 0.02 U	< 0.011 U	< 0.0072 U	< 0.0071 U	< 0.014 U	< 0.0027 U	< 0.0052 U
PCB-187	pg/l		1.5	13	8.1	39	21	2 J	2.1	3.3
PCB-188	pg/l		< 0.0064 U	< 0.018 U	< 0.01 U	< 0.0066 U	< 0.0067 U	< 0.013 U	< 0.0024 U	< 0.0049 U
PCB-189	pg/l		< 0.031 U	0.17 JN	0.067 JN	0.41 J	0.18 JN	0.034 JN	0.027 J	0.037 J
PCB-19	pg/l		41 J	29 JN	70 J	190 JN	88 JN	54 J	51 J	45 JN
PCB-190	pg/l		0.18 JN	1.4 J	0.76 J	3.5	1.3 JN	< 0.012 U	0.18 JN	0.33 J
PCB-191	pg/l		< 0.0059 U	< 0.019 U	0.21 JN	0.94	0.51 J	< 0.012 U	0.054 JN	0.083 JN
PCB-193	pg/l		2.1	19	10	47	26	2.9	2.7	4.2
PCB-194	pg/l		0.12 J	1.1	0.61	3.4	1.7	0.14 JN	0.17 J	0.27
PCB-195	pg/l		0.064 J	0.57 J	0.31 JN	1.6	0.98	0.1 J	0.063 JN	0.13 JN
PCB-196 PCB-197	pg/l		< 0.0044 U < 0.0029 U	0.67 JN < 0.011 U	0.45 J	2.3	1.2	< 0.0053 U < 0.0036 U	0.12 J	0.17 JN < 0.0023 U
PCB-197	pg/l		0.0029 0	1.4	0.0018 0.94	0.18 J 4.6	0.04 2.4	< 0.005 U	0.039 J 0.28	0.0023 U
PCB-199	pg/l pg/l		0.2	1.4	0.94	4.6	2.4	< 0.005 U	0.28	0.37 JN
PCB-199	pg/l		< 1.3 U	< 2.9 U	< 2.6 U	< 2.9 U	62 JN	< 2.7 U	180 JN	< 2.4 U
PCB-20	pg/l		140	110	320	620	440	140	150	160
PCB-200	pg/l		< 0.0026 U	0.17 J	0.076 J	0.43	0.25 J	< 0.0031 U	0.026 J	< 0.002 U
PCB-201	pg/l		< 0.0031 U	< 0.011 U	< 0.004 U	0.63	0.32 J	< 0.0037 U	0.033 J	< 0.0025 U
PCB-202	pg/l		< 0.0029 U	0.23 J	0.15 J	0.8	0.45	< 0.0036 U	0.05 J	0.082 J
PCB-203	pg/l		0.12 JN	0.87 J	0.55	3	1.5	< 0.0048 U	0.17 J	0.26 J
PCB-205	pg/l		< 0.0086 U	< 0.032 U	0.028 J	0.16 J	0.091 J	< 0.0079 U	0.0061 JN	0.013 J
PCB-206	pg/l		0.033 J	0.19 J	0.096 J	0.6	0.22	0.035 JN	0.025 JN	0.047 J
PCB-207	pg/l		< 0.0057 U	0.0069 J	0.018 J	0.065 J	0.05 J	< 0.006 U	0.014 J	0.014 J
PCB-208	pg/l		< 0.0059 U	0.059 JN	0.029 JN	0.13	0.059 J	< 0.006 U	0.0093 J	0.013 J
PCB-21	pg/l		40	30	89	180	110	33	32	39
PCB-22	pg/l		28 J	22 J	73	150	88 JN	24 J	27 J	31 J
PCB-23 PCB-24	pg/l		< 0.77 U	< 1.3 U	< 0.99 U 8.3 J	< 1.3 U 14 JN	< 0.98 U 6.1 JN	< 0.85 U 1.1 JN	< 0.51 U 2.4 JN	< 0.83 U < 1.1 U
PCB-24 PCB-25	pg/l pg/l		3.6 J 15 J	8.9 J	6.3 J 25 J	62 J	6.1 JN 27 JN	1.1 JN 16 J	2.4 JN 18 J	18 J
PCB-26	pg/l		25	15	50	120	62	26	26	30
PCB-27	pg/l		21 J	9.5 JN	30 JN	83 J	40 J	15 JN	21 J	18 JN
PCB-28	pg/l		140	110	320	620	440	140	150	160
PCB-29	pg/l		25	15	50	120	62	26	26	30
PCB-3	pg/l		< 1.6 U	< 3.1 U	< 3.6 U	< 3.4 U	53 J	< 3.2 U	130 J	< 2.9 U
PCB-30	pg/l		110	97	320	760	360	110	110	120
PCB-31	pg/l		98 J	77 J	230	430	280	100 J	100	110
PCB-32	pg/l		72 JN	46 JN	150	370	190	74 J	77 J	93 J
PCB-33	pg/l		40	30	89	180	110	33	32	39
PCB-34	pg/l		< 0.77 U	< 1.3 U	< 1 U	< 1.4 U	< 0.98 U	< 0.9 U	< 0.56 U	< 0.88 U
PCB-35	pg/l		0.84 JN	< 0.72 U	< 0.54 U	< 0.67 U	2.6 J	< 0.46 U	0.75 J	0.94 J
PCB-37	pg/l		12 J	9.9 J	26 J	46	47	13 J	11 J	13 J
PCB-38 PCB-39	pg/l		< 0.39 U < 0.37 U	< 0.72 U < 0.66 U	< 0.54 U 0.98 J	< 0.69 U	< 0.52 U < 0.44 U	< 0.49 U < 0.43 U	< 0.28 U < 0.25 U	< 0.45 U 0.62 J
PCB-39	pg/l		< 0.37 U	< 0.66 U	0.98 J < 59 U	1.8 J 760 JN	< 0.44 U 250 JN	< 0.43 U 260 JN	< 0.25 U	0.62 J 260 JN
PCB-40	pg/l pg/l		< 34 U 29	< 56 U	< 59 U 94	760 JN 210	250 JN 120	260 JN 34	300 J 35	260 JN 36
PCB-41	pg/l		29	24	94	210	120	34	35	36
PCB-42	pg/l		14 J	13 JN	44	100	62	17 JN	17 J	18 J
PCB-43	pg/l		1.5 JN	< 0.28 U	6.6	15	9.9	3.3 JN	3.3	3 JN
PCB-44	pg/l		66	79	180	450	240	88	89	87
PCB-45	pg/l		22	17	57 JN	180	100	25	29	27

Table 4-38 Pore Water Analysis in Waterside Investigation Area Sediment Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

		Lacation ID	CED7A	CED7D	CED7D	CED7E	CED7E	CEDOA	CEDOD	SED8C
		Location ID	SED7A	SED7B	SED7D	SED7E	SED7F	SED8A	SED8B	
		Sample ID	PW7A00EN	PW7B00EN	PW7D00EN	PW7E00EN	PW7F00EN	PW8A00EN	PW8B00EN	PW8C00EN
		Sample Date	7/26/2017 10:10:00 AM	7/26/2017 8:20:00 AM	7/26/2017 9:40:00 AM	7/26/2017 9:00:00 AM	7/26/2017 8:30:00 AM	7/26/2017 10:00:00 AM	7/26/2017 10:20:00 AM	7/26/2017 8:10:00 AM
	1 1	Туре	N	N	N	N	N	N	N	N
Analyte	Unit									
PCB-46	pg/l		4 J	< 0.62 U	15 JN	34 J	21 J	4.9 J	6 J	5.2 JN
PCB-47	pg/l		66	79	180	450	240	88	89	87
PCB-48	pg/l		10 JN	8.6 JN	44	87	48	13 J	14 J	16 JN
PCB-49	pg/l		48	53	130	280	160	54	59	60
PCB-5	pg/l		< 10 U	< 16 U	< 14 U	< 18 U	< 11 U	< 12 U	< 9 U	< 18 U
PCB-50	pg/l		17	11 JN	45	110	68	21	23	21 JN
PCB-51	pg/l		22	17	57 JN	180	100	25	29	27
PCB-52	pg/l		77	150	210	450	260	90	94	110
PCB-53	pg/l		17	11 JN	45	110	68	21	23	21 JN
PCB-54	pg/l		< 0.027 U	< 0.063 U	1.5 JN	3.7 JN	2 JN	0.94 JN	0.9 JN	< 0.074 U
PCB-55	pg/l		1.2 J	< 0.14 U	1.3 JN	3.3 JN	2.2 J	< 0.078 U	0.44 JN	1.1 J
PCB-56	pg/l		11 J	15 J	35	59	41	14 J	12 J	14 J
PCB-57	pg/l		< 0.094 U	< 0.15 U	< 0.075 U	2.7 JN	< 0.099 U	< 0.078 U	< 0.044 U	< 0.14 U
PCB-58	pg/l		< 0.096 U	0.44 JN	4 J	1.8 J	1.2 JN	< 0.079 U	0.3 JN	0.25 JN
PCB-59	pg/l		5	5 JN	18	40	24	7.1	7 JN	6.7 JN
PCB-6	pg/l		< 9 U	< 14 U	< 13 U	120 JN	40 JN	< 10 U	< 7.8 U	< 16 U
PCB-60	pg/l		4.1 JN	3.3 JN	19	30 JN	20	2.8 J	7.6 J	6.4 J
PCB-61	pg/l		52	98	150	280	190	61	65	70
PCB-62	pg/l		5	5 JN	18	40	24	7.1	7 JN	6.7 JN
PCB-63	pg/l		1.4 JN	1.7 JN	4.9 J	11 J	6 J	1.7 JN	2.3 J	2.2 J
PCB-64	pg/l		26	28 J	74	150	98	28 J	30	34
PCB-65	pg/l		66	79	180	450	240	88	89	87
PCB-66	pg/l		31	42	88	160	110	39	41	41
PCB-67	pg/l		1.1 J	< 0.13 U	3.4 J	7.6 J	4.8 J	< 0.068 U	1.1 J	1.1 JN
PCB-68	pg/l		0.5 J	< 0.13 U	1.8 JN	3.7 J	1.7 J	1.1 J	0.87 JN	0.61 JN
PCB-69	pg/l		48	53	130	280	160	54	59	60
PCB-7	pg/l		< 9.2 U	< 15 U	< 13 U	< 16 U	< 10 U	< 11 U	< 8.1 U	< 16 U
PCB-70	pg/l		52	98	150	280	190	61	65	70
PCB-71	pg/l		29	24	94	210	120	34	35	36
PCB-72	pg/l		< 0.093 U	< 0.14 U	< 0.074 U	3.8 J	1.8 J	< 0.076 U	0.59 JN	< 0.14 U
PCB-73	pg/l		1.5 JN	< 0.28 U	6.6	15	9.9	3.3 JN	3.3	3 JN
PCB-74	pg/l		52	98	150	280	190	61	65	70
PCB-75	pg/l		5	5 JN	18	40	24	7.1	7 JN	6.7 JN
PCB-76	pg/l		52	98	150	280	190	61	65	70
PCB-77	pg/l		1.2 J	2.3 JN	3.8 J	8.4 J	6.9 J	1.4 JN	1.5 J	1.8 J
PCB-79	pg/l		< 0.05 U	< 0.083 U	< 0.041 U	1.6 J	< 0.053 U	< 0.044 U	0.22 JN	0.68 J
PCB-8	pg/l		130 J	77 JN	99 J	250 J	140 J	61 J	94 J	< 15 U
PCB-80	pg/l		< 0.049 U	< 0.082 U	0.8 JN	< 0.084 U	< 0.052 U	0.72 JN	< 0.023 U	0.3 JN
PCB-81	pg/l		< 0.052 U	< 0.087 U	< 0.044 U	< 0.1 U	< 0.058 U	< 0.048 U	< 0.027 U	< 0.081 U
PCB-82	pg/l		1.6 JN	6.6 J	7 J	15	11	< 0.066 U	2.5 J	3.5 J
PCB-83	pg/l		13	48	44	110	76	16	21	25
PCB-84	pg/l		4.8 J	20 JN	18	40	30	7.5 J	7.1 J	8.2 J
PCB-85	pg/l		3.7	13	12	29	21	4.7	6.3	6.7
PCB-86	pg/l		12	56	41	89	65	16	18	21
PCB-87	pg/l		12	56	41	89	65	16	18	21
PCB-88	pg/l		3.2 JN	13	15	45	28	5.9	5.6 JN	7.7
PCB-89	pg/l		< 0.055 U	< 0.096 U	< 0.094 U	< 0.088 U	< 0.065 U	< 0.089 U	0.66 J	< 0.11 U
			< 9.4 U	< 15 U		< 17 U	< 10 U		< 8.3 U	< 17 U

Table 4-38 Pore Water Analysis in Waterside Investigation Area Sediment Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

		Location ID	SED7A	SED7B	SED7D	SED7E	SED7F	SED8A	SED8B	SED8C
			PW7A00EN	PW7B00EN	PW7D00EN	PW7E00EN	PW7F00EN	PW8A00EN	PW8B00EN	PW8C00EN
		Sample ID Sample Date	7/26/2017 10:10:00 AM	7/26/2017 8:20:00 AM	7/26/2017 9:40:00 AM	7/26/2017 9:00:00 AM	7/26/2017 8:30:00 AM	7/26/2017 10:00:00 AM	7/26/2017 10:20:00 AM	7/26/2017 8:10:00 AM
		Type	N	N	N	N	N	N	N	N
		Турс	11	14	, , ,	IN .	14	14	14	IV.
Analyte	Unit									
PCB-90	pg/l		21	130	81	220	140	30	32	40
PCB-91	pg/l		3.2 JN	13	15	45	28	5.9	5.6 JN	7.7
PCB-92	pg/l		4.4 J	21	16	41	25	6.6 J	5.8 J	8.1
PCB-93	pg/l		0.45 JN	2.3	< 0.084 U	5.2 JN	8.4	< 0.079 U	1.2	0.92 JN
PCB-94	pg/l		< 0.055 U	< 0.094 U	< 0.094 U	3.9 J	1.9 JN	< 0.089 U	0.44 JN	< 0.11 U
PCB-95	pg/l		19	130	77	200	130	31	28	38
PCB-96	pg/l		< 0.039 U	< 0.068 U	< 0.067 U	2 J	1.5 J	< 0.064 U	0.31 JN	< 0.08 U
PCB-97	pg/l		12	56	41	89	65	16	18	21
PCB-98	pg/l		1.1 JN	< 0.081 U	2.8 JN	8.6 JN	5.6 JN	< 0.077 U	1.9	1.3 JN
PCB-99	pg/l		13	48	44	110	76	16	21	25
Ammonia	mg/l		32	21	5.2	7.3	5.5	16	3.5	9.5
Particulate Organic Carbon	mg/l		1.0 J	0.52 J	0.57 J	0.56 J	0.74 J	3.3	0.53 J	0.60 J
Hardness (as CaCO3)	mg/l		510	290	210	210	260	300	440	210
HARDNESS CALCIUM (AS CACO3)	mg/l		370	200	140	150	170	220	330	150
HARDNESS MAGNESIUM (AS CACO3)	mg/l		140	86	68	66	87	82	110	62
Hardness (as CaCO3)	mg/l		540	290	210	210	260	300	440	220
HARDNESS CALCIUM (AS CACO3)	mg/l		400	210	140	140	170	220	320	160
HARDNESS MAGNESIUM (AS CACO3)	mg/l		140	86	66	66	86	82	110	66
Dissolved Organic Carbon	mg/l		26	85	8.0	6.9	9.2	20	140	9.5
Aluminum	ug/l		< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U	< 30 U
Antimony	ug/l		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Arsenic	ug/l		3.2	1.6	1.8	1.1	1.1	1.5	3.3	1.1
Barium	ug/l		180	85	79	99	90	110	180	74
Beryllium	ug/l		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cadmium	ug/l		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Calcium	ug/l		150000	81000	58000	58000	69000	87000	130000	60000
Chromium	ug/l		0.64 J	0.99 J	0.47 J	0.38 J	0.48 J	0.55 J	0.46 J	0.52 J
Cobalt	ug/l		19	4.8	2.2	0.91	2.6	8.3	18	3.6
Copper	ug/l		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Iron	ug/l		67000	4700	7300	7200	6100	17000	53000	7600
Lead	ug/l		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Magnesium	ug/l		35000	21000	17000	16000	21000	20000	27000	15000
Manganese	ug/l		11000	2800	1800	1400	2500	5500	9500	3300
Nickel	ug/l		3.8	1.2	1.3	1.6	2.2	2.3	3.2	1.2
Potassium	ug/l		10000	6900	5400	6300	5800	6700	10000	5500
Colomium	/!		< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	< 5.0 U	4 F O I I	< 5.0 U
Selenium	ug/l								< 5.0 U	
Silver	ug/l		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l		57000	50000	42000	48000	48000	51000	54000	46000
Thallium Vanadium	ug/l		< 1.0 U < 1.0 U	< 1.0 U 0.60 J	< 1.0 U < 1.0 U	< 1.0 U 0.74 J	< 1.0 U 0.92 J	< 1.0 U < 1.0 U	< 1.0 U < 1.0 U	< 1.0 U 0.67 J
Zinc	ug/l ug/l		3.6 J	0.60 J 3.2 J	< 1.0 U	0.74 J < 5.0 U	0.92 J < 5.0 U	< 1.0 U	< 1.0 U	< 5.0 U
Aluminum	ug/l		3.6 J 41	3.2 J 58	3.8 J 28 J	< 5.0 U	< 5.0 U	3.3 J 150	3.3 J 33	< 5.0 U
	ug/l		< 2.0 U	3.3	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Antimony Arsenic	ug/l		< 2.0 U	4.7	< 2.0 U	2.6	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U
Barium	ug/l		340	130	96	120	150	190	310	110
Beryllium			< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Cadmium	ug/l ug/l		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.11 J	< 1.0 U	< 1.0 U	< 1.0 U
Calcium	ug/l ug/l		160000	< 1.0 U	< 1.0 U	< 1.0 U	0.11 J 70000	< 1.0 U	130000	63000
Chromium			1.2 J	5.4	0.51 J	0.84 J	0.88 J	1.6 J	0.73 J	1.2 J
Cobalt	ug/l		1.2 J 23	5.4	1.9	0.84 J 0.92	0.88 J 3.1	1.6 J 11	0.73 J 20	1.2 J 4.0
	ug/l		3.2	4.4	1.9 1.1 J	2.2	2.7	6.1	1.7 J	4.0 2.7
Copper Iron	ug/l ug/l		110000	28000	1.1 3	19000	2.7	61000	1.7 J 98000	22000
Lead			2.0	28000 4.4	13000 0.63 J	19000	2/000	61000 4.1	98000 0.58 J	22000
	ug/l		35000	21000	0.63 J 16000	16000	2.4	4.1 20000	0.58 J 27000	16000
Magnesium	ug/l ug/l									
Manganese			13000 4.8	3000 1.6	1700 1.4	1300 2.0	2600 3.4	6000 3.5	9800 3.7	3400
Nickel Potassium	ug/l		4.8 11000	7100	1.4 5400	6200	3.4 5800	3.5 6700	10000	1.9 5700
Potassium Selenium	ug/l ug/l		11000 < 5.0 U	7100 < 5.0 U	5400 < 5.0 U	6200 < 5.0 U	5800 < 5.0 U	6700 < 5.0 U	10000 < 5.0 U	5700 < 5.0 U
			> a.u u	~ 0.0 U	\ 0.0 U	N 0.0 €	\ 0.0 U	< 0.0 U	> 0.0 U	N 0.0 €

Table 4-38

Pore Water Analysis in Waterside Investigation Area Sediment Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

		Location ID	SED7A	SED7B	SED7D	SED7E	SED7F	SED8A	SED8B	SED8C
		Sample ID	PW7A00EN	PW7B00EN	PW7D00EN	PW7E00EN	PW7F00EN	PW8A00EN	PW8B00EN	PW8C00EN
		Sample Date	7/26/2017 10:10:00 AM	7/26/2017 8:20:00 AM	7/26/2017 9:40:00 AM	7/26/2017 9:00:00 AM	7/26/2017 8:30:00 AM	7/26/2017 10:00:00 AM	7/26/2017 10:20:00 AM	7/26/2017 8:10:00 AM
		Туре	N	N	N	N	N	N	N	N
Analyte	Unit									
Silver	ug/l		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Sodium	ug/l		58000	50000	41000	47000	48000	50000	52000	48000
Thallium	ug/l		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
Vanadium	ug/l		1.5	1.3	1.0	3.3	3.8	2.2	1.0	1.3
Zinc	ug/l		6.3	6.8	< 5.0 U	6.4	9.6	8.3	3.9 J	6.7
Mercury	ug/l		< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U
Mercury	ug/l		< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U

Notes:

Bold values indicate detects.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

N = Normal

FD = Field Duplicate

mg/l = milligrams per liter

ng/g = nanograms per gram pg/l = picograms per liter

ug/l = micrograms per liter

											1 ID	00000074	00000074	ODDE 477007
											Location ID		SDRF025074	SDRF477827
										,	Sample Date		7/25/2017 9:35:00 AM	7/25/2017 12:30:00 PM
											Sample ID	SDRF025074N	SDRF025074R 0 - 1 ft	SDRF477827N 0 - 1 ft
											Depth	0 - 1 ft N	FD	N N
					Τ.,	l	Ι	T			Туре	IN	FD	IN
Analyte	Unit	Method	Fraction	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count Detect	Count Total			
Total Organic Carbon	mg/kg	LKTOC	T	7440-44-0	16000	12000	14000	14000	SDRF025074	2	3	16000	12000	< 1300 U
Total Petroleum Hydrocarbons (C9-C44)	mg/kg	M8015D	N	TPH	1540	102	974	1280	SDRF025074	3	3	1540	1280	102
Aluminum	mg/kg	SW6020A	T	7429-90-5	3600	790	2100	1900	SDRF025074	3	3	3600 J	1900 J	790
Antimony	mg/kg	SW6020A	T	7440-36-0	2.2	0.12	1.1	0.94	SDRF025074	3	3	0.94 J	2.2 J	0.12 J
Arsenic	mg/kg	SW6020A	T	7440-38-2	3.9	1.1	2.3	2	SDRF025074	3	3	2.0 J	3.9 J	1.1
Barium	mg/kg	SW6020A	T	7440-39-3	71	7.1	40	42	SDRF025074	3	3	71 J	42 J	7.1
Beryllium	mg/kg	SW6020A	Т	7440-41-7	0.28	0.15	0.2	0.16	SDRF025074	3	3	0.28	0.16	0.15
Cadmium	mg/kg	SW6020A	Т	7440-43-9	0.36	0.027	0.21	0.23	SDRF025074	3	3	0.23	0.36	0.027 J
Calcium	mg/kg	SW6020A	T	7440-70-2	51000	770	29000	34000	SDRF025074	3	3	34000	51000	770
Chromium	mg/kg	SW6020A	T	7440-47-3	33	4.6	22	28	SDRF025074	3	3	28	33	4.6
Cobalt	mg/kg	SW6020A	Т	7440-48-4	5.1	2.4	3.9	4.2	SDRF025074	3	3	4.2	5.1	2.4
Copper	mg/kg	SW6020A	Т	7440-50-8	55	3.6	32	37	SDRF025074	3	3	37	55	3.6
Iron	mg/kg	SW6020A	Т	7439-89-6	33000	5400	17000	14000	SDRF025074	3	3	14000 J	33000 J	5400
Lead	mg/kg	SW6020A	Т	7439-92-1	51	3.1	33	46	SDRF025074	3	3	46	51	3.1
Magnesium	mg/kg	SW6020A	Т	7439-95-4	28000	470	14000	13000	SDRF025074	3	3	13000 J	28000 J	470
Manganese	mg/kg	SW6020A	Т	7439-96-5	380	62	270	360	SDRF025074	3	3	380	360	62
Nickel	mg/kg	SW6020A	Т	7440-02-0	33	2.1	16	12	SDRF025074	3	3	12 J	33 J	2.1
Potassium	mg/kg	SW6020A	Т	7440-09-7	340	210	280	300	SDRF025074	3	3	340	210	300
Selenium	mg/kg	SW6020A	Т	7782-49-2	0.25	0.14	0.2	0.2	SDRF025074	2	3	0.25 J	0.14 J	< 0.32 U
Silver	mg/kg	SW6020A	Т	7440-22-4	0.034	0.01	0.024	0.027	SDRF025074	3	3	0.027 J	0.034 J	0.010 J
Sodium	mg/kg	SW6020A	Т	7440-23-5	300	22	180	220	SDRF025074	3	3	300	220	22 J
Thallium	mg/kg	SW6020A	Т	7440-28-0	0.04	0.019	0.028	0.026	SDRF025074	3	3	0.040 J	0.026 J	0.019 J
Vanadium	mg/kg	SW6020A	Т	7440-62-2	32	9.2	23	27	SDRF025074	3	3	27	32	9.2
Zinc	mg/kg	SW6020A	Т	7440-66-6	140	7.6	77	82	SDRF025074	3	3	82 J	140 J	7.6
Mercury	mg/kg	SW7471B	Т	7439-97-6	0.013	0.012	0.013	0.013	SDRF025074	2	3	0.012 J	0.013 J	< 0.019 U
4,4'-DDD	ug/kg	SW8081B LL	N	72-54-8	1.9	0.16	1.1	1.1	SDRF025074	3	3	1.9 J	1.1 J	0.16 J
4,4'-DDE	ug/kg	SW8081B LL	N	72-55-9	2	0.77	1.2	0.9	SDRF477827	3	3	0.90 J	0.77 J	2.0
4,4'-DDT	ug/kg	SW8081B LL	N	50-29-3	1.7	1.5	1.6	1.6	SDRF025074	3	3	1.7 J	1.6 J	1.5
Aldrin	ug/kg	SW8081B LL	N	309-00-2							3	< 0.26 U	< 0.27 U	< 0.28 U
alpha-BHC	ug/kg	SW8081B LL	N	319-84-6							3	< 0.26 U	< 0.27 U	< 0.28 U
beta-BHC	ug/kg	SW8081B LL	N	319-85-7							3	< 0.26 U	< 0.27 U	< 0.28 U
cis-Chlordane	ug/kg	SW8081B LL	N	5103-71-9	4.7	0.15	3	4	SDRF025074	3	3	4.7 J+	4.0 J+	0.15 J
delta-BHC	ug/kg	SW8081B LL	N	319-86-8	0.38	0.38	0.38	0.38	SDRF025074	1	3	0.38 J+	< 0.27 U	< 0.28 U
Dieldrin	ug/kg	SW8081B LL	N	60-57-1	1.1	1	1.1	1.1	SDRF025074	2	3	1.1 J	1.0 J	< 0.28 U
Endosulfan I	ug/kg	SW8081B LL	N	959-98-8							3	< 0.26 U	< 0.27 U	< 0.28 U
Endosulfan II	ug/kg	SW8081B LL	N	33213-65-9							3	< 0.26 U	< 0.27 U	< 0.28 U
Endosulfan Sulfate	ug/kg	SW8081B LL	N	1031-07-8							3	< 0.26 U	< 0.27 U	< 0.28 U
Endrin	ug/kg	SW8081B LL	N	72-20-8	0.68	0.34	0.51	0.51	SDRF025074	2	3	0.68 J	0.34 J	< 0.28 U
Endrin aldehyde	ug/kg	SW8081B LL	N	7421-93-4							3	< 0.26 U	< 0.27 U	< 0.28 U
Endrin ketone	ug/kg	SW8081B LL	N	53494-70-5							3	< 0.26 U	< 0.27 U	< 0.28 U
gamma-BHC (Lindane)	ug/kg	SW8081B LL	N	58-89-9							3	< 0.26 U	< 0.27 U	< 0.28 U
Heptachlor	ug/kg	SW8081B LL	N	76-44-8							3	< 0.26 U	< 0.27 U	< 0.28 U
Heptachlor Epoxide	ug/kg	SW8081B LL	N	1024-57-3	0.3	0.17	0.24	0.24	SDRF025074	2	3	0.30 J	0.17 J	< 0.28 U
Methoxychlor	ug/kg	SW8081B LL	N	72-43-5							3	< 0.26 U	< 0.27 U	< 0.28 U
Toxaphene	ug/kg	SW8081B LL	N	8001-35-2							3	< 10 U	< 11 U	< 11 U
trans-Chlordane	ug/kg	SW8081B LL	N	5103-74-2	5.5	0.14	3.5	4.8	SDRF025074	3		5.5 J+	4.8 J+	0.14 J
Aroclor-1016	ug/kg	SW8082A LL	N	12674-11-2							3	< 5.1 U	< 5.3 U	< 0.55 U
Aroclor-1221	ug/kg	SW8082A LL	N	11104-28-2				<u></u>			3	< 5.1 U	< 5.3 U	< 0.55 U

													T	
											Location ID		SDRF025074	SDRF477827
										,	Sample Date		7/25/2017 9:35:00 AM	7/25/2017 12:30:00 PM
											Sample ID		SDRF025074R	SDRF477827N
											Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft
		I	1		1	I	1	1		1	Туре	N	FD	N
A 1. 4 .	1.124	Made	F	040	Max	Min	Mean	Median	Marria	Count	Count			
Analyte Aroclor-1232	Unit	Method SW8082A LL	Fraction N	CAS 11141-16-5	Detect	Detect	Detect	Detect	Max Location	Detect	Total	< 5.1 U	< 5.3 U	< 0.55 U
Aroclor-1232 Aroclor-1242	ug/kg	SW8082A LL	N	53469-21-9							3	< 5.1 U	< 5.3 U	< 0.55 U
	ug/kg		N								3			
Arcelor 1254	ug/kg	SW8082A LL	N	12672-29-6	200	0.77	40	00	SDRF025074	_	3	< 5.1 U	< 5.3 U	< 0.55 U 0.77
Arcelor 1200	ug/kg	SW8082A LL		11097-69-1	26	0.77	18	26		3	3	26 J+	26 J+	
Arcelor 1260	ug/kg	SW8082A LL	N	11096-82-5	6.7	5	5.9	5.9	SDRF025074	2	3	6.7 J+	5.0 J+	< 0.55 U
Aroclor-1262	ug/kg	SW8082A LL	N	37324-23-5							3	< 5.1 U	< 5.3 U	< 0.55 U
Aroclor-1268	ug/kg	SW8082A LL	N	11100-14-4	00	0.77	00	0.4	000000074		3	< 5.1 U	< 5.3 U	< 0.55 U
PCB, Total Aroclors (AECOM Calc)	ug/kg	SW8082A LL	N	TOT-PCB-ARO-C	33	0.77	22	31	SDRF025074	3	3	33	31	0.77
1,1,1-Trichloroethane	ug/kg	SW8260C	N	71-55-6							3	< 5.1 U	< 5.5 U	< 5.6 U
1,1,2,2-Tetrachloroethane	ug/kg	SW8260C	N	79-34-5							3	< 5.1 U	< 5.5 U	< 5.6 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	SW8260C	N	76-13-1							3	< 5.1 U	< 5.5 U	< 5.6 U
1,1,2-Trichloroethane	ug/kg	SW8260C	N	79-00-5	1						3	< 5.1 U	< 5.5 U	< 5.6 U
1,1-Dichloroethane	ug/kg	SW8260C	N	75-34-3							3	< 5.1 U	< 5.5 U	< 5.6 U
1,1-Dichloroethene	ug/kg	SW8260C	N	75-35-4							3	< 5.1 U	< 5.5 U	< 5.6 U
1,2,3-Trichlorobenzene	ug/kg	SW8260C	N	87-61-6							3	< 5.1 U	< 5.5 U	< 5.6 U
1,2,4-Trichlorobenzene	ug/kg	SW8260C	N	120-82-1							3	< 5.1 U	< 5.5 U	< 5.6 U
1,2-Dibromo-3-chloropropane	ug/kg	SW8260C	N	96-12-8							3	< 5.1 U	< 5.5 U	< 5.6 U
1,2-Dibromoethane	ug/kg	SW8260C	N	106-93-4							3	< 5.1 U	< 5.5 U	< 5.6 U
1,2-Dichlorobenzene	ug/kg	SW8260C	N	95-50-1							3	< 5.1 U	< 5.5 U	< 5.6 U
1,2-Dichloroethane	ug/kg	SW8260C	N	107-06-2							3	< 5.1 U	< 5.5 U	< 5.6 U
1,2-Dichloropropane	ug/kg	SW8260C	N	78-87-5							3	< 5.1 U	< 5.5 U	< 5.6 U
1,3-Dichlorobenzene	ug/kg	SW8260C	N	541-73-1							3	< 5.1 U	< 5.5 U	< 5.6 U
1,4-Dichlorobenzene	ug/kg	SW8260C	N	106-46-7							3	< 5.1 U	< 5.5 U	< 5.6 U
1,4-Dioxane	ug/kg	SW8260C	N	123-91-1							3	< 1000 U	< 1100 U	< 1100 U
2-Butanone	ug/kg	SW8260C	N	78-93-3							3	< 5.1 U	< 5.5 U	< 5.6 U
2-Hexanone	ug/kg	SW8260C	N	591-78-6							3	< 5.1 U	< 5.5 U	< 5.6 U
4-Methyl-2-pentanone	ug/kg	SW8260C	N	108-10-1							3	< 5.1 U	< 5.5 U	< 5.6 U
Acetone	ug/kg	SW8260C	N	67-64-1							3	< 20 U	< 22 U	< 22 U
Benzene	ug/kg	SW8260C	N	71-43-2							3	< 5.1 U	< 5.5 U	< 5.6 U
Bromochloromethane	ug/kg	SW8260C	N	74-97-5							3	< 5.1 U	< 5.5 U	< 5.6 U
Bromodichloromethane	ug/kg	SW8260C	N	75-27-4							3	< 5.1 U	< 5.5 U	< 5.6 U
Bromoform	ug/kg	SW8260C	N	75-25-2							3	< 5.1 U	< 5.5 U	< 5.6 U
Bromomethane	ug/kg	SW8260C	N	74-83-9							3	< 5.1 U	< 5.5 U	< 5.6 U
Butyl alcohol, tert-	ug/kg	SW8260C	N	75-65-0							3	< 51 U	< 55 U	< 56 U
Carbon Disulfide	ug/kg	SW8260C	N	75-15-0							3	< 5.1 U	< 5.5 U	< 5.6 U
Carbon Tetrachloride	ug/kg	SW8260C	N	56-23-5							3	< 5.1 U	< 5.5 U	< 5.6 U
Chlorobenzene	ug/kg	SW8260C	N	108-90-7							3	< 5.1 U	< 5.5 U	< 5.6 U
Chloroethane	ug/kg	SW8260C	N	75-00-3							3	< 5.1 U	< 5.5 U	< 5.6 U
Chloroform	ug/kg	SW8260C	N	67-66-3							3	< 5.1 U	< 5.5 U	< 5.6 U
Chloromethane	ug/kg	SW8260C	N	74-87-3							3	< 5.1 U	< 5.5 U	< 5.6 U
cis-1,2-Dichloroethylene	ug/kg	SW8260C	N	156-59-2							3	< 5.1 U	< 5.5 U	< 5.6 U
cis-1,3-Dichloropropene	ug/kg	SW8260C	N	10061-01-5							3	< 5.1 U	< 5.5 U	< 5.6 U
Cyclohexane	ug/kg	SW8260C	N	110-82-7							3	< 5.1 U	< 5.5 U	< 5.6 U
Dibromochloromethane	ug/kg	SW8260C	N	124-48-1							3	< 5.1 U	< 5.5 U	< 5.6 U
Dichlorodifluoromethane	ug/kg	SW8260C	N	75-71-8							3	< 5.1 U	< 5.5 U	< 5.6 U
Diisopropyl ether	ug/kg	SW8260C	N	108-20-3							3	< 5.1 U	< 5.5 U	< 5.6 U
Ethylbenzene	ug/kg	SW8260C	N	100-41-4							3	< 5.1 U	< 5.5 U	< 5.6 U
Ethyl-Tert-Butyl-Ether	ug/kg	SW8260C	N	637-92-3							3	< 5.1 U	< 5.5 U	< 5.6 U

											Location ID		SDRF025074	SDRF477827
										•	Sample Date		7/25/2017 9:35:00 AM	7/25/2017 12:30:00 PM
											Sample ID	SDRF025074N	SDRF025074R	SDRF477827N
											Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft
		1			1	I	1	1		1	Туре	N	FD	N
Australia	1124	Made	F	040	Max	Min	Mean	Median	Marilandin	Count	Count			
Analyte Isopropylbenzene	Unit	Method SW8260C	Fraction N	CAS 98-82-8	Detect	Detect	Detect	Detect	Max Location	Detect	Total	< 5.1 U	< 5.5 U	< 5.6 U
m, p-Xylene	ug/kg	SW8260C	N	XYLMP							3	< 5.1 U	< 5.5 U	< 5.6 U
Methyl Acetate	ug/kg	SW8260C	N	79-20-9							3	< 26 U	< 28 U	< 28 U
Methyl tert-Butyl Ether (MTBE)	ug/kg	SW8260C	N	1634-04-4							3	< 5.1 U	< 5.5 U	< 5.6 U
Methylcyclohexane	ug/kg	SW8260C SW8260C	N	108-87-2							3	< 5.1 U	< 5.5 U	< 5.6 U
Methylene Chloride	ug/kg	SW8260C	N	75-09-2	-						3	< 5.1 U	< 5.5 U	< 5.6 U
,	ug/kg	SW8260C	N	95-47-6	-						3	< 5.1 U	< 5.5 U	< 5.6 U
o-Xylene	ug/kg	SW8260C	N	100-42-5	-						3	< 5.1 U	< 5.5 U	< 5.6 U
Styrene	ug/kg										3			
Tetrachloroethylene	ug/kg	SW8260C	N	127-18-4							3	< 5.1 U	< 5.5 U	< 5.6 U
Toluene	ug/kg	SW8260C	N	108-88-3				 		ļ	3	< 5.1 U	< 5.5 U	< 5.6 U
trans-1,2-Dichloroethene	ug/kg	SW8260C	N	156-60-5			ļ				3	< 5.1 U	< 5.5 U	< 5.6 U
trans-1,3-Dichloropropene	ug/kg	SW8260C	N N	10061-02-6			ļ				3	< 5.1 U	< 5.5 U	< 5.6 U
Trichloroethene	ug/kg	SW8260C		79-01-6							3	< 5.1 U	< 5.5 U	< 5.6 U
Trichlorofluoromethane	ug/kg	SW8260C	N	75-69-4							3	< 5.1 U	< 5.5 U	< 5.6 U
Vinyl Chloride	ug/kg	SW8260C	N	75-01-4							3	< 5.1 U	< 5.5 U	< 5.6 U
1,1'-Biphenyl	ug/kg	SW8270D LL	N	92-52-4							3	< 1600 U	< 1700 U	< 220 U
1,2,4,5-Tetrachlorobenzene	ug/kg	SW8270D LL	N	95-94-3							3	< 1600 U	< 1700 U	< 220 U
2,2'-oxybis(1-Chloropropane)	ug/kg	SW8270D LL	N	108-60-1							3	< 330 U	< 340 U	< 44 U
2,3,4,6-Tetrachlorophenol	ug/kg	SW8270D LL	N	58-90-2							3	< 1600 U	< 1700 U	< 220 U
2,4,5-Trichlorophenol	ug/kg	SW8270D LL	N	95-95-4							3	< 1600 U	< 1700 U	< 220 U
2,4,6-Trichlorophenol	ug/kg	SW8270D LL	N	88-06-2							3	< 1600 U	< 1700 U	< 220 U
2,4-Dichlorophenol	ug/kg	SW8270D LL	N	120-83-2							3	< 330 U	< 340 U	< 44 U
2,4-Dimethylphenol	ug/kg	SW8270D LL	N	105-67-9							3	< 1600 U	< 1700 U	< 220 U
2,4-Dinitrophenol	ug/kg	SW8270D LL	N	51-28-5							3	< 16000 U	< 17000 U	< 2200 U
2,4-Dinitrotoluene	ug/kg	SW8270D LL	N	121-14-2							3	< 1600 U	< 1700 U	< 220 U
2,6-Dinitrotoluene	ug/kg	SW8270D LL	N	606-20-2							3	< 1600 U	< 1700 U	< 220 U
2-Chloronaphthalene	ug/kg	SW8270D LL	N	91-58-7							3	< 330 U	< 340 U	< 44 U
2-Chlorophenol	ug/kg	SW8270D LL	N	95-57-8							3	< 1600 U	< 1700 U	< 220 U
2-Methylnaphthalene	ug/kg	SW8270D LL	N	91-57-6	200	200	200	200	SDRF025074	1	3	200 J	< 340 U	< 44 U
2-Methylphenol	ug/kg	SW8270D LL	N	95-48-7							3	< 1600 U	< 1700 U	< 220 U
2-Nitroaniline	ug/kg	SW8270D LL	N	88-74-4							3	< 8400 U	< 8600 U	< 1100 U
2-Nitrophenol	ug/kg	SW8270D LL	N	88-75-5							3	< 1600 U	< 1700 U	< 220 U
3,3'-Dichlorobenzidine	ug/kg	SW8270D LL	N	91-94-1							3	< 1600 U	< 1700 U	< 220 U
3-Nitroaniline	ug/kg	SW8270D LL	N	99-09-2							3	< 8400 U	< 8600 U	< 1100 U
4,6-Dinitro-2-methylphenol	ug/kg	SW8270D LL	N	534-52-1							3	< 8400 U	< 8600 U	< 1100 U
4-Bromophenyl-phenylether	ug/kg	SW8270D LL	N	101-55-3							3	< 1600 U	< 1700 U	< 220 U
4-Chloro-3-methylphenol	ug/kg	SW8270D LL	N	59-50-7							3	< 1600 U	< 1700 U	< 220 U
4-Chloroaniline	ug/kg	SW8270D LL	N	106-47-8				<u> </u>			3	< 1600 U	< 1700 U	< 220 U
4-Chlorophenyl-phenylether	ug/kg	SW8270D LL	N	7005-72-3							3	< 1600 U	< 1700 U	< 220 U
4-Methylphenol	ug/kg	SW8270D LL	N	106-44-5							3	< 1600 U	< 1700 U	< 220 U
4-Nitroaniline	ug/kg	SW8270D LL	N	100-01-6							3	< 8400 U	< 8600 U	< 1100 U
4-Nitrophenol	ug/kg	SW8270D LL	N	100-02-7							3	< 8400 U	< 8600 U	< 1100 U
Acenaphthene	ug/kg	SW8270D LL	N	83-32-9	150	110	130	130	SDRF025074	2	3	110 J	150 J	< 44 U
Acenaphthylene	ug/kg	SW8270D LL	N	208-96-8	170	170	170	170	SDRF477827	1	3	< 330 U	< 340 U	170
Acetophenone	ug/kg	SW8270D LL	N	98-86-2							3	< 3300 U	< 3400 U	< 440 U
Anthracene	ug/kg	SW8270D LL	N	120-12-7	61	61	61	61	SDRF477827	1	3	< 330 U	< 340 U	61
Atrazine	ug/kg	SW8270D LL	N	1912-24-9							3	< 3300 U	< 3400 U	< 440 U
Benzaldehyde	ug/kg	SW8270D LL	N	100-52-7					·		3	< 3300 U	< 3400 U	< 440 U

											I a satism ID	CDDE005074	CDDE005074	CDDE477007
											Location ID		SDRF025074	SDRF477827
										,	Sample Date		7/25/2017 9:35:00 AM SDRF025074R	7/25/2017 12:30:00 PM
											Sample ID	SDRF025074N	0 - 1 ft	SDRF477827N 0 - 1 ft
											Depth	0 - 1 ft N	FD	N N
				ī	T		T				Туре	IN	FD	IN
Analyte	Unit	Method	Fraction	CAS	Max Detect	Min Detect	Mean Detect	Median Detect	Max Location	Count Detect	Count Total			
Benzo(a)anthracene	ug/kg	SW8270D LL	N	56-55-3	160	49	100	100	SDRF025074	2	3	160 J	< 340 U	49
Benzo(a)pyrene	ug/kg ug/kg	SW8270D LL	N	50-32-8	140	69	100	100	SDRF025074	2	3	140 J	< 340 U	69
Benzo(b)fluoranthene	ug/kg ug/kg	SW8270D LL	N	205-99-2	160	65	110	110	SDRF025074	2	3	160 J	< 340 U	65
Benzo(g,h,i)perylene	ug/kg	SW8270D LL	N	191-24-2	140	140	140	140	SDRF477827	1	3	< 330 U	< 340 U	140
Benzo(k)fluoranthene	ug/kg	SW8270D LL	N	207-08-9	110	20	65	65	SDRF025074	2	3	110 J	< 340 U	20 J
bis-(2-chloroethoxy)methane	ug/kg	SW8270D LL	N	111-91-1	110	20	- 00	00	ODIN 020014		3	< 1600 U	< 1700 U	< 220 U
bis-(2-Chloroethyl)ether	ug/kg	SW8270D LL	N	111-44-4							3	< 330 U	< 340 U	< 44 U
bis-(2-Ethylhexyl)phthalate	ug/kg ug/kg	SW8270D LL	N	117-81-7							3	< 3300 U	< 3400 U	< 440 U
Butylbenzylphthalate	ug/kg ug/kg	SW8270D LL	N	85-68-7							3	< 1600 U	< 1700 U	< 220 U
Caprolactam		SW8270D LL	N	105-60-2								< 8400 U	< 8600 U	< 1100 U
Carbazole	ug/kg ug/kg	SW8270D LL	N	86-74-8							3	< 330 U	< 340 U	< 44 U
Chrysene	ug/kg ug/kg	SW8270D LL	N	218-01-9	210	49	150	180	SDRF025074	3	3	210 J	180 J	49
Dibenzo(a,h)anthracene	ug/kg ug/kg	SW8270D LL	N	53-70-3	210	49	130	100	3DKF023074	3		< 330 U	< 340 U	< 44 U
Dibenzofuran		SW8270D LL	N	132-64-9							3	< 1600 U	< 1700 U	< 220 U
Diethylphthalate	ug/kg	SW8270D LL	N	84-66-2							3	< 1600 U	< 1700 U	< 220 U
Dimethylphthalate	ug/kg	SW8270D LL	N	131-11-3							3	< 1600 U	< 1700 U	< 220 U
J.	ug/kg	SW8270D LL	N	84-74-2							3	< 1600 U	< 1700 U	< 220 U
Di-n-butylphthalate	ug/kg	SW8270D LL	N	117-84-0							3	< 1600 U	< 1700 U	< 220 U
Di-n-octylphthalate	ug/kg	SW8270D LL SW8270D LL	N	206-44-0	220	47	000	200	CDDE005074	2	3		280 J	< 220 U
Fluoranthene	ug/kg		1	86-73-7	330	47	220	280	SDRF025074	3	3	330		47 < 44 U
Fluorene	ug/kg	SW8270D LL SW8270D LL	N		160	120	140	140	SDRF025074	2	3	120 J	160 J < 340 U	
Hexachlorobenzene	ug/kg		N	118-74-1							3	< 330 U	< 340 U	< 44 U
Hexachlorobutadiene	ug/kg	SW8270D LL	N	87-68-3							3	< 330 U		
Hexachlorocyclo-pentadiene	ug/kg	SW8270D LL	N	77-47-4							3	< 1600 U	< 1700 U	< 220 U
Hexachloroethane	ug/kg	SW8270D LL	N	67-72-1	75	75	75	75	0005477007	4	3	< 1600 U	< 1700 U	< 220 U
Indeno(1,2,3-cd)pyrene	ug/kg	SW8270D LL	N	193-39-5	75	75	75	75	SDRF477827	1	3	< 330 U	< 340 U	75
Isophorone	ug/kg	SW8270D LL	N	78-59-1							3	< 1600 U	< 1700 U	< 220 U
Naphthalene	ug/kg	SW8270D LL	N	91-20-3							3	< 330 U	< 340 U	< 44 U
Nitrobenzene	ug/kg	SW8270D LL	N	98-95-3							3	< 3300 U	< 3400 U	< 440 U
N-Nitroso-di-n-propylamine	ug/kg	SW8270D LL	N	621-64-7							3	< 330 U	< 340 U	< 44 U
N-Nitrosodiphenylamine	ug/kg	SW8270D LL	N	86-30-6							3	< 1600 U	< 1700 U	< 220 U
Pentachlorophenol	ug/kg	SW8270D LL	N	87-86-5							3	< 8400 U	< 8600 U	< 1100 U
Phenanthrene	ug/kg	SW8270D LL	N	85-01-8	370	21	220	270	SDRF025074	3	3	270 J	370	21 J
Phenol	ug/kg	SW8270D LL	N	108-95-2							3	< 1600 U	< 1700 U	< 220 U
Pyrene	ug/kg	SW8270D LL	N	129-00-0	330	60	200	210	SDRF025074	3	3	330	210 J	60
BaP-TE	ug/kg	SW8270D LL	N	BAP	173	0.18	87.1	88.1	SDRF025074	3	3	173	0.180	88.1
Total High-molecular-weight PAHs	ug/kg	SW8270D LL	N	TOT-PAH-HMW	1400	570	880	670	SDRF025074	3	3	1400	670	570
Total Low-molecular-weight PAHs	ug/kg	SW8270D LL	N	TOT-PAH-LMW	680	250	480	500	SDRF025074	3	3	500	680	250
Total PAHs (sum 16)	ug/kg	SW8270D LL	N	TOT-PAH	1900	830	1400	1400	SDRF025074	3	3	1900	1400	830
1,2,3,4,6,7,8-Heptachlorodibenzofuran	pg/g	SW8290A	Т	67562-39-4	4.06	0.688	2.82	3.72	SDRF025074	3	3	3.72	4.06 JN	0.688 JN
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/g	SW8290A	Т	35822-46-9	13.3	5.41	10.3	12.1	SDRF025074	3	3	12.1	13.3	5.41
1,2,3,4,7,8,9-Heptachlorodibenzofuran	pg/g	SW8290A	T	55673-89-7	0.661	0.366	0.514	0.514	SDRF025074	2	3	0.366 JN	0.661 J	< 0.245 U
1,2,3,4,7,8-Hexachlorodibenzofuran	pg/g	SW8290A	Т	70648-26-9	0.732	0.183	0.513	0.624	SDRF025074	3	3	0.624 J	0.732 JN	0.183 JN
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/g	SW8290A	T	39227-28-6	0.339	0.275	0.307	0.307	SDRF025074	2	3	0.275 J	0.339 J	< 0.149 U
1,2,3,6,7,8-Hexachlorodibenzofuran	pg/g	SW8290A	T	57117-44-9	0.793	0.177	0.537	0.641	SDRF025074	3	3	0.641 J	0.793 J	0.177 JN
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/g	SW8290A	T	57653-85-7	0.913	0.347	0.668	0.744	SDRF025074	3	3	0.744 J	0.913 J	0.347 J
1,2,3,7,8,9-Hexachlorodibenzofuran	pg/g	SW8290A	Т	72918-21-9							3	< 0.18 U	< 0.317 U	< 0.222 U
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/g	SW8290A	Т	19408-74-3	0.647	0.427	0.53	0.517	SDRF025074	3	3	0.517 JN	0.647 J	0.427 JN
1,2,3,7,8-PeCDF	pg/g	SW8290A	Т	57117-41-6	0.472	0.114	0.333	0.412	SDRF025074	3	3	0.412 J	0.472 J	0.114 JN

											Location ID	SDRF025074	SDRF025074	SDRF477827
										;	Sample Date	7/25/2017 9:30:00 AM	7/25/2017 9:35:00 AM	7/25/2017 12:30:00 PM
											Sample ID	SDRF025074N	SDRF025074R	SDRF477827N
											Depth	0 - 1 ft	0 - 1 ft	0 - 1 ft
											Туре	N	FD	N
					Max	Min	Mean	Median		Count	Count			
Analyte	Unit	Method	Fraction	CAS	Detect	Detect	Detect	Detect	Max Location	Detect	Total			
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/g	SW8290A	Т	40321-76-4	0.302	0.243	0.273	0.273	SDRF025074	2	3	0.302 J	0.243 J	< 0.23 U
2,3,4,6,7,8-Hexachlorodibenzofuran	pg/g	SW8290A	Т	60851-34-5	0.837	0.186	0.6	0.778	SDRF025074	3	3	0.778 J	0.837 J	0.186 JN
2,3,4,7,8-Pentachlorodibenzofuran	pg/g	SW8290A	Т	57117-31-4	0.844	0.465	0.664	0.684	SDRF025074	3	3	0.684 J	0.844 J	0.465 J
2,3,7,8-Tetrachlorodibenzofuran	pg/g	SW8290A	Т	51207-31-9	0.463	0.284	0.374	0.374	SDRF025074	2	3	0.284 JN	0.463	< 0.146 U
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/g	SW8290A	Т	1746-01-6							3	< 0.11 U	< 0.216 U	< 0.19 U
Octachlorochlorodibenzofuran	pg/g	SW8290A	Т	39001-02-0	7.01	1.79	4.88	5.84	SDRF025074	3	3	7.01	5.84 JN	1.79 J
Octachlorochlorodibenzo-p-dioxin	pg/g	SW8290A	Т	3268-87-9	153	114	137	145	SDRF025074	3	3	153	145	114
Total HpCDD	pg/g	SW8290A	Т	37871-00-4	31.3	11.1	23.8	29	SDRF025074	3	3	31.3	29	11.1
Total HpCDF	pg/g	SW8290A	Т	38998-75-3	8.22	1.4	5.76	7.65	SDRF025074	3	3	7.65	8.22	1.4
Total HxCDD	pg/g	SW8290A	Т	34465-46-8	7.98	3.14	5.73	6.07	SDRF025074	3	3	6.07	7.98	3.14
Total HxCDF	pg/g	SW8290A	Т	55684-94-1	9.68	2.88	6.9	8.14	SDRF025074	3	3	8.14	9.68	2.88
Total PeCDD	pg/g	SW8290A	Т	36088-22-9	3.95	0.918	2.7	3.22	SDRF025074	3	3	3.22	3.95	0.918
Total PeCDF	pg/g	SW8290A	Т	30402-15-4	10.7	4.86	8.31	9.36	SDRF025074	3	3	9.36	10.7	4.86
Total TCDD	pg/g	SW8290A	Т	41903-57-5	1.15	0.434	0.707	0.538	SDRF025074	3	3	1.15	0.538	0.434
Total TCDF	pg/g	SW8290A	Т	55722-27-5	6.24	0.841	3.99	4.89	SDRF025074	3	3	4.89	6.24	0.841
TCDD TEQ Bird	pg/g	SW8290A	Т	DFTEQ-Bird	2	0.601	1.42	1.66	SDRF025074	3	3	1.66	2.00	0.601
TCDD TEQ Fish	pg/g	SW8290A	Т	DFTEQ-Fish	1.21	0.324	0.878	1.1	SDRF025074	3	3	1.10	1.21	0.324
TCDD TEQ HH	pg/g	SW8290A	Т	DFTEQ-HH	1.21	0.371	0.9	1.12	SDRF025074	3	3	1.12	1.21	0.371
Cyanide	mg/kg	SW9014	N	57-12-5							3	< 0.31 U	< 0.32 U	< 0.33 U

Notes:

Bold values indicate detects.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J+ = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J- = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

 $\label{eq:U} \textbf{U} = \textbf{The analyte was analyzed for, but was not detected above the reported sample quantitation limit.}$

R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

N = Normal

FD = Field Duplicate

mg/kg = milligrams per kilogram pg/g= picograms per gram ug/kg = micrograms per kilogram

		Human Health Proj	iect Scr	eening Levels (PSI	s)
		Sediment	1001 001	Soil	
		Residential RSL (a)	Industrial RSL (a	1)
CAS Number	Chemical	(mg/kg)	,	mg/kg	,
71-55-6	1,1,1-Trichloroethane	810		3600	
79-34-5	1,1,2,2-Tetrachloroethane	0.6		2.7	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	670		2800	
79-00-5	1,1,2-Trichloroethane	0.15		0.63	
92-52-4	1,1'-Biphenyl	4.7		20	
75-34-3	1,1-Dichloroethane	3.6		16	
75-35-4	1,1-Dichloroethene	23		100	
87-61-6	1,2,3-Trichlorobenzene	6.3		93	
95-94-3	1,2,4,5-Tetrachlorobenzene	2.3		35	
120-82-1	1,2,4-Trichlorobenzene	5.8		26	
96-12-8	1,2-Dibromo-3-chloropropane	0.0053		0.064	
106-93-4	1,2-Dibromoethane	0.036		0.16	
95-50-1	1,2-Dichlorobenzene	180		930	
107-06-2	1,2-Dichloroethane	0.46		2	
78-87-5	1,2-Dichloropropane	1.6		6.6	
541-73-1	1,3-Dichlorobenzene	2.6	(b)	11	(b)
106-46-7	1,4-Dichlorobenzene	2.6		11	
123-91-1	1,4-Dioxane	5.3		24	
90-12-0	1-Methylnaphthalene	18		73	
108-60-1	2,2'-oxybis(1-Chloropropane)	310		4700	
58-90-2	2,3,4,6-Tetrachlorophenol	190		2500	
2245-38-7	2,3,5-Trimethylnaphthalene	NA		NA	
DFTEQ-HH	2,3,7,8-TCDD-TEQ	0.0000048	(c)	0.000022	(c)
1746-01-6	2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.0000048	(c)	0.000022	(c)
95-95-4	2,4,5-Trichlorophenol	630		8200	· /
88-06-2	2,4,6-Trichlorophenol	6.3		82	
120-83-2	2,4-Dichlorophenol	19		250	
105-67-9	2,4-Dimethylphenol	130		1600	
51-28-5	2,4-Dinitrophenol	13		160	
121-14-2	2,4-Dinitrotoluene	1.7		7.4	
581-42-0	2,6-Dimethylnaphthalene	NA		NA	
606-20-2	2,6-Dinitrotoluene	0.36		1.5	
78-93-3	2-Butanone	2700		19000	
91-58-7	2-Chloronaphthalene	480		6000	
95-57-8	2-Chlorophenol	39		580	
591-78-6	2-Hexanone	20		130	
91-57-6	2-Methylnaphthalene	24		300	
95-48-7	2-Methylphenol	320		4100	
88-74-4	2-Nitroaniline	63		800	
88-75-5	2-Nitrophenol	1900	(d)	25000	(d)
91-94-1	3,3'-Dichlorobenzidine	1.2	` /	5.1	. , ,
99-09-2	3-Nitroaniline	25	(e)	110	(e)
72-54-8	4,4'-DDD	0.19	` /	2.5	. /
72-55-9	4,4'-DDE	2		9.3	
50-29-3	4,4'-DDT	1.9		8.5	

		Human Health Project S	creening Levels (PSLs)
		Sediment	Soil
		Residential RSL (a)	Industrial RSL (a)
CAS Number	Chemical	(mg/kg)	mg/kg
534-52-1	4,6-Dinitro-2-methylphenol	0.51	6.6
101-55-3	4-Bromophenyl-phenylether	NA NA	NA
59-50-7	4-Chloro-3-methylphenol	630	8200
106-47-8	4-Chloroaniline	2.7	11
7005-72-3	4-Chlorophenyl-phenylether	NA	NA
108-10-1	4-Methyl-2-pentanone	3300	14000
106-44-5	4-Methylphenol	630	8200
100-01-6	4-Nitroaniline	25	110
100-02-7	4-Nitrophenol		d) 25000 (d)
83-32-9	Acenaphthene	360	4500
208-96-8	Acenaphthylene	360 (1	
67-64-1	Acetone	6100	67000
98-86-2	Acetophenone	780	12000
309-00-2	Aldrin	0.039	0.18
319-84-6	alpha-BHC	0.086	0.36
7429-90-5	Aluminum	7700	110000
120-12-7	Anthracene	1800	23000
7440-36-0	Antimony	3.1	47
7440-38-2	Arsenic	0.68	3
1912-24-9	Atrazine	2.4	10
BAP	BAP-TE		g) 2.1 (g)
7440-39-3	Barium	1500	22000
100-52-7	Benzaldehyde	170	820
71-43-2	Benzene	1.2	5.1
56-55-3	Benzo(a)anthracene	1.1	21
50-32-8	Benzo(a)pyrene	0.11	2.1
205-99-2	Benzo(b)fluoranthene	1.1	21
191-24-2	Benzo(g,h,i)perylene	180 (ł	n) 2300 (h)
207-08-9	Benzo(k)fluoranthene	11	210
65-85-0	Benzoic Acid	25000	330000
7440-41-7	Beryllium	16	230
319-85-7	beta-BHC	0.3	1.3
111-91-1	bis-(2-chloroethoxy)methane	19	250
111-44-4	bis-(2-Chloroethyl)ether	0.23	1
117-81-7	bis-(2-Ethylhexyl)phthalate	39	160
74-97-5	Bromochloromethane	15	63
75-27-4	Bromodichloromethane	0.29	1.3
75-25-2	Bromoform	19	86
74-83-9	Bromomethane	0.68	3
85-68-7	Butylbenzylphthalate	290	1200
7440-43-9	Cadmium	7.1	98
7440-70-2	Calcium	EN	EN
105-60-2	Caprolactam	3100	40000
86-74-8	Carbazole	240 (i) 3000 (i)
75-15-0	Carbon Disulfide	77	350

		Human Health Pr	oject Scr	eening Levels (PS	Ls)
		Sediment	0,000 001	Soil	
		Residential RSL	. (a)	Industrial RSL (a	a)
CAS Number	Chemical	(mg/kg)	` ,	mg/kg `	•
56-23-5	Carbon Tetrachloride	0.65		2.9	
108-90-7	Chlorobenzene	28		130	
75-00-3	Chloroethane	1400		5700	
67-66-3	Chloroform	0.32		1.4	
74-87-3	Chloromethane	11		46	
7440-47-3	Chromium, total/trivalent	12,000		180,000	
18540-29-9	Chromium, hexavalent	0.3		6.3	
218-01-9	Chrysene	110		2100	
156-59-2	cis-1,2-Dichloroethylene	16		230	
10061-01-5	cis-1,3-Dichloropropene	1.8	(k)	8.2	(k)
5103-71-9	cis-Chlordane	1.7	(I)	7.7	(I)
12789-03-6	Chlordane (Technical)	1.7	(I)	7.7	(I)
7440-48-4	Cobalt	2.3	()	35	()
7440-50-8	Copper	310		4700	
57-12-5	Cyanide	2.3		15	
110-82-7	Cyclohexane	650		2700	
319-86-8	delta-BHC	0.086	(m)	0.36	(m)
53-70-3	Dibenzo(a,h)anthracene	0.11	()	2.1	()
132-64-9	Dibenzofuran	7.3		100	
132-65-0	Dibenzothiophene	78		1200	
124-48-1	Dibromochloromethane	8.3		39	
75-71-8	Dichlorodifluoromethane	8.7		37	
60-57-1	Dieldrin	0.034		0.14	
C10C20	Diesel Range Organics (C10-C20)	96	(x)	440	(x)
DIESELCOMP	Diesel Range Organics (C10-C28)	96	(x)	440	(x)
84-66-2	Diethylphthalate	5100	(//)	66000	(^)
108-20-3	Diisopropyl ether	220		940	
131-11-3	Dimethylphthalate	5100	(n)	66000	(n)
84-74-2	Di-n-butylphthalate	630	(11)	8200	(11)
117-84-0	Di-n-octylphthalate	63		820	
959-98-8	Endosulfan I	47	(0)	700	(0)
33213-65-9	Endosulfan II	47	(o)	700	(0)
1031-07-8	Endosulfan Sulfate	47	(o)	700	(0)
72-20-8	Endrin	1.9	(0)	25	(0)
7421-93-4	Endrin aldehyde	1.9	(p)	25	(p)
53494-70-5	Endrin alderryde Endrin ketone	1.9	(p)	25	(p)
100-41-4	Ethylbenzene	5.8	(P)	25	(P)
206-44-0	Fluoranthene	240		3000	
86-73-7	Fluorene	240		3000	
58-89-9	gamma-BHC (Lindane)	0.57		2.5	
8006-61-9	Gasoline Range Organics (C6-C10)	8.2	(,)	42	(,,)
76-44-8	Heptachlor	0.13	(y)	0.63	(y)
1024-57-3					
	Heptachlor Epoxide	0.07		0.33	
118-74-1	Hexachlorobenzene	0.21		0.96	
87-68-3	Hexachlorobutadiene	1.2		5.3	

		Human Health Pro	iect Scr	eening Levels (PS	Ls)
		Sediment	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Soil	
		Residential RSL ((a)	Industrial RSL (a	1)
CAS Number	Chemical	(mg/kg)	. ,	mg/kg `	•
77-47-4	Hexachlorocyclo-pentadiene	0.18		0.75	
67-72-1	Hexachloroethane	1.8		8	
193-39-5	Indeno(1,2,3-cd)pyrene	1.1		21	
7439-89-6	Iron	5500		82000	
78-59-1	Isophorone	570		2400	
98-82-8	Isopropylbenzene	190		990	
7439-92-1	Lead	400		800	
XYLMP	m, p-Xylene	55	(r)	240	(r)
7439-95-4	Magnesium	EN	· · · · · · · · · · · · · · · · · · ·	EN	/
7439-96-5	Manganese	180	(s)	2600	(s)
7439-97-6	Mercury	2.3	(t)	35	(t)
72-43-5	Methoxychlor	32	(/	410	
79-20-9	Methyl Acetate	7800		120000	
1634-04-4	Methyl tert-Butyl Ether (MTBE)	47		210	
108-87-2	Methylcyclohexane	650	(u)	2700	(u)
75-09-2	Methylene Chloride	35	(/	320	()
91-20-3	Naphthalene	3.8		17	
7440-02-0	Nickel	150		2200	
98-95-3	Nitrobenzene	5.1		22	
621-64-7	N-Nitroso-di-n-propylamine	0.078		0.33	
86-30-6	N-Nitrosodiphenylamine	110		470	
C20C36	Oil Range Organics (C20-C36)	23000	(z)	350000	(z)
95-47-6	o-Xylene	65	(=)	280	(=)
PCBTEQ-HH	PCB TEQ HH	0.0000048	(c)	0.000022	(c)
PCB	PCB, TOTAL	0.12	(v)	0.97	(v)
	PCB, Total Aroclors (AECOM Calc)	0.12	(v)	0.97	(v)
	PCB, Total Aroclors (AECOM Calc)	0.12	(v)	0.97	(v)
87-86-5	Pentachlorophenol	1	(*)	4	(*)
198-55-0	Perylene	NA		NA	
85-01-8	Phenanthrene	1800	(w)	23000	(w)
108-95-2	Phenol	1900	(**)	25000	(**)
7440-09-7	Potassium	EN		EN	
129-00-0	Pyrene	180		2300	
7782-49-2	Selenium	39		580	
7440-22-4	Silver	39		580	
7440-23-5	Sodium	EN		EN	
100-42-5	Styrene	600		3500	
127-18-4	Tetrachloroethylene	8.1		39	
7440-28-0	Thallium	0.078		1.2	
108-88-3	Toluene	490		4700	
TOT-PCB-ARO	Total PCBs	0.12	(v)	0.97	(v)
8001-35-2	Toxaphene	0.49	(v)	2.1	(v)
156-60-5	trans-1,2-Dichloroethene	160		2300	
10061-02-6	trans-1,3-Dichloropropene	1.8	(k)	8.2	(k)
5103-74-2	trans-Chlordane	1.7	(K) (I)	7.7	(I)

Table 4-40

Soil and Sediment Project Screening Levels for Human Health Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

		Human Health Project Screening Levels (PSLs					
CAS Number	Chemical	Sediment Residential RSL (a) (mg/kg)	Soil Industrial RSL (a) mg/kg				
79-01-6	Trichloroethene	0.41	1.9				
75-69-4	Trichlorofluoromethane	2300	35000				
7440-62-2	Vanadium	39	580				
75-01-4	Vinyl Chloride	0.059	1.7				
1330-20-7	Xylenes (total)	58	250				
7440-66-6	Zinc	2300	35000				

Notes:

- CAS Chemical Abstracts Service.
- EN Essential Nutrient.
- NA Not Available; no appropriate surrogate.
- RSL Regional Screening Level.
- PSL Project Screening Level.
- USEPA United States Environmental Protection Agency.
- (a) USEPA Regional Screening Level Table. (Target Risk =1E-06; Target Hazard Quotient=0.1). May 2018. https://www.epa.gov/risk/regional-screening-levels-rsls
 - Residential value used for sediment, industrial value used for soil.
- (b) Value for 1,4-dichlororobenzene.
- (c) Value for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD).
- (d) Value for phenol.
- (e) Value for 4-nitroaniline.
- (f) Value for acenaphthene
- (g) Value for benzo(a)pyrene.
- (h) Value for pyrene.
- (i) Value for fluorene.
- (k) Value for 1,3-dichloropropene.
- (I) Value for chlordane.
- (m) Value for alpha-BHC.
- (n) Value for diethylphthalate.
- (o) Value for endosulfan.
- (p) Value for endrin.
- (r) Value for m-xylenes.
- (s) Value for manganese, non-diet.
- (t) Value for mercuric chloride.
- (u) Value for cyclohexane.
- (v) Value for Aroclor-1254.
- (w) Value for anthracene.
- (x) Value for total petroleum hydrocarbons (aliphatic medium). THQ of 1 used to account for uncertainty in toxicity data.
- (y) Value for total petroleum hydrocarbons (aromatic low).
- (z) Value for total petroleum hydrocarbons (aliphatic high).

		DOEE Primary Drinking Water Standard (a)	MCL (b)	Tapwater RSL (c)	Selected F	-
CAS Number	Chemical	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
71-55-6	1,1,1-Trichloroethane	200	200	800	200	DOEE
79-34-5	1,1,2,2-Tetrachloroethane	NA	NA	0.076	0.076	RSL
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	1000	1000	RSL
79-00-5	1,1,2-Trichloroethane	NA	5	0.041	5	MCL
92-52-4	1,1'-Biphenyl	NA	NA	0.083	0.083	RSL
75-34-3	1,1-Dichloroethane	NA	NA	2.8	2.8	RSL
75-35-4	1,1-Dichloroethene	7	7	28	7	DOEE
87-61-6	1,2,3-Trichlorobenzene	NA	NA	0.7	0.7	RSL
95-94-3	1,2,4,5-Tetrachlorobenzene	NA	NA	0.17	0.17	RSL
120-82-1	1,2,4-Trichlorobenzene	NA	70	0.4	70	MCL
96-12-8	1,2-Dibromo-3-chloropropane	NA	0.2	0.00033	0.2	MCL
106-93-4	1,2-Dibromoethane	NA	0.05	0.0075	0.05	MCL
95-50-1	1,2-Dichlorobenzene	NA	600	30	600	MCL
107-06-2	1,2-Dichloroethane	5	5	0.17	5	DOEE
78-87-5	1,2-Dichloropropane	NA	5	0.82	5	MCL
541-73-1	1,3-Dichlorobenzene	NA	NA	0.48 (g)	0.48	RSL
106-46-7	1,4-Dichlorobenzene	75	75	0.48	75	DOEE
123-91-1	1,4-Dioxane	NA	NA	0.46	0.46	RSL
90-12-0	1-Methylnaphthalene	NA	NA	1.1	1.1	RSL
108-60-1	2,2'-oxybis(1-Chloropropane)	NA	NA	71	71	RSL
58-90-2	2,3,4,6-Tetrachlorophenol	NA	NA	24	24	RSL
1746-01-6	2,3,7,8-TCDD	NA	0.00003	0.00000012	0.00003	MCL
95-95-4	2,4,5-Trichlorophenol	NA	NA	120	120	RSL
88-06-2	2,4,6-Trichlorophenol	NA	NA	1.2	1.2	RSL
120-83-2	2,4-Dichlorophenol	NA	NA	4.6	4.6	RSL
105-67-9	2,4-Dimethylphenol	NA	NA	36	36	RSL
51-28-5	2,4-Dinitrophenol	NA	NA	3.9	3.9	RSL
121-14-2	2,4-Dinitrotoluene	NA	NA	0.24	0.24	RSL
606-20-2	2,6-Dinitrotoluene	NA	NA	0.049	0.049	RSL
78-93-3	2-Butanone	NA	NA	560	560	RSL
91-58-7	2-Chloronaphthalene	NA	NA	75	75	RSL
95-57-8	2-Chlorophenol	NA	NA	9.1	9.1	RSL
591-78-6	2-Hexanone	NA	NA	3.8	3.8	RSL
91-57-6	2-Methylnaphthalene	NA	NA	3.6	3.6	RSL
95-48-7	2-Methylphenol	NA	NA	93	93	RSL
88-74-4	2-Nitroaniline	NA	NA	19	19	RSL
88-75-5	2-Nitrophenol	NA	NA	580 (h)	580	RSL
91-94-1	3,3'-Dichlorobenzidine	NA	NA	0.13	0.13	RSL
99-09-2	3-Nitroaniline	NA	NA	3.8 (i)	3.8	RSL
72-54-8	4,4'-DDD	NA	NA	0.0063	0.0063	RSL
72-55-9	4,4'-DDE	NA	NA	0.046	0.046	RSL
50-29-3	4,4'-DDT	NA	NA	0.23	0.23	RSL
534-52-1	4,6-Dinitro-2-methylphenol	NA	NA	0.15	0.15	RSL
59-50-7	4-Chloro-3-methylphenol	NA	NA	140	140	RSL
106-47-8	4-Chloroaniline	NA	NA	0.37	0.37	RSL
108-10-1	4-Methyl-2-pentanone	NA	NA	630	630	RSL
106-44-5	4-Methylphenol	NA	NA	190	190	RSL
100-01-6	4-Nitroaniline	NA	NA	3.8	3.8	RSL
100-02-7	4-Nitrophenol	NA	NA	580 (h)		RSL
83-32-9	Acenaphthene	NA	NA	53	53	RSL
208-96-8	Acenaphthylene	NA	NA	53 (j)	53	RSL
67-64-1	Acetone	NA	NA	1400	1400	RSL
98-86-2	Acetophenone	NA	NA	190	190	RSL
309-00-2	Aldrin	NA	NA	0.00092	0.00092	RSL
319-84-6	alpha-BHC	NA	NA	0.0072	0.0072	RSL
7429-90-5	Aluminum	NA	NA	2000	2000	RSL
120-12-7	Anthracene	NA	NA	180	180	RSL
7440-36-0	Antimony	NA	6	0.78	6	MCL
7440-38-2	Arsenic	50	10	0.052	10	MCL

		DOEE Primary Drinking Water Standard (a)	MCL (b)		Tapwater RS	L	Selected F Screening Leve	
CAS Number	Chemical	(ug/L)	(ug/L)		(ug/L)		(ug/L)	
1912-24-9	Atrazine	NA	3		0.3		3	MCL
BAP	BAP-TE	NA	0.2	(y)	0.025	(y)	0.2	MCL
7440-39-3	Barium	1000	2000	(3)	380	(37	1000	DOEE
100-52-7	Benzaldehyde	NA	NA		19		19	RSL
71-43-2	Benzene	5	5		0.46		5	DOEE
56-55-3	Benzo(a)anthracene	NA	NA		0.03		0.03	RSL
50-32-8	Benzo(a)pyrene	NA	0.2		0.025		0.2	MCL
205-99-2	Benzo(b)fluoranthene	NA	NA		0.25		0.25	RSL
191-24-2	Benzo(g,h,i)perylene	NA	NA		12	(k)	12	RSL
207-08-9	Benzo(k)fluoranthene	NA	NA		2.5	(11)	2.5	RSL
65-85-0	Benzoic Acid	NA	NA		7500		7500	RSL
7440-41-7	Beryllium	NA NA	4		2.5		4	MCL
319-85-7	beta-BHC	NA NA	NA NA		0.025		0.025	RSL
111-91-1	bis-(2-chloroethoxy)methane	NA NA	NA NA		5.9		5.9	RSL
111-44-4	bis-(2-Chloroethyl)ether	NA NA	NA NA		0.014		0.014	RSL
	`	NA NA						
117-81-7	bis-(2-Ethylhexyl)phthalate		6		5.6		6	MCL
74-97-5	Bromochloromethane Bromodichloromethane	NA NA	NA 80	7 1	8.3		8.3	RSL
75-27-4		NA	80	(e)	0.13		80	MCL
75-25-2	Bromoform	NA	80	(e)	3.3		80	MCL
74-83-9	Bromomethane	NA	NA		0.75	(1)	0.75	RSL
75-65-0	Butyl alcohol, tert-	NA	NA		14	(ab)	14	RSL
85-68-7	Butylbenzylphthalate	NA	NA		16		16	RSL
7440-43-9	Cadmium	5	5		0.92		5	DOEE
7440-70-2	Calcium	EN	EN		EN		EN	
105-60-2	Caprolactam	NA	NA		990		990	RSL
86-74-8	Carbazole	NA	NA		29	(aa)	29	RSL
75-15-0	Carbon Disulfide	NA	NA		81		81	RSL
56-23-5	Carbon Tetrachloride	5	5		0.46		5	DOEE
108-90-7	Chlorobenzene	NA	100		7.8		100	MCL
75-00-3	Chloroethane	NA	NA		2100		2100	RSL
67-66-3	Chloroform	NA	80	(e)	0.22		80	MCL
74-87-3	Chloromethane	NA	NA		19		19	RSL
18540-29-9	Chromium, hexavalent				0.035			
7440-47-3	Chromium, total/trivalent	100	100		2,200		100	DOEE
218-01-9	Chrysene	NA	NA		25		25	RSL
156-59-2	cis-1,2-Dichloroethylene	70	70		3.6		70	DOEE
10061-01-5	cis-1,3-Dichloropropene	NA	NA		0.47	(m)	0.47	RSL
5103-71-9	cis-Chlordane	NA	2		0.02	(I)	2	MCL
7440-48-4	Cobalt	NA	NA		0.6	` `	0.6	RSL
7440-50-8	Copper	NA	1300		80		1300	MCL
57-12-5	Cyanide	200	200		0.15		200	DOEE
110-82-7	Cyclohexane	NA	NA		1300		1300	RSL
319-86-8	delta-BHC	NA	NA		0.0072	(o)	0.0072	RSL
53-70-3	Dibenzo(a,h)anthracene	NA	NA		0.025	(-)	0.025	RSL
132-64-9	Dibenzofuran	NA	NA		0.79		0.79	RSL
132-65-0	Dibenzothiophene	NA NA	NA NA		6.5		6.5	RSL
124-48-1	Dibromochloromethane	NA NA	80	(e)	0.87		80	MCL
75-71-8	Dichlorodifluoromethane	NA NA	NA	(6)	20		20	RSL
60-57-1	Dieldrin	NA NA	NA NA		0.0018		0.0018	RSL
C10C20	Diesel Range Organics (C10-C20)	NA NA	NA NA		100	(p)	100	RSL
84-66-2	Diesei Range Organics (C10-C20) Diethylphthalate	NA NA	NA NA		1500	(P)	1500	RSL
108-20-3	Dietnyiphthalate Diisopropyl ether	NA NA	NA NA		1500		1500	
		NA NA	NA NA			/\		RSL
131-11-3	Dimethylphthalate				1500	(q)	1500	RSL
84-74-2	Di-n-butylphthalate	NA	NA NA		90		90	RSL
117-84-0	Di-n-octylphthalate	NA	NA		20		20	RSL
959-98-8	Endosulfan I	NA	NA		10	(r)	10	RSL
33213-65-9	Endosulfan II	NA	NA		10	(r)	10	RSL
1031-07-8	Endosulfan Sulfate	NA	NA		10	(r)	10	RSL
72-20-8	Endrin	0.2	2		0.23		0.2	DOEE

		DOEE Primary Drinking Water Standard (a)	MCL (b)		Tapwater RSL (c)		Selected F Screening Leve	-
CAS Number	Chemical	(ug/L)	(ug/L)		(ug/L)		(ug/L)	
7421-93-4	Endrin aldehyde	NA	NA		0.23	(s)	0.23	RSL
53494-70-5	Endrin ketone	NA	NA		0.23	(s)	0.23	RSL
100-41-4	Ethylbenzene	700	700		1.5	(-)	700	DOEE
206-44-0	Fluoranthene	NA NA	NA NA		80		80	RSL
86-73-7	Fluorene	NA	NA		29		29	RSL
58-89-9	gamma-BHC (Lindane)	4	0.2		0.042		0.2	MCL
8006-61-9	Gasoline Range Organics (C6-C10)	NA	NA		3.3	(t)	3.3	RSL
76-44-8	Heptachlor	NA NA	0.4		0.0014	(-)	0.4	MCL
1024-57-3	Heptachlor Epoxide	NA	0.2		0.0014		0.2	MCL
118-74-1	Hexachlorobenzene	NA	1		0.0098		1	MCL
87-68-3	Hexachlorobutadiene	NA	NA		0.14		0.14	RSL
77-47-4	Hexachlorocyclo-pentadiene	NA	50		0.041		50	MCL
67-72-1	Hexachloroethane	NA	NA NA		0.33		0.33	RSL
193-39-5	Indeno(1,2,3-cd)pyrene	NA NA	NA NA		0.25		0.25	RSL
7439-89-6	Iron	NA NA	NA NA	_	1400		1400	RSL
78-59-1	Isophorone	NA NA	NA NA		78		78	RSL
98-82-8	Isopropylbenzene	NA NA	NA NA	_	45		45	RSL
7439-92-1	Lead	50	15		15		15	MCL
XYLMP	m, p-Xylene	10000	10000		19	(u)	10000	DOEE
7439-95-4	Magnesium	EN	EN		EN	(5.)	EN	
7439-96-5	Manganese	NA	NA		43		43	RSL
7439-97-6	Mercury	2	2		0.57	(n)	2	DOEE
72-43-5	Methoxychlor	100	40		3.7	(,	40	MCL
79-20-9	Methyl Acetate	NA	NA NA		2000		2000	RSL
1634-04-4	Methyl tert-Butyl Ether (MTBE)	NA	NA		14		14	RSL
108-87-2	Methylcyclohexane	NA	NA		1300	(v)	1300	RSL
75-09-2	Methylene Chloride	NA NA	5		11	(•)	5	MCL
91-20-3	Naphthalene	NA NA	NA NA		0.17		0.17	RSL
7440-02-0	Nickel	NA NA	NA NA		39		39	RSL
98-95-3	Nitrobenzene	NA NA	NA NA		0.14		0.14	RSL
621-64-7	N-Nitroso-di-n-propylamine	NA NA	NA NA		0.011		0.011	RSL
86-30-6	N-Nitrosodiphenylamine	NA NA	NA NA		12		12	RSL
111-84-2	Nonane	NA	NA NA		0.53		0.53	RSL
C20C36	Oil Range Organics (C20-C36)	NA NA	NA NA		6000	(w)	6000	RSL
95-47-6	o-Xylene	10000	10000		19	(**)	10000	DOEE
PCBTEQ-HH	PCB TEQ HH	NA	0.00003	(f)	0.00000012	(f)	0.00003	MCL
PCB	PCB, TOTAL	NA NA	0.5	(')	0.044	(x)	0.5	MCL
TOT-PCB-ARO-C	PCB, Total Aroclors	NA NA	0.5		0.044	(x)	0.5	MCL
TOT-PCB-ARO	PCB, Total Aroclors (Lab provided)	NA NA	0.5		0.044	(x)	0.5	MCL
87-86-5	Pentachlorophenol	NA NA	1		0.041	(^)	1	MCL
85-01-8	Phenanthrene	NA NA	NA NA		180	(z)	180	RSL
108-95-2	Phenol	NA NA	NA NA	_	580	_/	580	RSL
7440-09-7	Potassium	EN	EN		EN		EN	INOL
129-00-0	Pyrene	NA	NA NA		12		12	RSL
7782-49-2	Selenium	50	50		10		50	DOEE
7440-22-4	Silver	50	NA NA		9.4		50	DOEE
7440-23-5	Sodium	EN	EN		EN		EN	2011
100-42-5	Styrene	NA	100		120		100	MCL
DFTEQ-HH	TCDD TEQ HH	NA	0.00003	(f)	0.00000012	(f)	0.00003	MCL
994-05-8	Tertiary-Amyl Methyl Ether	NA NA	NA NA	17	41	(ac)	41	rsl
127-18-4	Tetrachloroethylene	5	5		4.1	\/	5	DOEE
7440-28-0	Thallium	NA	2		0.02		2	MCL
108-88-3	Toluene	1000	1000		110		1000	DOEE
8001-35-2	Toxaphene	5	3		0.071		3	MCL
156-60-5	trans-1,2-Dichloroethene	100	100		36		100	DOEE
10061-02-6	trans-1,3-Dichloropropene	NA NA	NA		0.47	(m)	0.47	RSL
5103-74-2	trans-Chlordane	NA NA	2		0.02	(I)	2	MCL
79-01-6	Trichloroethene	5	5		0.02	(')	5	DOEE
75-69-4	Trichlorofluoromethane	NA	NA		520		520	RSL

Benning Road Facilty RI Report

Table 4-41

Groundwater Project Screening Levels for Human Health Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

		DOEE Primary Drinking Water Standard (a)	MCL (b)	Tapwater RSL (c)	Selected P Screening Leve	•
CAS Number	Chemical	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
75-01-4	Vinyl Chloride	2	2	0.019	2	DOEE
1330-20-7	Xylenes (total)	10000	10000	19	10000	DOEE
7440-66-6	Zinc	NA	NA	600	600	RSL

Notes:

CAS - Chemical Abstracts Service.

DOEE - District Department of Energy and Environment.

EN - Essential Nutrient.

MCL - Maximum Contaminant Level.

NA - Not Available from this source.

PSL - Project Screening Level.

RSL - Regional Screening Level.

USEPA - United States Environmental Protection Agency.

(a) DOEE, Title 21 of the District of Columbia Municipal Regulations, Chapter 11, Water Quality Standards. Rule 21-1155.

Groundwater Standards. Effective March 4,1994.

http://www.dcregs.dc.gov/Gateway/RuleHome.aspx?RuleNumber=21-1155

(b) National Primary Drinking Water Regulations. Maximum Contaminant Level (MCL). Accessed September 2017. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations

(c) USEPA Regional Screening Level Table. (Target Risk =1E-06; Target Hazard Quotient=0.1). May 2018. Value for tapwater. https://www.epa.gov/risk/regional-screening-levels-rsls

- (d) Selected screening level is the lower of the DOEE and the MCL, where available. Where neither is available, the tapwater RSL is selected.
- (e) Value for total trihalomethanes. Applies to the sum of concentrations of bromodichloromethane, bromoform, dibromochloromethane, and chloroform.
- (f) Value for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD).
- (g) Value for 1,4-dichlororobenzene.
- (h) Value for phenol.
- (i) Value for 4-nitroaniline.
- (j) Value for acenaphthene
- (k) Value for pyrene.
- (I) Value for chlordane.
- (m) Value for 1,3-dichloropropene.
- (n) Value for mercuric chloride.
- (o) Value for alpha-BHC.
- (p) Value for total petroleum hydrocarbons (aliphatic medium). THQ of 1 used to account for uncertainty in toxicity data.
- (g) Value for diethylphthalate.
- (r) Value for endosulfan.
- (s) Value for endrin.
- (t) Value for total petroleum hydrocarbons (aromatic low).
- (u) Value for m-xylenes.
- (v) Value for cyclohexane.
- (w) Value for total petroleum hydrocarbons (aliphatic high).
- (x) Value for polychlorinated biphenyls, low risk.
- (y) Value for benzo(a)pyrene.
- (z) Value for anthracene.
- (aa) Value for fluorene.
- (ab) Value for MTBE.
- (ac) Value for isopropanol.

		DOEE Class D Surface Water Criteria (a)	NRWQC, Human Health, Organism only (b)	Tapwater RSL (c)	Selected Hun Project Scree (PSL)	ning Level
CAS Number	Chemical	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
71-55-6	1,1,1-Trichloroethane	NA NA	200000	800	200000	NRWQC
79-34-5	1,1,2,2-Tetrachloroethane	4	3	0.076	4	DOEE
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	NA	NA	1000	1000	RSL
79-00-5	1,1,2-Trichloroethane	16	8.9	0.041	16	DOEE
92-52-4	1,1'-Biphenyl	NA	NA	0.083	0.083	RSL
75-34-3	1,1-Dichloroethane	NA	NA	2.8	2.8	RSL
75-35-4	1,1-Dichloroethene	7100	20000	28	7100	DOEE
87-61-6	1,2,3-Trichlorobenzene	NA	NA	0.7	0.7	RSL
95-94-3	1,2,4,5-Tetrachlorobenzene	1.1	0.03	0.17	1.1	DOEE
120-82-1	1,2,4-Trichlorobenzene	70	0.076	0.4	70	DOEE
96-12-8	1,2-Dibromo-3-chloropropane	NA	NA	0.00033	0.00033	RSL
106-93-4	1,2-Dibromoethane	NA	NA	0.0075	0.0075	RSL
95-50-1	1,2-Dichlorobenzene	1300	3000	30	1300	DOEE
107-06-2	1,2-Dichloroethane	37	650	0.17	37	DOEE
78-87-5	1,2-Dichloropropane	15	31	0.82	15	DOEE
541-73-1	1,3-Dichlorobenzene	960	10	0.48 (g	960	DOEE
106-46-7	1,4-Dichlorobenzene	190	900	0.48	190	DOEE
123-91-1	1,4-Dioxane	NA	NA	0.46	0.46	RSL
90-12-0	1-Methylnaphthalene	NA	NA	1.1	1.1	RSL
108-60-1	2,2'-oxybis(1-Chloropropane)	65000	4000	71	65000	DOEE
58-90-2	2,3,4,6-Tetrachlorophenol	NA	NA	24	24	RSL
1746-01-6	2,3,7,8-TCDD	0.000000051	5.1E-09	0.00000012	0.000000051	DOEE
DFTEQ-HH	2,3,7,8-TCDD-TEQ	0.000000051 (z)	5.1E-09 (z)	0.00000012 (z	0.00000051	DOEE
95-95-4	2,4,5-Trichlorophenol	3600	600	120	3600	DOEE
88-06-2	2,4,6-Trichlorophenol	2.4	2.8	1.2	2.4	DOEE
120-83-2	2,4-Dichlorophenol	290	60	4.6	290	DOEE
105-67-9	2,4-Dimethylphenol	850	3000	36	850	DOEE
51-28-5	2,4-Dinitrophenol	5300	300	3.9	5300	DOEE
121-14-2	2,4-Dinitrotoluene	3.4	1.7	0.24	3.4	DOEE
606-20-2	2,6-Dinitrotoluene	NA	NA	0.049	0.049	RSL
78-93-3	2-Butanone	NA	NA	560	560	RSL
91-58-7	2-Chloronaphthalene	1600	1000	75	1600	DOEE
95-57-8	2-Chlorophenol	150	800	9.1	150	DOEE
591-78-6	2-Hexanone	NA	NA	3.8	3.8	RSL
91-57-6	2-Methylnaphthalene	NA	NA	3.6	3.6	RSL
95-48-7	2-Methylphenol	NA	NA	93	93	RSL
88-74-4	2-Nitroaniline	NA	NA	19	19	RSL
88-75-5	2-Nitrophenol	NA	NA	580 (h	580	RSL
91-94-1	3,3'-Dichlorobenzidine	0.028	0.15	0.13	0.028	DOEE
99-09-2	3-Nitroaniline	NA	NA	3.8 (i)	3.8	RSL
72-54-8	4,4'-DDD	0.00031	0.00012	0.0063	0.00031	DOEE
72-55-9	4,4'-DDE	0.00022	0.000018	0.046	0.00022	DOEE
50-29-3	4,4'-DDT	0.00022	0.00003	0.23	0.00022	DOEE
534-52-1	4,6-Dinitro-2-methylphenol	280	30	0.15	280	DOEE
101-55-3	4-Bromophenyl-phenylether	NA	NA	NA	NA	
59-50-7	4-Chloro-3-methylphenol	NA	2000	140	2000	NRWQC
106-47-8	4-Chloroaniline	NA	NA	0.37	0.37	RSL
7005-72-3	4-Chlorophenyl-phenylether	NA	NA	NA	NA	
108-10-1	4-Methyl-2-pentanone	NA	NA	630	630	RSL
106-44-5	4-Methylphenol	NA	NA	190	190	RSL
100-01-6	4-Nitroaniline	NA	NA	3.8	3.8	RSL
100-02-7	4-Nitrophenol	NA	NA	580 (h		RSL
83-32-9	Acenaphthene	990	90	53	990	DOEE
208-96-8	Acenaphthylene	NA	NA	53 (j)		RSL
67-64-1	Acetone	NA	NA	1400	1400	RSL
98-86-2	Acetophenone	NA	NA	190	190	RSL
309-00-2	Aldrin	0.00005	0.00000077	0.00092	0.00005	DOEE
319-84-6	alpha-BHC	0.0049	0.00039	0.0072	0.0049	DOEE
7429-90-5	Aluminum	NA	NA	2000	2000	RSL

		DOEE Class D Surface Water Criteria (a)	Health,	C, Human Organism ly (b)	l	Tapwater RSI	-	Selected Hu Project Scre (PSL	ening Level
CAS Number	Chemical	(ug/L)	(u	g/L)		(ug/L)		(ug/L)	
120-12-7	Anthracene	40000	4	100		180		40000	DOEE
7440-36-0	Antimony	640	6	640		0.78		640	DOEE
7440-38-2	Arsenic	0.14	0	.14		0.052		0.14	DOEE
1912-24-9	Atrazine	NA	ı	NA		0.3		0.3	RSL
BAP	BaP-TE	0.018	0.0	0013		0.025		0.018	DOEE
7440-39-3	Barium	NA	ı	NA		380		380	RSL
100-52-7	Benzaldehyde	NA	ı	NA		19		19	RSL
71-43-2	Benzene	51		16		0.46		51	DOEE
56-55-3	Benzo(a)anthracene	0.018	0.0	0013		0.03		0.018	DOEE
50-32-8	Benzo(a)pyrene	0.018	0.0	0013		0.025		0.018	DOEE
205-99-2	Benzo(b)fluoranthene	0.018	0.0	0013		0.25		0.018	DOEE
191-24-2	Benzo(g,h,i)perylene	NA	1	NA		12	(k)	12	RSL
207-08-9	Benzo(k)fluoranthene	0.018	0.	013		2.5		0.018	DOEE
65-85-0	Benzoic Acid	NA	1	NA		7500		7500	RSL
7440-41-7	Beryllium	NA	1	NA		2.5		2.5	RSL
319-85-7	beta-BHC	0.017	0.	014		0.025		0.017	DOEE
111-91-1	bis-(2-chloroethoxy)methane	NA		NA A		5.9		5.9	RSL
111-44-4	bis-(2-Chloroethyl)ether	0.53		2.2		0.014		0.53	DOEE
117-81-7	bis-(2-Ethylhexyl)phthalate	2.2		.37		5.6		2.2	DOEE
74-97-5	Bromochloromethane	NA		NA A		8.3		8.3	RSL
75-27-4	Bromodichloromethane	17		27		0.13		17	DOEE
75-25-2	Bromoform	140		20		3.3		140	DOEE
74-83-9	Bromomethane	1500		0000		0.75		1500	DOEE
75-65-0	Butyl alcohol, tert-	NA		VA.		14	(ac)	14	RSL
85-68-7	Butylbenzylphthalate	1900	(0.1		16	(/	1900	DOEE
7440-43-9	Cadmium	NA		NA .		0.92		0.92	RSL
7440-70-2	Calcium	EN		ΞN		EN		EN	
105-60-2	Caprolactam	NA		NA		990		990	RSL
86-74-8	Carbazole	NA	1	NA		29	(aa)	29	RSL
75-15-0	Carbon Disulfide	NA	1	NA		81	()	81	RSL
56-23-5	Carbon Tetrachloride	1.6		5		0.46		1.6	DOEE
108-90-7	Chlorobenzene	1600	8	300		7.8		1600	DOEE
75-00-3	Chloroethane	NA		VA.		2100		2100	RSL
67-66-3	Chloroform	470	2	000		0.22		470	DOEE
74-87-3	Chloromethane	NA	ı	NA		19		19	RSL
18540-29-9	Chromium, hexavalent	NA	ı	NA		0.035		0.035	RSL
7440-47-3	Chromium, total/trivalent	NA		NA		2200		2200	RSL
218-01-9	Chrysene	0.018		.13		25		0.018	DOEE
156-59-2	cis-1,2-Dichloroethylene	10000	(e) 4	000	(e)	3.6		10000	DOEE
10061-01-5	cis-1,3-Dichloropropene		,	12	(f)	0.47	(f)	21	DOEE
5103-71-9	cis-Chlordane	0.00081	()	0032	` '	0.02	(I)	0.00081	DOEE
7440-48-4	Cobalt	NA		NA		0.6	\ /	0.6	RSL
7440-50-8	Copper	NA		NA AV		80		80	RSL
57-12-5	Cyanide	NA		100		0.15		400	NRWQC
110-82-7	Cyclohexane	NA		NA A		1300		1300	RSL
319-86-8	delta-BHC	NA		NA .		0.0072	(m)	0.0072	RSL
53-70-3	Dibenzo(a,h)anthracene	0.018	-	0013		0.025	\/	0.018	DOEE
132-64-9	Dibenzofuran	NA NA	-	NA		0.79		0.79	RSL
132-65-0	Dibenzothiophene	NA NA		VA.		6.5		6.5	RSL
124-48-1	Dibromochloromethane	13		21		0.87		13	DOEE
75-71-8	Dichlorodifluoromethane	NA NA		VA		20		20	RSL
60-57-1	Dieldrin	0.000054		00012		0.0018		0.000054	DOEE
C10C20	Diesel Range Organics (C10-C20)	NA NA	-	VA		100	(n)	100	RSL
84-66-2	Diethylphthalate	44000		600		1500	\/	44000	DOEE
108-20-3	Diisopropyl ether	NA NA		NA		150		150	RSL
131-11-3	Dimethylphthalate	1100000		000		1500	(o)	1100000	DOEE
84-74-2	Di-n-butylphthalate	4500		30		90	\"	4500	DOEE
117-84-0	Di-n-octylphthalate	NA		NA		20		20	RSL
959-98-8	Endosulfan I	89		30		10	(p)	89	DOEE

		DOEE Class D Surface Water Criteria (a)	NRWQC, Human Health, Organism only (b)	Tapwater RSL (c)		Selected Hur Project Scree (PSL)	ning Level
CAS Number	Chemical	(ug/L)	(ug/L)	(ug/L)		(ug/L)	
33213-65-9	Endosulfan II	89	40	10	(p)	89	DOEE
1031-07-8	Endosulfan Sulfate	89	40	10	(p)	89	DOEE
72-20-8	Endrin	0.06	0.03	0.23	(1 /	0.06	DOEE
7421-93-4	Endrin aldehyde	0.3	1	0.23	(q)	0.3	DOEE
53494-70-5	Endrin ketone	NA	NA	0.23	(q)	0.23	RSL
100-41-4	Ethylbenzene	2100	130	1.5	(-1/	2100	DOEE
637-92-3	Ethyl-Tert-Butyl-Ether	NA	NA	NA		NA	
206-44-0	Fluoranthene	140	20	80		140	DOEE
86-73-7	Fluorene	5300	70	29		5300	DOEE
58-89-9	gamma-BHC (Lindane)	1.8	4.4	0.042		1.8	DOEE
8006-61-9	Gasoline Range Organics (C6-C10)	NA NA	NA NA	3.3	(r)	3.3	RSL
76-44-8	Heptachlor	0.000079	0.0000059	0.0014	(')	0.000079	DOEE
1024-57-3	Heptachlor Epoxide	0.000079	0.000039	0.0014		0.000079	DOEE
118-74-1	Hexachlorobenzene	0.00039	0.000032	0.0014		0.000039	DOEE
87-68-3	Hexachlorobutadiene	18	0.00079	0.0098		18	DOEE
77-47-4	Hexachlorocyclo-pentadiene Hexachlorocyclo-pentadiene	1100	4	0.14		1100	
	, · · · · · · · · · · · · · · · · · · ·						DOEE
67-72-1	Hexachloroethane	3.3	0.1	0.33		3.3	DOEE
193-39-5	Indeno(1,2,3-cd)pyrene	0.018	0.0013	0.25		0.018	DOEE
7439-89-6	Iron	EN	EN	1400		EN	D.0==
78-59-1	Isophorone	960	1800	78		960	DOEE
98-82-8	Isopropylbenzene	NA	NA	45		45	RSL
7439-92-1	Lead	NA	NA	15		15	RSL
XYLMP	m, p-Xylene	NA	NA	19	(s)	19	RSL
7439-95-4	Magnesium	EN	EN	EN		EN	
7439-96-5	Manganese	100	100	43		100	DOEE
7439-97-6	Mercury	0.15	NA	0.57	(t)	0.15	DOEE
72-43-5	Methoxychlor	NA	0.02	3.7		0.02	NRWQC
79-20-9	Methyl Acetate	NA	NA	2000		2000	RSL
1634-04-4	Methyl tert-Butyl Ether (MTBE)	NA	NA	14		14	RSL
108-87-2	Methylcyclohexane	NA	NA	1300	(u)	1300	RSL
75-09-2	Methylene Chloride	590	1000	11		590	DOEE
91-20-3	Naphthalene	NA	NA	0.17		0.17	RSL
7440-02-0	Nickel	4600	4600	39		4600	DOEE
98-95-3	Nitrobenzene	690	600	0.14		690	DOEE
621-64-7	N-Nitroso-di-n-propylamine	0.51	0.51	0.011		0.51	DOEE
86-30-6	N-Nitrosodiphenylamine	6	6	12		6	DOEE
111-84-2	Nonane	NA	NA	0.53		0.53	RSL
C20C36	Oil Range Organics (C20-C36)	NA	NA	6000	(v)	6000	RSL
95-47-6	o-Xylene	NA	NA	19	(- /	19	RSL
TOT-PCB-ARO-C	PCB, Total Aroclors (AECOM Calc)	0.000064	0.000064	0.044	(w)	0.000064	DOEE
TOT-PCB-ARO	PCB, Total Aroclors (Lab provided)	0.000064	0.000064	0.044	(w)	0.000064	DOEE
87-86-5	Pentachlorophenol	3	0.04	0.041	(**)	3	DOEE
85-01-8	Phenanthrene	NA NA	NA	180	(x)	180	RSL
108-95-2	Phenol	860000	300000	580	(^/	860000	DOEE
7440-09-7	Potassium	EN	EN	EN		EN	DOLL
				+			DOEE
129-00-0	Pyrene	4000	30	12		4000	
7782-49-2	Selenium	4200	4200 NA	10		4200	DOEE
7440-22-4	Silver	65000	NA EN	9.4		65000	DOEE
7440-23-5	Sodium	EN	EN	EN		EN	DO!
100-42-5	Styrene	NA	NA	120	,	120	RSL
994-05-8	Tertiary-Amyl Methyl Ether	NA	NA	41	(ab)	41	RSL
127-18-4	Tetrachloroethylene	3.3	29	4.1		3.3	DOEE
7440-28-0	Thallium	0.47	0.47	0.02		0.47	DOEE
108-88-3	Toluene	15000	520	110		15000	DOEE
1336-36-3	Total PCBs	0.000064	0.000064	0.044	(w)	0.000064	DOEE
8001-35-2	Toxaphene	0.00028	0.00071	0.071		0.00028	DOEE
156-60-5	trans-1,2-Dichloroethene	10000	4000	36		10000	DOEE
10061-02-6	trans-1,3-Dichloropropene	21 (1	12 (1	f) 0.47	(f)	21	DOEE
5103-74-2	trans-Chlordane	0.00081	0.00032	0.02	(I)	0.00081	DOEE

Table 4-42

Surface Water Project Screening Levels for Human Health Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

		DOEE Class D Surface Water Criteria (a)	NRWQC, Human Health, Organism only (b)	Tapwater RSL (c)	Selected Hun Project Scree (PSL)	ning Level
CAS Number	Chemical	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
79-01-6	Trichloroethene	30	7	0.28	30	DOEE
75-69-4	Trichlorofluoromethane	NA	NA	520	520	RSL
7440-62-2	Vanadium	NA	NA	8.6	8.6	RSL
75-01-4	Vinyl Chloride	2.4	1.6	0.019	2.4	DOEE
1330-20-7	Xylenes (total)	NA	NA	19	19	RSL
7440-66-6	Zinc	26000	26000	600	26000	DOEE

Notes:

CAS - Chemical Abstracts Service.

DOEE - District Department of Energy and Environment.

EN - Essential Nutrient.

NA - Not Available from this source.

NRWQC - National Recommended Water Quality Criteria.

RSL - Regional Screening Level.

USEPA - United States Environmental Protection Agency.

- (a) DOEE, Title 21 of the District of Columbia Municipal Regulations, Chapter 11, Water Quality Standards. Rule 21-1104, Standards. Effective 11/1/2013. https://www.dcregs.dc.gov/Common/DCMR/SectionList.aspx?SectionNumber=21-1104
- (b) USEPA, National Recommended Water Quality Criteria for Priority Pollutants. Value for Human Health for the consumption of organisms. Accessed 8/2018. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table.
- (c) USEPA Regional Screening Level Table. (Target Risk =1E-06; Target Hazard Quotient=0.1). November 2018. Value for tapwater. https://www.epa.gov/risk/regional-screening-levels-rsls
- (d) Selected screening level is the lower of the DOEE criteria, where available. If a DOEE criteria is not available, the NRWQC is used. Where neither is available, the tapwater RSL is selected.
- (e) Value for trans-1,2-Dichloroethene.
- (f) Value for 1,3-dichloropropene.
- (g) Value for 1,4-dichlororobenzene.
- (h) Value for phenol.
- (i) Value for 4-nitroaniline.
- (j) Value for acenaphthene
- (k) Value for pyrene.
- (I) Value for chlordane.
- (m) Value for alpha-BHC.
- (n) Value for total petroleum hydrocarbons (aliphatic medium). THQ of 1 used to account for uncertainty in toxicity data.
- (o) Value for diethylphthalate.
- (p) Value for endosulfan.
- (q) Value for endrin.
- (r) Value for total petroleum hydrocarbons (aromatic low).
- (s) Value for m-xylenes.
- (t) Value for mercuric chloride.
- (u) Value for cyclohexane.
- (v) Value for total petroleum hydrocarbons (aliphatic high).
- (w) Value for polychlorinated biphenyls, low risk.
- (x) Value for anthracene.
- (y) Value for benzo(a)pyrene.
- (z) Value for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD).
- (aa) Value for fluorene.
- (ab) Value for isopropanol.
- (ac) Value for methyl tert-Butyl Ether (MTBE).

	1	
Detected Chemical	Selected Project Screening Level - Chronic ESV (a)	Chronic ESV Source
INORGANICS - DISSOLVED PHASE	Level - Cilionic ESV (a)	Chionic ESV Source
Aluminum	87	USEPA, 2006
Antimony	30	USEPA, 2006
Arsenic	150	DOH, 2014
Barium	4	USEPA, 2006
Beryllium	0.66	USEPA, 2006
Cadmium		b) DOH, 2014
Calcium	116000	USEPA, 2006
Chromium		c) DOH, 2014
Cobalt	23	USEPA, 2006
Copper		b) DOH, 2014
Iron	1000	DOH, 2014
Lead		b) DOH, 2014
Magnesium	82000	USEPA, 2006
Manganese	120	USEPA, 2006
Mercury	0.65	DOH, 2014
Nickel		b) DOH, 2014
Potassium	53000	USEPA, 2006
Selenium	5	DOH, 2014
Silver	-	b) DOH, 2014
Sodium	680000	USEPA, 2006
Thallium	NV	
Vanadium	20	USEPA, 2006
Zinc		b) DOH, 2014
INORGANICS - TOTAL RECOVERABLE PHASE	,	7 2011, 2011
Iron	300	USEPA, 2006
Mercury	0.77	DOH, 2014
Selenium	5	DOH, 2014
Thallium	0.8	USEPA, 2006
PESTICIDES	0.0	002.71, 2000
4,4'-DDD	0.001	DOH, 2014
4,4'-DDE	0.001	DOH, 2014
4,4'-DDT	0.001	DOH, 2014
Aldrin	3	USEPA, 2006
alpha-BHC	NV	USEPA, 2006
alpha-Chlordane	0.0022	USEPA, 2006
beta-BHC	2.2	USEPA, 2006
delta-BHC	141	USEPA, 2006
Dieldrin	0.056	USEPA, 2006
Endosulfan	0.056	DOH. 2014
Endosulfan II	0.056	DOH, 2014
Endosulfan sulfate	0.056	DOH, 2014
Endrin	0.036	USEPA, 2006
Endrin aldehyde	0.15	Buchman, 2006
Endrin ketone	0.036	USEPA, 2006
gamma-BHC (Lindane)	NV	USEPA, 2006
gamma-Chlordane	0.0022	USEPA, 2006
Heptachlor	0.0038	DOH, 2014
Heptachlor epoxide	0.0038	DOH, 2014
Methoxychlor	0.03	DOH, 2014
Toxaphene	0.0002	DOH, 2014
POLYCHLORINATED BIPHENYLS		•
Aroclor-1016	0.014	DOH, 2014
Aroclor-1221	0.014	DOH, 2014
Aroclor-1232	0.014	DOH, 2014
Aroclor-1242	0.014	DOH, 2014
Aroclor-1248	0.014	DOH, 2014
Aroclor-1254	0.014	DOH, 2014
Aroclor-1260	0.014	DOH, 2014
Aroclor-1262	0.014	DOH, 2014
Aroclor-1268	0.014	DOH, 2014
· · · · · · · · · · · · · · · · · · ·	0.014	DOH, 2014

	Selected Project Screening	
Detected Chemical	Level - Chronic ESV (a)	Chronic ESV Source
SEMI-VOLATILE ORGANIC COMPOUNDS		•
1,1'-Biphenyl	14	USEPA, 2006
1,2,4,5-Tetrachlorobenzene	3	USEPA, 2006
2,2'-Oxybis(1-choloropropane)	NV	DOH, 2014
2,3,4,6-Tetrachlorophenol	1.2	USEPA, 2006
2,4,5-Trichlorophenol	63	Buchman, 2006
2,4,6-Trichlorophenol	4.9	USEPA, 2006
2,4-Dichlorophenol	11	USEPA, 2006
2,4-Dimethylphenol	200	DOH, 2014
2,4-Dinitrophenol	19	Buchman, 2006
2,4-Dinitrotoluene	33	DOH, 2014
2,6-Dinitrotoluene	81	USEPA, 2006
2-Chloronaphthalene	200	DOH, 2014
2-Chlorophenol	100	DOH, 2014
2-Methylnaphthalene	4.7	USEPA, 2006
2-Methylphenol	13	USEPA, 2006
2-Nitronhand	NV 1020	LICEDA 2000
2-Nitrophenol	1920	USEPA, 2006
3,3'-dicholorobenzidine 3-Nitroaniline	10 NV	DOH, 2014
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	NV 1.5	USEPA, 2006
4-Chloro-3-methylphenol	NV	USEPA, 2006
4-Chloroaniline	232	USEPA, 2006
4-Chlorophenyl-phenyl ether	NV	03EFA, 2000
4-Methylphenol	543	USEPA, 2006
4-Nitroaniline	NV	03L1 A, 2000
4-Nitrophenol	60	USEPA, 2006
Acetophenone	NV	OGE: 71, 2000
Atrazine	NV	USEPA, 2006
Benzaldehyde	NV	002.74, 2000
Bis(2-chloroethoxy) methane	11000	Buchman, 2006
Bis(2-chloroethyl) ether	NV	, , , , , , , , , , , , , , , , , , , ,
Bis(2-ethylhexyl) phthalate	16	USEPA, 2006
Butylbenzylphthalate	19	USEPA, 2006
Caprolactam	NV	
Carbazole	NV	
Dibenzofuran	3.7	USEPA, 2006
Diethylphthalate	210	USEPA, 2006
Dimethylphthalate	3	Buchman, 2006
Di-n-butylphthalate	19	USEPA, 2006
Di-n-octylphthalate	22	USEPA, 2006
Hexachlorobenzene	0.0003	USEPA, 2006
Hexachlorobutadiene	10	DOH, 2014
Hexachlorocyclopentadiene	0.5	DOH, 2014
Hexachloroethane	12	USEPA, 2006
Isophorone	1000	DOH, 2014
Nitrobenzene	1000	DOH, 2014
N-Nitroso-di-n propylamine	NV 210	LISEDA 2006
N-Nitrosodiphenylamine	210	USEPA, 2006
Pentachlorophenol Phenol	5.10	DOH, 2014 USEPA, 2006
Acenaphthene	50	DOH, 2014
Acenaphthylene	4840	Buchman, 2006
Anthracene	0.012	USEPA, 2006
Benzo(a)anthracene	NV	USEPA, 2006
Benzo(a)pyrene	NV	USEPA, 2006
Benzo(b)fluoranthene	9.07	Buchman, 2006
Benzo(g,h,i) perylene	7.64	Buchman, 2006
Benzo(k)fluoranthene	0.015	USEPA, 2006
Chrysene	0.015	USEPA, 2006
Dibenzo(a,h) Anthracene	0.015	USEPA, 2006

Detected Chemical	Selected Project Screening Level - Chronic ESV (a)	Chronic ESV Source
Fluoranthene	400	DOH, 2014
Fluorene	3	USEPA, 2006
Indeno(1,2,3,-cd) pyrene	4.31	Buchman, 2006
Naphthalene	600	DOH, 2014
Phenanthrene	0.4	USEPA, 2006
Pyrene	0.025	USEPA, 2006
Total PAHs	0.012	00LI A, 2000
Total LMW PAHs	0.012	
Total HMW PAHs	0.015	
VOLATILE ORGANIC COMPOUNDS	0.013	
1.1.1-Trichloroethane	11	USEPA, 2006
1,1,2,2-Tetrachloroethane	610	USEPA, 2006
1,1,2-Trichloro-1,2,2-trifluoroethane	NV	03L1 A, 2000
1.1.2-Trichloroethane	1200	USEPA, 2006
1.1-Dichloroethane	47	USEPA, 2006
1.1-Dichloroethene	25	USEPA, 2006
1,2,3-Trichlorobenzene	NV	JOLI A, 2000
1,2,4-Trichlorobenzene	NV	
1,2,4-Trichloropenzene 1,2-Dibromo-3-chloropropane	NV NV	
1,2-Dibromo-3-chioropropane 1,2-Dibromoethane	NV NV	
1,2-Dibromoetnane 1,2-Dichlorobenzene	200	DOH, 2014
1.2-Dichloroethane	100	USEPA, 2006
,	2000	
1,2-Dichloropropane 1.3-Dichlorobenzene	2000	DOH, 2014
1,4-Dichlorobenzene	200	DOH, 2014 DOH, 2014
1,4-Dichlorobenzene	NV	DOH, 2014
1,1 = 12112112		LIOEDA 2000
2-Butanone	14000 99	USEPA, 2006
2-Hexanone		USEPA, 2006
4-Methyl-2-pentanone	170	USEPA, 2006
Acetone	1500	USEPA, 2006
Benzene Bromochloromethane	1000 NV	DOH, 2014
Bromodichloromethane	NV	LIOEDA 2000
Bromoform	320 NV	USEPA, 2006
Bromomethane	NV	LIOEDA 2000
Carbon disulfide	0.92	USEPA, 2006
Carbon tetrachloride Chlorobenzene	1000 25	DOH, 2014 DOH. 2014
Chloroethane	50	
Chloroform	3000	DOH, 2014
		DOH, 2014
Chloromethane	NV NV	
cis-1,2-Dichloroethene	NV	
cis-1,3-Dichloropropene	NV NV	
Cyclohexane	NV	
Dibromochloromethane	NV NV	
Dichlorodifluoromethane Ethylbonzono	NV 40	DOH 2014
Ethylbenzene Isopropylbenzene	=	DOH, 2014
	2.6 NV	USEPA, 2006
Methyl text butyl other	11070	LISEDA 2006
Methylogolohovana	NV	USEPA, 2006
Methylogochlorido	NV NV	LISEDA 2006
Methylene chloride	350	USEPA, 2006 Buchman, 2006
o-Xylene Styrene	NV	USEPA, 2006
Tetrachloroethene	800	DOH, 2014
Toluene	600	DOH, 2014 DOH, 2014
trans-1,2-Dichloroethene	970	USEPA, 2006
trans-1,3-Dichloropropene	0.055	Buchman, 2006
Trichloroethene	21	Buchman, 2006 Buchman, 2008
Trichlorofluoromethane	11000	Buchman, 2008 Buchman, 2006
Vinyl chloride	930	USEPA, 2006

	Selected Project Screening	
Detected Chemical	Level - Chronic ESV (a)	Chronic ESV Source
DIOXIN/FURANS		
TCDD TEQ Fish	0.00001	Buchman, 2008
2,3,7,8-TCDD	0.00001	Buchman, 2008
1,2,3,7,8-PeCDD	NV	
1,2,3,6,7,8-HxCDD	0.00001	Buchman, 2008
1,2,3,4,7,8-HxCDD	0.00001	Buchman, 2008
1,2,3,7,8,9-HxCDD	0.00001	Buchman, 2008
1,2,3,4,6,7,8-HpCDD	0.00001	Buchman, 2008
OCDD	0.00001	Buchman, 2008
2,3,7,8-TCDF	0.00001	Buchman, 2008
1,2,3,7,8-PeCDF	NV	
2,3,4,7,8-PeCDF	0.00001	Buchman, 2008
1,2,3,6,7,8-HxCDF	0.00001	Buchman, 2008
1,2,3,7,8,9-HxCDF	0.00001	Buchman, 2008
1,2,3,4,7,8-HxCDF	0.00001	Buchman, 2008
2,3,4,6,7,8-HxCDF	0.00001	Buchman, 2008
1,2,3,4,6,7,8-HpCDF	0.00001	Buchman, 2008
1,2,3,4,7,8,9-HpCDF	0.00001	Buchman, 2008
OCDF	0.00001	Buchman, 2008

Notes:

All units are in micrograms per liter (µg/L).

Chronic ESV - Chronic Ecological Screening Value.

NV - No value.

- (a) Chronic ESVs selected based on a hierarchy of water quality standards and benchmarks from DDOE WQS Criteria (DOH, 2014), USEPA Region 3 freshwater screening values (USEPA, 2006), and literature values (Suter and Tsao, 1996; Buchman, 2008).
- (b) Hardness dependent criteria. Value presented has been adjusted by a mean hardness of
- 290 mg/L as CaCO₃ for the Waterside Investigation Area.
- (c) Value for Hexavalant Chromium used.

	Selected Project Screening Level -			
Detected Chemical	Low Effect ESV (a)	Low Effect ESV Source		
INORGANICS		<u>I</u>		
Aluminum	25000	USEPA, 2018		
Antimony	2.0	USEPA, 2006		
Arsenic	5.9	Buchman, 2008		
Barium	0.7	Buchman, 2008		
Beryllium	NV			
Cadmium	0.583	Buchman, 2008		
Calcium	EN			
Chromium	26	Buchman, 2008		
Cobalt	50 31.6	USEPA, 2006 USEPA, 2006		
Copper Iron	20000	USEPA, 2006 USEPA, 2006		
Lead	31	Buchman, 2008		
Leau Magnesium	EN	Buchman, 2006		
Manganese	460	Buchman, 2008		
Mercury	0.174	Buchman, 2008		
Nickel	16	Buchman, 2008		
Potassium	EN EN			
Selenium	11	USEPA, 2018		
Silver	0.5	Buchman, 2008		
Sodium	EN			
Thallium	NV			
Vanadium	NV			
Zinc	98	Buchman, 2008		
PESTICIDES	•			
4,4'-DDD	0.00354	Buchman, 2008		
4,4'-DDE	0.00316	Buchman, 2008		
4,4'-DDT	0.00119	Buchman, 2008		
Aldrin	0.002	Buchman, 2008		
alpha-BHC	0.006	Buchman, 2008		
alpha-Chlordane	0.00003 (b)	Buchman, 2008		
beta-BHC	0.005	Buchman, 2008		
delta-BHC	0.01 (b)	Buchman, 2008		
Dieldrin	0.0019	Buchman, 2008		
Endosulfan	0.0029	USEPA, 2006		
Endosulfan II	0.014	USEPA, 2006		
Endosulfan sulfate	0.0054	USEPA, 2006		
Endrin	0.00222	Buchman, 2008		
Endrin aldehyde	0.00222 (c)	Buchman, 2008		
Endrin ketone	0.00222 (c)	Buchman, 2008		
gamma-BHC (Lindane) gamma-Chlordane	0.00237 0.00003 (b)	Buchman, 2008 Buchman, 2008		
gamma-Chlordane Heptachlor	0.00003 (b) 0.01	Buchman, 2008		
Heptachlor epoxide	0.0006	Buchman, 2008		
Methoxychlor	0.0187	USEPA, 2006		
Toxaphene	0.0001	Buchman, 2008		
POLYCHLORINATED BIPHENYLS	0.0001	= 0.00		
Aroclor-1016	0.026 (c)	Buchman, 2008		
Aroclor-1221	0.026 (c)	Buchman, 2008		
Aroclor-1232	0.026 (c)	Buchman, 2008		
Aroclor-1242	0.026 (c)	Buchman, 2008		
Aroclor-1248	0.026 (d)	Buchman, 2008		
Aroclor-1254	0.06	Buchman, 2008		
Aroclor-1260	0.026 (d)	Buchman, 2008		
Aroclor-1262	0.026 (c)	Buchman, 2008		
Aroclor-1268	0.026 (c)	Buchman, 2008		
Total PCBs	0.026	Buchman, 2008		
SEMI-VOLATILE ORGANIC COMPOUNDS				
1,1'-Biphenyl	1.22	USEPA, 2006		
1,2,4,5-Tetrachlorobenzene	0.01	Buchman, 2008		
2,2'-Oxybis(1-choloropropane)	NV			
2,3,4,6-Tetrachlorophenol	0.01	Buchman, 2008		

Detected Chemical	Selected Project Screening Level Low Effect ESV (a)	- Low Effect ESV Source
2,4,5-Trichlorophenol	0.01	Buchman, 2008
2,4,6-Trichlorophenol	0.01	Buchman, 2008
2,4-Dichlorophenol	0.01	Buchman, 2008
2,4-Dimethylphenol	0.029	USEPA, 2006
2,4-Dinitrophenol	0.00621	USEPA, 2003
2.4-Dinitrotoluene	0.0416	USEPA, 2006
2,6-Dinitrotoluene	0.0416 (f	
2-Chloronaphthalene	0.25	Buchman, 2008
2-Chlorophenol	0.055	Buchman, 2008
2-Methylnaphthalene	0.0202	USEPA, 2006
2-Methylphenol	0.0051 (d	· '
2-Nitroaniline	NV	,
2-Nitrophenol	0.0133 (e) USEPA, 2003
3,3'-dicholorobenzidine	0.127	USEPA, 2006
3-Nitroaniline	NV	002171, 2000
I,6-Dinitro-2-methylphenol	0.104	USEPA, 2003
I-Bromophenyl-phenylether	1.23	USEPA, 2006
I-Chloro-3-methylphenol	1.23	Buchman, 2008
I-Chloroaniline	0.0009	USEPA, 2018
I-Chlorophenyl-phenyl ether	NV	302, 2010
I-Methylphenol	0.0051	Buchman, 2008
I-Nitroaniline	NV	Buchman, 2000
4-Nitrophenol	0.0133	USEPA, 2003
Acenaphthene	0.00671	Buchman, 2008
Acenaphthylene	0.00587	Buchman, 2008
Acetophenone	NV	Buchman, 2000
Anthracene	0.01	Buchman, 2008
Atrazine	0.0002	Buchman, 2008
Benzaldehyde	0.059	USEPA, 2018
Benzo(a) pyrene	0.039	Buchman, 2008
Benzo(a) pyrene Benzo(a)anthracene	0.01572	Buchman, 2008
Benzo(b) fluoranthene	0.01372	USEPA, 2018
Benzo(g,h,i) perylene	0.19	Buchman, 2008
Benzo(k) fluoranthene	0.0272	Buchman, 2008
Bis(2-chloroethoxy) methane	0.0272 NV	Buchman, 2006
Bis(2-chloroethoxy) methane Bis(2-chloroethyl) ether	3.52	USEPA, 2003
Bis(2-ethylhexyl) phthalate	0.1	Buchman, 2008
Butylbenzylphthalate	0.1	Buchman, 2008
Caprolactam	NV	Buchman, 2000
Carbazole	0.069	USEPA, 2018
Chrysene	0.009	Buchman, 2008
Dibenzo(a,h) anthracene Dibenzofuran	0.0062 5.1	Buchman, 2008 Buchman, 2008
Diethylphthalate	0.53	Buchman, 2008
Dimethylphthalate	0.53	Buchman, 2008
, .		-
Di-n-butylphthalate Di-n-octylphthalate	0.44 (e	
	0.1 (b	,
Fluoranthene Fluorene	0.031	Buchman, 2008
	0.01	Buchman, 2008
Hexachlorobenzene	0.0014	Buchman, 2008
lexachlorobutadiene	0.027	USEPA, 2003
dexachlorocyclopentadiene	0.901	USEPA, 2003
dexachloroethane	1.027	USEPA, 2006
ndeno(1,2,3,-cd) pyrene	0.017	Buchman, 2008
sophorone	0.43	USEPA, 2003
Naphthalene	0.015	Buchman, 2008
Nitrobenzene	0.15	USEPA, 2003
N-Nitroso-di-n propylamine	NV	1
N-Nitrosodiphenylamine	2.68	USEPA, 2006
Pentachlorophenol	0.01	Buchman, 2008
Phenanthrene	0.019	Buchman, 2008
Phenol	0.048	Buchman, 2008
Pyrene	0.044	Buchman, 2008

Detected Chemical	Selected Project Screening Level - Low Effect ESV (a)	Low Effect ESV Source		
Total PAHs	0.26	Buchman, 2008		
Total LMW PAHs	0.076	Buchman, 2008		
Total HMW PAHs	0.193	Buchman, 2008		
OLATILE ORGANIC COMPOUNDS	•	•		
I,1,1-Trichloroethane	0.07	Buchman, 2008		
1,1,2,2-Tetrachloroethane	1.36	USEPA, 2006		
1,1,2-Trichloro-1,2,2-trifluoroethane	NV			
1,1,2-Trichloroethane	0.4	Buchman, 2008		
I,1-Dichloroethane	0.02	Buchman, 2008		
1,1-Dichloroethene	0.1	Buchman, 2008		
1,2,3-Trichlorobenzene	0.011	Buchman, 2008		
1,2,4-Trichlorobenzene	0.011	Buchman, 2008		
1,2-Dibromo-3-chloropropane	NV			
1,2-Dibromoethane	NV			
,2-Dichlorobenzene	0.03	Buchman, 2008		
I,2-Dichloroethane	0.02	Buchman, 2008		
l,2-Dichloropropane	0.002	Buchman, 2008		
,3-Dichlorobenzene	0.03	Buchman, 2008		
,4-Dichlorobenzene	0.03	Buchman, 2008		
I,4-Dioxane	0.119	USEPA, 2003		
2-Butanone	35 (b)	Buchman, 2008		
2-Hexanone	0.0582	USEPA, 2003		
I-Methyl-2-pentanone	0.0251	USEPA, 2003		
Acetone	0.065	USEPA, 2018		
Benzene	0.01	Buchman, 2008		
Bromochloromethane	NV	,		
Bromodichloromethane	NV			
Bromoform	75	Buchman, 2008		
Bromomethane	0.00137	USEPA, 2003		
Carbon disulfide	0.000851	USEPA, 2006		
Carbon tetrachloride	0.17	Buchman, 2008		
Chlorobenzene	0.03	Buchman, 2008		
Chloroethane	NV	,		
Chloroform	0.02 (b)	Buchman, 2008		
Chloromethane	NV	,		
cis-1,2-Dichloroethene	0.2	Buchman, 2008		
cis-1,3-Dichloropropene	NV			
Cyclohexane	NV			
Dibromochloromethane	NV			
Dichlorodifluoromethane	NV			
Ethylbenzene	0.03	Buchman, 2008		
sopropylbenzene	0.086	USEPA, 2006		
Methyl acetate	NV			
Methyl tert-butyl ether	100	Buchman, 2008		
Methylcyclohexane	NV	,		
Methylene chloride	0.018	Buchman, 2008		
p-Xylene	0.089	Buchman, 2008		
Styrene	0.2	Buchman, 2008		
Tetrachloroethene	0.002	Buchman, 2008		
Foluene	0.01	Buchman, 2008		
rans-1,2-Dichloroethene	0.2	Buchman, 2008		
rans-1,3-Dichloropropene	NV	_ 30a.i, 2000		
richlorofluoromethane	NV			
/inyl chloride	0.01	Buchman, 2008		
DIOXIN/FURANs	1 0.01	_ aoiman, 2000		
,2,3,4,6,7,8-HpCDD	NV			
,2,3,4,6,7,8-ПРСОБ ,2,3,4,6,7,8-НРСОБ	NV NV	1		
,2,3,4,7,8,9-HpCDF	NV NV	1		
,∠,∪,+,1,0,5-HPUDF	NV NV			
1 2 2 4 7 9 HyCDD	INV	Ī		
1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF	NV			

Table 4-44

Sediment Project Screening Levels for Ecological Risk Assessment Benning Road Facility RI/FS Project 3400 Benning Rd, N.E., Washington DC 20019

Detected Chemical	Selected Project Screening Level - Low Effect ESV (a)	Low Effect ESV Source
1,2,3,7,8,9-HxCDF	NV	
1,2,3,7,8-PeCDD	NV	
1,2,3,7,8-PeCDF	NV	
2,3,4,6,7,8-HxCDF	NV	
2,3,4,7,8-PeCDF	NV	
2,3,7,8-TCDD	NV	
2,3,7,8-TCDF	NV	
OCDD	NV	
OCDF	NV	

Notes:

All screening values reported in milligrams per kilogram (mg/kg).

EN - Essential nutrient.

NOAA - National Oceanic and Atmospheric Administration.

NV - No value identified.

OMOE - Ontario Ministry of Environment and Energy

TCDD TEQ - Tetrachlorodibenzo-p-dioxin Toxicity Equivalency Factor

USEPA - United States Environmental Protection Agency.

(a) Low effect ESVs selected based on a hierarchy of freshwater values from

NOAA SQuiRT tables (Buchman 2008), USEPA Region 3 freshwater sediment

screening values (USEPA 2006), USEPA Region 5 Ecological Screening Levels (USEPA 2003),

and USEPA Region 4 recommended ecological screening values (USEPA, 2018).

(b) Target standard from E.M.J Verbruggen, R. Posthumus, and A.P. van Wezel. 2001.

Ecotoxicological Serious Risk Concentrations for soil, sediment, and groundwater. Risk limits are typically divided by 100 to derive the Target value.

- (c) Value for endrin used due to structural similarities.
- (d) Value for Total PCBs used for individual Aroclors without screening values.
- (e) Upper Effects Thresholds (Buchman, 2008), based on median Study Area TOC (4.05%).
- (f) Screening value is not available. Value for Benzo(a) pyrene is used due to structural similarities.

Table 4-45 Hexavalent Chromium Evaluation Benning Road Facility RI/FS Project 3400 Benning Rd, NE Washington, DC 20019

				Total Chromi	um	Hexavalent Chr	Hexavalent Chromium		% Hexavalent Chromium	
Area	Location	Sample	Units	Result	Detect	Result	Detect	Including Non-	Excluding Non-	
Alea	Location	Sample	Ullits	Result	Flag	Result	Flag	Detects	Detects	
	KMY04	SUSKMY0400N	mg/kg	51	Υ	0.34	Υ	0.67%	0.67%	
	KMY05	SUSKMY0500N	mg/kg	41	Υ	1.20	N	2.93%		
Anacostia Park Property	KMY07	SUSKMY0700N	mg/kg	36	Υ	0.40	N	1.11%		
Anacostia i ark i roperty	KMY08	SUSKMY0800N	mg/kg	44	Υ	0.98	Υ	2.23%	2.23%	
	KMY12	SUSKMY1200N	mg/kg	40	Υ	0.62	Υ	1.55%	1.55%	
	KMY14	SUSKMY1400N	mg/kg	35	Υ	0.35	N	1.00%		
	SUS08-1D	SUS081D00N2	mg/kg	69	Υ	0.6	Υ	0.87%	0.87%	
	SUS08-1H	SUS081H00N2	mg/kg	42	Υ	0.25	Υ	0.60%	0.60%	
	SUS08-1H	SUS081H00R2	mg/kg	53	Υ	0.18	Υ	0.34%	0.34%	
	SUSDP08	SUS0800N2	mg/kg	27	Υ	0.36	N	1.33%		
Warehouse and	SUSDP08-1E	SUS081E00N2	mg/kg	160	Υ	0.38	N	0.24%		
Laydown Area	TA1C4	SUSTA1C400N2	mg/kg	120	Υ	2.60	N	2.17%		
Laydowii Alea	TA1C5	SUSTA1C500N2	mg/kg	160	Υ	3.50	N	2.19%	1	
	TA1E1	SUSTA1E100N2	mg/kg	18	Υ	0.43	N	2.39%		
	TA1E9	SUSTA1E900N2	mg/kg	11	Υ	0.32	N	2.91%		
	TA1F4	SUSTA1F400N2	mg/kg	22	Υ	0.42	N	1.91%		
	TA1G9	SUSTA1G900N2	mg/kg	18	Υ	0.36	N	2.00%		

Notes

Detect Flag: Y = Yes, Detected. N = No, Not Detected

Summary of % Hexavalent Chromium - Anacostia Park Property and Warehouse							
Statistic	Including Non- Detects	Excluding Non- Detects					
Minimum	0.24%	0.34%					
Maximum	2.93%	2.23%					
Mean	1.55%	1.0%					

Summary of % Hexavalent Chromium - Anacostia Park Property							
Only							
Statistic	Including Non-	Excluding Non-					
Statistic	Detects	Detects					
Minimum	0.67%	0.67%					
Maximum	2.93%	2.23%					
Mean	1.58%	1.5%					

Summary of % Hexavalent Chromium - Warehouse Only								
Statistic	Including Non-	Excluding Non-						
Statistic	Detects	Detects						
Minimum	0.24%	0.34%						
Maximum	2.91%	0.87%						
Mean	1.54%	0.60%						

Table 4-46
Ratios of Total PCBs as Congeners/PCBs as Aroclors
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC

							Chemical Name	PCBc, Total	PCBa, Total	Total PCBc/PCBa
							Analytic Method	EPA 1668C	EPA 8082A	
							Units	ng/g	ug/kg	ratio
Matrix	Location	Sample ID	start_	end_	x_coord	y_coord	Sample Date			
			depth	depth						
SO	KMY-DU01	SUSNPSMI0100N	0	1	1323505.3	449363.66	4/12/2017	110	31	3.55
SO	KMY-DU02	SUSNPSMI0200N	0	1	1323341.5	448717.63	4/12/2017	250	83	3.01
SO	KMY-DU03	SUSNPSMI0300N	0	1	1323559.2	448663.73	4/13/2017	110	54	2.04
SO	SOBACK18/ DPBACK13	SOBACK1800N	0	1	1321086.4	446369.96	4/5/2017	590	390	1.51
SO	SUSDP04	DPS04F02-05N	2	5	1324091.7	448808.97	1/25/2017	7100	4800	1.48
SO	SUSDP05	SUS0500N	0	1	1324087.9	449163.57	2/4/2013	9560	5700	1.68
SO	SUSDP05	DPS0515N	14.5	15.5	1324087.9	449163.57	5/21/2013	110	190	0.58
SO	SUSDP06	SUS0600N	0	1	1324259.2	448063.28	2/5/2013	4220	1900	2.22
SO	SUSDP08	SUS0800N	0	1	1324319.3	448910.93	2/5/2013	1240	840	1.48
SO	SUSDP08	DPS08F01N	1	2	1324319.3	448910.93	1/24/2017	790	970	0.81
SO	SUSDP08	DPS08F05-10N	5	10	1324319.3	448910.93	1/24/2017	45	140	0.32
SO	SUSDP10	SUS1000N	0.5	1	1324662.9	448784.82	2/5/2013	4710	1000	4.71
SO	SUSDP11	DPS11F01N	1	2	1324624.6	449239.72	1/25/2017	15000	11000	1.36
SO	SUSDP12	DPS12F02-05N	2	5	1324827.2	448435.68	1/26/2017	2000	1100	1.82
SO	SUSDP12	SUS1200N	0	1	1324827.2	448435.68	2/6/2013	5180	2900	1.79
SO	SUSDP15	DPS15F05-10N	5	10	1325219.5	448484.64	2/2/2017	580	160	3.63
SO	SUSDP15	DPS15F01N	1	2	1325219.5	448484.64	1/30/2017	1900	1300	1.46
SO	SUSDP15	DPS1510N	9.5	10.5	1325219.5	448484.64	6/6/2013	1180	1100	1.07
SO	SUSDP20	SUS2000N	0.42	1	1325651.5	448307.48	2/7/2013	6450	5100	1.26
SO	SUSDP21	DPS21F01N	1	2	1326039.4	447908.4	1/27/2017	1300	1000	1.30
SO	SUSDP21	SUS2100N	1	1.75	1326039.4	447908.4	2/7/2013	4840	7200	0.67
SO	SUSDP39	DPS39F01N	1	2	1324489.8	448470.19	1/25/2017	120	110	1.09
SO	SUSDP43	DPS43F05-10N	5	10	1324763	448548.99	1/30/2017	710	270	2.63
SO	SUSDP43	DPS43F02-05N	2	5	1324763	448548.99	1/26/2017	3300	1400	2.36
SO	SUSDP43	SUS43F00N	0	1	1324763	448548.99	1/26/2017	3300	2700	1.22
SO	SUSDP44	DPS44F01N	2.5	3.5	1324717.1	448871.86	1/27/2017	6800	4600	1.48
SO	SUSDP44	DPS4403N	2.5	3.5	1324717.1	448871.86	5/21/2013	2390	3100	0.77
SO	SUSDP48	DPS48F05-10N	5	10	1325216.8	448346.01	1/27/2017	290	230	1.26
SO	SUSDP48	SUS48F00N	0	1	1325216.8	448346.01	1/26/2017	1800	2000	0.90

Table 4-46
Ratios of Total PCBs as Congeners/PCBs as Aroclors
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC

							Chemical Name	PCBc, Total	PCBa, Total	Total PCBc/PCBa
							Analytic Method	EPA 1668C	EPA 8082A	
							Units	ng/g	ug/kg	ratio
Matrix	Location	Sample ID	start_	end_	x_coord	y_coord	Sample Date			
			depth	depth			•			
SE	SD013	SDR013N			1324412.9	449252.2	10/8/2013	677	960	0.71
SE	SDPEPR4	SDRPEPR4N			1325898.8	447966.5	10/8/2013	1320	780	1.69
SE	SDRF025074	SDRF025074N	0	1	1323364.8	445500.89	7/25/2017	370	33	11.21
SE	SDRF025074	SDRF025074R	0	1	1323364.8	445500.89	7/25/2017	55	31	1.77
SE	SDRF477827	SDRF477827N	0	1	1323268.1	446101.04	7/25/2017	0.69	0.77	0.90
SE	SED1.5B	SED1.5B00FN	0	1	1323208.9	447688.22	6/15/2017	410	230	1.78
SE	SED1.5C	SED1.5C00AN	0	0.33	1323332	447788.51	6/21/2017	180	87	2.07
SE	SED1.5C	SED1.5C00CN	0.67	1	1323332	447788.51	6/21/2017	390	180	2.17
SE	SED1.5C	SED1.5C01BN	1.33	1.67	1323332	447788.51	6/21/2017	370	180	2.06
SE	SED1.5C	SED1.5C03BN	3.33	3.67	1323332	447788.51	6/21/2017	800	360	2.22
SE	SED1.5C	SED1.5C04AN	4	4.33	1323332	447788.51	6/21/2017	890	550	1.62
SE	SED1C	SED1C07N	7	9	1323207.6	447452.22	11/7/2013	1640	770	2.13
SE	SED2.5B	SED2.5B05N	5	7	1323217.1	448285.96	11/7/2013	1110	1000	1.11
SE	SED2A	SED2A00N	0	0.5	1323069.4	447930.53	11/6/2013	294	230	1.28
SE	SED4C	SED4C04FN	4	5	1323146.1	448888.08	6/14/2017	500	160	3.13
SE	SED5B	SED5B00AN	0	0.33	1323266.7	449349.09	6/20/2017	240	180	1.33
SE	SED5B	SED5B01BN	1.33	1.67	1323266.7	449349.09	6/20/2017	150	85	1.76
SE	SED5B	SED5B03CN	3.67	4	1323266.7	449349.09	6/20/2017	55	45	1.22
SE	SED5C	SED5C00FN	0	1	1323337.1	449338.07	6/14/2017	730	490	1.49
SE	SED6.5D	SED6.5D00FN	0	1	1323798.2	449651.75	6/27/2017	5500	2800	1.96
SE	SED6.5E	SED6.5E00EN	0	0.33	1323969.8	449649.36	6/8/2017	760	250	3.04
SE	SED6.5E	SED6.5E01N	1	3	1323969.8	449649.36	11/25/2013	11000	1400	7.86
SE	SED6A	SED6A00EN	0	0.33	1323401.3	449707.18	6/8/2017	180	69	2.61
SE	SED6B	SED6B00EN	0	0.33	1323424.8	449687.44	6/8/2017	210	130	1.62
SE	SED7.5D	SED7.5D03N	3	5	1323906.9	449865.94	11/25/2013	1710	1000	1.71
SE	SED7.5E	SED7.5E00EN	0	0.33	1324043.6	449782.68	6/8/2017	1400	780	1.79
SE	SED7.5E	SED7.5E00N	0	0.5	1324043.6	449782.68	11/25/2013	11800	1900	6.21
SE	SED7D	SED7D00FN	0	1	1323814.3	449789.58	6/27/2017	6100	3900	1.56
SE	SED7D	SED7D04FN	4	5	1323814.3	449789.58	6/27/2017	1100	580	1.90

Table 4-46 Ratios of Total PCBs as Congeners/PCBs as Aroclors **Benning Road Facility RI/FS Project** 3400 Benning Road, NE Washington, DC

							Chemical Name	PCBc, Total	PCBa, Total	Total PCBc/PCBa
							Analytic Method	EPA 1668C	EPA 8082A	
							Units	ug/kg	ug/kg	ratio
Matrix	Location	Sample ID	start_	end_	x_coord	y_coord	Sample Date			
			depth	depth						
SE	SED7E	SED7E00EN	0	0.33	1323942.7	449728.24	6/8/2017	980	630	1.56
SE	SED7E	SED7E01CN	1.67	2	1323942.7	449728.24	6/22/2017	1900	1100	1.73
SE	SED7E	SED7E04AN	4	4.33	1323942.7	449728.24	6/22/2017	1000	440	2.27
SE	SED7F	SED7F00EN	0	0.33	1324119.9	449660.56	6/8/2017	1000	300	3.33
SE	SED9.5B	SED9.5B00N	0	0.5	1324031.2	450586.65	11/11/2013	170	380	0.45
SE	SED9.5B	SED9.5B03N	3	5	1324031.2	450586.65	11/11/2013	892	450	1.98
SE	SEDBACK11	SEDBACK1100N	0	0.5	1322284.1	446970.24	11/15/2013	1000	190	5.26
SE	SEDBACK11	SEDBACK1101N	1	3	1322284.1	446970.24	11/15/2013	300	530	0.57
SE	SEDBACK16	SEDBACK1600N	0	0.33	1329539.6	461605.35	6/12/2017	41	140	0.29
SE	SEDBACK17	SEDBACK1700N	0	0.33	1329694.4	459358.19	6/12/2017	380	45	8.44
SE	SEDBACK18	SEDBACK1800N	0	0.33	1329623.3	456839.3	6/12/2017	37	22	1.68
SE	SEDBACK19	SEDBACK1900N	0	0.33	1328365.2	455288.85	6/13/2017	140	77	1.82
SE	SEDBACK19	SEDBACK1900R	0	0.33	1328365.2	455288.85	6/13/2017	79	32	2.47
SE	SEDBACK20	SEDBACK2000N	0	0.33	1325556.6	454320.61	6/13/2017	60	43	1.40
SE	SEDBACK20	SEDBACK2000R	0	0.33	1325556.6	454320.61	6/13/2017	24	52	0.46
SE	SEDBACK21	SEDBACK2100N	0	0.33	1324615	452024.48	6/13/2017	59	57	1.04
SE	SEDBACK4	SEDBACK401N	1	3	1329784	457920.6	11/14/2013	513	180	2.85
SE	SEDBACK5	SEDBACK500N	0	0.5	1326967.7	454617.45	11/14/2013	127	78	1.63
SE	SEDBACK5	SEDBACK503N	3	5	1326967.7	454617.45	11/14/2013	162	160	1.01
SE	SEDBACK6	SEDBACK600N	0	0.5	1326311.6	454054.19	11/15/2013	219	140	1.56
SE	SEDREF02	SEDREF0202R	2	3	1323199.7	447498.74	6/15/2017	500	240	2.08
SE	SEDREF02	SEDREF0206N	6	7	1323199.7	447498.74	6/15/2017	990	280	3.54
SE	SEDREF03	SEDREF0302N	2	3	1322638.7	445798.7	6/15/2017	1600	380	4.21
SE	SEDREF04	SEDREF0402N	2	3	1322717	445793.7	6/16/2017	460	1100	0.42
SE	SEDREF06	SEDREF0602N	2	3	1322461.1	444613.49	6/16/2017	1200	730	1.64
SE	SEDREF07	SEDREF0702N	2	3	1322239.6	444275.61	6/16/2017	310	150	2.07
SE	SEDREF08	SEDREF0802N	2	3	1322362.1	444295.41	6/19/2017	950	480	1.98
SE	WSED2	WSED207N	7	9	1323124.8	448582.42	11/15/2013	1150	6300	0.18

Notes:

SO - Soil

SE - Sediment

ug/kg - Micrograms per kilogram PCB - Polychlorinated biphenyl

PCBc - PCB Congeners

PCBanningCBaAncacloys RI Report

Table 4-47 Target Area Investigation Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

TA#	Name	Location	OA#	Results		
1	Former Sludge Dewatering Area	Between Building 65 and Cooling Towers	4	Vanadium, PCBs, PAHs, and Dioxins largely surficial and shallow sub-surficial soil. Vanadium impacts extend outside of TA1 over a larger former Coal Pile Area footprint with PSL exceedances in surface soil locations and 2 two locations in shallow subsurface soil to 3 ft bgs. Total PCBs exceed their PSL at 4 surface soil and 4 subsurface soil locations to 5 ft bgs. TCDD TEQ exceeds its PSL at 5 surface soil locations are also several subsurface PSL exceedances for PAHs. Monitoring well MW-7 detected metals above PSLs ¹ .		
2	Benning Fueling Island	Located east of Building # 32	3	ERI transect (WAS-5) and downgradient/cross-gradient monitoring well locations (MW-2, MW-5 and MW-6) did not indicate presence of NAPLs, TPH (only analyzed in MW-2A), or BTEX. Historically, USTs located at this area were removed and impacted soil reportedly excavated, and the cases were closed with District approval. (URS, 1999).		
3	Former 15,000 Gal UST and 50,000 Gal AST (No. 2 Fuel Oil)	East of Generating Station, south of cooling tower unit 15	4,5	A limited number of metals in soils and groundwater ¹ , and a limited number of PAHs in subsurface soils exceeded screening levels (these locations along Target Area 5 southern boundary so also noted under Target Area 5). ORO detected in surface soil below screening values. No BTEX exceedances in MW-8A/B. Dieldrin was detected in MW-08B slightly above its PSL. This target area is between Target Area 1 and Target Area 5 and some compound exceedances may be related to these Target Areas.		
4	2003 Salvage Yard Investigation & Former Timber Pole Storage Area	Salvage yard located west of Buildings # 75 and # 88	1	PCBs, PAHs, and TPH largely in soil to 5 ft bgs, some extend to 10-15 ft bgs. PAHs as represented by BaP-TE exceed their PSL at 5 surface soil locations and 10 subsurface locations. DRO exceed its PSL at several surface and shallow subsurface soil locations. Total PCBs exceed their PSL at several surface and subsurface soil locations to approximately 3 ft bgs.		
5	Former Cooling Towers – 1995 & 2017 Cleanup Area	Unit 15 and 16 cooling tower basins and surrounding soil	4	PCBs and TPH in soil to 6 ft bgs. Cooling tower superstructures were removed in 2013 and excavation of impacted soils was performed in 2017 along with removal of cooling tower concrete basins. In soil surrounding excavated area, DRO exceed its PSL at seven subsurface locations to 6 ft bgs. Total PCBs exceed their PSL at one surface soil location at former cooling tower #15 and at 8 surface soil locations at former cooling tower #16. Total PCBs exceed their PSL at 12 subsurface locations at former cooling tower #16 to 6 ft bgs. PAHs as represented by BaP-TE exceed its PSL at two shallow subsurface locations. Monitoring wells MW-8 and MW-11 detected metals and dieldrin above PSLs. Note Target Area 3 (discussed above) is immediately south of Target Area 5.		
6	1991 Cleanup Area	Between Buildings # 41 and # 61		Several soil borings, and ERI transect (WAS-7) and a monitoring well (MW-13) completed in this area. No soil screening level exceedances. A limited number of metals in monitoring well groundwater exceeded screening levels ¹ . GRO and MTBE exceed screening levels in Direct Push groundwater sample DP32 and in MW-13B (MTBE only) but this believed to be related to Target Area 18.		
7	1988 Parking Lot Cleanup Area	Parking lot located in the eastern portion of facility.	1, 2	Several soil borings, two ERI transects (WAS-8 and WAS-9) and a monitoring well (MW-15) completed in this area. Area was further sampled in soil during the Phase II event due to a Phase I PCB detection but no PSL soil exceedances were identified in Phase II. The PCB detections are potential residual from former PCB cleanup. MW-15 detected metals above PSLs ¹ .		
8	1985 Excavation Area	Underground pipe leading from Kenilworth Transformer Shop (Current Building # 56)		One soil boring (DP22) installed in this area. No soil screening level exceedances. Metals exceeded screening levels in direct push groundwater sample ¹ .		
9	Green Tag Storage Area	Storage Building #66	6	Area was further sampled in the soil during the Phase II event due to a Phase I PCB detection and a TCDD TEQ detection but no PSL soil exceedances were identified in Phase II. The highest Phase II TCDD TEQ concentration was 19.7 pg./g at SUS18-1D.		
10	Red Tag Storage Area	South of Building # 68 (PCB Storage Building)	6	PCB and Dioxins in surface and shallow subsurface soils. Total PCBs exceed their PSL at several surface and subsurface soil locations to 4 ft bgs. TCDD TEQ exceeds its PSL at 12 surface soil locations. Monitoring well MW-10 detected metals above PSLs ¹ .		
11	Building #68 (PCB Building)	Building #68		Total PCBs exceed their PSL at several surface and subsurface soil locations to 4 ft bgs.		
12	Building #57	Building #57	6	PCBs and PAHs to 5 ft bgs. PAHs as represented by BaP-TE exceed their PSL at two surface soil locations and 16 subsurface locations to 5 ft bgs. Total PCBs exceed their PSL at 15 surface soil and 22 subsurface soil locations to 5 ft bgs. The maximum PCB surface soil detection is 8,800,000 µg/kg² at SUSDP21-3G. Most of the exceedances are grouped between Building #57 and the Anacostia Freeway at the Site boundary.		
13	Bulk Storage ASTs and Loading Rack	East of the Generating Station Building	5	PAHs as represented by BaP-TE slightly exceed its PSL at one surface soil location. DRO exceed its PSL at one location; AST3A, collected during a sample event in 2012. During the RI investigation, no DRO exceedances of its PSL were identified. Three ERI transects (WAS-1, WAS-3, and WAS-5) and a monitoring well (MW-6) completed near this area; MW-6 detected metals above PSLs ¹ but not BTEX. No BTEX or TPH exceedances in downgradient monitoring wells MW-2 and MW-3 (only MW-2A analyzed for TPH which was not detected).		

Table 4-47 Target Area Investigation Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

TA #	Name	Location	OA#	Results
14	Former Railroad Switchyard	Adjacent to southern property boundary and east of Building # 32.		This area was further sampled in the soil during the Phase II event due to a Phase I PCB detection but no PSL soil exceedances were identified in Phase II. ERI transect (WAS-5) and downgradient monitoring well location (MW-5) did not indicate presence of NAPLs or petroleum constituents in groundwater but detected metals and PCE (believe to be related to Target Area 19) above PSLs 1.
15	Generating Station Transformers	West of the Generating Station		Several soil borings and three monitoring wells (MW-2, MW-3, and MW-4) installed in this area. A limited number of metals in soils and monitoring well groundwater ¹ , and naphthalene in MW-2 exceeded screening levels. Resample of MW-2 in 2016 did not detect naphthalene. All transformers and associated containment areas were demolished and removed from the site.
16	Print Shop	Southern portion of Building # 32		Several soil borings, an ERI transect (WAS-5) and a monitoring well (MW-5) completed in this area. A limited number of metals in soils and groundwater exceeded screening levels ¹ as did PCE (believed to be related to Target Area 19) in groundwater.
17	Storm Drain System	Across the site		Primarily related to PCBs, PAHs, and metals in storm drain media. Eight water samples and four residue samples were collected from the storm drain system. A limited number of PCBs, metals, PAHs, TPHs, and pesticides were detected in the storm drain media. The low levels of constituents in storm drain samples are attributable to urban runoff and historical residuals.
18	Kenilworth Fueling Island	Approximately 105 feet west of Building # 56	3	Direct push groundwater sample events in 2014 and 2016 were performed to delineate the MTBE concentrations in groundwater. MTBE was detected in 45 of 75 direct push UWZ samples but the PSL for MTBE was only exceeded in three of these UWZ samples. MTBE was detected in 11 of 25 UWZ monitoring well samples but not above its PSL. MTBE was detected in 28 of 43 direct push LWZ samples but the PSL for MTBE was only exceeded in six of the LWZ samples. MTBE was detected in 15 of 24 LWZ monitoring well samples and exceeded its PSL in MW13B. The largest MTBE detection of 1,100 ug/L was collected in 2017 from immediately north of the Site boundary. Butyl alcohol, tert- was detected above its PSL in MW-09B and above its PSL in a direct push LWZ groundwater sample at DP58.
19	PCE and Naphthalene in Groundwater	Southeast area of Site and adjacent to southern portion of former power plant where chlorinated solvents were stored and used.	7	For UWZ monitoring wells, PCE, TCE, and VC were detected above their PSLs in 16, 8, and 1 samples, respectively, out of 25 samples. PCE exceeded its PSL in MW01-A, MW-05-A, and MW09-A. TCE and VC exceeded their PSL in MW09-A. Cis-DCE was also detected in the UWZ but at concentrations below its PSL. The maximum concentrations of PCE, TCE, and cis-1,2-dichloroethylene detected in groundwater during the Phase I PCE direct push sample event to further characterize the PCE concentrations were 470 µg/l, 26 µg/l, and 23 µg/l, respectively, all in sample DPWB730-35N. Levels of PCE, TCE, and cis-1,2-dichloroethylene in groundwater diminish rapidly with increasing distance north of Benning Road. For LWZ monitoring wells, PCE and TCE were detected in 7 and 4 samples, respectively, out of 24 samples. PCE exceeded its PSL in MW01-B and MW-05-B. TCE exceeded its PSL in MW01-B. VC and cis-DCE were also detected in the LWZ but at concentrations below their PSLs. Within the south-central area of the Site, the groundwater samples from the LWZ exhibited little or no PCE contamination. Naphthalene in MW-1A exceeded screening levels but resample of MW-1 in 2016 did not detect naphthalene.
20	PAHs in Soil	Parking Lot west of Buildings #56 and #57	2	PAHs largely to 5 ft bgs, some locations extend to 11 ft bgs. PAHs as represented by BaP-TE exceed their PSL at 7 surface soil locations and 26 subsurface soil locations. The maximum BaP-TE detection is 898,000 µg/kg from 2 to 3 ft bgs at SUSDP-196W; this is also the maximum BaP-TE detection in all Phase I and Phase II soil samples. The horizontal extent of PSL exceedances are bounded to the west and north by samples. To the west along the southern boundary, the MWATA and highway infrastructural prevent further sampling, just offsite, to bound the western edge of the PSL exceedances.
	Former Transformer Shop	Buildings #38 and 39		A review of historical aerial photos revealed the former transformer shop Buildings #38 and 39. The absence of samples in these areas was identified as a data gap in the Phase I Site characterization. Soil samples collected in this area during the Phase II sample event did not detect PSL exceedances except for arsenic which is below background levels in soil.

Operational Areas (OA):

erational A	reas (OA):	Notes:	Notes:					
1	Timber Pole Storage Areas	TA - Target Area	DCE - Dichloroethene	PCBs - Polychlorinated Biphenyls				
2	Equipment Laydown Areas	ERI - Electrical Resistivity Imaging	PSL - Project Screening Level	MTBE - Methyl Tertiary-butyl Ether				
3	Vehicle Fleet Servicing Areas	TEQ - Toxicity Equivalent	TCE - Trichloroethylene	BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes				
4	Coal Pile Area	DRO - Diesel Range Organics	PCE - Tetrachloroethylene	SVOCs - Semi-Volatile Organic Compounds				
5	Fuel Oil Storage Area	VC - Vinyl Chloride	UWZ - Upper Water-Bearing Zone	TPHs - Total Petroleum Hydrocarbons				
6	Transformer Operations Areas	MW - Monitoring Well	NAPL - Non-Aqueous Phase Liquid	LWZ - Lower Water-Bearing Zone				
7	Chlorinated Solvent Storage and Usage Area	ORO - Oil Range Organics	GRO Gasoline Range Organics	PAH - Polycyclic Aromatic Hydrocarbon				
		ft bgs - feet below ground surface						

^{1.} Metals were frequently detected in surface and subsurface soils above screening levels but only vanadium was greater than site specific background levels. For the UWZ, several metals exceed their screening levels but were below site specific background levels. For the LWZ, several metals exceed their screening levels but were below site specific background levels with the exception of dissolved cadmium and total vanadium which do not have a site specific background comparison. Also, cadmium was only detected three times in 32 UWZ and LWZ samples with only one detection slightly above its

2. Maximum PCB surface soil detection is 8,800,000 μg/kg at SUSDP21-3G is a re-analysis; initial detection was 2,500,000 μg/kg.

Table 4-48 Upgradient and Cross-Gradient Gasoline LUST Cases Benning Road RI/FS Project

LUST Case #	Facility Name	Facility Type	Address	Latitude	Longitude	Distance from Site (miles)	Direction
2002059	DC Public Schools*	DC Govt	650 ANACOSTIA AVE, NE	38.901274°	-76.952074°	0.11	NE
2009007	Former Chevron	Gas Station	3900 BENNING RD	38.895226°	-76.948542°	0.17	SE
89005	Sunoco	Gas Station	3916-18 MINNESOTA AVE, NE	38.893642°	-76.951080°	0.18	S
89014, 95039	Chevron	Gas Station	3820 MINNESOTA AVE, NE	38.892949°	-76.951199°	0.22	S
95039	Mobil	Gas Station	3820 MINNESOTA AVE, NE	38.892644°	-76.951398°	0.24	S
91008	Allen House	Other	3760 MINNESOTA AVE, NE	38.891777°	-76.952007°	0.29	S
2012021	Valero	Gas Station	3710 MINNESOTA AVE NE	38.891004°	-76.952696°	0.34	S
96068	Exxon	Gas Station	4100 HUNT PLACE, NE	38.900644°	-76.943814°	0.40	ENE
90029	Amoco 2	Gas Station	3830 MINNESOTA AVE, SE	38.890155°	-76.953171°	0.4	S
92064	DC Fire Engine Company 27	DC Govt	4201 MINNESOTA AVE, NE	38.901074°	-76.943244°	0.43	ENE
99008	All Aboard Contracting Inc.	Commercial	4214 HUNT PLACE, NE	38.900869°	-76.941727°	0.50	ENE
89036	DPW-FMA 6th District	DC Govt	100 42ND ST, NE	38.892645°	-76.942959°	0.51	SE
2002003	Northeast Chevron	Gas Station	4200 NANNIE HELEN BURROUGHS AVE NE	38.901987°	-76.942113°	0.52	ENE
90084, 2001054	Amoco	Gas Station	4251 MINNESOTA AVE, NE	38.902360°	-76.941698°	0.55	ENE
98069, 93096	Sunoco 2	Gas Station	4400 BENNING RD, NE	38.891563°	-76.938818°	0.74	SE
2012004	Amoco 3	Gas Station	4430 BENNING RD, NE	38.891054°	-76.938100°	0.79	SE
94017	Exxon 2	Gas Station	4501 BENNING RD, NE	38.890156°	-76.938103°	0.82	SE
99033	United Towing Co.	Private	1221 KENILWORTH AVE, NE	38.906186°	-76.938488°	0.86	NE
90060, 2012023	Valero 2	Gas Station	4519 BENNING RD, NE	38.889257°	-76.937334°	0.9	SE
95037	Business Funding of FL. (Holman's Towing)	Other	1325 KENILWORTH AVE, NE	38.907525°	-76.937565°	0.96	NE
92075	Former Exxon	Gas Station	4854 NANNIE HELEN BURROUGHS AVE NE	38.898943°	-76.931982°	0.98	E
2001022, 90072	Soby Inc. (Gulf Oil)	Gas Station	1329 KENILWORTH AVE NE	38.908183°	-76.937155°	1.01	NE
2000029	DCFD Engine #30	DC Govt	50 49TH ST, NE	38.890651°	-76.933427°	1.01	ESE
91042, 90053	NPS Ft. Dupont Maintenance Yard	Federal	3600 F ST, SE	38.882101°	-76.942610°	1.09	SSE

^{*}Heating Oil LUST case

Table 5-1
Summary of Constituents of Potential Concern Properties
Benning Road Facility RI/FS Project
3400 Benning Rd. NE, Washington DC 20019

	CAS				Pro	perties			
Chemical	Number	Кос	K _d	Di,a	Di.w	S	H'	λ high (hours)	λ low (hours)
Inorganics	Humber	00	1 - 4	i,a	1,44				(
Aluminum	7429-90-5		1500						
Antimony	7440-36-0		45						
Arsenic	7440-38-2		29						
Barium	7440-39-3		41						
Beryllium	7440-41-7		790						
Cadmium	7440-43-9		75						
Chromium	7440-47-3		1800000						
Copper	7440-50-8		35						
Cobalt	7440-48-4		45						
Cyanide	57-12-5		9.9	0.210954877	2.46484E-05	95400	0.00415		
Iron	7439-89-6		25	0.2.000.01.	2.101012 00	00.00	0.001.10		
Lead	7439-92-1		900						
Manganese	7439-96-5		65						
Mercury	7439-97-6		52	0.0307	0.0000063	0.06	0.352		
Nickel	7440-02-0		65	0.000.	0.000000	0.00	0.002		
Selenium	7782-49-2		5						
Silver	7440-22-4		8.3						
Thallium	7440-28-0		71						
Vanadium	7440-62-2		1000						
Zinc	7440-66-6		62						
Polycyclic Aromatic Hydrocarbons (PA			,						
4-Methylphenol CRESOL-p	106-44-5	3.00E+02		7.24E-02	9.24E-06	2.15E+04	4.09E-05	6.72E+02	2.00E+00
Acetophenone	98-86-2	5.19E+01		6.52E-02	8.72E-06	6.13E+03	4.25E-04		
Benzaldehyde	100-52-7	1.11E+01		7.44E-02	9.46E-06	6.95E+03	1.09E-03		
Benzoic acid	65-85-0	6.00E-01		7.02E-02	9.79E-06	3.40E+03	1.56E-06		
Benzo(a)anthracene	56-55-3	1.77E+05		2.61E-02	6.75E-06	9.40E-03	4.91E-04	3.26E+04	4.90E+03
Benzo(a)pyrene	50-32-8	5.87E+05		4.76E-02	5.56E-06	1.62E-03	1.87E-05	2.54E+04	2.74E+03
Benzo(b)fluoranthene	205-99-2	5.99E+05		4.76E-02	5.56E-06	1.50E-03	2.69E-05	2.93E+04	1.73E+04
Benzo(k)fluoranthene	207-08-9	5.87E+05		4.76E-02	5.56E-06	8.00E-04	2.39E-05	1.03E+05	4.27E+04
bis-(2-Ethylhexyl)phthalate	117-81-7	1.20E+05		1.73E-02	4.18E-06	2.70E-01	1.10E-05		-
Butylbenzylphthalate	85-68-7	7.16E+03		2.08E-02	5.17E-06	2.69E+00	5.15E-05	4.32E+03	4.80E+01
Caprolactam	105-60-2	2.45E+01		6.92E-02	9.00E-06	7.72E+05	1.03E-06		
Carbazole	86-74-8								
Chrysene	218-01-9	1.81E+05		2.61E-02	6.75E-06	2.00E-03	2.14E-04	4.80E+04	1.78E+04
Dibenzo(a,h)anthracene	53-70-3	1.91E+06		4.46E-02	5.21E-06	2.49E-03	5.76E-06	4.51E+04	1.73E+04
Di-n-octylphthalate	117-84-0	1.41E+05		3.56E-02	4.15E-06	2.20E-02	1.05E-04		
Pyrene	129-00-0	5.43E+04		2.78E-02	7.25E-06	1.35E-01	4.87E-04	9.12E+04	1.01E+04
Indeno(1,2,3-cd)pyrene	193-39-5	1.95E+06		4.48E-02	5.23E-06	1.90E-04	1.42E-05	3.50E+04	2.88E+04
Naphthalene	91-20-3	1.54E+03		6.05E-02	8.38E-06	3.10E+01	1.80E-02	6.19E+03	2.40E+01
2,3,5-Trimethylnaphthalene	2245-38-7								
2,6-Dimethylnaphthalene	581-42-0								
Total High-molecular-weight PAHs	TOT-PAH-HMW								
Total Low-molecular-weight PAHs	TOT-PAH-LMW								
Total PAHs (sum 16)	TOT-PAH								

Table 5-1 Summary of Constituents of Potential Concern Properties Benning Road Facility RI/FS Project 3400 Benning Rd. NE, Washington DC 20019

	CAS				Pro	perties			
Chemical	Number	Кос	K _d	Di,a	Di,w	S	H'	λ high (hours)	λ low (hours)
Polychlorinated Biphenyl (PCB)				, , , , , , , , , , , , , , , , , , , ,				<u> </u>	
Total PCBs (a)	1336-36-3	7.81E+04		2.43E-02	6.27E-06	7.00E-01	1.70E-02		
Dioxins and Furans	<u>u</u>				•	•	•	1	
2,3,7,8-TCDD-TEQ	1746-01-6	2.49E+05		4.70E-02	6.76E-06	2.00E-04	2.04E-03		
Pesticides	1			_	•	•	•	•	
4,4'-DDE	72-55-9	1.18E+05		2.30E-02	5.86E-06	4.00E-02	1.70E-03	1.40E+05	1.75E+04
4,4'-DDD	72-54-8	1.18E+05		4.06E-02	4.74E-06	9.00E-02	2.70E-04	2.70E+05	1.68E+03
4,4'-DDT	50-29-3	1.69E+05		3.79E-02	4.43E-06	5.50E-03	3.40E-04	2.70E+05	3.84E+02
Aldrin	309-00-2	8.20E+04		2.28E-02	5.84E-06	1.70E-02	1.80E-03	2.84E+04	2.40E+01
alpha-Chlordane	5103-71-9								
beta-BHC	319-85-7	2.81E+03		2.77E-02	7.40E-06	2.40E-01	1.80E-05		
cis-Chlordane	5103-71-9								
cis-Nonachlor	5103-73-1								
Dieldrin	60-57-1	2.01E+04		2.33E-02	6.01E-06	1.95E-01	4.09E-04	5.18E+04	2.40E+01
Endosulfan Sulfate	1031-07-8								
Endrin	72-20-8	2.01E+04		3.62E-02	4.22E-06	2.50E-01	2.60E-04		
Endrin ketone	53494-70-5								
gamma-Chlordane	5566-34-7								
Heptachlor Epoxide	1024-57-3	1.01E+04		2.40E-02	6.25E-06	2.00E-01	8.59E-04	2.65E+04	2.40E+01
Hexachlorobenzene	118-74-1	6.20E+03		2.90E-02	7.85E-06	6.20E-03	6.95E-02		
Methoxychlor	72-43-5	2.69E+04		2.21E-02	5.59E-06	1.00E-01	8.30E-06	8.76E+03	1.20E+03
Mirex	2385-85-5	3.57E+05		2.19E-02	5.63E-06	8.50E-02	3.32E-02		
Oxychlordane	27304-13-8								
trans-Chlordane	5103-74-2								
trans-Nonachlor	39765-80-5								
Volatile Organic Compounds (VOCs)	1	•		•	•	•		•	
Acetone	67-64-1	2.36E+00		1.06E-01	1.15E-05	1.00E+06	1.43E-03	3.36E+02	4.80E+01
Bromodichloromethane	75-27-4	3.18E+01		5.63E-02	1.07E-05	3.03E+03	8.67E-02		
Butyl alcohol, tert-	75-65-0							8.64E+03	1.34E+03
Chloroform	67-66-3	3.18E+01		7.69E-02	1.09E-05	7.95E+03	1.50E-01	4.32E+04	1.34E+03
Methyl tert-Butyl Ether (MTBE)	1634-04-4	1.16E+01		7.53E-02	8.59E-06	5.10E+04	2.40E-02	8.64E+03	1.34E+03
Tetrachloroethylene	127-18-4	9.49E+01		5.05E-02	9.46E-06	2.06E+02	7.24E-01	1.73E+04	8.64E+03
Trichloroethene	79-01-6	6.07E+01		6.87E-02	1.02E-05	1.28E+03	4.03E-01	3.97E+04	7.70E+03
Vinyl Chloride	75-01-4	2.17E+01		1.07E-01	1.20E-05	8.80E+03	1.14E+00	6.90E+04	1.34E+03

Notes:

PCB = Polychlorinated biphenyl K_{oc} (L/kg) = Soil organic carbon/water partition coefficient S (mg/L) = Solubility in water (20-25 oC)

SVOC = Semivolatile organic compound $D_{i,a}$ (cm2/s) = Diffusivity in air (25°C) H' = Dimensionless Henry's law constant (HLC[atm-m3/mol]*41) (25°C)

TCDD =TEQ - Dioxin Toxic Equivalence $D_{i,w}$ (cm2/s) = Diffusivity in water (25°C) λ = half life used to calculate degradation rates VOCs - Volatile organic compounds Kd = Soil-water partition coefficient

Table references

USEPA. 2018. Regional Screening Level (RSL) Chemical Parameters Table, May 2018 [online]. US Environmental Protection Agency. Available from: https://www.epa.gov/risk/regional-screening-levels-rsls-generic USEPA. 2018. Regional Screening Levels (RSLs) - User's Guide. May 2018 [online]. US Environmental Protection Agency. Available from: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide#chemic Howard, Philip H., et.al. Handbook of Environmental Degradation Rates.

Table 5-2 Radiochemistry Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

					Bervii	ium-7	Cesiu	m-137	Poloni	um-210	Radiu	m-226
			Start	End								
	0 1 15		Depth	Depth	Result		Result		Result		Result	-
Location ID		Туре	(ft)	(ft)	(pCi/g)	Error	(pCi/g)	Error	(pCi/g)	Error	(pCi/g)	Error
SED1.5C SED1.5C	SED1.5C00AN SED1.5C00AR	N FD	0	0.33	0.231	0.197	0.0425	0.0165 0.0196	1.94 2.8	0.369	0.975	0.123 0.0855
SED1.5C	SED1.5C00AR	N	0.33	0.33	0.444	0.23	0.0733	0.0196	1.54	0.46 0.317	1.1 0.994	0.0655
SED1.5C	SED1.5C00BN	N	0.67	1			0.0593	0.0103	1.79	0.317	0.836	0.0737
SED1.5C	SED1.5C00CN	N	1	1.33			0.0393	0.02	1.53	0.383	0.882	0.0927
SED1.5C	SED1.5C01BN	N	1.33	1.67			0.0712	0.0146	1.49	0.319	0.933	0.0001
SED1.5C	SED1.5C01CN	N	1.67	2			0.109	0.0163	2.89	0.71	1.22	0.0861
SED1.5C	SED1.5C02AN	N	2	2.33			0.0939	0.0204	2.6	0.542	1.19	0.0872
SED1.5C	SED1.5C02BN	N	2.33	2.67			0.0831	0.018	2.12	0.421	0.975	0.0986
SED1.5C	SED1.5C02CN	N	2.67	3			0.066	0.0202	2.18	0.45	1.08	0.111
SED1.5C	SED1.5C03AN	N	3	3.33			0.0905	0.0211	1.88	0.404	1.15	0.112
SED1.5C	SED1.5C03BN	N	3.33	3.67			0.095	0.0222	2.08	0.419	1.13	0.113
SED1.5C	SED1.5C03CN	N	3.67	4			0.12	0.0188	2.23	0.538	1.26	0.0858
SED1.5C	SED1.5C04AN	N	4	4.33			0.107	0.0227	1.5	0.411	1.32	0.128
SED1.5C	SED1.5C04BN	N	4.33	4.67			0.1	0.019	1.22	0.307	1.41	0.136
SED1.5C	SED1.5C04CN	N	4.67	5			0.0741	0.0319	1.21	0.296	2.12	0.212
SED1.5C	SED1.5C05AN	N	5	5.33			0.0204	0.0164	1.02	0.195	1.63	0.153
SED1.5C	SED1.5C05BN	N	5.33	5.67			< 0.050	0.0149	1	0.262	1.28	0.143
SED1.5C	SED1.5C05CN	N	5.67	6			< 0.050	0.0136	0.976	0.265	1.37	0.163
SED1.5C	SED1.5C06AN	N	6	6.33			< 0.050	0.0241	1.08	0.274	1.33	0.0944
SED1.5C	SED1.5C06BN	N	6.33	6.67			< 0.050	0.011	1.06	0.271	1.08	0.108
SED1.5C	SED1.5C06CN	N	6.67	7			< 0.050	0.0128	0.847	0.231	1.23	0.126
SED1.5C	SED1.5C07AN	N	7	7.33			< 0.050	0.0139	0.602	0.169	0.773	0.0673
SED5B	SED5B00AN	N	0	0.33	2.12	0.372	0.049	0.0366	3.73	0.702	1.2	0.0933
SED5B	SED5B00BN	N	0.33	0.67			0.0643	0.0267	1.89	0.382	0.765	0.0648
SED5B	SED5B00CN	N	0.67	1			< 0.050	0.0161	1.26	0.343	1.12	0.112
SED5B	SED5B01AN	N	1	1.33			< 0.050		1.27	0.335	1.26	0.13
SED5B	SED5B01AR	FD	1	1.33			< 0.050	0.0189	1.17	0.288	1.21	0.0896
SED5B	SED5B01BN	N	1.33	1.67			< 0.050	0.0145	1.45	0.343	1.32	0.132
SED5B	SED5B01BR	FD	1.33	1.67			< 0.050	0.014	1.19	0.333	1.33	0.0913
SED5B	SED5B01CN	N	1.67	2			< 0.050		0.937	0.264	1.28	0.0899
SED5B	SED5B01CR	FD	1.67	2			< 0.050		1.13	0.198	1.38	0.154
SED5B	SED5B02AN	N	2	2.33			< 0.050		1.31	0.317	1.35	0.131
SED5B	SED5B02BN	N	2.33	2.67			< 0.050	0.0179	1.61	0.424	1.4	0.163
SED5B	SED5B02CN	N	2.67	3			< 0.050	0.0149	1.15	0.157	1.25	0.128
SED5B	SED5B03AN	N	3	3.33			< 0.050		1.06	0.316	1.33	0.0839
SED5B	SED5B03BN	N	3.33	3.67				0.0132	1.15	0.304	1.31	0.0883
SED5B	SED5B03CN	N	3.67	4				0.0115	1.34	0.327	1.21	0.121
SED5B	SED5B04AN	N	4	4.33				0.0124	1.11	0.267	1.25	0.122
SED5B	SED5B04BN	N	4.33	4.67			< 0.050		1.23	0.325	1.41	0.0998
SED5B	SED5B04CN	N	4.67	5			< 0.050		1 0.945	0.271	1.2	0.082
SED5B	SED5B05AN	N	5	5.33			< 0.050		0.845	0.251 0.105	0.902	0.0942
SED5B	SED5B05BN	N	5.33	5.67			< 0.050 < 0.050		0.582		0.682	0.0696
SED5B SED5B	SED5B05CN SED5B06AN	N N	5.67 6	6.33			< 0.050		0.586 0.259	0.172 0.0704	0.606 0.431	0.0667 0.0522
SED5B SED7E	SED7E00AN	N	0	0.33	< 0.300	0.107	0.0384	0.0067	1.12	0.0704	0.431	0.0522
SED7E	SED7E00AN	N	0.33	0.33	` 0.300	0.107	0.0364	0.0122	1.01	0.236	1.3	0.033
SED7E	SED7E00CN	N	0.67	1			0.0477	0.0139	0.938	0.256	0.816	0.0790
SED7E	SED7E01AN	N	1	1.33			0.071	0.0202	1.31	0.230	1.52	0.0709
SED7E	SED7E01BN	N	1.33	1.67			0.283	0.0307	1.26	0.341	2.01	0.144
SED7E	SED7E01CN	N	1.67	2			0.268	0.0333	1.41	0.191	1.34	0.134
SED7E	SED7E02AN	N	2	2.33			0.474	0.0519	1.45	0.415	1.29	0.134
SED7E	SED7E02BN	N	2.33	2.67			0.211	0.0288	1.3	0.343	1.47	0.0958
SED7E	SED7E02CN	N	2.67	3			0.12	0.0260	1.52	0.213	1.22	0.0806
SED7E	SED7E03AN	N	3	3.33			0.121	0.0231	1.17	0.166	1.16	0.112
	2_2, 200, 114	. •		0.00	ı		V. 12 1	0.0201		0.100	0	V. 1 12

Table 5-2 Radiochemistry Results Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

			Ctort	End	Beryll	ium-7	Cesiu	m-137	Polonii	um-210	Radiu	m-226
Location ID	Sample ID	Туре	Start Depth (ft)	End Depth (ft)	Result (pCi/g)	Error	Result (pCi/g)	Error	Result (pCi/g)	Error	Result (pCi/g)	Error
SED7E	SED7E03BN	N	3.33	3.67			0.0628	0.0226	1.08	0.308	1.37	0.15
SED7E	SED7E03CN	N	3.67	4			0.0481	0.0173	0.933	0.275	1.33	0.0887
SED7E	SED7E04AN	N	4	4.33			0.0363	0.0215	1.23	0.327	1.09	0.126
SED7E	SED7E04BN	N	4.33	4.67			0.0442	0.0162	0.744	0.123	0.828	0.0973
SED7E	SED7E04CN	N	4.67	5			< 0.050	0.0151	1.29	0.356	1.27	0.0904
SED7E	SED7E05AN	N	5	5.33			0.0331	0.0208	1.26	0.179	1.42	0.0963
SED7E	SED7E05BN	N	5.33	5.67			< 0.050	0.0221	1.11	0.164	1.3	0.126
SED7E	SED7E05CN	N	5.67	6			< 0.050	0.0164	1.41	0.213	1.34	0.137
SED7E	SED7E06AN	N	6	6.33			< 0.050	0.013	1.27	0.174	1.41	0.0922
SED7E	SED7E06BN	N	6.33	6.67			< 0.050	0.0126	1.05	0.16	1.26	0.123
SED7E	SED7E06CN	N	6.67	7			< 0.050	0.0106	0.686	0.128	1.18	0.113
SED7E	SED7E07AN	N	7	7.33			< 0.050	0.0111	0.668	0.124	0.905	0.0661
SED7E	SED7E07BN	N	7.33	7.67			< 0.050	0.0151	1.08	0.191	1.1	0.129
SED7E	SED7E07CN	N	7.67	8			< 0.050	0.0147	1.04	0.161	1.28	0.0951

Notes: pCi/g = Picocuries Per Gram N = Normal

FD = Field Duplicate

Table 5-3
Mass Loading Calculations - Groundwater to Surface Water
Benning Road Facility RI/FS Project
3400 Benning Rd. NE, Washington DC 20019

								T		T				T	
		MW-1	A	MW-1	I B	MW-2	Α	MW-2	!В	MW-	3A	MW-3	ВВ	MW-4	4A
<u>.</u>	CAS	GW Flux (m ³ /s) =		GW Flux (m ³ /s) =		GW Flux (m ³ /s) =		GW Flux (m ³ /s) =				GW Flux (m ³ /s) =		GW Flux (m ³ /s) =	
Chemical	Number	Groundwater Concentration (μg/L)	Mass Flux (kg/year)	Groundwater Concentration (μg/L)	Mass Flux (kg/year)	Groundwater Concentration (μg/L)	Mass Flux (kg/year)	Groundwater Concentration (µg/L)	Mass Flux (kg/year)	Groundwater Concentration (µg/L)	Mass Flux (kg/year)	Groundwater Concentration (µg/L)	Mass Flux (kg/year)	Groundwater Concentration (μg/L)	Mass Flux (kg/year)
Inorganics (Dissolved)	 	ļ	ļ	ļ	ļ	ļ			ļ			 	ļ		
Aluminum	7429-90-5	30	3.70E-02	30	1.14E-02	30	2.11E-02	30	1.02E+00	30	1.89E-01	30	9.50E-01	30	7.92E-02
Antimony	7440-36-0	2	2.47E-03	2	7.60E-04	2	1.41E-03	2	6.78E-02	2	1.26E-02	2	6.34E-02	2	5.28E-03
Arsenic	7440-38-2	1	1.23E-03	1	3.80E-04	2.3	1.62E-03	1	3.39E-02	1.2	7.57E-03	0.48	1.52E-02	1	2.64E-03
Barium	7440-39-3	180	2.22E-01	190	7.22E-02	16	1.13E-02	75	2.54E+00	92	5.81E-01	150	4.75E+00	86	2.27E-01
Beryllium	7440-41-7	1	1.23E-03	1	3.80E-04	1	7.04E-04	0.51	1.73E-02	1	6.31E-03	1	3.17E-02	1	2.64E-03
Cadmium	7440-43-9	1	1.23E-03	1	3.80E-04	1	7.04E-04	1	3.39E-02	1	6.31E-03	1	3.17E-02	1	2.64E-03
Chromium	7440-47-3	2	2.47E-03	2	7.60E-04	2	1.41E-03	2	6.78E-02	2	1.26E-02	2	6.34E-02	2	5.28E-03
Cobalt	7440-48-4	8.5	1.05E-02	8.2	3.12E-03	0.5	3.52E-04	26	8.81E-01	5.8	3.66E-02	1.9	6.02E-02	30	7.92E-02
Copper	7440-50-8	2	2.47E-03	2	7.60E-04	2	1.41E-03	2	6.78E-02	2	1.26E-02	2	6.34E-02	2	5.28E-03
Iron	7439-89-6	50	6.17E-02	5800	2.20E+00	50	3.52E-02	30000	1.02E+03	50	3.16E-01	190	6.02E+00	50	1.32E-01
Lead	7439-92-1	1	1.23E-03	1	3.80E-04	1	7.04E-04	1	3.39E-02	1	6.31E-03	1	3.17E-02	1	2.64E-03
Manganese	7439-96-5	3800	4.69E+00	3400	1.29E+00	200	1.41E-01	1600	5.42E+01	3800	2.40E+01	530	1.68E+01	5000	1.32E+01
Mercury	7439-97-6	0.2	2.47E-04	0.2	7.60E-05	0.2	1.41E-04	0.2	6.78E-03	0.2	1.26E-03	0.2	6.34E-03	0.2	5.28E-04
Nickel	7440-02-0	0.28	3.45E-04	4.3	1.63E-03	0.41	2.88E-04	11	3.73E-01	3	1.89E-02	1.2	3.80E-02	5.7	1.50E-02
Selenium	7782-49-2	5	6.17E-03	5	1.90E-03	5	3.52E-03	5	1.69E-01	5	3.16E-02	5	1.58E-01	5	1.32E-02
Silver	7440-22-4	1	1.23E-03	1	3.80E-04	1	7.04E-04	1	3.39E-02	1	6.31E-03	1	3.17E-02	1	2.64E-03
Thallium	7440-28-0	1	1.23E-03	1	3.80E-04	1	7.04E-04	1	3.39E-02	1	6.31E-03	1	3.17E-02	1	2.64E-03
Vanadium	7440-62-2	4.7	5.80E-03	3.2	1.22E-03	6.5	4.57E-03	3.5	1.19E-01	4.5	2.84E-02	2.5	7.92E-02	2.6	6.86E-03
Zinc	7440-66-6	5	6.17E-03	5.4	2.05E-03	5	3.52E-03	39	1.32E+00	5	3.16E-02	7.5	2.38E-01	5	1.32E-02
Inorganics (Total)			0.172 00	1	2.002 00	1	0.022 00		1.022 00		0.102 02		2.002 01		1.022 02
Aluminum	7429-90-5	730	9.00E-01	260	9.88E-02	160	1.13E-01	900	3.05E+01	210	1.33E+00	690	2.19E+01	500	1.32E+00
Antimony	7440-36-0	2	2.47E-03	2	7.60E-04	2	1.41E-03	2	6.78E-02	2	1.26E-02	2	6.34E-02	2	5.28E-03
Arsenic	7440-38-2	2.5	3.08E-03	2	7.60E-04	3.7	2.60E-03	1	3.39E-02	6.1	3.85E-02	3.6	1.14E-01	8	2.11E-02
Barium	7440-39-3	270	3.33E-01	240	9.12E-02	18	1.27E-02	80	2.71E+00	98	6.19E-01	170	5.39E+00	110	2.90E-01
Beryllium	7440-41-7	0.072	8.88E-05	0.059	2.24E-05	1	7.04E-04	0.91	3.08E-02	1	6.31E-03	0.096	3.04E-03	0.041	1.08E-04
Cadmium	7440-43-9	1	1.23E-03	1	3.80E-04	1	7.04E-04 7.04E-04	1	3.39E-02	1	6.31E-03	1	3.17E-02	1	2.64E-03
Chromium	7440-47-3	3.4	4.19E-03	2	7.60E-04	2	1.41E-03	3	1.02E-01	4.3	2.71E-02	6.5	2.06E-01	4.8	1.27E-02
Cobalt	7440-48-4	13	1.60E-02	8	3.04E-03	0.74	5.21E-04	26	8.81E-01		4.23E-02	2.8	8.87E-02	33	8.71E-02
Copper	7440-50-8	2	2.47E-03	2	7.60E-04	2	1.41E-03	2	6.78E-02	3.1	1.96E-02	4.8	1.52E-01	2.4	6.7 TE-02 6.33E-03
Iron	7439-89-6	44000	5.43E+01	37000	1.41E+01	820	5.77E-01	41000	1.39E+03	1900	1.96E-02 1.20E+01	24000	7.60E+02	12000	3.17E+01
Lead	7439-92-1	1.4		0.48	1.41E+01 1.82E-04	1		1.2	4.07E-02	0.48	3.03E-03	1.5	4.75E-02	0.73	
Manganese	7439-96-5	4100	1.73E-03	3700		280	7.04E-04	1600		3900		550		5700	1.93E-03
Mercury	7439-90-5	0.2	5.06E+00	0.2	1.41E+00	0.2	1.97E-01	0.2	5.42E+01	0.2	2.46E+01	0.2	1.74E+01	0.2	1.50E+01
Silver	7440-22-4	1	2.47E-04 1.23E-03	1	7.60E-05 3.80E-04	1	1.41E-04 7.04E-04	1	6.78E-03 3.39E-02	1	1.26E-03 6.31E-03	1	6.34E-03 3.17E-02	1	5.28E-04 2.64E-03
Thallium	7440-22-4	1	1.23E-03 1.23E-03	1	3.80E-04 3.80E-04	1	7.04E-04 7.04E-04	1	3.39E-02 3.39E-02	1		1	3.17E-02 3.17E-02	1	2.64E-03
Vanadium	7440-62-2	9.8	1.23E-03 1.21E-02	20	7.60E-03	3.1	7.04E-04 2.18E-03	12	3.39E-02 4.07E-01	1	6.31E-03	3	9.50E-02	1	2.64E-03 2.64E-03
Zinc	7440-66-6	6.1		6.4		5		37	4.07E-01 1.25E+00	5	6.31E-03	9.9		5	1
		0.1	7.52E-03	J 0.4	2.43E-03	ı	3.52E-03] 01	1.25E+00	5	3.16E-02	1 0.0	3.14E-01	<u> </u>	1.32E-02
Polycyclic Aromatic Hydrocarb 4-Methylphenol	106-44-5	0.33	4.075.04	1	2 005 04	0.96	6 755 04	1	2 205 00	1	6 24 5 02	1	2 475 00	1.1	2.005.00
Acetophenone	98-86-2	2	4.07E-04	2	3.80E-04	1.9	6.75E-04	2	3.39E-02	2.1	6.31E-03	2	3.17E-02	2.2	2.90E-03
Benzaldehyde	100-52-7	2	2.47E-03	2	7.60E-04	1.9	1.34E-03	2	6.78E-02	2.1	1.33E-02	2	6.34E-02	2.2	5.81E-03
Benzo(a)anthracene	56-55-3	0.2	2.47E-03	0.18	7.60E-04	0.18	1.34E-03	0.18	6.78E-02	0.21	1.33E-02	0.2	6.34E-02	0.22	5.81E-03
			2.47E-04		6.84E-05		1.27E-04	0.18	6.10E-03		1.33E-03		6.34E-03		5.81E-04
Benzo(a)pyrene	50-32-8	0.2	2.47E-04	0.18	6.84E-05	0.18	1.27E-04		6.10E-03	0.21	1.33E-03	0.2	6.34E-03	0.22	5.81E-04
Benzo(b)fluoranthene	205-99-2	0.2	2.47E-04	0.18	6.84E-05	0.18	1.27E-04	0.18	6.10E-03	0.21	1.33E-03	0.2	6.34E-03	0.22	5.81E-04
Benzo(k)fluoranthene	207-08-9 117-81-7	0.2	2.47E-04	0.18	6.84E-05	0.18 1.9	1.27E-04	0.18	6.10E-03	0.21	1.33E-03	0.2	6.34E-03	0.22	5.81E-04
bis-(2-Ethylhexyl)phthalate	111-01-1	2	2.47E-03	2	7.60E-04	1.9	1.34E-03	2	6.78E-02	2.1	1.33E-02	2	6.34E-02	2.2	5.81E-03

Table 5-3
Mass Loading Calculations - Groundwater to Surface Water
Benning Road Facility RI/FS Project
3400 Benning Rd. NE, Washington DC 20019

	T			<u> </u>		0400 BCII	ining iva. ivi	i, washington D	20013			1		1	
		MW-1.4	A	MW-1	В	MW-2	A	MW-2	2B	MW-	3A	MW-3	В	MW-	4 A
	CAS	GW Flux (m ³ /s) =		GW Flux (m ³ /s) =		GW Flux (m ³ /s) =		GW Flux (m ³ /s) =		GW Flux (m ³ /s)		GW Flux (m ³ /s) =			
Chemical	Number	Groundwater Concentration (µg/L)	Mass Flux (kg/year)	Groundwater Concentration (µg/L)	Mass Flux (kg/year)	Groundwater Concentration (μg/L)	Mass Flux (kg/year)	Groundwater Concentration (µg/L)	Mass Flux (kg/year)	Groundwater Concentration (µg/L)	Mass Flux (kg/year)	Groundwater Concentration (µg/L)	Mass Flux (kg/year)	Groundwater Concentration (µg/L)	Mass Flux (kg/year)
Butylbenzylphthalate	85-68-7	1	1.23E-03	1	3.80E-04	0.96	6.75E-04	1	3.39E-02	1	6.31E-03	1	3.17E-02	1.1	2.90E-03
Caprolactam	105-60-2	5	6.17E-03	5	1.90E-03	4.8	3.38E-03	5	1.69E-01	5.2	3.28E-02	5	1.58E-01	5.4	1.43E-02
Carbazole	86-74-8	1	1.23E-03	1	3.80E-04	0.27	1.90E-04	1	3.39E-02	1	6.31E-03	1	3.17E-02	1.1	2.90E-03
Chrysene	218-01-9	0.2	2.47E-04	0.18	6.84E-05	0.18	1.27E-04	0.18	6.10E-03	0.21	1.33E-03	0.2	6.34E-03	0.22	5.81E-04
Dibenzo(a,h)anthracene	53-70-3	0.2	2.47E-04 2.47E-04	0.18	6.84E-05	0.18	1.27E-04	0.18	6.10E-03	0.21	1.33E-03	0.2	6.34E-03	0.22	5.81E-04
Di-n-octylphthalate	117-84-0	1		1		0.96		1		1		1		1.1	
	193-39-5	•	1.23E-03		3.80E-04		6.75E-04		3.39E-02		6.31E-03	-	3.17E-02		2.90E-03
Indeno(1,2,3-cd)pyrene		0.2	2.47E-04	0.18	6.84E-05	0.18	1.27E-04	0.18	6.10E-03	0.21	1.33E-03	0.2	6.34E-03	0.22	5.81E-04
Naphthalene	91-20-3	0.2	2.47E-04	0.18	6.84E-05	0.18	1.27E-04	0.18	6.10E-03	0.21	1.33E-03	0.2	6.34E-03	0.22	5.81E-04
Pyrene	129-00-0	0.2	2.47E-04	0.18	6.84E-05	0.18	1.27E-04	0.18	6.10E-03	0.21	1.33E-03	0.2	6.34E-03	0.22	5.81E-04
Total High-molecular-weight PAHs	TOT-PAH-HMW	0.2	2.47E-04	0.18	6.84E-05	0.18	1.27E-04	0.18	6.10E-03	0.21	1.33E-03	0.2	6.34E-03	0.22	5.81E-04
Total Low-molecular-weight PAHs	TOT-PAH-LMW	0.2	2.47E-04	0.18	6.84E-05	0.18	1.27E-04	0.18	6.10E-03	0.21	1.33E-03	0.2	6.34E-03	0.22	5.81E-04
Total PAHs (sum 16)	TOT-PAH	0.2	2.47E-04	0.18	6.84E-05	0.18	1.27E-04	0.18	6.10E-03	0.21	1.33E-03	0.2	6.34E-03	0.22	5.81E-04
Polychlorinated Biphenyl (PCB)	!		ļ	ļ			-	ļ				ļ			
PCB-TEQ	PCBTEQ-HH		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00	6.52E-10	1.72E-12
Total PCBs	TOT-PCB-ARO-C	0.0095	1.17E-05	0.0096	3.65E-06	0.0096	6.75E-06	0.0095	3.22E-04	0.0095	6.00E-05	0.0097	3.07E-04	0.0098	2.59E-05
Pesticides	•		II.	•			•	•	1		•	•	I.		•
4,4'-DDD	72-54-8	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
4,4'-DDE	72-55-9	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
4,4'-DDT	50-29-3	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
Aldrin	309-00-2	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
alpha-Chlordane	5103-71-9	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
beta-BHC	319-85-7	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0011	3.73E-05	0.00095	6.00E-06	0.0013	4.12E-05	0.0013	3.43E-06
cis-Chlordane	5103-71-9	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
Dieldrin	60-57-1	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
Endosulfan Sulfate	1031-07-8	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
Endrin	72-20-8	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
Endrin ketone	53494-70-5	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
Heptachlor Epoxide	1024-57-3	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
Hexachlorobenzene	118-74-1	1	1.23E-03	1	3.80E-04	0.96	6.75E-04	1	3.39E-02	1	6.31E-03	1	3.17E-02	1.1	2.90E-03
Methoxychlor	72-43-5	0.0024	2.96E-06	0.0024	9.12E-07	0.0024	1.69E-06	0.0024	8.13E-05	0.0024	1.51E-05	0.0024	7.60E-05	0.0025	6.60E-06
trans-Chlordane	5103-74-2	0.0012	1.48E-06	0.0013	4.94E-07	0.0013	9.15E-07	0.0012	4.07E-05	0.0012	7.57E-06	0.0013	4.12E-05	0.0013	3.43E-06
Dioxins and Furans 2,3,7,8-TCDD-TEQ	DFTEQ-HH	2.77E-09	2.405.40	7 11 5 00	0.705.40		1	1		1 255 00	7.005.44	9.405.00	2.005.40	1 205 00	2 205 42
		2.11E-09	3.42E-12	7.11E-09	2.70E-12					1.25E-08	7.89E-11	8.49E-09	2.69E-10	1.28E-09	3.38E-12
Volatile Organic Compounds (VO Acetone	67-64-1	5	6.17E-03	5	1.90E-03	5	3.52E-03	5	1.69E-01	4.1	2.59E-02	5	1.58E-01	5	1.32E-02
Bromodichloromethane	75-27-4	1	1.23E-03	1	3.80E-04	1	7.04E-04	1	3.39E-02	1	6.31E-03	0.65	2.06E-02	1	2.64E-03
Butyl alcohol, tert-	75-65-0	40	4.93E-02	200	7.60E-02	40	2.81E-02	1	0.00E+00	1	0.00E+00	0.00	0.00E+00	1	0.00E+00
Chloroform	67-66-3	1	1.23E-03	1	3.80E-04	1	7.04E-04	1	3.39E-02	1.2	7.57E-03	3.2	1.01E-01	0.22	5.81E-04
Methyl tert-Butyl Ether (MTBE)	1634-04-4	1.7	2.10E-03	3.4	1.29E-03	1	7.04E-04 7.04E-04	0.39	1.32E-02	1.2	6.31E-03	1	3.17E-02	0.29	7.65E-04
Tetrachloroethylene	127-18-4	5.5	6.78E-03	78	2.96E-02	1.8	1.27E-03	1	3.39E-02	0.32	2.02E-03	1	3.17E-02 3.17E-02	0.25	6.60E-04
Trichloroethene	79-01-6	1.2	1.48E-03	48	1.82E-02	0.22	1.55E-04	1	3.39E-02	1	6.31E-03	1	3.17E-02	1	2.64E-03
Vinyl Chloride	75-01-4	1	1.23E-03	1	3.80E-04	1	7.04E-04	1	3.39E-02	1	6.31E-03	1	3.17E-02	1	2.64E-03

Table 5-3
Mass Loading Calculations - Groundwater to Surface Water
Benning Road Facility RI/FS Project
3400 Benning Rd. NE, Washington DC 20019

							Berning ita.	NE, wasningt				
		MW-4	В	MW	/-8A	MW	/-8B	MW-	-11A	MW-	11B	
	CAS	GW Flux (m ³ /s) =	0.00001943	GW Flux (m ³ /s) = 0.00001641	GW Flux (m ³ /s) = 0.00003023	GW Flux (m ³ /s)) = 0.00007572	GW Flux (m ³ /s)	= 0.00004742	
Chemical	Number	Groundwater Concentration (μg/L)	Mass Flux (kg/year)	Groundwater Concentratio n (µg/L)	Mass Flux (kg/year)	Groundwater Concentratio n (µg/L)	Mass Flux (kg/year)	Groundwater Concentratio n (µg/L)	Mass Flux (kg/year)	Groundwater Concentratio n (µg/L)	Mass Flux (kg/year)	TOTAL MASS (kg/year)
Inorganics (Dissolved)	!	- !										+
Aluminum	7429-90-5	55	3.37E-02	30	1.55E-02	30	2.86E-02	30	7.17E-02	30	4.49E-02	2.499411
Antimony	7440-36-0	2	1.23E-03	2	1.04E-03	2	1.91E-03	2	4.78E-03	2	2.99E-03	0.165605
Arsenic	7440-38-2	0.91	5.58E-04	1.2	6.21E-04	1	9.54E-04	1	2.39E-03	2.2	3.29E-03	0.070350
Barium	7440-39-3	100	6.13E-02	58	3.00E-02	140	1.34E-01	38	9.08E-02	120	1.80E-01	8.901671
Beryllium	7440-41-7	1	6.13E-04	1	5.18E-04	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.066199
Cadmium	7440-43-9	1	6.13E-04	1	5.18E-04	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.082803
Chromium	7440-47-3	2	1.23E-03	2	1.04E-03	2	1.91E-03	2	4.78E-03	2	2.99E-03	0.165605
Cobalt	7440-48-4	1.9	1.17E-03	5.3	2.74E-03	0.83	7.92E-04	2.2	5.26E-03	0.2	2.99E-04	1.081179
Copper	7440-50-8	2	1.23E-03	2	1.04E-03	2	1.91E-03	2	4.78E-03	2	2.99E-03	0.165605
Iron	7439-89-6	570	3.50E-01	50	2.59E-02	50	4.77E-02	50	1.19E-01	50	7.48E-02	1025.908802
Lead	7439-92-1	1	6.13E-04	1	5.18E-04	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.082803
Manganese	7439-96-5	950	5.83E-01	1300	6.73E-01	280	2.67E-01	430	1.03E+00	360	5.39E-01	117.394378
Mercury	7439-97-6	0.2	1.23E-04	0.2	1.04E-04	0.2	1.91E-04	0.2	4.78E-04	0.2	2.99E-04	0.016561
Nickel	7440-02-0	1.6	9.81E-04	2	1.04E-03	0.87	8.30E-04	1.1	2.63E-03	0.33	4.94E-04	0.452958
Selenium	7782-49-2	5	3.07E-03	5	2.59E-03	5	4.77E-03	5	1.19E-02	5	7.48E-03	0.414013
Silver	7440-22-4	1	6.13E-04	1	5.18E-04	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.082803
Thallium	7440-28-0	1	6.13E-04	0.043	2.23E-05	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.082307
Vanadium	7440-62-2	1.4	8.59E-04	4.1	2.12E-03	4.2	4.01E-03	5.8	1.39E-02	3.8	5.69E-03	0.271177
Zinc	7440-66-6	5	3.07E-03	5	2.59E-03	5	4.77E-03	5	1.19E-02	5	7.48E-03	1.645425
Inorganics (Total)			0.072 00		2.002 00		1.172 00	l I	1.102 02	l I	7.102 00	1.010120
Aluminum	7429-90-5	600	3.68E-01	1600	8.28E-01	990	9.44E-01	320	7.65E-01	1300	1.95E+00	60.962511
Antimony	7440-36-0	2	1.23E-03	20	1.04E-02	2	1.91E-03	2	4.78E-03	2	2.99E-03	0.174926
Arsenic	7440-38-2	5.2	3.19E-03	14	7.25E-03	3.3	3.15E-03	3.4	8.12E-03	5.4	8.08E-03	0.243785
Barium	7440-39-3	120	7.36E-02	100	5.18E-02	180	1.72E-01	42	1.00E-01	180	2.69E-01	10.108828
Beryllium	7440-41-7	0.064	3.93E-05	10	5.18E-03	0.053	5.06E-05	0.048	1.15E-04	0.14	2.10E-04	0.046702
Cadmium	7440-43-9	1	6.13E-04	10	5.18E-03	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.040762
Chromium	7440-47-3	6.1	3.74E-03	20	1.04E-02	2.2	2.10E-03	8.1	1.94E-02	7.8	1.17E-02	0.400963
Cobalt	7440-48-4	2.8	1.72E-03	7.9	4.09E-03	2.1	2.00E-03	2.6	6.21E-03	2.5	3.74E-03	1.136439
Copper	7440-50-8	2.7	1.66E-03	20	1.04E-02	4.5	4.29E-03	3.2	7.65E-03	5	7.48E-03	0.281798
Iron	7439-89-6	7600	4.66E+00	7900	4.09E+00	5700	5.44E+00	1800	4.30E+00	17000	2.54E+01	2306.061852
Lead	7439-92-1	0.75	4.60E-04	10	5.18E-03	3.2	3.05E-03	1	2.39E-03	2.2	3.29E-03	0.110122
Manganese	7439-96-5	1000	6.13E-01	1500	7.77E-01	330	3.05E-03 3.15E-01	440	1.05E+00	520	7.78E-01	121.492314
Mercury	7439-97-6	0.2	1.23E-04	0.2	1.04E-04	0.2	1.91E-04	0.2	4.78E-04	0.2	2.99E-04	0.016561
Silver	7440-22-4	1	6.13E-04	10	5.18E-03	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.010301
Thallium	7440-28-0	1	6.13E-04	10	5.18E-03	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.087463
Vanadium	7440-62-2	1	6.13E-04	52	2.69E-02	23	2.19E-02	3.6	8.60E-03	4.8	7.18E-03	0.597732
Zinc	7440-66-6	6.7	4.11E-03	50	2.59E-02	7.5	7.15E-03	5	1.19E-02	8.5	1.27E-02	1.687390
Polycyclic Aromatic Hydrocarb		<u> </u>	T.11L=03		2.03L=02	1	7.10L=03		1.136-02		1.61 L*VL	1.007.380
4-Methylphenol	106-44-5	1	6.13E-04	1	5.18E-04	1	9.54E-04	1	2.39E-03	0.96	1.44E-03	0.082152
Acetophenone	98-86-2	2.1	1.29E-03	2	1.04E-03	2.1	2.00E-03	2	4.78E-03	1.9	2.84E-03	0.062132
Benzaldehyde	100-52-7	2.1	1.29E-03	2	1.04E-03	2.1	2.00E-03 2.00E-03	2	4.78E-03 4.78E-03	1.9	2.84E-03	0.166701
Benzo(a)anthracene	56-55-3	0.21	1	0.2		0.21		0.2		0.19		
Benzo(a)pyrene	50-32-8	0.21	1.29E-04	0.2	1.04E-04	0.21	2.00E-04	0.2	4.78E-04	0.19	2.84E-04	0.015978
Benzo(b)fluoranthene	205-99-2	0.21	1.29E-04	0.2	1.04E-04	0.21	2.00E-04	0.2	4.78E-04	0.19	2.84E-04	0.015978
Benzo(k)fluoranthene	205-99-2		1.29E-04		1.04E-04		2.00E-04		4.78E-04		2.84E-04	0.015978
bis-(2-Ethylhexyl)phthalate	117-81-7	0.21 2.1	1.29E-04	0.2	1.04E-04	0.21 2.1	2.00E-04	0.2	4.78E-04	0.19 1.9	2.84E-04	0.015978
pio-(z-Eurymexyr)priulalate	111-01-1	۷.۱	1.29E-03		1.04E-03	Z. I	2.00E-03	۷	4.78E-03	1.8	2.84E-03	0.166701

Table 5-3 Mass Loading Calculations - Groundwater to Surface Water Benning Road Facility RI/FS Project 3400 Benning Rd. NE, Washington DC 20019

		1				T		·				I
		MW-4	В	MW	/-8A	MW	-8B	MW	-11A	MW-	11B	
	CAS	GW Flux (m ³ /s) =	0.00001943	GW Flux (m ³ /s) = 0.00001641	GW Flux (m ³ /s)	= 0.00003023	GW Flux (m ³ /s) = 0.00007572	GW Flux (m ³ /s)	= 0.00004742	
Chemical	Number	Groundwater Concentration (µg/L)	Mass Flux (kg/year)	Groundwater		Groundwater Concentratio n (µg/L)	Mass Flux (kg/year)	Groundwater Concentratio n (µg/L)	Mass Flux (kg/year)	Groundwater Concentratio n (µg/L)	Mass Flux (kg/year)	TOTAL MASS (kg/year)
Butylbenzylphthalate	85-68-7	1	6.13E-04	1	5.18E-04	1	9.54E-04	1	2.39E-03	0.96	1.44E-03	0.082979
Caprolactam	105-60-2	5.2	3.19E-03	5	2.59E-03	5.2	4.96E-03	5	1.19E-02	4.8	7.18E-03	0.416205
Carbazole	86-74-8	1	6.13E-04	1	5.18E-04	1	9.54E-04	1	2.39E-03	0.96	1.44E-03	0.082493
Chrysene	218-01-9	0.21	1.29E-04	0.2	1.04E-04	0.21	2.00E-04	0.2	4.78E-04	0.19	2.84E-04	0.015978
Dibenzo(a,h)anthracene	53-70-3	0.21	1.29E-04	0.2	1.04E-04	0.21	2.00E-04	0.2	4.78E-04	0.19	2.84E-04	
Di-n-octylphthalate	117-84-0	1		1		1		1		0.96		0.015978
	193-39-5		6.13E-04		5.18E-04		9.54E-04		2.39E-03		1.44E-03	0.082979
Indeno(1,2,3-cd)pyrene		0.21	1.29E-04	0.2	1.04E-04	0.21	2.00E-04	0.2	4.78E-04	0.19	2.84E-04	0.015978
Naphthalene	91-20-3	0.21	1.29E-04	0.046	2.38E-05	0.21	2.00E-04	0.2	4.78E-04	0.19	2.84E-04	0.015898
Pyrene	129-00-0	0.21	1.29E-04	0.2	1.04E-04	0.21	2.00E-04	0.2	4.78E-04	0.19	2.84E-04	0.015978
Total High-molecular-weight PAHs	TOT-PAH-HMW	0.21	1.29E-04	0.2	1.04E-04	0.21	2.00E-04	0.2	4.78E-04	0.19	2.84E-04	0.015978
Total Low-molecular-weight PAHs	TOT-PAH-LMW	0.21	1.29E-04	0.046	2.38E-05	0.21	2.00E-04	0.2	4.78E-04	0.19	2.84E-04	0.015898
Total PAHs (sum 16)	TOT-PAH	0.21	1.29E-04	0.046	2.38E-05	0.21	2.00E-04	0.2	4.78E-04	0.19	2.84E-04	0.015898
Polychlorinated Biphenyl (PCB)	+	•		+	!					-		•
PCB-TEQ	PCBTEQ-HH		0.00E+00		0.00E+00	6.92E-06	6.60E-09	1.31E-09	3.13E-12		0.00E+00	0.000000
Total PCBs	TOT-PCB-ARO-C	0.0094	5.76E-06	0.0097	5.02E-06	0.11	1.05E-04	0.0095	2.27E-05	0.0096	1.44E-05	0.000890
Pesticides												
4,4'-DDD	72-54-8	0.0013	7.97E-07	0.0013	6.73E-07	0.0013	1.24E-06	0.0012	2.87E-06	0.0013	1.95E-06	0.000103
4,4'-DDE	72-55-9	0.0013	7.97E-07	0.0013	6.73E-07	0.001	9.54E-07	0.0012	2.87E-06	0.0013	1.95E-06	0.000103
4,4'-DDT	50-29-3	0.0013	7.97E-07	0.0013	6.73E-07	0.0037	3.53E-06	0.0012	2.87E-06	0.0028	4.19E-06	0.000108
Aldrin	309-00-2	0.0013	7.97E-07	0.0013	6.73E-07	0.0013	1.24E-06	0.0012	2.87E-06	0.0013	1.95E-06	0.000103
alpha-Chlordane	5103-71-9	0.0013	7.97E-07	0.0013	6.73E-07	0.0013	1.24E-06	0.0012	2.87E-06	0.0013	1.95E-06	0.000103
beta-BHC	319-85-7	0.0013	7.97E-07	0.0013	6.73E-07	0.0013	1.24E-06	0.0012	2.87E-06	0.0013	1.95E-06	0.000098
cis-Chlordane	5103-71-9	0.0013	7.97E-07	0.0013	6.73E-07	0.0013	1.24E-06	0.0012	2.87E-06	0.0013	1.95E-06	0.000103
Dieldrin	60-57-1	0.0013	7.97E-07	0.0013	6.73E-07	0.0022	2.10E-06	0.0012	2.87E-06	0.0013	1.95E-06	0.000104
Endosulfan Sulfate	1031-07-8	0.0013	7.97E-07	0.0013	6.73E-07	0.0013	1.24E-06	0.0012	2.87E-06	0.0013	1.95E-06	0.000103
Endrin	72-20-8	0.0013	7.97E-07	0.0013	6.73E-07	0.002	1.91E-06	0.0012	2.87E-06	0.0013	1.95E-06	0.000104
Endrin ketone	53494-70-5	0.0013	7.97E-07	0.0013	6.73E-07	0.0013	1.24E-06	0.0012	2.87E-06	0.0013	1.95E-06	0.000103
Heptachlor Epoxide	1024-57-3	0.0013	7.97E-07	0.0013	6.73E-07	0.0013	1.24E-06	0.00081	1.94E-06	0.0013	1.95E-06	0.000102
Hexachlorobenzene	118-74-1	0.0042	6.13E-04	1	5.18E-04	1	9.54E-04	1	2.39E-03	0.96	1.44E-03	0.082979
Methoxychlor trops Chlordone	72-43-5 5103-74-2	0.0013	7.97E-07	0.0024	1.24E-06	0.0025	2.38E-06	0.0012	2.87E-06	0.0024	3.59E-06	0.000196
trans-Chlordane	0100-74-2	0.0013	7.97E-07	0.0013	6.73E-07	0.0012	1.14E-06	0.0012	2.87E-06	0.0013	1.95E-06	0.000103
Dioxins and Furans 2,3,7,8-TCDD-TEQ	DFTEQ-HH	2.53E-06	1.55E-09		0.005±00	Г		9.81E-07	2.34E-09	1.35E-06	2 025 00	0.000000
Volatile Organic Compounds (VC		∠.33⊑-00	1.55E-09		0.00E+00			3.01⊑ - U/	∠.34⊏-09	1.335-00	2.02E-09	0.000000
Acetone Acetone	67-64-1	2.8	1.72E-03	5	2.59E-03	5	4.77E-03	5	1.19E-02	5	7.48E-03	0.406984
Bromodichloromethane	75-27-4	1	6.13E-04	1	5.18E-04	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.400964
Butyl alcohol, tert-	75-65-0	<u>'</u>	0.13E-04 0.00E+00	'	0.00E+00	 	0.00E+00	<u>'</u>	0.00E+00	40	5.99E-02	0.071713
Chloroform	67-66-3	1.4	8.59E-04	1.2	6.21E-04	3.2	3.05E-03	1	2.39E-03	1	1.50E-03	0.213340
Methyl tert-Butyl Ether (MTBE)	1634-04-4	1.4	6.13E-04	1.2	5.18E-04	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.134149
Tetrachloroethylene	127-18-4	1	6.13E-04	1	5.18E-04	1	9.54E-04	0.18	4.30E-04	1	1.50E-03	0.109947
Trichloroethene	79-01-6	1	6.13E-04	1	5.18E-04	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.100362
Vinyl Chloride	75-01-4	1	6.13E-04	1	5.18E-04	1	9.54E-04	1	2.39E-03	1	1.50E-03	0.082803
	1.20	Notes:	0.10L-04	'	0.10L-0 1	' '	0.0-L-0-	'	2.00L-00	' '	1.00L-00	0.002000

Contaminant Mass Flux (kg/yr) = (Groundwater flux [m³/s])*(Concentration [μ g/L])*(60 [sec/min])*(60 [min/hr])*(24 [hr/day])*(365 [day/yr])*(0.000000001 [kg/ μ g)*(1000 [L/m³]) N/A - Not Applicable

For non-detected concentrations, detection limit is used.

ug/L = microgram per liter kg/year = kilogram per liter

For duplicate samples the higher of the parent and duplicate concentrations is used.

m³/s = cubic meter per second

Table 5-4 Estimated Surface Water Concentrations from Groundwater Discharge Benning Road Facility RI/FS Project 3400 Benning Rd. NE, Washington DC 20019

		HHRA	EDA C '		V-1A		<i>I</i> -1B		V-2A		/-2B		V-3A		V-3B
	212	Surface	ERA Surface	DAF = 0.0	000099288	DAF = 0.	00005664	DAF = 0.0	0000143884	DAF = 0.0	000060173	DAF = 0.0	000041686	DAF = 0.	.00019236
Chemical	CAS Number	Water Screening Level (µg/L)	Water Screening Level (µg/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)
Inorganics (Dissolved)															
Aluminum	7429-90-5	2.00E+03	87	30	2.98E-03	30	1.70E-03	30	4.32E-04	30	1.81E-04	30	1.25E-03	30	5.77E-03
Antimony	7440-36-0	6.40E+02	30	2	1.99E-04	2	1.13E-04	2	2.88E-05	2	1.20E-05	2	8.34E-05	2	3.85E-04
Arsenic	7440-38-2	1.40E-01	150	1	9.93E-05	1	5.66E-05	2.3	3.31E-05	1	6.02E-06	1.2	5.00E-05	0.48	9.23E-05
Barium	7440-39-3	3.80E+02	4	180	1.79E-02	190	1.08E-02	16	2.30E-04	75	4.51E-04	92	3.84E-03	150	2.89E-02
Beryllium	7440-41-7	2.50E+00	0.66	1	9.93E-05	1	5.66E-05	1	1.44E-05	0.51	3.07E-06	1	4.17E-05	1	1.92E-04
Cadmium	7440-43-9	9.20E-01	0.17	1	9.93E-05	1	5.66E-05	1	1.44E-05	1	6.02E-06	1	4.17E-05	1	1.92E-04
Chromium	7440-47-3	2.20E+03	11	2	1.99E-04	2	1.13E-04	2	2.88E-05	2	1.20E-05	2	8.34E-05	2	3.85E-04
Cobalt	7440-48-4	6.00E-01	23	8.5	8.44E-04	8.2	4.64E-04	0.5	7.19E-06	26	1.56E-04	5.8	2.42E-04	1.9	3.65E-04
Copper	7440-50-8	8.00E+01	5.79	2	1.99E-04	2	1.13E-04	2	2.88E-05	2	1.20E-05	2	8.34E-05	2	3.85E-04
Iron	7439-89-6		1000	50	4.96E-03	5800	3.29E-01	50	7.19E-04	30000	1.81E-01	50	2.08E-03	190	3.65E-02
Lead	7439-92-1	1.50E+01	1.4	1	9.93E-05	1	5.66E-05	1	1.44E-05	1	6.02E-06	1	4.17E-05	1	1.92E-04
Manganese	7439-96-5	1.00E+02	120	3800	3.77E-01	3400	1.93E-01	200	2.88E-03	1600	9.63E-03	3800	1.58E-01	530	1.02E-01
Mercury	7439-97-6	1.50E-01		0.2	1.99E-05	0.2	1.13E-05	0.2	2.88E-06	0.2	1.20E-06	0.2	8.34E-06	0.2	3.85E-05
Nickel	7440-02-0	4.60E+03	33.8	0.28	2.78E-05	4.3	2.44E-04	0.41	5.90E-06	11	6.62E-05	3	1.25E-04	1.2	2.31E-04
Selenium	7782-49-2	4.20E+03		5	4.96E-04	5	2.83E-04	5	7.19E-05	5	3.01E-05	5	2.08E-04	5	9.62E-04
Silver	7440-22-4	6.50E+04	1.34	1	9.93E-05	1	5.66E-05	1	1.44E-05	1	6.02E-06	1	4.17E-05	1	1.92E-04
Thallium	7440-28-0	4.70E-01		1	9.93E-05	1	5.66E-05	1	1.44E-05	1	6.02E-06	1	4.17E-05	1	1.92E-04
Vanadium	7440-62-2	8.60E+00	20	4.7	4.67E-04	3.2	1.81E-04	6.5	9.35E-05	3.5	2.11E-05	4.5	1.88E-04	2.5	4.81E-04
Zinc	7440-66-6	2.60E+04	76.6	5	4.96E-04	5.4	3.06E-04	5	7.19E-05	39	2.35E-04	5	2.08E-04	7.5	1.44E-03
Inorganics (Total)															.
Aluminum	7429-90-5	2.00E+03		730	7.25E-02	260	1.47E-02	160	2.30E-03	900	5.42E-03	210	8.75E-03	690	1.33E-01
Antimony	7440-36-0	6.40E+02		2	1.99E-04	2	1.13E-04	2	2.88E-05	2	1.20E-05	2	8.34E-05	2	3.85E-04
Arsenic	7440-38-2	1.40E-01		2.5	2.48E-04	2	1.13E-04	3.7	5.32E-05	1	6.02E-06	6.1	2.54E-04	3.6	6.92E-04
Barium	7440-39-3	3.80E+02		270	2.68E-02	240	1.36E-02	18	2.59E-04	80	4.81E-04	98	4.09E-03	170	3.27E-02
Beryllium	7440-41-7	2.50E+00		0.072	7.15E-06	0.059	3.34E-06	1	1.44E-05	0.91	5.48E-06	1	4.17E-05	0.096	1.85E-05
Cadmium	7440-43-9	9.20E-01		1	9.93E-05	1	5.66E-05	1	1.44E-05	1	6.02E-06	1	4.17E-05	1	1.92E-04
Chromium	7440-47-3	2.20E+03		3.4	3.38E-04	2	1.13E-04	2	2.88E-05	3	1.81E-05	4.3	1.79E-04	6.5	1.25E-03
Cobalt	7440-48-4	6.00E-01		13	1.29E-03	8	4.53E-04	0.74	1.06E-05	26	1.56E-04	6.7	2.79E-04	2.8	5.39E-04
Copper	7440-50-8	8.00E+01		2	1.99E-04	2	1.13E-04	2	2.88E-05	2	1.20E-05	3.1	1.29E-04	4.8	9.23E-04
Iron	7439-89-6		300	44000	4.37E+00	37000	2.10E+00	820	1.18E-02	41000	2.47E-01	1900	7.92E-02	24000	4.62E+00
Lead	7439-92-1	1.50E+01		1.4	1.39E-04	0.48	2.72E-05	1	1.44E-05	1.2	7.22E-06	0.48	2.00E-05	1.5	2.89E-04
Manganese	7439-96-5	1.00E+02		4100	4.07E-01	3700	2.10E-01	280	4.03E-03	1600	9.63E-03	3900	1.63E-01	550	1.06E-01
Mercury	7439-97-6	1.50E-01	0.77	0.2	1.99E-05	0.2	1.13E-05	0.2	2.88E-06	0.2	1.20E-06	0.2	8.34E-06	0.2	3.85E-05
Silver	7440-22-4	6.50E+04		1	9.93E-05	1	5.66E-05	1	1.44E-05	1	6.02E-06	1	4.17E-05	1	1.92E-04
Thallium	7440-28-0	4.70E-01	0.8	1	9.93E-05	1	5.66E-05	1	1.44E-05	1	6.02E-06	1	4.17E-05	1	1.92E-04
Vanadium	7440-62-2	8.60E+00		9.8	9.73E-04	20	1.13E-03	3.1	4.46E-05	12	7.22E-05	1	4.17E-05	3	5.77E-04
Zinc	7440-66-6	2.60E+04		6.1	6.06E-04	6.4	3.62E-04	5	7.19E-05	37	2.23E-04	5	2.08E-04	9.9	1.90E-03
Polycyclic Aromatic Hydrocarb			T	1	1					1	I	T .	==		T ,
4-Methylphenol	106-44-5	1.90E+02	543	0.33	3.28E-05	1	5.66E-05	0.96	1.38E-05	1	6.02E-06	1	4.17E-05	1	1.92E-04
Acetophenone	98-86-2	1.90E+02		2	1.99E-04	2	1.13E-04	1.9	2.73E-05	2	1.20E-05	2.1	8.75E-05	2	3.85E-04
Benzaldehyde	100-52-7	1.90E+01		2	1.99E-04	2	1.13E-04	1.9	2.73E-05	2	1.20E-05	2.1	8.75E-05	2	3.85E-04
Benzo(a)anthracene	56-55-3	1.80E-02		0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
Benzo(a)pyrene	50-32-8	1.80E-02		0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
Benzo(b)fluoranthene	205-99-2	1.80E-02	9.07	0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
Benzo(k)fluoranthene	207-08-9	1.80E-02	0.015	0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
bis-(2-Ethylhexyl)phthalate	117-81-7	2.20E+00	16	2	1.99E-04	2	1.13E-04	1.9	2.73E-05	2	1.20E-05	2.1	8.75E-05	2	3.85E-04
Butylbenzylphthalate	85-68-7	1.90E+03	19	1	9.93E-05	1	5.66E-05	0.96	1.38E-05	1	6.02E-06	1	4.17E-05	1	1.92E-04
Caprolactam	105-60-2	9.90E+02		5	4.96E-04	5	2.83E-04	4.8	6.91E-05	5	3.01E-05	5.2	2.17E-04	5	9.62E-04
·							•	•							

Table 5-4 Estimated Surface Water Concentrations from Groundwater Discharge Benning Road Facility RI/FS Project 3400 Benning Rd. NE, Washington DC 20019

	1			T		O-100 Berning	Rd. NE, Wasnir			T				T	
		HHRA Surface	ERA Surface		V-1A 000099288	MW DAF = 0.	/-1B 00005664	MW DAF = 0.00	/-2A 000143884		V-2B 000060173		V-3A 000041686		V-3B .00019236
Chemical	CAS Number	Water Screening Level (µg/L)	Water Screening Level (µg/L)	Groundwater Concentration (μg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (μg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (μg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)
Carbazole	86-74-8	2.90E+01		1	9.93E-05	1	5.66E-05	0.27	3.88E-06	1	6.02E-06	1	4.17E-05	1	1.92E-04
Chrysene	218-01-9	1.80E-02	0.015	0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
Dibenzo(a,h)anthracene	53-70-3	1.80E-02	0.015	0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
Di-n-octylphthalate	117-84-0	2.00E+01	22	1	9.93E-05	1	5.66E-05	0.96	1.38E-05	1	6.02E-06	1	4.17E-05	1	1.92E-04
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-02	4.31	0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
Naphthalene	91-20-3	1.70E-01	600	0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
•	129-00-0	4.00E+03	0.025	0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
Pyrene Tatal History and a second part of the PALLS		4.00E+03													
Total High-molecular-weight PAHs	TOT-PAH-HMW		0.015	0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
Total Low-molecular-weight PAHs	TOT-PAH-LMW		0.012	0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
Total PAHs (sum 16)	TOT-PAH		0.012	0.2	1.99E-05	0.18	1.02E-05	0.18	2.59E-06	0.18	1.08E-06	0.21	8.75E-06	0.2	3.85E-05
Polychlorinated Biphenyl (PCB)															
PCB-TEQ	PCBTEQ-HH				0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00		0.00E+00
Total PCBs	TOT-PCB-ARO-C	6.40E-05	0.014	0.0095	9.43E-07	0.0096	5.44E-07	0.0096	1.38E-07	0.0095	5.72E-08	0.0095	3.96E-07	0.0097	1.87E-06
Pesticides	.	•		T	1		1	T	T	T	1	T	1	1	
4,4'-DDD	72-54-8	3.10E-04	0.001	0.0012	1.19E-07	0.0013	7.36E-08	0.0013	1.87E-08	0.0012	7.22E-09	0.0012	5.00E-08	0.0013	2.50E-07
4,4'-DDE	72-55-9	2.20E-04	0.001	0.0012	1.19E-07	0.0013	7.36E-08	0.0013	1.87E-08	0.0012	7.22E-09	0.0012	5.00E-08	0.0013	2.50E-07
4,4'-DDT	50-29-3	2.20E-04	0.001	0.0012	1.19E-07	0.0013	7.36E-08	0.0013	1.87E-08	0.0012	7.22E-09	0.0012	5.00E-08	0.0013	2.50E-07
Aldrin	309-00-2	5.00E-05	3	0.0012	1.19E-07	0.0013	7.36E-08	0.0013	1.87E-08	0.0012	7.22E-09	0.0012	5.00E-08	0.0013	2.50E-07
alpha-Chlordane	5103-71-9	8.10E-04	0.0022	0.0012	1.19E-07	0.0013	7.36E-08	0.0013	1.87E-08	0.0012	7.22E-09	0.0012	5.00E-08	0.0013	2.50E-07
beta-BHC	319-85-7	1.70E-02	2.2	0.0012	1.19E-07	0.0013	7.36E-08	0.0013	1.87E-08	0.0011	6.62E-09	0.00095	3.96E-08	0.0013	2.50E-07
cis-Chlordane	5103-71-9	8.10E-04	0.0022	0.0012	1.19E-07	0.0013	7.36E-08	0.0013	1.87E-08	0.0012	7.22E-09	0.0012	5.00E-08	0.0013	2.50E-07
Dieldrin	60-57-1	5.40E-05	0.056	0.0012	1.19E-07	0.0013	7.36E-08	0.0013	1.87E-08	0.0012	7.22E-09	0.0012	5.00E-08	0.0013	2.50E-07
Endosulfan Sulfate	1031-07-8	8.90E+01	0.056	0.0012	1.19E-07	0.0013	7.36E-08	0.0013	1.87E-08	0.0012	7.22E-09	0.0012	5.00E-08	0.0013	2.50E-07
Endrin Endrin ketone	72-20-8 53494-70-5	6.00E-02 2.30E-01	0.036 0.036	0.0012 0.0012	1.19E-07 1.19E-07	0.0013 0.0013	7.36E-08 7.36E-08	0.0013 0.0013	1.87E-08 1.87E-08	0.0012 0.0012	7.22E-09 7.22E-09	0.0012 0.0012	5.00E-08 5.00E-08	0.0013 0.0013	2.50E-07 2.50E-07
Heptachlor Epoxide	1024-57-3	3.90E-05	0.0038	0.0012	1.19E-07 1.19E-07	0.0013	7.36E-08	0.0013	1.87E-08	0.0012	7.22E-09 7.22E-09	0.0012	5.00E-08	0.0013	2.50E-07
Hexachlorobenzene	118-74-1	2.90E-03	0.0038	0.0012	9.93E-05	0.0013	5.66E-05	0.96	1.38E-05	1	6.02E-06	0.0012	4.17E-05	0.0013	1.92E-04
Methoxychlor	72-43-5	2.90E-04 2.00E-02	0.003	0.0024	2.38E-07	0.0024	1.36E-07	0.0024	3.45E-08	0.0024	1.44E-08	0.0024	1.00E-07	0.0024	4.62E-07
trans-Chlordane	5103-74-2	8.10E-04	0.0022	0.0024	1.19E-07	0.0024	7.36E-08	0.0024	1.87E-08	0.0024	7.22E-09	0.0024	5.00E-08	0.0024	2.50E-07
Dioxins and Furans	3100-14-2	0.10L-04	0.0022	0.0012	1.152-07	0.0010	7.50L-00	0.0010	1.07 L-00	0.0012	1.ZZL-00	0.0012	0.00L-00	0.0010	Z.50L-01
2,3,7,8-TCDD-TEQ	DFTEQ-HH	5.10E-08		2.77E-09	2.75E-13	7.11E-09	4.03E-13					1.25E-08	5.21E-13	8.49E-09	1.63E-12
Volatile Organic Compounds (VO		0.102 00		2	202 10	7.1.12 00	1.002 10	<u> </u>	<u> </u>	<u> </u>	1	1.202.00	J.272 10	J	1.002 12
Acetone	67-64-1	1.40E+03	1500	5	4.96E-04	5	2.83E-04	5	7.19E-05	5	3.01E-05	4.1	1.71E-04	5	9.62E-04
Bromodichloromethane	75-27-4	1.70E+01		1	9.93E-05	1	5.66E-05	1	1.44E-05	1	6.02E-06	1	4.17E-05	0.65	1.25E-04
Butyl alcohol, tert-	75-65-0			40	3.97E-03	200	1.13E-02	40	5.76E-04		0.00E+00		0.00E+00		0.00E+00
Chloroform	67-66-3	4.70E+02	3000	1	9.93E-05	1	5.66E-05	1	1.44E-05	1	6.02E-06	1.2	5.00E-05	3.2	6.16E-04
Methyl tert-Butyl Ether (MTBE)	1634-04-4	1.40E+01	11070	1.7	1.69E-04	3.4	1.93E-04	1	1.44E-05	0.39	2.35E-06	1	4.17E-05	1	1.92E-04
Tetrachloroethylene	127-18-4	3.30E+00	800	5.5	5.46E-04	78	4.42E-03	1.8	2.59E-05	1	6.02E-06	0.32	1.33E-05	1	1.92E-04
Trichloroethene	79-01-6	3.00E+01	21	1.2	1.19E-04	48	2.72E-03	0.22	3.17E-06	1	6.02E-06	1	4.17E-05	1	1.92E-04
Vinyl Chloride	75-01-4	2.40E+00	930	1	9.93E-05	1	5.66E-05	1	1.44E-05	1	6.02E-06	1	4.17E-05	1	1.92E-04

Table 5-4 Estimated Surface Water Concentrations from Groundwater Discharge Benning Road Facility RI/FS Project 3400 Benning Rd. NE, Washington DC 20019

						JU Benning Ra. N	L, Washing								
		HHRA		V-4A		MW-4B			V-8A		V-8B		/-11A		V-11B
	CAS	Surface	DAF = 0.0	000030595	DA	F = 0.000077246		DAF = 0.0	000072221	DAF = 0.0	0000493739	DAF = 0).0000768	DAF = 0.	000120482
Chemical	Number	Water Screening Level (µg/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Mass Flux (kg/year)	Groundwater Concentration (μg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)		Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)
Inorganics (Dissolved)	.	-		•				•	•	1	•	1		•	
Aluminum	7429-90-5	2.00E+03	30	9.18E-04	55	4.25E-03	3.37E-02	30	2.17E-03	30	1.48E-03	30	2.30E-03	30	3.61E-03
Antimony	7440-36-0	6.40E+02	2	6.12E-05	2	1.54E-04	1.23E-03	2	1.44E-04	2	9.87E-05	2	1.54E-04	2	2.41E-04
Arsenic	7440-38-2	1.40E-01	1	3.06E-05	0.91	7.03E-05	5.58E-04	1.2	8.67E-05	1	4.94E-05	1	7.68E-05	2.2	2.65E-04
Barium	7440-39-3	3.80E+02	86	2.63E-03	100	7.72E-03	6.13E-02	58	4.19E-03	140	6.91E-03	38	2.92E-03	120	1.45E-02
Beryllium	7440-41-7	2.50E+00	1	3.06E-05	1	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	1	7.68E-05	1	1.20E-04
Cadmium	7440-43-9	9.20E-01	1	3.06E-05	1	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	1	7.68E-05	1	1.20E-04
Chromium	7440-47-3	2.20E+03	2	6.12E-05	2	1.54E-04	1.23E-03	2	1.44E-04	2	9.87E-05	2	1.54E-04	2	2.41E-04
Cobalt	7440-48-4	6.00E-01	30	9.18E-04	1.9	1.47E-04	1.17E-03	5.3	3.83E-04	0.83	4.10E-05	2.2	1.69E-04	0.2	2.41E-05
Copper	7440-50-8	8.00E+01	2	6.12E-05	2	1.54E-04	1.23E-03	2	1.44E-04	2	9.87E-05	2	1.54E-04	2	2.41E-04
Iron	7439-89-6		50	1.53E-03	570	4.40E-02	3.50E-01	50	3.61E-03	50	2.47E-03	50	3.84E-03	50	6.02E-03
Lead	7439-92-1	1.50E+01	1	3.06E-05	1	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	1	7.68E-05	1	1.20E-04
Manganese	7439-96-5	1.00E+02	5000	1.53E-01	950	7.34E-02	5.83E-01	1300	9.39E-02	280	1.38E-02	430	3.30E-02	360	4.34E-02
Mercury	7439-97-6	1.50E-01	0.2	6.12E-06	0.2	1.54E-05	1.23E-04	0.2	1.44E-05	0.2	9.87E-06	0.2	1.54E-05	0.2	2.41E-05
Nickel	7440-02-0	4.60E+03	5.7	1.74E-04	1.6	1.24E-04	9.81E-04	2	1.44E-04	0.87	4.30E-05	1.1	8.45E-05	0.33	3.98E-05
Selenium	7782-49-2	4.20E+03	5	1.53E-04	5	3.86E-04	3.07E-03	5	3.61E-04	5	2.47E-04	5	3.84E-04	5	6.02E-04
Silver	7440-22-4	6.50E+04	1	3.06E-05	1	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	1	7.68E-05	1	1.20E-04
Thallium	7440-28-0	4.70E-01	1	3.06E-05	1	7.72E-05	6.13E-04	0.043	3.11E-06	1	4.94E-05	1	7.68E-05	1	1.20E-04
Vanadium	7440-62-2	8.60E+00	2.6	7.95E-05	1.4	1.08E-04	8.59E-04	4.1	2.96E-04	4.2	2.07E-04	5.8	4.45E-04	3.8	4.58E-04
Zinc	7440-66-6	2.60E+04	5	1.53E-04	5	3.86E-04	3.07E-03	5	3.61E-04	5	2.47E-04	5	3.84E-04	5	6.02E-04
Inorganics (Total)		 				<u> </u>	0.0.2.00	ļ.	<u> </u>	<u> </u>	-		ļ.	ļ.	<u> </u>
Aluminum	7429-90-5	2.00E+03	500	1.53E-02	600	4.63E-02	3.68E-01	1600	1.16E-01	990	4.89E-02	320	2.46E-02	1300	1.57E-01
Antimony	7440-36-0	6.40E+02	2	6.12E-05	2	1.54E-04	1.23E-03	20	1.44E-03	2	9.87E-05	2	1.54E-04	2	2.41E-04
Arsenic	7440-38-2	1.40E-01	8	2.45E-04	5.2	4.02E-04	3.19E-03	14	1.01E-03	3.3	1.63E-04	3.4	2.61E-04	5.4	6.51E-04
Barium	7440-39-3	3.80E+02	110	3.37E-03	120	9.27E-03	7.36E-02	100	7.22E-03	180	8.89E-03	42	3.23E-03	180	2.17E-02
Beryllium	7440-41-7	2.50E+00	0.041	1.25E-06	0.064	4.94E-06	3.93E-05	10	7.22E-04	0.053	2.62E-06	0.048	3.69E-06	0.14	1.69E-05
Cadmium	7440-43-9	9.20E-01	1	3.06E-05	1	7.72E-05	6.13E-04	10	7.22E-04	1	4.94E-05	1	7.68E-05	1	1.20E-04
Chromium	7440-47-3	2.20E+03	4.8	1.47E-04	6.1	4.71E-04	3.74E-03	20	1.44E-03	2.2	1.09E-04	8.1	6.22E-04	7.8	9.40E-04
Cobalt	7440-48-4	6.00E-01	33	1.01E-03	2.8	2.16E-04	1.72E-03	7.9	5.71E-04	2.1	1.04E-04	2.6	2.00E-04	2.5	3.01E-04
Copper	7440-50-8	8.00E+01	2.4	7.34E-05	2.7	2.09E-04	1.66E-03	20	1.44E-03	4.5	2.22E-04	3.2	2.46E-04	5	6.02E-04
Iron	7439-89-6	0.002 *01	12000	3.67E-01	7600	5.87E-01	4.66E+00	7900	5.71E-01	5700	2.81E-01	1800	1.38E-01	17000	2.05E+00
Lead	7439-92-1	1.50E+01	0.73	2.23E-05	0.75	5.79E-05		10	7.22E-04	3.2	1.58E-04	1	7.68E-05	2.2	2.65E-04
Manganese	7439-96-5	1.00E+02	5700	1.74E-01	1000	7.72E-02	4.60E-04	1500	1.08E-01	330	1.63E-02	440	3.38E-02	520	6.27E-02
Mercury	7439-97-6	1.50E-01	0.2	6.12E-06	0.2	1.54E-05	6.13E-01	0.2	1.44E-05	0.2	9.87E-06	0.2	1.54E-05	0.2	2.41E-05
Silver	7440-22-4	6.50E+04	1	3.06E-05	1	7.72E-05	1.23E-04 6.13E-04	10	7.22E-04	1	4.94E-05	1	7.68E-05	1	1.20E-04
Thallium	7440-28-0	4.70E-01	1	3.06E-05	1	7.72E-05	6.13E-04	10	7.22E-04 7.22E-04	1 1	4.94E-05	1	7.68E-05	1	1.20E-04
Vanadium	7440-62-2	8.60E+00	1	3.06E-05	1	7.72E-05	6.13E-04 6.13E-04	52	3.76E-03	23	1.14E-03	3.6	2.76E-04	4.8	5.78E-04
Zinc	7440-66-6	2.60E+04	5	1.53E-04	6.7	5.18E-04	1	50	3.61E-03	7.5	3.70E-04	5.0	3.84E-04	8.5	1.02E-03
Polycyclic Aromatic Hydrocarb		2.002.04			V.,	J. 10L 104	4.11E-03	1 00	J 0.01E-00	1 ,.0	J.7 JL-04		J.07E-04	1 0.0	1.022-00
4-Methylphenol	106-44-5	1.90E+02	1.1	3.37E-05	1	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	1	7.68E-05	0.96	1.16E-04
Acetophenone	98-86-2	1.90E+02	2.2	6.73E-05	2.1	1.62E-04	6.13E-04 1.29E-03	2	1.44E-04	2.1	1.04E-04	2	1.54E-04	1.9	2.29E-04
Benzaldehyde	100-52-7	1.90E+01	2.2	6.73E-05	2.1	1.62E-04	+	2	1.44E-04	2.1	1.04E-04	2	1.54E-04	1.9	2.29E-04
Benzo(a)anthracene	56-55-3	1.80E-02	0.22	6.73E-06	0.21	1.62E-05	1.29E-03	0.2	1.44E-04 1.44E-05	0.21	1.04E-04 1.04E-05	0.2	1.54E-04 1.54E-05	0.19	2.29E-04 2.29E-05
` '	50-32-8	1.80E-02	0.22	6.73E-06	0.21	1.62E-05	1.29E-04	0.2	1.44E-05	0.21	1.04E-05		1.54E-05	0.19	2.29E-05 2.29E-05
Benzo(a)pyrene							1.29E-04					0.2			
Benzo(b)fluoranthene	205-99-2	1.80E-02	0.22	6.73E-06	0.21	1.62E-05	1.29E-04	0.2	1.44E-05	0.21	1.04E-05	0.2	1.54E-05	0.19	2.29E-05
Benzo(k)fluoranthene	207-08-9	1.80E-02	0.22	6.73E-06	0.21	1.62E-05	1.29E-04	0.2	1.44E-05	0.21	1.04E-05	0.2	1.54E-05	0.19	2.29E-05
bis-(2-Ethylhexyl)phthalate	117-81-7	2.20E+00	2.2	6.73E-05	2.1	1.62E-04	1.29E-03	2	1.44E-04	2.1	1.04E-04	2	1.54E-04	1.9	2.29E-04
Butylbenzylphthalate	85-68-7	1.90E+03	1.1	3.37E-05	1 5.0	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	1	7.68E-05	0.96	1.16E-04
Caprolactam	105-60-2	9.90E+02	5.4	1.65E-04	5.2	4.02E-04	3.19E-03	5	3.61E-04	5.2	2.57E-04	5	3.84E-04	4.8	5.78E-04

Table 5-4 Estimated Surface Water Concentrations from Groundwater Discharge Benning Road Facility RI/FS Project 3400 Benning Rd. NE, Washington DC 20019

		HHRA		/-4A	D.4	MW-4B			/-8A		V-8B		/-11A		/-11B
<u> </u>	CAS	Surface	DAF = 0.0	000030595	DA	F = 0.000077246		DAF = 0.0	000072221	DAF = 0.0	000493739	DAF = C	0.0000768	DAF = 0.	000120482
Chemical	Number	Water Screening Level (µg/L)	Groundwater Concentration (μg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Mass Flux (kg/year)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (μg/L)	Estimated Surface Water Concentration (ug/L)	Groundwater Concentration (µg/L)	Estimated Surface Water Concentration (ug/L)
Carbazole	86-74-8	2.90E+01	1.1	3.37E-05	1	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	1	7.68E-05	0.96	1.16E-04
Chrysene	218-01-9	1.80E-02	0.22	6.73E-06	0.21	1.62E-05	1.29E-04	0.2	1.44E-05	0.21	1.04E-05	0.2	1.54E-05	0.19	2.29E-05
Dibenzo(a,h)anthracene	53-70-3	1.80E-02	0.22	6.73E-06	0.21	1.62E-05	1.29E-04	0.2	1.44E-05	0.21	1.04E-05	0.2	1.54E-05	0.19	2.29E-05
Di-n-octylphthalate	117-84-0	2.00E+01	1.1	3.37E-05	1	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	1	7.68E-05	0.96	1.16E-04
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-02	0.22	6.73E-06	0.21	1.62E-05	1.29E-04	0.2	1.44E-05	0.21	1.04E-05	0.2	1.54E-05	0.19	2.29E-05
Naphthalene	91-20-3	1.70E-01	0.22	6.73E-06	0.21	1.62E-05	1.29E-04	0.046	3.32E-06	0.21	1.04E-05	0.2	1.54E-05	0.19	2.29E-05
Pyrene	129-00-0	4.00E+03	0.22	6.73E-06	0.21	1.62E-05	1.29E-04	0.2	1.44E-05	0.21	1.04E-05	0.2	1.54E-05	0.19	2.29E-05
Total High-molecular-weight PAHs	TOT-PAH-HMW		0.22	6.73E-06	0.21	1.62E-05	1.29E-04	0.2	1.44E-05	0.21	1.04E-05	0.2	1.54E-05	0.19	2.29E-05
Total Low-molecular-weight PAHs	TOT-PAH-LMW		0.22	6.73E-06	0.21	1.62E-05	1.29E-04	0.046	3.32E-06	0.21	1.04E-05	0.2	1.54E-05	0.19	2.29E-05
Total PAHs (sum 16)	TOT-PAH		0.22	6.73E-06	0.21	1.62E-05	1.29E-04	0.046	3.32E-06	0.21	1.04E-05	0.2	1.54E-05	0.19	2.29E-05
Polychlorinated Biphenyl (PCB)	1.0		0.22	002 00	<u> </u>		1.29L-04	0.0.0	0.022 00	0.2.		0.2		00	
PCB-TEQ	PCBTEQ-HH		6.52E-10	1.99E-14		0.00E+00	0.00E+00		0.00E+00	6.92E-06	3.42E-10	1.31E-09	1.01E-13		0.00E+00
Total PCBs	TOT-PCB-ARO-C	6.40E-05	0.0098	3.00E-07	0.0094	7.26E-07	5.76E-06	0.0097	7.01E-07	0.11	5.43E-06	0.0095	7.30E-07	0.0096	1.16E-06
Pesticides	I.	1	L	l l		L			I.	- I	I	I	I	I	
4,4'-DDD	72-54-8	3.10E-04	0.0013	3.98E-08	0.0013	1.00E-07	7.97E-07	0.0013	9.39E-08	0.0013	6.42E-08	0.0012	9.22E-08	0.0013	1.57E-07
4,4'-DDE	72-55-9	2.20E-04	0.0013	3.98E-08	0.0013	1.00E-07	7.97E-07	0.0013	9.39E-08	0.001	4.94E-08	0.0012	9.22E-08	0.0013	1.57E-07
4,4'-DDT	50-29-3	2.20E-04	0.0013	3.98E-08	0.0013	1.00E-07	7.97E-07	0.0013	9.39E-08	0.0037	1.83E-07	0.0012	9.22E-08	0.0028	3.37E-07
Aldrin	309-00-2	5.00E-05	0.0013	3.98E-08	0.0013	1.00E-07	7.97E-07	0.0013	9.39E-08	0.0013	6.42E-08	0.0012	9.22E-08	0.0013	1.57E-07
alpha-Chlordane	5103-71-9	8.10E-04	0.0013	3.98E-08	0.0013	1.00E-07	7.97E-07	0.0013	9.39E-08	0.0013	6.42E-08	0.0012	9.22E-08	0.0013	1.57E-07
beta-BHC	319-85-7	1.70E-02	0.0013	3.98E-08	0.0013	1.00E-07	7.97E-07	0.0013	9.39E-08	0.0013	6.42E-08	0.0012	9.22E-08	0.0013	1.57E-07
cis-Chlordane	5103-71-9	8.10E-04	0.0013	3.98E-08	0.0013	1.00E-07	7.97E-07	0.0013	9.39E-08	0.0013	6.42E-08	0.0012	9.22E-08	0.0013	1.57E-07
Dieldrin	60-57-1	5.40E-05	0.0013	3.98E-08	0.0013	1.00E-07	7.97E-07	0.0013	9.39E-08	0.0022	1.09E-07	0.0012	9.22E-08	0.0013	1.57E-07
Endosulfan Sulfate	1031-07-8	8.90E+01	0.0013	3.98E-08	0.0013	1.00E-07	7.97E-07	0.0013	9.39E-08	0.0013	6.42E-08	0.0012	9.22E-08	0.0013	1.57E-07
Endrin Endrin ketone	72-20-8 53494-70-5	6.00E-02 2.30E-01	0.0013 0.0013	3.98E-08 3.98E-08	0.0013 0.0013	1.00E-07 1.00E-07	7.97E-07	0.0013 0.0013	9.39E-08 9.39E-08	0.002 0.0013	9.87E-08 6.42E-08	0.0012 0.0012	9.22E-08 9.22E-08	0.0013 0.0013	1.57E-07 1.57E-07
Heptachlor Epoxide	1024-57-3	3.90E-01	0.0013	3.98E-08	0.0013	1.00E-07 1.00E-07	7.97E-07 7.97E-07	0.0013	9.39E-08	0.0013	6.42E-08	0.0012	9.22E-08 6.22E-08	0.0013	1.57E-07 1.57E-07
Hexachlorobenzene	118-74-1	2.90E-04	1.1	3.37E-05	1	7.72E-05	6.13E-04	1	7.22E-05	0.0013	4.94E-05	1	7.68E-05	0.96	1.16E-04
Methoxychlor	72-43-5	2.00E-02	0.0025	7.65E-08	0.0013	1.00E-07	7.97E-07	0.0024	1.73E-07	0.0025	1.23E-07	0.0012	9.22E-08	0.0024	2.89E-07
trans-Chlordane	5103-74-2	8.10E-04	0.0013	3.98E-08	0.0013	1.00E-07	7.97E-07	0.0024	9.39E-08	0.0023	5.92E-08	0.0012	9.22E-08	0.0013	1.57E-07
Dioxins and Furans	0100112	0.102 01	0.0010	0.002 00	0.0010	1.002 07	7.07 2 07	0.0010	0.002 00	0.0012	0.022 00	0.0012	0.222 00	0.0010	1.07 2 07
2,3,7,8-TCDD-TEQ	DFTEQ-HH	5.10E-08	1.28E-09	3.92E-14	2.53E-06	1.95E-10	1.55E-09		0.00E+00			9.81E-07	7.53E-11	1.35E-06	1.63E-10
Volatile Organic Compounds (VO	Cs)	4		 			<u> </u>			+	!		!		
Acetone	67-64-1	1.40E+03	5	1.53E-04	2.8	2.16E-04	1.72E-03	5	3.61E-04	5	2.47E-04	5	3.84E-04	5	6.02E-04
Bromodichloromethane	75-27-4	1.70E+01	1	3.06E-05	1	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	1	7.68E-05	1	1.20E-04
Butyl alcohol, tert-	75-65-0			0.00E+00		0.00E+00	0.00E+00		0.00E+00		0.00E+00		0.00E+00	40	4.82E-03
Chloroform	67-66-3	4.70E+02	0.22	6.73E-06	1.4	1.08E-04	8.59E-04	1.2	8.67E-05	3.2	1.58E-04	1	7.68E-05	1	1.20E-04
Methyl tert-Butyl Ether (MTBE)	1634-04-4	1.40E+01	0.29	8.87E-06	1	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	1	7.68E-05	1	1.20E-04
Tetrachloroethylene	127-18-4	3.30E+00	0.25	7.65E-06	1	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	0.18	1.38E-05	1	1.20E-04
Trichloroethene	79-01-6	3.00E+01	1	3.06E-05	1	7.72E-05	6.13E-04	1	7.22E-05	1	4.94E-05	1	7.68E-05	1	1.20E-04
Vinyl Chloride	75-01-4	2.40E+00	Notes:	3.06E-05	1	7.72E-05	6.13E-04	1	7.22E-05] 1	4.94E-05	1	7.68E-05	1	1.20E-04

Notes:

Dilution Attenuation Factor (DAF) = (Groundwater flux [ft³/s])/7Q10[13.9 ft³/s)

N/A = Not Applicable

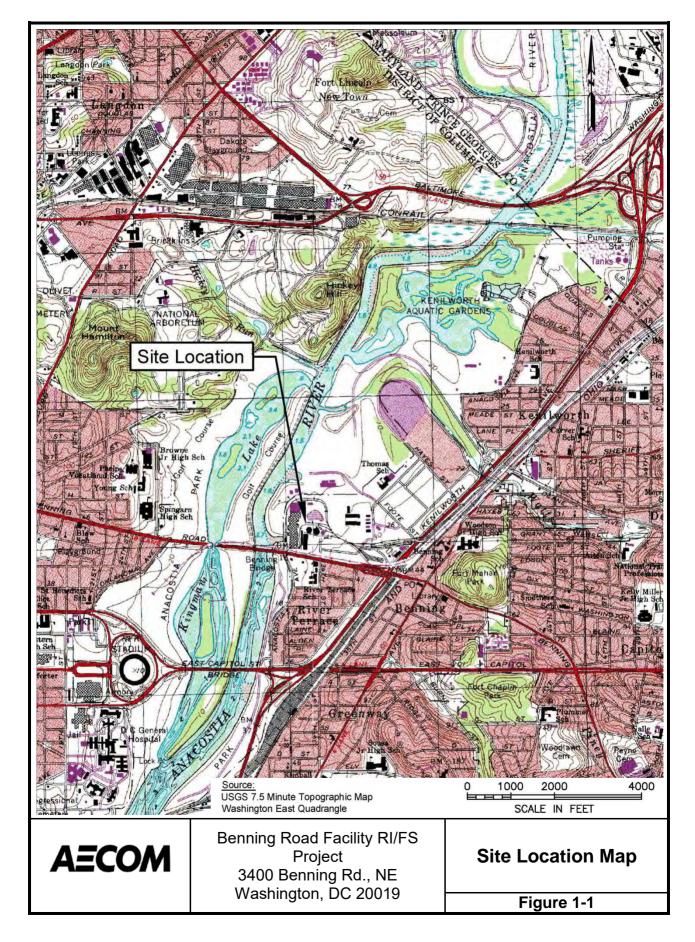
For non-detected concentrations, detection limit is used.

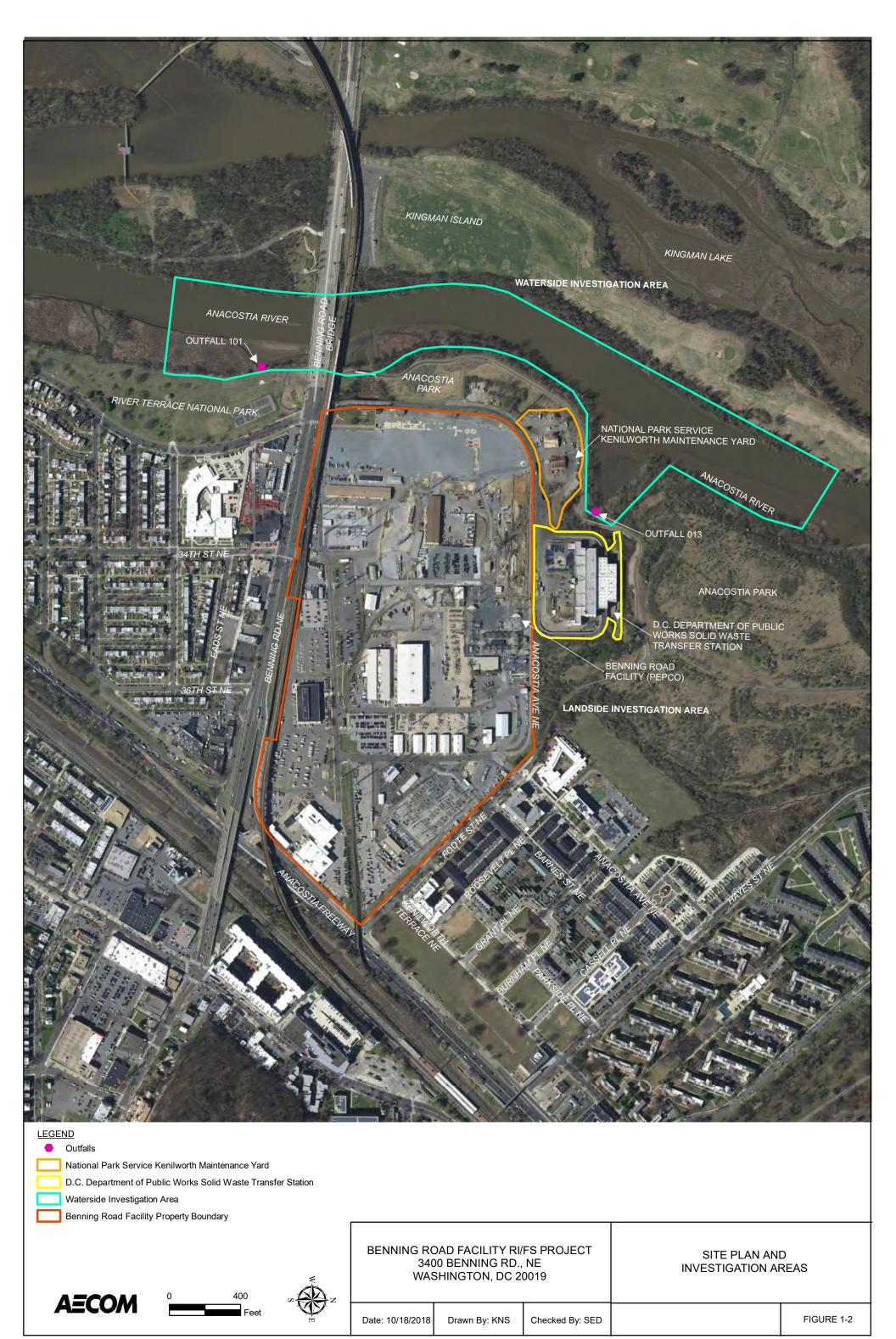
For duplicate samples the higher of the parent and duplicate concentrations is used.

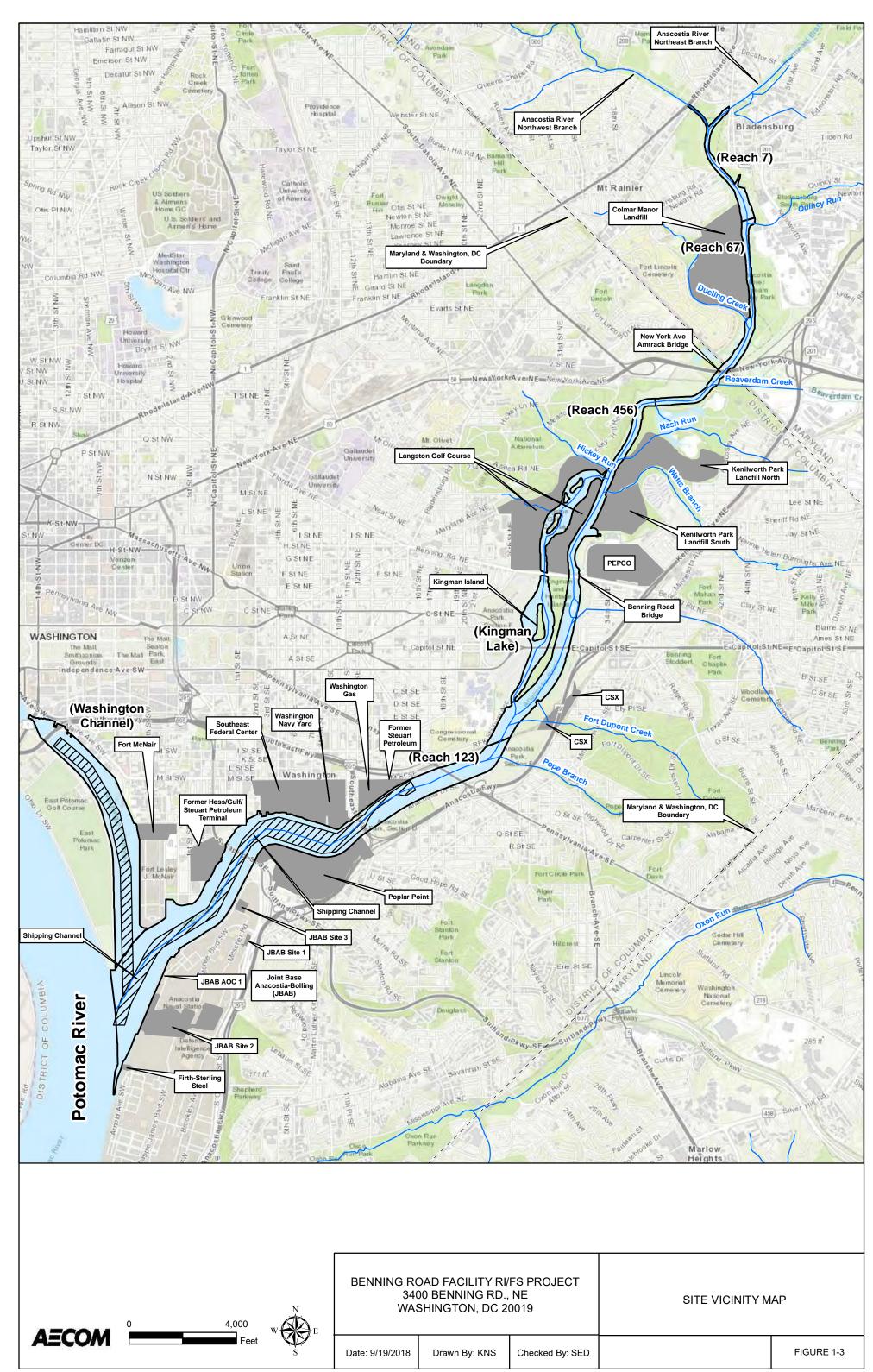
Refer to the HHRA and ERA Appendices for the screening level sources and determination process.

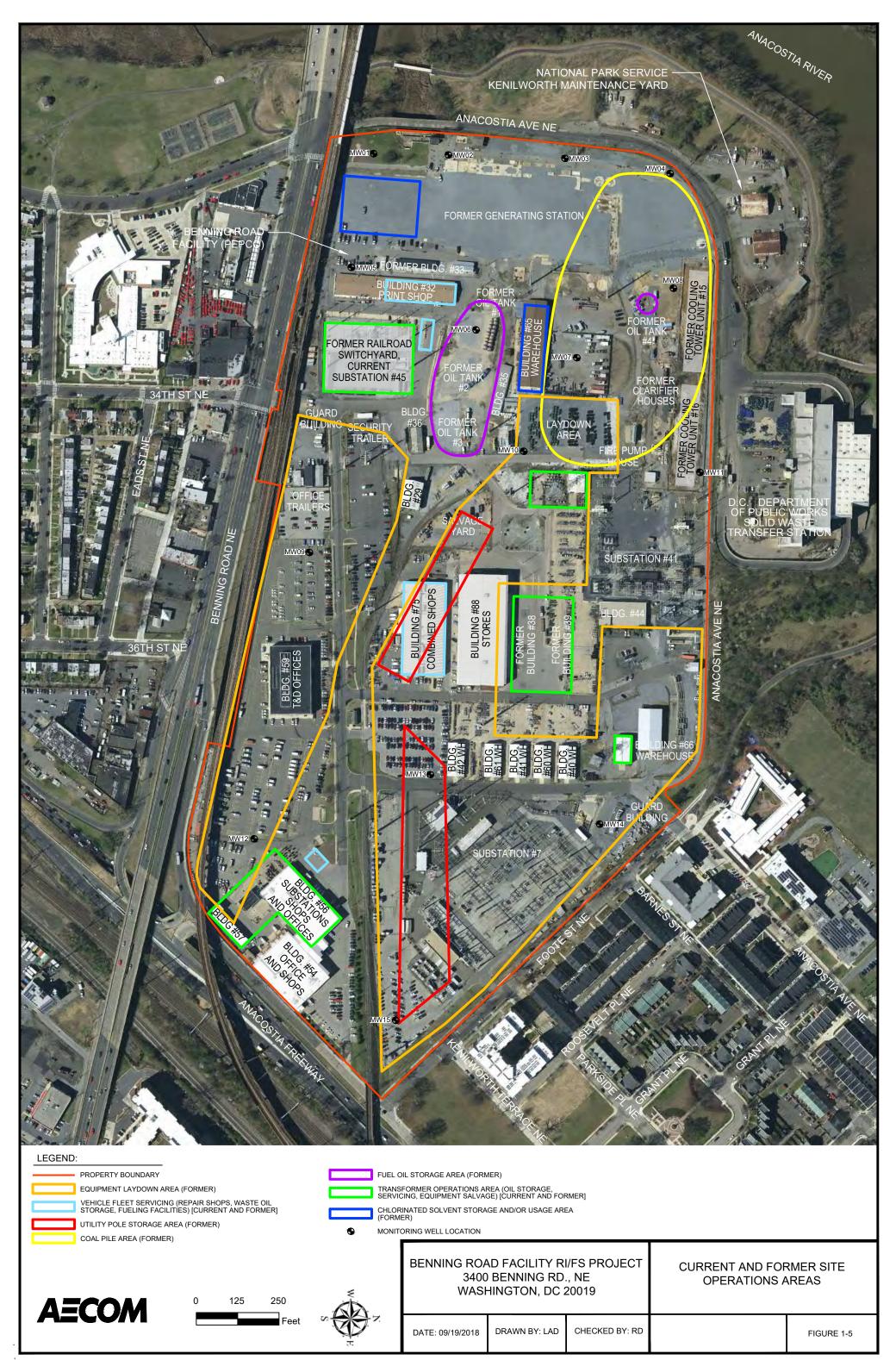
ug/L = microgram per liter

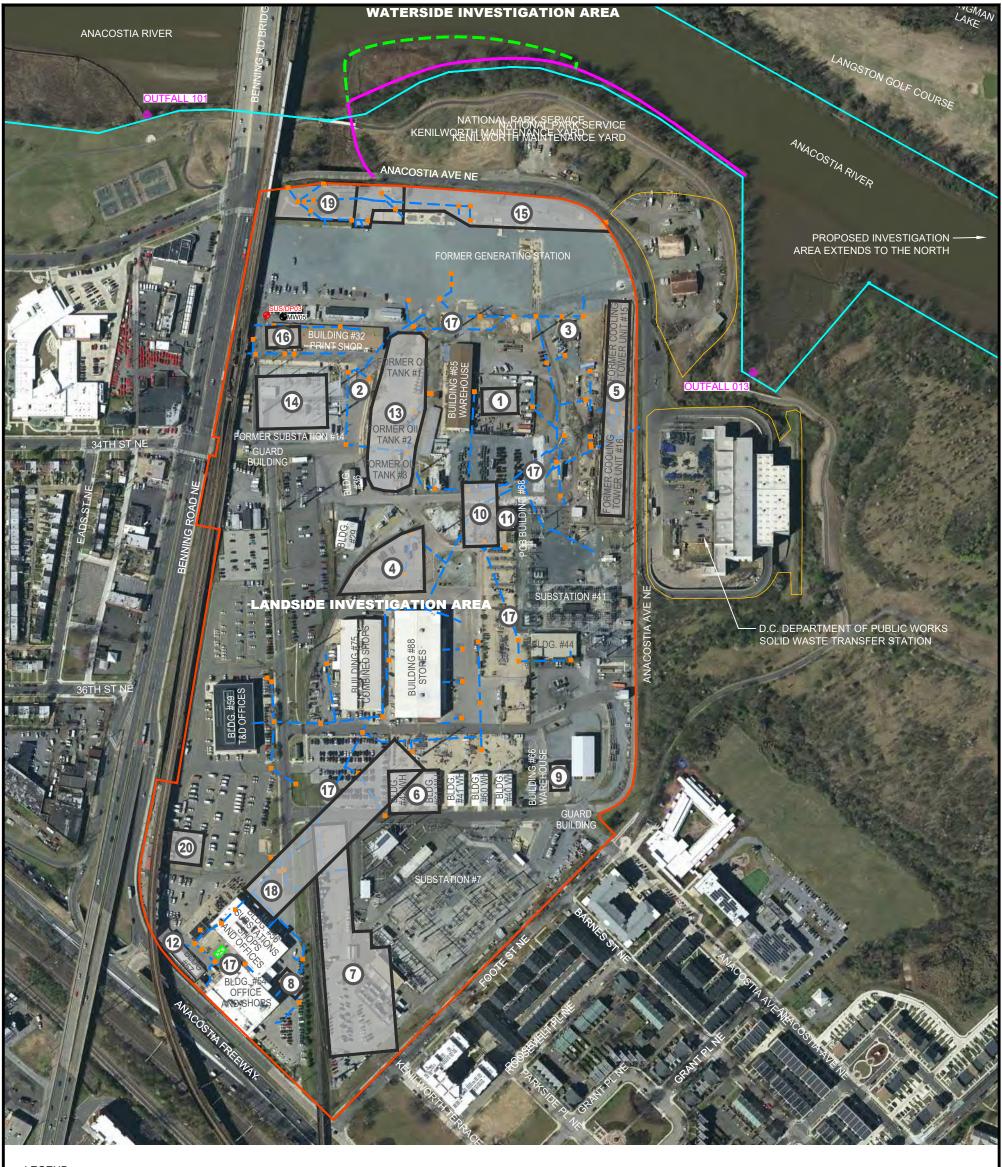
ft³/s = cubic feet per second


HHRA = Human Health Risk Assessment


ERA = Environmental Risk Assessment


Highlighted cells indicate exceedance of the HHRA or ERA Screening Levels in the estimated surface water concentration


FIGURES



TARGET AREA #

TARGET AREA

NPDES OUTFALL TO ANACOSTIA RIVER

BENNING RD FACILITY PROPERTY BOUNDARY

WATERSIDE INVESTIGATION AREA

STORM WATER UTILITY

APPROXIMATE FORMER CONSTRUCTED WETLANDS BOUNDARY

APPROXIMATE LOCATION OF SEA WALL 15,000 GALLON TRANSFORMER OIL UST

TARGET AREA KEY:

- (1) FORMER SLUDGE DEWATERING AREA
- (2) BENNING FUELING ISLAND
- FORMER 50,000 GAL. AST AND 15,000 GAL. UST (3) No. 2 FUEL OIL
- 4 2003 SALVAGE YARD INVESTIGATION
- (5) 1995 CLEANUP AREA
- (6) 1991 CLEANUP AREA
- (7) 1988 PARKING LOT CLEANUP AREA
- (8) 1985 EXCAVATION AREA
- (9) GREEN TAG STORAGE AREA
- (10) RED TAG STORAGE AREA
- (11) BUILDING #68 (PCB BUILDING)
- (12) BUILDING #57

- FORMER BULK STORAGE ASTs WITH LOADING RACK 550 GALLON FUEL OIL UST AND 2,000 GALLON USED OIL UST
- (14) FORMER RAILROAD SWITCHYARD
- (15) GENERATING STATION TRANSFORMERS
- (16) PRINT SHOP
- (17) STORM DRAIN SYSTEM
- (18) KENILWORTH FUELING ISLAND MTBE PLUME
- (19) PCE AND NAPHTHALENE IN GROUNDWATER
- (20) PAHs IN SOIL

BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019

DRAWN BY: JB CHECKED BY: RD

TARGET INVESTIGATION AREAS

FIGURE 1-6

AECOM

Benning Road Facility RI Report Final February 2020

DATE: 09/19/2018

AECOM

Benning Road Facility Property Boundary

Pervious (Grass and Loose Stone)

Impervious (Paved and Hard-Packed Gravel)

Former Power Plant Building Foundation

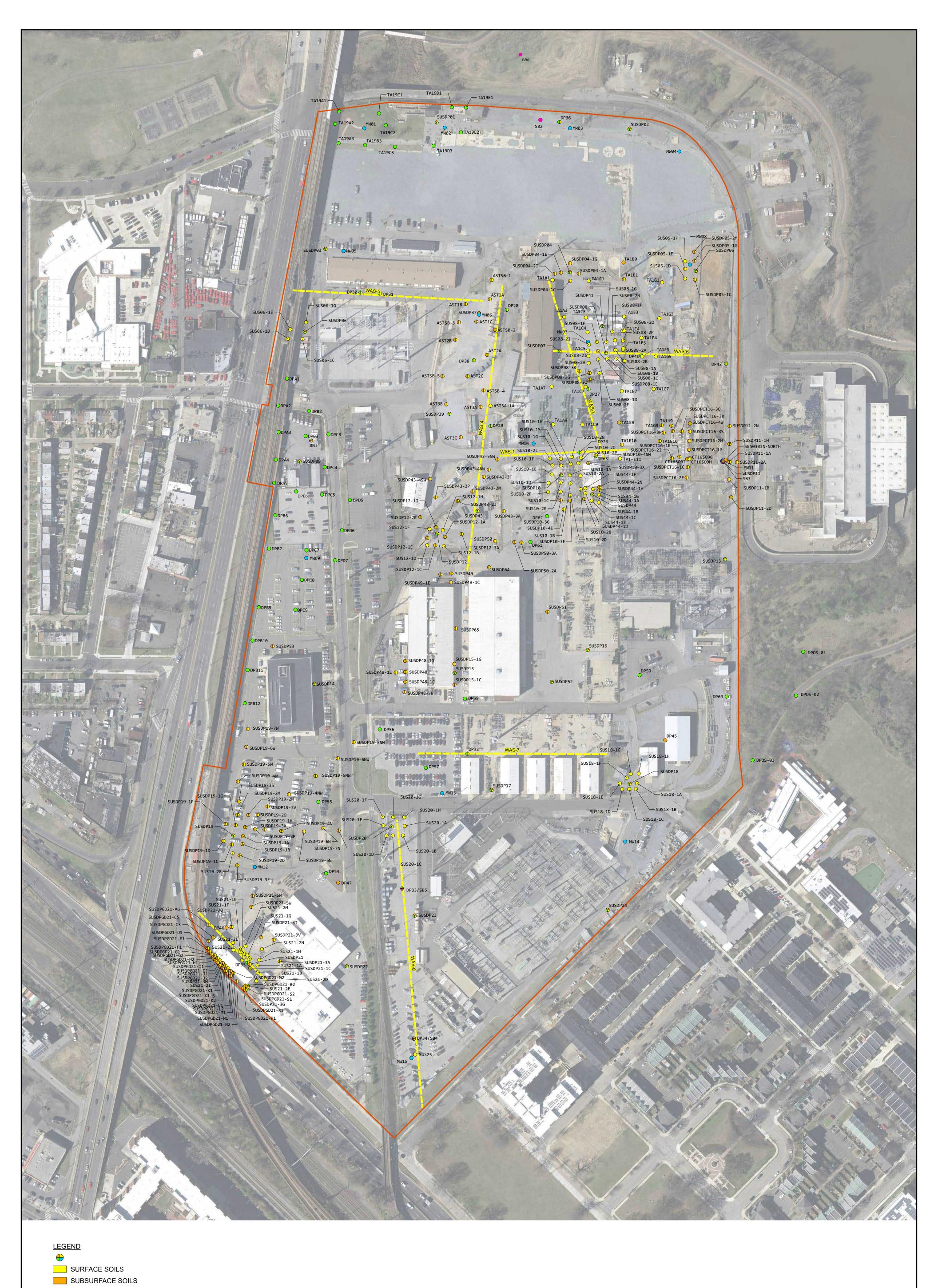
400 ×

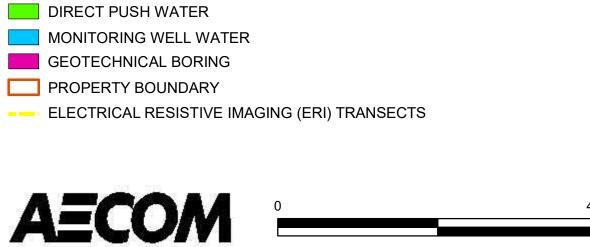
BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019

PERVIOUS VS IMPERVIOUS SITE SURFACE COVER

FIGURE 1-7

Date: 9/20/2018 Drawn By: KNS Checked By: SED

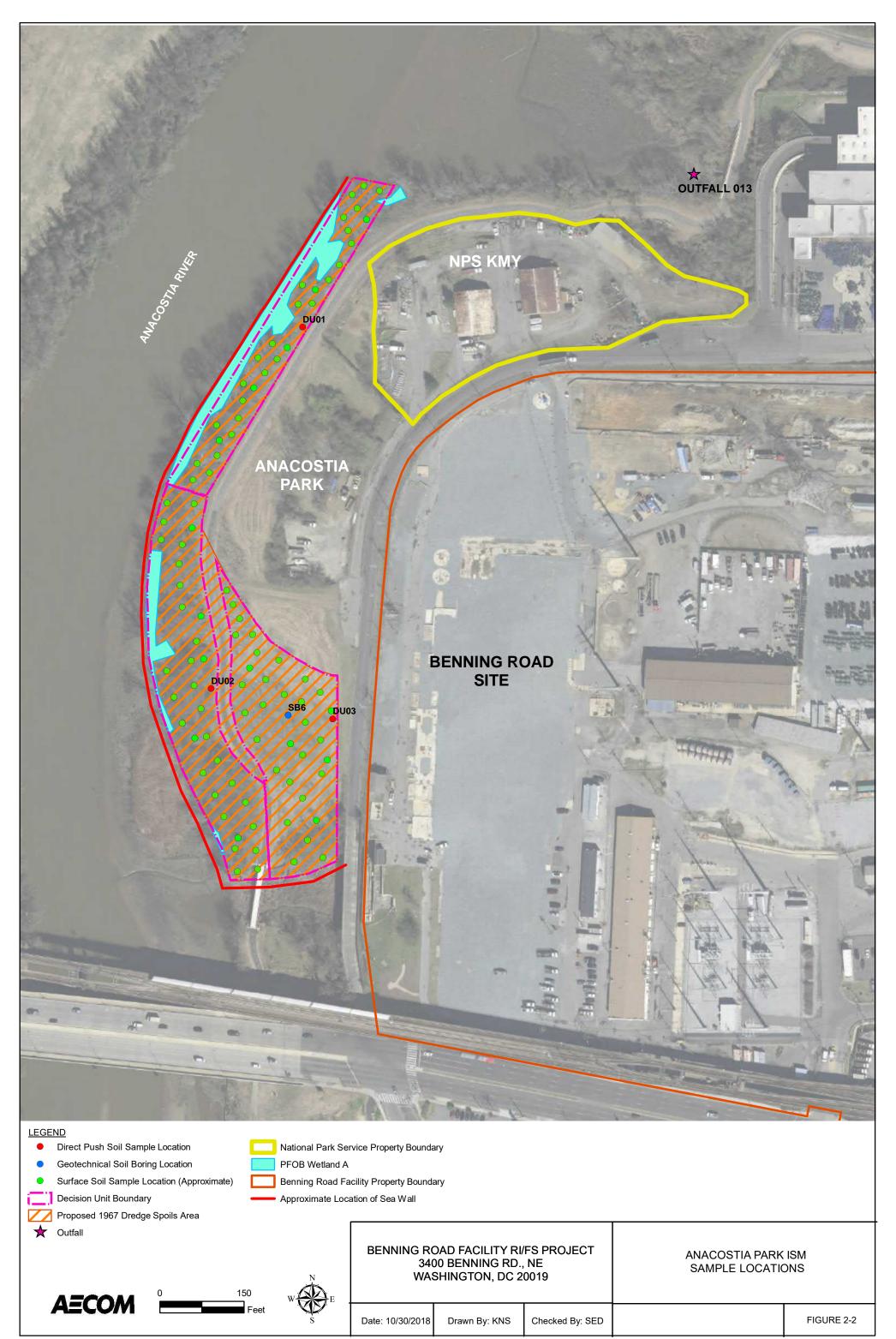


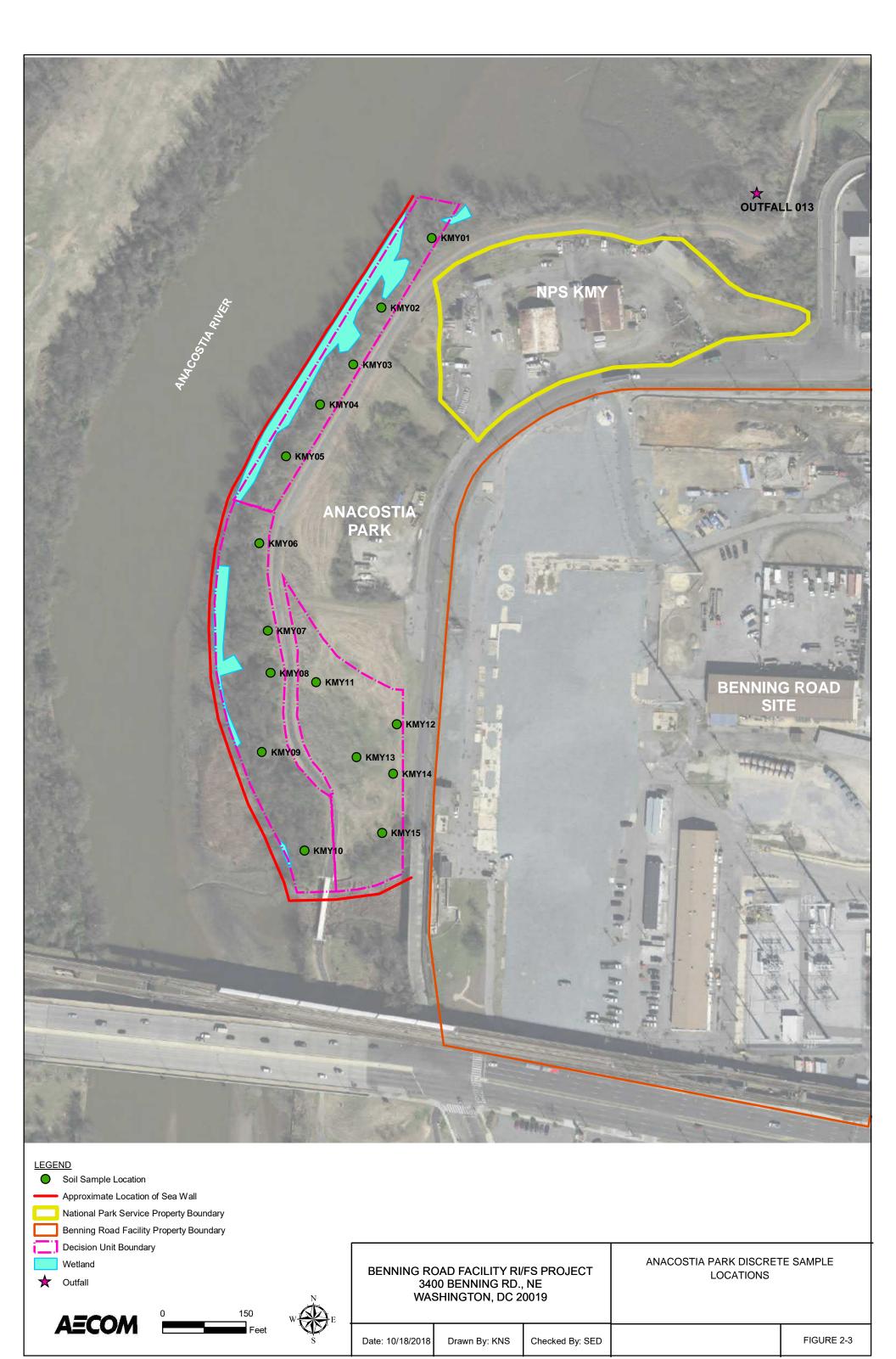

AECOM

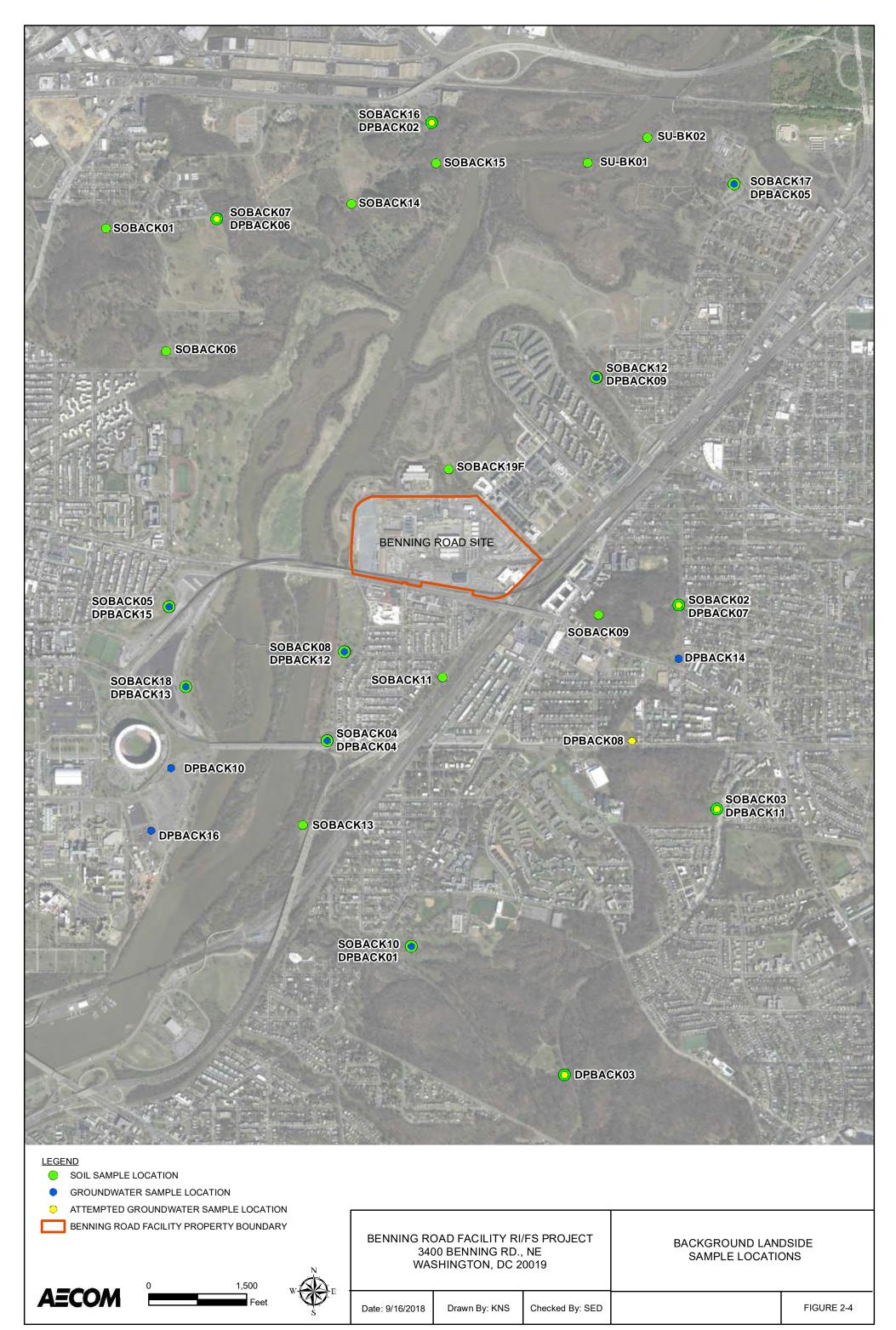
Benning Road Facility RI/FS Project 3400 Benning Rd., NE Washington, DC 20019

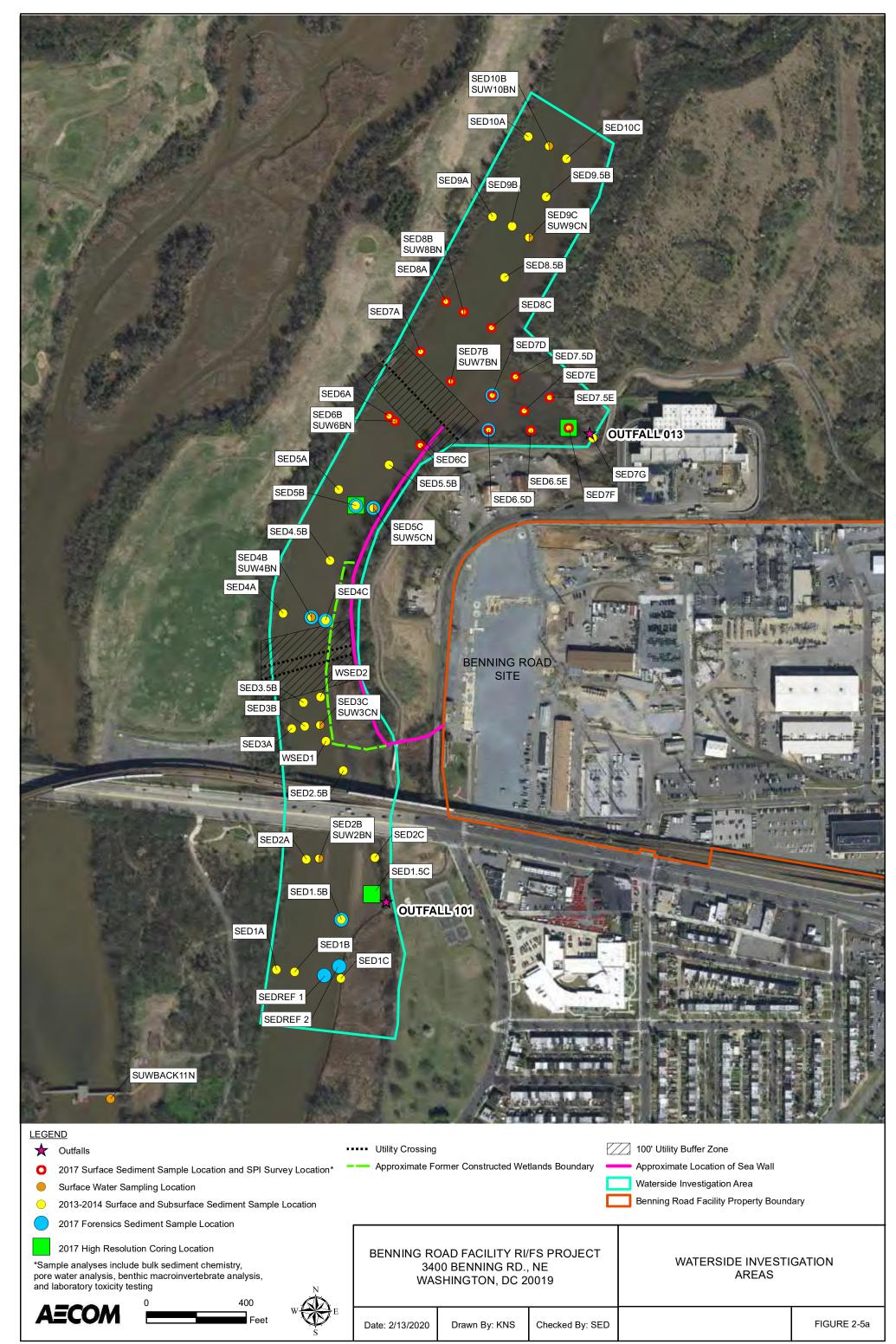
Outfall 101 and Adjacent Outfall

Figure 1-8B

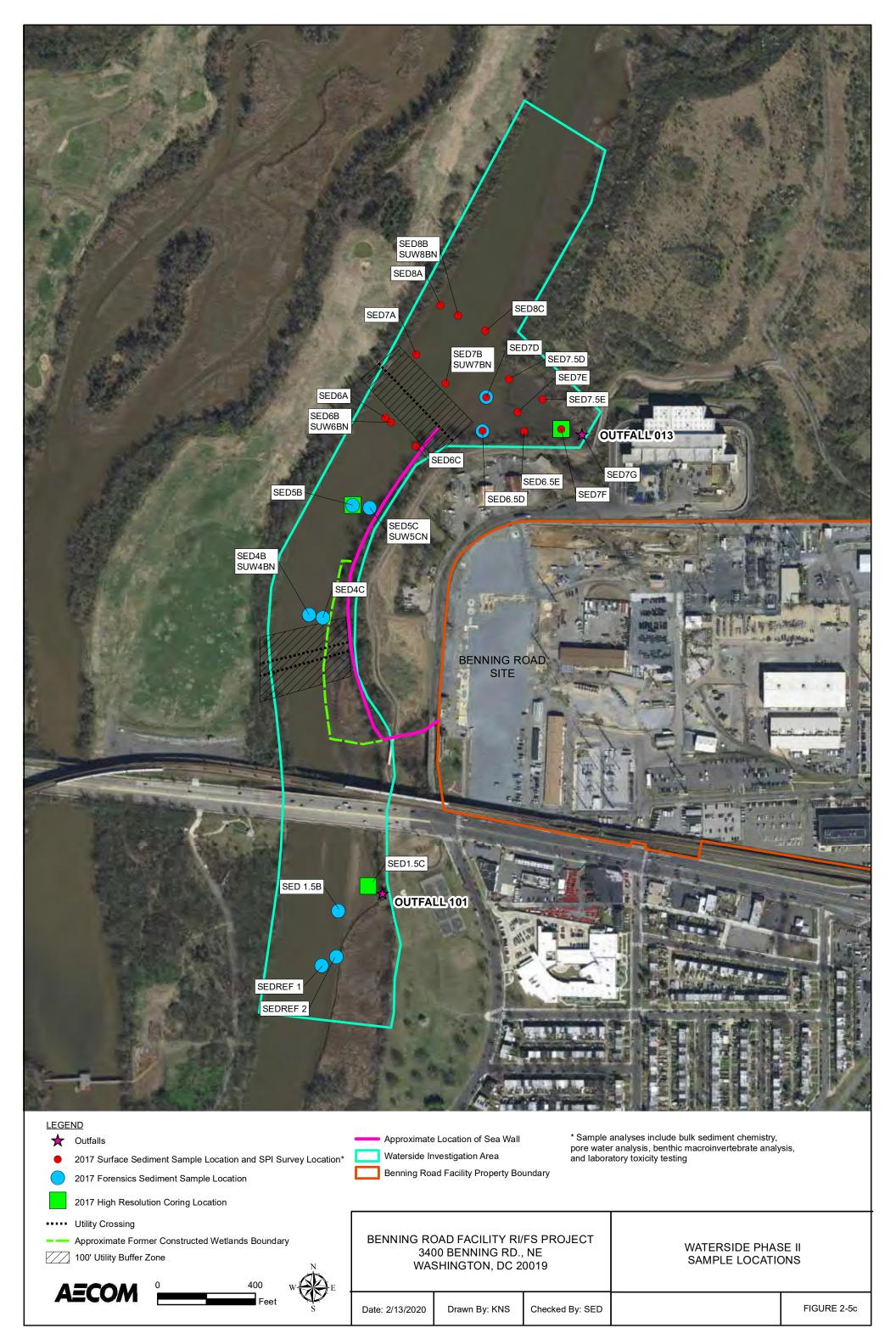


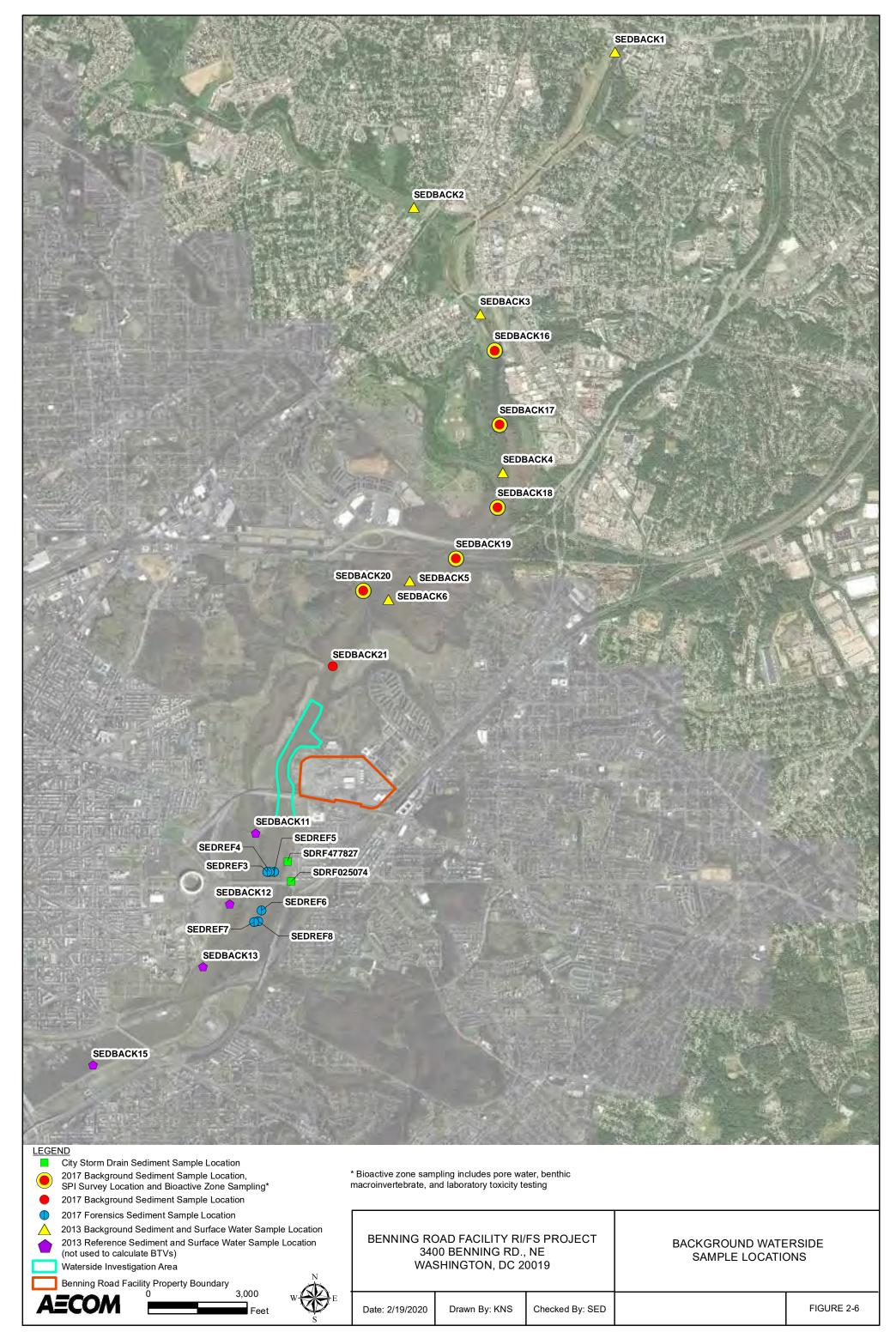

N N N

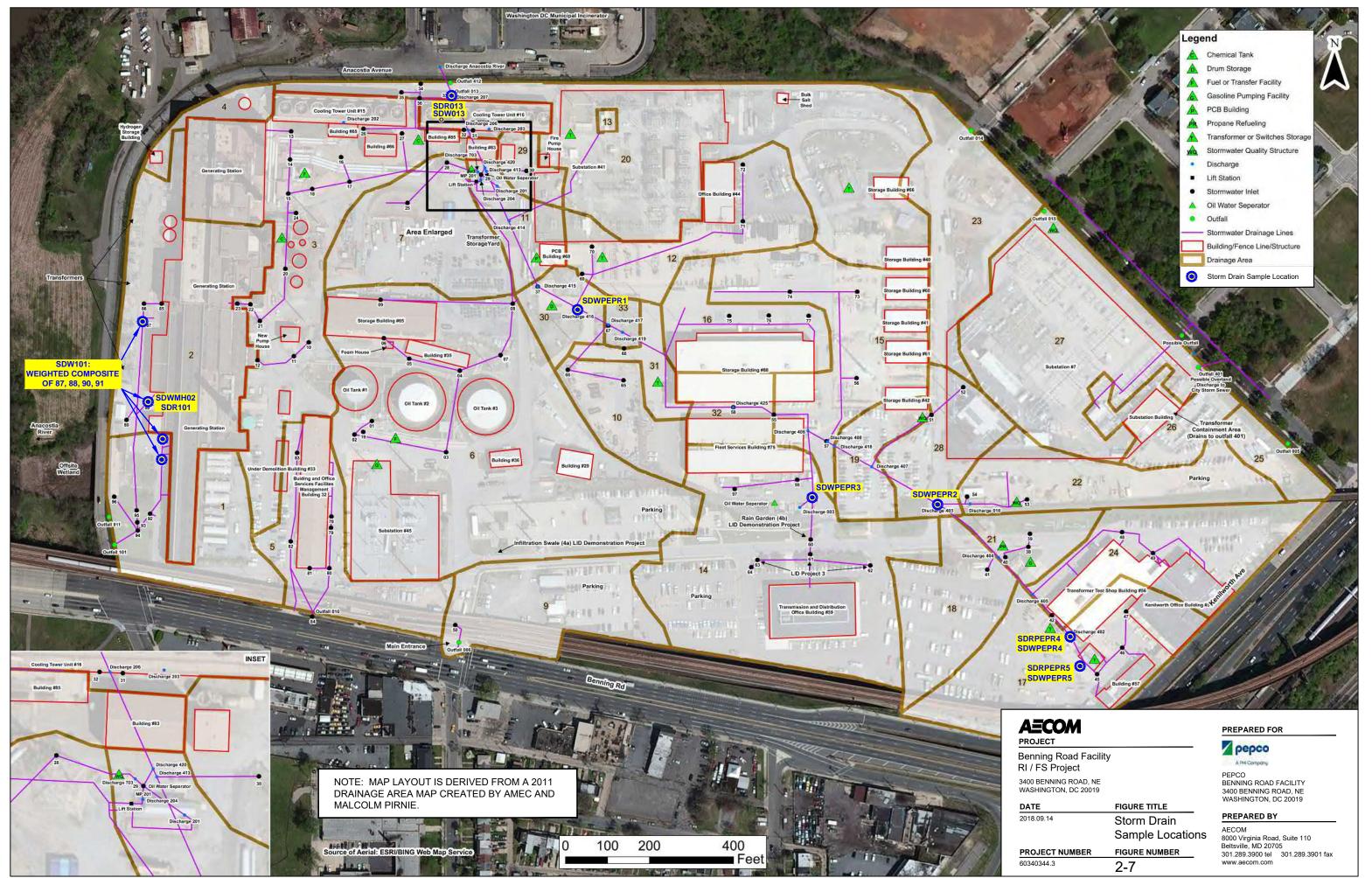
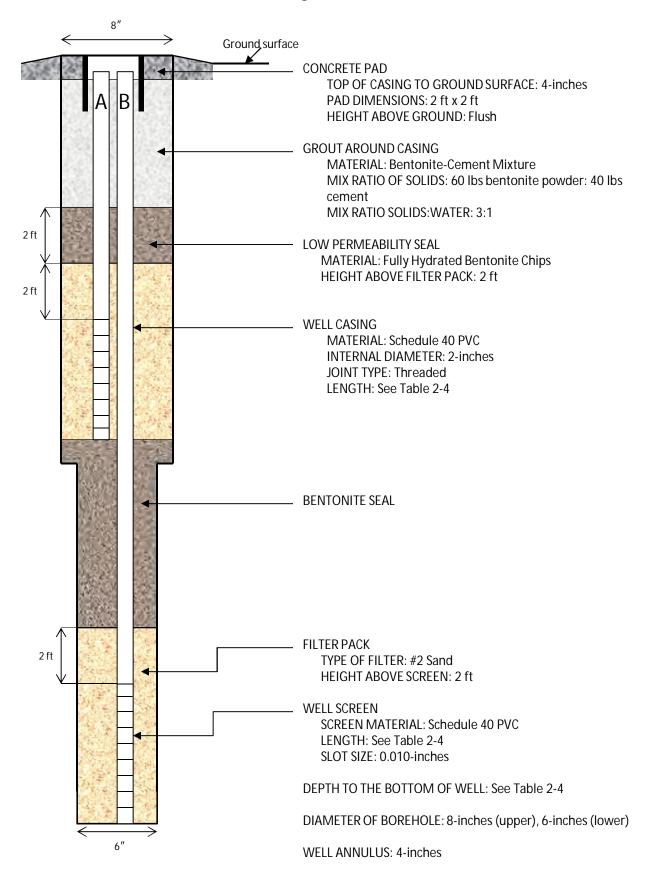
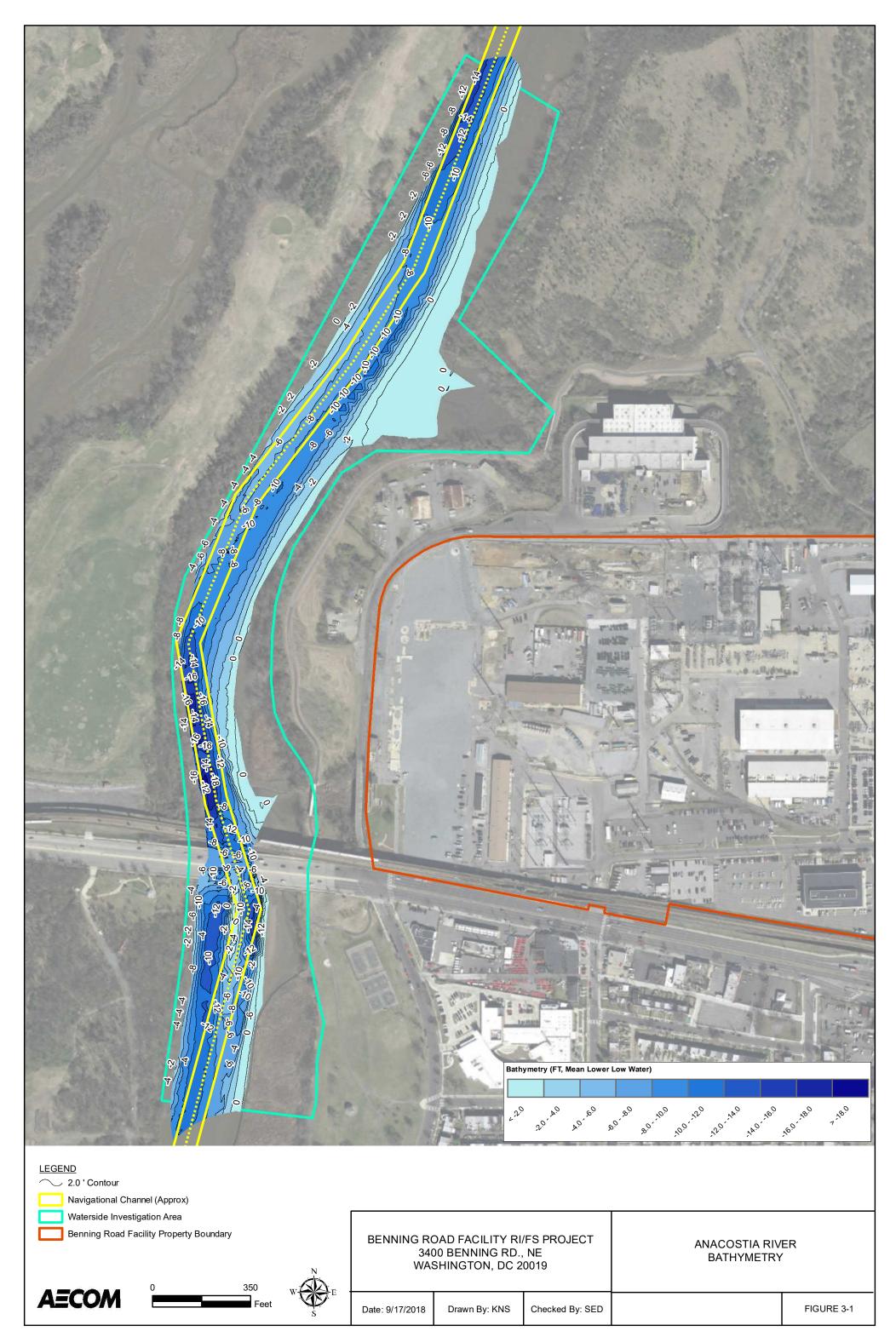
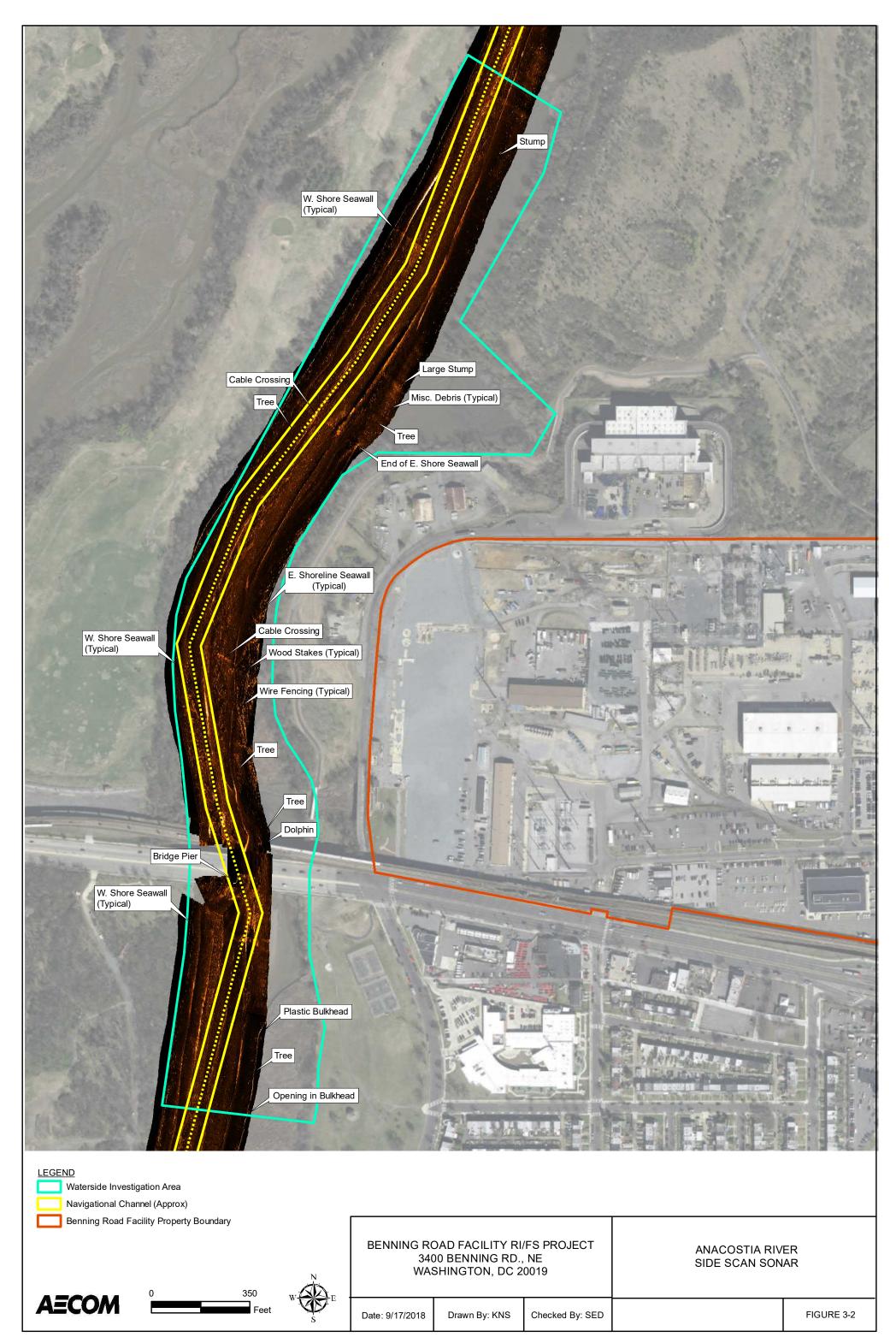
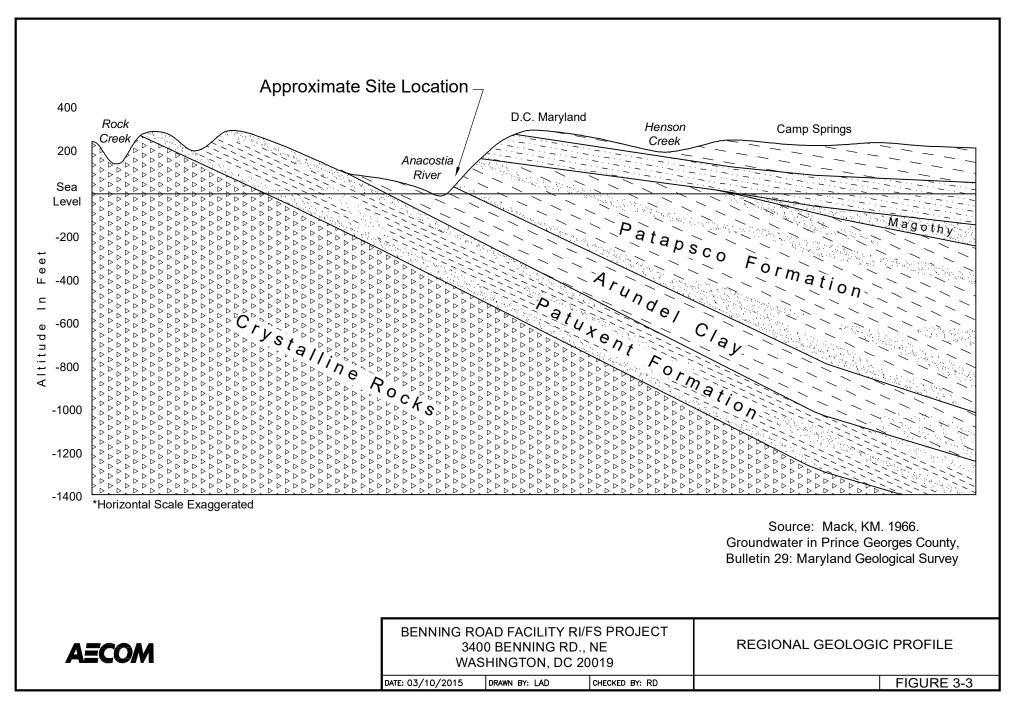

BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019

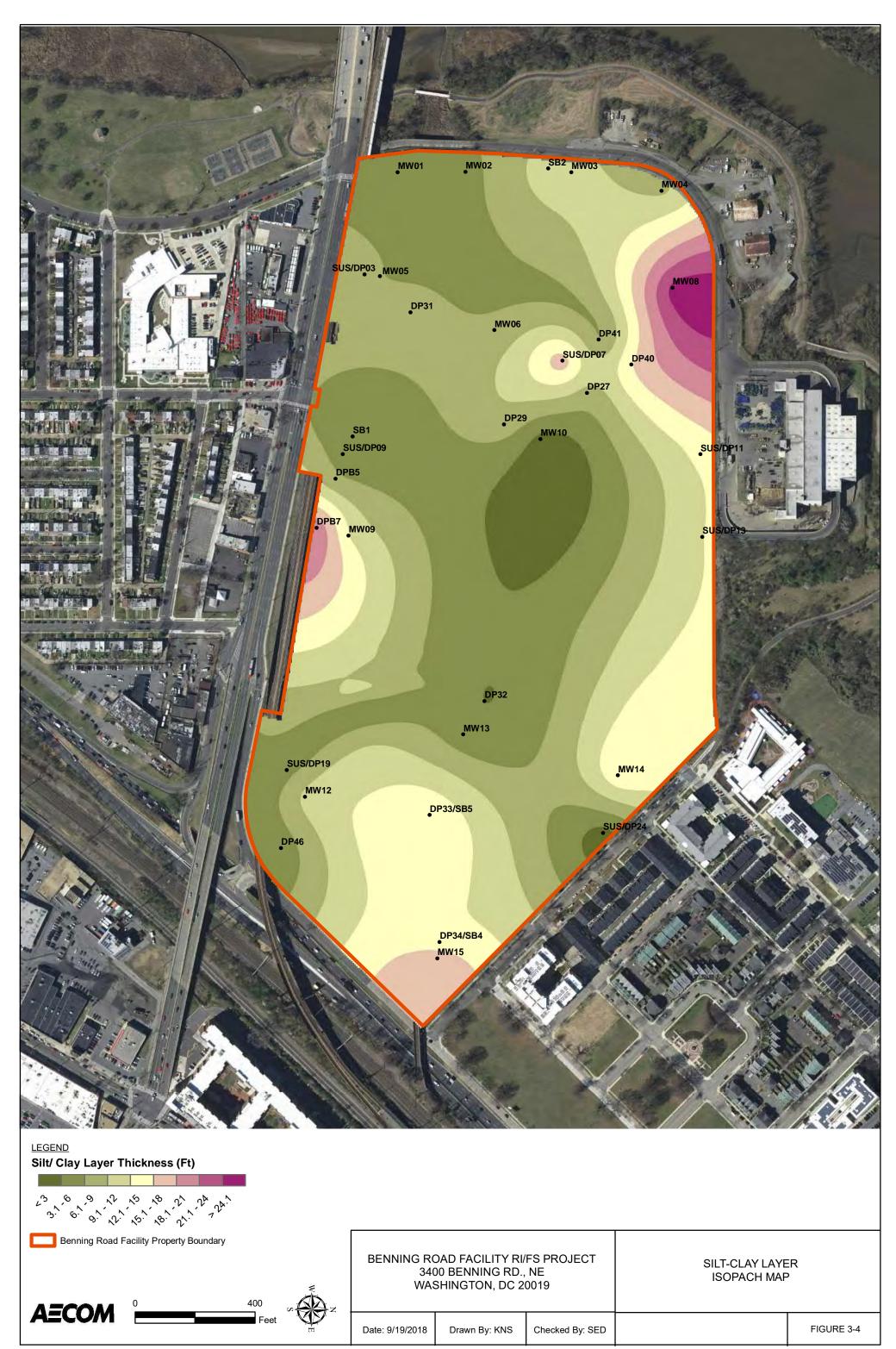

LANDSIDE SAMPLE LOCATIONS

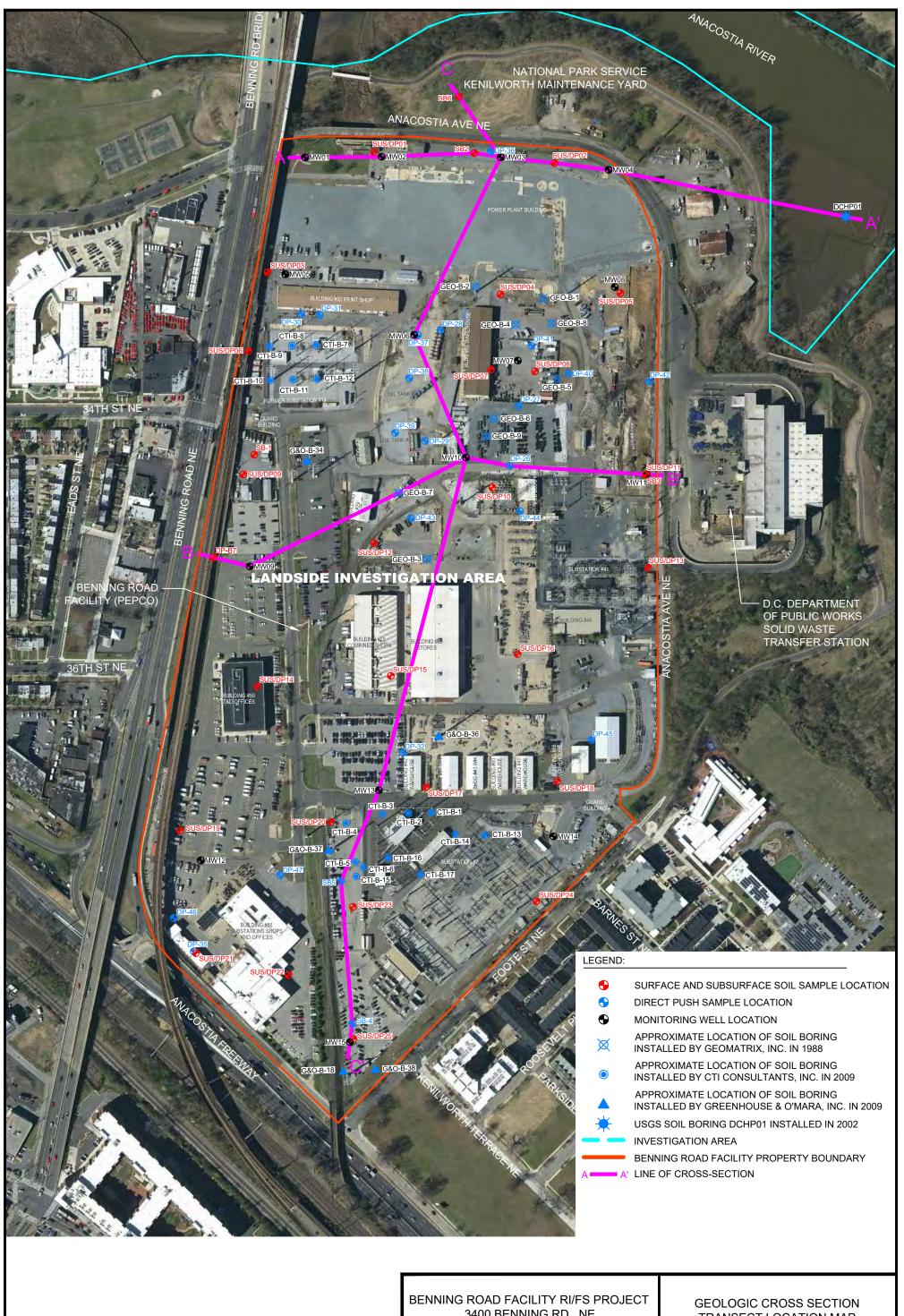
Date: 9/19/2018 Drawn By: KNS Checked By: SED FIGURE 2-1

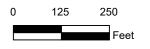


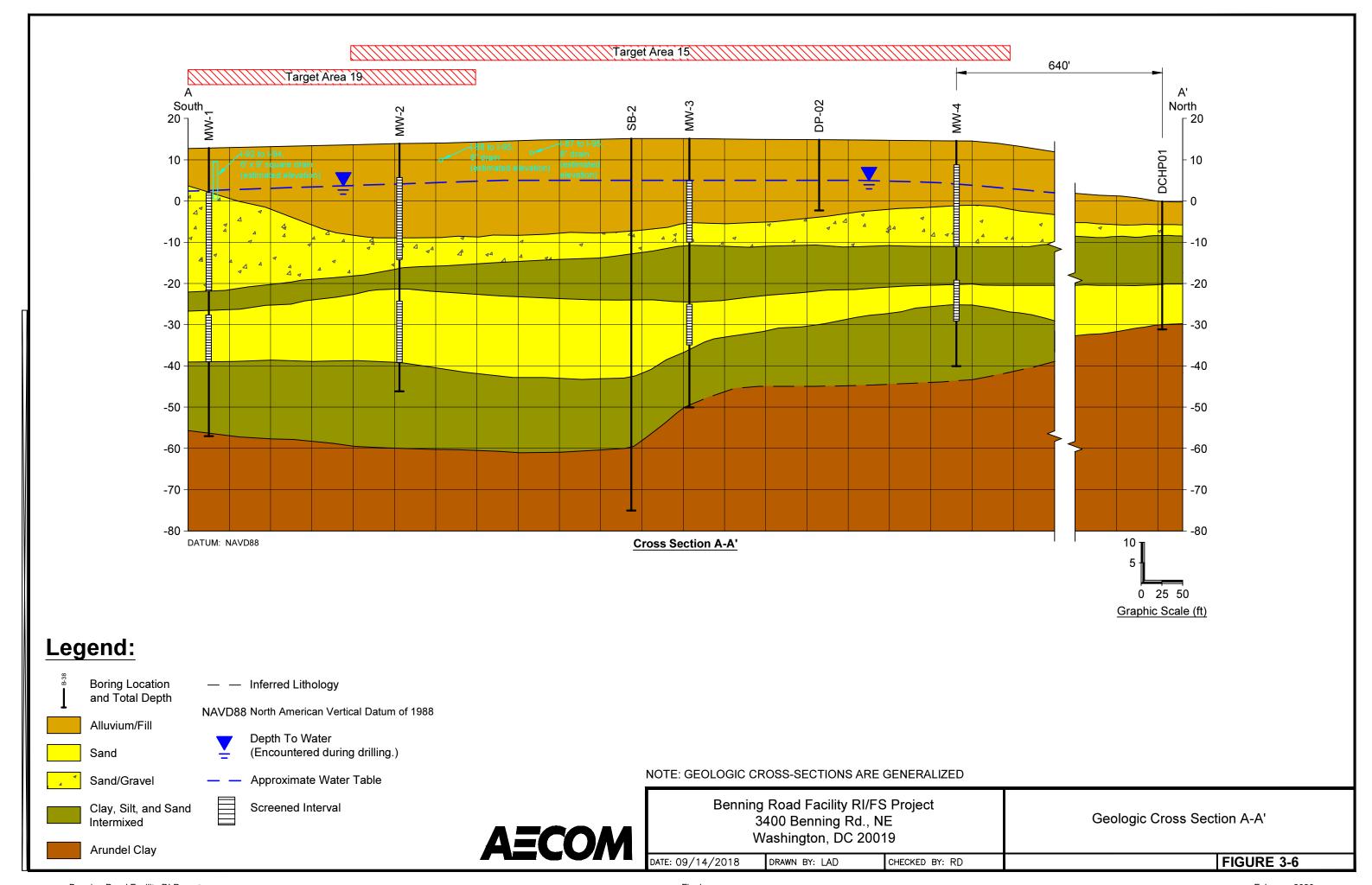


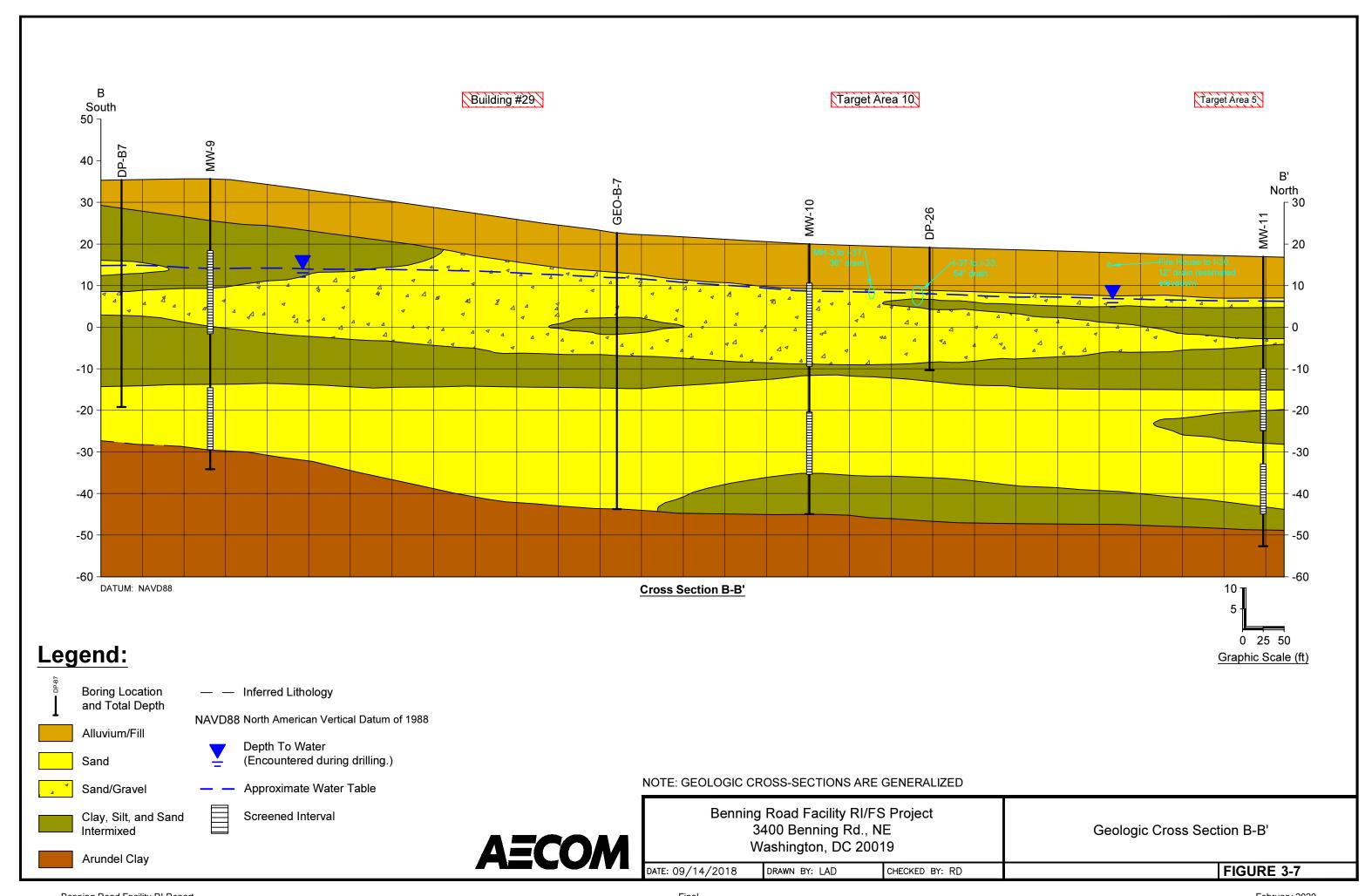







Figure 2-8
Monitoring Well Construction Schematic
(Typical) Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019

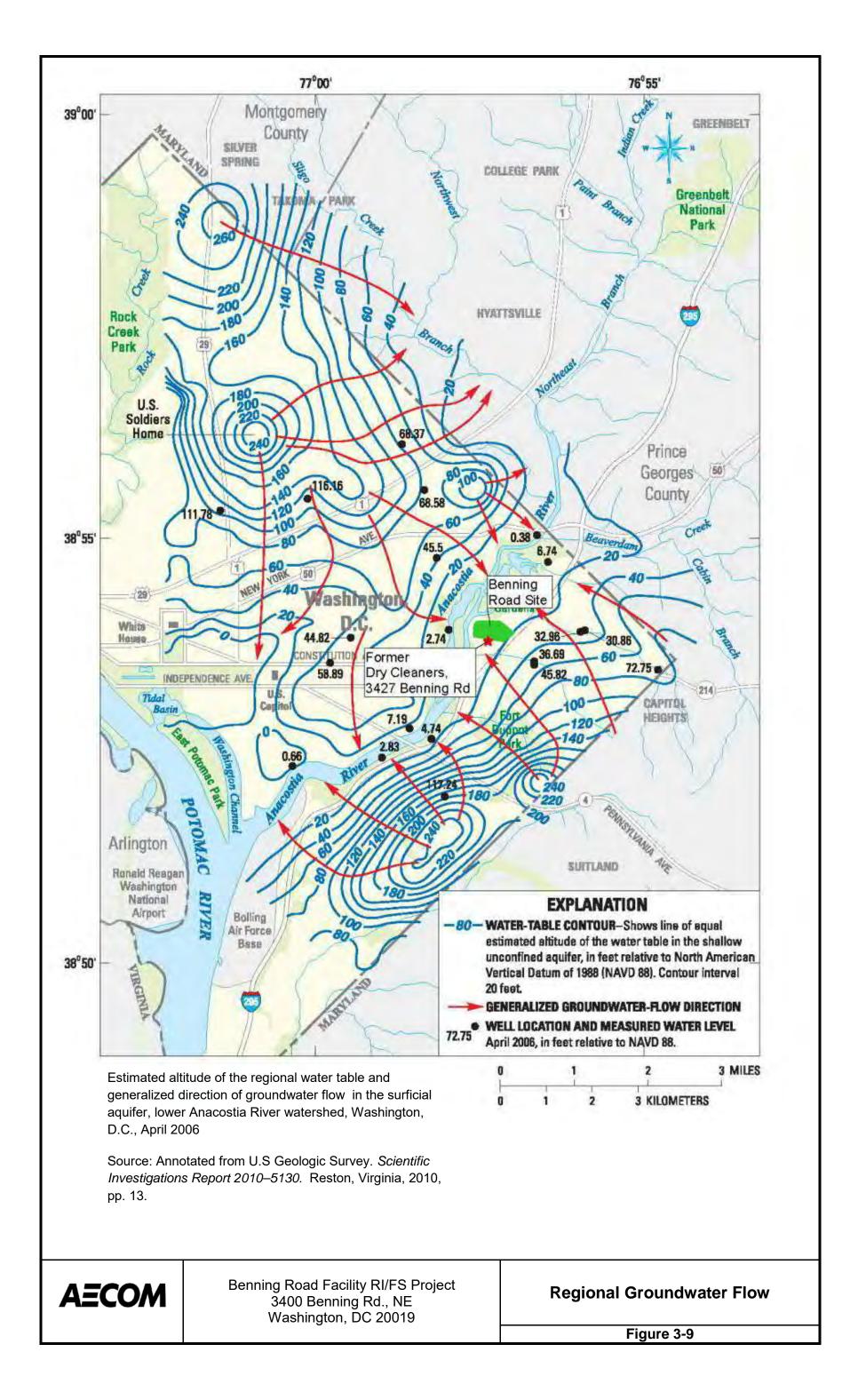


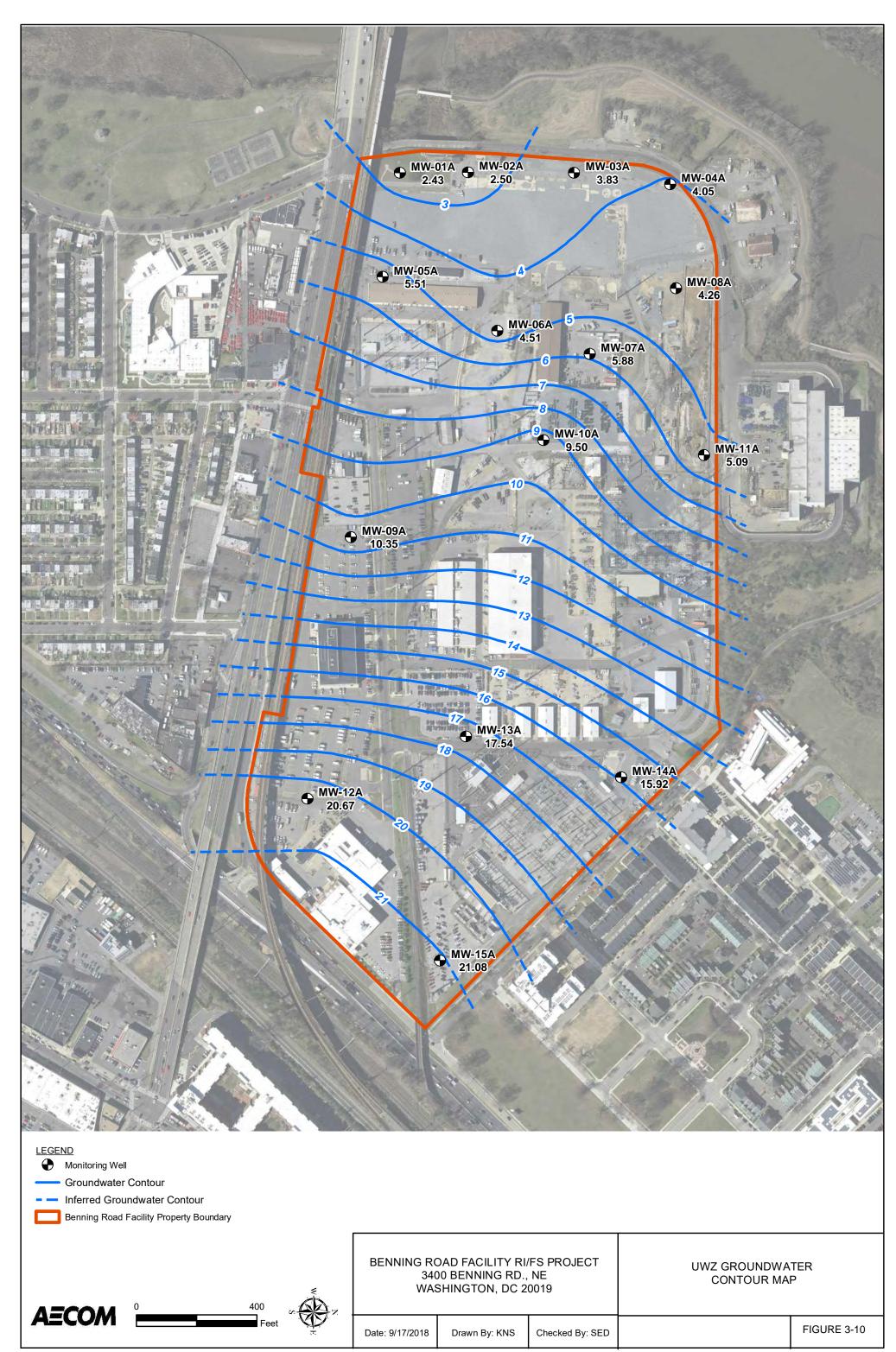


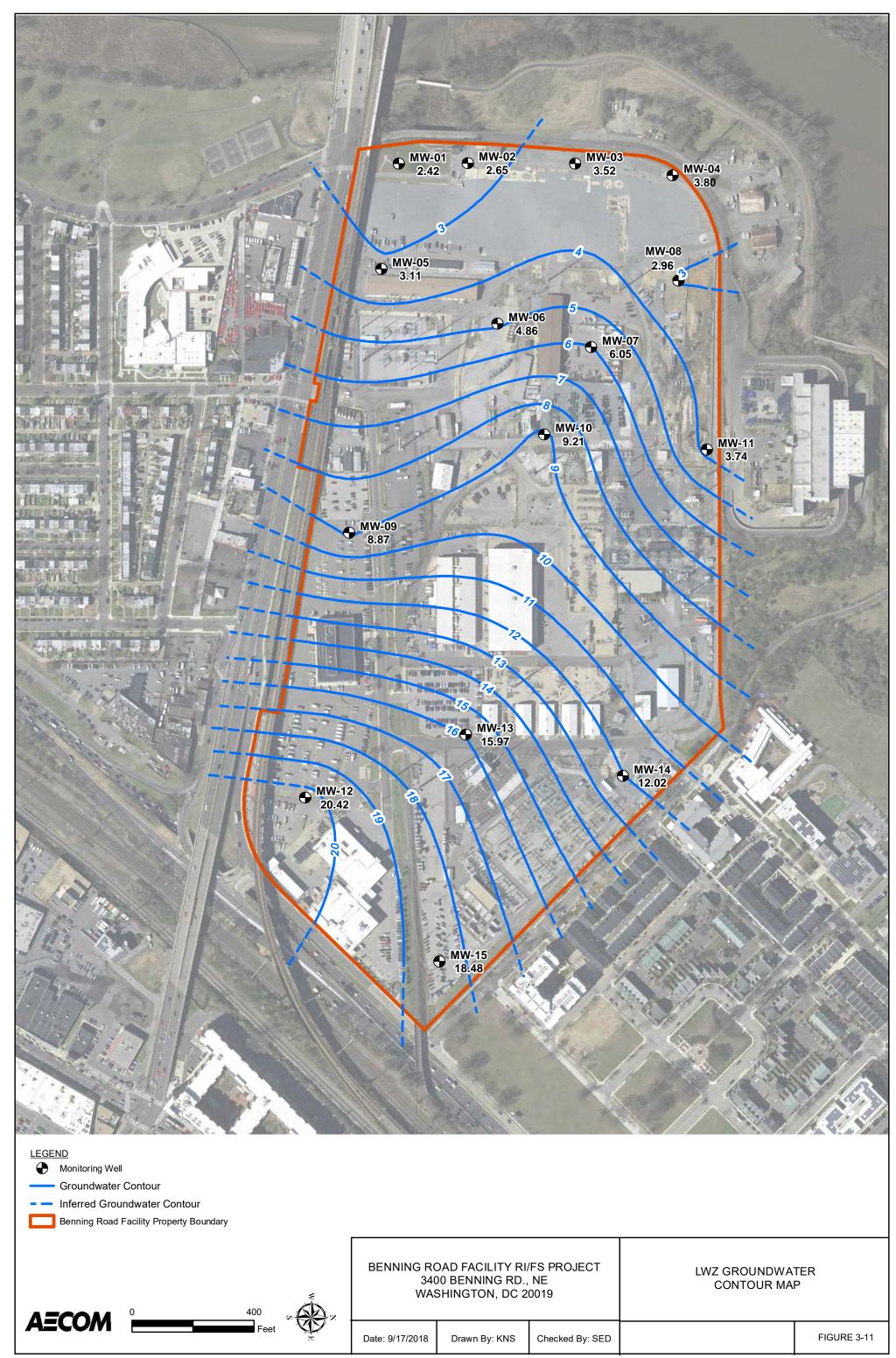


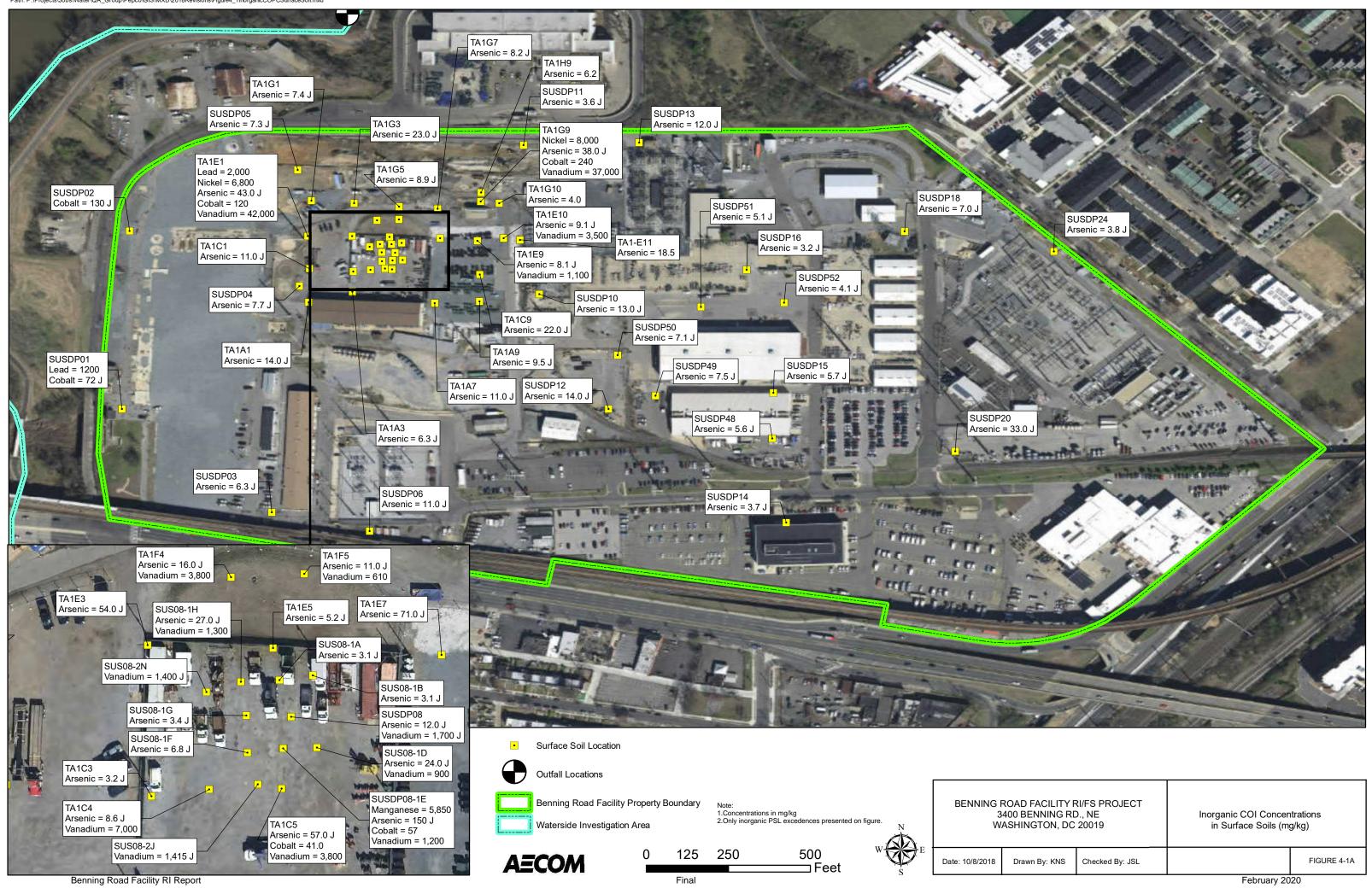

3400 BENNING RD., NE WASHINGTON, DC 20019

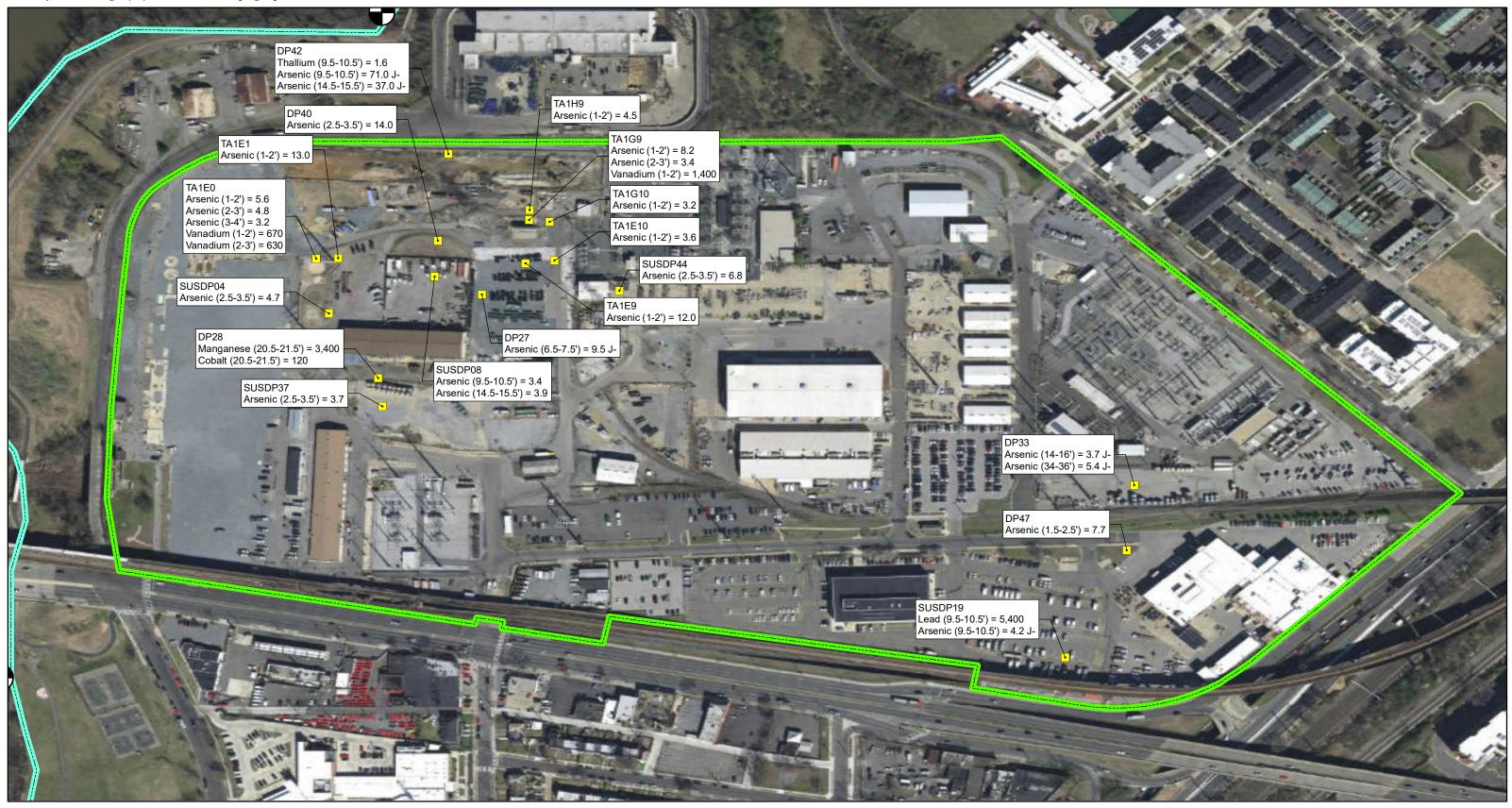
DATE: 09/19/2018 DRAWN BY: LAD CHECKED BY: RD

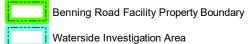

TRANSECT LOCATION MAP


FIGURE 3-5



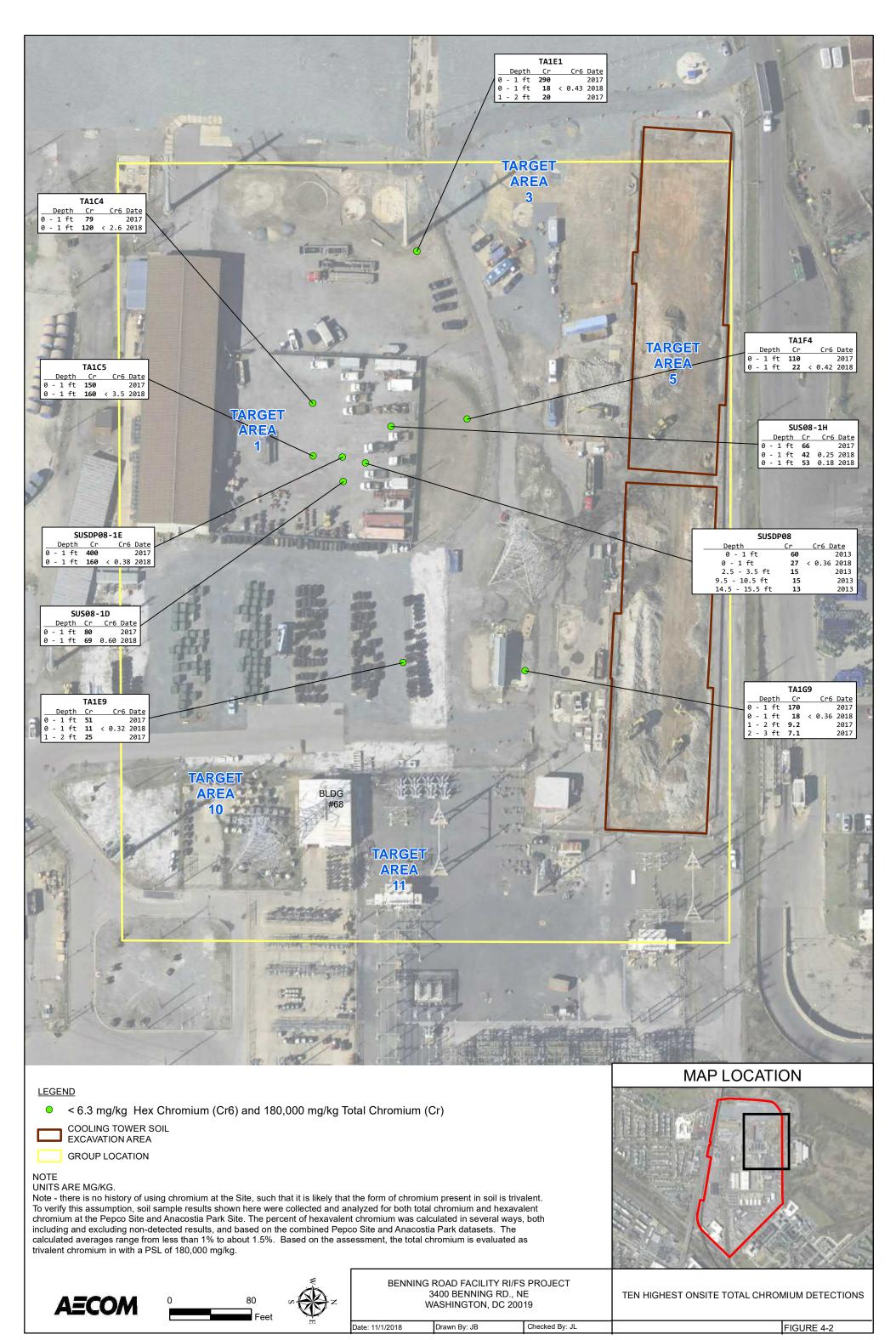


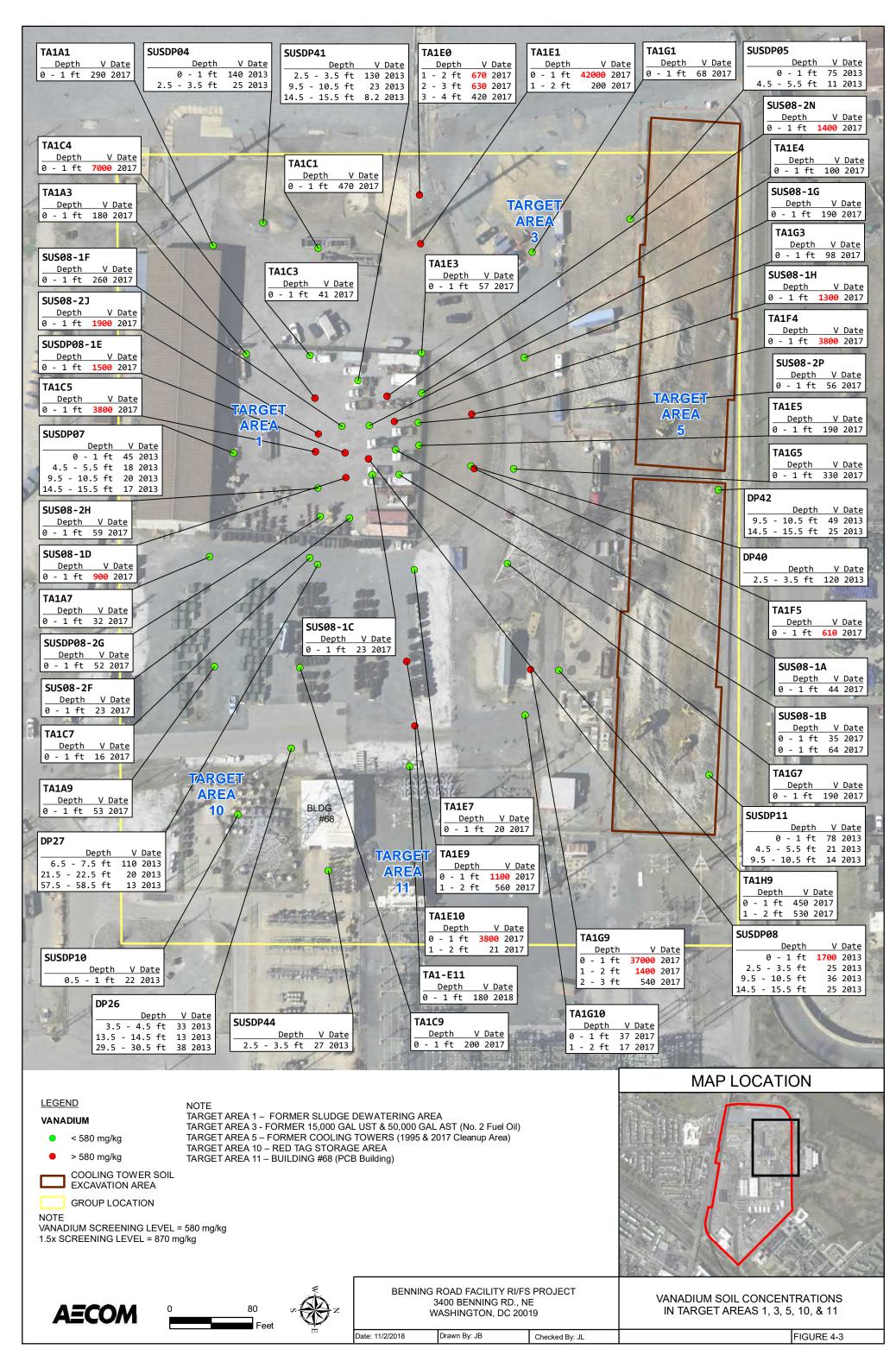


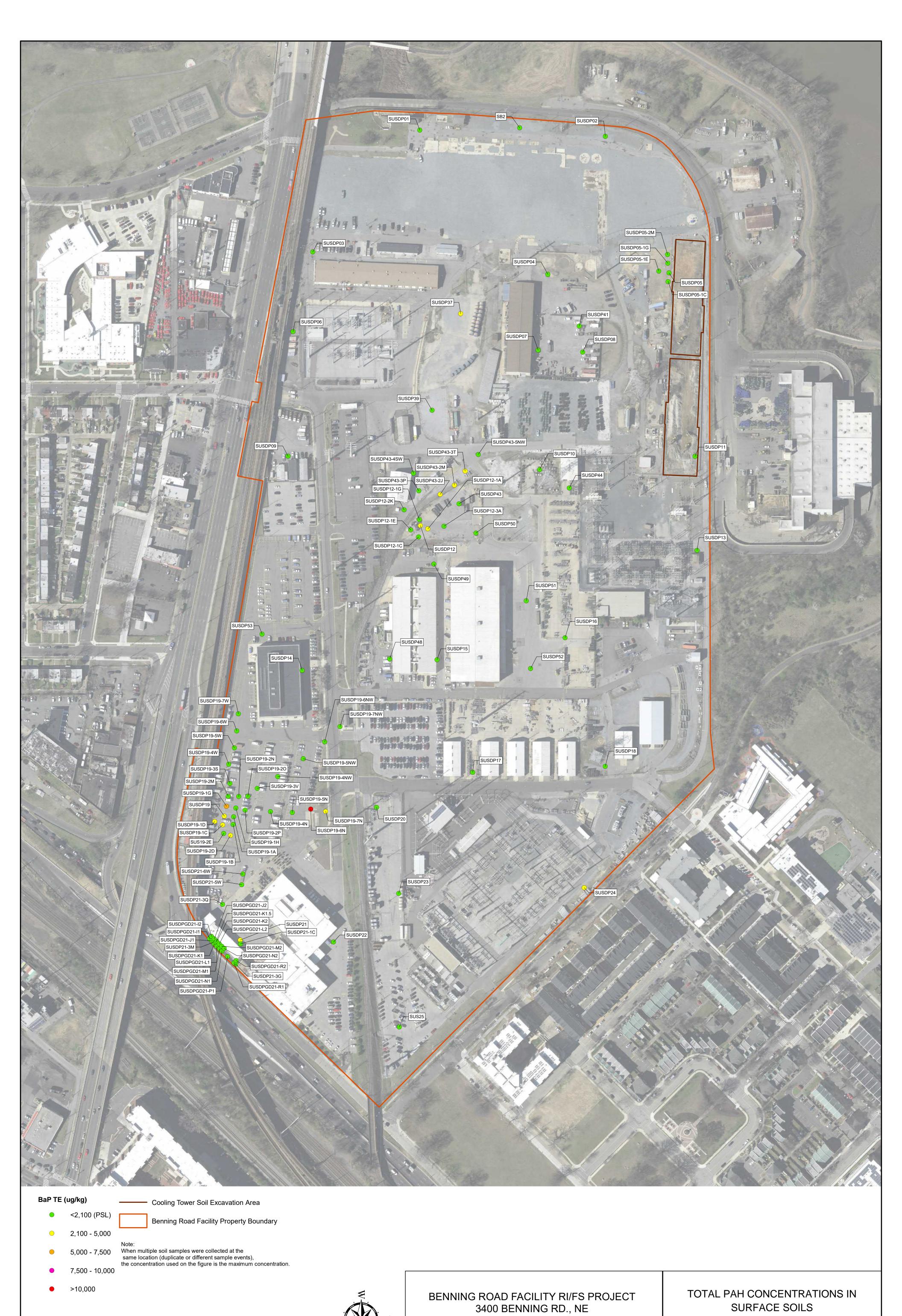


AECOM

Benning Road Facility RI Report


Note:
1.Concentrations in mg/kg
2.Only inorganic PSL excedences presented on figure.


0 125 250 500 Feet



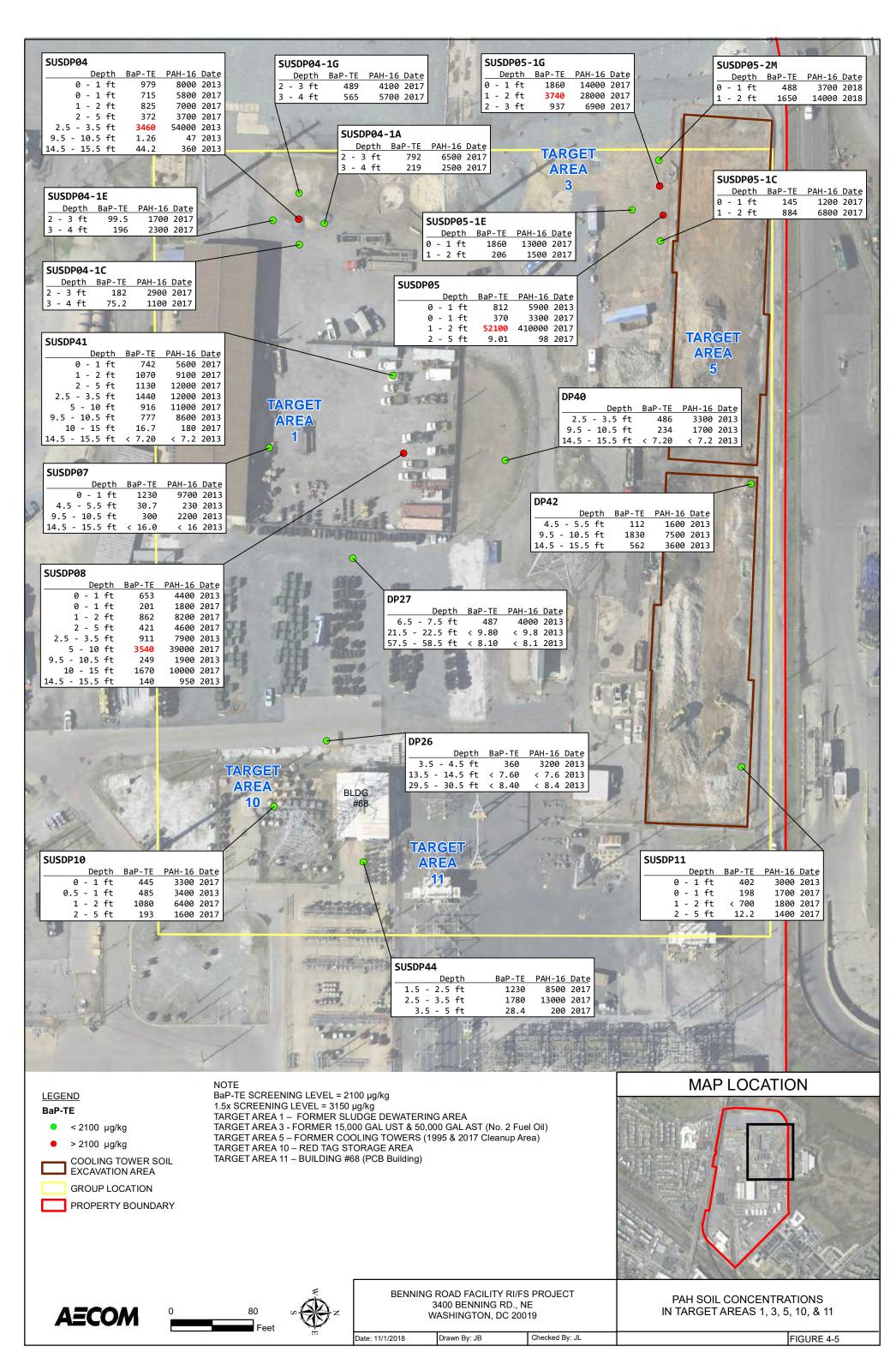
BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019			Inorganic COI Concentrations in Subsurface Soils (mg/kg)	
Date: 10/8/2018	Drawn By: KNS	Checked By: JSL		FIGURE 4-1B

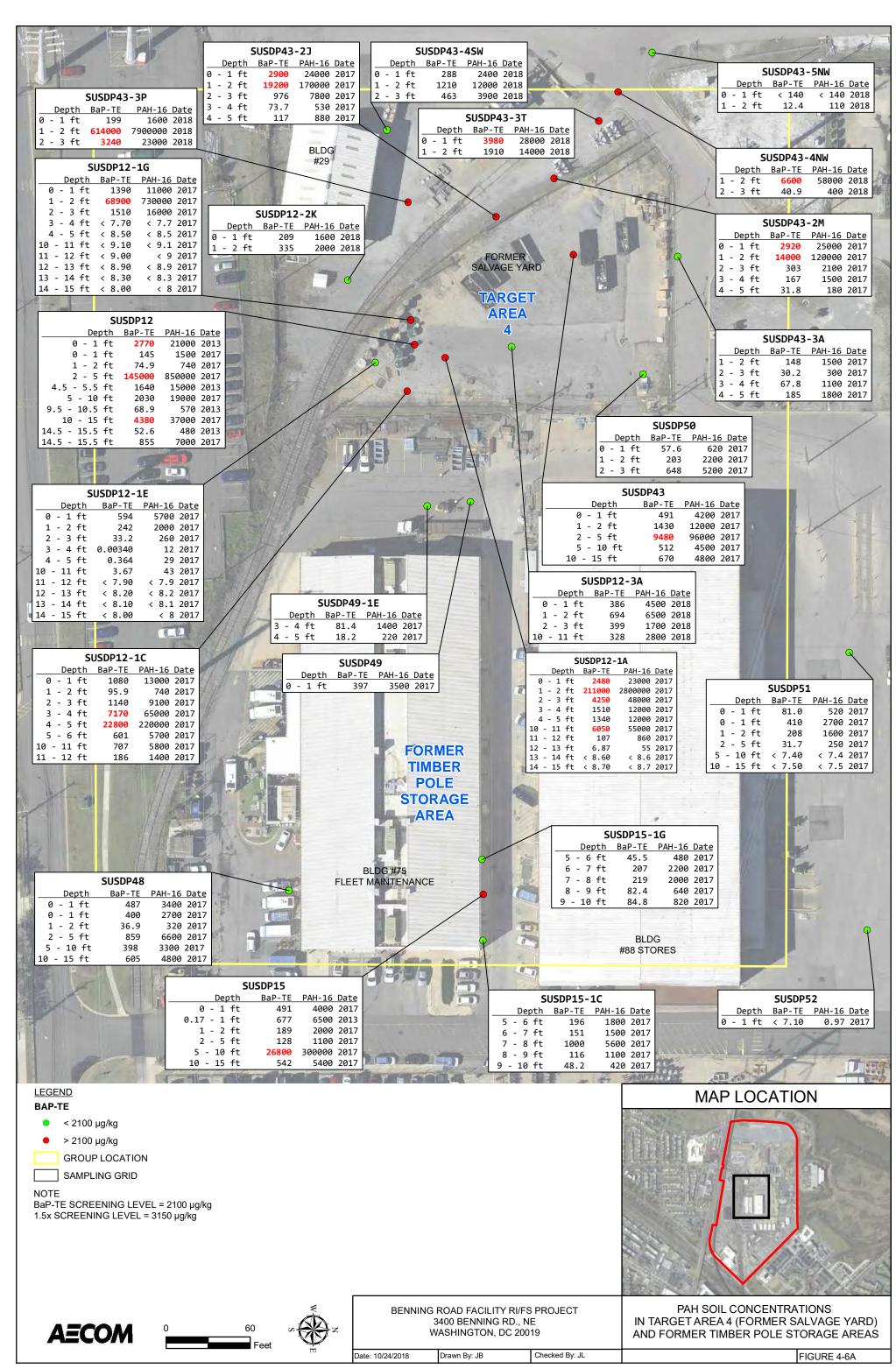
February 2020

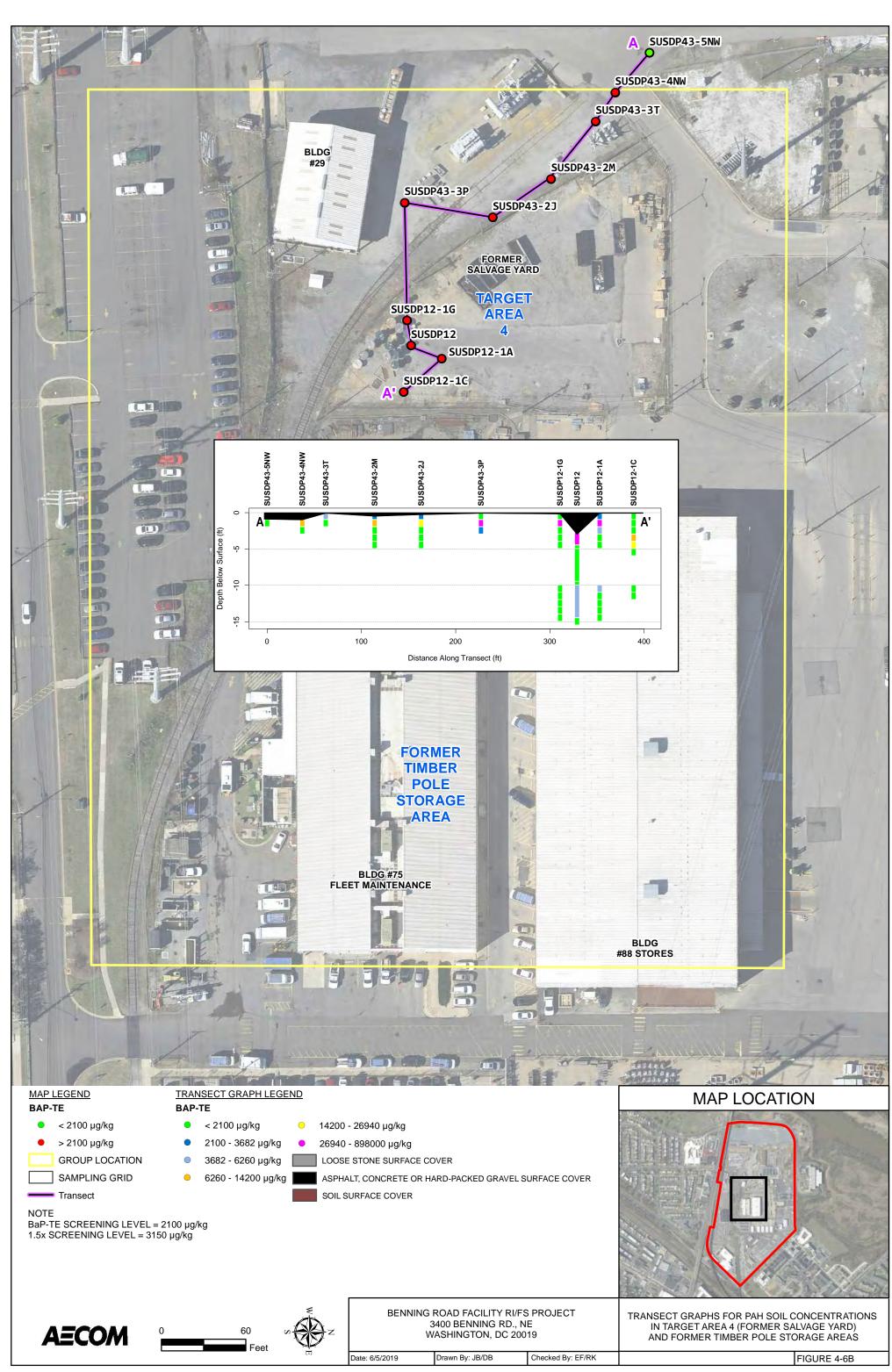
Benning Road Facility RI Report
Final

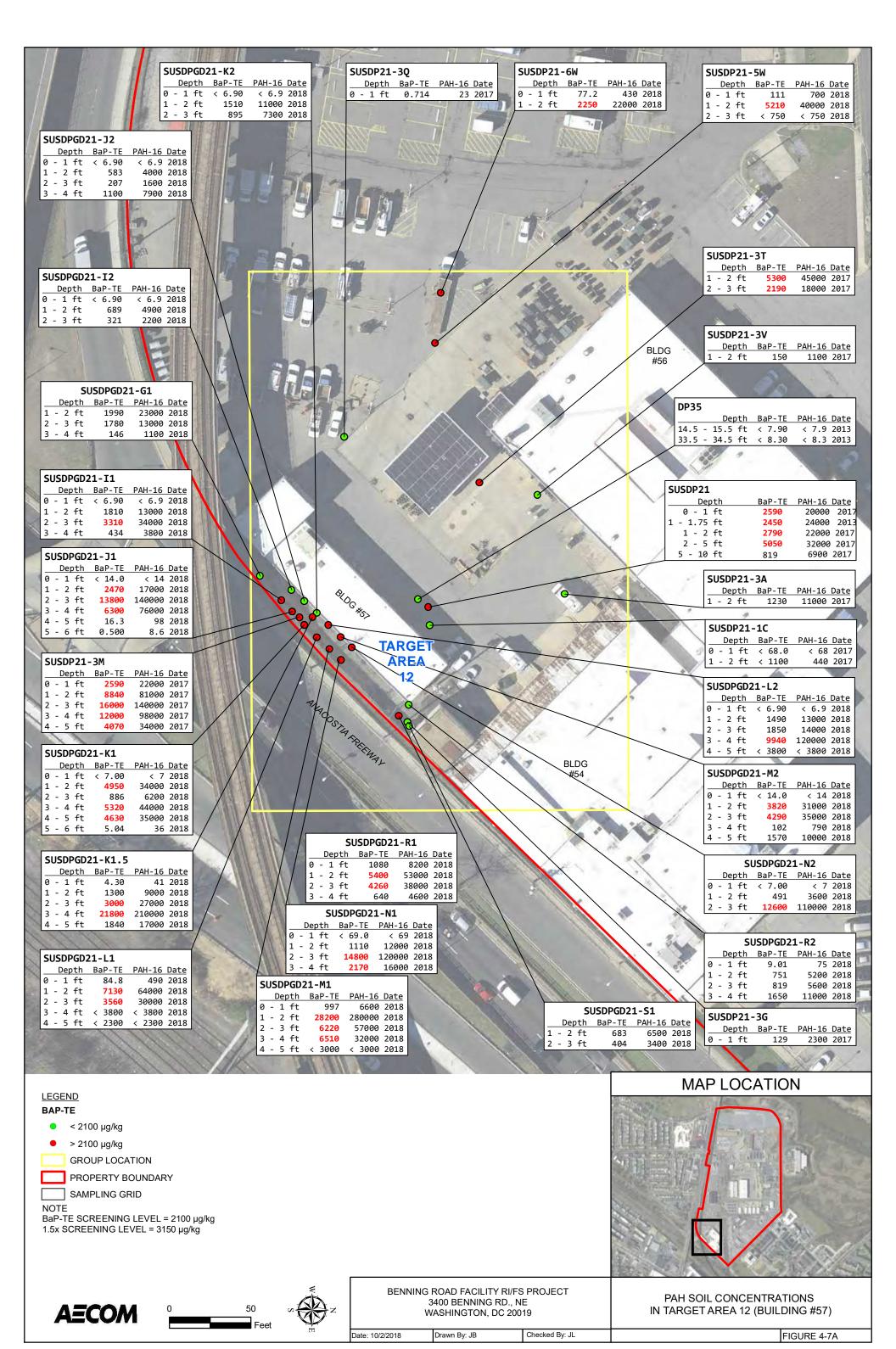
Date: 10/25/2018

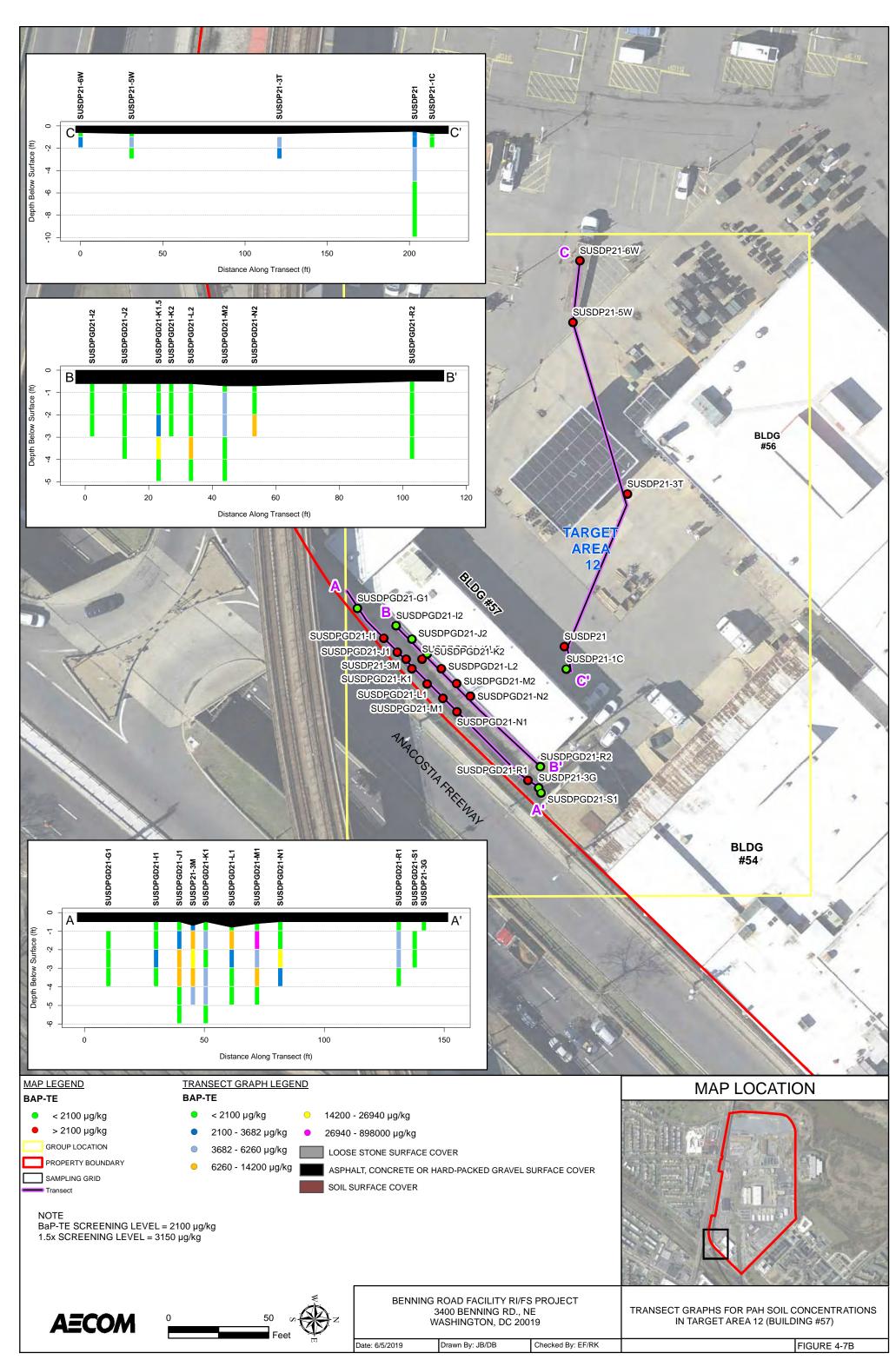
AECOM =

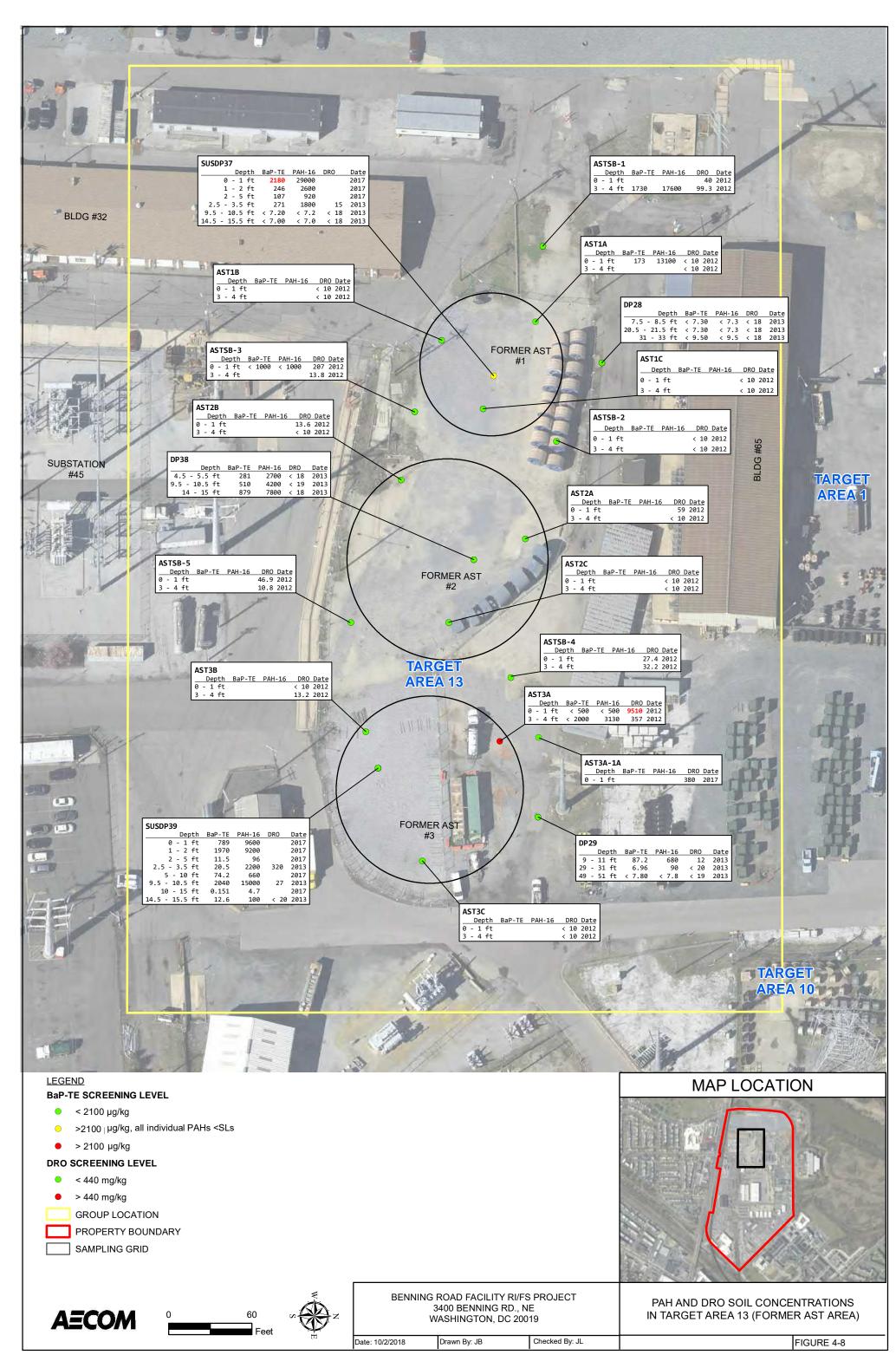

WASHINGTON, DC 20019

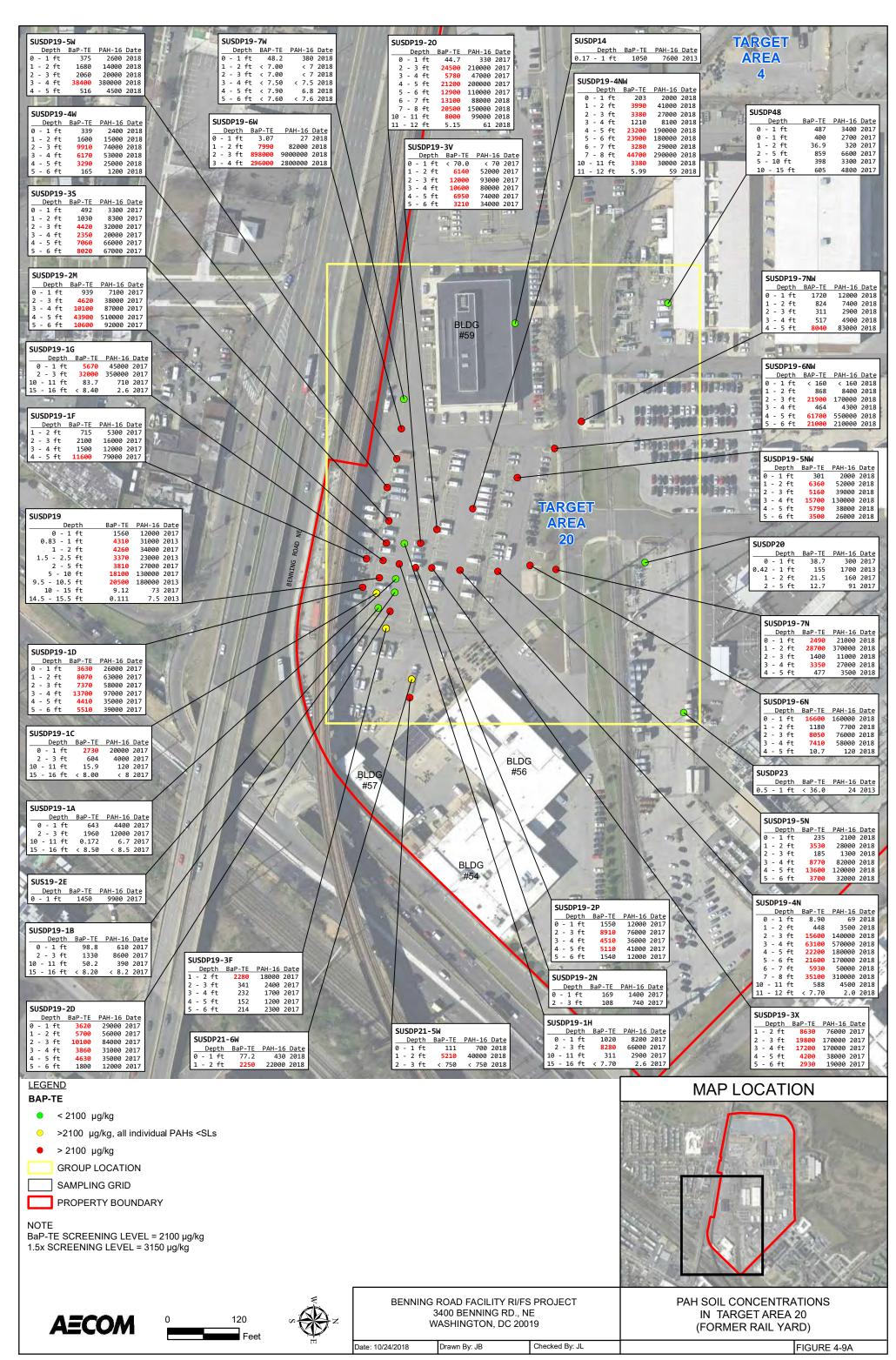

Drawn By: KNS

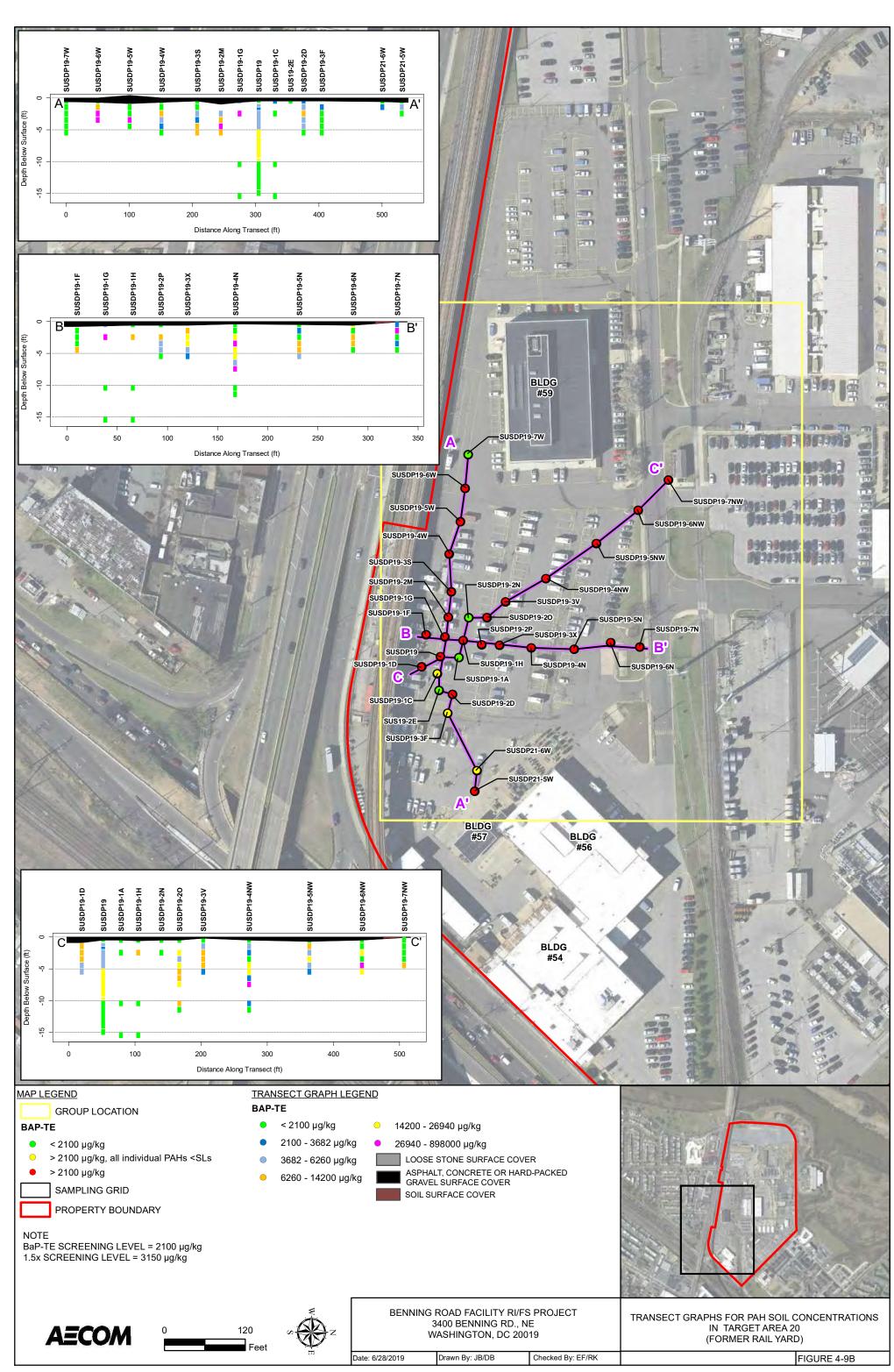

Checked By: SED

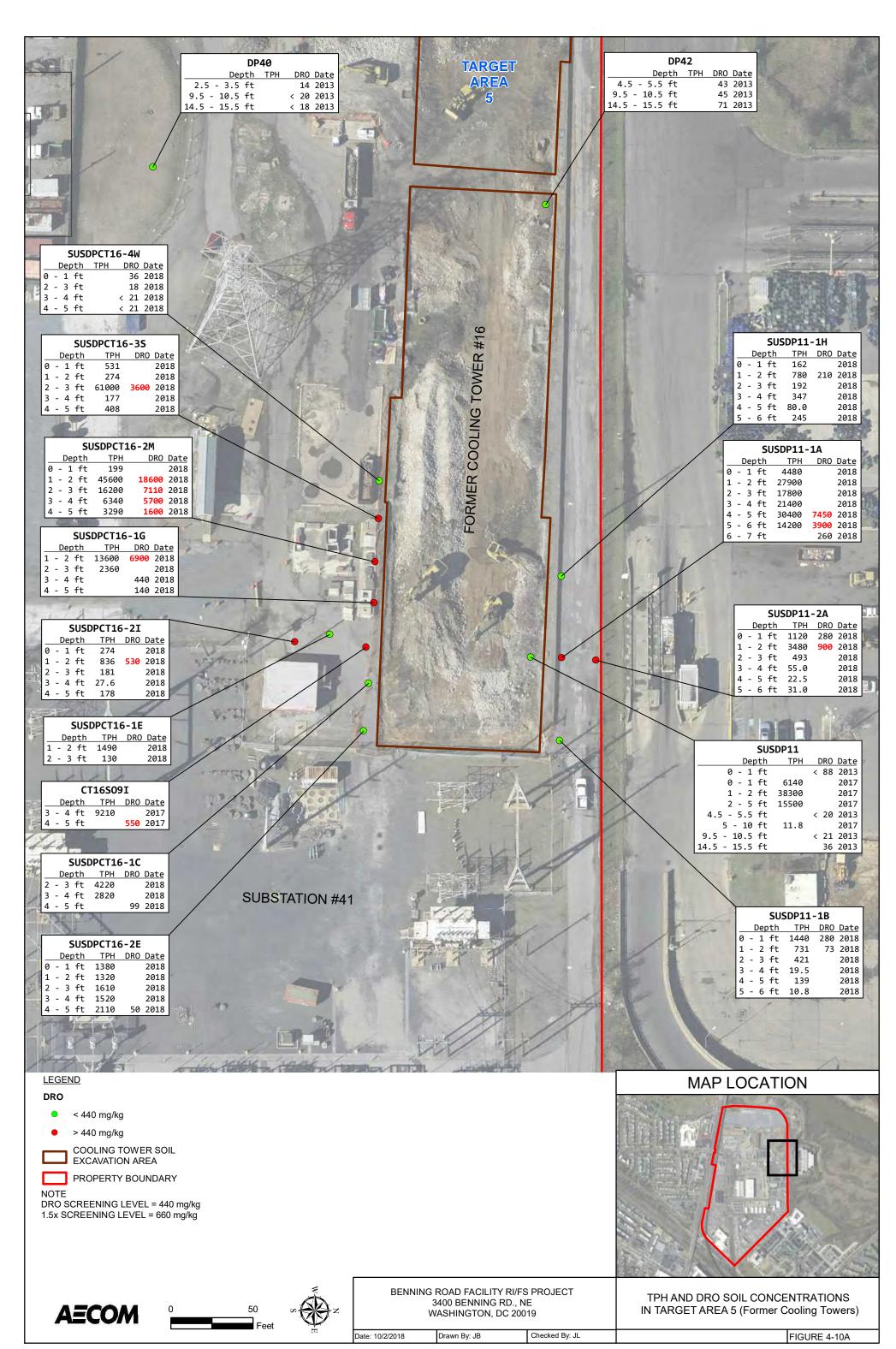

FIGURE 4-4

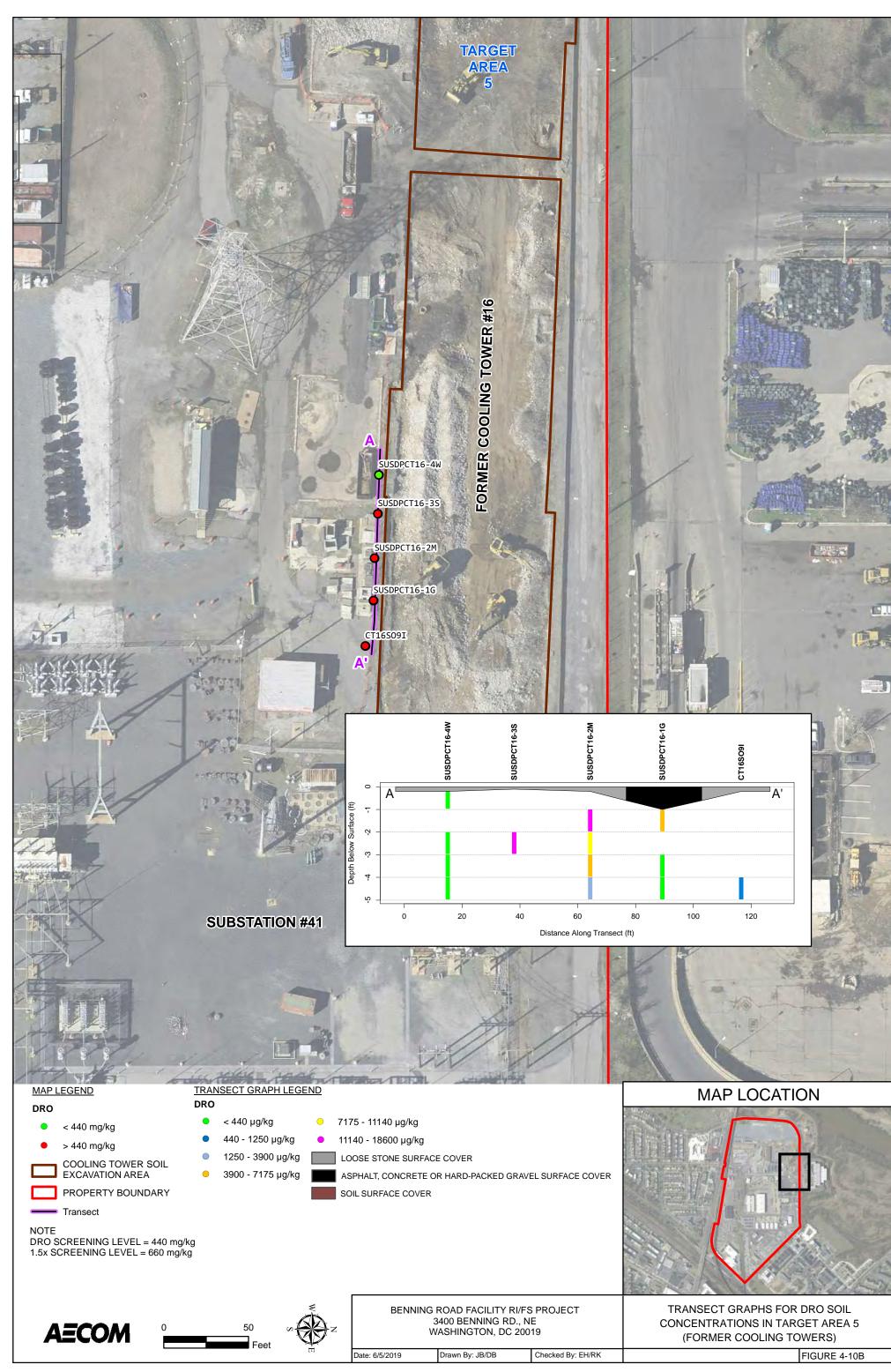

February 2020



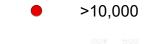








<970 (PSL)



2,000 - 5,000


5,000 - 10,000

When multiple soil samples were collected at the same location (duplicate or different sample events), the concentration used on the figure is the maximum concentration.

Benning Road Facility Property Boundary

BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019

TOTAL PCB CONCENTRATIONS IN SURFACE SOIL

FIGURE 4-12A

February 2020

Checked By: SED Date: 10/25/2018 Drawn By: KNS

Benning Road Facility RI Report Final

<970 (PSL)

970 - 2,000

2,000 - 5,000

5,000 - 10,000

>10,000

AECOM

same location (duplicate or different sample events), the concentration used on the figure is the maximum concentration.

When multiple soil samples were collected at the

Benning Road Facility Property Boundary

BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019

TOTAL PCB CONCENTRATIONS IN SURFACE SOIL

FIGURE 4-12A

February 2020

Checked By: SED Date: 10/25/2018 Drawn By: KNS

Benning Road Facility RI Report Final

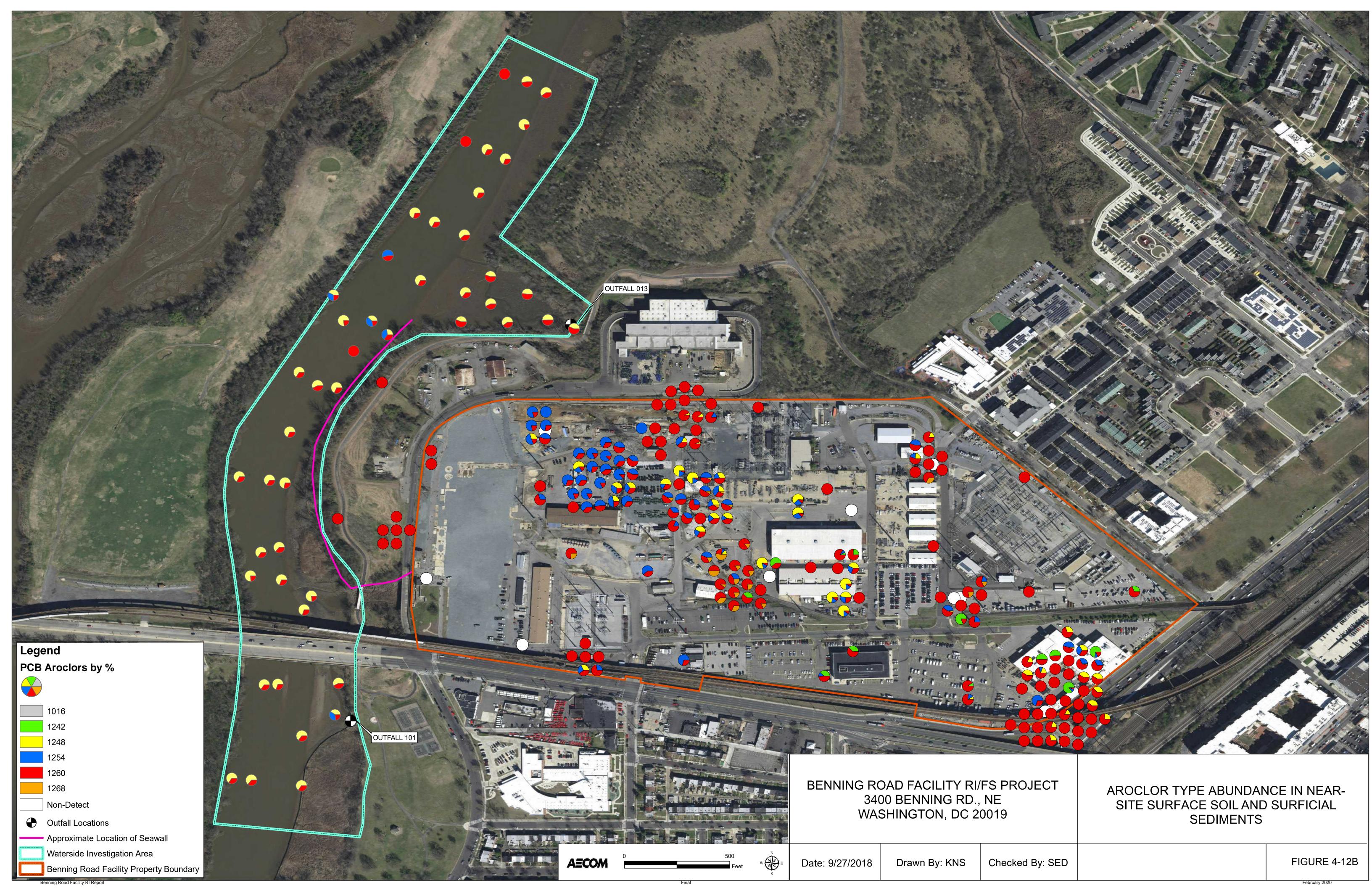
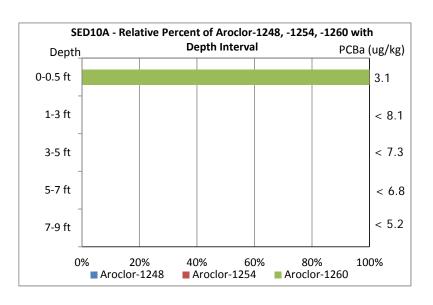
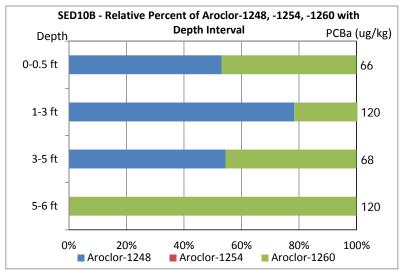
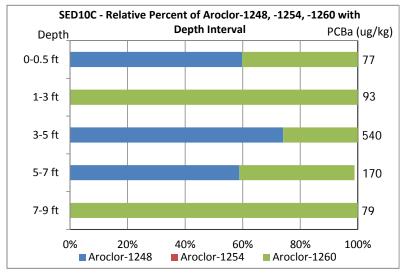





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

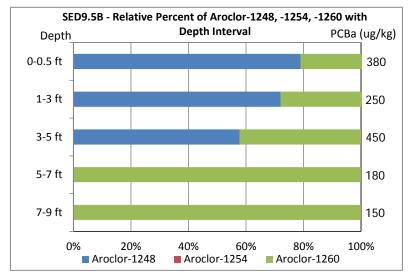
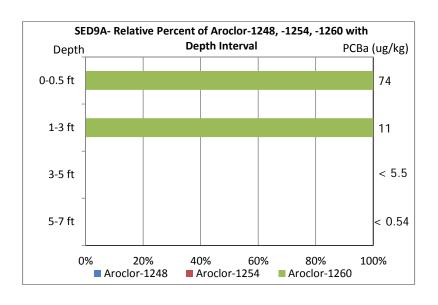
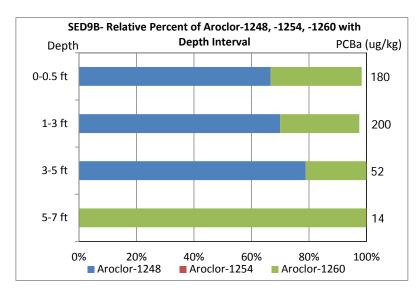
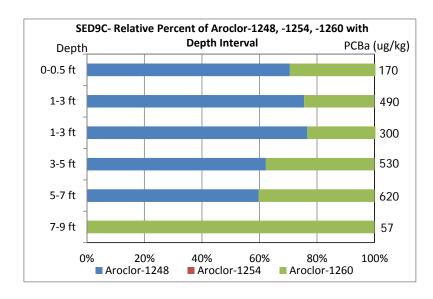





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

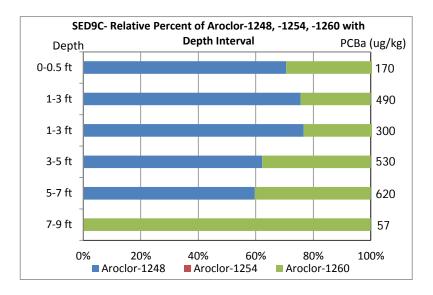
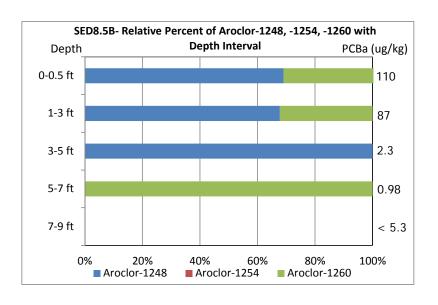
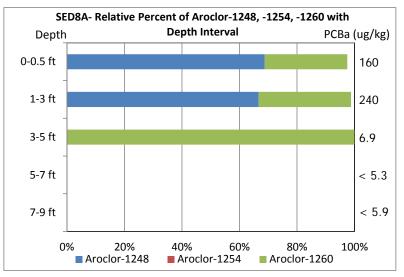
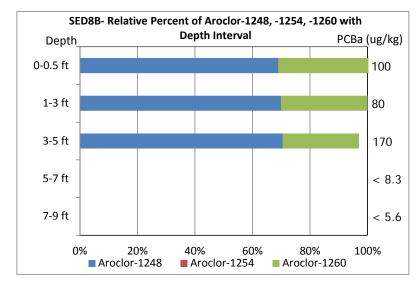





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

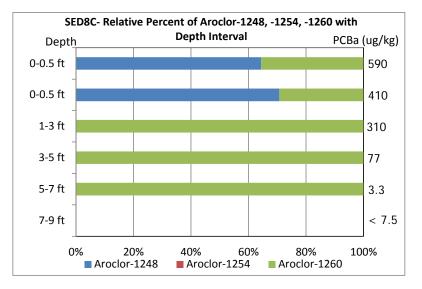
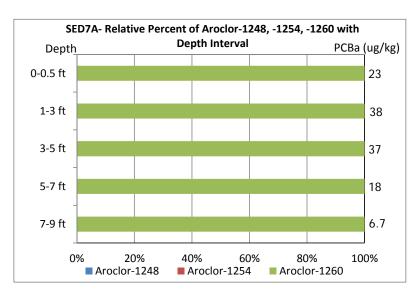
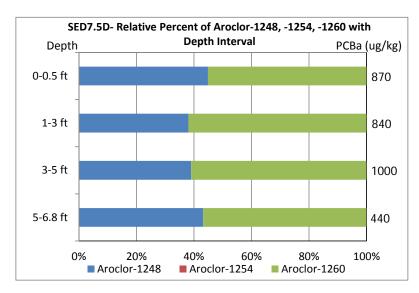
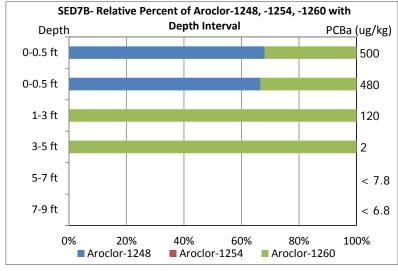





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

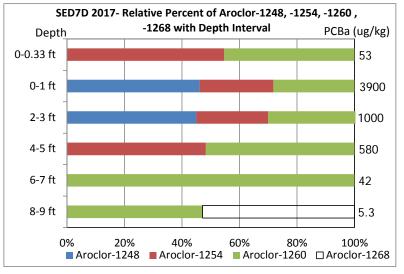
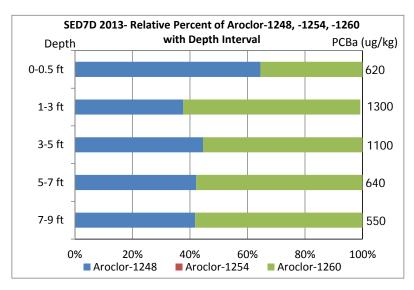
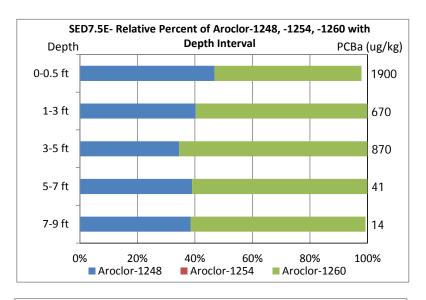
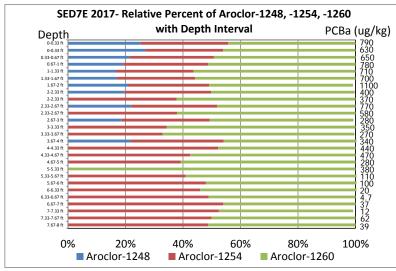





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

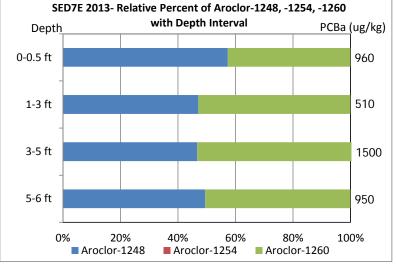
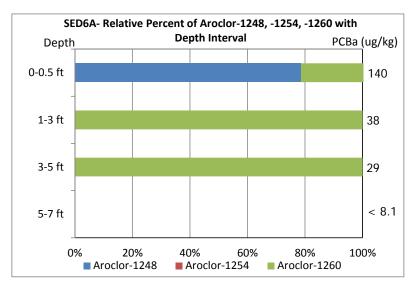
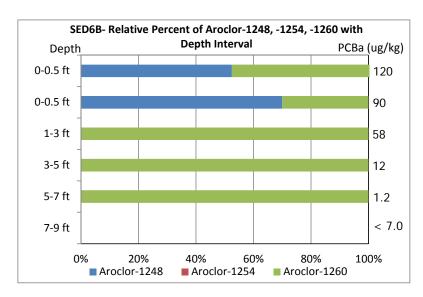
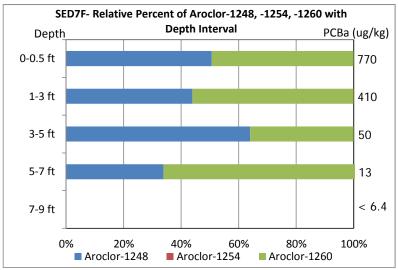





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

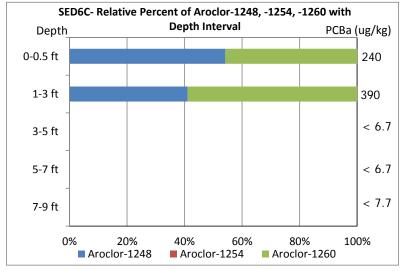
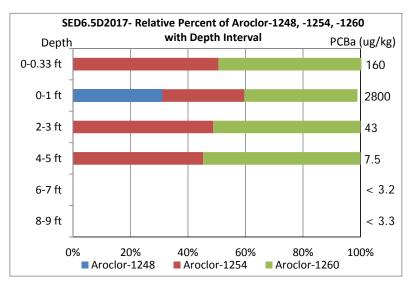
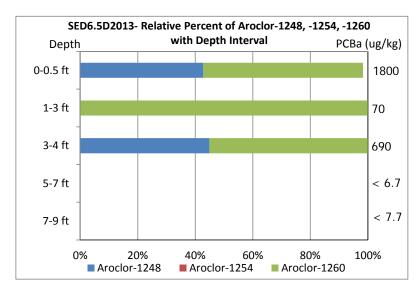
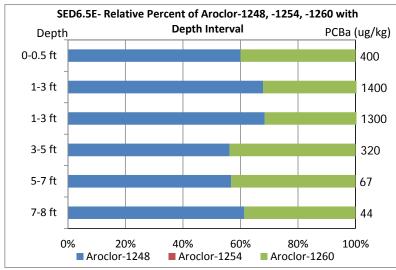





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

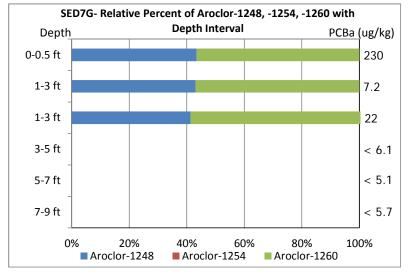
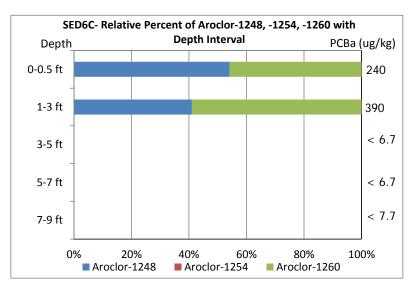
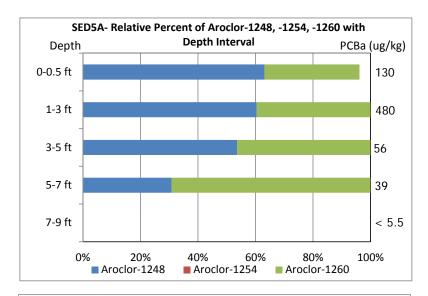
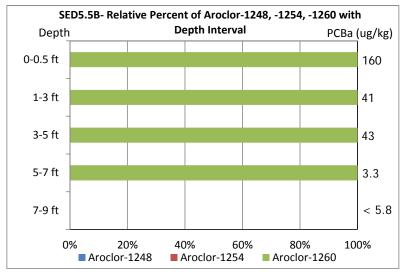





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

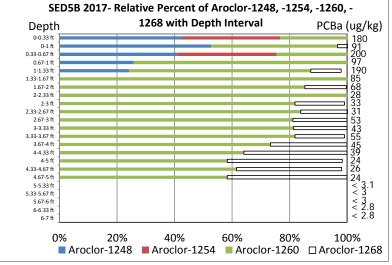
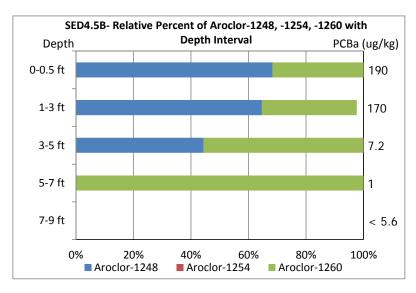
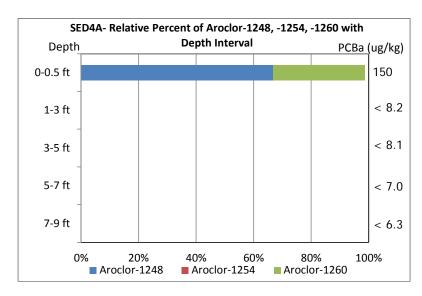
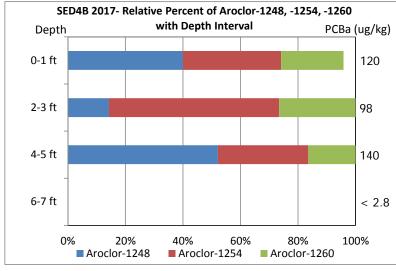





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

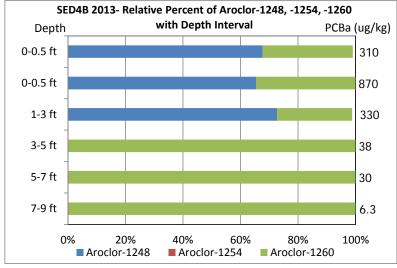
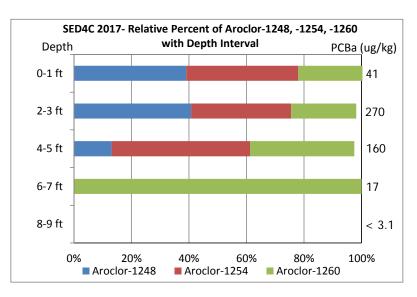
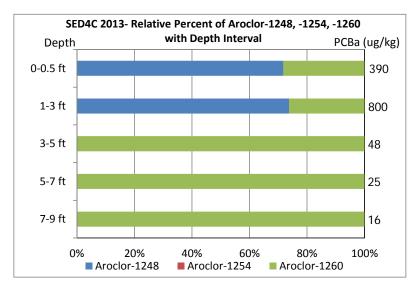
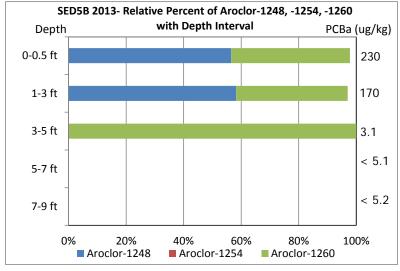





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

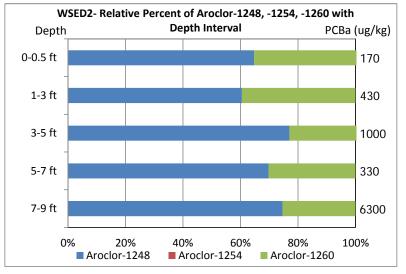
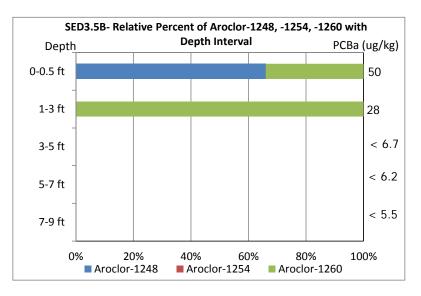
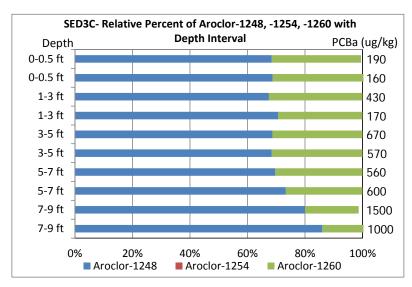





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

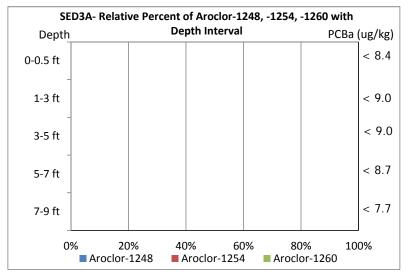
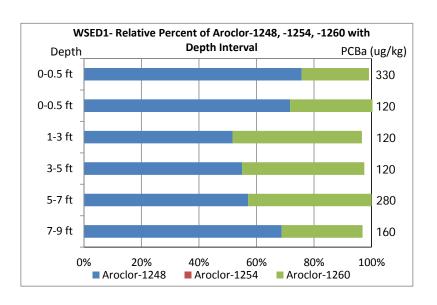
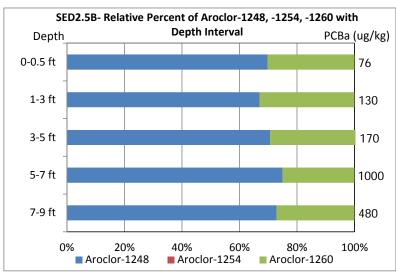
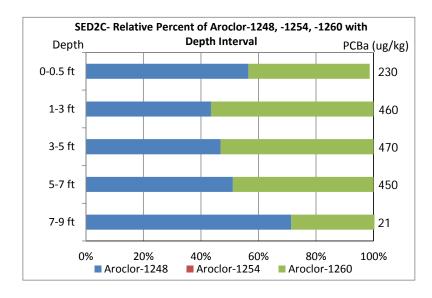





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

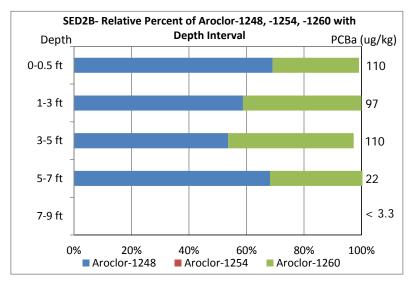
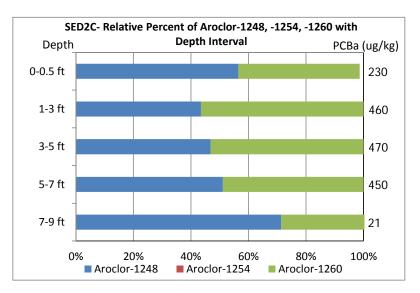
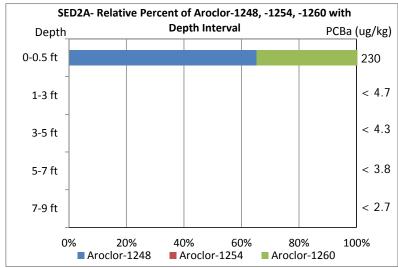




Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019

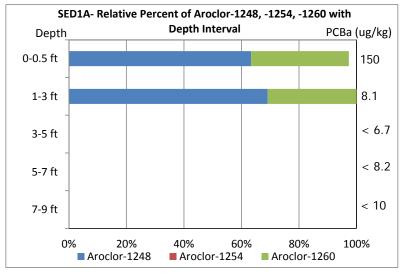
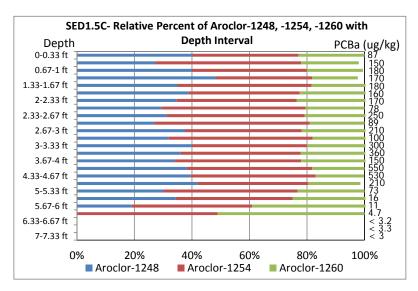
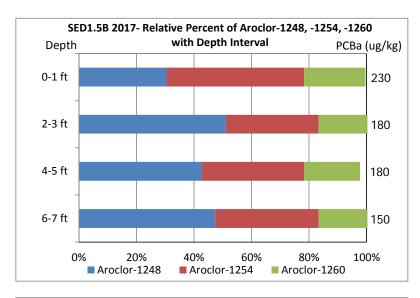
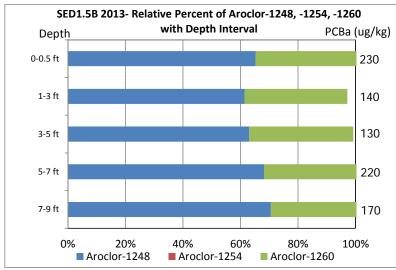
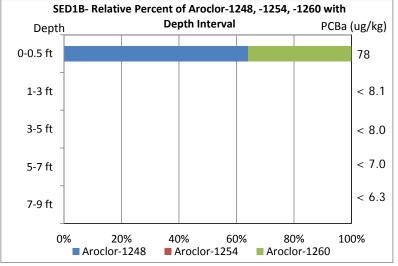
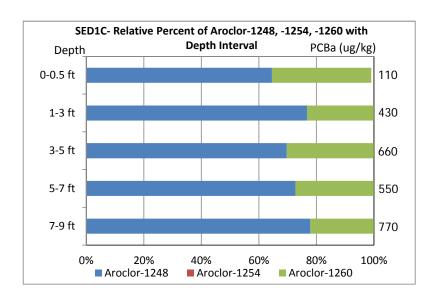
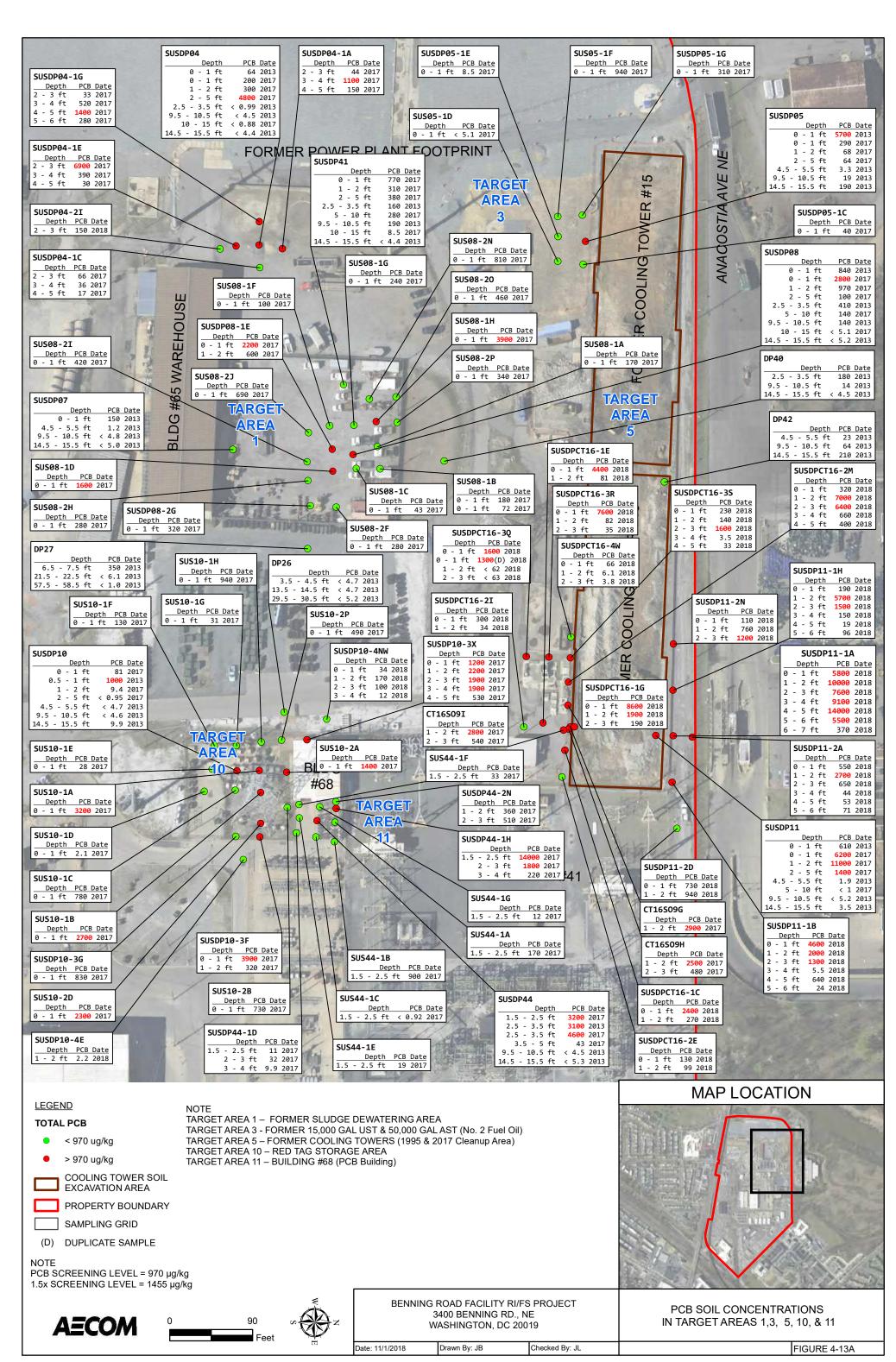
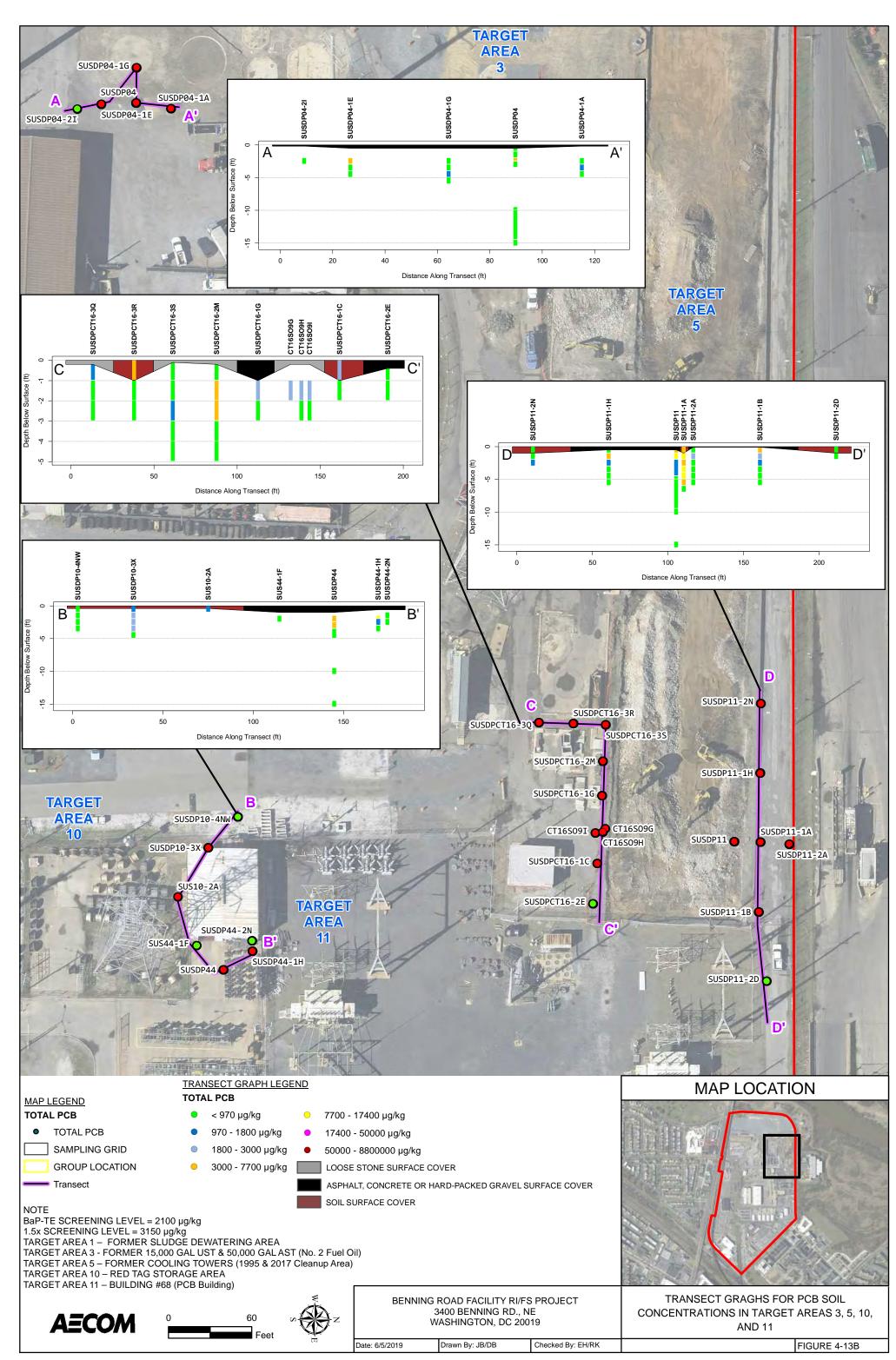
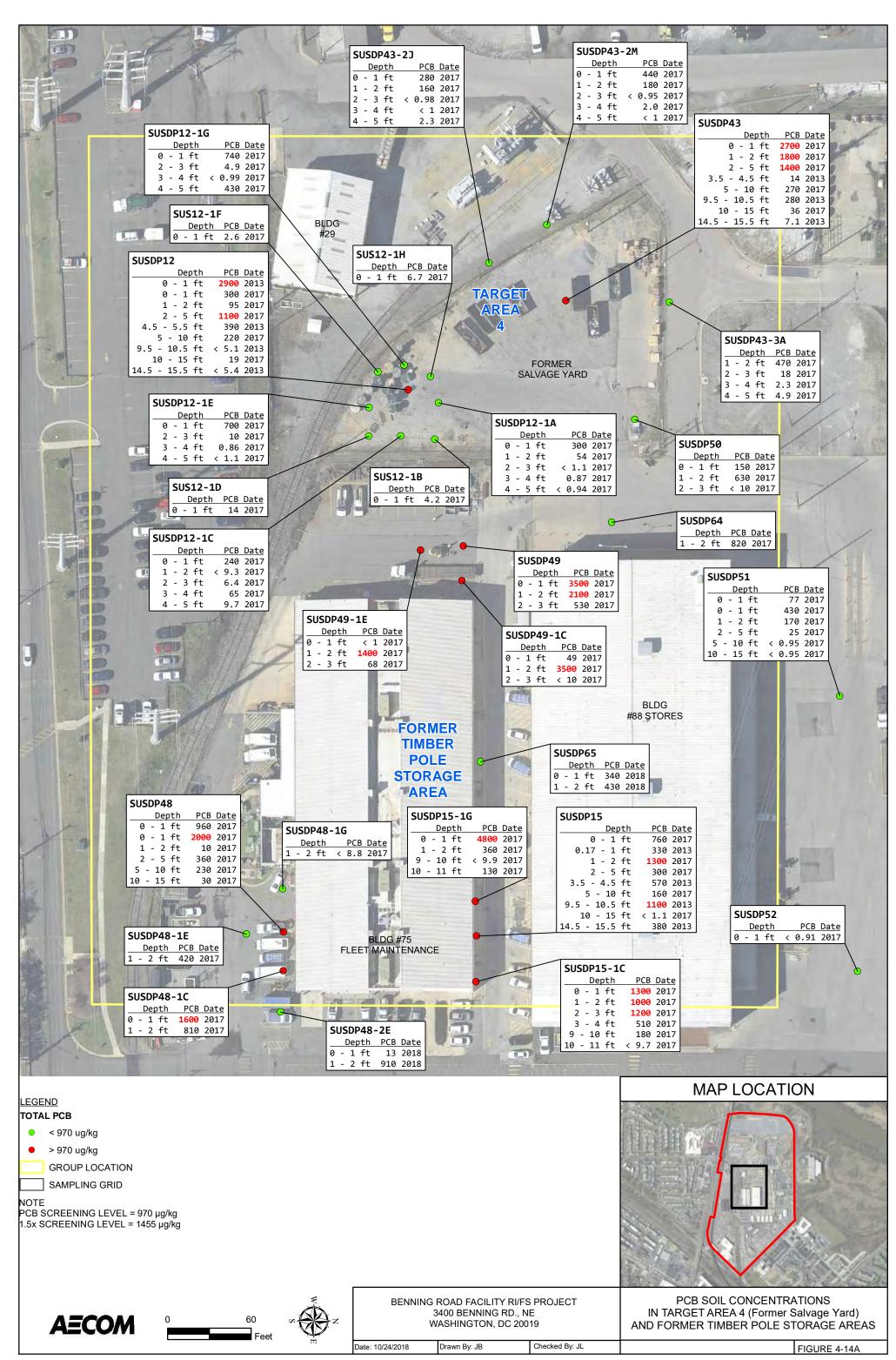
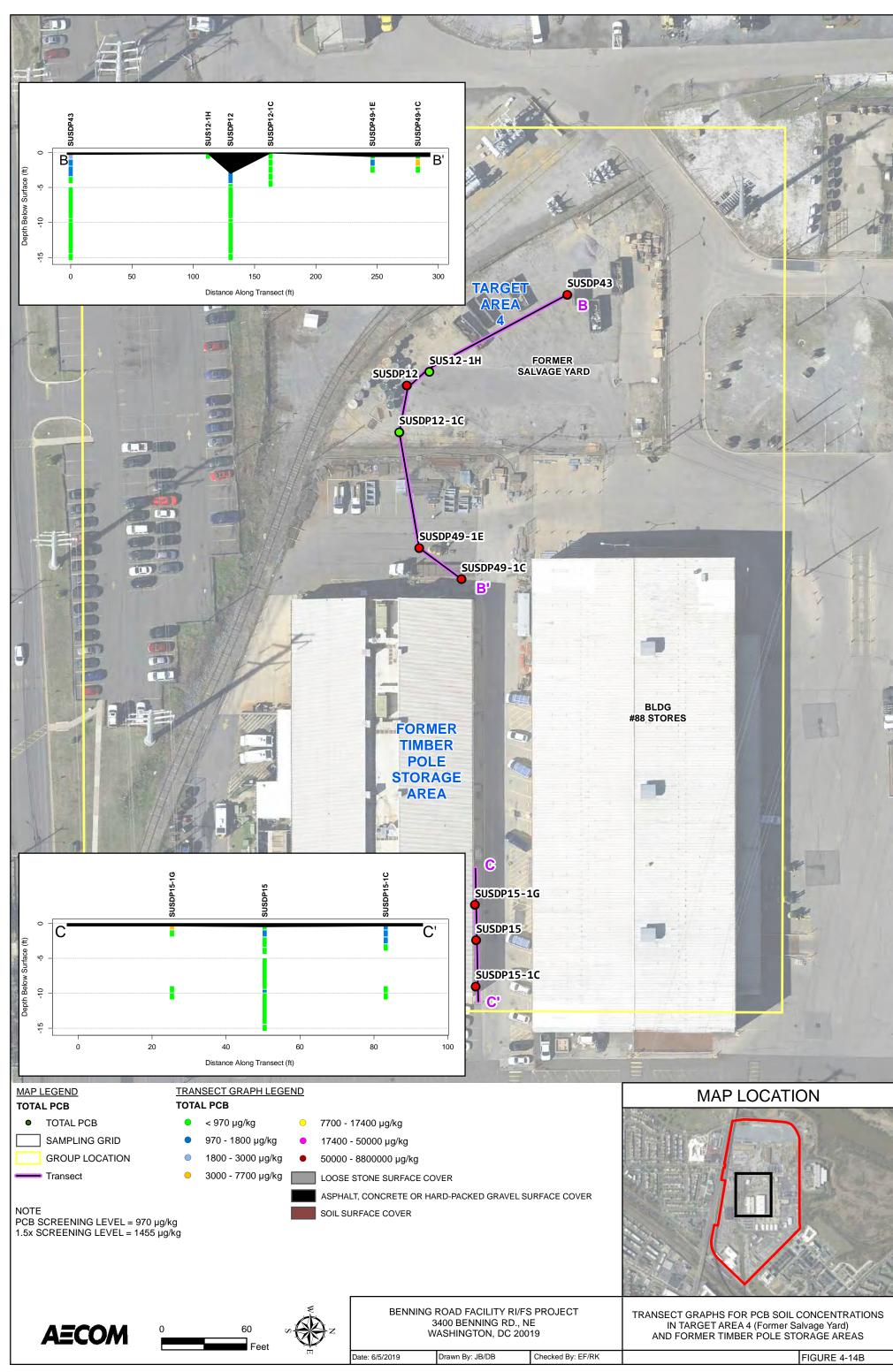
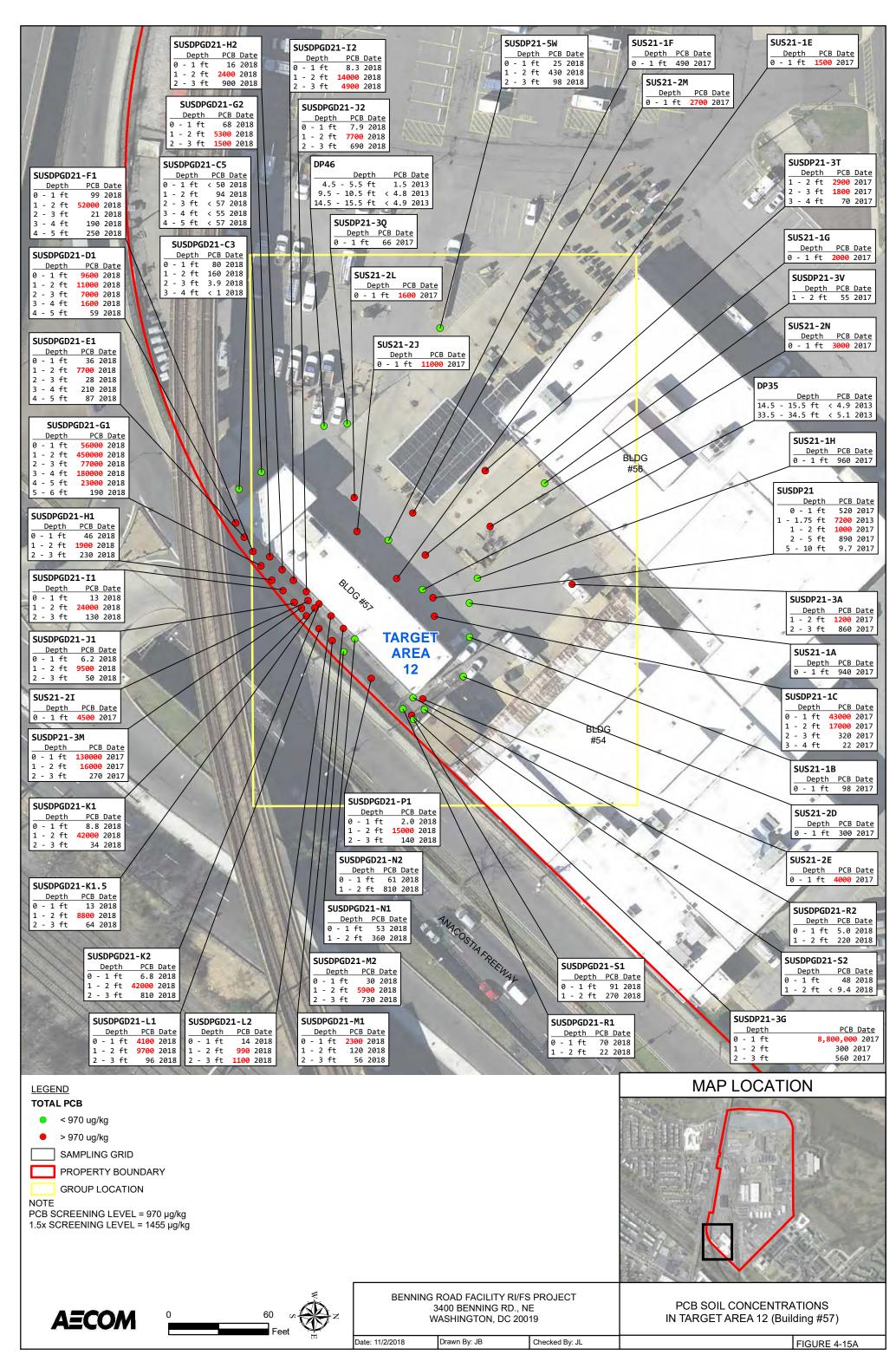
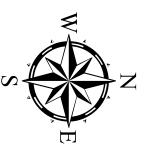





Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019


Figure 4-12C Relative Aroclor Adundance by Depth in Near-Site Sediment Cores
Benning Road Facility RI/FS Project
3400 Benning Road, NE Washington, DC 20019



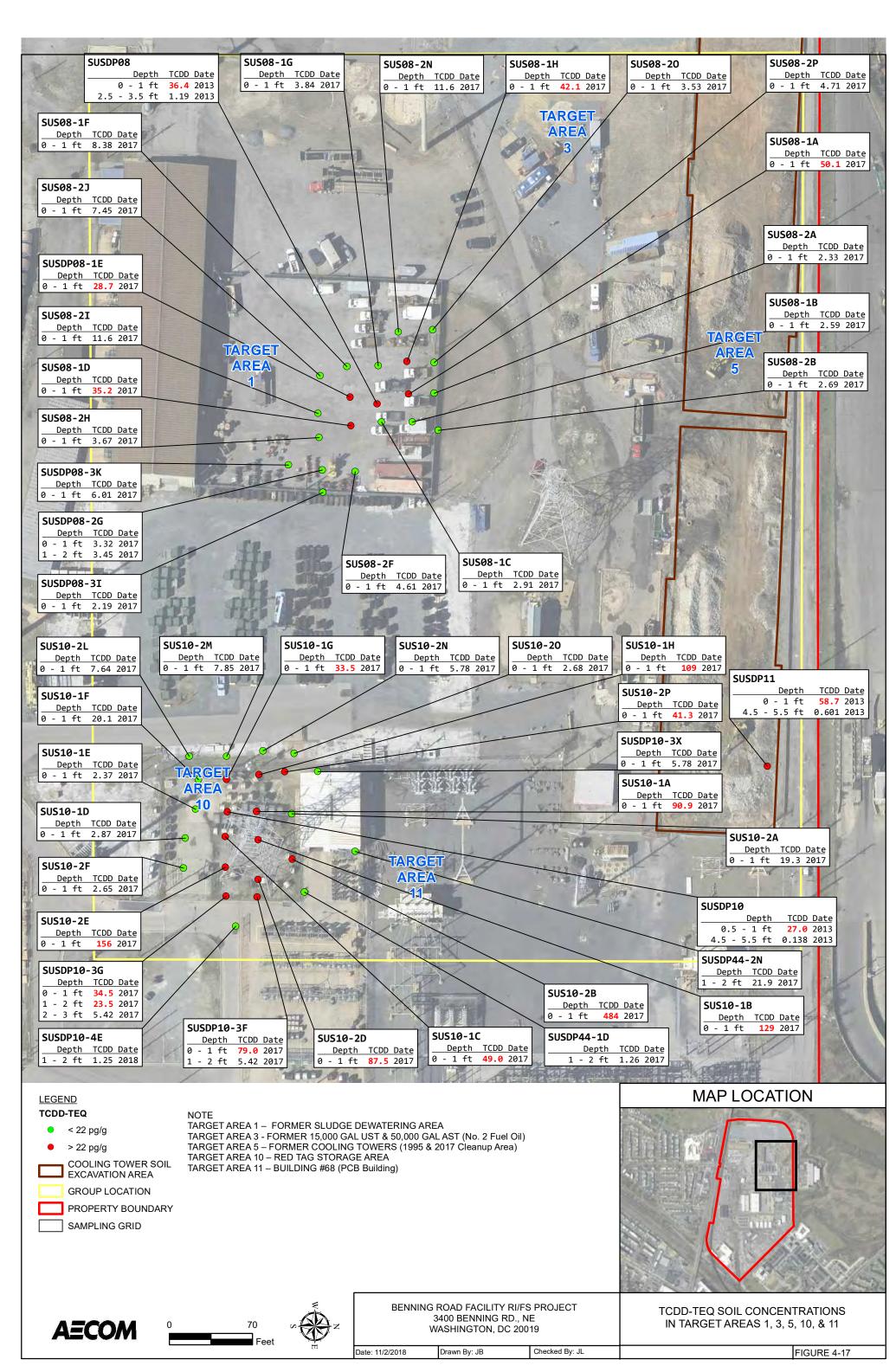


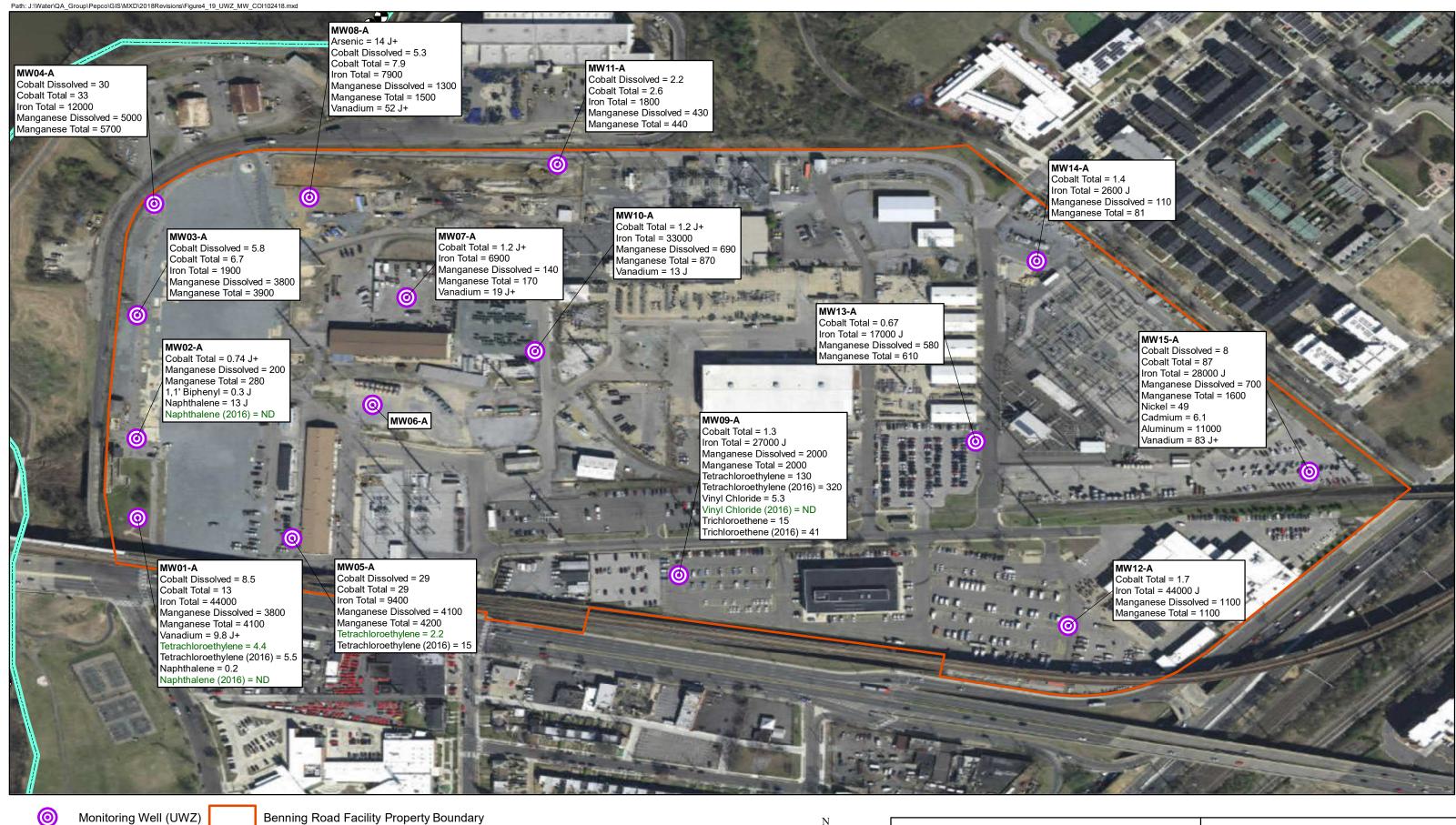
- <22.0 (PSL)
- 22.0 50.0
- 50.0 100.0
- 100.0 300.0
- >300.0
- AECOM :

Benning Road Facility Property Boundary

same location (duplicate or different sample events), the concentration used on the figure is the maximum concentration.

When multiple soil samples were collected at the

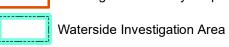


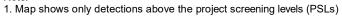

BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019

TCDD TEQ CONCENTRATIONS IN SURFACE SOILS

FIGURE 4-16 Date: 10/25/2018 Checked By: SED Drawn By: KNS

Benning Road Facility RI Report Final February 2020





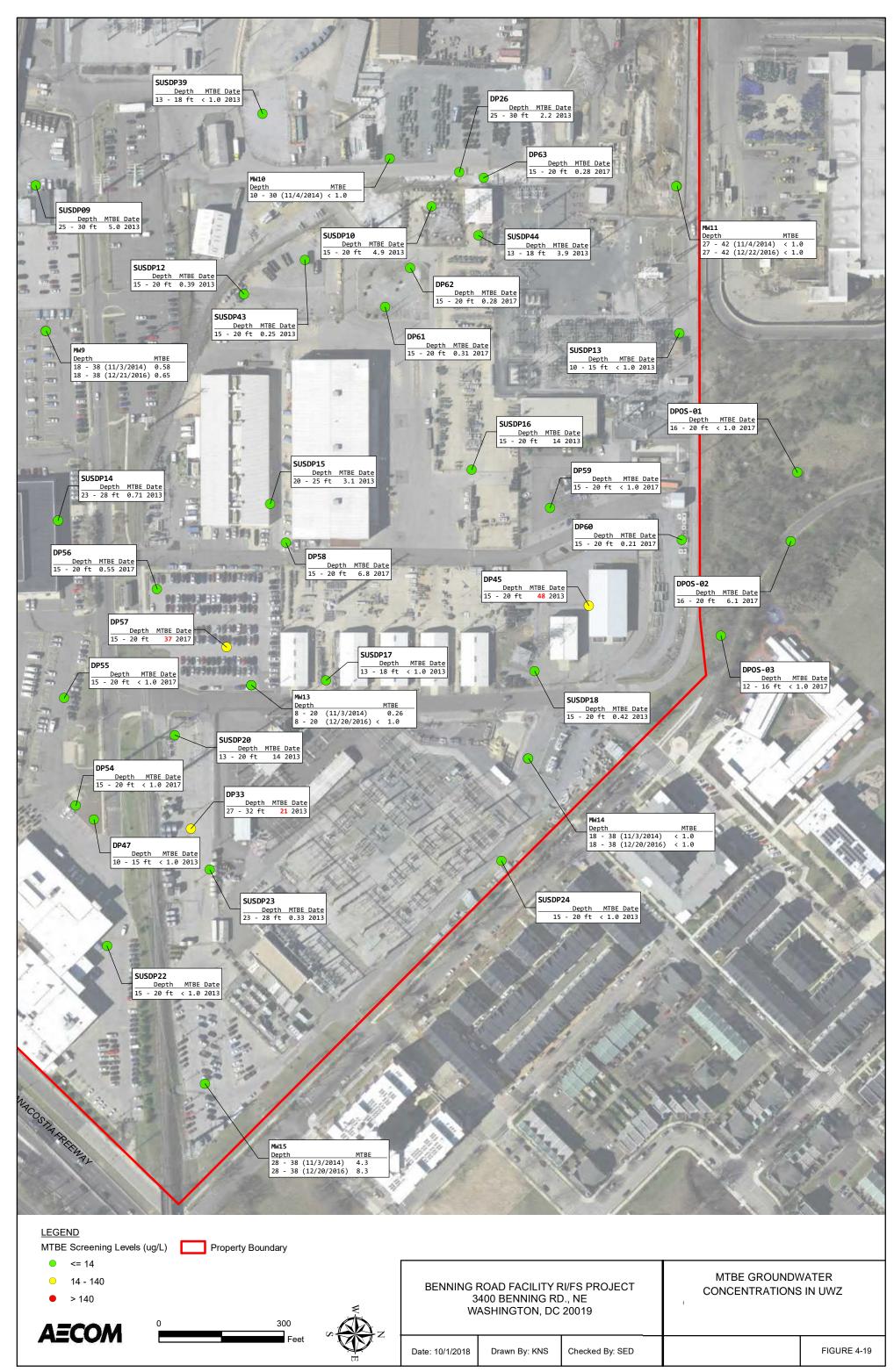
Outfall Location

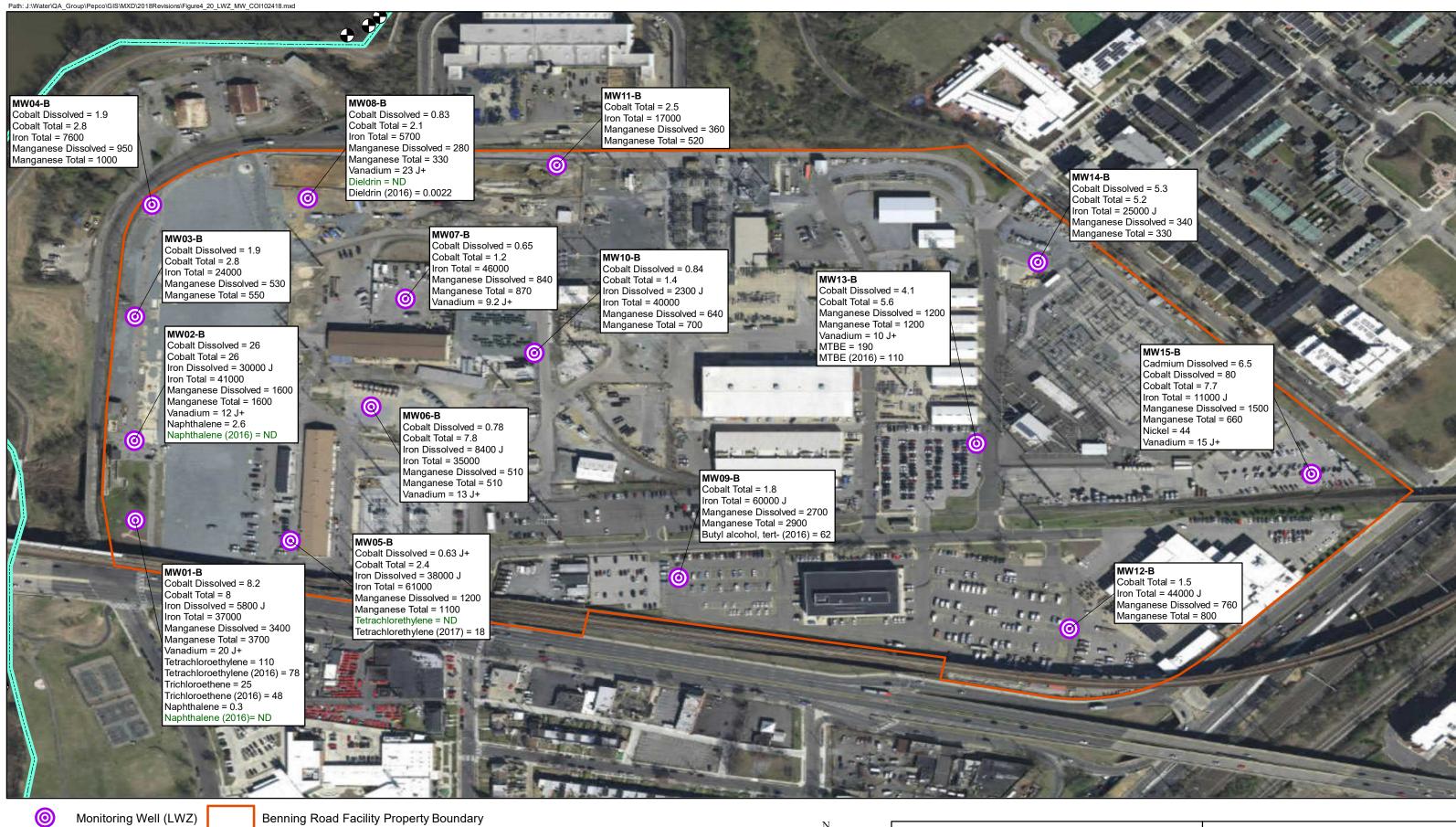
AECOM

- 2. "A" indicates sample was taken from the upper aquifer
- 3. Data collected in 2014 unless otherwise noted
- 4. ND = Non-Detect
- 5. Both sample events shown for organics and in green if below PSLs

500 Feet BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019

INORGANIC AND ORGANIC COI CONCENTRATIONS IN UWZ MONITORING WELLS


Date: 10/30/2018 Dr


Drawn By: KNS

NS Checked By: SED

FIGURE 4-18

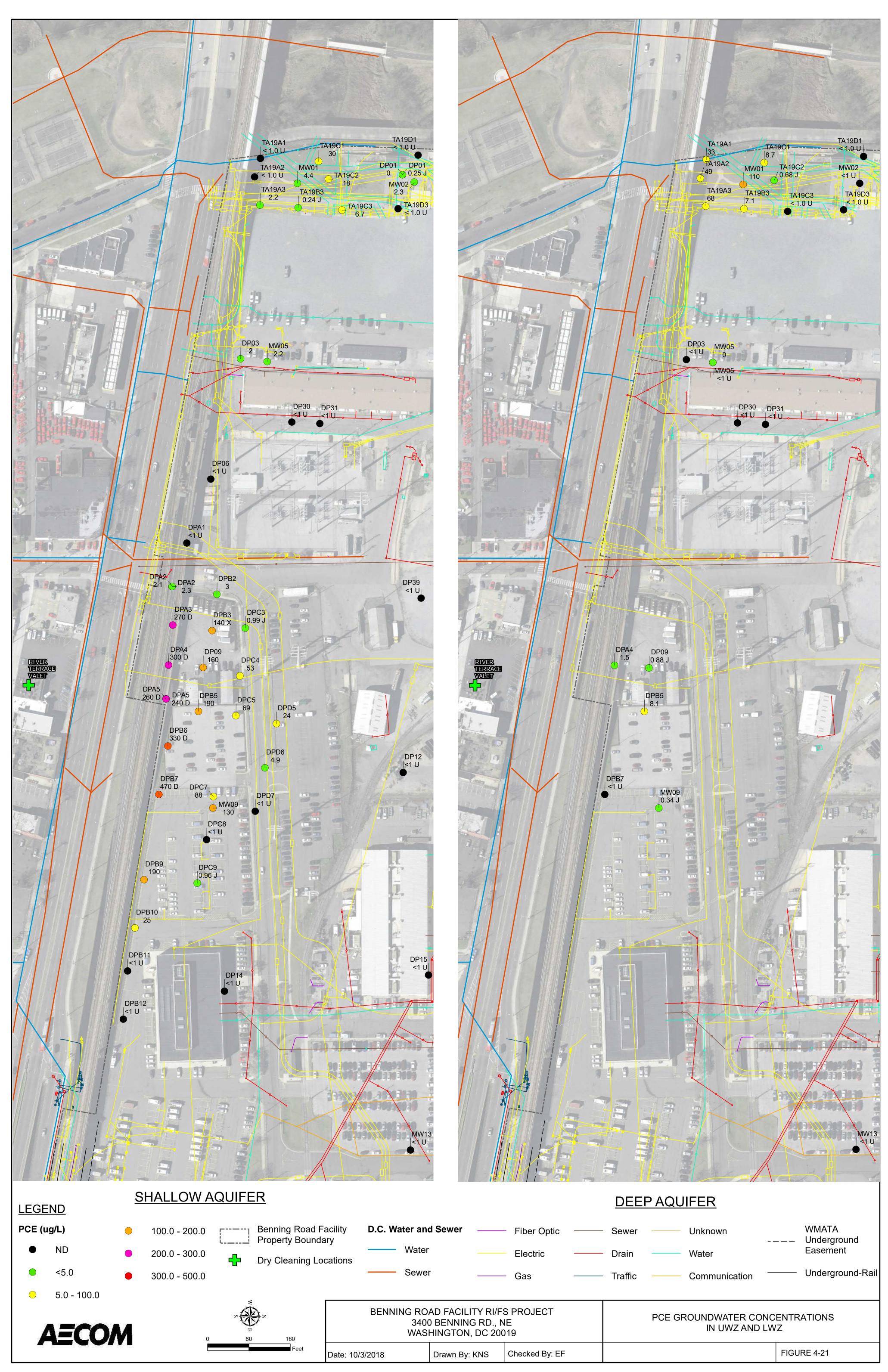
Benning Road Facility RI Report. All units are in ug/L

Outfall Location

AECOM

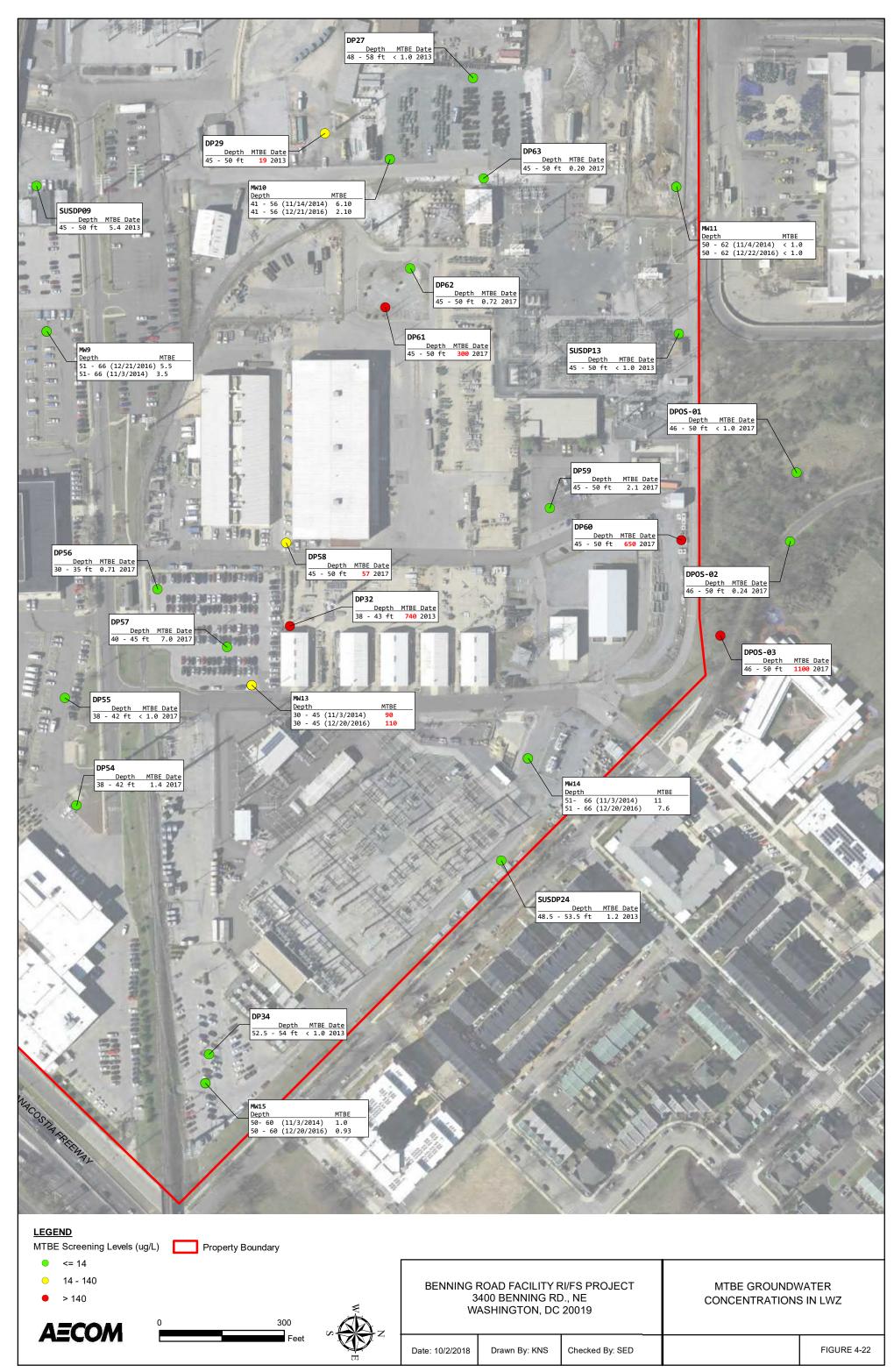
Waterside Investigation Area

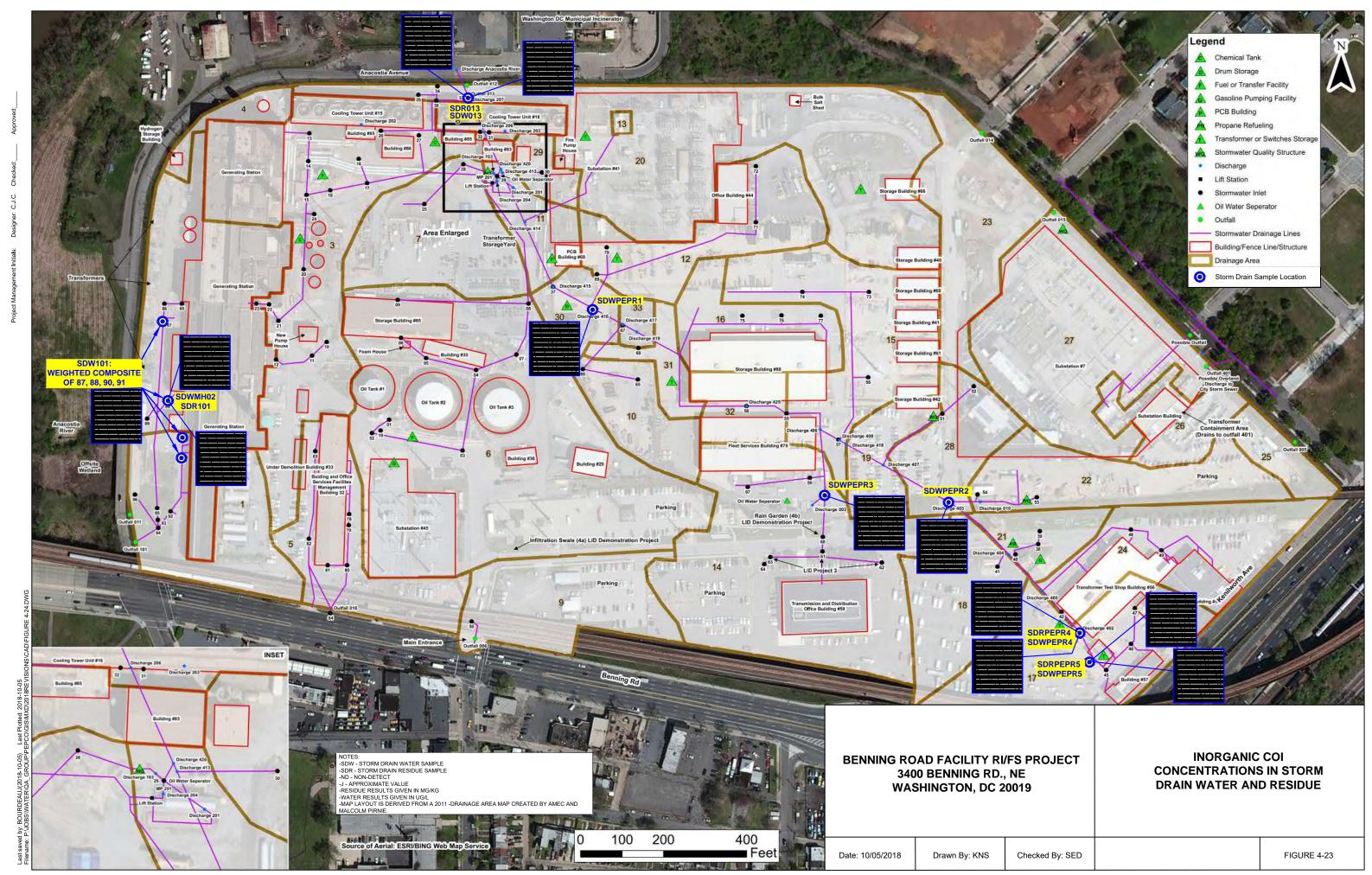
- 1. Map shows only detections above the project screening levels (PSLs)
- 2. "A" indicates sample was taken from the upper aquifer
- 3. Data collected in 2014 unless otherwise noted
- 4. ND = Non-Detect
 - 5. Both sample events shown for organics and in green if below PSLs
- Benning Road Facility RI Report. All units are in ug/L

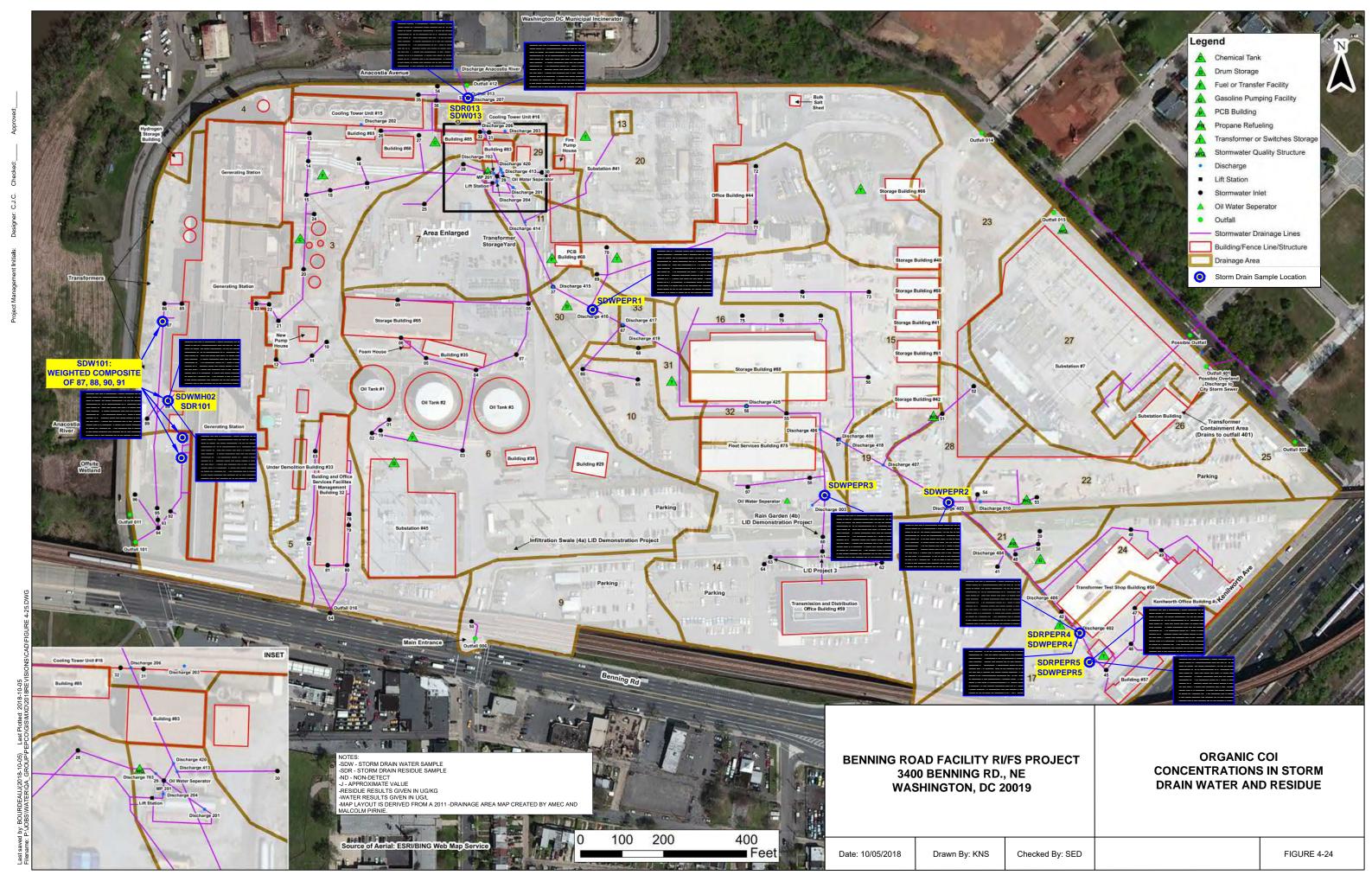

BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019

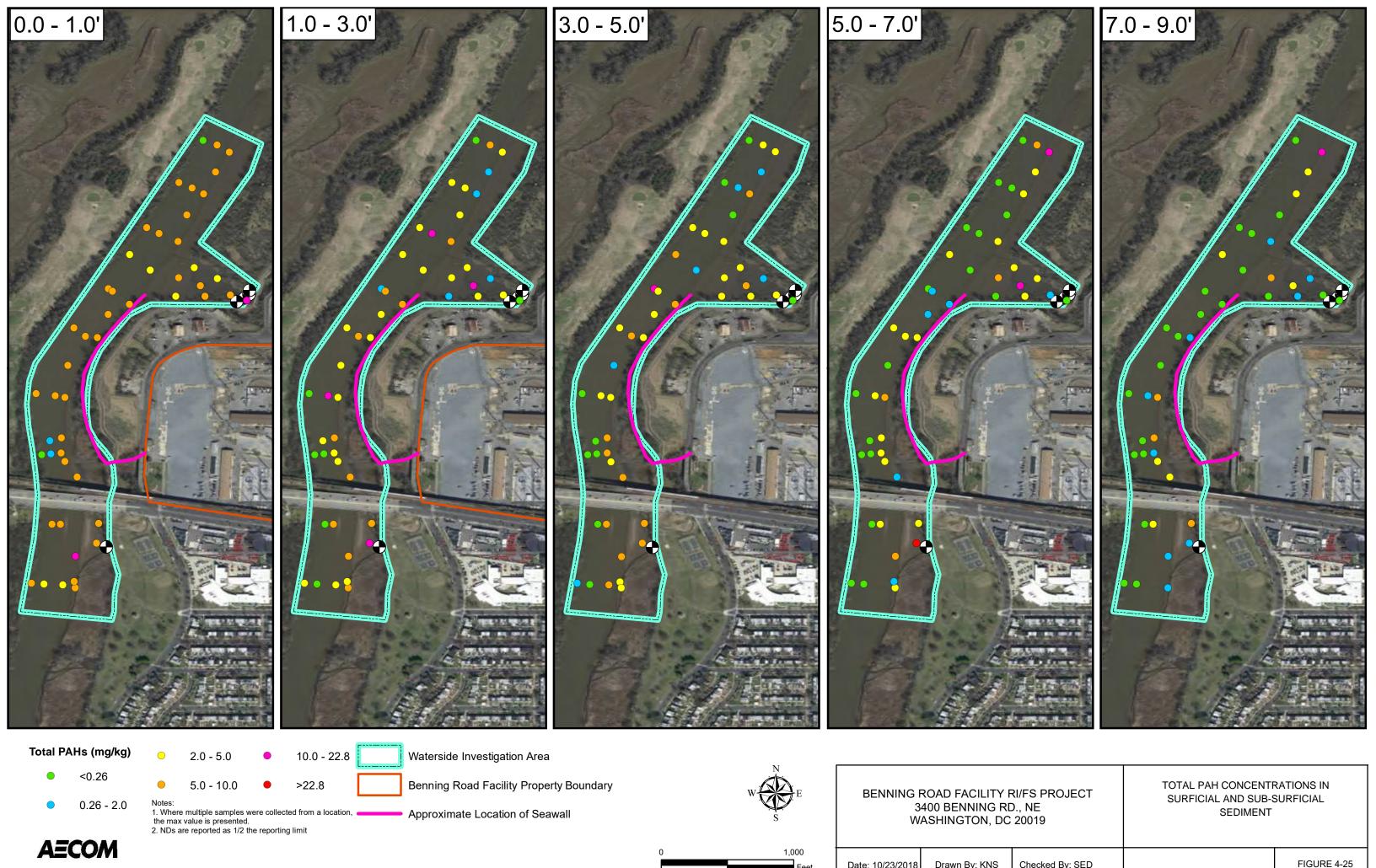
INORGANIC AND ORGANIC COI **CONCENTRATIONS IN LWZ** MONITORING WELLS

Date: 10/30/2018

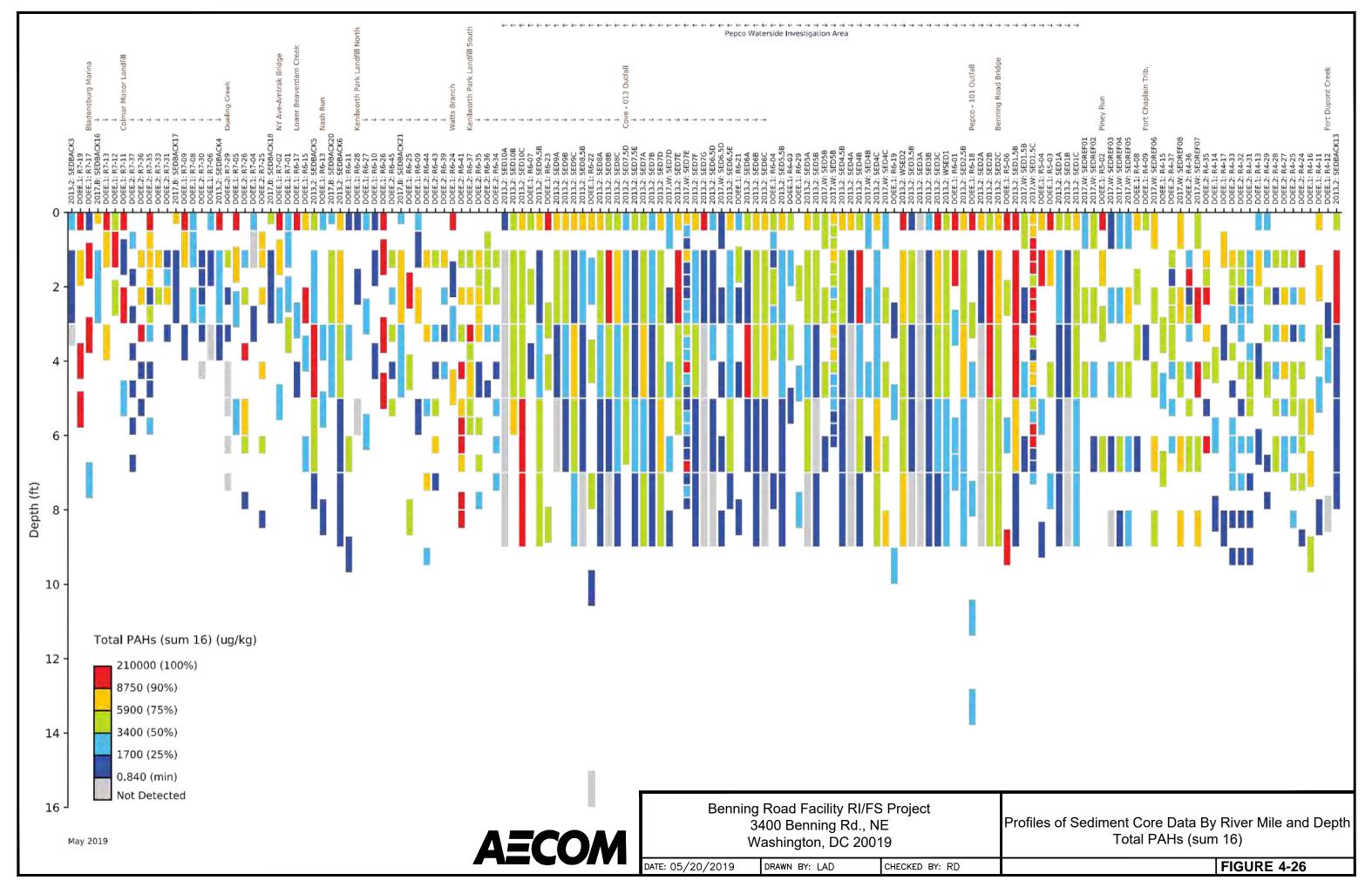

Drawn By: KNS

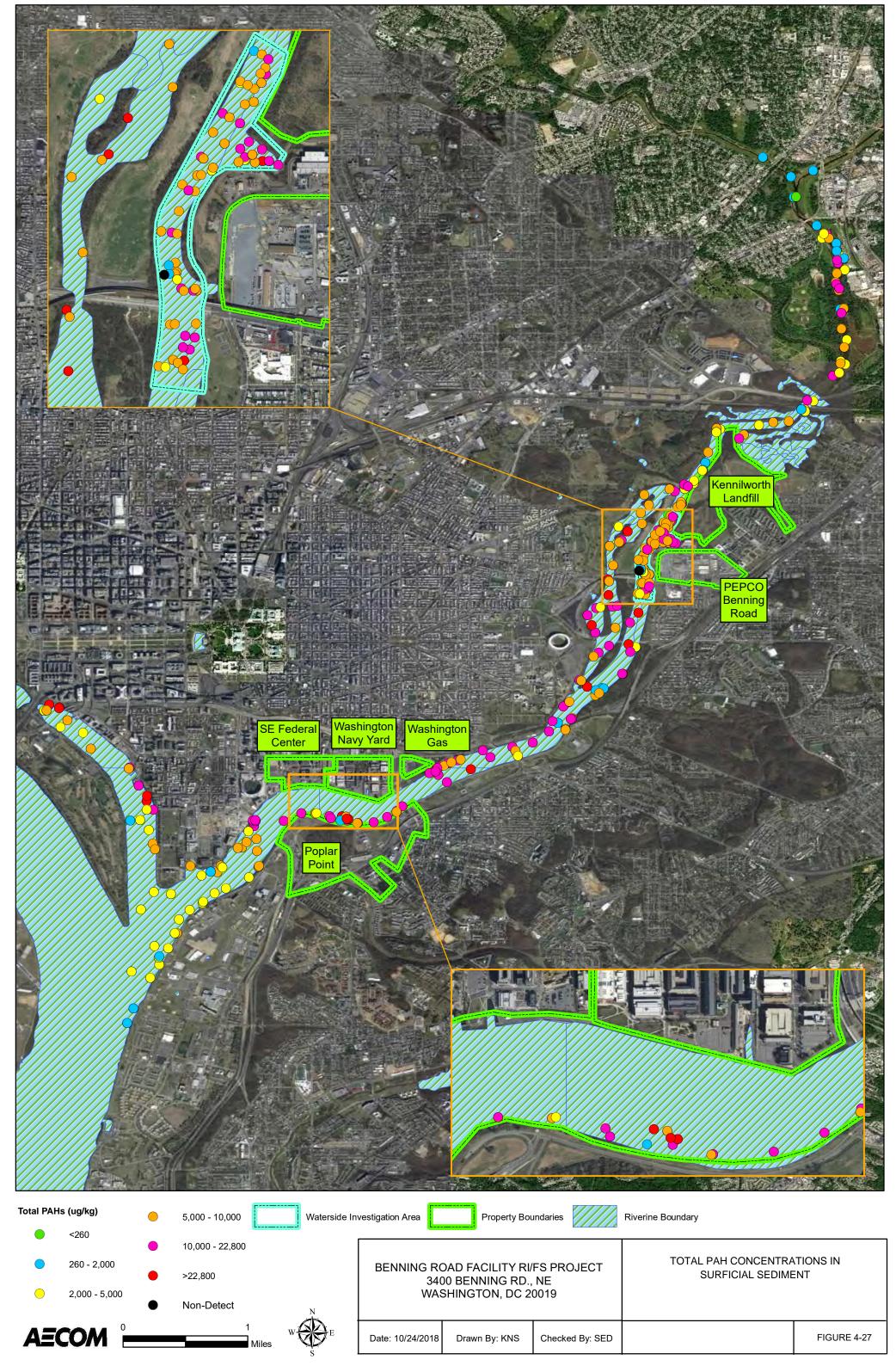

Checked By: SED FIGURE 4-20



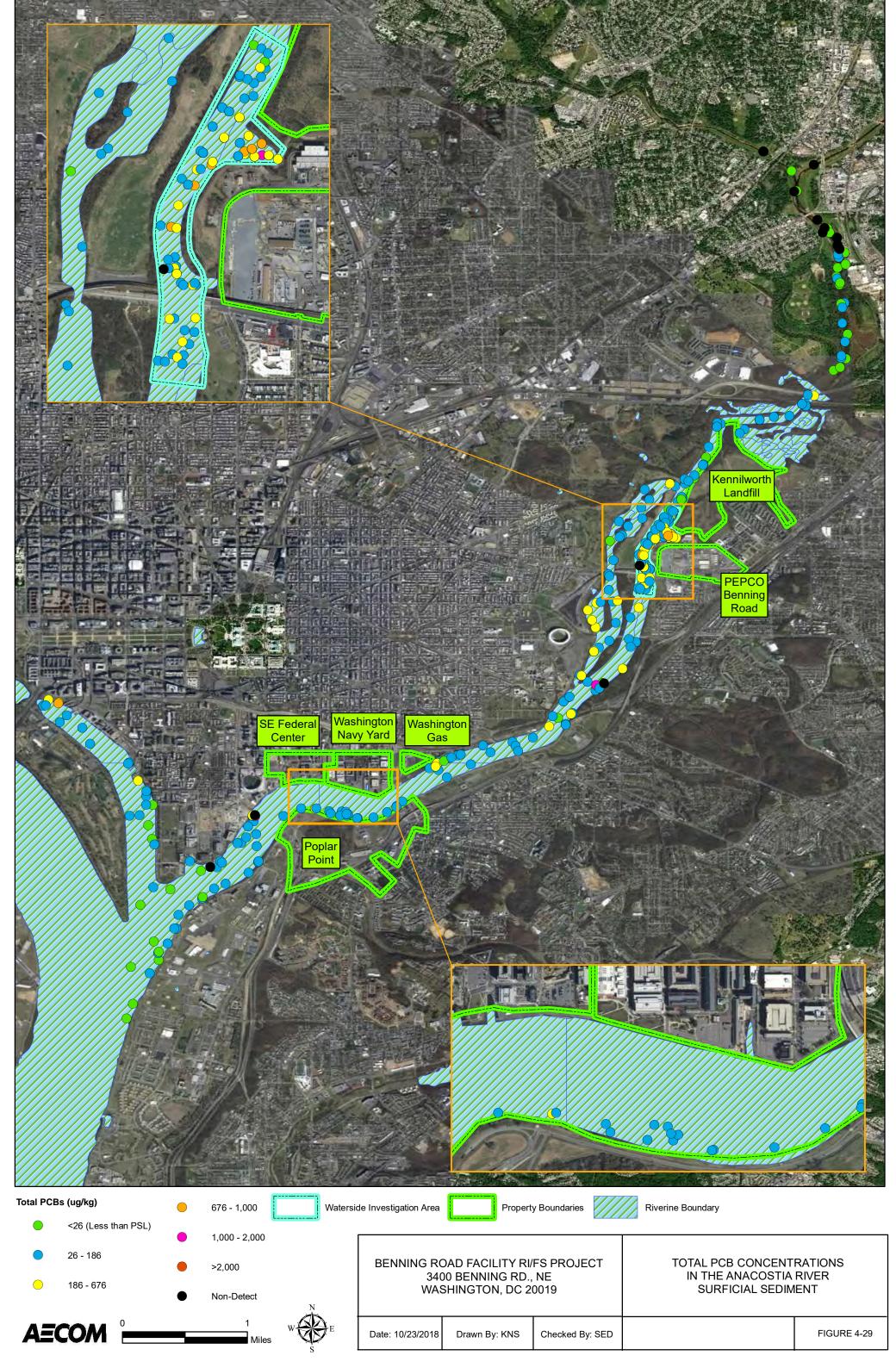

Benning Road Facility RI Report

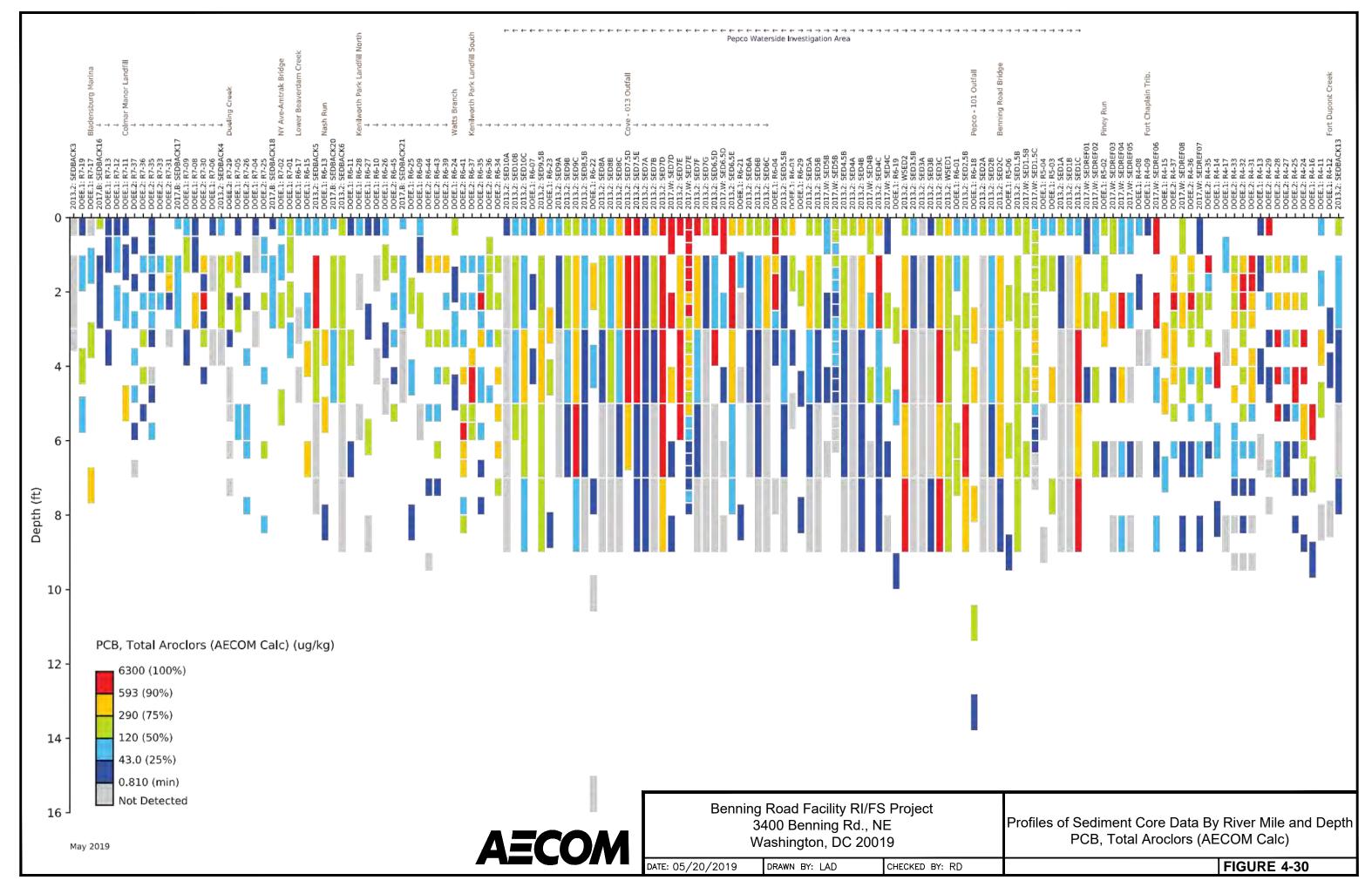
February 2020





Date: 10/23/2018


Drawn By: KNS


Checked By: SED

Waterside Investigation Area

<15.0

Benning Road Facility Property Boundary

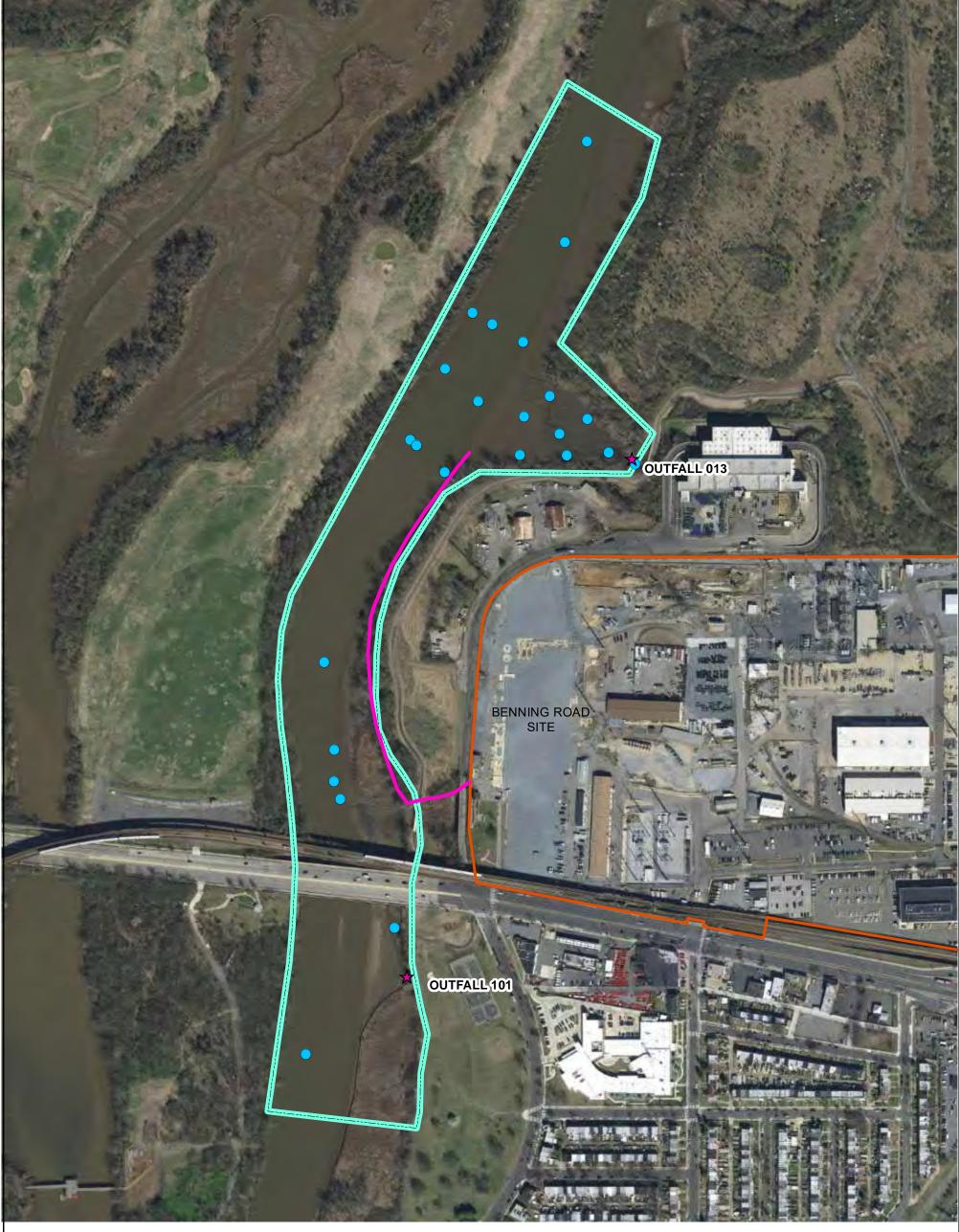
15.0 - 30.0

>30.0

AECOM

the max value is presented.

BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019


TOTAL PCB CONCENTRATIONS IN SURFICIAL AND SUB-SURFICIAL SEDIMENT NORMALIZED TO TOC

Date: 1/20/2020

Drawn By: KNS

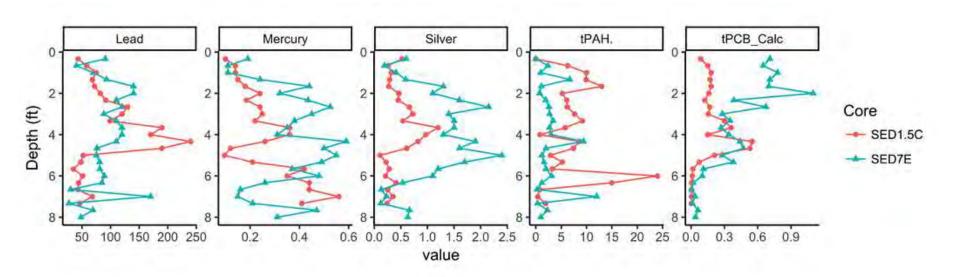
Checked By: SED

FIGURE 4-31

>Low Effects Ecological Screening Value (35.6 ppt)

Approximate Location of Sea Wall

Benning Road Facility Property Boundary


BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019 TCDD TEQ CONCENTRATIONS IN SURFICIAL SEDIMENT

Date: 1/20/2020

Drawn By: KNS Checked By: SED

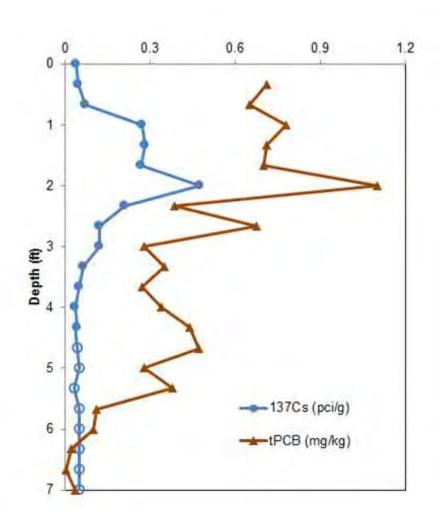

FIGURE 4-32

Figure 4-33
Selected COPC Vertical Delineation in Waterside
Investigation Area
Benning Road Facility RI/FS Project 3400 Benning
Road, NE Washington, DC 20019

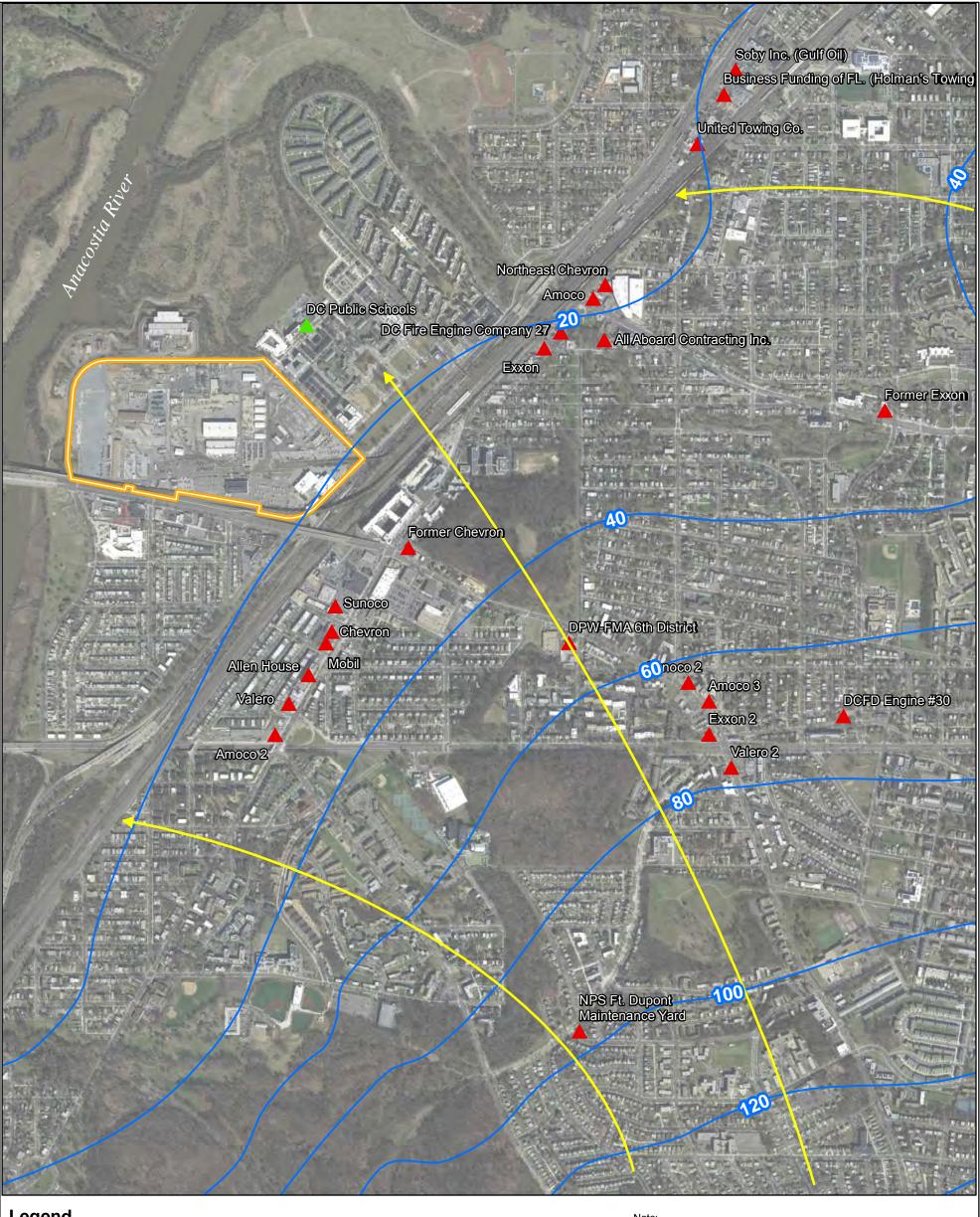

Notes: Select COPCs in cores collected at locations SED1.5C (River Channel) and SED7E (Cove). All concentrations in mg/kg.

Figure 4-34
Total PCBs and Cesium 137 Core SED7E
Benning Road Facility RI/FS Project 3400 Benning
Road, NE Washington, DC 20019

Notes:

Total PCBs (tPCB) and 137Cs activity (pci/g) in sediment core SED7E, located in the Cove. Open circles indicate that there was no 137Cs detected.

Legend

Upgradient or Cross-Gradient Gasoline LUST Case

Thomas Elementary School (Heating Oil LUST Case)

Regional Groundwater Contours

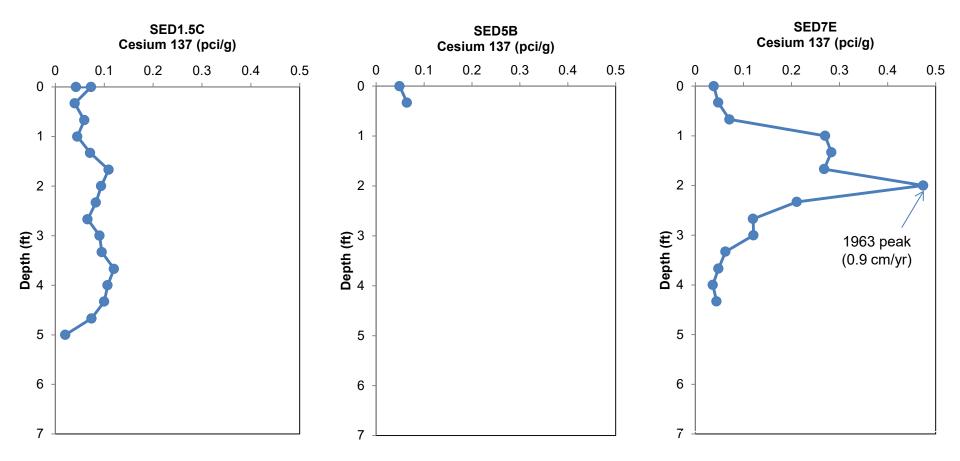
Generalized Groundwater Flow Direction

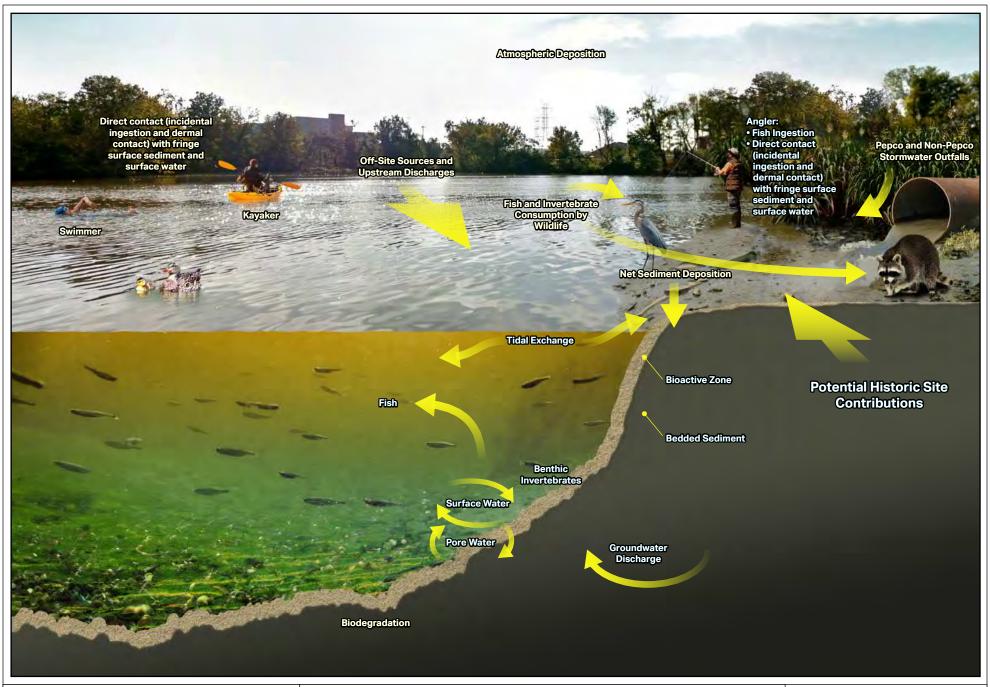
Benning Road Facility Property Boundary

Note:
- Water-table contours shown in ft NAVD88, from Koterba, et al. (2010). Pesticides in groundwater in the Anacostia River and Rock Creek watersheds in Washington, D.C., 2005 and 2008. USGS SIR 2010–5130

AECOM

250 500 1,000 Feet

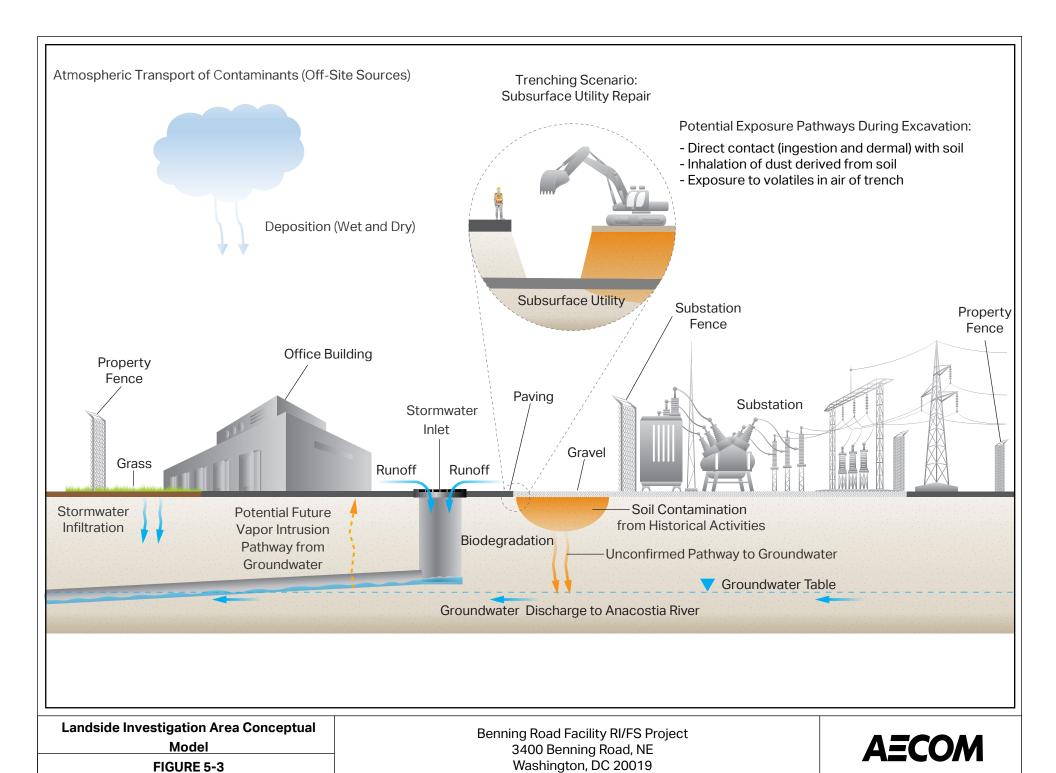



BENNING ROAD FACILITY RI/FS PROJECT 3400 BENNING RD., NE WASHINGTON, DC 20019

UPGRADIENT AND CROSS-GRADIENT GASOLINE LUST CASES

Date: 10/23/2018 Drawn By: KNS Checked By: SED FIGURE 4-35

Figure 5-1
Cesium 137 Results
Benning Road Facility RI/FS Project
3400 Benning Road, NE
Washington, DC 20019



Waterside Investigation Area Conceptual Model

FIGURE 5-2

Benning Road Facility RI/FS Project 3400 Benning Road, NE Washington, DC 20019

AECOM

Benning Road Facility RI Report Final February 2020

Figure 5-4
Conceptual Site Model - On-site Sources
Benning Road Facility RI/FS Project

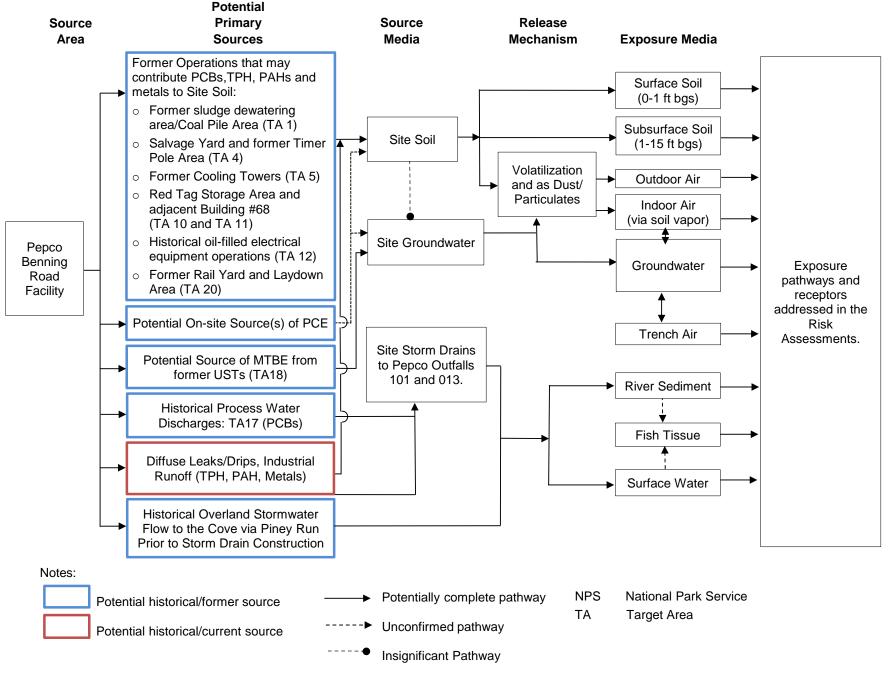
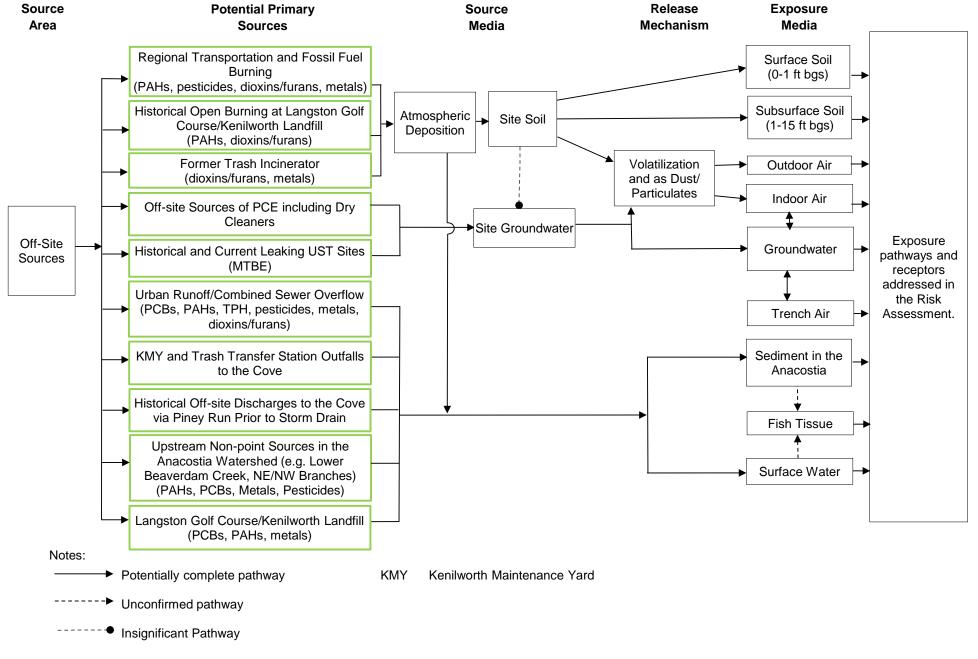



Figure 5-5
Conceptual Site Model - Off-Site Sources
Benning Road Facility RI/FS Project

